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Abstract
Reservoir operation optimisation is a decision support tool to assist reservoir operators withwater
release decisions to achievemanagement objectives, such asmaximisingwater supply security,miti-
gating flood risk, andmaximising hydroelectric power generation. The effectiveness of reservoir
operation decisions is subject to uncertainty in system inputs, such as inflow and therefore,methods
such as stochastic dynamic programming (SDP) have been traditionally used.However, thesemeth-
ods suffer from the three curses of dimensionality,modelling, andmultiple objectives. Evolutionary
algorithm (EA)-based simulation-optimisation frameworks such as the EvolutionaryMulti-Objective
Direct Policy Search (EMODPS) offer a newparadigm formultiobjective reservoir optimisation under
uncertainty, directly addressing the shortcomings of SDP-basedmethods. They also enable the con-
sideration of input uncertainty represented using ensemble forecasts that have becomemore acces-
sible recently. However, there is no universally agreed approach to incorporate uncertainty into EA-
basedmultiobjective reservoir operation policy optimisation and it is not clear which approach is
more effective. Therefore, this study conducts a comparative analysis to demonstrate the advantages
and limitations of different approaches to account for uncertainty inmultiobjective reservoir opera-
tion policy optimisation via a real-world case study; and provide guidance on the selection of appro-
priate approaches. Based on the results obtained, it is evident that each approach has both advantages
and limitations. A suitable approach needs to be carefully selected based on the needs of the study, e.g.,
whether a hard constraint is required, or awell-established decision-making process exists. In addi-
tion, potential gaps for future research are identified.

1. Introduction

Reservoir operation optimisation is a complex problemdue to themultiple and often conflicting objectives that
need to be achieved (Changchit andTerrell 1993, Cheng et al 2017,McMahon and Petheram 2020, Yu et al 2021)
and the uncertainty in system input such as inflow that obscures operation decisions and limits their effective-
ness (Kuria andVogel 2014, Schwanenberg et al 2015, Berghout et al 2017, Li et al 2018, Bozorg-Haddad et al
2022). Therefore, probabilistic optimisation approaches, such as stochastic dynamic programming (SDP), have
been used to incorporate uncertainty in reservoir operation optimisation due to their ability to handle the non-
continuous solution space and exploit the sequential nature of reservoir operation decisions (Labadie 2004,
Macian-Sorribes and Pulido-Velazquez 2020).

However, SDPhas been referred to as having three curses (Giuliani et al 2016, Giuliani et al 2021): (I)multi-
ple objectives—an inability to explicitly account formultiobjective tradeoffs, so aweighted summethod is often
used (Soleimani et al 2016, Ortiz-Partida et al 2019, Celeste et al 2021); (ii) dimensionality—discretisation of the
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system state significantly increases computational cost when a large system is considered (Sahu,Mclaughlin
2018,Dobson et al 2019,Hooshyar et al 2020); and (iii)modelling—all variables need to be described in the
simulationmodel, thus specificmodel and problem formulations are needed (Mortazavi et al 2012, Soleimani
et al 2016, Sahu,Mclaughlin 2018,Dobson et al 2019,Ortiz-Partida et al 2019,Hooshyar et al 2020, Celeste et al
2021), which restrict its real-world applications.

Evolutionary algorithms (EAs) offer a newparadigm formultiobjective reservoir operation optimisation
under uncertainty and have been applied to a range ofmanagement decisions (Maier et al 2016), including social
and environmental impact (Mortazavi et al 2012), hydropower generation objectives (Tsoukalas andMakro-
poulos 2015, Chen et al 2018), andwater quality and irrigation objectives (Saadatpour et al 2020). EAs directly
address the three curses of SDP-basedmethods (Maier et al 2019, Giuliani et al 2021), enablingmodellers to
explore large search spaces of complex reservoir optimisation problems that would otherwise be impossible
without undesired assumptions. In addition, an EA-based simulation-optimisation framework such as the Evo-
lutionaryMulti-Objective Direct Policy Search (EMODPS) (Giuliani et al 2016) allows operation policies to be
optimised directly based on operation objective functions and enables the consideration of input uncertainty
represented using ensemble forecasts that have becomemore accessible recently. However, when EAs are used
formultiobjective reservoir operation policy optimisation under uncertainty, a wide variety of approaches have
been applied and there is no agreed approach on howuncertainty in system inputs should be incorporated.

This study aims to conduct a comparative analysis to demonstrate the advantages and limitations of different
approaches to account for uncertainty in EA-basedmultiobjective reservoir operation policy optimisation via a
real-world case study (sections 2, 3 and 4), and provide guidance on the selection of appropriate approaches
(section 4). Based on thefindings, future research is also recommended.

2. Reservoir operation optimisation integrating uncertainty: a brief review

2.1. Reservoir operation optimisation
Based on the decision variables that are optimised, reservoir operation optimisation can be divided into two
categories: release sequence optimisation and operation policy (rules or strategies) optimisation. The aimof
release sequence optimisation is tofind a sequence of reservoir water release over a pre-defined time period (e.g.,
one year), such that the objective function(s) during this time period areminimised ormaximised (Wang et al
2012, Schwanenberg et al 2015, Chen et al 2018,Ortiz-Partida et al 2019). The outcomes of release sequence
optimisation are very simple to understand and use. However, as they are deterministic in nature, the optimised
release sequences are only valid for the data used during the optimisation process and the performance of the
optimised solutions can reduce significantly as the system state deviates from the data used in the original optim-
isation (Dobson et al 2019). In addition, as the duration of the operation period increases, the number of deci-
sion variables for release sequence optimisation can be so large that it becomes impractical to optimise (Dobson
et al 2019). Consequently, release sequence optimisation ismore commonly used to explore system responses to
specific conditions and provide systemunderstanding (Castelletti et al 2012).

Operation policy optimisation aims to derive an operation policy that will help reservoir operators andman-
agers to determine release sequences (Oliveira and Loucks 1997,Macian-Sorribes and Pulido-Velazquez 2020).
A significant advantage of operation policy optimisation is that operation policies can be applied to future opera-
tion periods. Operation policies can be derived using a two-step process (Young 1967, Karamouz andHouck
1987), where a deterministic release sequence isfirst obtained and then a parameterised function of the release
sequence (e.g., as a function of input variables such as reservoir system state, inflow and time of year) is identi-
fied.However, this approach relies on release sequence optimisation in thefirst step and therefore suffers from
similar limitations of release sequence optimisation (Giuliani et al 2021).

Alternatively, operation policies can be obtained using direct policy search (Schmidhuber 2001), where the
parameters of a pre-defined policy function are directly optimised during the optimisation process based on
operation objectives, such asmaximisation of hydro-electric energy generated orminimisation offlood risk.
Various function forms can be used as the policy function, including simple rule curves (Li et al 2020), compli-
cated hedging rules (Xu et al 2019), mathematical equations such as polynomial functions (Tsoukalas and
Makropoulos 2015, Saadatpour et al 2020), or data-drivenmodels such as artificial neural networks (ANNs)
(Culley et al 2016, Giuliani et al 2016, Zatarain Salazar et al 2017).Mathematical equations are commonly used
as they aremore flexible than simple rule curves and their behaviour is well-understood (Schmidhuber 2001).
However, there is no direct evidence to indicate that a certainmathematical equation should be used for a part-
icular system and therefore, theymay lead to poor performance (Labadie 2004,Macian-Sorribes and Pulido-
Velazquez 2020). Data-drivenmodels such as ANNs offer greatflexibility in simulating release decisions based
on input variables. For this reason, ANNshave been successfully applied tomany reservoir operation optim-
isation problems
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(Culley et al 2016, Zatarain Salazar et al 2017,Dobson et al 2019), especially in an EA-based optimisation frame-
work including the EMODPS (Tsoukalas andMakropoulos 2015, Giuliani et al 2016, Zatarain Salazar et al 2017,
Macian-Sorribes and Pulido-Velazquez 2020, Saadatpour et al 2020).

2.2. Incorporating uncertainty in reservoir operation optimisation using EAs
There are variousmethods to incorporate input uncertainty in reservoir operation optimisation using EAs, typi-
cally through the evaluation of constraints. First, inflowuncertainty can be incorporated as a probability con-
straint so that only solutionswithin a pre-defined confidence bound are considered (Tsoukalas and
Makropoulos 2015, Saadatpour et al 2020). Alternatively, constraints can be evaluated over theworst realisation
of all cases representing input uncertainty (Mortazavi et al 2012,Wang et al 2012, Ghimire andReddy 2014,
Chen et al 2018). In some studies, the constraint violation estimated over theworst case is handled as an objective
function penalty (Mortazavi et al 2012,Wang et al 2012).

Uncertainty can also be directly accommodatedwithin the objective function(s), for example, having objec-
tive function values averaged across the range of inflows used (Saadatpour et al 2020). This is an intuitive
approach and has been used in other applications, for example, post-processing ensemble climate forecasts
(Zhao et al 2022). Yet another approach is to have the objective function calculated as the total of a criterion over
the range of inflows used, for example, total hydro-electric power generated (Ghimire andReddy 2014), total
demand deficit (Saadatpour et al 2020) or total environmental stress (Mortazavi et al 2012). Alternatively, objec-
tive function values can also be estimated from theworst realisation of all inflow cases (Zatarain Salazar et al
2017, Chen et al 2018). Furthermore, an additional reliability objective evaluating the performance of solutions
across thewhole range of system input values can be used (Mortazavi-Naeini et al 2015). Given thewide variety
of approaches used and eachwith separate case studies, it is difficult to appreciate their relative benefits.

3.Methodology

3.1.Direct policy search-based optimisation framework
In this study, the optimisation framework used (figure 1) is based on thewell-knownEvolutionaryMulti-Objec-
tiveDirect Policy Search (EMODPS) (Giuliani et al 2016).Within this framework, anANNmodel is used as the
functional form for the operation policy, where the ANNoutput is water released in a particular time step, for
example amonth, and is determined based on a number of inputs such as the time of the year, reservoir initial
storage at the beginning of the time step and inflowduring the time step. Thenwater release is passed into a
reservoirmodel where the reservoir state in each time step is updated, and the optimisation objective functions
and constraints are estimated.Within this framework the decision variables are the parameters of theANN
model and therefore, policy optimisation is carried out together with reservoir system simulation in a single-step
process. A three-layer feed-forwardmultilayer perception network is used, as it is themost commonANNused
for environmentalmodelling due to its simple structure and less data requirement, and it is able to simulate
complex environmental systems (Wu et al 2014, Xie et al 2021, Forouhar et al 2022). The non-dominated genetic

Figure 1.The framework for reservoir operation policy optimisation.
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algorithm II (Deb et al 2000) implemented via the ‘pymoo’Python package (Blank andDeb 2020) is used as the
optimiser. Details of theANNmodel andGAparameter values used are provided in the supplementarymaterial.

3.2.Different approaches to incorporate uncertainty
Reservoir inflow is amajor input for theANN-based policy.However, it is not known at the beginning of the
time step and therefore is themain source of uncertainty, which can be represented using ensemble forecasts. To
investigate the impact of different approaches for incorporating input uncertainty intomultiobjective reservoir
operation optimisation using EAs, six analyses incorporating existing approaches from the literature (see section
2.2) have been conducted. The details of these analyses are summarised in table 1.

Analyses 1 to 3 have objective functions estimated from theworst case across all ensemble inflowmembers.
For Analysis 1 a probability constraint is usedwhere the probability of constraint violation needs to be smaller
than a pre-defined value e.g., 1%.Whereas, for Analysis 2, the constraints are evaluated for theworst-case rea-
lisation across the ensemble inflows. For Analysis 3, the constraints are converted into an additional reliability
objective, where the probability of constraint violation across all inflow ensemblemembers isminimised. Ana-
lyses 4 to 6 follow similar approaches as withAnalyses 1 to 3 for handling the constraints, but the original objec-
tive functions are evaluated based on the average value across all ensemble inflowmembers.

3.3. Case study and data
Danjiangkou reservoir is located on theHanRiver in theHubei province of central China (see figure 2). It is the
second largest artificial freshwater lake inAsia and also home to one of the largest hydro-electric power stations
inChina. The reservoir has a catchment area of 95,217 km2. Prior to 2012 before the extension toDanjiangkou
Damwas completed, the reservoir had a long-term average surface area of approximately 700 km2, an average
annual inflowof approximately 39,400millionm3, and amaximum storage of 17,450millionm3. In total, 31
years ofmonthly inflowdata are available from1979 to 2009 forDanjiangkou reservoir.

Inflowuncertainty can be represented using a range ofmethods (Mortazavi et al 2012, Ghimire andReddy
2014, Pan et al 2015,Huang et al 2018, Sun et al 2018,Nair and Sasikumar 2019, Sechi et al 2019,Hooshyar et al
2020,Wu et al 2020). Recently, due to the advances in ensemble climate (Zhao et al 2021) and hydrological
forecasting (Wu et al 2020), it has become popular to use ensemble inflow generated synthetically or based on
hydrologicalmodels to represent inflowuncertainty in reservoir operation optimisation (Wang et al 2012,
Schwanenberg et al 2015, Cote and Leconte 2016, Ramaswamy and Saleh 2020). Therefore, in this study, an
ensemble of inflow time series is used to represent inflowuncertainty. An ensemble of 150monthly inflow time
series (figure 3) have been generated stochastically using a kernel density function approach based on the 31-
years historical observations (Xu et al 2022). Thefirst 100 ensemblemembers are used for reservoir operation
policy optimisation and the remaining 50 ensemblemembers are used for the evaluation of optimised operation
policies. The simulation period is one year, following the previous studywhere the case study is first reported
(Zhao andZhao 2014).

3.4.Optimisation problem formulation
The formulation of the optimisation problem adopted in this study follows the formulation reported in Zhao
andZhao (2014), where two operation objectives have been considered. Thefirst objective, f1, is tomaximise the
total hydro-electric energy generated during the typical operation period (i.e., one year):

f p 1
t

T

t1
1

( )å= D
=

Table 1. Summary of analyses conducted.

Analysis No.

Original

objective

function

estimation

Reliability

objective

considered?

Constraint(s)
estimation

1 Worst case No Probability

2 Worst case No Worst case

3 Worst case Yes na

4 Averaged case No Probability

5 Averaged case No Worst case

6 Averaged case Yes na
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where pt is the hydro-electric power generated in time step t , which is amonth;D is the simulation period,
which is a year; andT is the total number of time steps in the simulation period. pt can be estimated based on:

p
SSR s SSR s

SDR r r pmin
2

, 2t
t t

t t
1

max
( ) ( ) ( ) ( )h=

+
-+⎧

⎨⎩
⎡
⎣

⎤
⎦

⎫
⎬⎭

where h is the energy conversion coefficient, the value of which is 0.0082; st and rt are respectively reservoir
storage and release at time t , and SSR st( ) and SDR rt( ) are respectively the stage storage relationship and stage
discharge relationship. These functions are represented using the following equations forDanjiangkou reservoir
(Zhao andZhao 2014):

SSR s s4.5 77.7 3t t
0.29( ) ( )= +

Figure 2. Location of the danjiangkou reservoir.

Figure 3. Stochastically generated ensemble inflowswith 100 ensemblemembers for optimisation and 50 ensemblemembers for
evaluation.
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SDR r r0.045 88.5 4t t
0.53( ) ( )= +

And pmax is themaximum turbine capacity, which is 940MW.
The second objective, f2, is tomaximise thefirm energy generated. Thefirm energy is defined as themini-

mumguaranteed energy that can be generated during a given time step (e.g., onemonth) that can be sold at
premiumprices (Tsoukalas andMakropoulos 2015). Firm energy is proportional to theminimumpower (or
firmpower as referred to in this study) generated during the given time step:

f p p pmin , , , 5T2 1 2{ } ( )= ¼

The optimisation problemhas several constraints. Apart from the commonwater balance constraints, the
minimumandmaximum storage of the reservoir are respectively 12,100millionm3 and 17,450millionm3,
which are determined based on the desiredwater supply security and the capacity of the reservoir, respectively.
Theminimum release is 900millionm3/month (Zhao andZhao 2014). During the simulation process, when
themaximum storage of the reservoir is reached, spill occurs.While theminimum storage and release require-
ments are handled as either constraints or the additional objective tominimize constraint violation during the
optimisation process depending on the analysis conducted (see table 1).

Consider a set of storages S s i M t T; 1, , , 1, ,t
i{ }= = ¼ = ¼ across allT timesteps and across the ensem-

ble ofM inflowmembers, and similarly the set of releases R r i M t T; 1, , , 1, , .t
i{ }= = ¼ = ¼ ForAnalyses 1

and 4 (with probability constraint handling), theminimum storage and release constraints are:

c P S 12, 100 0.01 61 ( ) ( )= < <

c P R 900 0.01 72 ( ) ( )= < <

where P x( ) is the probability of x.For Analyses 2 and 5 (withworst-case constraint handling), theminimum
storage and release constraints are estimated based on the following equations:

c Smin 12, 100 81 ( ) ( )= >

c Rmin 900 92 ( ) ( )= >

For Analyses 3 and 6 (with the probability of constraint violation considered as an additional reliability
optimisation objective), the third objective function, f3, is tominimize the probability of overall constraint viola-
tion, which is defined as:

f P S P R0.5 12, 100 0.5 900 103 ( ) ( ) ( )= < + <

4. Results and discussion

4.1. Evaluation results
Figure 4 shows the pairwise objective function values of the Pareto solutions obtained in each analysis (i.e., worst
case– left panel; ensemble average—right panel) using the 50 ensemblemembers for evaluation. For either ana-
lysis, it is clear that the two constraint handling approaches generally lead to non-overlapping domains, with the
probability constraint handling approach (blue shade) always yielding solutionswith higher total energy and
firmpower compared to theworst-case constraint handling approach (red shade). In contrast, when a reliability
objective is used to account for inflowuncertainty (i.e., Analyses 3 and 6), the domain of the obtained solutions
completely overlaps the two constraint handling approaches. Importantly, the reliability objective leads to a
broader set of solutions along the pareto front. Comparing the left and right panels, there is some overlap from
the respective analyses, yet the ensemble averaged objective functions (right panel) yield consistently narrower
pareto fronts (due to the central tendency of averaging) and are generally higher than those from the ensemble
worst case (left panel).

In addition, there are evident trade-offs between thefirmpower objective and storage constraint violation
(represented by the reliability objective), and between the total energy objective andwater supply security.
Including the third reliability objective accommodates for this trade-off and yields awider pareto front. The
purple-bordered cells infigure 4 show awider pareto front for strict non-violation of constraints, while the
green-bordered cells yield a considerably wider front for cases withmild constraint violation.

Figure 5 shows, for each analysis, the respectivemarginal distributions of the additional system variables:
monthly release, annual release,minimum storage and annual spill. There is similar performance for all four
variables between pairings of ensemble-worst and ensemble-averaged objectives, i.e., comparing Analyses 1 and
4, Analyses 2 and 5, andAnalyses 3 and 6. This indicates that themethod for evaluating the energy and power
objective functions, whether ensemble-worst or ensemble-averaged, does not significantly affect the perfor-
mance of the optimal operating policies obtained. Consistent with the results infigure 4, theworst-case analyses
(Analyses 1, 2, 3) yield slightlymore spread-out distributions; probability constraint handling (Analyses 1 and 4)
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Figure 4.Pareto solutions obtained from the 6 analyses (marked by the solid dots) and the range of their performance in terms of the
energy and power objective functions (marked by the shaded areas). The energy and power objective functions are evaluated based on
theworst case on the left, and the averaged case on the right. Black boxes highlight solutions with theminimum/maximumvalue of
the energy or power objective function, with notations further referenced in discussion.

Figure 5.Marginal distributions of analyses grouped as Analysis 1 and 4 (with uncertainty incorporated as a probability constraint),
Analysis 2 and 5 (with uncertainty incorporated as the worst-case constraint), Analysis 3 and 6 (with uncertainty incorporated as a
third objective) to highlight the comparison of the ensemble-worst case (Analyses 1–3) to ensemble-averaged case (Analyses 4–6) in
handling the energy objective functions.
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yields better values (higher releases, lower spill) thanworst-case constraint handling (Analyses 2 and 5); and the
reliability objective (Analyses 3 and 6) yields a noticeably larger spread, with numerous solutions that appear to
be ‘good’ in amarginal sense, butwithmany solutions that have reducedwater supply security from violating the
storage constraint (minimum12,000millionm3).

To better understand the differing performance of approaches incorporating inflowuncertainty inmulti-
objective optimisation of reservoir operation, the performance of the solutions relative to eachmember of the
ensemble is investigated. The results infigure 6 are presented for Analysis 2 (see supplementarymaterial for
other analyses that yield similar observations). Figure 6(a) summarises themonthly inflow for each evaluation
ensemblemember, where three low-inflowmembers (2, 15, 48—shown in red) andfive high-inflowmembers
(22, 26, 29, 42, 47—shown in green) have been highlighted for further comparison. The remaining panels of
figure 6 showdistributions of the reservoir variables, including annual spill, total energy, and firmpower, across
all optimised solutions. Thefigure shows that spill and total energy are highly responsive to themean inflow,
whereas the firm-power is less sensitive. In general, theworst-case approaches (as of the case for Analysis 2) are
dominated by ensemblemembers 2 and 15which have significantly lower total energy generated from all opti-
mised solutions. The low/high inflowmembers generally have low/high spill, where differences between the
performance of themembers depend on the seasonal timing of inflows. For example,member 26 has higher
inflow thanmember 22, yet it produces lower total energy across all optimised policies due to a higher spill,
whichmostly results from the extremely highmonthly inflow fromonemonth as shown infigure 6(a). Similarly,

Figure 6.Comparison of performance across all solutions obtained from 50members of the evaluation ensemble of inflows. (a)
Monthly inflows, with large solid symbols showing themean inflow.Members identified as low/high inflowhave been coloured in
red/green respectively for discussion.

8

Environ. Res. Commun. 4 (2022) 121001



member 48 produces significantlymore total energy thanmembers 2 or 15 despite having a similarly low average
inflow, due to having twomonths of relatively higher inflows.

4.2.Discussion
Based on the results presented, it has been found that how the original energy and power objective functions are
evaluated across the inflow ensemble does not have a significant impact on the range of the overall performance
of the optimal solutions obtained. Theworst-case objective function handling approach leads to a larger spread
across the pareto front, thusmore diverse solutions.Whereas the probability constraint handling approach leads
to pareto-solutions with improved energy and power objective function values, at the cost of slight storage con-
straint violation. Although expected, the finding does confirm the value of relaxing constraint conditions espe-
cially if they do not have to be satisfied.

Similarly, theworst-case constraint handling approach leads to awider spread across of the Pareto front
without any constraint violation. Including theminimisation of probability of overall constraint violation as an
additional reliability objective function, on the other hand, introducesmore Pareto solutions. The performance
range of these solutions covers the solutions obtained from the analyses with the constraint handing approaches,
providing tradeoffs between the original energy and power objectives and thewater supply security with only
slight compromise of the reliability objective. However, this approach increases the total number of solutions,
and thus the complexity in the decision-making process.Without awell-developed decision-making process to
handle the increased complexity, this approachwill not necessarily be as effective in reaching an acceptable
solution.

Further analysis over the performance of optimised solutions across the different evaluation ensemblemem-
bers reveals several case study specific findings. First, the total energy objective function is dominated by the total
inflowof each year, and there is a high variability in the total energy across the set of Pareto policies for each
ensemble inflowmember. In contrast, thefirmpower objective function is less sensitive to the total inflow and
therefore can be optimised even in a dry year. However, due to the impact of dry years over the total energy
objective function, the optimised policies can be dominated by a few low inflow ensemblemembers, leading to
higher spills and therefore wastage duringwet years, especially if theworst-case approach is used.

Due to the consistency of system variable values obtained from each ensemblemember across all the opti-
mised policies, it would be possible to achieve similar performancewith a significantly reduced number of
ensemblemembers, as long as the key ensemblemembers are included. This provides an opportunity to
improve optimisation efficiency, for examplewith a reduced number of ensemblemembers selected using sam-
plingmethods. Finally, thefindings in this study are based on the assumption that the statistical properties of the
inflow ensemble are unchanging.More research is required to understand the impact of future changes such as
climate change on the optimisation of reservoir operation policies, andwhich approach(es)may bemore suited
to adapt to the changes.

5. Conclusions

This study provides a comparison of the different approaches that are commonly used to incorporate input
uncertainty intomultiobjective reservoir operation policy optimisation using evolutionary algorithms (EAs) via
a real-world case study. The results show that theworst-case approach for objective function evaluationwill lead
tomore diverse solutions compared to the averaged case approach.However, theworst-case approach can be
dominated by several extremely low inflow ensemblemembers and lead to solutions thatmay not fully utilise all
water available duringwet years. The probability constraint handling approach generally leads to solutionswith
improved performance, albeit with slight constraint violation, and therefore is suitable for simulationswhere
constraint levels are negotiable.When input uncertainty is accounted for via an additional reliability objective in
the optimisation process,more pareto-solutions are found.Many of these solutions have improved values for
the originalmanagement objectives with little constraint violation.However, the increased number of potential
solutionswill also increase the complexity of the final decision-making process.

This study affirms the role of EAs inmultiobjective reservoir optimisation for their ability to include uncer-
tainty and develops guidance onmethod selection for objective setting and constraint handling. An important
assumption used in this study is that the uncertainty in inflowdue to natural variability is unchanging, so that the
ensemble inflows used for operation policy optimisation have similar statistical properties to those used to eval-
uate the optimised policies (i.e., in application). Thismay not be the case in the future considering climate
change. It will be important to developmethods that are robust to potential changes in input uncertainty in
future research. In addition, the results obtained show similar performance across different ensemble sizes, indi-
cating that samplingmethods can potentially be used to improve optimisation efficiencywithout compromising
performance.
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