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Abstract: Guided waves have been extensively studied in the past few years, and more recently
nonlinear guided waves have attracted significant research interest for their potential for early
damage detection and material state characterization. Combined harmonic generation due to wave
mixing can offer some advantages over second harmonic generation. However, studies focused on
Lamb wave mixing are still very limited, and have mainly focused on collinear wave mixing and
used plane wave assumption. In this paper, numerical simulations and experiments are conducted to
understand the interaction of mixing non-collinear Lamb wave pulses with non-planar wavefronts.
The results demonstrate that the generated secondary wave is cumulative under internal resonance
conditions and the sum-frequency component of the combined harmonics is useful for characterizing
material nonlinearities.
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1. Introduction

Traditional guided wave (GW) testing is based on linear features, e.g., time-of-flight
and amplitude of the scattered wave, which has been widely employed to evaluate materials
and detect defects due to its outstanding capabilities, such as (a) the ability to inspect
inaccessible locations, (b) the ability to inspect the entire cross-sectional area of the element,
(c) excellent sensitivity, (d) cost-effectiveness, and (e) low energy-consumption. Ultrasonic
techniques based on linear features are sensitive to macro scale-damage, such as gross
defects or open cracks. However, they are insensitive to micro-scale damage, such as
degradation or distributed micro-cracks, which are early stage damage mechanisms.

1.1. Nonlinear Guided Waves

An alternative solution to the aforementioned limitation is nonlinear ultrasonics [1],
where the incident wave interacts with the material and generates nonlinear responses,
e.g., higher harmonics and combined harmonics, due to nonlinear mechanical behavior.
Harmonic generation is governed by two physical mechanisms, material nonlinearity and
contact acoustic nonlinearity [2]. The material-related second-order harmonic generation
has been proven efficient in detecting microstructural variations such as fatigue [3] and
plasticity [4] in metallic specimens. Damage-related second harmonics generated by the
contact acoustic nonlinearity phenomenon have also been studied for detecting damage,
such as delamination in the composites [5] and fatigue cracks in the metals [6]. However,
second harmonic generation possesses difficulty in isolating the source of nonlinearity
generated by testing equipment. Contact between the inspected structure and the ultrasonic
transducer may also introduce nonlinearities that can mask the material and damage-related
nonlinearities. In addition, the magnitude of the second harmonic is usually very small,
which is hard to measure accurately.
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1.2. Guided Wave Mixing

To overcome these aforementioned drawbacks, some developments have been de-
scribed for the wave mixing method in the last few years, which makes use of two ultrasonic
waves at different single central frequencies [7]. The wave mixing approach can be catego-
rized as collinear [8] and non-collinear [9] depending on the angle between the incident
(primary) wave that generate the resonant (secondary) wave at combined harmonics, and
offer advantages in selecting wave modes, excitation frequencies, and wave propagating
directions.

Croxford et al. [9] employed bulk waves to characterize material nonlinearity due to
plasticity and fatigue deterioration using the non-collinear approach. Using experimental
results with aluminum alloy, material nonlinearity was correlated to plastic deformation. A
nonlinear acoustic parameter for collinear bulk wave mixing related to plastic deformation
was introduced and validated numerically and experimentally [10]. Experimental studies
demonstrated that the collinear method could measure localized plastic deformation [11].
Jingpin et al. [12] determined the presence of fatigue cracks using bulk shear waves and
the non-collinear method. Co-directional Lamb wave mixing in steel plates was used
to investigate micro-crack damage [13] and localized creep [14]. Wave-mixing was also
demonstrated to be effective with an edge wave [15].

1.3. Lamb Wave Mixing

Ultrasonic Lamb waves offer significant advantages for the evaluation of structures,
such as the ability to inspect inaccessible locations, multimodality, flexibility in wave
mode selection, ability to inspect multilayered or submerged structures, etc. Hasanian
et al. [16] conducted comprehensive vector analyses for both collinear and non-collinear
methods using Lamb waves. However, they assumed that the guided wave was a plane
wave to explore the possible wave-mode combination triplets. Arbitrary angles between
primary waves and secondary angle were studied, and internal resonant conditions were
also assessed for wave mixing [17]. Ishii et al. [18] theoretically analyzed nonlinear wave
propagation in an isotropic and homogenous plate to elucidate the non-collinear interaction
of monochromatic plane waves employing infinite beam widths. They also conducted
finite element analyses considering finite beam width and time durations to provide a
further understanding of the scattered wave generation. Li et al. [19] studied wave-mixing
responses induced by co-directional Lamb waves and predicted the generation of second-
and third-order combined harmonics.

Collinear wave mixing has the advantage that the wave mixing zone is larger than
non-collinear wave mixing, but this makes it less suitable for inspecting localized regions.
Counter-propagating wave mixing offers an advantage in evaluating localized regions
in the structures [20]. However, non-collinear wave mixing offers more flexibility in the
selection of the primary and secondary wave modes [17]. Analytical solutions for plane
waves were developed for Lamb wave mixing but they are insufficient in capturing the real
testing conditions, such as the non-planar wavefront and the influence of finite ultrasonic
beam width on wave interaction. For practical applications, they need to take into account
these practical factors in Lamb wave mixing. Gaining physical insight into the Lamb wave
mixing phenomenon will expand the already recognized benefits and further advance
wave mixing methods.

The main objective of this paper is to investigate the feasibility and capability of
combined harmonic measurements with non-collinear Lamb wave mixing under practical
conditions. It focuses on gaining insight into the physical phenomena of secondary sym-
metric Lamb wave generation at a combined sum frequency when two fundamental modes
of antisymmetric Lamb waves (A0), which have finite beam width, non-planar wavefront,
and finite time duration, interact with each other over a localized region under resonance
conditions. The interaction of the two A0 Lamb waves is expected to generate a secondary
fundamental mode of symmetric Lamb wave (S0), and this will be studied in detail under
a practical situation. The cumulative nature of the secondary Lamb wave at a combined



Sensors 2023, 23, 716 3 of 12

sum frequency is further investigated, as this feature has proven to be a useful indication
of material nonlinearity, fatigue, and plasticity.

2. Theoretical Background
2.1. Internal Resonance Criteria for Harmonics Generation

Second-order harmonics generated due to interaction between two primary waves
are cumulative when internal resonance criteria are satisfied [21–23]. The two internal
resonance criteria are (i) non-zero power flux from the primary to the secondary mode and
(ii) phase matching. The non-zero power flux condition in Equation (1) guarantees that
power is transmitted through the surface and the volume of the plate due to the primary
wave, while the phase matching condition guarantees a sustained power flux from the
primary to the secondary waves.

f vol
n + f sur f

n 6= 0 (1)

where the terms f vol
n and f sur f

n are the driving forces transmitting power from the primary
waves to the secondary wave through the volume and the surface, respectively.

The phase matching condition in Equation (2), also known as synchronism, requires
knowledge of the dispersion characteristics represented in the dispersion curves of Figure 1.
In this study, dispersion curves were calculated using DISPERSE, under the assumption that
the wavefront is an infinite plane and normal to the direction of wave propagation. Waves
can propagate in different directions; thus, when seeking triplets that are phase matched,
wave vectors containing wave number and wave direction information are used. The
wavenumber obtained from the interaction between the primary wave must correspond
to a propagating mode, and the phase velocity is then calculated with the relationship
cph = 2π f /κ, where cph is the phase velocity. κa, κb, and κn are the wavenumbers for
primary waves a, b, and secondary wave n.

κa ± κb = κn (2)
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Figure 1. (a) Phase velocity and (b) wavenumber dispersion curves for a 1.60 mm thick aluminum
plate.

Most of the work developed to date is derived from plane waves with infinite beam
widths, aiming to analytically understand the basis of wave mixing phenomena; however,
they are not fully practical for real applications. Therefore, finite element simulations and
experiments are needed to further understand Lamb wave mixing in a practical situation.
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2.2. Modelling of Material Nonlinearity

In the finite element simulations, the material nonlinearities and field equations can
be modelled by considering the third-order terms of Murnaghan’s strain energy func-
tion [24–26]. Assuming the reference configuration is X and the current configuration of
material is x, the displacement vector u is

u = x−X (3)

and the displacement gradient tensor F is

F =
∂x
∂X

= I + H (4)

where H = ∂u/∂X is the displacement gradient and I is the identity tensor. For the Isotropic
medium, the second Piola–Kirchhoff stress can be expressed in terms of Murnaghan’s strain
energy function W:

Tpk2 =
∂W(E)

∂E
(5)

where E =
(
H + HT + HTH

)
is the Green–Lagrange strain tensor. Using the principal

invariants i1, i2, and i3, the Murnaghan’s strain energy function can be represented as

W(E) =
1
2
(λ + 2µ)i21 +

1
3
(l + 2m)i31 − 2µi2 − 2mi1i2 + ni3 (6)

where λ and µ are the classical Lamé elastic constants and l, m, and n are the third-order
elastic constants. i1 = tr(E), i2 =

[
i21d− tr(E)2

]
/2, and i3 = det(E). Therefore, the Cauchy

stress can be expressed in terms of the second Piola–Kirchhoff stress, Tpk2, and deformation
gradient, F, as

σ = J−1F
∂W(E)

∂E
FT (7)

where J−1 is the Jacobian determinant of the deformation gradient, F. Using Equation (7),
the constitutive behaviors of materials can be used to model the weak material nonlinearity
using the VUMAT subroutine of ABAQUS/Explicit.

3. Finite Element Simulation

A three-dimensional (3D) finite element model developed using ABAQUS/Explicit
was used to investigate non-collinear Lamb wave mixing. The model is a 6061-T6 alu-
minum plate. The material properties of the 6061-T6 are listed in Table 1. The dimensions of
the plate are 270 mm × 320 mm × 1.60 mm. The in-plane dimensions of the element used
in the finite element model are 0.25 mm × 0.25 mm. There are seven layers of elements in
the thickness direction of the plate and each element is 0.228 mm thick. Approximately
20 elements/wavelength is the recommended spatial resolution for representing the prop-
agation of a Lamb wave [27]. The increment time step was automatically controlled by
ABAQUS/Explicit. Eight-noded brick elements, C3D8R, with each node containing three
translational degrees-of-freedom, and reduced integration were used. Mechanical constitu-
tive behavior based on the nonlinear strain energy function of Murnaghan was modelled
in ABAQUS through a VUMAT subroutine [28].

Table 1. Material properties used in the finite element model.

Density l (GPa) m (GPa) n (GPa) λ (GPa) µ (GPa)

2704 −281.50 −339 −416 54.3 27.3

To contemplate practical applications, primary Lamb wave excitations consisted of
tone burst pulses applied through nodal displacement in the z direction to the nodes
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covered by the assumed ultrasonic transducer, as indicated in Figure 2a. The interaction
angle between the primary waves was defined by θ. The maximum applied displacement
was 20 ηm. All the remaining edges and boundaries of the plate were stress-free. An
appropriate time delay was applied to the pulse excitation of the Lamb wave with faster
group velocity to ensure both wave pulses arrived simultaneously in the region of interest.
Moreover, the distance between each excitation source and the mixing zone, the center
of which is defined as the point C, were equal to each other. The primary waves were
expected to interact at a finite region; hence, they is not limited at the point C only.
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Figure 2. (a) Schematic diagram of the non-collinear FE model, (b) top and bottom nodal displace-
ments, (c) time-domain, and (d) frequency spectra of out-of-plane displacement of incident waves at
point C.

To extract the scattered wave field, a subtraction technique [16] was employed. Three
different finite element simulations were carried out separately. In this approach, all three
simulations were performed with the identical finite element model, but the generated
wave is different. Three different generated waves were considered: (i) primary waves were
generated simultaneously (TA&B), (ii) only primary wave, A (TA), was generated, and (iii)
only primary wave, B (TB), was generated. The scattered wave field can be extracted by

Tsca = TA&B − TA − TB (8)

The out-of-plane nodal displacement at the top and bottom surfaces of the plate, as
shown in Figure 2b, was obtained from each simulation. Displacement was obtained from
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nodes located along a circle of 30 mm radius for a range of γ angles from 5◦ to 360◦ in steps
of 5◦. The secondary symmetric Lamb wave was obtained by Equation (9)

usca =
1
2
×
[
utop

sca − ubot
sca

]
(9)

where
utop

sca = utop
zA&B − utop

zA − utop
zB (10)

ubot
sca = ubot

zA&B
− ubot

zA
− ubot

zB
(11)

In Equation (10), the first summand corresponds to the out-of-plane nodal displace-
ment at the top surface of the plate when primary waves A and B are excited simultaneously,
the subtrahends correspond to the out-of-plane nodal displacement at the top surface of
the plate when primary wave A only and primary wave B only are excited separately. A
similar interpretation is applied for Equation (11), although these values are obtained from
the bottom surface of the plate.

Similarly, Equation (12) can be used to obtain antisymmetric incident Lamb wave

uA
inc =

1
2
×
[
utop

inc + ubot
inc

]
(12)

where
utop

inc = utop
zA (13)

ubot
inc = ubot

zA
(14)

for simulation A. Correspondingly for simulation B,

uB
inc =

1
2
×
[
utop

inc + ubot
inc

]
(15)

where
utop

inc = utop
zB (16)

ubot
inc = ubot

zB
(17)

Excitation frequencies were selected so that the internal resonance conditions derived
from the plane wave assumption were theoretically satisfied. Additionally, wave mode
selection is a determining factor for practical applications of nondestructive testing, and
unwanted higher-order wave modes can be avoided by employing fundamental modes.
Hence, a fundamental mode below the cut-off frequency was employed in this study.
In particular, we are interested in primary A0 waves that are expected to generate a
secondary cumulative wave, S0, propagating mode [23], where the nonzero power flux
condition for non-collinear wave-mixing is satisfied by choosing the appropriate wave
modes. The synchronism condition was employed to find dispersion relations based on
the frequency and direction. The triplet selected was: fa = 484 kHz (cph = 2141.9 m/s,
κa = 1419.8 rad/m), fb = 230 kHz (cph = 1658.9 m/s, κb = 871.1 rad/m), and fsca =
714 kHz (cph = 5186.5 m/s, κsca = 864.9 rad/m). The interaction angle θ was 145◦ and the
expected direction, γ, of the resonant wave was 55◦. The number of cycles was 31 and 15
for pulse A and B, respectively.

A0 wave fields, TA and TB, at point C are shown in Figure 2c. Maximum interaction
occurs, with the maximum displacement of both incident pulses occurring just after 50 µs.
Figure 2d shows the frequency spectra of the A0 component for the three simulation cases,
which correspond to wavefields TA, TB, and TA&B. The displayed frequency spectra show
the excitation frequencies acting separately as well as concurrently. From this stage, the
subtraction technique is required to extract the S0 component using Equations (8) and (9).

The non-planar primary Lamb waves are expected to propagate over a region that
is not limited to point C. A snapshot of the displacement in the z direction of the top
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surface of the plate is shown in Figure 3a. The displacement over a region of the plate must
contain frequency components at excitation frequencies. The A0. primary wave A and
primary B were obtained by summing the out-of-plane nodal displacement at the top and
bottom surface of the plate and their amplitude spectra at the corresponding fa and fb were
calculated. Figure 3b shows the polar plots of the directivity pattern of the incident wave
amplitudes, which were obtained from the magnitudes at the excitation frequencies of the
amplitude spectra.
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Figure 3. (a) Out-of-plane displacement at the top surface when A and B occur simultaneously,
(b) amplitude of A0 component of simulations A at fa and B at fb, (c) amplitude of S0 component at
fsca.

The interaction between two antisymmetric propagating Lamb waves is expected to
produce a symmetric Lamb wave at combined harmonics due to the wave mixing effect.
Interaction occurs over a mixing region, as shown in Figure 3a; hence, the secondary
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symmetric mode of the Lamb wave due to the local interaction effect is expected over this
region. The combined harmonic is expected to be cumulative along the scattered wave
angle in view of the resonance condition. S0 was obtained using Equation (9), and the
amplitude spectra at the corresponding fsca was calculated, as shown in Figure 3c.

Theory based on plane wave assumption can predict the direction of the scattered
wave, but it has limitations in that it is not fully practical for real applications. However,
with numerical simulations, we can understand how wave mixing phenomena occur when
primary Lam. waves with finite beam width and non-planar wavefront interact with each
other. It can be seen from Figure 3c that the directivity pattern of the secondary, S0, at the
combined sum frequency, fsca, shows that maximum amplitude occurs towards the resonant
angle. Some deviation could be expected given that dispersion curves from Figure 1 were
calculated based on the plane wave assumption. Cumulative nature of the secondary wave
at the combined frequency is then evaluated at the expected resonant direction (γ = 55◦).
From the frequency domain data of the extracted S0 component of the scattered Lamb wave,
the area under the Fourier amplitude spectrum curve at fsca = 714 kHz was calculated
using the trapezoidal rule. This calculated area is the numerator A3. Similarly, the areas
under the Fourier amplitude spectra curves at fa = 484 kHz and fb = 230 kHz were
calculated from the frequency domain data of the A0 component of the incident pulses; the
product of these areas is then A2 A1. The nonlinear parameter is defined as:

β =
A3

A2 A1
(18)

The nonlinear parameter, β, was calculated along ten points every 20 mm in the
γ = 55◦ direction. The results are shown in Figure 4, showing a linearly increasing trend
with cumulative nature due to material nonlinearity.
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4. Experimental Study

A 300 mm × 300 mm × 1.60 mm 6061-T6 aluminum plate was used in an experiment
to observe the wave mixing responses of two primary non-collinear Lamb waves due to
their mutual interaction under resonance conditions. Two wedge transducers designed
for generating antisymmetric propagating mode Lamb waves were used. The wedge
transducer consisted of a Teflon wedge and a longitudinal wave transducer. Using Snell’s
law, the oblique angles of the wedges were calculated as θa = 38◦ ( fa = 484 kHz) and
θb = 53◦ ( fb = 230 kHz). Two PC-controlled NI PXI-5412 waveform generators were
used to generate two independent signals. Both signals consisted of sinusoidal tone-burst
waves modulated by a Hann window. Signals were amplified by two separate amplifiers.
Transducer-wedge interface and wedge-specimen interface were coupled with light motor
oil and clamped to the surface of the plate. Given that the wedges had different Snell’s
angles, the distance between the transducer and the plate was also different because of
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the manufacturing process of the wedges. Thus, preliminary studies were conducted so
that both actuated waves had approximately similar maximum amplitude. Pulse A was a
31-cycle tone burst pulse with a central frequency of 484 kHz, amplified to 100 Vpp, and
Pulse B was a 15-cycle tone burst pulse with a central frequency of 230 kHz, amplified
to 120 Vpp. Since the pulse with fa frequency propagates faster than the pulse with fb
frequency, an appropriate time delay was applied during the excitation signal generation;
the distance between the wedge transducers and measurement point was kept constant. A
schematic diagram is shown in Figure 5.

WAVEFORM 
GENERATOR 

LASERDAQ& 
CONTROLLER 

CIPRIAN Ai\-1PLIFIER 

RITEC AMPLIFIER 

Figure 5. Experimental setup.

5. Discussion

Tests to explore the generation of the antisymmetric Lamb wave were conducted first
to confirm the successful generation of the primary waves. To confirm this, each transducer
was actuated separately and the out-of-plane displacements at different locations were
measured using a 1D scan measured by a Polytec PSV-400-M2-20 scanning laser vibrometer
(SLV). Group velocity was calculated using the time-of-flight of the signal envelope obtained
from the Hilbert transform and the distance between consecutive measurement points. The
group velocity was Vgr = 3032 m/s for pulse A and Vgr = 2701 m/s for pulse B, which
were in good agreement with the analytical values from the dispersion curve corresponding
to the A0 wave (Vgr = 3036 m/s and Vgr = 2697 m/s). To increase the optical backscatter
reflection of the laser beam, a reflective paint layer was applied to the surface of the
specimen. The measured signals were averaged 500 times to increase the quality of the
measurements and to reduce potential errors arising from measurement noise.

Pulses A and B were excited simultaneously to study their mutual interaction. Ad-
ditionally, pulses A and B were excited separately to extract the combined harmonic that
only occurs when Lamb waves interact simultaneously. The frequency content of the
out-of-plane displacement in the mixing zone is shown in Figure 6a when the pulses were
excited separately and Figure 6b when the pulses were excited simultaneously. Additional
frequency components due to mutual interaction were observed at two combined frequen-
cies, namely fa + fb and 2 fa + fb. They did not appear when pulses were excited separately.
In this paper, we aim to report the secondary wave at the combined sum frequency, fa + fb,
as an indication of material nonlinearity. The extracted nonlinear wavefield, which is at
fa + fb = 730 kHz, is also shown in Figure 6c. In this study, the presence of the combined
harmonic should not be polluted by equipment nonlinearity given that the signals are
amplified by two different power amplifiers. Moreover, the use of two different transducers
for actuation and a non-contact laser for measurement should not cause combined har-
monic generation. Nonetheless, the amplitude of the combined harmonic is still relatively
small; hence, there could certainly be some level of measurement error. To assess the
cumulative nature of the generated secondary pulse, a different set of measurements was
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conducted along a line of ten sensing points in 10 mm intervals at the expected direction
of the resonant wave, γ = 55◦. Then, the amplitude spectrum of the secondary wave was
normalized by the product of the amplitude spectrum of the primary waves and plotted as
a function of propagation distance, as shown in Figure 6d. This linear increase indicates that
the secondary wave can grow cumulatively [21], thereby validating its cumulative nature
with propagation distance. As such, in plate-like structures, this practical phenomenon has
proven to be practical and useful for characterizing weak material nonlinearity, plasticity,
and fatigue [9].
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6. Conclusions

This study has investigated the interaction of mixing non-collinear Lamb wave pulses
with a non-planar wavefront in an isotropic plate. Practical conditions of finite beam width,
finite pulse duration, and finite interaction region have been considered in this study. A
finite element model with weak material nonlinearity, modelled using third-order terms of
Murnaghan’s strain energy function, has been employed to demonstrate the generation
of the combined harmonic generation when two incident Lamb waves with nonplanar
wavefronts interact with each other under the resonant condition. An experiment using
two separate transducers with two separate amplifiers has been conducted to demonstrate
that when two incident Lamb waves with non-planar wavefronts and finite time duration
interact with each other under resonant conditions, the combined harmonic has a cumu-
lative nature due to material nonlinearity. Given the non-planar wavefront generated by
the incident pulse, a physical insight indicates that combined harmonic generation takes
place due to the local interaction effect over the mixing region, and that the magnitude
distribution of this local effect is consistent with the internal resonance criteria. Moreover,
the use of A0 Lamb waves introduces the potential for advancing wave mixing damage
detection techniques, such as debonding, delamination, or impact, which have not been
fully investigated in the literature.
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