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Abstract

Reservoir operation optimisation is a decision support tool to assist reservoir operators with water
release decisions to achieve management objectives, such as maximising water supply security, miti-
gating flood risk, and maximising hydroelectric power generation. The effectiveness of reservoir
operation decisions is subject to uncertainty in system inputs, such as inflow and therefore, methods
such as stochastic dynamic programming (SDP) have been traditionally used. However, these meth-
ods suffer from the three curses of dimensionality, modelling, and multiple objectives. Evolutionary
algorithm (EA)-based simulation-optimisation frameworks such as the Evolutionary Multi-Objective
Direct Policy Search (EMODPS) offer a new paradigm for multiobjective reservoir optimisation under
uncertainty, directly addressing the shortcomings of SDP-based methods. They also enable the con-
sideration of input uncertainty represented using ensemble forecasts that have become more acces-
sible recently. However, there is no universally agreed approach to incorporate uncertainty into EA-
based multiobjective reservoir operation policy optimisation and it is not clear which approach is
more effective. Therefore, this study conducts a comparative analysis to demonstrate the advantages
and limitations of different approaches to account for uncertainty in multiobjective reservoir opera-
tion policy optimisation via a real-world case study; and provide guidance on the selection of appro-
priate approaches. Based on the results obtained, it is evident that each approach has both advantages
and limitations. A suitable approach needs to be carefully selected based on the needs of the study, e.g.,
whether a hard constraint is required, or a well-established decision-making process exists. In addi-
tion, potential gaps for future research are identified.

1. Introduction

Reservoir operation optimisation is a complex problem due to the multiple and often conflicting objectives that
need to be achieved (Changchit and Terrell 1993, Cheng et al 2017, McMahon and Petheram 2020, Yu et al 2021)
and the uncertainty in system input such as inflow that obscures operation decisions and limits their effective-
ness (Kuria and Vogel 2014, Schwanenberg et al 2015, Berghout et al 2017, Li et al 2018, Bozorg-Haddad et al
2022). Therefore, probabilistic optimisation approaches, such as stochastic dynamic programming (SDP), have
been used to incorporate uncertainty in reservoir operation optimisation due to their ability to handle the non-
continuous solution space and exploit the sequential nature of reservoir operation decisions (Labadie 2004,
Macian-Sorribes and Pulido-Velazquez 2020).

However, SDP has been referred to as having three curses (Giuliani et al 2016, Giuliani et al 2021): (I) multi-
ple objectives—an inability to explicitly account for multiobjective tradeoffs, so a weighted sum method is often
used (Soleimani et al 2016, Ortiz-Partida et al 2019, Celeste et al 2021); (ii) dimensionality—discretisation of the
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system state significantly increases computational cost when a large system is considered (Sahu, Mclaughlin
2018, Dobson et al 2019, Hooshyar et al 2020); and (iii) modelling—all variables need to be described in the
simulation model, thus specific model and problem formulations are needed (Mortazavi et al 2012, Soleimani
etal 2016, Sahu, Mclaughlin 2018, Dobson et al 2019, Ortiz-Partida et al 2019, Hooshyar et al 2020, Celeste et al
2021), which restrict its real-world applications.

Evolutionary algorithms (EAs) offer a new paradigm for multiobjective reservoir operation optimisation
under uncertainty and have been applied to a range of management decisions (Maier et al 2016), including social
and environmental impact (Mortazavi et al 2012), hydropower generation objectives (Tsoukalas and Makro-
poulos 2015, Chen et al 2018), and water quality and irrigation objectives (Saadatpour et al 2020). EAs directly
address the three curses of SDP-based methods (Maier et al 2019, Giuliani ef al 2021), enabling modellers to
explore large search spaces of complex reservoir optimisation problems that would otherwise be impossible
without undesired assumptions. In addition, an EA-based simulation-optimisation framework such as the Evo-
lutionary Multi-Objective Direct Policy Search (EMODPS) (Giuliani et al 2016) allows operation policies to be
optimised directly based on operation objective functions and enables the consideration of input uncertainty
represented using ensemble forecasts that have become more accessible recently. However, when EAs are used
for multiobjective reservoir operation policy optimisation under uncertainty, a wide variety of approaches have
been applied and there is no agreed approach on how uncertainty in system inputs should be incorporated.

This study aims to conduct a comparative analysis to demonstrate the advantages and limitations of different
approaches to account for uncertainty in EA-based multiobjective reservoir operation policy optimisation via a
real-world case study (sections 2, 3 and 4), and provide guidance on the selection of appropriate approaches
(section 4). Based on the findings, future research is also recommended.

2. Reservoir operation optimisation integrating uncertainty: a brief review

2.1. Reservoir operation optimisation

Based on the decision variables that are optimised, reservoir operation optimisation can be divided into two
categories: release sequence optimisation and operation policy (rules or strategies) optimisation. The aim of
release sequence optimisation is to find a sequence of reservoir water release over a pre-defined time period (e.g.,
one year), such that the objective function(s) during this time period are minimised or maximised (Wang et al
2012, Schwanenberg et al 2015, Chen et al 2018, Ortiz-Partida et al 2019). The outcomes of release sequence
optimisation are very simple to understand and use. However, as they are deterministic in nature, the optimised
release sequences are only valid for the data used during the optimisation process and the performance of the
optimised solutions can reduce significantly as the system state deviates from the data used in the original optim-
isation (Dobson et al 2019). In addition, as the duration of the operation period increases, the number of deci-
sion variables for release sequence optimisation can be so large that it becomes impractical to optimise (Dobson
etal 2019). Consequently, release sequence optimisation is more commonly used to explore system responses to
specific conditions and provide system understanding (Castelletti et al 2012).

Operation policy optimisation aims to derive an operation policy that will help reservoir operators and man-
agers to determine release sequences (Oliveira and Loucks 1997, Macian-Sorribes and Pulido-Velazquez 2020).
A significant advantage of operation policy optimisation is that operation policies can be applied to future opera-
tion periods. Operation policies can be derived using a two-step process (Young 1967, Karamouz and Houck
1987), where a deterministic release sequence is first obtained and then a parameterised function of the release
sequence (e.g., as a function of input variables such as reservoir system state, inflow and time of year) is identi-
fied. However, this approach relies on release sequence optimisation in the first step and therefore suffers from
similar limitations of release sequence optimisation (Giuliani et al 2021).

Alternatively, operation policies can be obtained using direct policy search (Schmidhuber 2001), where the
parameters of a pre-defined policy function are directly optimised during the optimisation process based on
operation objectives, such as maximisation of hydro-electric energy generated or minimisation of flood risk.
Various function forms can be used as the policy function, including simple rule curves (Li et al 2020), compli-
cated hedging rules (Xu et al 2019), mathematical equations such as polynomial functions (Tsoukalas and
Makropoulos 2015, Saadatpour et al 2020), or data-driven models such as artificial neural networks (ANNs)
(Culley et al 2016, Giuliani et al 2016, Zatarain Salazar et al 2017). Mathematical equations are commonly used
as they are more flexible than simple rule curves and their behaviour is well-understood (Schmidhuber 2001).
However, there is no direct evidence to indicate that a certain mathematical equation should be used for a part-
icular system and therefore, they may lead to poor performance (Labadie 2004, Macian-Sorribes and Pulido-
Velazquez 2020). Data-driven models such as ANNs offer great flexibility in simulating release decisions based
on input variables. For this reason, ANNs have been successfully applied to many reservoir operation optim-
isation problems
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Figure 1. The framework for reservoir operation policy optimisation.

(Culley et al 2016, Zatarain Salazar et al 2017, Dobson et al 2019), especially in an EA-based optimisation frame-
work including the EMODPS (Tsoukalas and Makropoulos 2015, Giuliani et al 2016, Zatarain Salazar et al 2017,
Macian-Sorribes and Pulido-Velazquez 2020, Saadatpour et al 2020).

2.2. Incorporating uncertainty in reservoir operation optimisation using EAs

There are various methods to incorporate input uncertainty in reservoir operation optimisation using EAs, typi-
cally through the evaluation of constraints. First, inflow uncertainty can be incorporated as a probability con-
straint so that only solutions within a pre-defined confidence bound are considered (Tsoukalas and
Makropoulos 2015, Saadatpour et al 2020). Alternatively, constraints can be evaluated over the worst realisation
of all cases representing input uncertainty (Mortazavi et al 2012, Wang et al 2012, Ghimire and Reddy 2014,
Chen et al 2018). In some studies, the constraint violation estimated over the worst case is handled as an objective
function penalty (Mortazavi et al 2012, Wang et al 2012).

Uncertainty can also be directly accommodated within the objective function(s), for example, having objec-
tive function values averaged across the range of inflows used (Saadatpour et al 2020). This is an intuitive
approach and has been used in other applications, for example, post-processing ensemble climate forecasts
(Zhao et al 2022). Yet another approach is to have the objective function calculated as the total of a criterion over
the range of inflows used, for example, total hydro-electric power generated (Ghimire and Reddy 2014), total
demand deficit (Saadatpour et al 2020) or total environmental stress (Mortazavi et al 2012). Alternatively, objec-
tive function values can also be estimated from the worst realisation of all inflow cases (Zatarain Salazar et al
2017, Chen et al 2018). Furthermore, an additional reliability objective evaluating the performance of solutions
across the whole range of system input values can be used (Mortazavi-Naeini et al 2015). Given the wide variety
of approaches used and each with separate case studies, it is difficult to appreciate their relative benefits.

3. Methodology

3.1. Direct policy search-based optimisation framework

In this study, the optimisation framework used (figure 1) is based on the well-known Evolutionary Multi-Objec-
tive Direct Policy Search (EMODPS) (Giuliani et al 2016). Within this framework, an ANN model is used as the
functional form for the operation policy, where the ANN output is water released in a particular time step, for
example a month, and is determined based on a number of inputs such as the time of the year, reservoir initial
storage at the beginning of the time step and inflow during the time step. Then water release is passed into a
reservoir model where the reservoir state in each time step is updated, and the optimisation objective functions
and constraints are estimated. Within this framework the decision variables are the parameters of the ANN
model and therefore, policy optimisation is carried out together with reservoir system simulation in a single-step
process. A three-layer feed-forward multilayer perception network is used, as it is the most common ANN used
for environmental modelling due to its simple structure and less data requirement, and it is able to simulate
complex environmental systems (Wu et al 2014, Xie et al 2021, Forouhar et al 2022). The non-dominated genetic
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Table 1. Summary of analyses conducted.

Original

objective Reliability

function objective Constraint(s)
Analysis No. estimation considered? estimation
1 Worst case No Probability
2 Worst case No Worst case
3 Worst case Yes na
4 Averaged case No Probability
5 Averaged case No Worst case
6 Averaged case Yes na

algorithm II (Deb et al 2000) implemented via the ‘pymoo’ Python package (Blank and Deb 2020) is used as the
optimiser. Details of the ANN model and GA parameter values used are provided in the supplementary material.

3.2. Different approaches to incorporate uncertainty

Reservoir inflow is a major input for the ANN-based policy. However, it is not known at the beginning of the
time step and therefore is the main source of uncertainty, which can be represented using ensemble forecasts. To
investigate the impact of different approaches for incorporating input uncertainty into multiobjective reservoir
operation optimisation using EAs, six analyses incorporating existing approaches from the literature (see section
2.2) have been conducted. The details of these analyses are summarised in table 1.

Analyses 1 to 3 have objective functions estimated from the worst case across all ensemble inflow members.
For Analysis 1 a probability constraint is used where the probability of constraint violation needs to be smaller
than a pre-defined value e.g., 1%. Whereas, for Analysis 2, the constraints are evaluated for the worst-case rea-
lisation across the ensemble inflows. For Analysis 3, the constraints are converted into an additional reliability
objective, where the probability of constraint violation across all inflow ensemble members is minimised. Ana-
lyses 4 to 6 follow similar approaches as with Analyses 1 to 3 for handling the constraints, but the original objec-
tive functions are evaluated based on the average value across all ensemble inflow members.

3.3. Case study and data

Danjiangkou reservoir is located on the Han River in the Hubei province of central China (see figure 2). Itis the
second largest artificial freshwater lake in Asia and also home to one of the largest hydro-electric power stations
in China. The reservoir has a catchment area of 95,217 km?”. Prior to 2012 before the extension to Danjiangkou
Dam was completed, the reservoir had along-term average surface area of approximately 700 km?, an average
annual inflow of approximately 39,400 million m’, and a maximum storage of 17,450 million m”. In total, 31
years of monthly inflow data are available from 1979 to 2009 for Danjiangkou reservoir.

Inflow uncertainty can be represented using a range of methods (Mortazavi et al 2012, Ghimire and Reddy
2014, Panetal 2015, Huang et al 2018, Sun et al 2018, Nair and Sasikumar 2019, Sechi et al 2019, Hooshyar et al
2020, Wu et al 2020). Recently, due to the advances in ensemble climate (Zhao et al 2021) and hydrological
forecasting (Wu et al 2020), it has become popular to use ensemble inflow generated synthetically or based on
hydrological models to represent inflow uncertainty in reservoir operation optimisation (Wangetal 2012,
Schwanenbergetal 2015, Cote and Leconte 2016, Ramaswamy and Saleh 2020). Therefore, in this study, an
ensemble of inflow time series is used to represent inflow uncertainty. An ensemble of 150 monthly inflow time
series (figure 3) have been generated stochastically using a kernel density function approach based on the 31-
years historical observations (Xu et al 2022). The first 100 ensemble members are used for reservoir operation
policy optimisation and the remaining 50 ensemble members are used for the evaluation of optimised operation
policies. The simulation period is one year, following the previous study where the case study is first reported
(Zhao and Zhao 2014).

3.4. Optimisation problem formulation

The formulation of the optimisation problem adopted in this study follows the formulation reported in Zhao
and Zhao (2014), where two operation objectives have been considered. The first objective, f;, is to maximise the
total hydro-electric energy generated during the typical operation period (i.e., one year):

T
fi=>pA (1)
t=1
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Figure 2. Location of the danjiangkou reservoir.
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Figure 3. Stochastically generated ensemble inflows with 100 ensemble members for optimisation and 50 ensemble members for
evaluation.

where p, is the hydro-electric power generated in time step ¢, which is a month; A is the simulation period,
which is a year; and T is the total number of time steps in the simulation period. p, can be estimated based on:

p, = min {77 [ SSR(s,) +ZSSR(5H_1)

— SDR(1;) ] 1 pmax} 2

where 7 is the energy conversion coefficient, the value of which is 0.0082; s; and r; are respectively reservoir
storage and release at time ¢, and SSR(s;) and SDR (1;) are respectively the stage storage relationship and stage
discharge relationship. These functions are represented using the following equations for Danjiangkou reservoir
(Zhao and Zhao 2014):

SSR(s;) = 4.55>%° + 77.7 (3)




10P Publishing

Environ. Res. Commun. 4(2022) 121001 W Letters

SDR(r;) = 0.045r>>° + 88.5 4)

And p, .. is the maximum turbine capacity, which is 940 MW.

The second objective, f>, is to maximise the firm energy generated. The firm energy is defined as the mini-
mum guaranteed energy that can be generated during a given time step (e.g., one month) that can be sold at
premium prices (Tsoukalas and Makropoulos 2015). Firm energy is proportional to the minimum power (or
firm power as referred to in this study) generated during the given time step:

f2 = min{pp pz)--')pT} (5)

The optimisation problem has several constraints. Apart from the common water balance constraints, the
minimum and maximum storage of the reservoir are respectively 12,100 million m® and 17,450 million m°,
which are determined based on the desired water supply security and the capacity of the reservoir, respectively.
The minimum release is 900 million m>/month (Zhao and Zhao 2014). During the simulation process, when
the maximum storage of the reservoir is reached, spill occurs. While the minimum storage and release require-
ments are handled as either constraints or the additional objective to minimize constraint violation during the
optimisation process depending on the analysis conducted (see table 1).

Consider a set of storages S = {s/; i = 1,..., M, t = 1,..., T} acrossall Ttimesteps and across the ensem-
ble of M inflow members, and similarly the set of releases R = {rti; i=1,.,M, t=1,..., T}.For Analyses 1
and 4 (with probability constraint handling), the minimum storage and release constraints are:

a = P(S < 12, 100) < 0.01 (6)
6 = P(R < 900) < 0.01 )

where P (x) is the probability of x. For Analyses 2 and 5 (with worst-case constraint handling), the minimum
storage and release constraints are estimated based on the following equations:

q = min(S) > 12, 100 (8)
6 = min(R) > 900 ()

For Analyses 3 and 6 (with the probability of constraint violation considered as an additional reliability
optimisation objective), the third objective function, f;, is to minimize the probability of overall constraint viola-
tion, which is defined as:

f, = 0.5P(S < 12, 100) + 0.5P(R < 900) (10)

4. Results and discussion

4.1. Evaluation results

Figure 4 shows the pairwise objective function values of the Pareto solutions obtained in each analysis (i.e., worst
case— left panel; ensemble average—right panel) using the 50 ensemble members for evaluation. For either ana-
lysis, it is clear that the two constraint handling approaches generally lead to non-overlapping domains, with the
probability constraint handling approach (blue shade) always yielding solutions with higher total energy and
firm power compared to the worst-case constraint handling approach (red shade). In contrast, when a reliability
objective is used to account for inflow uncertainty (i.e., Analyses 3 and 6), the domain of the obtained solutions
completely overlaps the two constraint handling approaches. Importantly, the reliability objective leads to a
broader set of solutions along the pareto front. Comparing the left and right panels, there is some overlap from
the respective analyses, yet the ensemble averaged objective functions (right panel) yield consistently narrower
pareto fronts (due to the central tendency of averaging) and are generally higher than those from the ensemble
worst case (left panel).

In addition, there are evident trade-offs between the firm power objective and storage constraint violation
(represented by the reliability objective), and between the total energy objective and water supply security.
Including the third reliability objective accommodates for this trade-off and yields a wider pareto front. The
purple-bordered cells in figure 4 show a wider pareto front for strict non-violation of constraints, while the
green-bordered cells yield a considerably wider front for cases with mild constraint violation.

Figure 5 shows, for each analysis, the respective marginal distributions of the additional system variables:
monthly release, annual release, minimum storage and annual spill. There is similar performance for all four
variables between pairings of ensemble-worst and ensemble-averaged objectives, i.e., comparing Analyses 1 and
4, Analyses 2 and 5, and Analyses 3 and 6. This indicates that the method for evaluating the energy and power
objective functions, whether ensemble-worst or ensemble-averaged, does not significantly affect the perfor-
mance of the optimal operating policies obtained. Consistent with the results in figure 4, the worst-case analyses
(Analyses 1, 2, 3) yield slightly more spread-out distributions; probability constraint handling (Analyses 1 and 4)

6



Environ. Res. Commun. 4(2022) 121001

P Letters
= Analysis 1 + Analysis 4
5504 e Analysis 2 5504 =« Analysis5
o Analysis 3 (f3=0) o Analysis 6 (f3=0)
e Analysis 3 (f3=0~0.5%) e Analysis 6 (f3=0~0.5%)
; - .
so0d ° Analysis 3 (f3>0.5%) so0d * Analysis 6 (f3>0.5%) .o
—_— —_— ’-
s s I Y
Z 450 foons £ 4501 A
g oy 2 S 7
Te ® @ Sl
2 al o N
a J. L a . 5’ = S
E 400 - - ‘.;-" € 4001 & oy
= oo P = p
w oy o . o L e »S*
.Q: -..P . & : o °
L4 . ° P
350 1 YO 350 1 ° ’
L2 [ ]
&
300 - of 300 -
35 40 45 50 55 35 40 45 50 55
Total energy (10° x MWh) Total energy (10° x MWh)
Figure 4. Pareto solutions obtained from the 6 analyses (marked by the solid dots) and the range of their performance in terms of the
energy and power objective functions (marked by the shaded areas). The energy and power objective functions are evaluated based on
the worst case on the left, and the averaged case on the right. Black boxes highlight solutions with the minimum/maximum value of
the energy or power objective function, with notations further referenced in discussion.

3000 -
A=
—
£ % )
§ 2500 - \
2| D _
Q
8 N\
g 20009
c U
o
=
1500
1 4 2 5 3 6
Analysis
(a)

“£15000{ U U
s P! -
— Al f
E . (i;) AL‘S |
= > = \
< 10000 |
> |
S |
: |
£ ]
£ 5000

T T T T

{4 2 85 3
Analysis

(c)

Figure 5. Marginal distributions of analyses grouped as Analysis 1 and 4 (with uncertainty incorporated as a probability constraint),
Analysis 2 and 5 (with uncertainty incorporated as the worst-case constraint), Analysis 3 and 6 (with uncertainty incorporated as a
third objective) to highlight the comparison of the ensemble-worst case (Analyses 1-3) to ensemble-averaged case (Analyses 4-6) in

handling the energy objective functions.

34000 -
£
< 32000
S

= 30000

(

& 28000

e

2 26000 |
B

2 24000 {
< 22000

30000 -

3

)
o
&
o
=4
IS4

.

20000 -

lon m

15000 -

10000 -

Annual Spill (Mill

5000

. . . .

.

1 4 2 5
Analysis

(d)

w4
(=]




10P Publishing

Environ. Res. Commun. 4(2022) 121001

P Letters
20000
30
10000 { | ' 4
' ‘ os ' 25 -
' L3H i g g
5000 ! ) ‘ g :
= RAFLINE. j® e 210"t @] 5 g
€ o @0 & 20 :
- s &® o) @ 9 E
P ol IO Y v T
2 2000 , %.°9 RO ATR X 28BN =
= @ iesd ¥ 0@ L = ]
= i 1 sitel of ‘ & 15
= ' 3% . e
E 1000 . pestaat e |02 . 2
= sstely < 10
500 - I
5 -
|
200 :
T T T T T T 0 i " "
TITTTP T ORI e T T T T T T I T T T TR T T T T T T T Ierrrrs
. - -~ - - o 1 5 10 15 20 25 30 35 40 45 50
Ensemble member Ensemble member
(a) (b)
0.37 - _ -
4200 H ; : 0 ity
I 0.36 4 : vl ol |
: | i
S 4000 ! £ H | -
= | ‘ 5] 0.35 it
8 ﬂ 3
& i ‘ o
g 3800 ﬁ g
° i § 034 -
3600 4 ° - ' . 0.33 1
TTTTTTTTTITTI I T I T I T AT I T I I I T I T T T I e T I I I T TIoIrToITTTT TTTTTTTTTIT I TTI I T T I T AT I I T T I I T I I T I T I I T T T TITI T T T
1 5 10 15 20 25 30 35 40 45 50 1 5 10 15 20 25 30 35 40 45 50
Ensemble member Ensemble member
(c) (d)
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yields better values (higher releases, lower spill) than worst-case constraint handling (Analyses 2 and 5); and the
reliability objective (Analyses 3 and 6) yields a noticeably larger spread, with numerous solutions that appear to
be ‘good’ in a marginal sense, but with many solutions that have reduced water supply security from violating the
storage constraint (minimum 12,000 million m>).

To better understand the differing performance of approaches incorporating inflow uncertainty in multi-
objective optimisation of reservoir operation, the performance of the solutions relative to each member of the
ensemble is investigated. The results in figure 6 are presented for Analysis 2 (see supplementary material for
other analyses that yield similar observations). Figure 6(a) summarises the monthly inflow for each evaluation
ensemble member, where three low-inflow members (2, 15, 48—shown in red) and five high-inflow members
(22,26,29, 42, 47—shown in green) have been highlighted for further comparison. The remaining panels of
figure 6 show distributions of the reservoir variables, including annual spill, total energy, and firm power, across
all optimised solutions. The figure shows that spill and total energy are highly responsive to the mean inflow,
whereas the firm-power is less sensitive. In general, the worst-case approaches (as of the case for Analysis 2) are
dominated by ensemble members 2 and 15 which have significantly lower total energy generated from all opti-
mised solutions. The low/high inflow members generally have low/high spill, where differences between the
performance of the members depend on the seasonal timing of inflows. For example, member 26 has higher
inflow than member 22, yet it produces lower total energy across all optimised policies due to a higher spill,
which mostly results from the extremely high monthly inflow from one month as shown in figure 6(a). Similarly,
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member 48 produces significantly more total energy than members 2 or 15 despite having a similarly low average
inflow, due to having two months of relatively higher inflows.

4.2. Discussion

Based on the results presented, it has been found that how the original energy and power objective functions are
evaluated across the inflow ensemble does not have a significant impact on the range of the overall performance
of the optimal solutions obtained. The worst-case objective function handling approach leads to a larger spread
across the pareto front, thus more diverse solutions. Whereas the probability constraint handling approach leads
to pareto-solutions with improved energy and power objective function values, at the cost of slight storage con-
straint violation. Although expected, the finding does confirm the value of relaxing constraint conditions espe-
cially if they do not have to be satisfied.

Similarly, the worst-case constraint handling approach leads to a wider spread across of the Pareto front
without any constraint violation. Including the minimisation of probability of overall constraint violation as an
additional reliability objective function, on the other hand, introduces more Pareto solutions. The performance
range of these solutions covers the solutions obtained from the analyses with the constraint handing approaches,
providing tradeoffs between the original energy and power objectives and the water supply security with only
slight compromise of the reliability objective. However, this approach increases the total number of solutions,
and thus the complexity in the decision-making process. Without a well-developed decision-making process to
handle the increased complexity, this approach will not necessarily be as effective in reaching an acceptable
solution.

Further analysis over the performance of optimised solutions across the different evaluation ensemble mem-
bers reveals several case study specific findings. First, the total energy objective function is dominated by the total
inflow of each year, and there is a high variability in the total energy across the set of Pareto policies for each
ensemble inflow member. In contrast, the firm power objective function is less sensitive to the total inflow and
therefore can be optimised even in a dry year. However, due to the impact of dry years over the total energy
objective function, the optimised policies can be dominated by a few low inflow ensemble members, leading to
higher spills and therefore wastage during wet years, especially if the worst-case approach is used.

Due to the consistency of system variable values obtained from each ensemble member across all the opti-
mised policies, it would be possible to achieve similar performance with a significantly reduced number of
ensemble members, as long as the key ensemble members are included. This provides an opportunity to
improve optimisation efficiency, for example with a reduced number of ensemble members selected using sam-
pling methods. Finally, the findings in this study are based on the assumption that the statistical properties of the
inflow ensemble are unchanging. More research is required to understand the impact of future changes such as
climate change on the optimisation of reservoir operation policies, and which approach(es) may be more suited
to adapt to the changes.

5. Conclusions

This study provides a comparison of the different approaches that are commonly used to incorporate input
uncertainty into multiobjective reservoir operation policy optimisation using evolutionary algorithms (EAs) via
areal-world case study. The results show that the worst-case approach for objective function evaluation will lead
to more diverse solutions compared to the averaged case approach. However, the worst-case approach can be
dominated by several extremely low inflow ensemble members and lead to solutions that may not fully utilise all
water available during wet years. The probability constraint handling approach generally leads to solutions with
improved performance, albeit with slight constraint violation, and therefore is suitable for simulations where
constraint levels are negotiable. When input uncertainty is accounted for via an additional reliability objective in
the optimisation process, more pareto-solutions are found. Many of these solutions have improved values for
the original management objectives with little constraint violation. However, the increased number of potential
solutions will also increase the complexity of the final decision-making process.

This study affirms the role of EAs in multiobjective reservoir optimisation for their ability to include uncer-
tainty and develops guidance on method selection for objective setting and constraint handling. An important
assumption used in this study is that the uncertainty in inflow due to natural variability is unchanging, so that the
ensemble inflows used for operation policy optimisation have similar statistical properties to those used to eval-
uate the optimised policies (i.e., in application). This may not be the case in the future considering climate
change. It will be important to develop methods that are robust to potential changes in input uncertainty in
future research. In addition, the results obtained show similar performance across different ensemble sizes, indi-
cating that sampling methods can potentially be used to improve optimisation efficiency without compromising
performance.
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