
Application of Bio-inspired Algorithms to
Selected Real-World Problems

Author: Hirad Assimi

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The University of Adelaide

in the

Optimisation and Logistics
School of Computer Science

January 2023

iii

Contents

List of Figures vii

List of Tables ix

Acronyms xi

Abstract xiii

Declaration of Authorship xv

Acknowledgements xvii

1 Introduction 1
1.1 Contributions and Background . 1
1.2 Outline of the Thesis . 4

2 Combinatorial Problems and Stockpile Recovery 7
2.1 Introduction . 7
2.2 Knapsack Problem . 8
2.3 Chance-constrained Knapsack Problem 8

2.3.1 Inequality Tail Bounds for Chance-constraints 10
2.4 Truss Optimisation Problem . 11
2.5 Multi-objective Optimisation Problems 13
2.6 Stockpile Recovery Problem . 14
2.7 Conclusions . 17

3 Deterministic and Randomised Methods for Optimisation Problems 19
3.1 Introduction . 19
3.2 Deterministic approaches . 20

3.2.1 Dynamic Programming . 20
3.2.2 Iterated Local Search . 21
3.2.3 Greedy Algorithms . 22

3.3 Randomised algorithms . 23
3.3.1 Evolutionary algorithms . 23

(1+1)-EA . 24
3.3.2 Multi-Objective Evolutionary Algorithms (MOEAs) 25

G-SEMO . 25
NSGA-II . 25

3.3.3 Particle Swarm Optimisation 26
3.3.4 Ant Colony Optimisation . 27

3.4 Novelty Search . 28
3.5 Conclusions . 29

iv

4 Evolutionary Bi-objective Optimisation for the Dynamic Chance-
Constrained Knapsack Problem Based on Tail Bound Objectives 31
4.1 Dynamic Chance-Constrained Knapsack Problem 32
4.2 Bi-objective Optimisation Model . 33
4.3 Evolutionary algorithms . 37

4.3.1 Single-objective Optimisation 37
4.3.2 Bi-objective Optimisation . 37

4.4 Experimental Investigation . 39
4.5 Conclusions . 42

5 Novelty-Driven Binary Particle Swarm Optimisation for Truss Op-
timisation Problems 53
5.1 Bilevel Truss Optimisation Problem . 54
5.2 Optimisation methods . 55

5.2.1 Lower Level Optimisation . 56
5.2.2 Exact Enumeration . 56
5.2.3 Novelty-Driven Bilevel Truss Optimisation 57

Binary PSO . 57
Novelty-driven Binary PSO . 58
Repair Mechanism in the Upper Level 58
Bilevel Novelty-Driven Binary PSO Framework 59

5.3 Experimental investigations . 59
5.3.1 25-bar truss . 60
5.3.2 10-bar truss . 61
5.3.3 52-bar truss . 62
5.3.4 15-bar truss . 63
5.3.5 72-bar truss . 63
5.3.6 47-bar truss . 64
5.3.7 200-bar truss . 65
5.3.8 224-bar truss . 66
5.3.9 68-bar truss . 66

5.4 Conclusions . 67

6 Modelling and Optimisation of Run-of-Mine Stockpile Recovery 73
6.1 Stockpile recovery problem statement 74

6.1.1 Objective function . 76
6.1.2 Scenarios of the Problem . 76

6.2 Optimisation methods . 77
6.2.1 Greedy Algorithm and Randomisation 78
6.2.2 Max-Min Ant System (MMAS) 79
6.2.3 MMAS with Local Search . 80
6.2.4 Pilgrim Step Reclaiming Heuristic (PSRH) 81

6.3 Experimental setup . 82
6.4 Results and Discussion . 82

6.4.1 Scenario 1 . 86
6.4.2 Scenario 2 . 86
6.4.3 Scenario 3 . 87

6.5 Conclusions . 87

v

7 Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers 91
7.1 Problem Statement . 92

7.1.1 Lexicographic Objective Function 94
7.2 Optimisation Methods . 95

7.2.1 Solution Construction Heuristic 96
7.2.2 Deterministic and Randomised Greedy Algorithm 97
7.2.3 Max-Min Ant System (MMAS) 98
7.2.4 Iterative Local Search . 99

7.3 Experimental Setup . 100
7.3.1 Problem Setup . 100
7.3.2 Algorithm Setup . 101

7.4 Results . 102
7.5 Conclusions . 108

8 Conclusions 109

Bibliography 111

vii

List of Figures

5.1 Ground structure of 25-bar truss. 55
5.2 Exact enumeration on 25-bar truss case 1 (right side truncated). dH

denotes the hamming distance with the upper bound reference. Note
that empty area denotes the infeasible region of the search space. . . . 61

5.3 Exact enumeration on 25-bar truss case 2 (right side truncated). dH
denotes the hamming distance with the upper bound reference. Note
that empty area denotes the infeasible region of the search space. . . . 61

5.4 Ground structure of 10-bar truss. 63
5.5 Exact enumeration on 10-bar truss. dH denotes the hamming distance

with the upper bound reference. 63
5.6 Ground structure of 52-bar truss (I) and the best found design (II) . . 65
5.7 Exact enumeration on 52-bar truss (right side truncated). 65
5.8 The ground structure of 15 bar truss (I) and top three designs obtained

(a-c) . 66

6.1 Schematic of the stockyard. Cut (1-1-1) is the entry cut for stockpile
recovery where it is the first cut on stockpile 1, top bench and first cut
from South-to-North direction. 75

6.2 Significance plot of statistical test for randomised algorithms. p denotes
the p-value and NS refers to no significant difference. 83

7.1 (a) Top view of the stockyard configuration (b) Layout of a single stock-
pile with four benches each containing ten cuts 93

7.2 Probability of selection when linear ranking is active for different values
of λ and SP . 99

7.3 Best parameter configurations for RGA 101
7.4 Best parameter configurations for MMAS 102
7.5 Significance plot of statistical tests for randomised algorithms for dif-

ferent instances. p refers to the p-value and NS shows no significant
difference. Each subplot refers to different instances as follows. (a):
(3-2-2), (4-2-1), (4-2-2), (4-3-2), (5-3-2), (7-2-2), (9-3-2). (b): (5-2-1),
(7-3-2). (c): (6-3-2), (d): other instances. 107

ix

List of Tables

2.1 Corresponding weight and profit interval for knapsack problems in-
stances . 8

4.1 Statistical results of total offline error for (1+1)-EA and POSDC with
small change (r = 500) in the dynamic constraint with n = 100 43

4.2 Statistical results of total offline error for (1+1)-EA and POSDC with
large change (r = 2000) in the dynamic constraint with n = 100 44

4.3 Statistical results of total offline error for NSGA-II with changes in the
dynamic constraint with n = 100 . 45

4.4 Statistical results of total offline error for (1+1)-EA and POSDC with
small change (r = 500) in the dynamic constraint with n = 300 46

4.5 Statistical results of total offline error for (1+1)-EA and POSDC with
large change (r = 2000) in the dynamic constraint with n = 300 47

4.6 Statistical results of total offline error for NSGA-II with changes in the
dynamic constraint with n = 300 . 48

4.7 Statistical results of total offline error for (1+1)-EA and POSDC with
small change (r = 500) in the dynamic constraint with n = 500 49

4.8 Statistical results of total offline error for (1+1)-EA and POSDC with
large change (r = 2000) in the dynamic constraint with n = 500 50

4.9 Statistical results of total offline error for NSGA-II with changes in the
dynamic constraint with n = 500 . 51

5.1 Comparison of optimised designs for 25-bar truss case 1. 62
5.2 Comparison of optimised designs for 25-bar truss case 2. 62
5.3 Comparison of optimised designs for 10-bar truss. 64
5.4 Comparison of optimised designs for 52-bar truss. 64
5.5 Comparison of optimised designs for 15-bar truss. 66
5.6 Comparison of optimised designs for 72-bar truss. 67
5.7 Comparison of optimised designs for 47-bar truss. 69
5.8 Comparison of optimised designs for 200-bar truss where † denotes the

reported solution is infeasible. 70
5.9 Comparison of optimised designs for 224-bar truss. 71
5.10 Comparison of optimised designs for 68-bar truss. 72

6.1 Fitness values obtained for the optimised solutions in Scenarios 1 and 2 84
6.2 Fitness values obtained for the optimised solutions by RGA variants in

Scenarios 1 and 2 . 85
6.3 Fitness values obtained for the optimised solutions in Scenario 3 88
6.4 Fitness values obtained for the optimised solutions by RGA variants in

Scenario 3 . 89

7.1 Objective functions obtained for the solutions in for instances with 2-3
deliveries . 103

x

7.2 Objective functions obtained for the solutions in for instances with 4-5
deliveries . 104

7.3 Objective functions obtained for the solutions in for instances with 6-7
deliveries . 105

7.4 Objective functions obtained for the solutions in for instances with 8-10
deliveries . 106

xi

Acronyms

ACO ant colony optimisation.

CCKP chance-constrained knapsack problem.

CCP chance-constrained programming.

DOP dynamic optimisation problem.

EA evolutionary algorithm.

EC evolutionary computation.

GA greedy algorithm.

ILS iterated local search.

KP knapsack problem.

MMAS max–min ant system.

MOEA multi-objective evolutionary algorithm.

MOOP multi-objective problem.

PSO particle swarm optimisation.

ROM run of mine.

SI swarm intelligence.

TSP travelling salesperson problem.

xiii

University of Adelaide

Abstract

Application of Bio-inspired Algorithms to Selected Real-World Problems

by Author: Hirad Assimi

Real-world combinatorial optimisation problems often include uncertain parameters,
dynamic constraints, mixed solution representations, and precedence constraints that
make finding high-quality feasible solutions difficult. Randomised methods such as
bio-inspired algorithms can solve intractable combinatorial problems in a reasonable
timeframe. Bio-inspired algorithms can solve a variety of problems by using operators
inspired by nature. The thesis focuses on the practical application of bio-inspired
methods to different combinatorial problems of varying attributes. We investigate
four combinatorial problems, starting with the knapsack problem with dynamic in-
equality capacity constraint, which changes over time and random weights of items
from a probability distribution. We use two inequality tail bounds, namely Cheby-
shev’s inequality and Chernoff bound to derive helper objective functions to quantify
the uncertainty for a candidate solution to the knapsack problem. We address the
problem as a bi-objective problem to handle uncertainties, and we modify a baseline
multi-objective optimisation algorithm to tackle the dynamic constraint to maintain
separate partitions of infeasible and feasible solutions at each time frame ready to
adapt to the capacity constraint change. Our experimental results show that adding
a second objective to this complex problem results in better solutions than using a
single-objective approach, and further improvements can be achieved using more so-
phisticated approaches such as NSGA-II. The second problem is a famous structural
engineering problem whose ultimate solution as a structural design combines combi-
natorial and continuous components. We focus on the combinatorial aspects of the
problem at the upper level of a bi-level problem setting, whereas at the lower level,
we use a state-of-the-art optimiser to determine optimal components. We develop an
enumeration method and a novelty-based approach to deal with small and large-scale
problems. Using the proposed methods, we are able to obtain high-quality designs
with similar objective functions and different features. The last two problems are con-
cerned with solving a stockpile management problem in the mining industry, where a
low-quality solution can result in the mining operator paying huge financial penalties
to the client. Based on the data provided by our industry partner, we model this issue
as a permutation problem. We use greedy algorithms and ant colony optimization to
solve and understand it. Using a lexicographic objective function, we demonstrate
how effectively these algorithms prioritise penalty fees over speedy delivery. We ex-
pand the previous problem to consider more realistic settings to schedule multiple
machines, consider their safety constraints, and take material from stockpiles in a
cooperative manner and demonstrate their efficiency.

http://www.adelaide.edu.au

xv

Declaration of Authorship
I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name, in any university or other tertiary
institution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been made in
the text. In addition, I certify that no part of this work will, in the future, be used in
a submission in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide and where
applicable, any partner institution responsible for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis re-
sides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to
restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Government Research Training Program Scholarship.

Hirad Assimi

August 2022

xvii

Acknowledgements
My deepest gratitude goes out to my supervisors, Prof. Frank Neumann and A/Prof.
Markus Wagner for their invaluable guidance and unconditional support throughout
my PhD journey.

Thank you to Mr. Ben Koch, Mr. Chris Garcia, and Mr. Paul Elson, our industry
partners at Eka Software Solutions, for contributing and sharing their knowledge and
technical expertise to help me understand mining operations.

Also, I would like to thank all the co-authors on my PhD papers, Dr. Aneta
Neumann, Dr. Yue Xie, Mr. Oscar Harper, and Prof. Xiaodong Li, with whom I
learned a lot.

I am grateful for the Research Consortia Program (RCP) "Unlocking Complex
Resources through Lean Processing" for funding my studies and for providing a unique
environment to grow among like-minded people. Thanks to my wonderful colleagues
at the School of Computer Science and the Optimisation and Logistics group, I am
very grateful for their support.

Last but not least, I would like to extend my sincere gratitude to my family and
friends. Sandy, my life partner, deserves special thanks. Thanks for being patient
with me and supporting me through the vicissitudes of this journey.

To my beloved family; Sandy, Sharareh, Hossein,
Shamin and Seraj

1

Chapter 1

Introduction

Evolutionary computation (EC) is the area of computer science that uses bio-inspired
search methods that mimic the evolution of biological entities or simulate the be-
haviour of natural biological evolution. There are various bio-inspired methods such
as evolutionary algorithm (EA) [ES15], ant colony optimisation (ACO) [DS04] and
particle swarm optimisation (PSO) [KE95].

Bio-inspired algorithms can be considered general problem solvers with a ran-
domised population that model some natural phenomena. EAs use Darwinian evolu-
tionary theory as survival of the fittest, ACO mimics the foraging behaviour of real
ants, while PSO represents the collective learning of individuals or birds when they
are in groups. Creating a population of individuals representing solutions to the opti-
misation problem is typically the starting point of these algorithms. Following that,
the algorithms determine how well these individuals in the population solve or come
close to solving the problem. Next, they use bio-inspired operators, such as mutation
and selection, to create a new population using the current individuals as parents.
The individuals in the next population inherit some characteristics of better-suited
individuals and change randomly in an attempt to become fitter than their parents.
The process continues until the termination criteria are met.

Finding the best solution among all feasible solutions is an optimisation prob-
lem. Combinatorial optimisation problems entail selecting the best solution from a
finite set of potential solutions that satisfy particular properties. In practice, many
combinatorial optimisation problems are NP-hard to solve optimally, and bio-inspired
methods can explore these complex search spaces in a reasonable time while not prov-
ing global optimality. As a result, these algorithms can be used to obtain nearly
optimal solutions to optimisation problems, which may fail to be solved using tradi-
tional mathematical techniques. Bio-inspired algorithms have been applied to a wide
range of combinatorial and real-world problems, demonstrating the high capability in
solving hard and complex problems [MA94; CWM12; NW10].

1.1 Contributions And Background

The primary motivation for this thesis is to conduct a practical investigation of EC for
various real-world combinatorial problems with varying attributes. These attributes
can refer to different types of constraints, objective functions, solution representation
and the problem setting environment.

Many real-world combinatorial optimisation problems contain both stochastic and
dynamic components. In an optimisation problem, the objective function, constraints,
or decision variables may change as a result of dynamic components. EAs are the
natural way to deal with dynamic optimisation problems (DOPs) because they are
inspired by nature which is an ever-changing environment [NYB12]. Moreover, EAs
can tackle the main difficulty in solving DOPs, which is tracking the moving optima

2 Chapter 1. Introduction

when changes occur. The Knapsack problem (KP) is a well-known combinatorial
problem that can be defined as follows. Considering a set of items, each with a weight
and value, how can we determine which items to include in a collection so that the
total weight is within the given capacity and the profit is maximised?

In combinatorial problems, the behaviour of EAs has been studied using KP with
dynamically changing constraint [RNN18]. Based on the trade-off between total profit
and dynamic capacity constraint, they proposed a bi-objective optimization algorithm
to track moving optima by maintaining feasible and infeasible individuals in the pop-
ulation within different partitions. They showed that dealing with the inequality
constraint using a bi-objective approach can be advantageous in obtaining better so-
lutions when the capacity change occurs less frequently. As an expansion of this work,
they examined the EA behaviour of a range of problems based on their submodularity
ratio [Roo+19].

Solving constrained optimisation problems subject to uncertainties is another at-
tribute of optimisation problems. Failure to consider uncertainties could result in
suboptimal or infeasible solutions in practice [LL15]. It is possible to deal with de-
terministic inequality constraints subject to uncertainty by turning them into chance
constraints so that the probability of constraint violation is smaller than a predefined
limit [CC59]. Chance-constrained programming (CCP) has been used successfully
in various domains, including process control, scheduling, and supply management,
where safety requirements are concerned [FGS16].

The weights in KP can be non-deterministic and be a random variable with regard
to a probability distribution. Recently, Xie et al. [Xie+19] integrated inequality tails
with single and bi-objective EAs to solve the chance-constrained knapsack problem
(CCKP). The CCKP is a stochastic variant of the knapsack problem, in which weights
are not known precisely but are randomly chosen from a distribution. We explain this
problem in detail in Section 2.3. Chance constraints convert the deterministic con-
straint to a probabilistic one. They employed probability tail inequalities to estimate
the likelihood of constraint violation. They also carried out bi-objective optimisation
with respect to the profit and probability of constraint violation, considering the knap-
sack capacity is static. Doerr et al. [Doe+20] have investigated adaptations of classical
greedy algorithms for optimising submodular functions with chance constraints of the
knapsack type. They have shown that the adapted greedy algorithms can maintain
asymptotically almost the same approximation quality as in the deterministic setting
when considering uniform distributions with the same dispersion for the knapsack
weights.

In Chapter 4, we consider the CCKP with dynamic capacity, where the weight of
each item is chosen from a probability distribution and the capacity constraint changes
dynamically over time. The goal is to maximise total profit subject to the probability
that total weight does not exceed the capacity at a time step. We use well-known tail
inequalities such as Chebyshev’s inequality and the Chernoff bound to approximate the
probabilistic constraint. Our key contribution is to introduce an additional objective
that estimates the minimal capacity bound for a given stochastic solution that still
meets the chance constraint. This objective helps to cater for dynamic changes to
the stochastic problem. We apply single- and bi-objective evolutionary algorithms to
the problem and show how bi-objective optimisation can help to deal with dynamic
chance-constrained problems.

A solution to an optimisation problem can have both combinatorial and continu-
ous decision variables. So optimisation problems may require explicitly modelling the
interaction among different aspects of the problem. Truss optimisation problems are

1.1. Contributions and Background 3

well-known engineering problems in that the solution representation combines combi-
natorial with integer and continuous variables. Trusses are used in the construction of
bridges, towers [Has07; Rao95], aerospace structures [Seb+11] or in robots [Fin+13].
Their primary function is to support structures under external loads. In truss opti-
misation, we aim to reduce the weight of the truss by considering topology, size and
shape optimisation, where each has its own type of design variables.

Truss optimisation can be categorised into topology, size and shape optimisation.
An objective of topology optimization is to determine what components should be
included or excluded in the design of a truss, while size and shape optimization aims
to find the best weight for each component. We aim to decide whether to include or
exclude necessary truss members so that the structure’s weight is as light as possible
while adhering to structural constraints.

These structural constraints include stability, failure criteria and design codes by
practice and manufacturing specifications. These constraints can conflict with objec-
tives which makes the problem more challenging. For example, increasing the stiffness
of the truss to prevent failure will increase its weight. Several numerical methods
have been applied to different truss optimisation problems for decades. Conventional
methods such as gradient-based showed limited efficiency in dealing with structural
constraints and handling the discreteness and discontinuities in truss optimisation
problems which led to trapping in local optima [Deb01]. The inadequacy of classical
optimisation methods led to the development of EC techniques and metaheuristics in
truss optimisation [KAD05].

Islam et al. [ILM17] adopted a bilevel representation for the truss optimisation
problem to consider the interaction among different aspects of the problem. The
bi-level formulation consists of an upper-level optimisation problem that determines
the truss topology and a lower-level optimisation problem for determining the truss
configuration. In both the upper and lower levels, the main optimisation objective was
to reduce the weight of the truss. They used a modified binary PSO with a niching
capability to increase population diversity while maintaining some level of exploitation
in the upper level. It is based on a speciation scheme that uses a niching radius to
subdivide the PSO population in order to locate multiple high-quality solutions. In
order to supply the sizing solutions to the upper level, a standard continuous PSO
was used at the lower level.

In Chapter 5 we introduce the exact enumeration to rigorously analyse the topol-
ogy search space and remove randomness for small truss optimisation problems. We
also propose novelty-driven binary PSO for bigger problems to discover new designs
at the upper level by maximising novelty. For the lower level, we employ a reliable
evolutionary optimiser to tackle the layout configuration aspect of the problem. The
truss optimisation problem considers the manufacturability aspect where the sizing of
bars should be chosen from a discrete set with respect to practice code constraints.
We show that the proposed method outperforms the current state-of-the-art and can
obtain multiple high-quality solutions for each instance.

Scheduling problems can be modelled as combinatorial problems. Real-world
scheduling optimisation problems are subject to technical constraints that violation
of these can severely damage the expectation of profit. Mining industry scheduling
problems are challenging to solve in real-world supply chain management applications
It involves a variety of technical constraints, and any delay in operations results in a
loss of income. Mining is the process of digging rocks, extracting valuable material
(ore), manufacturing it and finally selling it to obtain money [Sam+17]. EC tech-
niques have been applied to challenging combinatorial and continuous optimisation
problems in real-world applications of mining. EAs, for example, have been employed

4 Chapter 1. Introduction

in the iron mine supply chain optimisation for long-term planning of mine digger
equipment and trucks for commercial purposes [Ibr+14]. ACO has been applied to
solve the open-pit mining scheduling problem [SS15]. Recently, the differential evo-
lution [SP97] has been used to tackle the stockpile blending problem considering the
average grade of stockpiles and addressing a continuous optimisation problem subject
to uncertainty [XNN21a; XNN21b]

Run-of-mine (ROM) stockpiles are essential components in the mining value chain,
as they are used to temporarily store extracted ore before they are fed into the next
stage. ROM stockpiles can balance inflows and outflows and assist in blending ma-
terial for high-quality delivery. Stockpile schedulers plan stockpile recovery to bal-
ance throughput and material specifications to deliver for the supply chain’s next
stage [JHE13; Li+19]. Failure to meet technical parameters on delivery can result
in significant penalties, increased operational costs due to poor operational plans or
over-delivery of material specifications. Currently, human experts determine the plan-
ning of stockpile recovery in practice. However, this approach is error-prone due to
the complex distribution of materials within a stockpile and the inability to foresee
upcoming deliveries efficiently. Human decision-making can also result in a loss of
assumed profits and disruptions in stockpile management.

In Chapter 6 we model the stockpile recovery problem as a combinatorial optimisa-
tion problem considering technical restrictions in real-world operations. This chapter
investigates multiple scenarios and experiments with a single reclaimer in operation.
We apply deterministic and randomised greedy algorithms as baseline algorithms and
employ ACO algorithms integrated with local search to solve the problem. We com-
pare all algorithms with a rule-of-thumb heuristic proposed by the industry partner
to evaluate our methodology’s quality.

We extend our investigation in Chapter 7 to include a more realistic scenario
considering multiple reclaimers in action for short and long-term deliveries. The en-
gagement of multiple reclaimers complicates the problem regarding their interaction
in preparing a delivery simultaneously and safety distancing of reclaimers. We also
consider other realistic settings, such as handling different minerals. We study various
instances of the problem using greedy algorithms, ACO and propose an integrated lo-
cal search method for determining an efficient schedule. We fine-tune the algorithm
parameters and compare the algorithms in different settings to provide short to long-
term schedules.

1.2 Outline Of The Thesis

This thesis mainly investigates four combinatorial optimisation problems: dynamic
chance-constrained knapsack problem, topology optimisation of trusses and stockpile
recovery optimisation problem using single and multiple reclaimers. These problems
ranging from benchmark problems to real-world optimization problems can pose chal-
lenges due to uncertain parameters, dynamic constraints, mixed solution represen-
tations, and precedence constraints, making it difficult to find high-quality feasible
solutions.

Chapter 2 describes these problems, and their characteristics in detail, including
prerequisite knowledge on chance-constrained problems, structural optimisation and
the real-world scheduling problem in the mining industry. Next, in Chapter 3 we
introduce bio-inspired methods and other randomised and deterministic approaches
used in this thesis. We explain several exact methods, including dynamic program-
ming, iterated local search, and greedy deterministic search. Then, we describe the

1.2. Outline of the Thesis 5

EAs employed in this thesis, both single and bi-objective, before concluding with a
description of PSO and ACO.

We start in Chapter 4 with the knapsack problem with dynamic inequality capacity
constraint, which changes over time and random weights of items from a probability
distribution. The main challenge with this problem is to track the optimal solution
subject to dynamic constraints and quantify the probability of violating the knapsack
capacity constraint. This chapter focuses on the investigation of EAs for the dynamic
chance-constrained knapsack problem, where we introduce a new objective function
to transform a single objective optimisation problem into a bi-objective problem. We
derive helper objectives from the inequality tails to have two objectives. We solve
the CCKP in dynamic settings with respect to the total profit and probability of
violating the probabilistic constraint. We apply baseline single and bi-objective EAs
to the problem. The analysis has been extended to include different complexities
based on the amount of uncertainty, the dynamic environment, and the number of
items in the knapsack instances.

Chapter 5 considers bilevel optimisation of trusses for topology, size and shape op-
timisation. The challenge with this problem is having a mixed solution representative
for an ultimate design combining combinatorial and continuous components. Having
mixed solution representatives can expand the search space resulting in finding a low-
quality solution. In addition, considering mixed representatives avoids modelling the
interaction among different aspects and makes it harder to evolve a solution efficiently.
We employ exact enumeration for small-scale problems to analyse the search space
rigorously. Next, we develop a novelty-driven binary PSO to explore the upper level
search space for a more complex problem.

Chapters 6 and 7 focus on a real-world scheduling problem in the mining industry.
In Chapter 6, we initiate the study by modelling the stockpile recovery problem as a
combinatorial optimisation problem subject to technical restrictions in practice. The
main challenge for this problem is having precedence constraints restricting the search
space to find high-quality feasible solutions. We introduce a lexicographic objective
function for the problem to minimise the penalty fees the producer will have to pay
if the problem constraint is violated. We use optimisation methods to construct a
schedule plan step by step to meet the precedence constraints in solving the problem.
For this purpose, we explore using deterministic and randomised greedy algorithms.
We also employ a variant of the ACO algorithm and consider three local search opera-
tors for it: swap, insert, and inversion for neighbourhood search of obtained solutions
by ACO.

Next, in Chapter 7, we extend the stockpile recovery problem to consider multiple
stockpiles and reclaimers and their interactions to provide deliveries. We schedule
short and long-term deliveries while avoiding reclaimers crossing each other subject
to more realistic settings than in the previous chapter. To simulate the interaction of
the reclaimers in constructing a feasible solution, we develop a solution construction
heuristic engaging multiple reclaimers. We investigate deterministic and randomised
greedy algorithms and ACO to build the schedule step by step. We also use the
automatic parameter tuning method to fine-tune the parameters of our algorithms
to achieve better results. We also designed a local search operator for ACO to more
finely investigate a solution, and it can outperform other methods in most instances.

Finally, Chapter 8 concludes the thesis with a summary of major findings.

7

Chapter 2

Combinatorial and Stockpile
Recovery Problems

2.1 Introduction

Combinatorial optimisation is a branch of applied mathematics that deals with solving
discrete optimisation problems. Combinatorial optimisation problems arise in various
applications, such as operations research and artificial intelligence, which involve com-
putational methods. These problems may include planning, scheduling, time-tabling,
and resource allocation. Well-known objectives are to find the shortest or cheapest
round trip in graphs, the optimal grouping, ordering, or assigning discrete and finite
components.

The combinatorial optimisation problem is defined as a triple (S, f,Ω), where S is
a search space, f is an objective function, and Ω is a set of constraints [NW10]. In a
discrete search space, the main objective is finding solutions that meet all constraints
and maximise or minimise the objective function. Candidate solutions are the result
of attempts to solve a problem that is formed by combining solution components, but
they may not satisfy all the conditions of the problem definition when compared to
feasible solutions.

The computational complexity of a combinatorial problem instance is determined
by the time and space it takes to solve it as a function of its size. Problem instance size
refers to the length of a reasonably concise description [HS04]. Note that computation
theory mainly deals with a set of problem instances as problem classes. It can be
challenging to solve combinatorial problems because there are often many possible
choices in the discrete search space. As the size of the problem instance increases, the
number of candidate solutions will increase exponentially.

The P versus NP problem is a question in computer science that asks whether
every problem for which it is easy to check a proposed solution can also be solved
quickly (that is, in polynomial time). P is the set of problems that a deterministic
Turing machine can solve in polynomial time. NP is the set of problems that can
be solved by a non-deterministic Turing machine in polynomial time. It is widely
assumed that P is not equal to NP. The class of NP-complete problems contains
the hardest problems in NP, and a problem is called NP-hard if it is at least as hard
as any problem in NP.

This chapter begins with a description of the knapsack problem (KP) and presents
a stochastic weighted variant of this problem in which the probability that the knap-
sack capacity is exceeded is bounded. We then present a combinatorial optimisation
problem for topology optimisation of trusses with the aim of finding a subset of possi-
ble connections connecting truss members of a structure while reducing its mass. We
then describe stockpile recovery as a combinatorial scheduling problem and explain
its significance as a real-world combinatorial optimisation problem.

8 Chapter 2. Combinatorial Problems and Stockpile Recovery

Table 2.1. Corresponding weight and profit interval for knapsack
problems instances

type weight (wi) profit

Uncorrelated [1,1000] [1,1000]
Bounded strongly correlated [1,1000] wi + ç

2.2 Knapsack Problem

The knapsack problem is a classical NP-hard combinatorial optimisation problem. KP
is defined as given n items where each item i, 1 ≤ i ≤ n has a profit pi and a weight wi

and a knapsack capacity C. The objective is to find a subset of items that maximises
the total profit (P (x)) while keeping the weight (W (x)) of the selected items within
the knapsack capacity. The candidate solution is an element x ∈ {0, 1}n where the
item i is chosen iff xi = 1. Therefore, KP is defined as

Maximise P (x) =
∑n

i=1 pixi

s.t. W (x) =
∑n

i=1wixi ≤ C
(2.1)

There are many real-world applications of the knapsack problem, for instance when
resources are limited and gaining a high reward is essential. Some examples include
mining planning scheduling, optimisation of transportation systems, and network de-
sign [KPP04].

The correlation between profit and weight of items can result in different problem
instances, namely weak and strongly correlated problems instances for the knapsack
problem. The weight of items is selected randomly in weakly correlated instances, but
the profit is chosen from a range in the vicinity of the selected weight. However, in
strongly correlated instances, weights are random, but the profit is strongly correlated
and determined by shifting the weight value. Table 2.1 shows the corresponding weight
and profit for each type of knapsack instance where ç denotes a constant number. For
more information on the generation of KP instances, see [Pol+14].

2.3 Chance-Constrained Knapsack Problem

The concept of uncertainty can be defined as the difference between the present knowl-
edge and the state of complete knowledge [NGS05]. Generally, scientists and engineers
classify uncertainties into aleatory and epistemic types. Aleatory uncertainty, also
known as objective or stochastic uncertainty, results from the inherent randomness
of a physical system or environment. In comparison, the source of epistemic uncer-
tainty, subjective uncertainty, is the lack of knowledge about a physical system or
environment. Probabilistic methods such as robust and reliability-based design are
usually used to quantify aleatory uncertainty. On the other hand, non-probabilistic
methods such as interval analysis and evidence theory are used to deal with epistemic
uncertainty.

Aleatory uncertainty is a common factor in engineering design problems. Proba-
bility theory is used widely in engineering as a tool to manage uncertainty. However,
the application of different methods relies on the complexity of the model of the prob-
lem. Different probabilistic techniques deal with this kind of uncertainty, including
sampling and approximation methods [Li+16a].

2.3. Chance-constrained Knapsack Problem 9

Uncertainty can be taken into account when solving combinatorial problems. With
the knapsack problem, uncertainties can be introduced into the weight of items due to
incomplete information, the profit of items due to market fluctuations, or the knapsack
capacity due to queuing problems [Kos14]. Considering the deterministic variant of
KP, finding an optimal solution is certainly NP-hard.

Chance-constraint programming (CCP) is a powerful probabilistic tool to model
uncertainty in optimisation problems. It transforms an inequality constraint into a
probabilistic constraint to ensure that the probability of constraint violation is smaller
than a limit pre-defined by the decision-maker [CC59]. By considering this feasibility
threshold, an inequality turns into a chance constraint. CCP has been applied success-
fully in different domains such as process control, scheduling and supply management
where safety requirements are concerned [FGS16].

A chance-constraint formulates an optimisation problem with random design vari-
ables integrating uncertainty while it satisfies a given threshold which is known as
the reliability level [PAS09; Liu+13]. This type of constraint guarantees that the
constraint is satisfied probabilistically with only a small fraction of violation [BS07;
KN08; GR10]. Chance-constrained knapsack problem (CCKP) is a variant of the
classical NP-hard deterministic knapsack problem where the weights and profits can
be stochastic [KPP04].

In CCKP, the goal is to maximise the total profit of selected items P (x) under
the condition that the probability that the total weight of the selected items is at
least as high as the capacity is at most α. Therefore, each potential solution for the
problem should satisfy the probabilistic constraint where the probability of exceeding
the knapsack capacity with random weights of items should be less than a pre-defined
possibility of failure. It means that if we consider a high-reliability level in the con-
straint, such as 99%, there is only a 1% chance of failure. It means that the constraint
only allows for 1% of failure, which is probabilistically determined.

Formally, we define the chance constraint as

Pr [W (x) ≥ C] ≤ α

where α is a parameter that upper bounds the probability of exceeding the knapsack
capacity (0 < α < 1). Therefore, for the chance-constraint knapsack problem, we
have

Find x ∈ {0, 1}n

Maximise P (x) =
∑n

i=1 pixi

Subject to Pr [W (x) ≥ C] ≤ α

Chance-constrained problems are hard to solve for multiple reasons. First, esti-
mating the probability of constraint violation is usually difficult. Second, the feasible
region due to this probabilistic constraint is usually non-convex [PAS09]. Chance-
constrained optimization involves modelling uncertainty in the problem constraints.
However, it can be difficult to accurately model the probability distribution of the un-
certain data, which can make it challenging to estimate the likelihood of a constraint
violation. Many chance-constrained optimization problems are non-convex, meaning
that they have multiple local optimal solutions rather than a single global optimal
solution. This can make it difficult to determine the optimal solution and estimate
the probability of constraint violation.

Sampling techniques such as Monte Carlo Simulation produce random samples

10 Chapter 2. Combinatorial Problems and Stockpile Recovery

considering a pre-defined probabilistic distribution for uncertain parameters. Sim-
ulation of the system considering these randomly generated samples is followed by
minimising the standard deviation of the objective functions to achieve robustness.
Sampling methods rely on sampling and are highly sensitive to the parameters or
settings [Liu+13]. Furthermore, Monte Carlo simulations are computationally expen-
sive [Lob+19]. Klopfenstein and Nace investigated the chance-constrained knapsack
problem and provided an algorithm for stochastic knapsack problems when the profits
are identical, or the uncertainty in the weight of items shares the same characteris-
tic [KN08]. Goyal and Ravi proposed a polynomial-time approximation scheme when
the weight of items is random variables normally distributed [GR10]. Han et al. pro-
posed a pseudo-polynomial time algorithm to solve the chance-constrained knapsack
problem. However, their approach may lead to infeasible solutions [Jin+16]. Another
approach to address uncertainty in the knapsack problem is the relaxation analysis
of stochastic knapsacks. This approach checks the bound of the knapsack after each
item is assigned to determine how much capacity remains [BT19].

Recent research has focused on the use of evolutionary algorithms to solve chance-
constraint combinatorial optimisation problems. Xie et al. [Xie+19] integrated in-
equality tails with evolutionary algorithms to estimate the constraint’s violation prob-
ability. They reported on the behaviour of Chebyshev’s inequality and the Cher-
noff bound for chance-constraint approximation in CCKP. They also carried out bi-
objective optimisation with respect to the profit and chance-constraint while the ca-
pacity is static. Doerr et al. [Doe+20] have investigated adaptations of classical greedy
algorithms to optimise submodular functions with chance constraints of the type of
knapsack problem. They have shown that the adapted greedy algorithms maintain
almost the same approximation quality as in the deterministic setting when con-
sidering uniform distributions with the same dispersion for the knapsack weights.
Neumann and Sutton [NS19] analysed different settings with respect to the run-
time analysis of CCKP using baseline algorithms. Xie et al. [XNN20] expanded
their investigation by considering problem-specific crossover operators and heavy-
tailed mutation operators. Monotone chance constraints optimisation using multi-
objective optimisation algorithms has been investigated [NN20], and further research
has been done on the run-time analysis of evolutionary algorithms applied to chance-
constraint problems [Xie+21; NW21]. Moreover, EAs have been used to deal with a
chance-constrained problem in a continuous optimisation problem in the mining in-
dustry [XNN21a]. Heuristic techniques have been developed to deal with uncertainty
in the quality of extracted material from the mine and to ensure that the constraints
of the resource and the client are met in planning.

2.3.1 Inequality Tail Bounds For Chance-Constraints

Quantification of probabilistic constraints can be difficult because it involves accu-
rately estimating the likelihood of certain events occurring, which can be challenging
due to the inherent uncertainty and variability involved in many real-world situations.

In a chance-constrained optimization problem, the probabilities of certain events
occurring are used to determine the likelihood that the constraints of the problem will
be satisfied. The type of probability distribution used to model these probabilities
can affect the difficulty of the problem and the feasibility of the solution.

Chebyshev’s inequality and the Chernoff bound are two of the most used inequal-
ity tail bounds. Chebyshev’s inequality tail can determine a bound for a cumulative
distribution function of a random design variable. Chebyshev’s inequality requires
knowing the standard deviation of design variables and gives a tighter bound than

2.4. Truss Optimisation Problem 11

weaker tails such as Markov’s inequality. Therefore, it can be applied to any distri-
bution if the expected weight and standard deviation are determined.

The standard Chebyshev inequality is two-sided and provides tails for the upper
and lower bounds [CB02]. Cantelli’s inequality, a one-sided Chebyshev inequality, is
used in this thesis because we would like to investigate the upper-bound violation of
the inequality constraint similar to the KP inequality constraint. For brevity, we refer
to the one-sided Chebyshev inequality as Chebyshev’s inequality in this thesis.

Theorem 1 (One-sided Chebyshev inequality). Let X be an independent random
variable, and let E(X) denote the expected weight of X. Further, let σ2

X be the variance
of X. Then for any λ ∈ R+, we have

Pr [(X − E(X)) ≥ λ] ≤
σ2
X

σ2
X + λ2

.

Compared to Chebyshev’s inequality, Chernoff bound provides a sharper tail with
an exponential decay behaviour. In order to use Chernoff bound, the random vari-
able must be a summation of independent random variables. Chernoff bound seeks
a positive real number t in order to find the probability where the sum of indepen-
dent random variables exceeds a particular threshold [MR95]. Therefore, Chernoff
bound for an independent variable X can be given as follows based on Theorem 2.3
in [McD98].

Theorem 2. Let X =
∑n

i=1Xi be the sum of independent random variables Xi ∈ [0, 1]
chosen uniformly at random, and let E(X) be the expected weight of X. For any t > 0,
we have

Pr[X ≥ (1 + t)E(X)] ≤ exp

(
− t2

2 + 2
3 t
E(X)

)
.

PrChebyshev ≡ Pr [W (x) ≥ C] ≤ δ2
∑n

i=1 xi

δ2
∑n

i=1 xi+3(C−E(W (x)))2
, (2.2)

PrChernoff ≡ Pr[W (x) ≥ C]

≤ exp

(
− 3(C−E(W (x)))2

4δ(3δ
∑n

i=1 xi+C−E(W (x)))

)
.

(2.3)

2.4 Truss Optimisation Problem

Designing and developing structures to maximise profits from available resources has
attracted much interest among scholars and has become a challenging and critical
research topic over the last decades.

Trusses are structural frameworks consisting of truss members (bars) that carry
only forces to their end nodes, and these bars can be made of steel, wood, or concrete.
Trusses are commonly used to support roofs, bridges, and towers. Truss optimisation
has been an active research area for decades. Due to its nature, it is a challenging
problem and can provide a preliminary platform for evaluating methods for more com-
plex design optimisation problems. The optimisation of trusses represents a complex
and non-linear problem subject to constraints aimed at building a stable and practical
truss. Truss optimisation problems are subject to multiple constraints such as stability,
failure criteria, practice design codes, and manufacturing specifications. Conventional
optimisation methods showed limited efficiency in solving the problem [DG01].

Truss optimisation problems can be classified into three categories: topology, size
and shape optimisation. In topology optimisation, we aim to identify which truss

12 Chapter 2. Combinatorial Problems and Stockpile Recovery

bars are redundant. In size optimisation, we search for the optimal size of truss bars
used in trusses determined by their cross-sectional area, and in shape optimisation, we
determine the optimum geometric coordinates of truss nodes in the design domain.
Generally, the main objective function for truss optimisation is the weight of the
structure, which is the sum of truss bar weights, where the weight of each included
member depends on its length (determined by shape optimisation) and the cross-
section area (determined by size optimisation). Minimising the mass of the truss is
a preferred objective function for designers because the optimal design can reduce
the design costs because of the lower material usage and easier transportation while
simplifying the construction process.

Several numerical methods have been applied to different truss optimisation prob-
lems for decades. Conventional methods such as gradient-based showed limited effi-
ciency in dealing with structural constraints and handling discreteness and discontinu-
ities in truss optimisation problems, which led to trapping in local optima [DG01]. The
inadequacy of classical optimisation methods led to the development of population-
based algorithms and metaheuristics in truss optimisation [KAD05]. Various EAs
have been used and developed for truss optimisation: Genetic algorithm [RK92;
WC95; Zha+05], Differential evolution [Ho-+16], PSO [LHL09], Genetic Program-
ming [Fen+14; Kha+20] and other metaheuristic algorithms [HE02; Che16; Lee+05;
KT09; PB18; DLU18; DLU19; AD16].

There are two main approaches for truss optimisation in the literature with re-
spect to EAs and metaheuristics: single-stage and two-stage designs. The two-stage
methods assume that topology and size design variables are linearly separable, and
initially find optimal topology considering fixed equal size for all active bars. Next,
it determines the optimal sizing for the obtained topology. This naive assumption of
being linearly separable could lead to missing out on good solutions and may result
in infeasible solutions with respect to real practice, and this is a limitation of the
two-stage method [DG01]. Single-stage approaches, on the other hand, take topology,
size, and shape optimisation into account simultaneously, thus inevitably ignoring the
interactions that may exist among different variables for different truss optimisation
categories.

Therefore, modelling the interaction among different aspects of the truss optimi-
sation problem is essential. Bilevel optimisation can tackle this main issue of the
previous two approaches to deal with truss optimisation problems. In the bilevel for-
mulation, the upper level optimisation problem determines the truss configuration,
such as topology, where the lower level optimises bars’ sizing and shape. Optimisa-
tion of the topology of trusses is a combinatorial and multi-modal problem that we
consider to be the upper level of bilevel optimisation, while the lower level involves
optimisation of the size and shape of the truss in the lower level.

Problem Statement

Truss optimisation problems are subject to structural constraints such as stability,
failure criteria and design codes by practice and manufacturing specifications.

The ground structure method is a prominent approach to truss optimisation. It
gives excessive potential connections between the nodes and the preliminary positions
of the nodes in the design space [Top83]. Achieving an overall minimum weight of
a truss is the most common objective in truss optimisation problems based on the
structure of the ground. Light weight beams can save manufacturing resources and
related costs, and in aerospace applications, lightweight structures can reduce the fuel
burn rate [BKM17].

2.5. Multi-objective Optimisation Problems 13

The constraints in truss optimisation can conflict with the objectives, making the
problem more challenging. For example, lighter trusses can increase and increase the
instability of the trusses and lead to failure. Trusses can also be subject to independent
multiple external load cases in practice where the optimal design should perform well
for all cases.

Find A, ξ

Minimise W (A, ξ) =
∑m̂

i=1 ρiliAi

subject to G1 : Truss contains all the necessary nodes,
G2 : Truss is externally stable,
G3 : σi(A, ξ) ≤ σmax

i , ∀i ∈ {1, 2, .., m̂}
G4 : δk(A, ξ) ≤ δmax

k , ∀k ∈ {1, 2, .., n}
G5 : Amin ≤ Ai ≤ Amax, ∀i ∈ {1, 2, .., m̂}
G6 : ξmin ≤ ξk ≤ ξmax, ∀k ∈ {1, 2, .., n}

where W (A, ξ) denotes the weight of the truss, A and ξ show the cross-sectional
area of the truss bars and the nodal coordinates of nodes, respectively. m̂ and n
denote the set of bars and nodal coordinates available in the design space. ρi, li show
the density of the material used for the ith bar and the length of the bar in the design
space with respect to the nodal coordinates of the bar’s joint. Note that if the problem
excludes shape optimisation, then the length of bars is fixed due to no change in the
position of nodes in the design space.

The ground structure of the problem determines the necessary nodes, which in-
clude the nodes that carry a load or are fixed to the ground (or rolling). Constraint
G1 enforces that all necessary nodes should be present in a feasible design. G2 is to
ensure kinematic stability of the truss, which checks the positive definiteness of the
stiffness matrix of truss design. G3 and G4 ensure that the stress in bars (σi) and the
displacement of nodes (δj) due to loading does not exceed the maximum allowable
threshold as σmax and δmax, respectively. Constraints G5 and G6 ensure that the
value of cross-section area and nodal coordinates remain within the allowable limits.

2.5 Multi-Objective Optimisation Problems

Many real-world applications require optimising multiple objective functions that we
refer to as multi-objective optimisation problems (MOOPs). A general MOOP aims
to find a vector of decision variables (x) to provide an optimal solution to all objective
functions (fm(x)). The following equation defines the general form of a MOOP.

min fm(x) m = 1, 2, . . . ,M

Subject to gj(x) ≤ 0 j = 1, 2, . . . , J

Subject to hk(x) = 0 k = 1, 2, . . . ,K

The quality of a single-objective optimisation solution can be easily assessed by
comparing its objective function values with those of other solutions. However, in
MOOPs, one solution may be better for one objective but worse for another. A set
of solutions is a typical answer to a MOOP where the set defines the best trade-offs
between competing objectives.

We define dominance to determine the goodness of a solution as follows for a
minimisation problem. Solution x dominates y (x ⪰ y) if solution x is no worse than
y in all objectives, and solution x is strictly better than y in at least one objective.

14 Chapter 2. Combinatorial Problems and Stockpile Recovery

Therefore y is dominated by x. Given a set of solutions, the non-dominated set of
solutions contains all the solutions that can not be dominated by any member in the
non-dominated set.

Pareto-optimal set defines the set of non-dominated solutions of the entire feasible
decision space, and mapping all solutions of the Pareto optimal set from the feasible
decision space to the feasible objective space defines the boundary as Pareto-optimal
front. So, MOOP aims to find diverse solutions as close as possible to the Pareto
optimal front.

The weighted sum method is a classic approach to MOOP where the set of objec-
tives is scalarised into a single objective by summing each objective multiplied by a
pre-defined weight where the weight is chosen with respect to the relative importance
of the objective. It is a simple method, but the main disadvantage lies in setting
the weights. Another limitation is that the weighted sum method cannot find a real
Pareto-optimal front for non-convex problems because the weighted sum method can-
not find a non-dominated set of solutions and varying the weights does not necessarily
result in reaching the representation of the Pareto front.

min F (X) =
∑M

m=1wmfm(x), m = 1, 2, . . . ,M

Subject to gj(x) ≤ 0 j = 1, 2, . . . , J

Subject to hk(x) = 0 k = 1, 2, . . . ,K

Another common method is the ϵ−Constraint method, which maintains one of
the objectives and converts the remaining objectives into constraints with an upper
bound user-specific threshold.

This approach can be applied to the case of convex and non-convex problems, but
the value for ϵ should be chosen carefully to be within the minimum or maximum
ranges of the individual objective functions.

min fu(X)

Subject to fm(x) ≤ ϵm m = 1, 2, . . . ,M ∧m ̸= u

Subject to gj(x) ≤ 0 j = 1, 2, . . . , J

Subject to hk(x) = 0 k = 1, 2, . . . ,K

In addition to solving problems with conflicting objectives, several studies have
indicated that transforming a single-objective optimisation problem into a multi-
objective optimisation problem may lead to obtaining better solutions. This transfor-
mation leads to obtaining a set of non-dominated solutions instead of a single solution.
Therefore, each individual in the Pareto front can contain useful information that can
improve the performance of the algorithm to explore the search space [NW06; QYZ15;
Qia+17]

2.6 Stockpile Recovery Problem

The supply chain connects a manufacturer with the resources needed to produce a
product. Human resources, infrastructures, and related data are some of these re-
sources. In supply chain management, the optimal process steps should be considered
in order to produce a product with a lower cost and higher quality. This can be
achieved through scheduling optimisation.

In recent decades, optimal planning and scheduling have attracted numerous re-
searchers. In order to maximise the benefits of resources, the manufacturer must
develop a schedule that reduces costs and increases profits. Real-world scheduling

2.6. Stockpile Recovery Problem 15

problems, such as those in the mining industry, are complex. An example of mining
would be to dig blocks, extract valuable material (ore), manufacture it and then sell
it for profit [Sam+17]. The huge haul trucks transport the ore from the mine develop-
ment area to the Run-of-Mine (ROM) stockpiles for temporary storage, or the ore is
sent directly to the crushers for processing. ROM stockyards are the place where min-
erals are deposited, and a stockyard consists of several stockpiles of different materials
with different characteristics. ROM stockpiles are common in copper production and
dry bulk terminals in iron and coal production.

Depending on the customer’s requests, a selective addition of ore from stockyards
should be selected at the required tonnage. In the stockyard, stackers and reclaimers
are the machines that load and unload the ore in the stockyard, respectively. This
selection process is a complex task subject to multiple operational constraints, such
as when undesirable mineral properties should not exceed certain limits in a request.
The stockpile schedulers select a blend of the material in ROM stockpiles to be sent
to the crushers for processing. We refer to the selected minerals as delivery and
the operation of taking material from the stockyard as stockpile recovery. Quality
control of deliveries is a major concern, as higher-grade ore is frequently blended with
lower-grade ore to guarantee that the delivery matches the customer’s mineral needs.
These deliveries should meet the required lower and upper bound target quality on
the chemical components and meeting the required tonnage. Therefore, this selection
is difficult due to the complexity of the ROM stockyard deposits, such as various
irregularities in minerals.

Stockpile schedulers aim to figure out how to plan stockpile recovery to keep
upcoming deliveries qualities consistent in terms of economic minerals, meeting clients’
requirements and lowering operation costs. In practice, human specialists plan the
stockyard recovery using the rules of thumb based on available data from laboratory
samples and a rough estimate of the average grade of ore in the stockpile. However,
this is an error-prone decision-making process with insufficient decision support due
to the technical challenges that make it difficult to account for planning a long-term
stockpile recovery. For example, a rule of thumb for recovery could be that the good
quality ore should be mixed with some poor quality ore, as it helps meet the target
concentrations as closely as possible. However, human planning is very challenging
because there exist complexities in the stockyard quality models, such as multiple
operational constraints to schedule how the stockpiles should be reclaimed. Human
planning might lead to early exhausting of the available good material in the stockyard
and in an unexpected loss. Furthermore, human planning can result in limited decision
support and ability to consider the upcoming blends and requests.

Stockpile recovery is challenging due to technical restrictions, including chemical
concentrations and operational constraints. Target quality specifications should be
met in stockpile recovery. These specifications can be typical chemical concentrations
and particle size distributions. Size limits avoid overwhelming crushing equipment
with excessive material that is hard to crush. Preserving the chemical concentrations
of the target quality is essential because the provider aims to deliver material con-
sistently close to the target grade considering the contaminants that can lead to a
penalty fee. Hence, these specifications must not exceed the limit bounds; or other-
wise, it incurs a financial penalty for the provider. Another essential factor for the
provider is the efficiency of performing reclamation operations to increase through-
put and maximise profitability. Recovery operation by machines and their movement
on the site can be expensive with respect to the operational cost. It is desirable for
the stockpile schedulers to meet the target quality and reduce the operating costs to
maximise profit.

16 Chapter 2. Combinatorial Problems and Stockpile Recovery

Therefore, optimal planning of the reclaiming and stacking sequences in practice
can be highly valuable in reducing variability in decision-making and operation costs.
A poor stockpile recovery plan can have serious consequences. Substantial penalty
fees, a lack of consistency in decision-making and operations, increasing operating
costs, unanticipated losses in practice, and perturbations in the assumed profit can
all be consequences. Stockpiles are critical components in mining supply chains since
they potentially increase the net present value by maintaining a mining buffer.

Reclaimer scheduling in dry bulk terminals has been well explored [Ang+16;
UO19], where they are mainly a variation of the parallel machine scheduling problem.
However, the main shortcoming in these studies is that they adopt a supply chain
model that considers the stockpiles as a whole. However, different areas in a stockpile
can have varying mineral compositions in practice. Stockpile recovery optimisation
considering cuts in the stockpiles has been studied in [LM11; LM10]. Their model
considers the minimisation of the movement by a bucket wheel reclaimer machine.
For this purpose, they calculated the movement by Euclidean distance and applied
mixed integer programming for a small scale of the problem considering two requests
and two stockpiles in a single period.

In our study, we show how previous studies are limited for a real-world application.
To simulate the stockyard, we use the information provided by our industrial partner.
They use a stockyard management software that tracks machinery using various data
feeds such as GPS location as well as using a material flow modelling to create a
high-resolution 3D model of the stockyard. Their software can estimate the mineral
composition estimate for different parts of a stockpile which we refer to as cuts. Cuts
are stacked portions of stockpiled material that represent different grades of mineral
resources. Cuts vary in chemical composition and in tonnage. The software can
simulate many reclaim operations in advance in order to provide the data and scenarios
for optimisation.

Finding feasible scheduling solutions is also limited by precedence constraints.
It is not possible to reclaim a lower level cut in a discretised stockyard before the
corresponding cut above it has already been reclaimed. The dependency table captures
the precedence constraints in the stockyard considering the cuts. These precedence
constraints indicate that some cuts are impossible to be accessed before another cut
as their precedence is reclaimed.

Stockyard recoveries include moving machines from one point to another in a
stockyard and reclaiming material at the destination. Depending on the length of the
travel and the size of the cut, the travel time will vary with respect to the duration
of machine moving and reclaiming the destination cut, respectively. Our industry
partner simulator calculates the recovery time.

All possible moves can be pre-calculated and assigned in a full square matrix,
namely a time matrix where each element indicates the recovery time of an operation
from one cut to another in the stockyard. It should be noted that if a reclaimer oper-
ation takes more time, it is a more expensive operation with respect to the operation
costs.

There is currently a lack in the literature for dealing with stockpiles in realistic
scenarios. When multiple reclaimers are present, the reclamation direction can shift,
different types of material must be delivered, and the stockpile manager should deal
with longer-term delivery plans. We investigate the stockpile recovery problem for
single machine scheduling and multi-scheduling machine settings in Chapters 6 and 7,
respectively. We consider this real-world problem as a combinatorial scheduling prob-
lem, and we introduce a lexicographic objective function where the primary objective
for the stockyard manager is to avoid paying financial penalty fees with respect to the

2.7. Conclusions 17

quality objectives of deliveries. We aim to develop an effective schedule for reclaimers
considering quality objectives and avoiding the penalty fees.

Precedence relationships between cuts limit the search space by restricting how
cuts can be accessed regarding their position in the stockyard. To guarantee that the
precedence restrictions are met in a final solution, we must ensure that every schedule
segment is valid. Therefore we use solution construction heuristic approaches that
can construct a solution step by step. We also need a method that allows us to deal
with real-world problems that address different objective functions and constraints
and effectively incorporate additional technological limitations based on end-user re-
quirements for future additions.

2.7 Conclusions

In this chapter, we briefly introduced the combinatorial optimisation problems used
in this thesis. We presented the formal definition of the chance-constrained knapsack
problem where in Chapter 4, we add the dynamic component to this problem to deal
with it in a holistic approach. The next step was to state the problem and review the
literature on the truss optimisation problem. In Section 5, we develop exact and ran-
domised methods to analyse the topology optimisation of trusses. We then explained
a real-world issue related to mining scheduling in the mining industry. In Chapter 6,
we investigate the stockpile recovery problem using a single reclaimer subject to basic
assumptions and in Section 7, we extend our study by relaxing these assumptions and
considering a more-realistic setting to schedule using multiple reclaimers.

19

Chapter 3

Deterministic and Randomised
Methods for Optimisation
Problems

3.1 Introduction

Algorithms for optimisation fall into two broad categories. They are deterministic
and randomised algorithms. The deterministic algorithms always produce the same
results given a particular input using the same computation steps. On the other hand,
randomised algorithms make random choices while performing the computation steps
to produce a result. So, given a particular input, the behaviour of algorithm can be
different in multiple executions.

For simple problems, deterministic algorithms can find a solution quickly and
correctly. However, difficult problems can take a long time to solve, or high-quality
solutions may not be found in a reasonable time frame. Randomised algorithms can
thus help solve problems by using random numbers. NP-hard problems are intractable
optimisation problems. In other words, a deterministic Turing machine cannot solve
any of the problems’ worst cases in polynomial time [Sip97].

Despite their intractability, there are deterministic approaches like dynamic pro-
gramming, constraint programming, and mathematical programming [Pin16]. For
instance, we can solve the knapsack problem (see Section 2.2) using dynamic pro-
gramming in pseudo-polynomial time, which suggests the knapsack problem consists
of many sub-problems that contain duplicate calculations. The main limitations of
deterministic approaches are the size and computational cost of the problems. Thus,
cutting-plane methods are used in mathematical programming to reduce problem
size. [DFJ54].

As an alternative, randomised search algorithms can tackle these limitations to
solve NP-hard problems by employing randomness in their iterative search procedure.
The global optimality of solutions is not guaranteed, but they can find a good solution
in reasonable computation times for difficult problems. Bio-inspired algorithms belong
to this group, where they use computing methods inspired by nature. Bio-inspired
methods have been successfully applied in solving combinatorial optimisation prob-
lems [NW10; Pol+14; NW06].

In this chapter, we discuss the deterministic and randomised approaches used in
this thesis. Dynamic programming is presented as an efficient deterministic approach
to the knapsack problem. Iterated local search (ILS) is a tool to assist and improve
the randomised algorithm search, particularly ACO. Following that, we present greedy
algorithms, which help us understand combinatorial problems and construct a feasible

20 Chapter 3. Deterministic and Randomised Methods for Optimisation Problems

Algorithm 3.1: sub-problem procedure of dynamic programming procedure
for binary knapsack problem
1 foreach subset K ⊆ I do
2 if the profit of K is the greatest so far and the weight of K is smaller or

equal to C then
3 store K

4 return the best K

solution step by step. We then discuss randomised algorithms used in this thesis, which
are single and bi-objective EAs, as well as ACO and PSO.

3.2 Deterministic Approaches

In this section, we describe the three exact approaches used in this thesis.

3.2.1 Dynamic Programming

Dynamic programming is suited to problems that can be formulated into several sub-
problems; therefore, it can employ a divide-and-conquer approach to repeatedly solve
the duplicate sub-problems. Recall the knapsack problem (KP) from Section 2.2, the
basic exhaustive solution for KP is to try all combinations of the item set to choose
the one with the highest profit subject to the knapsack bound. The algorithm must
form a decision tree to try all the combinations at each step that it needs to decide
whether to include or exclude an item to make a decision in O(2n) where n refers to
the number of items. This is an exponential function and intractable.

Polynomial-time algorithms are the class of algorithms whose order-of-magnitude
time performance is bounded from above by a polynomial function of n, where n refers
to the size of the input. While exponential-time algorithms are bounded from below
and above by an exponential function of n. Polynomial algorithms are known as good
algorithms as they provide an efficient surrogate and computation time and have been
identified as a desirable feature for good algorithms [Sip92].

Turning KP problem into sub-problems is dependent on how many items are being
considered and how much of the remaining weight can be stored; therefore, the storing
table is two-dimensional. Considering an item set I with capacity C, we can define
the division of the problem into sub-problems (see Algorithm 3.1). Therefore we can
keep the intermediate results in a two-dimensional table P where each element of the
table denoted by Pi,j represents the highest knapsack profit for capacity j considering
only the first i items.

The recursive step includes that we calculate the elements of the table in a bottom-
up manner where wi and pi show the weight and profit of each item, respectively.
Therefore for each item i, and capacity j, if adding the item does not exceed the
capacity, we either include or exclude the item. If we exclude, we take the profit
computed from the sub-problem excluding this item as Pi−1,j . Otherwise, if we include
the item, we need to add pi in addition to all the profits from the remaining items as
pi + Pi−1,j−wi . Therefore the maximum profit is calculated by including or excluding
this item. We calculate the maximum profit for the first i items with capacity j as

3.2. Deterministic approaches 21

Algorithm 3.2: Dynamic programming for binary knapsack problem
1 foreach j = 0 to C do
2 P0,j=0

3 foreach i = 1 to n do
4 foreach j = 0 to C do
5 if j ≥ wi then
6 Pi,j = max(Pi−1,j , pi + Pi−1,j−wi)

7 else
8 Pi,j = Pi−1,j

9 return Pn,C

follows in deciding the maximal gain that can be obtained.

Pi,j = max

{
Pi−1,j−wi + pi item i in the subset
Pi−1,j otherwise.

Algorithm 3.2 shows the dynamic programming procedure for the knapsack problem
(defined in Section 2.2) The maximum profit could be exponential in size n, but this
approach is a fully polynomial time approximation (FPTAS) for the binary knapsack
problems [KPP04]. FPTAS is a type of algorithm that can approximate the solution
to a problem within a given error margin and run time, which is polynomial in the
size of the input. An example of an FPTAS is the Knapsack problem, which is an
optimisation problem where the goal is to fill a knapsack with items of different weights
and values in such a way that the total value is maximised, subject to a constraint on
the total weight. An FPTAS for the Knapsack problem can be used to approximate
the optimal solution to the problem for large inputs in polynomial time. Research has
been conducted on finding faster FPTASs for binary knapsacks for a long-time and is
summarised in [Jin19].

3.2.2 Iterated Local Search

Local search is a heuristic used to solve combinatorial problems. Local search is itera-
tive and starts with a feasible initial solution (x). It considers the local neighbourhood
N(x) and attempts to find a better quality solution (x∗) which is a perturbation of
a previous solution. When the neighbourhood is small, there could be a rapid con-
vergence to a local optimal solution, while when the neighbourhood is large, it is
possible to choose a new solution that is very different from the current one. There-
fore, the local search involves changing a solution locally to move it in the search space
and evaluating different solutions until the optimal solution is found or the stopping
criteria are met.

In this thesis, we employ the Iterated Local Search (ILS) [LMS03] which has
been successfully applied to solve scheduling problems [DS16]. ILS can escape from
a local minimum, and perturbations are a key part of an ILS framework because
they provide the opportunity to jump to a new region in the search space. The
distance between this new region and the current local optimum will depend on the
type of perturbation involved. In this thesis, we consider an exhaustive ILS and we
try all possible combinations according to the neighbourhood definition. We consider
three well-known operators for permutation search problems namely swap, insert and

22 Chapter 3. Deterministic and Randomised Methods for Optimisation Problems

Algorithm 3.3: Iterated local search
1 x0 = GenerateInitialSolution
2 x∗ = LocalSearch(x0)
3 while StopCriteria ̸= True do
4 x′ = Perturb(x∗)
5 x∗

′
= LocalSearch(x′)

6 x∗ = Accept(x∗′)

7 return x∗

inverse operators. Considering one solution for a combinatorial problem as x, these
operators get two components in x and perform a local search on the components’
position. The swap operator exchanges two components of the solution; the insert
operator shifts the second component ahead of the first component. The inverse
operator arranges all components between and including the two components in the
opposite order.

Algorithm 3.3 shows the procedure for ILS, where GenerateInitialSolution refers
to generating a feasible initial solution for ILS. The common way to obtain the initial
solution is to use the output of a randomised algorithm, such as ACO. LocalSearch,
Perturb and Accept are three key components of ILS algorithm. These procedures
must complement each other in order to achieve a good trade-off between intensifi-
cation and diversification [HS05]. Perturb is the process of making changes to the
current candidate solution without immediately undoing them by subsequent local
search phases. Accept determines between two solutions (x′ and x∗′) which one is
better to be accepted. Keeping the better solution leads to iterative improvement
in the local search. However, if ILS chooses the perturbed solution regardless of the
quality, it leads to a random walk in the local space. The LocalSearch determines the
algorithm to be used for local search where it can be ILS itself or other local search
algorithms.

3.2.3 Greedy Algorithms

Greedy algorithms (GA) have been used in solving many optimisation problems. They
are fast and easy to interpret. For example, in the travelling salesperson problem
(TSP), given a graph of vertices and weight function (according to the length of
route), the objective is to construct a tour (a route that travels along each vertex
exactly once) of minimum total weight. The most straightforward algorithm initiates
with a vertex and selects one of its nearest neighbours (irrespective of the quality)
as the next destination. The algorithm repeats this procedure till all vertices are
visited. The more efficient greedy algorithm for TSP with respect to runtime is when
the algorithm constructs a tour step by step by selecting the edge with the shortest
length. The algorithm terminates when a Hamiltonian cycle has been found. The
greedy algorithm for the travelling salesperson problem could potentially return bad
solutions.

Using GAs, a complete solution can be constructed step by step. GA picks the
successor component that is most likely to bring the greatest value at each time step
when choosing which components to include in the solution. The procedure goes on for
the next components until a full solution is generated. Deterministic greedy chooses
the successor component with the highest greediness. As a result, at each time step,
the component with the highest reward is selected. However, it has been shown that

3.3. Randomised algorithms 23

Algorithm 3.4: Generic Deterministic Greedy Algorithm
1 X ← ∅
2 Evaluate the incremental cost of each component e ∈ E
3 while X is not a complete feasible solution do
4 Choose a successor component x∗ ∈ E with the highest profit
5 X ← X ∪ x∗

6 Update the incremental cost of each component e ∈ E \X
7 return X

adding randomness into the selection procedure can result in finding a better solution
[Gao+18]. Algorithm 3.4 shows the generic deterministic greedy algorithm procedure.
In deterministic GA, the candidate set is initially empty. The next step is to evaluate
the cost of adding each component that is available. It selects the component with
the highest reward out of the candidates. It then updates the partial cost for the
remaining components. This procedure repeats till the solution is completed.

3.3 Randomised Algorithms

This thesis defines randomised search algorithms as those that utilise either randomi-
sation, probabilistic operators, or a combination of both. In this section, we introduce
a couple of EC methods.

EAs are randomised search algorithms that use mutation, recombination and selec-
tion, which are the mechanisms of biological evolution. An individual in a population
is the candidate solution to the optimisation problem. In EAs, individuals with high
fitness values are considered to be potential parents of the next generation based on
the objective function. Eventually, the population evolves after repeated application
of the operators above.

Note that evolutionary computation is a subfield of artificial intelligence that fo-
cuses on the simulation of natural evolution to solve computational problems. It
includes several nature-inspired algorithms such as genetic algorithms, evolutionary
strategies, and genetic programming, among others.

Swarm Intelligence (SI) refers to the artificial intelligence techniques of social in-
sects, animals, and human societies [Li+19]. The agents form an SI population, which
communicates and coordinates with each other through simple interactions, such as
exchanging information or reacting to the actions of their neighbours. Through these
interactions, the agents can collectively solve problems and make decisions that are
beyond the capabilities of any individual agent. Biological examples can include ants
that demonstrate path-finding behaviours when they go out to find food and birds
that fly in flocks to improve their survival chance when they travel. Swarm intelligence
has been applied widely to continuous and combinatorial optimisation problems. In
this thesis, we use two algorithms inspired by the phenomena observed in nature as
PSO and ACO algorithms, respectively.

3.3.1 Evolutionary Algorithms

In evolutionary algorithms (EAs), survival of the fittest practices are used to solve
a problem. EAs are inspired by biological operators such as reproduction, mutation,
recombination and selection. The basic principle behind EA is as follows. Given a
population of candidate solutions and an evaluation function that determines their

24 Chapter 3. Deterministic and Randomised Methods for Optimisation Problems

qualities, the natural selection driver of EAs leads to producing new offspring, and
as a result, the fitness of the entire population is improved. EAs have been applied
successfully to provide good solutions (approximation) in various domains such as
engineering, science, arts, and economics.

A candidate solution to the optimisation problem is referred to as an individual in
the population and is stored in a certain data structure. The qualitative evaluation
measurement function is the fitness function. In each iteration, variation operators
generate new individuals to form an offspring pool. The selection mechanism deter-
mines what individuals (out of the population and offspring pool) are preserved in the
next iteration.

The general framework for EA methods can be defined as follows.

• Search Space: This is the set of all possible solutions to the optimization prob-
lem. Each point in the search space corresponds to a possible solution.

• Fitness Function: This is a function that assigns a value to each point in the
search space, indicating how good that solution is. The fitness function is
problem-specific and is used to evaluate the quality of solutions.

• Population: A population is a set of solutions, often represented as a set of
points in the search space. These solutions are generated and updated over
time by the algorithm to converge to an optimal solution.

• Initialisation: This step involves generating an initial population of solutions.

• Selection for reproduction: This step involves selecting a subset of solutions
from the current population that will be used to generate the next population.

• Generation of Offspring: This step involves generating new solutions, called off-
spring, from the selected solutions. This can be done through various techniques
such as crossover, mutation, or heuristics, depending on the algorithm.

• Evaluation: This step involves evaluating the quality of the new offspring solu-
tions using the fitness function.

• Selection of Survivors: This step involves selecting a subset of solutions from
the current population and the new offspring that will be used to form the next
population. This can be done through various environmental selection methods
such as elitist or truncation selection.

• Termination: This step is where the algorithm stops. The termination can be
met by reaching a stopping condition such as reaching a maximum number of
generations or reaching a solution that meets a certain fitness threshold.

In this section, we explain (1+1)-EA and GSEMO as baseline EAs used in combi-
natorial optimisation problems, including a well-known multi-objective EA known as
NSGA-II.

(1+1)-EA

(1+1)-EA is a baseline single objective EA including only one individual in its popu-
lation. This individual undergoes mutation in each iteration and the mutated solution
will replace the current solution if it is determined to be at least as good or better
according to the fitness function. Considering a binary representation of the solution,
the mutation operator flips each part of the individual with a small probability with
respect to the length of the individual. Algorithm 3.5 shows (1+1)-EA procedure.

3.3. Randomised algorithms 25

Algorithm 3.5: (1+1)-EA
1 generate x ∈ {0, 1}n uniformly at random
2 while termination criterion not satisfied do
3 y ← create an offspring by flipping each bit of x independently with the

probability of 1
n

4 if f(1+1)(y) ⪰ f(1+1)(x) then
5 x← y

6 return x

Algorithm 3.6: G-SEMO
1 generate x ∈ {0, 1}n uniformly at random
2 S ← {x} while termination criterion not satisfied do
3 y ← create an offspring by flipping each bit of x independently with the

probability of 1
n

4 if ∄w ∈ S : w ⪰ y then
5 S ← (S ∪ {y}) \ {z ∈ S|y ⪰GSEMO z}

6 return x

3.3.2 Multi-Objective Evolutionary Algorithms (MOEAs)

Multi-objective EAs (MOEA) are widely accepted and applied to real-world MOOPs.
MOEAs deal with several (conflicting) objectives and provide a set of solutions [Deb01;
QYZ15; Qia+17]. Similar to the single-objective EAs, MOEAs contain a population
that evolve through generations using bio-inspired operators. But instead of finding
a single solution, their solution is the Pareto set containing a set of non-dominated
solutions. MOEAs can be elitist or non-elitist, where the latter does not use any
elite-preserving operator. However, elitist operators carry the elites of the population
to the next generation.

G-SEMO

The global simple evolutionary multi-objective algorithm (G-SEMO) [Gie03] is the
multi-objective form of (1+1)-EA that similarly has been comprised of a single indi-
vidual in the population and, it also opts for the same mutation operator as (1+1)-EA.
However, it incorporates non-dominance and Pareto concepts into the algorithm to
deal with multi-objective functions. Algorithm 3.6 shows its procedure.

NSGA-II

Non-dominated Sorting Genetic Algorithm II [Deb+02] is an elitist MOEA where the
EA used in the algorithm uses crossover and mutation [Mit98].

NSGA-II iteratively puts the non-dominated solutions in the population to dif-
ferent fronts with equal domination [ES15]. It also uses a crowding distance metric
defined for each individual where it is computed as the average side length of the
cuboid with respect to the nearest neighbours in the front of the solution. NSGA-II
choose parents for evolutionary operators using a modified tournament operator con-
sidering the front rank and crowding distance in order. NSGA-II operators enable

26 Chapter 3. Deterministic and Randomised Methods for Optimisation Problems

Algorithm 3.7: Non-dominated Sorting Genetic Algorithm II (NSGA-II)
1 t← 0 ▷ Generation counter
2 while StopCriteria ̸= True do
3 Pt ← Initial_Population() ▷ Generate random population with size

N
4 Qt ← Offspring_Population()
5 Rt ← Pt ∪Qt ▷ Generate the offspring population with size N
6 Compute the fronts ▷ Use fast non dominated sorting to divide Rt

into F1, F2, . . .

7 Find i∗ > 1 such that
∑i∗−1

i=1 |Fi| < N and
∑i∗

i=1 |Fi| ≥ N , or i∗ = 1 for
|F1| ≥ N

8 Calculate the crowding-distance() for each individual in F1, F2, . . . , Fi∗

9 Sort Rt based on Ranking and Crowding
10 Let F̃i∗ be the N −

∑i∗−1
i=0 |Fi| individuals in Fi∗ with largest crowding

distance, chosen at random in case of a tie Pt+1 =
(
∪i∗−1
i=1 Fi

)
∪ F̃i∗

it to find a set of solutions that are spread in the objective space and can provide
convergence near the Pareto-optimal front.

NSGA-II (see Algorithm 3.7) starts with a random population (P0) and divides
this population into fronts (F) where the fronts contain the non-dominated individuals
in the population. The individuals undergo evolutionary operators with respect to the
parent selection and produce offspring. Next, two populations of initial and offspring
are merged and divided into fronts, and their corresponding crowding distance of
solutions for fronts is computed. The crowding distance is calculated as the average
side length of the cuboid with respect to the nearest neighbours in the front of the
solution. NSGA-II selects the next population, starting from including the highest-
ranked front solutions to the inferior ones until it is full. We refer the reader to
[Deb+02] for details on the crowding distance and fast non-dominated sort operators.

3.3.3 Particle Swarm Optimisation

Particle swarm optimisation (PSO) [KE95] is a meta-heuristic technique inspired by
the social behaviour of birds and humans. Birds fly in flocks to find food sources
and avoid predators. In human society, people learn from each other and they share
knowledge from person to person to emerge a culture such as people in a living neigh-
bourhood can learn locally from each other and share insights, and in this group
learning, they can improve their social learning.

Each individual in PSO is a particle representing a potential solution in a popula-
tion referred to as swarm. Particles move in the problem space and take advantage of
the information they collect themselves and from their neighbours. Particles adjust
their position with a random perturbation considering the best position visited before,
and the best position found so far by their neighbours. With each iteration of the
PSO system, the swarm moves toward areas with high-quality solutions.

We define the adjustment of position of particles as follows. Each particle has
three vectors at the time (t) of evolution: position (z⃗t), velocity (v⃗t) and personal
best, where it keeps the best position it has been evolved to as (p⃗t). PSO updates
particle positions based on the updated velocity for each component of the particles.
c1 and c2 are cognitive and social factors that attract particles toward their personal

3.3. Randomised algorithms 27

Algorithm 3.8: Particle Swarm Optimisation (PSO)
1 t← 0
2 Initialise the position of particles (z⃗0)
3 Initialise the velocity of particles (v⃗0)
4 Calculate the quality of particles (f(z⃗0))
5 Set personal best of particles (p⃗0) and global best (p⃗g)
6 while StopCriteria ̸= True do
7 v⃗t+1 = ωv⃗t + c1r1 × (p⃗t − z⃗t) + c2r2 × (p⃗g − z⃗t) ▷ Update velocity of

particles
8 z⃗t+1 = z⃗t + v⃗t+1 ▷ Update position of particles
9 Update personal best of particles

10 Update global best
11 t← t+ 1

Algorithm 3.9: Ant Colony Optimisation
1 Initialise the ants and initial pheromone
2 repeat
3 foreach ant do
4 repeat
5 Choose one neighbour at each step probabilistically.
6 until solution is complete

7 foreach selected ant do
8 Perform local search ▷ Optional

9 Evaporate pheromones
10 Deposit pheromones
11 until termination criterion met

and global best. r1 and r2 are vectors with size of a particle containing random values
from a uniform distribution in the range [0, 1]. Algorithm 3.8 shows the procedure of
PSO.

3.3.4 Ant Colony Optimisation

Another bio-inspired method draws inspiration from ants. Ants in nature take a ran-
dom walk from their nest to locate a food source. On their way back to the nest,
ants leave a substance called pheromone. Other ants can detect it and follow the
favourable path for food. As more ants go along this path, the pheromone becomes
stronger and more ants follow the favourable path. However, some pheromone pro-
gressively evaporates over time, resulting in reducing the attractiveness capability of
unexplored routes.

Ant colony optimisation (ACO) [DS04] represents a mathematical platform em-
ploying artificial ants based on the foraging behaviour of ants. In nature, ants move
asynchronously and lay pheromone while moving; however, in ACO, ants move syn-
chronised and the lay pheromone after the trip. The pheromone value plays a key role
in balancing the selection pressure. We employ the well-known Max-Min Ant System
(MMAS) [SH00], which is one of many types of ACO in the literature. MMAS can
limit the range of pheromones not to exceed a value where the pheromone plays a key
role in the probabilistic selection at different steps of constructing a valid solution.

28 Chapter 3. Deterministic and Randomised Methods for Optimisation Problems

ACO has been successfully applied in combinatorial optimisation and open-pit mining
scheduling problem [SS15; NSW09; CW20].

Algorithm 3.9 shows the procedure of ACO. ACO sets the initial value for the
pheromone matrix (τ) for all edges in a combinatorial problem. Next, it generates
artificial ants for its colony in the first generation. Each ant performs a random
walk using the solution construction heuristic to generate a valid solution step by
step. Employing the following probabilistic selection strategy with the probability of
choosing the edge from i to j in a graph as follows.

p(ei,j |N) =
[τi,j]

α[η(ei,j)]
β∑

ek,l∈N [τk,l]α[η(ek,l)]β

where α and β are ACO parameters that regulate the influence of heuristic (η) and
pheromone information, respectively, the preceding equation implies that the selection
of the next component in a solution is both dependent on the quality of edges in
terms of the objective function and the pheromone information. N refers to the
available possible components to select in the neighbourhood. The pheromone values
get updated after all ants finalise their solution and a generation is completed.

Pheromone value plays an essential role in guiding ants to better solutions in
further generations of the colony because it represents that if an edge has more
pheromone, it means more ants have trespassed on that track which shows that the
track could be profitable. There also exists an evaporating factor (ρ) to reduce attrac-
tion on reinforced routes and improve the exploration ability of artificial ants. ACO
can integrate local search to improve the obtained solution more finely. ACO updates
the pheromone matrix with the following general update rule.

τi,j ← (1− ρ).τi,j +∆τi,j

where 0 < ρ ≤ 1 denotes the evaporation rate and ∆τi,j refers to the effect of the
selected ant to deposit pheromone which includes ei,j in its obtained solution.

3.4 Novelty Search

Novelty Search is a type of optimisation algorithm that is designed to discover and
explore new, unique solutions to a given problem, rather than simply finding a best
solution. It is based on the idea that innovation and creativity are important drivers
of progress and that finding novel solutions can be just as important as finding optimal
ones.

One of the key features of novelty search is that it does not rely on an explicit
objective function or fitness measure to evaluate the quality of a solution. Instead, it
uses a measure of novelty to identify solutions that are different from those that have
been previously encountered [LS11a; LS08]. This allows novelty search to explore the
search space more broadly and to discover solutions that may not be optimal according
to the traditional evaluation metric, but that are still valuable in some way.

Novelty Search has been applied to a wide range of problems, including machine
learning, evolutionary computation, robotics, and more. It has been shown to be
particularly effective at solving problems with high-dimensional search spaces, where
traditional optimization algorithms may struggle to find good solutions.

One of the main advantages of novelty search is that it can help to avoid the local
optima problem, where an optimization algorithm gets stuck in a suboptimal region
of the search space because it is unable to escape. By encouraging exploration of the

3.5. Conclusions 29

search space, novelty search can help to find globally optimal solutions rather than
being trapped in a local optima.

Novelty Search has proved its capability in solving optimization problems in differ-
ent contexts, as demonstrated by many studies in different contexts [LS11b]. despite
its success in these areas, the application of Novelty Search to global and constrained
optimization problems has been relatively limited. While there have been a few no-
table studies [Fis+19; Mar+19; LYT15] that have demonstrated the potential of Nov-
elty Search in these contexts, there is still a significant opportunity for further research
in this area.

Given the potential of Novelty Search to uncover solutions that traditional opti-
mization methods may not find, it is important to continue to explore its use in global
and constrained optimization problems. The optimization landscape in these contexts
is often much more complex and challenging than in simpler problems, and therefore
requires new approaches. By focusing on the application of Novelty Search to these
types of problems, this thesis aims to make valuable contributions to the field and help
to extend the boundaries of what is currently possible with this powerful algorithm.

Note that novelty search and quality-diversity search are both optimisation algo-
rithms that are used to find solutions to complex problems. They are similar in that
they both aim to find solutions that are novel or diverse, rather than simply optimis-
ing a single objective function. However, there are some key differences between the
two approaches. Novelty search focuses on exploring the search space to find novel
solutions, while quality-diversity search focuses on both exploring the search space
and exploiting the best solutions found so far. Quality-diversity search aims to find
a diverse set of high-quality solutions, while novelty search is primarily concerned
with finding solutions that are novel, regardless of their quality. However, the relative
performance of the two algorithms can depend on the specific problem being solved.

3.5 Conclusions

Throughout this chapter, we explained deterministic and randomised methods that we
use later. We discussed how dynamic programming could solve the knapsack problem
and how iterative local search could improve a solution iteratively. We presented the
greedy algorithm. We then discussed evolutionary computation, including single and
multi-objective evolutionary algorithms, particle swarm optimisation and ant colony
optimisation. PSO, ACO, and EA all operate within this general framework and are
used to search for an optimal solution in a given search space. However, the main
differences between these algorithms lie in the specific methods and techniques used
for selection, generation of offspring, and survival selection.

• EA uses genetic operations such as crossover and mutation to evolve the pop-
ulation over time. The selection of solutions is based on the fitness function,
and the offspring are generated by applying genetic operations to the selected
solutions. Survival selection is based on environmental selection methods such
as elitist or truncation selection.

• PSO uses a population of particles that move in the search space guided by their
own and their neighbours’ best positions. The selection of solutions is based on
the current position and velocity of the particles, and the offspring are generated
by updating the position and velocity of each particle. The survival selection is
based on the best position discovered so far by the swarm.

30 Chapter 3. Deterministic and Randomised Methods for Optimisation Problems

• ACO uses a population of ants that move to construct a solution through sam-
pling from a probability distribution. Ants use this distribution of probability to
make decisions about what components to take in the search space. The prob-
ability of this decision is influenced by factors such as the heuristic information
about the quality of the solution and the presence of pheromones deposited
by other ants. Best-obtained solutions are used to update the probabilities for
future exploration.

It’s important to note that these are just the basic descriptions of each algorithm,
the actual implementations could have variations and specific features that sets them
apart from others.

31

Chapter 4

Evolutionary Bi-objective
Optimisation for the Dynamic
Chance-Constrained Knapsack
Problem Based on Tail Bound
Objectives

Many real-world combinatorial optimisation problems involve stochastic as well as
dynamic components which are mostly treated in isolation. However, in order to solve
complex real-world problems, it is essential to treat stochastic and dynamic aspects
in a holistic approach and to understand their interactions. Dynamic components in
an optimisation problem may change the objective function, constraints or decision
variables over time. The challenge to tackle a dynamic optimisation problem (DOP)
is to track the moving optima when changes occur [NYB12]. Moreover, uncertainty is
pervasive in a real-world optimisation problem. The source of uncertainty may involve
the nature of data, measurement errors or lack of knowledge. Ignoring uncertainties in
solving a problem may lead to obtaining suboptimal or infeasible solutions in practice
[LL15].

In this chapter, we consider the chance-constrained knapsack problem (CCKP)
which is described in Section 2.3 with dynamically changing constraint to which we
refer to as dynamic chance-constrained knapsack problem (DCCKP). We also assume
that each item in the knapsack problem has an uncertain weight while the profits are
deterministic. For the dynamic component, we use the settings defined in [RNN18] and
we follow the approach and settings proposed in [Xie+19] which employs inequality
tails (see Section 2.3.1) to estimate the violation in probabilistic constraint.

Considering DCCKP, we aim to re-compute a solution of maximal profit after a
dynamic change occurs to the capacity constraint, while the total uncertain weight can
exceed the capacity with a small probability. We also take advantage of bi-objective
optimisation. However, we cannot directly apply the second objective used in previous
studies because they only considered either dynamic or stochastic aspect of the optimi-
sation problem in isolation for the second objective function. To tackle this issue, we
introduce an objective function which deals with the uncertainties and accommodate
the dynamic aspects of the problems. This objective evaluates the smallest knapsack
capacity bound for which a solution would not violate the chance constraint by mak-
ing use of tail inequalities such as Chebyshev’s inequality and Chernoff bounds to
approximate the probabilistic constraint violation. The introduced objective also can
keep a set of non-dominated solutions to be used for tracking the moving optimum.

For our investigation, we apply (1+1)-EA (see Algorithm 3.5), a modified variant

32 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

of GSEMO (see Algorithm 3.6) and NSGA-II (see Algorithm 3.7) to the problem where
the last two compute the trade-offs with respect to the profit and the newly introduced
objective for dealing with the chance constraints. We show that the bi-objective
EAs perform better than the single objective approaches. Introducing the additional
objective function to the problem helps the bi-objective optimisation algorithm to deal
with the constraint changes as it obtains the non dominated solutions with respect to
the objective functions.

This chapter is based on the work published in the European Conference on Arti-
ficial Intelligence 2020 [Ass+20]. We added more details into the partial offline error
calculation as well as adding more experiments considering bigger knapsack instances.
The rest of this chapter is organised as follows. In the next section, we define the DC-
CKP and how to assess the performance of the algorithms. Next, we introduce the
objective function for dealing with DCCKP and develop the bi-objective model. Sub-
sequently, we report on the behaviour of single objective and bi-objective baseline
EAs in solving DCCKP followed by some concluding remarks.

4.1 Dynamic Chance-Constrained Knapsack Problem

Recall the definition of chance-constrained knapsack problem in Section 2.3, we assume
that the weight of each item is chosen independently according to a given probability
distribution. We also consider that the knapsack capacity is dynamic and changes over
time every τ iterations and we call τ the frequency of changes, which denotes after
how many iterations a change occurs in the knapsack capacity with the magnitude
of changes as r according to some probability distributions. For example, when τ
is 1000 and r is 500, the knapsack capacity is changing every 1000 iterations with a
magnitude of change as 500.

We integrate the stochastic and dynamic components of the problem that we aim
to find a subset of items with stochastic weight such that the probability of exceeding
knapsack capacity is bound by α and the knapsack capacity changes over time. We
use the binary knapsack test problems introduced in [Pol+14] and later developed for
dynamic knapsack optimisation in [RNN18]. In the latter, they set the environment
to let the algorithms have τ iterations window to find the optimum for the capacity in
that moment and get prepared for the next change in the capacity. The combination
of low and high frequencies bring about different types of challenges for the algorithm
where with a high frequency gives less time for the algorithm to adapt to the changes
and if this time has been solely spent on one single solution (such as the solution
in (1+1)-EA) there could be higher improvement rather than using an EA with a
population.

Recall different types of knapsack problem described in Section 2.2, we consider
two types of uncorrelated and bounded strongly correlated test problems. The latter is
more difficult to solve because the profit correlates with the weight [Pol+14]. Note that
in our dynamic chance-constrained setting, for bounded strongly correlated instances,
we consider the correlation between the expected weight and the profit.

We present the dynamic parameters for our investigation as follows. We define
r which determines the magnitude of changes. We consider changes according to
the uniform distribution in [−r, r] where r ∈ {500, 2000} to consider the small and
large magnitude of changes in the knapsack constraint, respectively. We also set
τ ∈ {100, 1000} to observe fast and slow changes in the constraint, respectively. For
the stochastic parameters, we set the parameters according to [Xie+19]. Therefore
we set α ∈ {0.01, 0.001, 0.0001} to consider different values of restriction for the

4.2. Bi-objective Optimisation Model 33

probability of chance-constraint violation probability. These small values represent the
reliability in a design where there are 99%, 99.9%, and 99.99% reliability, respectively.
These metrics are designed to evaluate the likelihood of constraints being violated to
varying degrees. We also set δ ∈ {25, 50} to assign small and large uncertainty interval
in the weight of items with uniform distribution. To ensure that the weights of items
subject to uncertainty are positive, we also add a value of 100 to all the weights to
avoid negative values.

We use dynamic programming (see Algorithm 3.2) to find the exact optimal solu-
tion with maximal profit P (x∗) for the deterministic variant of the knapsack problem.
Therefore, we record P (x∗) for every dynamic capacity change for each knapsack
instances based on r and τ .

To evaluate the performance of our algorithms for DCCKP, we consider the offline
error which represents the distance between the algorithm’s best-obtained solution
in each iteration with respect to P (x∗). Let x be the best solution obtained by the
considered algorithm in iteration i. The offline error for iteration i is given as

ϕi =

P (x∗)− P (x) if Pr [W (x) ≥ C] ≤ α

(1 + penalty(x))P (x∗) otherwise.

It is important to note that the offline error calculation is viewed from the perspective
of an algorithm, where the inequality tail is integrated with an algorithm to determine
whether a solution is feasible or not. Furthermore, we can also use newly introduced
second objective for offline error calculation analogously. However, we define it based
on the chance-constrained probability because we are considering single-objective al-
gorithms in our comparisons.

In addition, we should take into account of the fact that the calculation of proba-
bilistic term (Pr [W (x) ≥ C]) can only be done if the total expected weight (E(W (x))
is less than the knapsack bound. For instances where the total expected weight exceeds
the knapsack bound, we use a corresponding penalty factor with is proportionate to
the degree of violation of feasibility.

We define the penalty as follows.

penalty =

Pr [W (x) ≥ C] if Pr [W (x) ≥ C] > α

1 + (E(W (x))− C) if C < E(W (x))

Every solution x not meeting the chance constraint receives a higher offline er-
ror than any solution meeting the chance constraint. The total offline error is the
summation of offline error at each iteration divided by the number of total iterations
(maxiter) as follows.

Φ =

∑maxiter
i=1 ϕi

maxiter
.

4.2 Bi-Objective Optimisation Model

It has been shown that transforming a single-objective optimisation problem into bi-
objective by adding a conflicting objective can lead to obtaining better solutions (see
Section 2.5). Therefore for DCCKP, we introduce an additional objective which esti-
mates the minimal capacity bound for a given stochastic solution that still meets the

34 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

chance constraint. This objective helps to cater for dynamic changes to the stochastic
problem.

We redefine DCCKP by introducing a new second objective function to transform
it into a bi-objective optimisation problem. Therefore, we introduce (C∗) as the
stochastic bound as our second objective function. This objective function evaluates
the smallest knapsack capacity for a given solution such that it satisfies the predefined
limit on the chance constraint. Therefore, the fitness f(x) of a solution x is given as

f(x) = (P (x), C∗(x))

where
C∗(x) = min {C | s.t. Pr[W (x) ≥ C] ≤ α}

is the smallest weight bound C such that the probability that the weight W (x) of x
is at least C is at most α. Using this objective allows to cater for dynamic changes of
the weight bound of our problem. In bi-objective optimisation of DCCKP, the goal is
to maximise P (x) and minimise C∗(x). Hence, we have

f(x′) ⪰ f(x) iff P (x′) ≥ P (x) ∧ C∗(x′) ≤ C∗(x)

for the dominance (see Section 2.5) relation of bi-objective optimisation for two solu-
tions namely x and x′.

Evaluating the chance constraint is computationally difficult [BGN09]. It has been
shown that even if random variables are from a Bernoulli distribution, calculating the
probability of violating the constraint exactly is #P-complete, see Theorem 2.1 in
[KRT00]. Because it is difficult to compute C∗ exactly, we make use of the tail in-
equalities described in the previous chapter to calculate the second objective function.
For Chebyshev’s inequality, the stochastic bound is given as follows.

Proposition 1 (Chebyshev Constraint Bound Calculation). Let E(W (x)) be the ex-
pected weight, σ2

W (x) be the variance of the weight of solution x and α be the probability

bound of the chance constraint. Then setting C∗
1 (x) = E(W (x))+σW (x)

√
1−α
α implies

Pr[W (x) ≥ C∗
1 (x)] ≤ α.

Proof. Using Chebyshev’s inequality (see Section 2.3), we have

Pr [W (x) ≥ E(W (x)) + λ] ≤
σ2
W (x)

σ2
W (x) + λ2

.

We set C∗
1 (x) = E(W (x)) + λ which implies

σ2
W (x)

σ2
W (x) + λ2

= α

Therefore we have
λ =

√
σ2
W (x)

(1−α)

α ,

=
σW (x)

√
α(1−α)

α ,

= σW (x)

√
(1−α)

α .

4.2. Bi-objective Optimisation Model 35

Hence, we have
Pr[W (x) ≥ C∗

1 (x)]

= Pr
[
W (x) ≥ E(W (x) + σW (x)

√
(1−α)

α

]
≤

σ2
W (x)

σ2
W (x)

+

(
σW (x)

√
(1−α)

α

)2

= α

which completes the proof.

We consider wi ∈ U [E(wi) − δ,E(wi) + δ] and
∑n

i=1 xi denotes the total number
of chosen items in a solution. We know for a uniform distribution that,

σW (x) = δ

√∑n
i=1 xi
3

.

We substitute λ as
λ = δ

√∑n
i=1 xi

3

√
(1−α)

α ,

=
δ
√

3α(1−α)
∑n

i=1 xi

3α .

then the stochastic bound based on Chebyshev’s inequality for uniform distribution
is given as follows. Therefore, we have

C∗
1 (x) = E(W (x)) +

δ
√

3α(1− α)
∑n

i=1 xi
3α

. (4.1)

Moreover, to derive the second objective function by making use of the Chernoff
bound, we have:

Proposition 2 (Chernoff Constraint Bound Calculation). Let wi ∈ U [E(wi)−δ,E(wi)+
δ] be independent weights chosen uniformly at random. Let E(W (x)) be the expected
weight of x and α be the probability bound of the chance constraint. Then setting

C∗
2 (x) = E(W (x))

−0.66δ
(
ln(α)−

√
ln2(α)− 9 ln(α)

∑n
i=1 xi

)
(4.2)

implies Pr[W (x) ≥ C∗
2 (x)) ≤ α.

Proof. We consider wi ∈ U [E(wi) − δ,E(wi) + δ]. Then, to satisfy Chernoff bound
summation requirement, we normalise each random weight into [0, 1] which yi denotes
the normalised weight of the knapsack item as follows.

yi =
wi − (E(wi)− δ)

2δ
∈ [0, 1]

Y (x) =
n∑

i=1

yi =
n∑

i=1

wi − (E(wi)− δ)

2δ
xi.

Since yi is symmetric, then the total expected weight of Y is in the middle as E(Y) =
1
2

∑n
i=1 xi. Then, the total weight of a solution is given as

W (x) =
n∑

i=1

wixi = 2δY (x) + E(W (x))− δ
n∑

i=1

xi.

36 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

We set
C∗
2 = E(W (x)) + b

where

b = −0.66δ

ln(α)−

√√√√ln2(α)− 9 ln(α)

n∑
i=1

xi

 .

Hence, the probability of violating the chance constraint for a solution is given as

Pr [W (x) ≥ C∗
2 (x)]

= Pr [2δY (x) + E(W (x))− δ
∑n

i=1 xi ≥ E(W (x)) + b]

= Pr
[
Y (x) ≥ 1

2

∑n
i=1 xi +

b
2δ

]
= Pr

[
Y (x) ≥ E (Y (x)) + b

2δ

]
= Pr [Y (x) ≥ (1 + t)E (Y (x))]

where
t =

b

2δE (Y (x))
.

Using Chernoff bounds, we have

Pr [(Y (x) ≥ (1 + t)E (Y (x)))] ≤ exp

(
− t2

2 + 2
3 t
E(Y (x))

)

We have

t =

−0.66
(
ln(α)−

√
ln2(α)− 9 ln(α)

∑n
i=1 xi

)
∑n

i=1 xi
.

That we can expand as,

t =
−0.66 ln(α)∑n

i=1 xi
+ 0.66

√
ln2(α)− 9 ln(α)

∑n
i=1 xi∑n

i=1 xi

To find an upper bound for this equation we use

t̂ =
−0.66 ln(α)∑n

i=1 xi
≤ b

2δE(Y (x))
= t

instead of t which results in

Pr [Y (x) ≥ (1 + t)E (Y (x))]

≤ Pr
[
Y (x) ≥ (1 + t̂)E (Y (x))

]
≤ exp

(
−

(−0.66)2 ln2 α

(2E(Y (x)))2

2+ 2
3
(−0.66 lnα

2E(Y (x))
)
· E (Y (x))

)

= exp

(
lnα

−8E(Y (x))+ 4
3 (0.66 lnα)

(−0.66)2·lnα

)
≤ α

Therefore, we have
−4
∑n

i=1 xi +
4
3(0.66 lnα)

(0.66)2 lnα
≤ 1

4.3. Evolutionary algorithms 37

This inequality holds as

−4
n∑

i=1

xi +
4

3
(0.66 lnα) ≤ (0.66)2 lnα

which completes the proof.

Note that the introduced additional objectives as C∗
1 and C∗

2 in Equations 4.1 and
4.2, respectively calculate the smallest possible bound for which a solution meets the
chance constraint according to the used tail bound (Chebyshev or Chernoff). The
terms are added to the expected total weight guarantee that a given solution meets
the chance constraint.

4.3 Evolutionary Algorithms

In this section, we discuss the use of EAs to solve the DCCKP. We only use sim-
ple baseline EAs to make a fair comparison between the single-objective optimisation
and bi-objective optimisation. (1+1)-EA (see Algorithm 3.5) and GSEMO (see Algo-
rithm 3.6) are their equivalent counterparts if we consider identical objective functions
because they use the same mutation operator.

4.3.1 Single-Objective Optimisation

(1+1)-EA has one potential solution (x) that undergoes mutation and offspring x′

replaces x if it is determined to be at least as good or better according to the fitness
function of a solution which is as follows,

f(1+1)(x) = (max{0, α(x)− α}, P (x))

Recall that from Section 2.3 that α(x) denotes the probability of chance constraint
violation based on Chebyshev’s inequality or Chernoff bound derived for CCKP where
for uniform distribution we use Equations 2.2 and 2.3 for Chebyshev’s inequality and
Chernoff’s bound, respectively.

The fitness function f(1+1) is in lexicographic order which means that first, the
algorithm searches for a feasible solution according to the chance constraint and max-
imises the profit afterwards. We have,

f(1+1)(x
′) ⪰ f(1+1)(x)

⇐⇒ (max{0, α(x′)− α} < max{0, α(x)− α})
∨ ((max{0, α(x′)− α} = max{0, α(x)− α})
∧(P (x′) ≥ P (x)))

When a change occurs in the dynamic constraint, the individual (x) may become
infeasible, and its probabilistic constraint violates α. Therefore, (1+1)-EA mutates
x to find a feasible solution for the newly given constraint and optimises the profit
afterwards.

4.3.2 Bi-Objective Optimisation

We adapt the algorithm proposed in [RNN18] for our bi-objective optimisation. We
call the adapted algorithm, Pareto Optimisation for Stochastic Dynamic Constraint
(POSDC). POSDC (see Algorithm 4.1) is a baseline multi-objective EA which tracks

38 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

Algorithm 4.1: POSDC
1 Generate x ∈ {0, 1}n uniformly at random
2 if C − η ≤ C∗(x) ≤ C + η then
3 S ← x
4 else
5 while S = ∅ do
6 repair an offspring (y) by (1+1)-EA
7 x← y
8 if C − η ≤ C∗(y) ≤ C + η then
9 S ← x

10 while (not max iteration) do
11 if change in the capacity occurs (after τ iterations) then
12 x← best solution in S
13 Update S− and S+ with respect to the shifted capacity
14 if S = ∅ then
15 S ← x

16 choose x ∈ S uniformly at random
17 y ← create an offspring by flipping each bit of x independently with the

probability of 1
n

18 if (C − η ≤ C∗(y) < C) ∧ (∄z ∈ S− : z ⪰POSDC y) then
19 S− ← (S− ∪ y) \ {z ∈ S−|y ⪰POSDC z}
20 else if (C ≤ C∗(y) ≤ C + η) ∧ (∄z ∈ S+ : z ⪰POSDC y) then
21 S+ ← (S+ ∪ y) \ {z ∈ S+|y ⪰POSDC z}
22 return best solution

the moving optimum by storing a population in the vicinity of the dynamic knapsack
capacity. POSDC keeps a solution (x) if C∗(x) is in [C−η, C+η], where η determines
the storing range. Therefore, POSDC has two subpopulations which include feasible
and infeasible solutions (S = S− ∪ S+). Keeping an infeasible subpopulation helps
POSDC to be prepared for the next change in the dynamic constraint. We define
these two subpopulations as follows.

S− ← {x ∈ S | C − η ≤ C∗(x) ≤ C}
S+ ← {x ∈ S | C < C∗(x) ≤ C + η}.

POSDC generates the initial solution uniformly at random, if the generated solu-
tion is out of the storing range, then (1+1)-EA repairs the solution and stores it in
the appropriate subpopulation.

POSDC uses a mutation operator to explore the search space and find trade-off
solutions. POSDC maintains a set of non-dominated solutions with respect to P (x)
and C∗(x) in its subpopulations. The best solution in POSDC at each iteration is the
solution with the highest profit in S−; If S− is empty, POSDC prefers the solution
with the smallest C∗ in S+.

Note that if we can compute the solutions exactly, some solutions in S+ can
be feasible. However, because computing C∗ in exact is difficult, we designate the
optimum as the solution with the highest profit in S−. Also, the parameter η for
POSDC has been considered equal to r to cover the interval of the uniform distribution
entirely for storing desirable solutions [RNN18].

For further investigation of our bi-objective optimisation, we also apply NSGA-II

4.4. Experimental Investigation 39

to point out possible improvements by using a well-established method for bi-objective
optimisation. We modify NSGA-II to keep the best-obtained solution for the given
knapsack bound C in each iteration to have a fair comparison with POSDC. The main
difference between NSGA-II and POSDC is the selection mechanism.

4.4 Experimental Investigation

In this section, we define the setup of our experimental investigation. We apply
the bi-objective optimisation with the introduced objectives and compare it with the
single-objective optimisation.

The implemented framework is available on https://bit.ly/3wOfFZJ. This repos-
itory includes the implementation of (1+1)-EA, POSDC and NSGA-II for the dynamic
chance-constrained knapsack problem. The source code language is Python, and there
is a run file for each algorithm to simulate the experiments. The repository also in-
cludes information on the dynamic changes of the knapsack capacity and the knapsack
instance for 100, 300 and 500. Each algorithm in the framework includes instructions
on how to run.

We combine the parameters of r, τ , α and, δ to produce DCCKP test problem
instances for uncorrelated and bounded strongly correlated with different types of
complexities. For instance, a test problem with r = 2000, τ = 100, α = 0.0001 and
δ = 50 represents the most difficult test problem, because the magnitude of dynamic
change in the knapsack capacity is large and the capacity changes very fast every 100
iterations. Also, the allowable probability of chance-constraint violation is very tight,
and the uncertainty interval in the weight of items is big.

We apply POSDC and (1+1)-EA integrated with Chebyshev and Chernoff inequal-
ity tails to DCCKP instances. Specifically, we investigate the following algorithms:

• (1+1)-EA with Chebyshev’s inequality: (1)

• (1+1)-EA with Chernoff bound: (2)

• POSDC with Chebyshev’s inequality: (3)

• POSDC with Chernoff bound: (4)

• NSGA-II with Chebyshev’s inequality: (5)

• NSGA-II with Chernoff bound: (6)

Each algorithm initially runs for 104 warm-up iterations before the first change in the
capacity occurs and continues for 106 iterations.

Tables 4.1-4.9 report the performance of single-objective and bi-objective optimi-
sation by the average and standard deviation of total offline error for 30 independent
runs. Lower total offline error is better because it shows the algorithm was closer
to the P (x∗) for each iteration. Note that when the problem becomes more uncer-
tain, the feasible region (without violating the probabilistic constraint) becomes more
restrictive and the offline error will be increased.

Statistical comparisons are carried out by using the Kruskal-Wallis test with 95%
confidence interval integrated with the posteriori Bonferroni test to compare multiple
solutions [CF14]. The stat column shows the rank of each algorithm in the instances.
If two algorithms can be compared with each other significantly, X(+) denotes that the
current algorithm is outperforming algorithm X. Likewise, X(−) signifies the current
algorithm is worse than the algorithm X significantly. Otherwise, X(∗) shows that the

https://bit.ly/3wOfFZJ

40 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

current algorithm is not different significantly with algorithm X. For example, num-
bers 1(+), 3(∗), 4(−) denote the pairwise performance of algorithm (2). The numbers
show that algorithm (2) is statistically better than algorithm (1); it is not different
from algorithm (3) and it is inferior to algorithm (4).

Note that statistical tests are commonly used, but proper understanding of their
conclusions is important. A test can show that differences are statistically signifi-
cant or not, but it doesn’t imply difference in algorithm performance. The test is
inconclusive if the p-value is larger than the chosen confidence level.

Table 4.1 lists the results when r is 500 and n is 100. We can see that for the
uncorrelated instances when alpha is the largest (0.01) and the interval of uncertainty
is small, (1+1)-EA-Chebyshev and (1+1)-EA-Chernoff are not significantly different.
However, (1+1)-EA-Chernoff outperforms the (1+1)-EA-Chebyshev when there is
more time to adapt (τ = 1000) to the dynamic change and the uncertainty interval is
the largest. We can observe the same for bounded-strongly-correlated instances where
for all instances when α is 0.01, both (1+1)-EA variants are not significantly different.

In all other instances, (1+1)-EA-Chernoff outperforms another variant for both
uncorrelated and bounded-strongly-correlated instances. Alike to (1+1)-EA variant,
POSDC variants also show no significant difference when α is 0.01 except when τ is
1000 and the δ is 50. POSDC-Chebyshev outperforms its single objective variant in 9
and 8 instances for uncorrelated and bounded-strongly-correlated instances. Similarly,
POSDC-Chernoff outperforms its (1+1)-EA variant in all instances for both types of
problems.

Table 4.2 lists our results when r increases to 2000. We can see that when τ is the
largest, there is no significant difference between two (1+1)-EA variants. However,
as the problem becomes more complex, (1+1)-EA-Chebyshev outperforms the other
except when (1+1)-EA-Chernoff has a bigger time window to adapt even though the
chance constraint is too tight and the uncertainty interval is the biggest. Interestingly,
in this instance, (1+1)-EA-Chernoff can outperform POSDC-Chebyshev. We can see
that POSDC-Chebyshev can outperform both (1+1)-EA variants in other instances.

Between POSDC variants, there is not a uniform pattern to interpret. We can see
that both variants can outperform the another in 6 separate instances. We observe
that POSDC can obtain better solutions than (1+1)-EA. When we consider a bigger
magnitude of changes in the constraint bound, the population size of non-dominated
solutions in POSDC is bigger than when r is 500; because η is equal to r, POSDC
covers a bigger range of solutions which leads to a bigger population.

Therefore, when the changes occur faster (smaller τ), POSDC has less time to
evolve its population. POSDC only mutates one individual chosen randomly in its
population, leading to a lower chance of choosing the best individual for the muta-
tion in its population. In contrast, (1+1)-EA only handles one individual, mutates
and improves it on all iterations. Introducing our second objective function for the
bi-objective optimisation approach helps POSDC to tackle all these drawbacks and
outperform its counterpart single-objective approach; because trade-off solutions con-
tain more information in the principle of finding better solutions. Comparing POSDC-
Chebyshev and POSDC-Chernoff we can see that the former can outperform the other
one in the most complex condition. However, when the algorithm has more time to
adapt, POSDC-Chebyshev is the best in particular when the α gets tighter.

To further investigate our bi-objective optimisation, we also apply the NSGA-II,
a state of the art multi-objective EA, when dealing with two objectives. We run
NSGA-II with a population size of 20 using Chebyshev and Chernoff inequality tails
(algorithms (5) and (6), respectively, in corresponding tables for NSGA-II.

4.4. Experimental Investigation 41

Table 4.3 shows the results of NSGA-II with small and large changes for uncor-
related and bounded strongly correlated instances when n = 100 and compares the
performance of NSGA-II with POSDC. We can see that for both types of problems,
NSGA variants can perform as well as POSDC when using the same tail inequality
and when the change of magnitude in dynamic knapsack capacity is smaller, POSDC-
Chernoff can outperform the NSGA-II-Chebyshev in 10 and 9 instances when r is
500 for uncorrelated and strongly-bounded-correlated instances, respectively. How-
ever, when r is 2000, NSGA-II-Chebyshev is weaker than POSDC-Chernoff in 2 and
4 instances, respectively, for uncorrelated and strongly-bounded-correlated instances.

Comparing two variants of NSGA-II, we can see that when instances are uncorre-
lated and r is 500, NSGA-II-Chernoff can outperform the other except when τ is 100
δ is 25, where they are not significantly different. The same behaviour can be seen
for instances when r is 2000, and both variants are insignificant when α is the largest
irrespective of the frequency.

Table 4.4 shows the results for POSDC and (1+1)-EA variant for r = 500 when
number of items are 300. We can see that (1+1)-EA-Chernoff performs better or as
well as another variant with Chebyshev’s inequality tail in all uncorrelated instances.
Moreover, (1+1)-EA-Chernoff outperforms (1+1)-EA-Chebyshev in all bounded-strongly-
correlated instances. Comparing (1+1)-EA with the bi-objective counterpart algo-
rithm when they use the same inequality tail, we can see that the POSDC variant
can outperform the single-objective algorithm in all uncorrelated instances. The same
observation can be seen for bounded-strongly-correlated instances except in one case
where both algorithms are not significantly different. Comparing both POSDC vari-
ants, we can see that POSDC-Chernoff is the best or perform as well as the another
in all instances.

Table 4.5 shows the results for POSDC and (1+1)-EA variant for r = 2000 when
number of items are 300. Comparing (1+1)-EA variants, we can see that (1+1)-
EA-Chebyshev can perform better or as well as another single-objective variant in
all instances. The previous observation holds that the POSDC variant with the same
inequality tail outperforms the single-objective counterpart. Comparing POSDC vari-
ants, we can see that both variants are not significantly different for 7 instances in
each type of problem. However, in other instances, mostly POSDC-Chebyshev is the
better algorithm.

Table 4.6 shows the results of NSGA-II with small and large changes for uncor-
related and bounded strongly correlated instances when n = 300 and compares the
performance of NSGA-II with POSDC. We can see that when r is 500, NSGA-II
variants can outperform their POSDC counterpart when they employ the same in-
equality tail. However, comparing two NSGA-II variants with each other, we see that
NSGA-II-Chernoff is the best. When the problem gets more complex as r increases
to 2000, when the dynamic capacity changes faster, both NSGA-II variants are not
significantly different in all cases except one. However, when the changes occur slowly,
NSGA-II-Chernoff is the best algorithm.

Table 4.7 shows the comparison between (1+1)-EA and POSDC variant for when
the number of items is 500, and r is 500. Comparing (1+1)-EA variants, we can
see that between (1+1)-EA variants, (1+1)-EA-Chernoff is performing better or as
well as the another for all instances. Comparing single objective algorithms with
their corresponding POSDC counterparts using the same inequality, we find that
bi-objective optimisation outperforms the another for all instances. Comparing the
POSDC variants, POSDC-Chernoff outperforms in most instances and performs as
well as the another in two instances where α is 0.01.

42 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

Table 4.8 lists the comparison for when r is 2000 where we can see between (1+1)-
EA variants, (1+1)-EA Chebyshev performs better or as well as the another. Com-
paring POSDC with (1+1)-EA, both POSDC variants outperform the single-objective
counterpart. However, comparing POSDC variants, POSDC-Chernoff outperforms or
performs as well as the other in most cases (9 out of 12) for each problem type.
However, there is no clear pattern in the behaviour of the algorithm.

Table 4.9 shows the comparison between NSGA-II and POSDC variants. We can
see that when the r is 500, NSGA-II Chernoff outperforms NSGA-II-Chebyshev for all
instances. However, when r increases, for uncorrelated instances, NSGA-II Chebyshev
works better or as well as the other when the change occurs faster. But when the
changes are slower, NSGA-II Chernoff is the better algorithm. For bounded-strongly-
correlated instances, in most settings, NSGA-II-Chernoff is the better algorithm. The
main difference between NSGA-II and POSDC is the selection mechanism.

Summing up the findings for all instances irrespective of the number of items, we
observe that when the environment of the problem becomes more complex, finding a
solution that has a close distance to the optimal solution is harder. As τ decreases,
δ increases and α becomes tighter, the offline error for both (1+1)-EA and POSDC
increases. However, as the problem becomes more challenging to solve, POSDC ob-
tains solutions with a lower total offline error than (1+1)-EA. Comparing POSDC
and NSGA-II, the latter uses the crowding distance sorting to maintain its diversity
through the evolution of its population. This comparison can point out the possible
research direction to further investigate the state-of-art non-baseline EAs and multi-
objective EAs solving DCCKPs.

4.5 Conclusions

In this chapter, we considered the dynamic chance-constrained knapsack problem
where the constraint bound changes dynamically over time, and item weights are
uncertain. The key part of our approach is to tackle the dynamic and stochastic com-
ponents of an optimisation problem in a holistic approach. For this purpose and to
apply bi-objective optimisation to the problem, we developed an objective C∗ which
calculates for a given solution x the smallest possible bound for which x would meet
the chance constraint. This objective function allows keeping a set of non-dominated
solutions with different C∗ where an appropriate solution can be used to track the
optimum after the dynamic constraint bound has changed. As it is hard to calculate
the bound C∗(x) in the stochastic setting exactly, we have shown how to calculate
upper bounds for C∗(x) based on Chernoff bound and Chebyshev’s inequality. We
evaluated the bi-objective optimisation for a wide range of chance-constrained knap-
sack problems with dynamically changing constraint bounds. The results show that
the bi-objective optimisation with the introduced additional objective function can
obtain better results than single-objective optimisation in most cases. Note that we
also applied NSGA-II to the problem to point out possible improvements by using
state of the art algorithms. It would be interesting for future work to extend these in-
vestigations. In addition, our approach is not limited to dynamic chance-constrained
knapsack problems and the formulation can be adapted to a wide range of other prob-
lems where we would formulate a similar second objective to deal with the chance
constraint.

4.5. Conclusions 43

T
a
bl

e
4.

1.
St

at
is

ti
ca

l
re

su
lt

s
of

to
ta

l
offl

in
e

er
ro

r
fo

r
(1

+
1)

-E
A

an
d

P
O

SD
C

w
it

h
sm

al
l
ch

an
ge

(r
=

5
0
0
)

in
th

e
dy

na
m

ic
co

ns
tr

ai
nt

w
it

h
n
=

1
0
0

τ
δ

α
(1

+
1)

-E
A

-C
he

by
sh

ev
(1

)
(1

+
1)

-E
A

-C
he

rn
off

(2
)

P
O

SD
C

-C
he

by
sh

ev
(3

)
P

O
SD

C
-C

he
rn

off
(4

)

uncorrelated

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

10
0

25
0.

01
57

45
.7

7
16

97
.2

6
2
(∗
) ,
3
(−

) ,
4(

−
)

55
51

.2
6

14
65

.1
2

1
(∗
) ,
3
(−

) ,
4(

−
)

17
85

.7
8

45
9.

47
1(

+
) ,
2
(+

) ,
4(

∗)
16

65
.7

1
48

3.
12

1
(+

) ,
2(

+
) ,
3
(∗
)

10
0

25
0.

00
1

60
47

.0
5

64
2.

79
2
(−

) ,
3(

−
) ,
4
(−

)
50

73
.4

3
92

9.
29

1
(+

) ,
3(

−
) ,
4
(−

)
31

55
.3

8
39

3.
46

1(
+
) ,
2
(+

) ,
4(

−
)

16
39

.7
8

29
4.

41
1
(+

) ,
2(

+
) ,
3
(+

)

10
0

25
0.

00
01

10
26

1.
56

96
4.

08
2
(−

) ,
3(

−
) ,
4
(−

)
49

05
.7

8
69

4.
76

1
(+

) ,
3(

+
) ,
4
(−

)
78

51
.2

9
79

8.
16

1(
+
) ,
2
(−

) ,
4(

−
)

17
33

.7
25

8.
58

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

01
53

79
.3

67
1.

71
2
(∗
) ,
3(

−
) ,
4
(−

)
51

38
.6

4
63

9.
58

1
(∗
) ,
3
(−

) ,
4(

−
)

22
83

.8
6

28
6.

64
1(

+
) ,
2
(+

) ,
4(

∗)
20

69
.1

5
29

2.
86

1
(+

) ,
2(

+
) ,
3
(∗
)

10
0

50
0.

00
1

80
96

.0
7

79
4.

29
2
(−

) ,
3(

−
) ,
4
(−

)
53

48
.0

9
61

3.
04

1
(+

) ,
3(

∗)
,4

(−
)

54
29

.1
1

62
2.

47
1(

+
) ,
2
(∗
) ,
4(

−
)

24
10

.9
4

35
1.

49
1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

00
01

14
74

4.
88

15
95

.5
9

2
(−

) ,
3(

∗)
,4

(−
)

55
83

.3
9

63
0.

6
1
(+

) ,
3(

+
) ,
4
(−

)
13

47
9.

59
12

78
.8

3
1(

∗)
,2

(−
) ,
4(

−
)

27
31

.2
3

40
3.

29
1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

01
27

29
.0

5
17

2.
84

2
(∗
) ,
3(

−
) ,
4
(−

)
26

36
.0

7
18

1.
19

1
(∗
) ,
3(

−
) ,
4
(−

)
99

6.
95

58
.0

1(
+
) ,
2
(+

) ,
4(

∗)
90

0.
01

82
.4

2
1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

25
0.

00
1

42
97

.2
2

28
4.

87
2
(−

) ,
3(

−
) ,
4
(−

)
26

86
.1

5
88

.8
6

1
(+

) ,
3(

+
) ,
4
(−

)
28

96
.0

5
13

6.
62

1
(+

) ,
2
(−

) ,
4(

−
)

11
26

.3
9

10
3.

46
1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

00
01

85
55

.3
8

11
12

.0
6

2
(−

) ,
3(

∗)
,4

(−
)

28
51

.6
7

11
9.

43
1
(+

) ,
3(

+
) ,
4
(−

)
75

25
.9

6
81

7.
17

1
(∗
) ,
2
(−

) ,
4(

−
)

13
31

.8
5

12
6.

84
1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

01
33

77
.3

8
16

5.
98

2(
−
) ,
3
(−

) ,
4
(−

)
32

11
.4

6
13

7.
9

1
(+

) ,
3(

−
) ,
4
(−

)
18

94
.8

5
89

.0
1
(+

) ,
2
(+

) ,
4(

−
)

17
19

.4
1

13
0.

66
1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

00
1

64
98

.5
7

60
7.

9
2(

−
) ,
3
(−

) ,
4
(−

)
36

20
.4

16
5.

19
1
(+

) ,
3(

+
) ,
4
(−

)
52

81
.1

4
37

9.
37

1
(+

) ,
2(

−
) ,
4
(−

)
21

61
.9

2
16

7.
01

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

00
01

12
02

4.
57

24
23

.4
9

2(
−
) ,
3
(∗
) ,
4
(−

)
39

83
.4

1
19

1.
37

1(
+
) ,
3
(+

) ,
4
(−

)
11

65
4.

42
21

24
.3

5
1
(∗
) ,
2
(−

) ,
4(

−
)

25
55

.9
7

19
9.

56
1
(+

) ,
2(

+
) ,
3
(+

)

bounded-strongly-correlated

10
0

25
0.

01
40

46
.8

8
39

9.
33

2
(∗
) ,
3
(−

) ,
4(

−
)

39
56

.8
8

41
4.

2
1
(∗
) ,
3
(−

) ,
4(

−
)

17
10

.7
7

16
1.

25
1(

+
) ,
2
(+

) ,
4(

∗)
15

76
.0

9
14

2.
7

1
(+

) ,
2(

+
) ,
3
(∗
)

10
0

25
0.

00
1

52
66

.3
4

75
9.

26
2
(−

) ,
3(

−
) ,
4
(−

)
38

16
.5

4
20

7.
51

1
(+

) ,
3(

−
) ,
4
(−

)
32

31
.8

9
44

7.
91

1(
+
) ,
2
(+

) ,
4(

−
)

16
21

.1
4

10
3.

98
1
(+

) ,
2(

+
) ,
3
(+

)

10
0

25
0.

00
01

97
97

.9
21

12
.6

8
2
(−

) ,
3(

∗)
,4

(−
)

38
12

.6
5

29
8.

26
1
(+

) ,
3(

+
) ,
4
(−

)
78

47
.4

2
14

53
.1

5
1(

∗)
,2

(−
) ,
4
(−

)
17

55
.2

9
14

0.
92

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

01
44

14
.0

7
46

9.
07

2
(∗
) ,
3(

−
) ,
4
(−

)
41

47
.1

5
41

8.
58

1
(∗
) ,
3
(−

) ,
4(

−
)

23
40

.0
6

26
6.

75
1(

+
) ,
2
(+

) ,
4(

∗)
21

01
.0

20
4.

38
1
(+

) ,
2(

+
) ,
3
(∗
)

10
0

50
0.

00
1

75
39

.4
7

13
85

.1
4

2
(−

) ,
3(

−
) ,
4
(−

)
44

56
.2

8
52

3.
56

1
(+

) ,
3(

+
) ,
4
(−

)
55

01
.3

2
89

7.
8

1(
+
) ,
2
(−

) ,
4(

−
)

24
58

.5
5

24
8.

25
1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

00
01

14
11

0.
7

40
32

.9
9

2
(−

) ,
3(

∗)
,4

(−
)

47
46

.0
5

60
8.

44
1
(+

) ,
3(

+
) ,
4
(−

)
12

93
1.

85
31

41
.6

6
1(

∗)
,2

(−
) ,
4
(−

)
27

87
.9

1
28

6.
62

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

01
20

30
.5

5
17

9.
17

2
(∗
) ,
3(

−
) ,
4
(−

)
19

35
.4

15
9.

31
1
(∗
) ,
3(

−
) ,
4
(−

)
80

9.
06

86
.8

7
1(

+
) ,
2
(+

) ,
4(

∗)
72

7.
53

60
.2

1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

25
0.

00
1

35
17

.5
5

49
4.

67
2
(−

) ,
3(

−
) ,
4
(−

)
20

82
.9

1
21

8.
29

1
(+

) ,
3(

∗)
,4

(−
)

22
63

.7
28

3.
82

1
(+

) ,
2
(∗
) ,
4(

−
)

90
4.

61
70

.7
1

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

00
01

69
90

.6
6

13
30

.7
7

2
(−

) ,
3(

∗)
,4

(−
)

22
27

.4
9

23
7.

11
1
(+

) ,
3(

+
) ,
4
(−

)
57

07
.8

7
96

0.
04

1
(∗
) ,
2
(−

) ,
4(

−
)

10
58

.0
8

76
.6

5
1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

01
27

18
.0

6
34

0.
38

2(
∗)

,3
(−

) ,
4
(−

)
25

49
.6

3
29

9.
87

1
(∗
) ,
3(

−
) ,
4
(−

)
15

06
.3

17
5.

58
1
(+

) ,
2
(+

) ,
4(

∗)
13

63
.0

6
12

2.
48

1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

50
0.

00
1

53
50

.4
1

87
9.

86
2(

−
) ,
3
(−

) ,
4
(−

)
28

85
.4

1
34

4.
11

1
(+

) ,
3(

+
) ,
4
(−

)
40

42
.5

5
60

2.
53

1
(+

) ,
2
(−

) ,
4(

−
)

16
92

.8
14

4.
07

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

00
01

96
04

.5
1

23
04

.1
2
(−

) ,
3(

∗)
,4

(−
)

31
78

.6
1

36
2.

85
1
(+

) ,
3(

+
) ,
4
(−

)
88

25
.4

2
17

66
.5

6
1
(∗
) ,
2
(−

) ,
4(

−
)

19
90

.3
3

16
6.

1
1
(+

) ,
2(

+
) ,
3
(+

)

44 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

T
a
ble

4.2.
Statistical

results
of

total
offl

ine
error

for
(1+

1)-E
A

and
P

O
SD

C
w

ith
large

change
(r

=
2000)

in
the

dynam
ic

constraint
w

ith
n
=

1
0
0

τ
δ

α
(1+

1)-E
A

-C
hebyshev

(1)
(1+

1)-E
A

-C
hernoff

(2)
P

O
SD

C
-C

hebyshev
(3)

P
O

SD
C

-C
hernoff

(4)

uncorrelated

M
ean

Std
Stat

M
ean

Std
Stat

M
ean

Std
Stat

M
ean

Std
Stat

100
25

0.01
194216.1

60110.05
2
(∗
),
3
(−

),
4
(−

)
241785.41

65345.78
1
(∗
),
3
(−

),
4
(−

)
78069.93

32609.46
1
(+

),
2
(+

),
4
(∗
)

88737.18
37384.9

1
(+

),
2
(+

),
3
(∗
)

100
25

0.001
23986.42

8881.09
2
(+

),
3
(−

),
4
(+

)
171414.29

53277.1
1
(−

),
3
(−

),
4
(−

)
10708.18

4310.19
1
(+

),
2
(+

),
4
(+

)
68846.44

28173.31
1
(−

),
2
(+

),
3
(−

)

100
25

0.0001
11791.66

940.95
2
(+

),
3
(−

),
4
(+

)
127231.1

43081.04
1
(−

),
3
(−

),
4
(−

)
7042.84

703.78
1
(+

),
2
(+

),
4
(+

)
53018.97

23263.6
1
(−

),
2
(+

),
3
(−

)

100
50

0.01
54698.92

22210.24
2
(∗
),
3
(−

),
4
(−

)
68452.56

26463.82
1
(∗
),
3
(−

),
4
(−

)
27812.86

12155.5
1
(+

),
2
(+

),
4
(∗
)

34253.19
15504.7

1
(+

),
2
(+

),
3
(∗
)

100
50

0.001
11937.75

1729.94
2
(+

),
3
(−

),
4
(+

)
39427.9

15783.4
1
(−

),
3
(−

),
4
(−

)
5389.04

746.01
1
(+

),
2
(+

),
4
(+

)
20299.47

9146.1
1
(−

),
2
(+

),
3
(−

)

100
50

0.0001
16018.12

708.14
2
(+

),
3
(−

),
4
(−

)
26578.49

10606.86
1
(−

),
3
(−

),
4
(−

)
12099.82

744.85
1
(+

),
2
(+

),
4
(∗
)

12555.5
5260.28

1
(+

),
2
(+

),
3
(∗
)

1000
25

0.01
31186.99

11837.28
2
(∗
),
3
(−

),
4
(−

)
38261.16

13374.1
1
(∗
),
3
(−

),
4
(−

)
8297.34

6722.01
1
(+

),
2
(+

),
4
(∗
)

8717.4
5936.82

1
(+

),
2
(+

),
3
(∗
)

1000
25

0.001
6255.83

1484.76
2
(+

),
3
(−

),
4
(∗
)

27808.98
10406.46

1
(−

),
3
(−

),
4
(−

)
3056.27

722.78
1
(+

),
2
(+

),
4
(+

)
6965.12

5441.94
1
(∗
),
2
(+

),
3
(−

)

1000
25

0.0001
8821.17

867.76
2
(+

),
3
(−

),
4
(−

)
21192.14

8515.38
1
(−

),
3
(−

),
4
(−

)
6960.69

732.36
1
(+

),
2
(+

),
4
(∗
)

5695.93
3629.55

1
(+

),
2
(+

),
3
(∗
)

1000
50

0.01
10328.6

4770.92
2
(∗
),
3
(−

),
4
(−

)
12248.5

5497.26
1
(∗
),
3
(−

),
4
(−

)
3802.82

2038.14
1
(+

),
2
(+

),
4
(∗
)

3815.72
1971.7

1
(+

),
2
(+

),
3
(∗
)

1000
50

0.001
6790.75

695.26
2
(∗
),
3
(−

),
4
(−

)
7999.81

3194.97
1
(∗
),
3
(−

),
4
(−

)
4702.37

564.26
1
(+

),
2
(+

),
4
(−

)
3269.02

1445.49
1
(+

),
2
(+

),
3
(+

)

1000
50

0.0001
13491.01

1338.88
2
(−

),
3
(−

),
4
(−

)
6009.88

1670.76
1
(+

),
3
(+

),
4
(−

)
12017.16

1152.05
1
(+

),
2
(−

),
4
(−

)
2947.78

903.74
1
(+

),
2
(+

),
3
(+

)

bounded-strongly-correlated

100
25

0.01
167881.08

53820.95
2
(∗
),
3
(−

),
4
(−

)
223285.83

55756.46
1
(∗
),
3
(−

),
4
(−

)
33480.65

17574.33
1
(+

),
2
(+

),
4
(∗
)

37196.18
19396.88

1
(+

),
2
(+

),
3
(∗
)

100
25

0.001
14944.95

5383.33
2
(+

),
3
(−

),
4
(+

)
150457.7

43849.41
1
(−

),
3
(−

),
4
(−

)
7693.99

2190.97
1
(+

),
2
(+

),
4
(+

)
30299.37

16471.56
1
(−

),
2
(+

),
3
(−

)

100
25

0.0001
13512.83

979.04
2
(+

),
3
(−

),
4
(∗
)

103089.32
35646.04

1
(−

),
3
(−

),
4
(−

)
9315.01

855.82
1
(+

),
2
(+

),
4
(+

)
23323.14

12004.02
1
(∗
),
2
(+

),
3
(−

)

100
50

0.01
33300.16

16222.9
2
(∗
),
3
(−

),
4
(−

)
46131.1

20247.74
1
(∗
),
3
(−

),
4
(−

)
13927.2

6308.14
1
(+

),
2
(+

),
4
(∗
)

15227.33
7630.53

1
(+

),
2
(+

),
3
(∗
)

100
50

0.001
11317.76

603.01
2
(+

),
3
(−

),
4
(∗
)

23471.08
10350.43

1
(−

),
3
(−

),
4
(−

)
6972.38

296.93
1
(+

),
2
(+

),
4
(+

)
10532.46

4703.77
1
(∗
),
2
(+

),
3
(−

)

100
50

0.0001
20559.69

2643.86
2
(−

),
3
(−

),
4
(−

)
16250.62

6380.33
1
(+

),
3
(∗
),
4
(−

)
15189.83

2031.18
1
(+

),
2
(∗
),
4
(−

)
7800.55

2880.6
1
(+

),
2
(+

),
3
(+

)

1000
25

0.01
31342.99

7231.9
2
(∗
),
3
(−

),
4
(−

)
37971.88

7235.31
1
(∗
),
3
(−

),
4
(−

)
3620.98

2957.09
1
(+

),
2
(+

),
4
(∗
)

3848.78
2583.35

1
(+

),
2
(+

),
3
(∗
)

1000
25

0.001
5549.74

653.84
2
(+

),
3
(−

),
4
(−

)
28451.18

6224.04
1
(−

),
3
(−

),
4
(−

)
2801.6

249.48
1
(+

),
2
(+

),
4
(∗
)

3057.99
1909.44

1
(+

),
2
(+

),
3
(∗
)

1000
25

0.0001
8683.48

1569.48
2
(+

),
3
(−

),
4
(−

)
22073.7

5474.2
1
(−

),
3
(−

),
4
(−

)
6519.92

1138.64
1
(+

),
2
(+

),
4
(−

)
2806.87

1770.85
1
(+

),
2
(+

),
3
(+

)

1000
50

0.01
9219.66

3358.95
2
(∗
),
3
(−

),
4
(−

)
11976.75

4111.56
1
(∗
),
3
(−

),
4
(−

)
2622.07

864.5
1
(+

),
2
(+

),
4
(∗
)

2522.08
878.58

1
(+

),
2
(+

),
3
(∗
)

1000
50

0.001
6600.47

949.4
2
(∗
),
3
(−

),
4
(−

)
6964.72

1934.28
1
(∗
),
3
(−

),
4
(−

)
4591.29

707.31
1
(+

),
2
(+

),
4
(−

)
2352.11

388.64
1
(+

),
2
(+

),
3
(+

)

1000
50

0.0001
12973.88

2999.2
2
(−

),
3
(∗
),
4
(−

)
5386.82

935.88
1
(+

),
3
(+

),
4
(−

)
10054.16

2230.47
1
(∗
),
2
(−

),
4
(−

)
2401.25

258.89
1
(+

),
2
(+

),
3
(+

)

4.5. Conclusions 45

T
a
bl

e
4.

3.
St

at
is

ti
ca

lr
es

ul
ts

of
to

ta
lo

ffl
in

e
er

ro
r

fo
r

N
SG

A
-I

I
w

it
h

ch
an

ge
s

in
th

e
dy

na
m

ic
co

ns
tr

ai
nt

w
it

h
n
=

1
0
0

r
τ

δ
α

un
co

rr
el

at
ed

bo
un

de
d-

st
ro

ng
ly

co
rr

el
at

ed
N

SG
A

-I
I-

C
he

by
sh

ev
(5

)
N

SG
A

-I
I-

C
he

rn
off

(6
)

N
SG

A
-I

I-
C

he
by

sh
ev

(5
)

N
SG

A
-I

I-
C

he
rn

off
(6

)

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

50
0

10
0

25
0.

01
13

04
.1

5
19

7.
87

3(
+
) ,
4
(+

) ,
6(

∗)
12

04
.7

9
19

8.
17

3
(+

) ,
4
(+

) ,
5(

∗)
11

74
.8

5
15

7.
67

3(
+
) ,
4
(+

) ,
6(

∗)
10

52
.2

3
11

9.
38

3
(+

) ,
4(

+
) ,
5
(∗
)

50
0

10
0

25
0.

00
1

29
56

.9
9

40
7.

55
3(

∗)
,4

(−
) ,
6
(−

)
13

76
.7

4
21

6.
28

3
(+

) ,
4
(∗
) ,
5(

+
)

27
65

.3
8

43
3.

43
3
(∗
) ,
4
(−

) ,
6(

−
)

12
30

.1
8

14
2.

87
3
(+

) ,
4(

+
) ,
5
(+

)

50
0

10
0

25
0.

00
01

74
80

.8
1

78
6.

29
3(

∗)
,4

(−
) ,
6
(−

)
15

33
.4

4
25

4.
62

3
(+

) ,
4
(∗
) ,
5(

+
)

66
52

.1
3

13
96

.9
3
(∗
) ,
4
(−

) ,
6(

−
)

13
89

.5
4

13
8.

65
3
(+

) ,
4(

+
) ,
5
(+

)

50
0

10
0

50
0.

01
20

61
.8

6
29

2.
58

3(
+
) ,
4
(∗
) ,
6
(−

)
18

77
.0

8
28

5.
22

3
(+

) ,
4(

+
) ,
5
(+

)
19

25
.1

8
28

7.
3

3
(+

) ,
4(

+
) ,
6
(−

)
17

22
.5

8
20

6.
48

3
(+

) ,
4(

+
) ,
5
(+

)

50
0

10
0

50
0.

00
1

51
68

.1
2

61
6.

45
3(

∗)
,4

(−
) ,
6
(−

)
22

27
.3

2
36

7.
2

3
(+

) ,
4(

∗)
,5

(+
)

47
46

.5
6

89
6.

3
3
(∗
) ,
4
(−

) ,
6(

−
)

20
70

.5
5

24
1.

35
3(

+
) ,
4
(+

) ,
5
(+

)

50
0

10
0

50
0.

00
01

12
45

3.
22

11
94

.9
2

3(
∗)

,4
(−

) ,
6(

−
)

25
28

.9
2

40
7.

39
3
(+

) ,
4(

∗)
,5

(+
)

98
60

27
99

.7
1

3
(∗
) ,
4
(−

) ,
6(

−
)

24
09

.9
6

29
1.

32
3(

+
) ,
4
(∗
) ,
5
(+

)

50
0

10
00

25
0.

01
10

17
.9

9
59

.4
3
(∗
) ,
4
(−

) ,
6(

−
)

92
1.

25
85

.6
4

3
(+

) ,
4(

∗)
,5

(+
)

77
8.

04
77

.2
6

3
(∗
) ,
4
(∗
) ,
6(

−
)

69
7.

76
51

.3
2

3(
+
) ,
4
(∗
) ,
5
(+

)

50
0

10
00

25
0.

00
1

29
14

.6
3

13
8.

12
3
(∗
) ,
4
(−

) ,
6(

−
)

11
52

.1
7

11
0.

01
3
(+

) ,
4(

∗)
,5

(+
)

22
26

.2
4

28
1.

86
3
(∗
) ,
4
(−

) ,
6(

−
)

86
8.

82
56

.9
4

3(
+
) ,
4
(∗
) ,
5
(+

)

50
0

10
00

25
0.

00
01

75
07

.8
8

83
1.

51
3
(∗
) ,
4
(−

) ,
6(

−
)

13
59

.3
3

13
3.

08
3
(+

) ,
4(

∗)
,5

(+
)

54
93

.2
5

99
6.

28
3
(∗
) ,
4
(−

) ,
6(

−
)

10
26

.3
9

68
.9

4
3(

+
) ,
4
(∗
) ,
5
(+

)

50
0

10
00

50
0.

01
19

18
.9

2
89

.5
7

3
(∗
) ,
4
(−

) ,
6(

−
)

17
43

.6
13

5.
49

3
(+

) ,
4(

∗)
,5

(+
)

14
73

.6
5

16
5.

07
3
(∗
) ,
4
(−

) ,
6(

−
)

13
27

.7
4

10
8.

96
3(

+
) ,
4
(∗
) ,
5
(+

)

50
0

10
00

50
0.

00
1

52
84

.3
38

2.
78

3
(∗
) ,
4
(−

) ,
6(

−
)

21
84

.2
3

16
8.

81
3
(+

) ,
4(

∗)
,5

(+
)

39
26

.0
6

59
5.

36
3
(∗
) ,
4
(−

) ,
6(

−
)

16
62

.4
13

3.
97

3(
+
) ,
4
(∗
) ,
5
(+

)

50
0

10
00

50
0.

00
01

11
35

7.
61

21
24

.4
2

3
(∗
) ,
4
(−

) ,
6(

−
)

25
78

.5
9

19
9.

67
3
(+

) ,
4(

∗)
,5

(+
)

75
45

.7
5

16
21

.6
6

3
(∗
) ,
4
(−

) ,
6(

−
)

19
60

.9
4

15
7.

63
3(

+
) ,
4
(∗
) ,
5
(+

)

20
00

10
0

25
0.

01
20

92
.3

8
22

3.
85

3(
+
) ,
4
(+

) ,
6(

∗)
20

04
.5

8
22

6.
22

3
(+

) ,
4
(+

) ,
5(

∗)
22

06
.2

7
18

3.
61

3(
+
) ,
4
(+

) ,
6(

∗)
20

70
.6

9
21

1.
93

3
(+

) ,
4(

+
) ,
5
(∗
)

20
00

10
0

25
0.

00
1

33
84

.4
33

9.
88

3(
+
) ,
4
(+

) ,
6(

−
)

21
41

.9
21

7.
66

3
(+

) ,
4
(+

) ,
5(

+
)

41
89

.4
8

36
1.

51
3
(+

) ,
4
(+

) ,
6(

−
)

22
41

.9
8

17
2.

67
3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
0

25
0.

00
01

72
39

.8
6

58
9.

75
3(

∗)
,4

(+
) ,
6
(−

)
22

77
.3

6
25

5.
08

3
(+

) ,
4
(+

) ,
5(

+
)

94
01

.9
2

11
60

.9
1

3
(∗
) ,
4
(+

) ,
6(

−
)

24
77

.3
1

23
3.

2
3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
0

50
0.

01
27

00
.5

3
30

6.
48

3(
+
) ,
4
(+

) ,
6(

∗)
25

25
.4

2
28

9.
62

3
(+

) ,
4
(+

) ,
5(

∗)
31

31
.9

5
23

3.
06

3
(+

) ,
4
(+

) ,
6(

−
)

28
15

.0
9

18
9.

53
3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
0

50
0.

00
1

52
01

.3
2

49
0.

23
3(

∗)
,4

(+
) ,
6
(−

)
27

72
.8

3
32

0.
47

3
(+

) ,
4
(+

) ,
5(

+
)

67
67

.4
2

73
5.

85
3
(∗
) ,
4
(+

) ,
6(

−
)

32
39

.2
4

24
5.

79
3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
0

50
0.

00
01

12
23

7.
13

66
6.

95
3(

∗)
,4

(∗
) ,
6
(−

)
30

09
.0

2
34

5.
87

3
(+

) ,
4(

+
) ,
5
(+

)
14

93
3

23
62

.3
3
(∗
) ,
4
(−

) ,
6(

−
)

35
63

.3
25

2.
68

3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
00

25
0.

01
11

24
.8

1
13

9.
67

3(
+
) ,
4
(+

) ,
6(

∗)
10

28
.5

1
12

3.
95

3
(+

) ,
4(

+
) ,
5
(∗
)

10
26

.9
4

12
1.

56
3
(+

) ,
4(

+
) ,
6
(∗
)

92
0.

91
97

.3
1

3(
+
) ,
4
(+

) ,
5
(∗
)

20
00

10
00

25
0.

00
1

26
97

.3
8

32
4.

11
3(

∗)
,4

(∗
) ,
6
(−

)
11

95
.4

15
6.

77
3
(+

) ,
4(

+
) ,
5
(+

)
26

44
.0

9
36

4.
63

3
(∗
) ,
4
(∗
) ,
6
(−

)
11

01
.6

8
10

6.
77

3(
+
) ,
4
(+

) ,
5
(+

)

20
00

10
00

25
0.

00
01

71
12

.4
3

70
8.

88
3(

∗)
,4

(∗
) ,
6
(−

)
13

45
.7

1
17

5.
98

3
(+

) ,
4(

+
) ,
5
(+

)
65

48
.3

2
11

73
.6

3
(∗
) ,
4
(−

) ,
6(

−
)

12
61

.3
1

11
7.

39
3(

+
) ,
4
(+

) ,
5
(+

)

20
00

10
00

50
0.

01
18

61
.0

3
22

2.
37

3(
+
) ,
4
(+

) ,
6(

∗)
16

62
.8

3
21

0.
78

3
(+

) ,
4(

+
) ,
5
(∗
)

17
92

.9
9

22
8.

23
3
(+

) ,
4(

+
) ,
6
(−

)
15

97
.8

5
17

3.
99

3(
+
) ,
4
(+

) ,
5
(+

)

20
00

10
00

50
0.

00
1

48
38

.5
1

52
9.

76
3(

∗)
,4

(−
) ,
6(

−
)

20
04

.3
7

27
0.

85
3
(+

) ,
4(

+
) ,
5
(+

)
46

29
.3

74
3.

4
3
(∗
) ,
4
(−

) ,
6(

−
)

19
48

.8
2

19
2.

93
3(

+
) ,
4
(∗
) ,
5
(+

)

20
00

10
00

50
0.

00
01

12
12

1.
1

11
61

.2
3

3(
∗)

,4
(−

) ,
6(

−
)

22
92

.7
8

31
2.

66
3
(+

) ,
4(

∗)
,5

(+
)

98
69

.7
1

23
31

.9
1

3
(∗
) ,
4
(−

) ,
6(

−
)

22
55

.4
5

22
7.

8
3(

+
) ,
4
(∗
) ,
5
(+

)

46 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

T
a
ble

4.4.
Statistical

results
of

total
offl

ine
error

for
(1+

1)-E
A

and
P

O
SD

C
w

ith
sm

all
change

(r
=

500)
in

the
dynam

ic
constraint

w
ith

n
=

3
0
0

τ
δ

α
(1+

1)-E
A

-C
hebyshev

(1)
(1+

1)-E
A

-C
hernoff

(2)
P

O
SD

C
-C

hebyshev
(3)

P
O

SD
C

-C
hernoff

(4)

uncorrelated

M
ean

Std
Stat

M
ean

Std
Stat

M
ean

Std
Stat

M
ean

Std
Stat

100
25

0.01
18581.07

9984.25
2
(∗
),
3
(−

),
4
(−

)
17944.57

8778.83
1
(∗
),
3
(−

),
4
(−

)
4140.92

1408.1
1
(+

),
2
(+

),
4
(∗
)

3914.67
1481.62

1
(+

),
2
(+

),
3
(∗
)

100
25

0.001
16413.73

464.72
2
(∗
),
3
(−

),
4
(−

)
16520.85

6339.29
1
(∗
),
3
(−

),
4
(−

)
6875.51

574.51
1
(+

),
2
(+

),
4
(−

)
3766.96

765.43
1
(+

),
2
(+

),
3
(+

)

100
25

0.0001
24417.31

1976.06
2
(−

),
3
(−

),
4
(−

)
15251.23

3334.2
1
(+

),
3
(∗
),
4
(−

)
16314.06

762.06
1
(+

),
2
(∗
),
4
(−

)
3941.81

608.35
1
(+

),
2
(+

),
3
(+

)

100
50

0.01
15697.73

2212.33
2
(∗
),
3
(−

),
4
(−

)
15185.3

2038.13
1
(∗
),
3
(−

),
4
(−

)
5156.17

585.19
1
(+

),
2
(+

),
4
(∗
)

4591.74
623.25

1
(+

),
2
(+

),
3
(∗
)

100
50

0.001
20115.21

1155.87
2
(−

),
3
(−

),
4
(−

)
14997.8

850.91
1
(+

),
3
(−

),
4
(−

)
11429.54

600.39
1
(+

),
2
(+

),
4
(−

)
5182.14

636.81
1
(+

),
2
(+

),
3
(+

)

100
50

0.0001
33725.05

4261.09
2
(−

),
3
(−

),
4
(−

)
15280.2

678.95
1
(+

),
3
(+

),
4
(−

)
27681.56

2272.83
1
(+

),
2
(−

),
4
(−

)
5733.36

668.17
1
(+

),
2
(+

),
3
(+

)

1000
25

0.01
6661.99

188.32
2
(−

),
3
(−

),
4
(−

)
6377.29

172.48
1
(+

),
3
(−

),
4
(−

)
1786.53

69.3
1
(+

),
2
(+

),
4
(−

)
1486.8

68.72
1
(+

),
2
(+

),
3
(+

)

1000
25

0.001
10127.13

253.94
2
(−

),
3
(−

),
4
(−

)
6722.42

186.16
1
(+

),
3
(−

),
4
(−

)
5257.91

176.88
1
(+

),
2
(+

),
4
(−

)
1817.47

86.06
1
(+

),
2
(+

),
3
(+

)

1000
25

0.0001
19723.01

179.08
2
(−

),
3
(−

),
4
(−

)
7023.34

211.28
1
(+

),
3
(+

),
4
(−

)
15317.98

264.52
1
(+

),
2
(−

),
4
(−

)
2109.2

100.4
1
(+

),
2
(+

),
3
(+

)

1000
50

0.01
8291.98

175.55
2
(−

),
3
(−

),
4
(−

)
7713.67

190.77
1
(+

),
3
(−

),
4
(−

)
3395.62

122.26
1
(+

),
2
(+

),
4
(−

)
2812.56

123.82
1
(+

),
2
(+

),
3
(+

)

1000
50

0.001
14806.86

268.05
2
(−

),
3
(−

),
4
(−

)
8341.69

217.15
1
(+

),
3
(+

),
4
(−

)
10089.71

269.88
1
(+

),
2
(−

),
4
(−

)
3460.09

153.89
1
(+

),
2
(+

),
3
(+

)

1000
50

0.0001
30372.13

958.87
2
(−

),
3
(−

),
4
(−

)
8884.96

232.74
1
(+

),
3
(+

),
4
(−

)
26856.24

593.2
1
(+

),
2
(−

),
4
(−

)
4035.44

183.21
1
(+

),
2
(+

),
3
(+

)

bounded-strongly-correlated

100
25

0.01
9105.51

1309.27
2
(∗
),
3
(−

),
4
(−

)
9088.77

1425.28
1
(∗
),
3
(−

),
4
(−

)
3415.57

197.31
1
(+

),
2
(+

),
4
(−

)
3162.13

186.38
1
(+

),
2
(+

),
3
(+

)

100
25

0.001
11380.58

1316.8
2
(−

),
3
(−

),
4
(−

)
8888.46

775.27
1
(+

),
3
(−

),
4
(−

)
6022.91

536.66
1
(+

),
2
(+

),
4
(−

)
3382.79

188.45
1
(+

),
2
(+

),
3
(+

)

100
25

0.0001
19061.43

2879.24
2
(−

),
3
(−

),
4
(−

)
9057.68

842.81
1
(+

),
3
(+

),
4
(−

)
13927.46

1685.59
1
(+

),
2
(−

),
4
(−

)
3556.44

228.19
1
(+

),
2
(+

),
3
(+

)

100
50

0.01
9953.71

993.56
2
(∗
),
3
(−

),
4
(−

)
9550.51

950.07
1
(∗
),
3
(−

),
4
(−

)
4593.32

340.94
1
(+

),
2
(+

),
4
(−

)
4134.61

289.7
1
(+

),
2
(+

),
3
(+

)

100
50

0.001
15109.23

2058.16
2
(−

),
3
(−

),
4
(−

)
9918.4

1064.21
1
(+

),
3
(∗
),
4
(−

)
9809.54

1020.47
1
(+

),
2
(∗
),
4
(−

)
4629.87

306.52
1
(+

),
2
(+

),
3
(+

)

100
50

0.0001
27456.37

5110.01
2
(−

),
3
(∗
),
4
(−

)
10354.45

1149.8
1
(+

),
3
(+

),
4
(−

)
23494.45

3662.46
1
(∗
),
2
(−

),
4
(−

)
5081.65

362.82
1
(+

),
2
(+

),
3
(+

)

1000
25

0.01
5117.07

162.86
2
(−

),
3
(−

),
4
(−

)
4877.97

172.07
1
(+

),
3
(−

),
4
(−

)
1601.84

82.54
1
(+

),
2
(+

),
4
(−

)
1389.06

73.41
1
(+

),
2
(+

),
3
(+

)

1000
25

0.001
7913.26

252.95
2
(−

),
3
(−

),
4
(−

)
5169.92

192.57
1
(+

),
3
(−

),
4
(−

)
4035.24

175.79
1
(+

),
2
(+

),
4
(−

)
1622.06

84.47
1
(+

),
2
(+

),
3
(+

)

1000
25

0.0001
15321.55

670.91
2
(−

),
3
(−

),
4
(−

)
5377.23

193.5
1
(+

),
3
(+

),
4
(−

)
10785.57

456.64
1
(+

),
2
(−

),
4
(−

)
1831.34

88.89
1
(+

),
2
(+

),
3
(+

)

1000
50

0.01
6423.88

217.69
2
(−

),
3
(−

),
4
(−

)
5959.75

200.37
1
(+

),
3
(−

),
4
(−

)
2739.89

120.14
1
(+

),
2
(+

),
4
(−

)
2341.05

107.77
1
(+

),
2
(+

),
3
(+

)

1000
50

0.001
11594.91

447.39
2
(−

),
3
(−

),
4
(−

)
6474.6

232.18
1
(+

),
3
(+

),
4
(−

)
7379.63

307.75
1
(+

),
2
(−

),
4
(−

)
2809.67

90.82
1
(+

),
2
(+

),
3
(+

)

1000
50

0.0001
22841.04

1292.7
2
(−

),
3
(−

),
4
(−

)
6933.59

185.13
1
(+

),
3
(+

),
4
(−

)
18277.97

839.84
1
(+

),
2
(−

),
4
(−

)
3223.7

109.97
1
(+

),
2
(+

),
3
(+

)

4.5. Conclusions 47

T
a
bl

e
4.

5.
St

at
is

ti
ca

l
re

su
lt

s
of

to
ta

l
offl

in
e

er
ro

r
fo

r
(1

+
1)

-E
A

an
d

P
O

SD
C

w
it

h
la

rg
e

ch
an

ge
(r

=
2
0
0
0)

in
th

e
dy

na
m

ic
co

ns
tr

ai
nt

w
it

h
n
=

3
0
0

τ
δ

α
(1

+
1)

-E
A

-C
he

by
sh

ev
(1

)
(1

+
1)

-E
A

-C
he

rn
off

(2
)

P
O

SD
C

-C
he

by
sh

ev
(3

)
P

O
SD

C
-C

he
rn

off
(4

)

uncorrelated

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

10
0

25
0.

01
56

02
71

.2
3

34
55

63
.7

7
2
(∗
) ,
3
(−

) ,
4(

∗)
75

96
05

.5
7

42
44

41
.7

7
1(

∗)
,3

(−
) ,
4
(−

)
28

37
43

.3
9

18
91

43
.8

2
1(

+
) ,
2
(+

) ,
4(

∗)
38

31
68

.8
6

24
49

66
.3

4
1
(∗
) ,
2
(+

) ,
3(

∗)

10
0

25
0.

00
1

10
17

51
.8

6
70

15
3.

99
2
(+

) ,
3(

−
) ,
4
(+

)
51

01
16

.3
8

31
69

38
.2

1(
−
) ,
3
(−

) ,
4
(−

)
21

46
4.

36
12

48
3.

33
1(

+
) ,
2
(+

) ,
4(

+
)

26
18

40
.2

7
17

09
06

.2
8

1
(−

) ,
2(

+
) ,
3
(−

)

10
0

25
0.

00
01

34
95

8.
73

73
67

.0
2
(+

) ,
3(

−
) ,
4
(+

)
38

43
48

.8
4

25
57

70
.6

4
1(

−
) ,
3
(−

) ,
4(

−
)

17
43

0.
76

32
59

.2
4

1
(+

) ,
2
(+

) ,
4(

+
)

18
52

53
.5

1
12

57
92

.2
4

1
(−

) ,
2(

+
) ,
3
(−

)

10
0

50
0.

01
19

22
99

.1
6

14
40

08
.9

3
2
(∗
) ,
3
(−

) ,
4(

−
)

23
79

07
.3

16
70

63
.9

8
1(

∗)
,3

(−
) ,
4
(−

)
64

93
4.

29
46

66
2.

9
1
(+

) ,
2
(+

) ,
4(

∗)
92

19
7.

95
64

93
6.

19
1
(+

) ,
2(

+
) ,
3
(∗
)

10
0

50
0.

00
1

45
14

0.
13

19
21

2.
95

2
(+

) ,
3(

−
) ,
4
(∗
)

16
63

23
.7

2
11

49
93

.3
3

1(
−
) ,
3
(−

) ,
4(

−
)

13
80

5.
19

31
97

.6
8

1
(+

) ,
2
(+

) ,
4(

+
)

46
93

6.
59

33
68

4.
79

1
(∗
) ,
2
(+

) ,
3(

−
)

10
0

50
0.

00
01

38
62

1.
91

32
70

.5
1

2
(+

) ,
3(

−
) ,
4
(−

)
12

37
60

.0
6

84
64

3.
77

1(
−
) ,
3
(−

) ,
4(

−
)

27
12

6.
59

35
29

.1
1
(+

) ,
2
(+

) ,
4(

∗)
28

03
6.

61
17

83
1.

62
1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

25
0.

01
80

42
8.

42
52

87
8.

25
2
(∗
) ,
3
(∗
) ,
4(

∗)
11

21
37

.1
7

58
53

3.
92

1(
∗)

,3
(−

) ,
4
(−

)
47

45
9.

38
49

08
1.

68
1
(∗
) ,
2
(+

) ,
4(

∗)
61

80
1.

11
65

95
9.

67
1
(∗
) ,
2
(+

) ,
3(

∗)

10
00

25
0.

00
1

15
88

1.
08

46
76

.2
9

2
(+

) ,
3(

−
) ,
4
(∗
)

70
83

6.
92

42
34

7.
74

1(
−
) ,
3
(−

) ,
4(

−
)

84
81

.3
9

40
62

.7
9

1
(+

) ,
2
(+

) ,
4(

+
)

41
89

7.
93

43
50

3.
99

1
(∗
) ,
2
(+

) ,
3(

−
)

10
00

25
0.

00
01

21
04

8.
4

12
50

.4
2

2
(∗
) ,
3
(−

) ,
4(

∗)
47

35
8.

18
32

17
2.

01
1(

∗)
,3

(−
) ,
4
(−

)
14

92
3.

35
78

6.
15

1
(+

) ,
2
(+

) ,
4(

∗)
32

57
1.

61
35

26
8.

68
1
(∗
) ,
2
(+

) ,
3(

∗)

10
00

50
0.

01
23

01
6.

41
15

76
8.

95
2
(∗
) ,
3
(∗
) ,
4(

∗)
26

53
5.

51
17

81
3.

49
1(

∗)
,3

(∗
) ,
4
(∗
)

15
09

8.
21

13
77

4.
29

1
(∗
) ,
2
(∗
) ,
4
(∗
)

18
65

7.
46

19
14

1.
9

1
(∗
) ,
2(

∗)
,3

(∗
)

10
00

50
0.

00
1

16
96

1.
63

71
2.

31
2
(∗
) ,
3(

−
) ,
4
(−

)
18

46
3.

56
93

89
.8

2
1(

∗)
,3

(−
) ,
4
(−

)
10

33
2.

64
71

7.
71

1
(+

) ,
2(

+
) ,
4
(∗
)

11
44

9.
34

98
52

.6
5

1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

50
0.

00
01

30
31

1.
13

32
89

.9
5

2
(−

) ,
3(

−
) ,
4
(−

)
15

34
5.

13
54

66
.8

7
1(

+
) ,
3
(+

) ,
4(

−
)

25
26

2.
64

21
52

.2
7

1
(+

) ,
2(

−
) ,
4
(−

)
86

36
.1

6
53

38
.2

6
1
(+

) ,
2(

+
) ,
3
(+

)

bounded-strongly-correlated

10
0

25
0.

01
37

24
07

.5
1

21
60

81
.7

3
2
(+

) ,
3(

−
) ,
4
(−

)
56

50
43

.1
5

25
12

19
.0

5
1
(−

) ,
3(

−
) ,
4
(−

)
14

45
34

.7
6

10
16

73
.2

1(
+
) ,
2
(+

) ,
4(

∗)
18

47
28

.0
3

12
66

05
.7

6
1
(+

) ,
2(

+
) ,
3
(∗
)

10
0

25
0.

00
1

46
74

6.
27

30
25

0.
2

2
(+

) ,
3(

−
) ,
4
(∗
)

34
65

09
.0

19
61

17
.8

9
1(

−
) ,
3
(−

) ,
4
(−

)
15

07
7.

91
79

01
.6

8
1(

+
) ,
2
(+

) ,
4(

+
)

12
75

09
.5

8
90

62
5.

96
1
(∗
) ,
2
(+

) ,
3(

−
)

10
0

25
0.

00
01

25
36

8.
0

27
63

.5
2
(+

) ,
3(

−
) ,
4
(∗
)

22
84

63
.8

7
14

86
29

.1
3

1(
−
) ,
3
(−

) ,
4
(−

)
14

28
5.

59
17

83
.3

9
1(

+
) ,
2
(+

) ,
4(

+
)

91
18

5.
75

65
75

6.
09

1
(∗
) ,
2
(+

) ,
3(

−
)

10
0

50
0.

01
92

09
4.

36
72

36
5.

55
2
(∗
) ,
3
(−

) ,
4(

−
)

11
12

61
.5

83
41

6.
38

1(
∗)

,3
(−

) ,
4
(−

)
35

17
9.

74
25

93
4.

19
1(

+
) ,
2
(+

) ,
4(

∗)
47

88
3.

61
36

32
6.

23
1
(+

) ,
2(

+
) ,
3
(∗
)

10
0

50
0.

00
1

27
25

8.
79

79
98

.8
7

2
(+

) ,
3(

−
) ,
4
(∗
)

74
56

5.
57

55
97

9.
2

1(
−
) ,
3
(−

) ,
4(

−
)

11
27

6.
51

52
9.

1
1
(+

) ,
2
(+

) ,
4(

+
)

25
86

7.
36

18
54

2.
72

1
(∗
) ,
2
(+

) ,
3(

−
)

10
0

50
0.

00
01

33
02

5.
14

68
85

.6
4

2
(∗
) ,
3
(−

) ,
4(

−
)

56
41

7.
76

40
22

2.
83

1(
∗)

,3
(−

) ,
4
(−

)
22

23
9.

25
42

92
.3

7
1
(+

) ,
2
(+

) ,
4(

∗)
16

48
2.

04
10

26
8.

22
1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

25
0.

01
51

51
1.

15
24

71
1.

68
2
(∗
) ,
3
(−

) ,
4(

−
)

76
83

8.
41

22
69

1.
68

1(
∗)

,3
(−

) ,
4
(−

)
80

23
.7

11
26

0.
48

1
(+

) ,
2
(+

) ,
4(

∗)
93

11
.3

13
85

3.
57

1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

25
0.

00
1

94
06

.3
2

12
74

.5
7

2
(+

) ,
3(

−
) ,
4
(−

)
47

95
8.

14
20

74
8.

24
1(

−
) ,
3
(−

) ,
4(

−
)

44
83

.4
6

90
1.

7
1
(+

) ,
2
(+

) ,
4(

∗)
62

68
.5

87
00

.1
6

1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

25
0.

00
01

15
54

3.
65

26
48

.2
8

2
(∗
) ,
3
(−

) ,
4(

−
)

30
10

7.
85

16
85

2.
52

1(
∗)

,3
(−

) ,
4
(−

)
10

21
4.

61
15

63
.5

3
1
(+

) ,
2
(+

) ,
4(

∗)
51

86
.0

1
60

55
.6

1
1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

50
0.

01
10

45
7.

11
50

39
.5

6
2
(∗
) ,
3
(−

) ,
4(

−
)

12
65

9.
69

71
97

.7
7

1(
∗)

,3
(−

) ,
4
(−

)
46

03
.4

9
36

94
.8

1
(+

) ,
2(

+
) ,
4
(∗
)

44
28

.0
1

36
59

.3
3

1
(+

) ,
2(

+
) ,
3
(∗
)

10
00

50
0.

00
1

12
05

7.
06

17
53

.3
8

2
(−

) ,
3(

−
) ,
4
(−

)
93

09
.6

7
30

99
.5

1(
+
) ,
3
(−

) ,
4(

−
)

71
59

.7
8

86
2.

85
1
(+

) ,
2(

+
) ,
4
(−

)
37

96
.2

7
20

30
.4

6
1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

00
01

23
09

2.
44

48
91

.1
4

2
(−

) ,
3(

−
) ,
4
(−

)
84

97
.9

7
10

85
.4

5
1(

+
) ,
3
(+

) ,
4(

−
)

16
52

9.
18

33
17

.7
6

1
(+

) ,
2(

−
) ,
4
(−

)
38

25
.5

5
12

04
.5

3
1
(+

) ,
2(

+
) ,
3
(+

)

48 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

T
a
ble

4.6.
Statisticalresults

of
totaloffl

ine
error

for
N

SG
A

-II
w

ith
changes

in
the

dynam
ic

constraint
w

ith
n
=

300

r
τ

δ
α

uncorrelated
bounded-strongly

correlated
N

SG
A

-II-C
hebyshev

(5)
N

SG
A

-II-C
hernoff

(6)
N

SG
A

-II-C
hebyshev

(5)
N

SG
A

-II-C
hernoff

(6)

M
ean

Std
Stat

M
ean

Std
Stat

M
ean

Std
Stat

M
ean

Std
Stat

500
100

25
0.01

1980.24
229.97

3
(+

),
4
(+

),
6
(−

)
1708.35

224.33
3
(+

),
4
(+

),
5
(+

)
1980.24

229.97
3
(+

),
4
(+

),
6
(−

)
1708.35

224.33
3
(+

),
4
(+

),
5
(+

)

500
100

25
0.001

5447.77
316.27

3
(+

),
4
(−

),
6
(−

)
2022.42

234.42
3
(+

),
4
(+

),
5
(+

)
5447.77

316.27
3
(+

),
4
(−

),
6
(−

)
2022.42

234.42
3
(+

),
4
(+

),
5
(+

)

500
100

25
0.0001

15469.4
337.62

3
(+

),
4
(−

),
6
(−

)
2300.73

256.74
3
(+

),
4
(+

),
5
(+

)
15469.4

337.62
3
(+

),
4
(−

),
6
(−

)
2300.73

256.74
3
(+

),
4
(+

),
5
(+

)

500
100

50
0.01

3592.03
282.27

3
(+

),
4
(+

),
6
(−

)
3015.42

272.68
3
(+

),
4
(+

),
5
(+

)
3592.03

282.27
3
(+

),
4
(+

),
6
(−

)
3015.42

272.68
3
(+

),
4
(+

),
5
(+

)

500
100

50
0.001

10252.75
384.6

3
(+

),
4
(−

),
6
(−

)
3668.91

306.13
3
(+

),
4
(+

),
5
(+

)
10252.75

384.6
3
(+

),
4
(−

),
6
(−

)
3668.91

306.13
3
(+

),
4
(+

),
5
(+

)

500
100

50
0.0001

26877.36
587.34

3
(+

),
4
(−

),
6
(−

)
4228.33

308.99
3
(+

),
4
(+

),
5
(+

)
26877.36

587.34
3
(+

),
4
(−

),
6
(−

)
4228.33

308.99
3
(+

),
4
(+

),
5
(+

)

500
1000

25
0.01

1648.96
27.65

3
(+

),
4
(+

),
6
(−

)
1351.3

26.57
3
(+

),
4
(+

),
5
(+

)
1648.96

27.65
3
(+

),
4
(+

),
6
(−

)
1351.3

26.57
3
(+

),
4
(+

),
5
(+

)

500
1000

25
0.001

5108.33
66.15

3
(+

),
4
(−

),
6
(−

)
1675.53

31.39
3
(+

),
4
(+

),
5
(+

)
5108.33

66.15
3
(+

),
4
(−

),
6
(−

)
1675.53

31.39
3
(+

),
4
(+

),
5
(+

)

500
1000

25
0.0001

15230.15
81.73

3
(+

),
4
(−

),
6
(−

)
1959.85

38.45
3
(+

),
4
(+

),
5
(+

)
15230.15

81.73
3
(+

),
4
(−

),
6
(−

)
1959.85

38.45
3
(+

),
4
(+

),
5
(+

)

500
1000

50
0.01

3250.31
48.01

3
(+

),
4
(∗
),
6
(−

)
2659.67

41.78
3
(+

),
4
(+

),
5
(+

)
3250.31

48.01
3
(+

),
4
(∗
),
6
(−

)
2659.67

41.78
3
(+

),
4
(+

),
5
(+

)

500
1000

50
0.001

9946.25
78.45

3
(+

),
4
(−

),
6
(−

)
3311

54.97
3
(+

),
4
(+

),
5
(+

)
9946.25

78.45
3
(+

),
4
(−

),
6
(−

)
3311

54.97
3
(+

),
4
(+

),
5
(+

)

500
1000

50
0.0001

27099.8
141.77

3
(+

),
4
(−

),
6
(−

)
3874.02

67.06
3
(+

),
4
(+

),
5
(+

)
27099.8

141.77
3
(+

),
4
(−

),
6
(−

)
3874.02

67.06
3
(+

),
4
(+

),
5
(+

)

2000
100

25
0.01

42656.33
78746.01

3
(+

),
4
(+

),
6
(∗
)

35828.26
58468.71

3
(+

),
4
(+

),
5
(∗
)

42656.33
78746.01

3
(+

),
4
(+

),
6
(∗
)

35828.26
58468.71

3
(+

),
4
(+

),
5
(∗
)

2000
100

25
0.001

31712.27
109248.36

3
(−

),
4
(+

),
6
(∗
)

35433.57
70777.69

3
(−

),
4
(+

),
5
(∗
)

31712.27
109248.36

3
(−

),
4
(+

),
6
(∗
)

35433.57
70777.69

3
(−

),
4
(+

),
5
(∗
)

2000
100

25
0.0001

16962.29
4568.34

3
(+

),
4
(+

),
6
(∗
)

30832.67
48712.89

3
(−

),
4
(+

),
5
(∗
)

16962.29
4568.34

3
(+

),
4
(+

),
6
(∗
)

30832.67
48712.89

3
(−

),
4
(+

),
5
(∗
)

2000
100

50
0.01

32200.35
58380.08

3
(+

),
4
(+

),
6
(∗
)

29883.36
62175.41

3
(+

),
4
(+

),
5
(∗
)

32200.35
58380.08

3
(+

),
4
(+

),
6
(∗
)

29883.36
62175.41

3
(+

),
4
(+

),
5
(∗
)

2000
100

50
0.001

23572.49
56055.95

3
(−

),
4
(+

),
6
(∗
)

19896.1
31532.43

3
(−

),
4
(+

),
5
(∗
)

23572.49
56055.95

3
(−

),
4
(+

),
6
(∗
)

19896.1
31532.43

3
(−

),
4
(+

),
5
(∗
)

2000
100

50
0.0001

26065.96
2533.4

3
(+

),
4
(∗
),
6
(−

)
23699.71

55440.52
3
(+

),
4
(+

),
5
(+

)
26065.96

2533.4
3
(+

),
4
(∗
),
6
(−

)
23699.71

55440.52
3
(+

),
4
(+

),
5
(+

)

2000
1000

25
0.01

2063.64
333.48

3
(+

),
4
(+

),
6
(−

)
1757.84

325.86
3
(+

),
4
(+

),
5
(+

)
2063.64

333.48
3
(+

),
4
(+

),
6
(−

)
1757.84

325.86
3
(+

),
4
(+

),
5
(+

)

2000
1000

25
0.001

5511.49
409.15

3
(+

),
4
(∗
),
6
(−

)
2119.2

369.5
3
(+

),
4
(+

),
5
(+

)
5511.49

409.15
3
(+

),
4
(∗
),
6
(−

)
2119.2

369.5
3
(+

),
4
(+

),
5
(+

)

2000
1000

25
0.0001

15310.74
342.3

3
(+

),
4
(+

),
6
(−

)
2374.45

358.4
3
(+

),
4
(+

),
5
(+

)
15310.74

342.3
3
(+

),
4
(+

),
6
(−

)
2374.45

358.4
3
(+

),
4
(+

),
5
(+

)

2000
1000

50
0.01

3660.19
351.35

3
(+

),
4
(∗
),
6
(−

)
3078.84

369.55
3
(+

),
4
(+

),
5
(+

)
3660.19

351.35
3
(+

),
4
(∗
),
6
(−

)
3078.84

369.55
3
(+

),
4
(+

),
5
(+

)

2000
1000

50
0.001

10236.57
426.25

3
(+

),
4
(−

),
6
(−

)
3763.4

453.07
3
(+

),
4
(+

),
5
(+

)
10236.57

426.25
3
(+

),
4
(−

),
6
(−

)
3763.4

453.07
3
(+

),
4
(+

),
5
(+

)

2000
1000

50
0.0001

26258.98
1455.03

3
(∗
),
4
(−

),
6
(−

)
4314.95

465.46
3
(+

),
4
(+

),
5
(+

)
26258.98

1455.03
3
(∗
),
4
(−

),
6
(−

)
4314.95

465.46
3
(+

),
4
(+

),
5
(+

)

4.5. Conclusions 49

T
a
bl

e
4.

7.
St

at
is

ti
ca

l
re

su
lt

s
of

to
ta

l
offl

in
e

er
ro

r
fo

r
(1

+
1)

-E
A

an
d

P
O

SD
C

w
it

h
sm

al
l
ch

an
ge

(r
=

5
0
0
)

in
th

e
dy

na
m

ic
co

ns
tr

ai
nt

w
it

h
n
=

5
0
0

τ
δ

α
(1

+
1)

-E
A

-C
he

by
sh

ev
(1

)
(1

+
1)

-E
A

-C
he

rn
off

(2
)

P
O

SD
C

-C
he

by
sh

ev
(3

)
P

O
SD

C
-C

he
rn

off
(4

)

uncorrelated

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

10
0

25
0.

01
25

54
7.

53
10

66
1.

06
2(

∗)
,3

(−
) ,
4(

−
)

25
50

6.
57

10
28

9.
1

1
(∗
) ,
3(

−
) ,
4
(−

)
57

34
.8

7
11

58
.1

4
1
(+

) ,
2
(+

) ,
4(

∗)
53

43
.6

1
13

16
.2

2
1
(+

) ,
2
(+

) ,
3(

∗)

10
0

25
0.

00
1

26
58

5.
9

58
5.

36
2
(−

) ,
3
(−

) ,
4(

−
)

24
22

7.
03

69
83

.7
4

1(
+
) ,
3
(−

) ,
4
(−

)
10

24
5.

63
87

9.
35

1
(+

) ,
2(

+
) ,
4
(−

)
55

94
.1

4
92

1.
5

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

25
0.

00
01

38
66

9.
07

21
34

.3
2

2
(−

) ,
3
(−

) ,
4(

−
)

23
54

9.
88

33
80

.8
1(

+
) ,
3
(+

) ,
4
(−

)
23

98
6.

66
94

3.
13

1
(+

) ,
2(

−
) ,
4
(−

)
59

14
.1

3
87

4.
4

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

01
24

83
7.

67
26

88
.2

4
2
(∗
) ,
3
(−

) ,
4(

−
)

23
94

7.
29

20
85

.9
5

1(
∗)

,3
(−

) ,
4
(−

)
77

36
.6

8
84

0.
9

1
(+

) ,
2(

+
) ,
4
(∗
)

68
93

.9
4

89
7.

03
1
(+

) ,
2(

+
) ,
3
(∗
)

10
0

50
0.

00
1

32
18

6.
81

14
13

.8
4

2
(−

) ,
3(

−
) ,
4
(−

)
24

26
9.

69
92

7.
1

1(
+
) ,
3
(−

) ,
4(

−
)

16
80

0.
31

90
5.

79
1
(+

) ,
2(

+
) ,
4
(−

)
77

43
.7

7
92

0.
97

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

00
01

53
11

3.
67

47
77

.7
8

2
(−

) ,
3(

−
) ,
4
(−

)
24

73
2.

3
54

2.
8

1(
+
) ,
3
(+

) ,
4(

−
)

41
20

1.
03

20
70

.3
7

1
(+

) ,
2(

−
) ,
4
(−

)
84

06
.0

7
95

6.
56

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

01
10

67
9.

09
25

1.
38

2
(−

) ,
3(

−
) ,
4
(−

)
10

25
5.

75
28

3.
04

1(
+
) ,
3
(−

) ,
4(

−
)

26
23

.2
8

59
.0

4
1
(+

) ,
2(

+
) ,
4
(−

)
21

77
.0

2
48

.4
1

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

00
1

15
35

3.
99

25
1.

59
2
(−

) ,
3(

−
) ,
4
(−

)
10

68
9.

04
25

7.
01

1(
+
) ,
3
(−

) ,
4(

−
)

73
36

.6
5

87
.7

1
1
(+

) ,
2(

+
) ,
4
(−

)
26

06
.9

50
.4

1
1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

00
01

29
00

5.
42

26
5.

48
2
(−

) ,
3(

−
) ,
4
(−

)
10

92
9.

47
24

1.
09

1(
+
) ,
3
(+

) ,
4(

−
)

21
38

1.
65

18
0.

38
1
(+

) ,
2(

−
) ,
4
(−

)
29

70
.1

8
62

.3
2

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

01
12

87
9.

75
25

0.
15

2
(−

) ,
3(

−
) ,
4
(−

)
11

98
4.

36
28

4.
16

1(
+
) ,
3
(−

) ,
4(

−
)

47
99

.1
4

59
.0

7
1
(+

) ,
2(

+
) ,
4
(−

)
39

31
.0

4
76

.3
4

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

00
1

21
84

6.
35

29
7.

37
2
(−

) ,
3(

−
) ,
4
(−

)
12

83
0.

75
28

0.
57

1(
+
) ,
3
(+

) ,
4(

−
)

14
00

0.
45

13
2.

56
1
(+

) ,
2(

−
) ,
4
(−

)
47

74
.0

3
83

.4
9

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

00
01

45
52

7.
61

38
8.

1
2
(−

) ,
3(

−
) ,
4
(−

)
13

54
2.

6
22

1.
6

1(
+
) ,
3
(+

) ,
4(

−
)

38
98

1.
91

91
.3

5
1
(+

) ,
2(

−
) ,
4
(−

)
55

04
.2

2
89

.5
4

1
(+

) ,
2(

+
) ,
3
(+

)

bounded-strongly-correlated

10
0

25
0.

01
13

57
1.

56
89

1.
21

2(
∗)

,3
(−

) ,
4(

−
)

13
28

3.
16

84
3.

81
1
(∗
) ,
3(

−
) ,
4
(−

)
50

64
.0

1
18

1.
52

1
(+

) ,
2
(+

) ,
4(

−
)

47
26

.2
4

17
4.

23
1
(+

) ,
2
(+

) ,
3(

+
)

10
0

25
0.

00
1

17
31

3.
02

11
85

.7
1

2
(−

) ,
3
(−

) ,
4(

−
)

13
52

4.
48

87
3.

45
1(

+
) ,
3
(−

) ,
4
(−

)
86

82
.0

7
38

5.
56

1
(+

) ,
2(

+
) ,
4
(−

)
50

41
.8

1
17

2.
01

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

25
0.

00
01

28
00

1.
34

22
73

.8
6

2
(−

) ,
3
(−

) ,
4(

−
)

13
79

3.
69

86
8.

91
1(

+
) ,
3
(+

) ,
4
(−

)
19

26
5.

15
10

41
.2

9
1
(+

) ,
2(

−
) ,
4
(−

)
52

73
.3

1
19

8.
47

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

01
15

30
4.

23
10

44
.3

5
2
(∗
) ,
3
(−

) ,
4(

−
)

14
62

0.
03

94
7.

35
1(

∗)
,3

(−
) ,
4
(−

)
67

11
.2

1
27

9.
52

1
(+

) ,
2(

+
) ,
4
(−

)
60

63
.7

3
18

4.
85

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

00
1

22
50

2.
7

16
92

.3
2
(−

) ,
3(

−
) ,
4
(−

)
15

25
0.

58
10

16
.1

6
1(

+
) ,
3
(−

) ,
4(

−
)

13
81

8.
95

69
1.

04
1
(+

) ,
2(

+
) ,
4
(−

)
66

73
.5

1
21

6.
82

1
(+

) ,
2(

+
) ,
3
(+

)

10
0

50
0.

00
01

40
43

3.
65

40
94

.7
8

2
(−

) ,
3(

−
) ,
4
(−

)
15

80
0.

27
10

69
.9

7
1(

+
) ,
3
(+

) ,
4(

−
)

32
74

8.
25

25
41

.6
7

1
(+

) ,
2(

−
) ,
4
(−

)
72

41
.5

23
2.

75
1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

01
80

06
.0

7
24

6.
05

2
(−

) ,
3(

−
) ,
4
(−

)
76

05
.7

2
18

6.
1

1(
+
) ,
3
(−

) ,
4(

−
)

24
90

.8
4

16
0.

57
1
(+

) ,
2(

+
) ,
4
(−

)
21

59
.6

9
13

0.
44

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

00
1

11
67

0.
1

30
1.

42
2
(−

) ,
3(

−
) ,
4
(−

)
79

84
.4

7
22

1.
99

1(
+
) ,
3
(−

) ,
4(

−
)

57
66

.0
9

16
5.

05
1
(+

) ,
2(

+
) ,
4
(−

)
24

65
.3

6
10

1.
48

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

25
0.

00
01

21
98

8.
98

51
5.

58
2
(−

) ,
3(

−
) ,
4
(−

)
82

36
.1

20
2.

32
1(

+
) ,
3
(+

) ,
4(

−
)

15
22

0.
29

37
5.

16
1
(+

) ,
2(

−
) ,
4
(−

)
27

32
.1

5
12

3.
2

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

01
97

43
.2

3
22

2.
54

2
(−

) ,
3(

−
) ,
4
(−

)
90

57
.6

1
19

7.
93

1(
+
) ,
3
(−

) ,
4(

−
)

39
78

.1
6

10
2.

95
1
(+

) ,
2(

+
) ,
4
(−

)
34

48
.4

6
12

7.
07

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

00
1

16
67

4.
56

37
1.

01
2
(−

) ,
3(

−
) ,
4
(−

)
96

84
.4

1
24

1.
01

1(
+
) ,
3
(+

) ,
4(

−
)

10
35

9.
91

25
1.

3
1
(+

) ,
2(

−
) ,
4
(−

)
40

44
.2

7
16

2.
05

1
(+

) ,
2(

+
) ,
3
(+

)

10
00

50
0.

00
01

33
35

8.
68

93
4.

81
2
(−

) ,
3(

−
) ,
4
(−

)
10

20
2.

97
19

1.
17

1(
+
) ,
3
(+

) ,
4(

−
)

25
69

9.
41

69
2.

5
1
(+

) ,
2(

−
) ,
4
(−

)
45

47
.6

3
12

5.
05

1
(+

) ,
2(

+
) ,
3
(+

)

50 Chapter 4. Evolutionary Bi-objective Optimisation for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives

T
a
ble

4.8.
Statistical

results
of

total
offl

ine
error

for
(1+

1)-E
A

and
P

O
SD

C
w

ith
large

change
(r

=
2000)

in
the

dynam
ic

constraint
w

ith
n
=

5
0
0

τ
δ

α
(1+

1)-E
A

-C
hebyshev

(1)
(1+

1)-E
A

-C
hernoff

(2)
P

O
SD

C
-C

hebyshev
(3)

P
O

SD
C

-C
hernoff

(4)

uncorrelated

M
ean

Std
Stat

M
ean

Std
Stat

M
ean

Std
Stat

M
ean

Std
Stat

100
25

0.01
1061998.7

814370.17
2
(∗
),
3
(−

),
4
(∗
)

1439549.69
960146.92

1
(∗
),
3
(−

),
4
(−

)
482702.1

367723.67
1
(+

),
2
(+

),
4
(∗
)

708278.81
504437.72

1
(∗
),
2
(+

),
3
(∗
)

100
25

0.001
227594.01

174438.01
2
(+

),
3
(−

),
4
(∗
)

999424.78
746161.39

1
(−

),
3
(−

),
4
(−

)
31372.51

16409.05
1
(+

),
2
(+

),
4
(+

)
446334.52

337016.31
1
(∗
),
2
(+

),
3
(−

)

100
25

0.0001
64221.99

14836.09
2
(+

),
3
(−

),
4
(∗
)

763947.72
597826.15

1
(−

),
3
(−

),
4
(−

)
30408.55

4418.98
1
(+

),
2
(+

),
4
(+

)
294229.84

229487.59
1
(∗
),
2
(+

),
3
(−

)

100
50

0.01
402875.79

340310.54
2
(∗
),
3
(−

),
4
(−

)
504409.81

423778.54
1
(∗
),
3
(−

),
4
(−

)
82281.96

66149.17
1
(+

),
2
(+

),
4
(∗
)

124975.57
103120.73

1
(+

),
2
(+

),
3
(∗
)

100
50

0.001
93937.35

53223.23
2
(+

),
3
(−

),
4
(−

)
367874.23

306893.74
1
(−

),
3
(−

),
4
(−

)
24816.5

4706.67
1
(+

),
2
(+

),
4
(+

)
62714.42

48211.84
1
(+

),
2
(+

),
3
(−

)

100
50

0.0001
62615.79

3490.3
2
(∗
),
3
(−

),
4
(−

)
283227.8

228239.95
1
(∗
),
3
(−

),
4
(−

)
44462.28

3903.98
1
(+

),
2
(+

),
4
(∗
)

39071.03
25446.22

1
(+

),
2
(+

),
3
(∗
)

1000
25

0.01
76989.59

74805.42
2
(∗
),
3
(−

),
4
(−

)
126797.07

94411.04
1
(∗
),
3
(−

),
4
(−

)
54626.04

84434.18
1
(+

),
2
(+

),
4
(∗
)

71234.64
110440.83

1
(+

),
2
(+

),
3
(∗
)

1000
25

0.001
23395.36

6018.96
2
(∗
),
3
(−

),
4
(+

)
72923.77

65146.89
1
(∗
),
3
(−

),
4
(−

)
10635.11

4616.68
1
(+

),
2
(+

),
4
(∗
)

52595.23
81013.7

1
(−

),
2
(+

),
3
(∗
)

1000
25

0.0001
32881.96

1815.86
2
(∗
),
3
(−

),
4
(+

)
48096.12

44477.47
1
(∗
),
3
(∗
),
4
(−

)
22113.69

1311.48
1
(+

),
2
(∗
),
4
(∗
)

36297.22
54405.47

1
(−

),
2
(+

),
3
(∗
)

1000
50

0.01
26997.58

17455.53
2
(∗
),
3
(−

),
4
(−

)
28846.96

21160.39
1
(∗
),
3
(−

),
4
(−

)
15766.81

18018.12
1
(+

),
2
(+

),
4
(∗
)

20829.28
27230.52

1
(+

),
2
(+

),
3
(∗
)

1000
50

0.001
26694.56

1122.91
2
(∗
),
3
(−

),
4
(−

)
24108.83

11500.66
1
(∗
),
3
(−

),
4
(−

)
15292.27

1371.71
1
(+

),
2
(+

),
4
(∗
)

13017.45
13627.49

1
(+

),
2
(+

),
3
(∗
)

1000
50

0.0001
46986.42

4628.9
2
(−

),
3
(−

),
4
(−

)
21719.8

5746.5
1
(+

),
3
(+

),
4
(−

)
37893.14

2786.62
1
(+

),
2
(−

),
4
(−

)
10420.59

7285.91
1
(+

),
2
(+

),
3
(+

)

bounded-strongly-correlated

100
25

0.01
485045.34

402444.67
2
(∗
),
3
(−

),
4
(∗
)

778706.81
500486.94

1
(∗
),
3
(−

),
4
(−

)
203496.58

171490.02
1
(+

),
2
(+

),
4
(∗
)

298887.93
235686.88

1
(∗
),
2
(+

),
3
(∗
)

100
25

0.001
83030.62

77897.12
2
(+

),
3
(−

),
4
(∗
)

466446.83
383812.6

1
(−

),
3
(−

),
4
(−

)
18030.96

9756.2
1
(+

),
2
(+

),
4
(+

)
187692.66

158975.68
1
(∗
),
2
(+

),
3
(−

)

100
25

0.0001
36162.08

4679.22
2
(+

),
3
(−

),
4
(∗
)

310419.86
291916.89

1
(−

),
3
(−

),
4
(∗
)

19523.27
2061.6

1
(+

),
2
(+

),
4
(+

)
128385.18

112886.57
1
(∗
),
2
(∗
),
3
(−

)

100
50

0.01
151657.79

156077.56
2
(∗
),
3
(−

),
4
(−

)
183507.1

184812.07
1
(∗
),
3
(−

),
4
(−

)
40269.97

37317.76
1
(+

),
2
(+

),
4
(∗
)

57552.97
53820.72

1
(+

),
2
(+

),
3
(∗
)

100
50

0.001
44437.41

22871.14
2
(∗
),
3
(−

),
4
(−

)
132170.29

133691.43
1
(∗
),
3
(−

),
4
(−

)
15653.6

427.4
1
(+

),
2
(+

),
4
(∗
)

29815.46
25541.87

1
(+

),
2
(+

),
3
(∗
)

100
50

0.0001
43540.61

8960.02
2
(∗
),
3
(−

),
4
(−

)
110321.77

107290.04
1
(∗
),
3
(−

),
4
(−

)
29197.66

5143.73
1
(+

),
2
(+

),
4
(−

)
19481.1

12899.68
1
(+

),
2
(+

),
3
(+

)

1000
25

0.01
36380.73

26920.16
2
(+

),
3
(−

),
4
(−

)
74613.21

34615.49
1
(−

),
3
(−

),
4
(−

)
7310.36

14219.58
1
(+

),
2
(+

),
4
(+

)
7872.99

16402.96
1
(+

),
2
(+

),
3
(−

)

1000
25

0.001
13182.88

1232.53
2
(+

),
3
(−

),
4
(−

)
36059.29

24473.13
1
(−

),
3
(−

),
4
(−

)
5699.88

420.25
1
(+

),
2
(+

),
4
(∗
)

6600.89
12281.81

1
(+

),
2
(+

),
3
(∗
)

1000
25

0.0001
22599.57

2864.27
2
(−

),
3
(−

),
4
(−

)
21119.79

18450.2
1
(+

),
3
(∗
),
4
(−

)
14349.33

1596.37
1
(+

),
2
(∗
),
4
(−

)
5555.48

8360.01
1
(+

),
2
(+

),
3
(+

)

1000
50

0.01
12056.59

2618.63
2
(∗
),
3
(−

),
4
(−

)
12473.88

5012.82
1
(∗
),
3
(−

),
4
(−

)
4796.8

2819.08
1
(+

),
2
(+

),
4
(∗
)

4705.07
4048.4

1
(+

),
2
(+

),
3
(∗
)

1000
50

0.001
17630.69

1936.44
2
(−

),
3
(−

),
4
(−

)
11611.82

1188.0
1
(+

),
3
(−

),
4
(−

)
9926.29

876.92
1
(+

),
2
(+

),
4
(−

)
4629.46

2459.38
1
(+

),
2
(+

),
3
(+

)

1000
50

0.0001
33637.01

5237.98
2
(−

),
3
(−

),
4
(−

)
11830.94

788.57
1
(+

),
3
(+

),
4
(−

)
23968.87

3393.71
1
(+

),
2
(−

),
4
(−

)
4655.54

949.69
1
(+

),
2
(+

),
3
(+

)

4.5. Conclusions 51

T
a
bl

e
4.

9.
St

at
is

ti
ca

lr
es

ul
ts

of
to

ta
lo

ffl
in

e
er

ro
r

fo
r

N
SG

A
-I

I
w

it
h

ch
an

ge
s

in
th

e
dy

na
m

ic
co

ns
tr

ai
nt

w
it

h
n
=

5
0
0

r
τ

δ
α

un
co

rr
el

at
ed

bo
un

de
d-

st
ro

ng
ly

co
rr

el
at

ed
N

SG
A

-I
I-

C
he

by
sh

ev
(5

)
N

SG
A

-I
I-

C
he

rn
off

(6
)

N
SG

A
-I

I-
C

he
by

sh
ev

(5
)

N
SG

A
-I

I-
C

he
rn

off
(6

)

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

M
ea

n
St

d
St

at
M

ea
n

St
d

St
at

50
0

10
0

25
0.

01
26

29
.1

5
25

0.
1

3(
+
) ,
4
(+

) ,
6(

−
)

21
66

.8
8

24
2.

94
3
(+

) ,
4(

+
) ,
5
(+

)
17

75
.9

5
59

.7
1

3(
+
) ,
4
(+

) ,
6(

−
)

14
86

.8
3

78
.4

5
3(

+
) ,
4
(+

) ,
5(

+
)

50
0

10
0

25
0.

00
1

73
37

.2
9

26
3.

17
3(

+
) ,
4
(−

) ,
6(

−
)

26
04

.9
22

0.
96

3
(+

) ,
4(

+
) ,
5
(+

)
51

76
.6

7
12

1.
02

3(
+
) ,
4
(+

) ,
6(

−
)

17
95

.8
66

.3
5

3(
+
) ,
4
(+

) ,
5(

+
)

50
0

10
0

25
0.

00
01

21
37

2.
96

35
7.

01
3(

+
) ,
4
(−

) ,
6(

−
)

29
65

.5
22

3.
38

3
(+

) ,
4(

+
) ,
5
(+

)
14

30
7.

84
35

0.
68

3(
+
) ,
4
(−

) ,
6(

−
)

20
62

.7
7

58
.9

6
3(

+
) ,
4
(+

) ,
5(

+
)

50
0

10
0

50
0.

01
47

85
.3

4
19

2.
57

3(
+
) ,
4
(+

) ,
6(

−
)

39
47

.4
4

25
6.

57
3
(+

) ,
4(

+
) ,
5
(+

)
33

61
.7

3
74

.8
8

3(
+
) ,
4
(+

) ,
6(

−
)

27
54

.1
7

66
.8

4
3(

+
) ,
4
(+

) ,
5(

+
)

50
0

10
0

50
0.

00
1

13
97

6.
83

29
4.

21
3
(+

) ,
4
(−

) ,
6(

−
)

47
82

.7
3

25
1.

83
3(

+
) ,
4
(+

) ,
5
(+

)
97

76
.7

1
20

0.
09

3(
+
) ,
4
(−

) ,
6(

−
)

33
61

.3
5

78
.9

3(
+
) ,
4
(+

) ,
5(

+
)

50
0

10
0

50
0.

00
01

38
91

9.
03

15
4.

93
3
(+

) ,
4
(−

) ,
6(

−
)

55
02

.2
7

25
1.

65
3(

+
) ,
4
(+

) ,
5
(+

)
24

38
6.

51
61

6.
53

3(
+
) ,
4
(−

) ,
6(

−
)

39
07

.8
5

85
.8

4
3(

+
) ,
4
(+

) ,
5(

+
)

50
0

10
00

25
0.

01
22

43
.9

2
21

.4
2

3
(+

) ,
4
(+

) ,
6(

−
)

18
11

.4
5

20
3(

+
) ,
4
(+

) ,
5
(+

)
16

45
.4

8
17

.4
3(

+
) ,
4
(+

) ,
6(

−
)

13
36

.8
8

16
.5

4
3(

+
) ,
4
(+

) ,
5(

+
)

50
0

10
00

25
0.

00
1

69
65

.3
4

25
.9

8
3
(+

) ,
4
(−

) ,
6(

−
)

22
29

.6
4

15
.0

7
3(

+
) ,
4
(+

) ,
5
(+

)
50

48
.7

4
39

.2
2

3(
+
) ,
4
(−

) ,
6(

−
)

16
47

.1
3

23
3(

+
) ,
4
(+

) ,
5(

+
)

50
0

10
00

25
0.

00
01

20
95

2.
86

45
.3

8
3
(+

) ,
4
(−

) ,
6(

−
)

25
99

.8
5

20
.3

5
3(

+
) ,
4
(+

) ,
5
(+

)
14

22
7.

63
10

7.
44

3(
+
) ,
4
(−

) ,
6(

−
)

19
20

.8
13

.5
5

3(
+
) ,
4
(+

) ,
5(

+
)

50
0

10
00

50
0.

01
44

36
.1

6
18

.8
9

3
(+

) ,
4
(+

) ,
6(

−
)

35
60

.3
1

22
.0

5
3(

+
) ,
4
(+

) ,
5
(+

)
32

26
.7

1
21

.0
2

3(
+
) ,
4
(+

) ,
6(

−
)

26
18

.2
9

20
.4

3(
+
) ,
4
(+

) ,
5(

+
)

50
0

10
00

50
0.

00
1

13
59

2.
41

35
.6

6
3
(+

) ,
4
(−

) ,
6(

−
)

44
00

.6
4

28
.6

7
3(

+
) ,
4
(+

) ,
5
(+

)
96

66
.5

5
68

.7
9

3(
+
) ,
4
(−

) ,
6(

−
)

32
37

.6
2

17
.8

3
3(

+
) ,
4
(+

) ,
5(

+
)

20
00

10
00

50
0.

00
01

38
60

5.
89

33
.4

5
3(

+
) ,
4
(−

) ,
6(

−
)

51
31

.9
2

24
.3

9
3
(+

) ,
4(

+
) ,
5
(+

)
24

43
1.

89
19

1.
89

3(
+
) ,
4
(−

) ,
6(

−
)

37
79

.7
6

25
.2

3
3(

+
) ,
4
(+

) ,
5(

+
)

20
00

10
0

25
0.

01
19

80
72

7.
33

95
58

03
2.

36
3(

−
) ,
4
(−

) ,
6(

∗)
48

17
41

.2
15

61
55

6.
42

3
(+

) ,
4(

+
) ,
5
(∗
)

14
27

4.
08

46
28

0.
86

3(
+
) ,
4
(+

) ,
6(

∗)
95

83
.7

8
21

51
5.

62
3(

+
) ,
4
(+

) ,
5(

∗)

20
00

10
0

25
0.

00
1

22
87

05
.8

3
69

35
57

.4
1

3(
∗)

,4
(+

) ,
6(

∗)
20

99
55

7.
82

99
63

31
4.

09
3(

−
) ,
4
(−

) ,
5
(∗
)

69
98

.5
1

49
07

.2
4

3(
+
) ,
4
(+

) ,
6(

∗)
14

61
3.

43
49

35
7.

48
3(

−
) ,
4
(+

) ,
5(

∗)

20
00

10
0

25
0.

00
01

15
10

89
.8

8
37

84
27

.6
1

3
(−

) ,
4
(+

) ,
6(

∗)
49

36
94

.9
7

22
34

14
7.

08
3(

−
) ,
4
(−

) ,
5
(∗
)

14
62

2
14

42
.2

7
3(

+
) ,
4
(∗
) ,
6
(−

)
83

67
.8

6
17

46
6.

64
3(

+
) ,
4
(+

) ,
5(

+
)

20
00

10
0

50
0.

01
43

01
42

.4
3

14
77

43
5.

51
3
(∗
) ,
4
(−

) ,
6(

∗)
41

31
48

.5
9

10
15

12
0.

2
3(

−
) ,
4
(−

) ,
5(

∗)
65

24
.5

2
77

82
.7

9
3(

+
) ,
4
(+

) ,
6(

+
)

86
69

.5
8

20
99

9.
17

3(
+
) ,
4
(+

) ,
5(

−
)

20
00

10
0

50
0.

00
1

56
78

97
.0

1
29

11
41

2.
7

3
(−

) ,
4(

∗)
,6

(∗
)

80
53

38
.6

5
23

74
57

6.
61

3(
−
) ,
4
(−

) ,
5(

∗)
10

87
8.

92
20

26
.3

4
3(

+
) ,
4
(∗
) ,
6
(−

)
66

30
.5

3
10

55
4.

83
3(

+
) ,
4
(+

) ,
5(

+
)

20
00

10
0

50
0.

00
01

67
15

9.
26

11
24

44
.1

7
3
(∗
) ,
4
(∗
) ,
6
(+

)
20

39
56

9.
02

83
05

88
1.

27
3(

−
) ,
4
(∗
) ,
5
(−

)
24

02
3.

68
33

37
.4

5
3(

+
) ,
4
(−

) ,
6(

−
)

16
81

5.
6

59
03

5.
06

3
(+

) ,
4
(−

) ,
5(

+
)

20
00

10
00

25
0.

01
27

31
.6

5
38

0.
74

3
(+

) ,
4(

+
) ,
6
(−

)
22

57
.4

7
29

8.
06

3(
+
) ,
4
(+

) ,
5(

+
)

18
02

.3
62

.0
1

3(
+
) ,
4
(+

) ,
6(

−
)

15
01

.7
7

56
.5

5
3
(+

) ,
4
(+

) ,
5(

+
)

20
00

10
00

25
0.

00
1

74
14

.5
4

32
9.

02
3
(+

) ,
4(

−
) ,
6
(−

)
27

02
.2

4
35

0.
82

3(
+
) ,
4
(+

) ,
5(

+
)

51
52

.2
3

13
1.

64
3(

+
) ,
4
(−

) ,
6(

−
)

18
23

.2
78

.0
4

3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
00

25
0.

00
01

21
44

0.
57

48
1.

58
3
(+

) ,
4(

−
) ,
6
(−

)
30

69
.2

8
29

7.
1

3(
+
) ,
4
(+

) ,
5(

+
)

14
16

2.
83

50
6.

49
3(

+
) ,
4
(−

) ,
6(

−
)

20
83

.2
7

69
.5

5
3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
00

50
0.

01
48

82
.2

34
4.

2
3
(+

) ,
4(

+
) ,
6
(−

)
39

92
.0

9
31

9.
33

3(
+
) ,
4
(+

) ,
5(

+
)

33
66

.2
1

86
.3

6
3
(+

) ,
4
(+

) ,
6(

−
)

27
56

.0
2

69
.2

8
3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
00

50
0.

00
1

14
10

9.
65

47
7.

06
3
(+

) ,
4(

−
) ,
6
(−

)
48

89
.6

2
38

9.
76

3(
+
) ,
4
(+

) ,
5(

+
)

96
91

.4
1

27
6.

03
3
(+

) ,
4
(−

) ,
6(

−
)

33
59

.4
76

.4
4

3
(+

) ,
4(

+
) ,
5
(+

)

20
00

10
00

50
0.

00
01

38
81

1.
05

21
8.

98
3
(+

) ,
4(

−
) ,
6
(−

)
56

06
.6

35
7.

17
3(

+
) ,
4
(+

) ,
5(

+
)

24
26

1.
29

91
1.

19
3
(+

) ,
4
(−

) ,
6(

−
)

39
14

.2
2

97
.4

2
3
(+

) ,
4(

+
) ,
5
(+

)

53

Chapter 5

Novelty-Driven Binary Particle
Swarm Optimisation for Truss
Optimisation Problems

In Chapter 4, we showed that evolutionary algorithms could solve theoretical com-
binatorial optimisation problems such as the dynamic chance-constrained knapsack
problem. This chapter focuses on a problem in engineering design known as truss
optimisation. We approach one primary aspect of the problem, including/excluding
a truss member, as a combinatorial optimisation problem.

Trusses are structural frameworks that consist of bars connecting its nodes. They
carry applied external forces on nodes to support structures such as bridges and towers.
Topology optimisation of trusses to determine including and excluding a bar can be
formulated as a combinatorial and multi-modal problem. It has been observed that
there exist multiple distinct topologies with almost equal overall weight in the truss
optimisation search space [DG01; ILM17; Li+16b]. Therefore finding multiple equally
good truss designs can enable practitioners to choose according to their preferences.

In this chapter, we consider the bilevel optimisation of trusses with a primary
focus on the upper level as a combinatorial optimisation problem. We propose two
approaches considering the upper level search space in the truss test problems and
assume that the size of bars should be selected from a discrete set with respect to
practice code constraints.

Truss optimisation problem could be low and high dimensional with respect to the
size of upper level. We introduce exact enumeration to rigorously analyse the topology
search space and remove randomness for small problems. Exact enumeration iterates
over all possible upper level topologies, and we apply the lower level optimisation
to every feasible upper level design. We also propose novelty-driven binary particle
swarm optimisation for bigger problems to discover new designs at the upper level by
maximising novelty. We show through experimental investigation that our approach
outperforms the current state-of-the-art methods and it obtains multiple high-quality
solutions.

This chapter is based on the work to appear in European Conference on Evolution-
ary Computation in Combinatorial Optimization (Part of EvoStar) 2022 [Ass+22b].
We added more details for experiments and explanations. The rest of this chapter
is organised as follows. In the next section, we state the bilevel truss optimisation
problem with the focus on upper level and we explain the lower level optimiser. Next,
we introduce the exact enumeration and propose the bilevel novelty search framework
including the upper level repair operator. We carry out experimental investigations
and report on the quality of obtained solutions for different truss test problems. We
finish with some concluding remarks and some suggestions for future work.

54 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

5.1 Bilevel Truss Optimisation Problem

Recall the definition of truss optimisation problem in Section 2.4. The formulation
has been based on the assumption that topology and size (and shape) optimisation
are separable problem. However, these are non-separable problems that makes it
inappropriate to use the equation mentioned earlier (Eq 2.4

Bilevel optimisation is a more effective approach than the previous two approaches
(see Chapter 2.4) to dealing with truss optimisation problems because it can explicitly
model the interaction among different aspects of the problem. In the bilevel formu-
lation, the upper level optimisation problem determines the truss configuration, such
as topology, where the lower level optimises bars’ sizing.

Islam et al. [ILM17] adopted a bilevel representation for the truss optimisation
problem, where the weight of the truss was the main optimisation objective for both
upper and lower levels. In the upper level, a modified binary Particle Swarm Opti-
misation (PSO) with niching capability was used to enhance its population diversity
while still maintaining some level of exploitation. The niching technique was based
on a speciation scheme that applies a niching radius to subdivide the swarm to lo-
cate multiple high-quality solutions. A standard continuous PSO was employed for
the lower level to supply good sizing solutions to the upper level. However, using
standard PSO for such constrained engineering problems can lead to trapping in local
optima [HPW04].

We state the bilevel truss optimisation problem as follows where we embed an up-
per level topology optimisation problem into a lower level size and shape optimisation
problem.

find x⃗, y⃗, x⃗ ∈ {0, 1}m

optimise F (x⃗, y⃗)

subject to G1(x⃗), G2(x⃗), G3(x⃗)

where G1(x⃗) = True ⇐⇒ Necessary nodes are active in truss
G2(x⃗) = True ⇐⇒ Truss is externally stable
G3(x⃗) = y⃗ ∈ argmin{W (x⃗, y⃗), gj(x⃗, y⃗) ≤ 0, j = 1, 2, 3}

Topology variable x⃗ is a binary variable in the upper level where it shows if a truss
bar is active (1) or excluded (0). m shows the length of upper level topology design
representation and determines the low or high dimensional of the search space of
topology optimisation. For instance, in 25-bar truss m is 8 due to symmetry that the
25 members are divided into 8 groups. For the same problem, we can show the upper
bound of topology as the ground structure where all bars are active as x⃗ = [11111111].

y⃗ denotes the design variable in the lower level optimisation problem including size
and shape with respect to the test problem. The size variables of y⃗ should be selected
from an available size set (S) and shape variables from a continuous range with respect
to the layout constraints of the test problems. F (x⃗, y⃗) shows the objective function
considered in the upper level such as weight minimisation used in [ILM17].

Solutions in the upper level should satisfy the topology constraints for feasibility.
G1 enforces that the design should have active nodes that support the truss and carry
the external load, because they are necessary elements in the design space’s predefined
boundary conditions. For example for 25-bar truss (depicted in Figure 5.1) nodes 7-10
are support nodes and nodes 1-3 and 6 are carrying external loads. Therefore these
eight nodes are necessary nodes in the design space.

5.2. Optimisation methods 55

9

10

11

12

13

14

19

18

16

8

7
65

4

17
25

23
24

22

21

20
15

13

1

(5)

(10)

(4)

(2)

3

2

(3)

(9)

(8)

(7)

(6)

(1)

8L

3L

4L

3L

4L

8L

3L

L= 25 in (63.5 cm)

Figure 5.1. Ground structure of 25-bar truss.

G2 states the external stability of a truss. The external stability satisfaction
criteria are fully detailed in the following section. Feasible topology solutions should
meet G1 and G2. In this case, the lower level optimiser aims to find the optimum y⃗
to minimise the overall weight of truss (W) which is the summation of the weight of
all included bars (m̂) in the truss.

W (x⃗, y⃗) = ρ

m̂∑
i=1

xiyili

where ρ and l show the density of the material used in the truss (such as aluminium or
steel) and length of a bar with respect to its end points in the design space, respectively.
upper level external stability satisfaction is necessary but not sufficient. Therefore, in
the lower level, the internal stability should be checked through lower level function
evaluation considering that truss stiffness matrix should be positive-definite.

If (x⃗, y⃗) meets the internal stable condition, extra constraints should be satisfied.
These constraints state that the computed stress in bars (σi, i ∈ {1, 2, .., m̂}) and
displacement of truss nodes (δk, k = {1, 2, .., n}) after applying the external loads
should not exceed their problem-dependent allowable values σmax

i , i ∈ {1, 2, .., m̂},
and δmax

k , k ∈ {1, 2, .., n}, respectively.
The lower level constraints gj , j = 1, 2, 3, used as part of G3(x⃗) are therefore

defined as follows.

g1(x⃗, y⃗) = True ⇐⇒ Truss is internally stable
g2(x⃗, y⃗) ≤ 0 ⇐⇒ g2,i(x⃗, y⃗) = σi − σmax

i ≤ 0 ∀i ∈ {1, 2, .., m̂}
g3(x⃗, y⃗) ≤ 0 ⇐⇒ g3,k(x⃗, y⃗) = δk − δmax

k ≤ 0 ∀k ∈ {1, 2, .., n}

See Section 2.4 for more details on these constraints.

5.2 Optimisation Methods

In this section we describe the methods used for bilevel optimisation of trusses. We
first explain the lower-level optimisation where a domain knowledge-based algorithm
computes the optimum design variables for size and shape optimisation. Next, we
present the exact enumeration technique applied to small-scale truss problems where

56 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

Algorithm 5.1: Lowerlevel optimiser
1 while termination criterion is not met do
2 Set the shape and size design variables
3 Set the independent mutation step
4 Initialise the recombinant design
5 Mutating shape variables
6 Mutating size variables
7 Computing the member stress and nodal deflection
8 Calculate the objective function and constraints
9 Resizing the size variables

10 Select the best individuals and update the strategy parameters

the upper level topology search space is tractable. Subsequently, we develop the
novelty-driven binary PSO to tackle truss problems with bigger topology search space.

5.2.1 Lower Level Optimisation

We use a domain knowledge-based evolutionary optimiser for lower level optimisa-
tion [AD16] to determine the optimum layout. The loweroptimiser is a variant of
Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES) that is cus-
tomised to be problem-specific.

loweroptimiser follows the main principles of evolutionary strategies to evolve the
solutions. However, it uses specific operators to adjust solutions with respect to the
allowable stress and displacement in the truss. Algorithm 5.1 shows its procedure. It
starts with setting the shape and size design variables with length of the nodes and
members in the design space. Next, it allocates an independent mutation step for
each design variables. Shape variables are mutated in the next step using a truncated
normal distribution where the bound constraints are automatically satisfied. After it
determined the shape, the size variables are mutated using a stochastic a probabilistic
scheme to round the values to the discrete set to avoid biasing the search towards sub-
optimal solutions. Next, loweroptimiser performs finite element analysis to compute
the stress in members and nodal deflection and subsequently calculates the objective
function. Moreover, loweroptimiser employs a mapping strategy with respect to the
response after performing finite element analysis to adjust the sizing of a violating bar
by multiplying its current size with a factor that depends on the amount of violation.
Another operator is a resizing strategy for producing new individuals near boundary
designs of the problem and the problem-dependent constraints. For brevity, we refer
the reader to [AAD20; AD16] for detailed explanations on different components of the
loweroptimiser.

5.2.2 Exact Enumeration

We apply exact enumeration to the truss problems where the upper level dimension
of the search space dimension is low (m ≤ 12). Exact enumeration enables us to
enumerate over all possible combinations of binary strings in the search space in
the upper level, where each represents a topology design. Therefore we can remove
the randomness for these problems from the upper level and investigate its search
space rigorously. Algorithm 5.2 shows the pseudocode of our exact enumeration.
This algorithm takes the upper level dimension m as the input and iterates over all
possible binary string combinations of m-bits. If a binary string satisfies the upper

5.2. Optimisation methods 57

Algorithm 5.2: Exact Enumeration
1 for i = 1; i ≤ 2m; i = i+ 1 do
2 compute x⃗i ▷ generate the bit string
3 if x⃗i is feasible then
4 y⃗i = loweroptimiser(x⃗i)

5 Store W (x⃗i, y⃗i)

level’s feasibility criteria G1 and G2, it will be sent to the lower level. loweroptimiser
aims to find the optimum vector for size (and shape), and we store its overall weight.

5.2.3 Novelty-Driven Bilevel Truss Optimisation

In this section we introduce the components of the proposed bilevel method. Next,
we combine these components and explain the framework of the algorithm.

Binary PSO

Recall PSO from Section 3.3.3 which is typically used as a continuous optimisation
algorithm. Therefore, to use it for binary search spaces, we need to employ a transfer
function, such as Sigmoid transfer function, to map a continuous search space into a
binary search space [KE95]. To determine if ith element of a binary string of particle
(zi) should be 0 or 1 we have:

∫(vit) =
1

1 + e−vit

where vit refers to the ith element of the velocity vector at iteration t and ∫(.) denotes
the transform function and to determine the ith element of zi. We have

zit =

{
1 if rand() ≥ ∫(vit)
0 otherwise,

where rand() is a uniformly drawn random number from [0, 1].
In this thesis we employ a time-varying transfer function [ILM17] to balance be-

tween exploration and exploitation. Velocities of all particles are updated according
to the following velocity update equation to determine the probabilities for flipping
the position vector elements (i).

zti =

{
1 if rand() ≥ TV (vti , φ)

0 otherwise,

where TV is given as [ILM17],

TV (vtiφ) =
1

1 + e
−

vt
i
φ

φ is the control parameter to balance exploration and exploitation in the course of
optimisation where it linearly decreases from 5.0 to 1.0 [ILM17].

58 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

Novelty-driven Binary PSO

Novelty-Driven PSO (NdPSO) is a variant of PSO employing novelty search to drive
particles toward novel solutions that are different from previously encountered ones
[FLP16]. The main idea is to explore the search space by ignoring objective-based
fitness functions and reward novel individuals. NdPSO uses the score of novelty to
evaluate the performance of particles. For this purpose, it maintains an archive of past
visited solutions to avoid repeatedly cycling through the same series of behaviours.
NdPSO evaluates the novelty of particles by computing the average distance of a
behaviour to its k-nearest neighbours in the archive as follows:

nov(x) =
1

k

k∑
i=0

dist(x, µi).

where µi is the ith nearest neighbour of x and dist is the Hamming distance metric.
Novelty score ensures that individuals in less dense areas with respect to the archive
get higher novelty scores.

NdPSO employs core principles of PSO and mainly replaces the objective function
with novelty evaluation. Note that personal best and global best value in NdPSO show
a dynamic behaviour. For more details on NdPSO, we refer the reader to [FLP16].
We use NdPSO in the upper level of truss optimisation to discover novel topology
designs.

Repair Mechanism in the Upper Level

Topology designs in the upper level are feasible if they meet G1(x⃗) and G2(x⃗). The
following conditions should be satisfied for G2(x⃗) [AD16]:

• The degree of freedom (DoF) in a truss should be non-positive [DG01].

• The summation of the number of members and restrain forces on a node must
be equal or greater than the truss dimension.

• The summation of the number of members and restraint forces on a non-carrying
node must be greater than the truss dimension.

As stated in [DG01], necessary node constraints are more important than the DoF
constraint. To deal with infeasible topologies, we use the (1+1)-EA (See Algorithm
3.5) with the following comparator to repair solutions:

x ⪰ y := (α(x) ≤ α(y))∨
(α(x) = α(y) ∧ β(x) ≤ β(y))∨
(α(x) = α(y) ∧ β(x) = β(y) ∧ θ(x) ≤ θ(y))

where α is the violation degree of active necessary nodes, β is the violation degree
of truss DoF and θ is the violation degree of second and third criteria in external
stability. (1+1)-EA as described in Algorithm 3.5 is a simple evolutionary algorithm
where it produces an offspring by mutation and the offspring replaces the parent if
it is determined to be at least as good or better according to the fitness function
mentioned above.

5.3. Experimental investigations 59

Algorithm 5.3: Bilevel Novelty-Driven Binary PSO Framework for Truss
Optimisation
1 Randomly generate the initial population of Binary PSO
2 Repair the initial population into feasible topologies
3 Set the velocity of particles in population
4 Evaluate the novelty score for each particle
5 y⃗ = loweroptimiser(x⃗)
6 Store W (x⃗, y⃗)
7 Update pt and pg
8 Update the archive
9 repeat

10 for i=1 to population size do
11 Update position of particle
12 Update velocity of particle
13 Repair the particle into feasible upper level solution
14 Evaluate novelty score of the particle
15 y⃗i = loweroptimiser(x⃗i)
16 Store W (x⃗i, y⃗i)
17 Update pit and pg according to novelty score
18 Update the archive

19 until termination criterion is met

Bilevel Novelty-Driven Binary PSO Framework

Our proposed approach works as follows (see Algorithm 5.3). Initially, the binary PSO
generates a random population of binary strings. This string represents the inclusion
and exclusion of truss bar members with respect to the ground structure. Next, the
repair mechanism performs on the population to ensure the feasibility of particles
with respect to the upper level feasibility constraints. The particles’ velocities are
drawn randomly from [−υ, υ]. Then, the novelty score is computed for particles with
respect to the archive. Because all particles are feasible after using repair mechanism,
loweroptimiser computes the corresponding optimal size (and shape) for the upper
level topology. With this, we update the archive with the current population. Next,
the position and velocity of particles are updated, and the above process repeats till
the termination criterion is met.

5.3 Experimental Investigations

In this study, we use multiple truss test problems with discrete sizing from the liter-
ature [AD16; DLU19; LHL09]. We investigate them in ascending order of length of
topology design variable. We use the best reported weights from state-of-art for our
comparison.

We split the problems into small and large instances representing low and high di-
mension of the topology search space. We apply exact enumeration to small problems
where their topology search space is tractable (m ≤ 12). To show its outcome, we set
the ground structure of the problem as an upper bound reference. We sort the other
designs with respect to their Hamming distance with this reference design (denoted by
dH). We report on the quality of solutions using the median of best solutions obtained

60 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

in 30 independent runs in the lower level. For large instances, we apply the proposed
bilevel novelty search PSO and report on the quality of top best-found solutions.

We investigate the obtained designs and identification of redundant bars and nodes
in the design space. We report on the three best found solutions with different topolo-
gies represented by designs (a), (b) and (c) in the corresponding tables.

To setup our algorithms, we use the following parameters. For lower level op-
timisation, we use the parameter settings in [AD16; AAD20]. For the upper level
optimisation, the swarm consisted of 30 particles, υ = 6 , c1 = c2 = 1.0, ω linearly
decreases from 0.9 to 0.4 [ILM17], and the maximum number of iterations is set to
300. We use k = 3 nearest neighbours to calculate novelty at the upper level.

The implemented framework is available on https://bit.ly/3pFNdFb. This frame-
work is in Matlab and included all instances used in this chapter namely, 25-bar,
10-bar, 52-bar, 15-bar, 72-bar, 47-bar, 224-bar, 200-bar and 68-bar instances. Each
instance can be simulated by simply running its own Matlab file. The framework also
includes the other components of the proposed algorithms including exact enumera-
tion and binary novelty PSO.

5.3.1 25-Bar Truss

25-bar truss, as aforementioned is a spatial truss for size and topology optimisa-
tion [DLU19]. This truss problem is a symmetric truss where 25 truss bars are grouped
into eight groups of bars. Therefore, there are 256 possible topologies at the upper
level.

This problem splits into two cases with respect to different load cases. The truss
undergoes a single load for the first case and multiple external loads for the second
case. The sizing of bars for the first and second cases should be selected from different
sets of available cross-sections [DLU19]

Because the topology search space is tractable, we apply the exact enumeration
to this test problem. Figure 5.2 shows the outcome of the exact enumeration of the
first case study of this test problem. We can see the designs shown with respect to
their topology and weight. Note that the squares are coloured according to the weight
of the obtained design. This figure shows only the first 50 designs with respect to
the hamming distance (dH) with the upper bound reference as the ground structure.
These are feasible designs, and the rest of the search space is infeasible. We can see
that the high-quality solutions are in the upper bound vicinity where dH ≤ 2.

Figure 5.3 depicts 55 feasible designs for the second case of the 25-bar truss prob-
lem. We can see that the ground structure topology results in a reasonable light truss
similar to the first case. However, the high-quality designs are located in the region
where dH ≤ 3.

Tables 5.1 and 5.2 shows our findings for case 1 and 2, respectively compared with
the state of art solutions. We can see that designs (b) and (c) both have identified
two solutions with dH = 1. However, design (a) represents the best-found solution
where it combines the identified redundant members in designs (b) and (c), and it also
adjusts the sizes of bars to meet truss constraints leading to a lightweight solution.
For the second case, we can see that all top designs identify G5 as redundant and
similar to the first case, the best design (a) incorporates both identified redundant
bar groups of designs (b) and (c) and adjust the size variables to reach the lightest
truss.

https://bit.ly/3pFNdFb

5.3. Experimental investigations 61

480500520540560580(lb)

dH=2 dH=3dH=1
Infeasible

Ground
structure

(b)

(a)(c)

Figure 5.2. Exact enumeration on 25-bar truss case 1 (right side
truncated). dH denotes the hamming distance with the upper bound
reference. Note that empty area denotes the infeasible region of the

search space.

50010001500200025003000 (lb)

dH=2 dH=3dH=1 Infeasible

Ground
structure

(b) (a)(c)

Figure 5.3. Exact enumeration on 25-bar truss case 2 (right side
truncated). dH denotes the hamming distance with the upper bound
reference. Note that empty area denotes the infeasible region of the

search space.

5.3.2 10-Bar Truss

10-bar truss [LHL09] is a well-known size and topology optimisation problem whose
ground structure is depicted in Figure 5.4. It undergoes a single load, and the sizing
of bars should be selected from a discrete set where there are 10 bars in the topology
design, which results in 1024 possible upper level topologies. Therefore we can apply
the exact enumeration.

Figure 5.5 shows the outcome of exact enumeration, and the designs are ordered
according to their dH . We only show the first 320 sorted designs because the rest of
the topologies are infeasible. This figure also shows the top obtained designs for this
test problem. We can also see many feasible heavy trusses are close to the designs
reported, which shows the complexity of the upper level search space that an algorithm
can trap in a local optimum in the topology search space.

We can see feasible designs are located where dH ≤ 4 and the best-found design’s
dH is 4. Table 5.3 shows our findings. We can see that designs (b) and (c) with dH = 2
both identify two bars as redundant and incorporate all six nodes in their designs
compared to the design (a), which is the best-found design that identifies four bars (A2,
A5−A6 and A10) as redundant and eliminates node 6. We can see that both designs (b)
and (c) incorporate two extra members (which are potentially redundant) to include
node 6 in their designs with different topology, and the difference lies in including
and excluding members A2 and A10. Note that node 6 is not necessary because it

62 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

Table 5.1. Comparison of optimised designs for 25-bar truss case 1.

[RK92] [Ho-+16] [Che16] This Study

(a) (b) (c)

G1 0.1 0.1 0.1 - 0.1 -
G2 1.8 0.3 0.3 0.3 0.3 0.5
G3 2.3 3.4 3.4 3.4 3.4 3.4
G4 0.2 0.1 0.1 - - 0.1
G5 0.1 2.1 2.1 2.1 2.1 1.9
G6 0.8 1 1 1 1 0.9
G7 1.8 0.5 0.5 0.5 0.5 0.5
G8 3 3.4 3.4 3.4 3.4 3.4
Best weight (lb) 546.01 484.85 484.85 482.6 483.35 484.3

Table 5.2. Comparison of optimised designs for 25-bar truss case 2.

[Lee+05] [LHL09] This Study

(a) (b) (c)

G1 0.307 0.111 - 0.111 -
G2 1.99 2.13 2.13 2.13 2.13
G3 3.13 2.88 2.88 2.88 2.88
G4 0.111 0.111 - - -
G5 0.141 0.111 - - 0.111
G6 0.766 0.766 0.766 0.766 0.766
G7 1.62 1.62 1.62 1.62 1.62
G8 2.62 2.62 2.62 2.62 2.62
Best weight (lb) 556.43 551.14 546.97 547.81 548.64

neither carries load nor supports the truss. So it can potentially be eliminated from
the design space. We can also see that other state of art methods, including [Fen+14]
and [Kha+20] also identified the same topology as the optimal topology. However,
our approach can obtain a solution with a lower weight due to the efficient lower level
optimiser.

5.3.3 52-Bar Truss

This truss problem is a size and topology optimisation problem where 52-bar truss
are grouped into 12 bar groups resulting in 4096 possible designs. Therefore we can
apply the exact enumeration to this truss test problem. The truss undergoes three
load cases, and the sizing of bars should be selected from a discrete set [WC95]. The
ground structure of the 52 bar truss problem has been shown in Fig. 5.6 (I).

Figure 5.7 shows the outcome of exact enumeration where the figure only illustrates
the first 250 designs sorted according to their dH . Out of all sorted combinations, 1900
designs are feasible, and the rest of the search space is infeasible. We also observed
that feasible designs are located where dH ≤ 6.

5.3. Experimental investigations 63

P P

(1) (2) (3)

(4) (5) (6)

3

98 107

1

4

2

65

L L

L

L= 360 in. (9.144 m)
P= 100 kips

X

Y

Figure 5.4. Ground structure of 10-bar truss.

500055006000650070007500 (lb)

dH=1 dH=2 dH=3 dH=4

Infeasible

(c) (b) (a)

Figure 5.5. Exact enumeration on 10-bar truss. dH denotes the
hamming distance with the upper bound reference.

Table 5.4 shows our findings, and we can see that the top three designs for this
problem identify one to three groups of bars as redundant, respectively. Design (a)
depicted in Figure 5.6 (II) shows the best-found design that eliminates all redundant
bars identified in designs (b) and (c) and removes G9 resulting in nine redundant bars
(3 bar groups).

5.3.4 15-Bar Truss

This truss test problem is a size and topology truss optimisation problem, which is a
non-symmetric truss composed of 15 bars and the truss undergoes three load cases,
and the sizing should be selected from a discrete set [Zha+05]. Figure 5.8 (I) shows
the ground structure of this truss.

Table 5.5 shows our findings by the proposed bilevel novelty search compared
with other methods. All found top topologies identify five different bars as redundant,
resulting in different topologies with different weights. We can see that designs (b) and
(c) find the same weight, and they are symmetric around the vertical axis with respect
to the topology and size of bars. Both designs remove 6 bars from the design space,
and symmetrically they eliminate nodes 2 and 4 from the design space, respectively.
Design (d) eliminates five bars and node two from the design space.

Figure 5.8 shows these three designs. Design (a) as the best-found design depicted,
design (a) eliminates five bars in the design space and provides a lighter solution than
other methods.

5.3.5 72-Bar Truss

72-bar truss represents a four-storey structure for size and topology optimisation where
it is a symmetric truss composed of 72 bars grouped into 16 groups of bars. The truss

64 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

Table 5.3. Comparison of optimised designs for 10-bar truss.

[LHL09] [Ho-+16] [Che16] [Fen+14] [Kha+20] This Study

(a) (b) (c)

A1 30 33.5 33.5 29.5 30 30 30 30
A2 1.62 1.62 1.62 - - - 1.62 -
A3 22.9 22.9 22.9 23.6 22 22 22 22
A4 13.5 14.2 14.2 16.8 13.9 13.5 14.2 14.2
A5 1.62 1.62 1.62 - - - - -
A6 1.62 1.62 1.62 - - - 1.62 1.62
A7 7.97 7.97 7.97 6.1 7.22 7.22 7.22 7.22
A8 26.5 22.9 22.9 21 22 22 22 22
A9 22 22 22 22.8 22 22 22 22
A10 1.8 1.62 1.62 - - - - 1.62
Best weight (lb) 5531.98 5490.74 5490.74 5056.88 4980.10 4965.7 5107.5 5131.7

Table 5.4. Comparison of optimised designs for 52-bar truss.

[WC95] [Lee+05] [LHL09] [KT09] [Ho-+16] [Che16] This Study

(a) (b) (c)

G1 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 5141.925 4658.055 4658.055
G2 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 939.998 1045.159 1008.385
G3 645.160 506.451 363.225 494.193 494.193 494.193 - - -
G4 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3703.218 3703.218 3703.218
G5 1045.159 940.000 940.000 1008.385 939.998 940.000 792.256 939.998 1008.385
G6 494.193 494.193 494.193 285.161 494.193 494.193 - - 198.064
G7 2477.414 2290.318 2238.705 2290.318 2283.705 2238.705 2477.414 2477.414 2341.931
G8 1045.159 1008.385 1008.385 1008.385 1008.385 1008.385 939.998 1008.385 939.998
G9 285.161 363.225 388.386 388.386 494.193 494.193 - 198.064 285.161
G10 1696.771 1535.481 1283.868 1283.868 1283.868 1283.868 1535.481 1535.481 1535.481
G11 1045.159 1045.159 1161.288 1161.288 1161.288 1161.288 1045.159 1008.385 1008.385
G12 641.289 506.451 792.256 506.451 494.193 494.193 363.225 494.193 388.386
Best weight (kg) 1970.140 1906.760 1905.500 1904.830 1902.610 1902.610 1862.000 1880.300 1869.7

undergoes two load cases, and the sizing of bars should be selected from a set [WC95].
Table 5.6 shows our findings by the proposed bilevel novelty search compared with

other methods. Designs (b) and (c) identify five bar groups as redundant, including
four common groups where the ultimate design eliminates 16 bars from the design
space. Design (a) as the best-found design, combines the identified redundant bars in
designs (b) and (c) and removes 20 bars in total from the design space and achieves
a lighter solution.

5.3.6 47-Bar Truss

This truss problem represents a transmission tower with symmetric truss bars grouped
into 27 groups [HE01], and it considers size and shape optimisation in the lower
level. See [HE01] for structural constraints and technical information to simulate the
problem. Table 5.7 shows our findings in comparison with state of the art. We can
see that all obtained designs identify the G21 −G22 and G27 as redundant.

We can see that our method obtained three different designs with respect to the
topology. Design (a) incorporates 23 topology bars, and design (b) and (c) both
include 21 groups of bars, and the main difference is including bar groups of 23 and

5.3. Experimental investigations 65

(1) (2) (3) (4)

(5)
(6) (7)

(8)

(9)
(10) (11)

(12)

(13)
(14) (15)

(16)

(17)

(18) (19)

(20)

11 12 13

5 7 96 8 10

1 2 3 4

24 25 26

18 20 2219 21 23

14 15 16 17

37 38 39

31 33 3532 34 36

27 28 29 30

50 51 52

44 46 4845 47 49

40 41 42 43

3L
3L

3L
3L (L= 1 m

)

2L 2L 2L

Px

Py

Px

Py

Px

Py

Px

Py

X

Y

(I) (II)

Figure 5.6. Ground structure of 52-bar truss (I) and the best found
design (II)

dH=1 dH=2 dH=3

20002500300035004000(kg)

Infeasible

Figure 5.7. Exact enumeration on 52-bar truss (right side truncated).

26, respectively. We can also observe that even though designs (b) and (c) identify
two other bar groups as redundant compared to design (a), they result in heavier
structure than the best-found solution.

5.3.7 200-Bar Truss

This size and topology optimisation problem includes 200-bars grouped into 29 bar
groups [KT09]. The truss undergoes three loading conditions and is subject to no
displacement constraint.See [KT09] for details on simulation. Table 5.8 shows our
findings and compared with reported weights in state of the art. The best-reported
weight is 25156.5 lb, but this is an infeasible design because it violates the stress
constraint by about 8%. We can see that Design (a) as the best-found solution where
similar to design (c) both include 24 group bars but with different topologies; however,
Design (b) incorporates all group members as 29.

Moreover, the obtained design (b) topology is as same as the ground structure
where all bars are included in the topology. This is similar to our observation of the
25-bar truss problem, where the ground structure results in a reasonable lightweight
truss. We can also observe that design (c) recognises 4 group bars as redundant.
Still, it doesn’t necessarily result in a light truss compared to design (b), including all
possible connections of the bars.

66 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

Table 5.5. Comparison of optimised designs for 15-bar truss.

[Zha+05] [Che16] This Study

(a) (b), (c) (d)

A1 308.6 113.2 113.2 - 113.2 -
A2 174.9 113.2 113.2 - 113.2 -
A3 338.2 113.2 - 113.2 - 113.2
A4 143.2 113.2 - 113.2 - 113.2
A5 736.7 736.7 736.7 736.7 736.7 736.7
A6 185.9 113.2 - 113.2 113.2 113.2
A7 265.9 113.2 143.2 143.2 143.2 143.2
A8 507.6 736.7 736.7 736.7 736.7 736.7
A9 143.2 113.2 113.2 - 113.2 -
A10 507.6 113.2 - 113.2 - -
A11 279.1 113.2 113.2 145.9 145.9 145.9
A12 174.9 113.2 113.2 - - -
A13 297.1 113.2 - - - 113.2
A14 235.9 334.3 334.3 334.3 334.3 334.3
A15 265.9 334.3 334.3 334.3 334.3 334.3
Best weight (kg) 142.12 105.74 89.899 90.223 91.874

Design (a) Design (b)

(3)
(1) (2)

(4) (8)

(6)

(5) (7)
1 2 3 4

5 6 7 89
11

7 10

12 13

14 15

2L 2L 2L 2L
4L

3L
L= 1.27 m (50 in.)

P1

P2

P3

X

Y

(3)
(1) (2)

(4) (8)

(6)

(5) (7)
1 2 3 4

5 6 7 89
11

7 10

12 13

14 15

2L 2L 2L 2L
4L

3L
L= 1.27 m (50 in.)

P1

P2

P3

X

Y

(I) Design (c)

Figure 5.8. The ground structure of 15 bar truss (I) and top three
designs obtained (a-c)

5.3.8 224-Bar Truss

This problem represents a pyramid truss where the truss bars are grouped into 32
groups and considers size, shape and topology optimisation subject to complex design
specifications [HE01]. Table 5.9 lists obtained designs by our method compared with
state of the art. We can see that all methods have identified the same 16 bar groups
as redundant out of 32 possible bar groups. Design (a) outperforms other designs,
and design (b) is as alike as the optimum design obtained in [AD16]. Design (c) is
different from the other two designs by including G9 with a slight increase in the
weight. Therefore if the designer prefers to have G9 in the final design, it can result
in a reasonable lightweight truss compared to other obtained solutions.

5.3.9 68-Bar Truss

This truss problem is a size, shape and topology optimisation problem with multi-
load with 68 non-symmetric topology design variables [AD16]. The optimum design
should be feasible considering the structural reactions subject to 8 different loading

5.4. Conclusions 67

Table 5.6. Comparison of optimised designs for 72-bar truss.

[WC95] [Lee+05] [Che16] This Study

(a) (b) (c)

G1 1.5 1.9 1.9 2 2 1.9
G2 0.7 0.5 0.5 0.5 0.5 0.5
G3 0.1 0.1 0.1 - - -
G4 0.1 0.1 0.1 - - -
G5 1.3 1.4 1.4 1.4 1.3 1.3
G6 0.5 0.6 0.5 0.6 0.5 0.5
G7 0.2 0.1 0.1 - - -
G8 0.1 0.1 0.1 - - 0.1
G9 0.5 0.6 0.5 0.5 0.5 0.5
G10 0.5 0.5 0.5 0.5 0.5 0.6
G11 0.1 0.1 0.1 - - -
G12 0.2 0.1 0.1 - 0.1 -
G13 0.2 0.2 0.2 0.2 0.2 0.2
G14 0.5 0.5 0.6 0.5 0.6 0.5
G15 0.5 0.4 0.4 0.5 0.5 0.5
G16 0.7 0.6 0.6 0.6 0.6 0.7
Best Weight (lb) 400.66 387.94 385.54 368.16 369.15 370.15

conditions. Table 5.10 shows our findings in comparison with state of the art. This
table only lists the bars if they are present in one of the listed designs; otherwise, it
has been identified as redundant by all designs.

The best solution reported is by reported by [AD16] is the best-found solution.
Our method has obtained three different designs where design (a) is similar to the
best of the state-of-art. Designs (b) and (c) include 37 and 39 bars, respectively, out
of 68 possible bars. The main difference in design (a) with the other designs is that
the former identifies bars A48, A51 −A52, A54 −A59 and A64 −A66 redundant.

5.4 Conclusions

Weight minimisation of trusses is a multi-modal problem where locating distinct opti-
mal designs can enable practitioners to choose the ultimate design according to their
preferences such as in real practice, the size of truss bars should be selected from a
set of available sizes according to design codes. In this chapter we considered bilevel
optimisation for truss problems where the topology optimisation is a combinatorial
optimisation problem. We proposed two approaches to tackle small and large scale
problems. In our experiments, we analysed the search space of smaller problems
without randomness in the upper level using exact enumeration. We developed a
novelty-driven binary PSO to tackle the other problems where the topology search
space is bigger. We also observed that we can find multiple distinct high-quality solu-
tions with respect to the topology – moreover, we have found new best solutions for
8 out of 9 test problems. Bilevel optimisation problems nest an optimisation problem

68 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

into another where it increases the computational expense. This is the main draw-
back of this study. We also setup our algorithms with standard parameters. For future
studies, it could be interesting (1) to investigate automated tuning of the algorithm,
(2) to study this approach for large-scale trusses and (3) to improve it considering the
computational expense of the problem. This chapter serves as a link between bench-
mark problems and practical, real-world problems. By designing computer programs
and examining a well-known engineering design problem, we gained insights into how
to approach problems from different angles avoiding randomness in methods. Addi-
tionally, incorporating domain knowledge could help us find better solutions to these
problems. Note that In this study, a binary PSO was employed. Additional studies
can be conducted to compare the performance of the current method against tradi-
tional binary methods commonly utilised in combinatorial optimization. This will
help to gain a better understanding of the strengths and limitations of the method
and its applicability to related problems.

5.4. Conclusions 69

Table 5.7. Comparison of optimised designs for 47-bar truss.

[HE02] [PB18] [DLU18] [AD16] This Study

(a) (b) (c)

G1 2.6 3.1 2.7 3 2.6 2.4 3.4
G2 2.4 1.1 2.5 0.3 0.4 0.4 0.3
G3 0.8 3 0.7 2.6 2.6 2.3 3.1
G4 - 1.1 0.1 1.5 0.4 0.3 0.6
G5 1.1 2.8 0.9 2.8 2.5 2.2 2.8
G6 1.3 1.1 1.1 0.6 0.4 0.5 0.4
G7 1.7 2.6 1.8 2.3 1.8 1.7 2.4
G8 0.6 0.9 0.7 1.1 0.5 0.4 0.8
G9 1 2.7 0.9 2.5 2.2 2.3 2.6
G10 1.4 0.7 1.3 0.6 0.5 0.3 0.7
G11 0.5 2.6 0.3 2.3 2.1 1.6 1.7
G12 1.1 0.8 1.1 1.4 1.6 1.9 1.9
G13 1 0.8 1 0.7 1.7 0.5 0.6
G14 1 1.7 0.9 1.6 1.5 1.8 2
G15 0.8 1 0.8 0.9 0.9 0.9 1.2
G16 - 1 0.1 0.8 0.4 0.7 1.2
G17 2.7 0.3 2.7 0.2 0.5 1 1.1
G18 1 1 0.8 0.9 1 1 1
G19 - 1.3 0.1 1.2 1.3 1.4 1.3
G20 2.9 0.9 3 1.1 1.4 0.7 1
G21 0.9 0.9 0.9 1.2 - - -
G22 - 1.2 0.1 - - - -
G23 3.1 0.1 3.2 - 1 0.6 -
G24 1.1 0.1 1 - 0.1 - -
G25 - 0.1 0.1 - 0.4 - -
G26 3.2 0.1 3.3 - - - 0.2
G27 1 0.1 1.1 - - - -
Best weight (lb) 1885.070 1871.700 1836.462 1727.624 1724.947 1726.044 1727.624

70 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

Table 5.8. Comparison of optimised designs for 200-bar truss where
† denotes the reported solution is infeasible.

[Che16] [Ho-+16] [KT09] [DLU19] This Study

(a) (b) (c)

G1 0.1 0.1 0.1033 0.1 - 0.1 -
G2 0.954 0.954 0.9184 0.954 1.081 0.954 1.081
G3 0.1 0.347 0.1202 0.347 0.347 0.347 0.44
G4 0.1 0.1 0.1009 0.1 0.1 0.1 0.347
G5 2.142 2.142 1.8664 2.142 2.142 2.142 2.142
G6 0.347 0.347 0.2826 0.347 0.347 0.347 0.44
G7 0.1 0.1 0.1 0.1 - 0.1 -
G8 3.131 3.131 2.9683 3.131 3.131 3.131 3.131
G9 0.1 0.347 0.1 0.1 0.347 0.1 0.347
G10 4.805 4.805 3.9456 4.805 4.805 4.805 4.805
G11 0.44 0.539 0.3742 0.44 0.44 0.44 0.44
G12 0.347 0.347 0.4501 0.347 - 0.347 -
G13 5.952 5.952 4.96029 5.952 5.952 5.952 5.952
G14 0.347 0.1 1.0738 0.1 0.1 0.1 0.539
G15 6.572 6.572 5.9785 6.572 6.572 6.572 6.572
G16 0.954 0.954 0.78629 0.954 0.539 0.954 0.954
G17 0.347 0.44 0.73743 0.1 - 0.347 0.1
G18 8.525 8.525 7.3809 8.525 8.525 8.525 8.525
G19 0.1 0.1 0.6674 0.539 0.954 0.1 0.347
G20 9.3 9.3 8.3 9.3 9.3 9.3 9.3
G21 1.081 0.954 1.19672 0.954 0.954 0.954 0.954
G22 0.347 1.081 1 0.1 - 1.081 -
G23 13.33 13.33 10.8262 13.33 13.33 13.33 13.33
G24 0.954 0.539 0.1 0.1 0.44 0.539 0.539
G25 13.33 14.29 11.6976 13.33 13.33 13.33 13.33
G26 1.764 2.142 1.388 0.954 1.174 2.142 1.081
G27 3.813 3.813 4.9523 5.952 5.952 3.813 5.952
G28 8.525 8.525 8.8 10.85 10.85 8.525 10.85
G29 17.17 17.17 14.6645 14.29 14.29 17.17 14.29
Best weight (lb) 27163.59 27858.50 25156.50† 27282.54 27144.0 27575.0 27744.0

5.4. Conclusions 71

Table 5.9. Comparison of optimised designs for 224-bar truss.

[HE01] [HE02] [AD16] This Study

(a) (b) (c)

G1 17.29 - - - - -
G2 27.74 11.9 - - - -
G3 27.74 - - - - -
G4 4.32 - - - - -
G5 14.52 - 36.0 36.0 36.0 36.0
G6 14.39 - - - - -
G7 17.29 8.4 - - - -
G8 14.39 - 6.90 6.90 6.90 6.90
G9 3.16 0.8 - - - 0.8
G10 9.55 0.49 - - - -
G11 6.9 - - - - -
G12 4.32 - - - - -
G13 10.97 1.07 - - - -
G14 6.9 - - - - -
G15 17.29 0.67 - - - -
G16 17.29 8.4 27.74 27.74 27.74 20.45
G17 27.74 0.8 17.29 20.45 17.29 36.0
G18 9.55 0.8 - - - -
G19 6.9 0.8 - - - -
G20 - 1.07 - - - -
G21 - 1.7 4.32 4.32 4.32 4.32
G22 17.29 1.07 23.74 20.45 23.74 10.97
G23 - - 3.19 4.32 3.19 6.90
G24 14.39 - - - - -
G25 - 8.4 3.19 5.15 3.19 6.90
G26 27.74 0.49 17.29 17.29 17.29 27.74
G27 - - 2.79 2.79 2.79 2.79
G28 - - 6.90 6.90 6.90 6.90
G29 - - 27.74 27.74 27.74 20.45
G30 0 - 1.61 1.61 1.61 2.15
G31 10.97 1.07 17.2 20.45 17.29 36.0
G32 14.39 2.23 4.12 3.19 4.12 2.06
Best weight (lb) 5547.500 4587.290 3079.446 3063.866 3079.446 3102.079

72 Chapter 5. Novelty-Driven Binary Particle Swarm Optimisation for Truss
Optimisation Problems

Table 5.10. Comparison of optimised designs for 68-bar truss.

[PB18] [AD16] This Study [PB18] [AD16] This Study

(a) (b) (c) (a) (b) (c)

A1 2.142 3.131 3.131 0.22 0.22 A30 3.131 - - - -
A2 3.813 1.333 1.333 0.954 0.954 A31 - - - - 0.141
A3 - 3.131 3.131 3.813 3.813 A32 0.111 2.142 2.142 0.44 -
A5 - 0.539 0.539 - - A33 - 1.333 1.333 0.111 0.141
A6 1.333 1.333 1.333 0.174 0.539 A34 - 0.954 0.954 0.111 -
A7 0.954 1.081 1.081 0.954 0.954 A35 - 1.333 1.333 - 0.954
A8 1.081 2.142 2.142 1.764 1.764 A37 - 0.347 0.347 0.22 0.22
A9 1.174 0.347 0.347 0.44 0.27 A38 - 1.333 1.333 - -
A10 - 0.347 0.347 - - A39 - 0.539 0.539 0.174 0.27
A11 - 3.131 3.131 3.131 3.131 A40 0.539 1.174 1.174 0.347 0.174
A13 2.697 0.44 0.44 0.22 0.22 A41 2.697 1.333 1.333 0.141 0.954
A14 - - - 0.141 - A42 - 1.081 1.081 0.287 0.27
A15 0.954 1.081 1.081 0.27 0.44 A43 - - - 0.22 0.111
A16 3.131 1.488 1.488 1.488 1.488 A44 2.8 - - - -
A17 - 0.27 0.27 0.27 - A47 - 0.111 0.111 0.111 0.44
A18 - 0.44 0.44 0.539 0.111 A48 - - - - 0.27
A19 - 2.8 2.8 3.131 2.8 A51 - - - 0.22 0.111
A20 0.44 - - - - A52 - - - - 0.27
A21 0.27 0.44 0.44 0.954 0.111 A54 0.111 - - - -
A22 - 0.111 0.111 - - A55 - - - - 0.347
A23 1.174 0.27 0.27 0.287 0.111 A56 2.8 - - 0.954 0.347
A24 - 2.142 2.142 2.142 2.697 A57 - - - - 0.111
A25 - - - - 0.111 A58 - - - 0.111 -
A26 - 0.111 0.111 0.111 0.111 A59 3.565 - - - -
A27 2.142 2.697 2.697 0.111 0.954 A64 - - - 0.111 -
A28 - - 0 - - A65 - - - 2.697 1.764
A29 - 0.111 0.111 - 0.111 A66 - - - 1.764 2.142
Best weight (lb) 1385.800 1166.062 1166.062 1167.528 1169.039

73

Chapter 6

Modelling and Optimisation of
Run-of-Mine Stockpile Recovery

In this chapter, we focus on a more practical application of a combinatorial optimisa-
tion problem. We look at a real-world scheduling problem in mining industry where
minor changes in the schedule can result in financial penalties for mine operators.

There are two stages to mining: upstream and downstream. Mining upstream
involves the extraction of materials from mines, such as ore (valuable minerals) or
waste. Haul trucks transport mineral materials extracted from mines either directly
to the crusher in downstream for processing or to the Run-of-Mine (ROM) stock-
piles. ROM stockpiles are essential components in the mining value chain can be used
as temporary storage to balance inflow and outflow and provide an opportunity for
blending material. Blending refers to mixing different stacked material in different
stockpiles with different quality to assemble a delivery for the customer.

Customers request minerals with a particular percentage of quality. Stockpile
schedulers are responsible for selecting a blend of material from the ROM stockyard
to provide the delivery. The blend can include high-quality material can be mixed
with low-quality material to meet the target quality grade. The stockpile scheduler
should plan the deliveries with respect to the end-user requirements such as chemical
concentration and particle size distribution limits. We refer to this operation where
the scheduler plans how the stockpiles should be reclaimed for deliveries as stockpile
recovery.

The task of stockyard management is to schedule the reclaiming operations, i.e. to
determine the sequence of reclamation operations for end-user requests. In schedul-
ing, it is essential to achieve the quality grade of deliveries and to perform stockpile
recovery operations considering the operation costs efficiently. Stockpiles usually have
been considered as a whole in the previous studies represented by a weighted average
quality. However, in the context of mining stockpiles, Lu and Myo [LM11; LM10]
study stockpile recovery optimisation considering that stockpiles are not a whole and
can be divided into cuts with different qualities. Cuts refer to a portion of stacked
material in the stockpile that represent different grades of mineral resources.

Their model considers a bucket wheel reclaimer which is a machine mainly used
in mine terminals for both stacking and reclaiming. They aimed to minimise the
movement by a bucket wheel reclaimer machine. For this purpose, they calculated
the movement by Euclidean distance, and they applied mixed integer programming
for a small scale of the problem considering two requests and two stockpiles in a single
period. However, their approach and model is limited: (1) the calculation of reclaimer
machine movement cost in practice is more complicated than a simple Euclidean dis-
tance; (2) the stockyard in practice is bigger and the resolution of cuts can determine
the size and complexity of the stockpile recovery problem; (3) in planning for deliv-
eries, it is essential to schedule deliveries for a longer period to foresee the future; (4)

74 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery

reclaimer machines also can be other types of machines that can reclaim in different
directions; and (5) more technical restrictions exist than a weighted average quality
to meet the specified requirements in practice.

In this chapter we model the stockpile recovery problem as a combinatorial op-
timisation problem considering technical restrictions in real-world settings and we
investigate multiple scenarios and experiments. We consider that four stockpiles are
stacked in a row in a stockyard, and a single reclaimer machine performs reclama-
tion operations, such as front-end loaders or bucket wheel reclaimers. Reclamation
operations require that machines move in the stockyard and reclaim cuts from the
stockyard. The cuts in the stockpiles can vary in size (such as increment of 1000-5000
tonnes of materials as per our industry partner) depending on the mineral resources.
The reclaiming operation takes time as machinery moves from one position to another
and spends time reclaiming, and thus costs are incurred for this operation.

This chapter is based on the work published in 36th Annual ACM Symposium on
Applied Computing [Ass+21]. The rest of this chapter is organised as follows. We
define the problem as a combinatorial optimisation problem. Next, we introduce the
lexicographic objective function and its components to address technical restrictions
and stockpile management objectives, we introduce a lexicographic objective function
for optimisation considering the importance of target grade qualities and operation
costs where the former has a higher priority. Afterwards, we present the scenarios
of the problem for investigation. We use the information provided by our industrial
partner to simulate the stockyard, where they created cuts and stockpiles using real
depositing GPS data of trucks in practice. We define multiple scenarios and exper-
iments to represent a stockyard in practice with different complexities of technical
restrictions in the problem. Following, we describe the optimisation algorithms in-
cluding greedy algorithm and ant colony optimisation and our methodology to deal
with the problem. Because we are dealing with a real-world problem, we model the
problem and use methodologies align with this point that we can tackle various objec-
tive functions, non-linear constraints and further technical restrictions for this study
and other extensions. We set up experiments and report on the behaviour and quality
of obtained solutions and algorithms for different scenarios. We benchmark against
a rule of thumb heuristic called the Pilgrim Step Reclaiming Heuristic. We observe
that the randomisation of greedy algorithms can help obtain better solutions in the
scenarios, and that ant colony optimisation can outperform all algorithms. Finally,
we finish with some concluding remarks and some suggestions for future work.

6.1 Stockpile Recovery Problem Statement

We define the stockpile recovery optimisation problem as a combinatorial optimisation
problem. Figure 6.1 depicts a schematic of the stockyard used in this chapter. There
is a single reclaimer operating on a row with access to four stockpiles. Due to the
information received from our industry partner, only four stockpiles were able to be
utilised in the simulation to imitate the single-direction reclaiming method using a
single machine.

Each stockpile is comprised of four benches where each bench has 10 cuts. There-
fore in total there are 160 cuts that should be sequenced to provide deliveries. We
can identify a cut in the stockyard by its position in the stockyard. We show a cut
by (idstockpile-idbench-idcut) where for example, cut (1-1-1) shows the first cut in first
bench of first stockpile. Note that reclaimers before start reclaiming a stockpile can
access the stockpile from the entry cuts.

6.1. Stockpile recovery problem statement 75

No
rt

h

reclaimer machine

cut (1-1-1)

Figure 6.1. Schematic of the stockyard. Cut (1-1-1) is the entry cut
for stockpile recovery where it is the first cut on stockpile 1, top bench

and first cut from South-to-North direction.

The stockyard’s structure includes information on multiple stockpiles and informa-
tion about cuts in each stockpile. We model a stockyard as a directed graph G = (C, E)
without cycles, where C = {c1, c2, . . . , cn} is the set of cuts containing n available cuts
in the stockyard. Each cut cj has multiple properties including the percentage of
valuable and contaminant elements in the cut denoted by mj,k, where k = 1, 2, . . . ,K
shows the set of chemical elements. Recall from Section 2.6 that chemical constraints
are essential to be considered in deliveries to avoid financial penalty fees. Another
property denotes how much material is available in the cut by measuring the tonnage
of cj denoted by Γj .
E is the set of edges connecting cuts and shows the immediate predecessors where

cut i must be reclaimed before j when the reclaimer direction is d and we denote a
reclamation operation by (i, j, d). Precedence constraints determine the validity of a
solution. If it fails for a part of the solution, the solution is impossible to be processed.
For example we can not reclaim cut (1-2-1) before we reclaim the cut above it (which is
(1-1-1)). To perform a reclamation operation, a reclaimer machine can move between
two cuts i and j and perform reclamation operation on cj .

A candidate solution x is a sub-sequence as a permutation of cuts in C, where
it represents the order of reclamation to fulfill the optimisation problem’s objectives.
The total time required to perform a reclamation job from ci to cj with direction d is
given by Ti,j,d. Td shows the reclamation time matrix, which is a full square matrix
for all cuts in each direction.

As mentioned before, it is essential to preserve the quality of deliveries. One
objective is the average target quality which aims to preserve the quality of deliveries
where the average of chemical contaminants in a delivery should be in a predefined
range as follows for a set of chemical elements (K)

m̂xk
=

1

|x|

|x|∑
j=1

mk,j

where m̂xk
shows the average of chemical contaminants for cuts in in x with respect

to penalty chemical element k.

mk ≤ m̂xk
≤ mk ∀k ∈ K

Because the chemical properties of cuts have different magnitudes with their corre-
sponding lower and upper bounds, we evaluate the degree of violation for target qual-
ity using the bracket-operator penalty method

〈
m̂xk

〉
[Deb01], which is calculated as

follows:

〈
m̂xk

〉
=

|m̂xk

−mk|
|mk| if m̂xk

> mk

|m̂xk
−mk|

|mk| if m̂xk
< mk

0 mk ≤ m̂xk
≤ mk

76 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery

To calculate the violation for average target quality in x, we use:

v1(x) =
K∑
k=1

〈
m̂xk

〉
Another objective in stockyard recovery is the window target quality. Following a
certain number of reclamation operations, reclaimed material is packaged. This ob-
jective ensures that when the stockyard scheduler prepares the packages for reclaimed
material, the quality of each package should meet another pre-defined window target
quality.

v2(x) =

|x|∑
j=4

〈
(mj,k +mj−1,k +mj−2,k

3
)

〉
where j here denotes the position of a cut in a delivery where we desire to look at the
window target quality after three cuts are already reclaimed for a delivery.

We would like to reduce the operation costs as as well as financial penalties. A
desirable objective is to have a schedule with ability to reclaim more material in a
shorter time which it will result in reducing operation costs. For reclamation operation
(i, j, d) we have:

u(x) =
∑

(i,j,d)∈x

Ti,j,d

Γj

The numerator indicates the corresponding element from reclamation time matrix to
perform a job and the denominator is the tonnage of cut j available in stockyard
information. We refer to this objective function as the utility.

6.1.1 Objective Function

As a stockyard manager, the primary objective is to avoid paying financial penalty
fees with respect to the quality objectives of deliveries. If it is possible to provide a
zero-violation solution where all quality objectives are satisfied. The next objective is
to reduce the operation costs. Note that this reflects the preferences of our industry
partner. Other companies might aim for different goals. To achieve these objectives,
we define the objective function for minimisation in lexicographic order:

f(x) = (v1(x), v2(x), u(x))

where order in the objective function matters. To compare tuples of two solutions (x
and y):

f(x) ≤ f(y)

iff v1(x) ≤ v1(y)∨
(v1(x) = v1(y) ∧ v2(x) ≤ v2(y))∨
(v1(x) = v1(y) ∧ v2(x) = v2(y) ∧ u(x) ≤ u(y))

For example, between quality constraints, v1(x) is more important than v2(x).

6.1.2 Scenarios Of The Problem

We define three scenarios for investigation of the optimisation problem with different
complexities. As we proceed, the problem conditions becomes more similar to the
real-world issue in the stockyard management. For each scenario, we consider four

6.2. Optimisation methods 77

experiments for a more detailed investigation. We show an experiment in a scenario
by SC X-Y where X and Y refer to the scenario and experiment numbers, respectively.

In the first scenario, we simulate a stockpile recovery problem where we aim to
reclaim the whole stockyard. This scenario helps us investigate the quality of algo-
rithms where technical restrictions are loose, and algorithms can demonstrate their
behavior in exploring the stockyard to obtain a reclaiming sequence. We increase the
size of stockyard in experiments, where SC1-1, SC1-2, SC1-3 and SC1-4 show that the
stockyard contains 1, 2, 3, and 4 stockpiles, respectively, and the termination criterion
in solution construction is reclaiming the whole stockyard. In this scenario, we also
neglect v2(x) to make it easier to tackle. For its objective function, we have

f1(x) = (v1(x), u(x))

In the second scenario, we simulate a problem considering technical restrictions in
the stockyard. We aim to optimise the reclaiming sequence considering deliveries. We
define a sequence for a delivery as x′ where x′ ∈ x. Similar to the first scenario, we
neglect the window target quality constraint. We define different experiments, consid-
ering the number of deliveries, where SC2-1, SC2-2, SC2-3, SC2-4 show experiments
for second scenario where we plan for one, two, three and four deliveries respectively.
Moreover, we consider the stockyard as being initially full, and thus include all stock-
piles for reclamation. The termination criterion is constructing a solution where it
plans for all deliveries in the experiment. We define the objective function as:

f2(x) =
∑
x′∈x

(
v1(x

′), u(x′)
)

In the third scenario, we make the problem more similar to real-world problem by
technical restrictions: all criteria are as same as the second scenario, but we consider
the window target quality too. Our objective function is

f3(x) =
∑
x′∈x

(
v1(x

′), v2(x
′), u(x′)

)

6.2 Optimisation Methods

In this section, we describe the algorithms applied to solve the scheduling problem
of ROM stockpile recovery using a single reclaimer. The search space of the problem
is constrained by precedence constraints that impose how the cuts can be reclaimed
with respect to physical requirements. To deal with these constraints, we develop
methodologies that can construct a valid reclaiming sequence step by step. In this
manner, we can easily tackle the precedence constraints, and it can always lead to
a valid solution with respect to these constraints. We construct the solution step
by step considering available cuts in the neighbourhood to choose as a successor
for a solution. We investigate deterministic and randomised greedy algorithms, ant
colony optimisation, and its variant with local search operators. We also describe a
heuristic representing a rule-of-thumb in stockyard management, namely the pilgrim
step reclaiming heuristic (PSRH). We compare the iterative optimisation methods
with PSRH to evaluate the performance and quality of our algorithms.

78 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery

6.2.1 Greedy Algorithm And Randomisation

Recall the application of greedy algorithms in combinatorial optimisation from Section
3.2.3. Greedy algorithms are straightforward and fast in constructing a solution for
an optimisation problem, and they are easy to implement. Greedy algorithms can be
either deterministic or randomised.

Deterministic greedy algorithm (DGA) constructs a schedule with considering the
highest benefit at the time it chooses a cut to put into the schedule. Algorithm 6.1
shows the procedure for DGA which starts with an S = ∅ representing the empty
schedule, and at each time step (t), it adds a successor component (cut) to x. For the
stockpile recovery problem, the entry cut pre-defined by the problem is the primary
successor at the initial stage of the algorithm. Next, DGA collects the available cuts
in the initial cut neighbourhood as Nt considering the precedence constraints. DGA
evaluates how the quality of a schedule changes if it includes each candidate in Nt.
Therefore, DGA computes the objective function f(cj) for performing reclamation
from the initial cut to the next cut for each cut in cj ∈ Nt. DGA chooses the successor
cut with the highest greediness as follows and the algorithm terminates when all the
deliveries are scheduled.

c∗ = argmin
cj∈Nt

f(cj)

.
DGA may choose the best cuts in the stockyard early in the planning. This act

of greediness can lead to reclaiming all good material in the stockyard early and not
having enough good material to blend for later deliveries. Therefore, the algorithm
is getting trapped in local optima to plan deliveries, because the individual deliveries
are put together in a strict sequential order. To tackle this drawback, other studies
(e.g. [Gao+18]) suggest that controlling the greediness can lead to better solutions
and avoid the local optima.

Randomised Greedy Algorithm (RGA) is a simple randomised version of DGA,
which gives it the potential to find better solutions. Some may argue that the use of
the term "Randomised Greedy Algorithm" (RGA) is inappropriate because a greedy
algorithm, by definition, cannot be truly random.

RGA has a greedy control parameter λ ≥ 0 where the selection of the successor
cut (c∗) occurs according to the probability distribution given by

p(cj |Nt) =
η(cj)

λ∑
cl∈Nt

η(cl)λ

where η(cj) denotes the greedy function to make sure that a better candidate has a
higher chance to be selected in the neighbourhood as follows.

η(cj) =
1

f ′(cj)

where f ′(cj) is a mapped real number of f(cj) required for selection procedure among
cuts in the neighbourhood. We classify all cuts in the neighbourhood in three sets
(S). Set 1 contain zero-violation solutions, set 2 include solutions with v1(cj) =
0 ∧ v2(cj) ̸= 0 and other solutions are put in set 3. For each set separately, we
normalise the objective functions component wise to (0, 1) by a linear mapping and
we denote it by N (cj):

N (cj) = N (u(cj)) +N (v2(cj)) +N (v1(cj))

6.2. Optimisation methods 79

Algorithm 6.1: Deterministic Greedy Algorithm (DGA)
1 x := ∅
2 repeat
3 Choose a successor cut c∗ = argmincj∈Nt

f(cj)

4 x := x ∪ c∗

5 until x is complete
6 return x

Algorithm 6.2: Randomised Greedy Algorithm (RGA)
1 x := ∅
2 repeat
3 Choose a successor cut (c∗) according to probability

4 p(cj |Nt) =
η(cj)

λ∑
cl∈Nt

η(cl)λ

5 x := x ∪ c∗

6 until x is complete
7 return x

to calculate f ′(cj), we use:

f ′(cj) =

N (cj) + 1 if cj ∈ S1
N (cj) + 1 + 10 if cj ∈ S2
N (cj) + 1 + 10 + 100 Otherwise.

Note that the addition of 1 ensures that p(cj |Nt) > 0 and that the addends of 10 and
100 helps to partially preserve the order of objective function.

Our probabilistic selection represents a roulette wheel selection where the chance
of selecting a candidate in Nt is proportionate to its fitness. λ determines how greedy
RGA acts for the selection procedure: as λ → ∞, RGA approaches the behaviour of
DGA. Algorithm 6.2 shows the procedure for RGA. RGA starts from an empty set as
well as DGA and use the primary component of the entry cut. When it constructs a
schedule at each step, it doesn’t opt for the best option available, but it choose the
successor component (cut) probabilistically. Therefore, RGA computes the greedy
function η(cj) for performing reclamation from the initial cut to the next cut for
each cut in cj ∈ Nt. Next, RGA chooses the successor cut probabilistically in a
fitness proportionate manner. The algorithm terminates when all the deliveries are
scheduled.

6.2.2 Max-Min Ant System (MMAS)

In this section, we investigate the MMAS variant of ACO on solving the stockpile
recovery problem using single reclaimer. We introduced ACO in Section 3.9. ACO
in our study can be viewed as an iterative and adaptive RGA with more control
parameters. For our scheduling problems, ants are agents performing a random walk
to construct a valid scheduling plan. On their return route to the colony, they deposit
pheromone and other ants can sense it and identify a good route instead of a random
walk. Other ants follow a route, depositing more pheromone, and thus reinforce the
route. In addition, pheromone evaporates gradually to reduce the attraction capability

80 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery

of untraveled edges. Pheromone is used to represent the quality of different paths or
solutions to a problem. The pheromone value is typically updated as the ants explore
the search space, with higher pheromone values being associated with better solutions.
As the ants explore the search space, some of the pheromone that they deposit on
the path they take will gradually evaporate over time. This process is known as
pheromone evaporation and is used to reduce the attractiveness of paths that have
not been followed in a while. This helps to balance exploration and exploitation and
to ensure that the ants do not get stuck in local optima.

For this study, we use a variant of ACO, namely Max-Min Ant System (MMAS)
[SH00]. In MMAS, only selected ants deposits pheromone to reinforce its solution
where in this Chapter, the best ant at each generation does it. The pheromone
range is limited to avoid becoming very big or very small. This feature can prevent
getting trapped in local optimal. Algorithm 6.3 shows the procedure of MMAS for
stockpile recovery problem. First, MMAS initialises the pheromone matrix for the
initial generation. To initialise the pheromone matrix (ξ), we consider equal amount
of pheromone on all edges in E : ξi,j,d = 1/2. We restrict each ξi,j,d in the interval[
1

|C|
, 1− 1

|C|

]
[NSW09]. MMAS generates a colony contains artificial ants that each

ant performs a random walk to construct a solution step by step. Similar to RGA, ants
choose components of their solution at each step from a candidate of available cuts in
the neighbourhood of the reclaimer’s position. The probability distribution that each
ant uses to choose a successor (i.e. the next cut) while constructing a solution is

p(cj |Nt) =
[ξi,j,d]

α[η(cj)]
β∑

cl∈Nt
[ξi,l,d]α[η(cl)]β

where parameters α and β are MMAS control parameters in selection to balance using
pheromone or heuristic information. After all ants finish their independent random
walk, it is optional for MMAS to employ a local search on the found solutions.

After all ants construct their solution (at end of a generation), the best ant at the
iteration x′ (with the best obtained solution at iteration) deposits pheromone on the
its solution edges as follows,

ξ′i,j,d =

min{(1− ρ).ξi,j,d + ρ, 1− 1

|C|
} if (i, j, d) ∈ x′

max{(1− ρ).ξi,j,d,
1

|C|
} otherwise.

where 0 < ρ < 1 denotes the evaporation factor. This procedure repeats until MMAS’s
termination criterion is met.

6.2.3 MMAS With Local Search

Recall from Section 3.2.2 that local search can help random algorithms to avoid local
optima. By combining the ability of random search to explore a wide range of solutions
with the ability of local search to make locally-improvement moves, the algorithm can
effectively find the global optimum. It can also be used to improve the performance
of the random algorithm and make it converge faster.

Local search can be complimentary to MMAS, because MMAS explores the search
space coarsely. However local search can help to explore in the neighbourhood of a
constructed solution more finely. Therefore, after ants construct a solution, their

6.2. Optimisation methods 81

Algorithm 6.3: Max-Min Ant System (MMAS)
1 initialise ξ ▷ pheromone values initialisation
2 generate ants for initial colony πi ⊂ Π
3 repeat
4 for each ant πi do
5 repeat
6 construct a solution x step by step, probabilistically
7 until solution is complete

8 for each ant ∈ Π∗ do
9 perform local search ▷ optional

10 Update best found solution x∗

11 Update ξ

12 until MMAS termination criterion met
13 return x*

obtained solution can be a good starting point for local search. We refer interested
readers to [LMS03] and Section 3.2.2 for more information.

We employ three well-known operators for permutation search problems namely
swap, insert and inverse operators. Considering one solution x, these operators get
two components in x and perform a local search on the components’ position. The
swap operator exchanges two components of the solution; the insert operator shifts
the second component ahead of the first component. The inverse operator arranges
all components between and including the two components in the opposite order. We
investigate the iterative local search in the neighbourhood of all components. We call
variants of MMAS integrated with local search operators as MMAS-swp, MMAS-ins,
MMAS-inv for swap, insert and inverse operators, respectively.

6.2.4 Pilgrim Step Reclaiming Heuristic (PSRH)

Currently, in practice, human experts determine the reclamation sequence planning
often using rules of thumb. For example, they know that high-quality material should
be mixed with low-quality material to meet the target quality grade and confine the
contaminants as close as possible to the limit range. However, human planning is
subject to error due to the complexities in the stockyard and subject to multiple
operational restrictions. Moreover, human planning is a limited decision-making pro-
cedure where it is hard to foresee upcoming stockpile recovery scheduling requests. As
a result, human planning can lead to poor reclaiming sequences where it incurs penalty
fees, unexpected losses in practice, and perturbations in stockyard management.

Pilgrim step reclaiming is typical reclaiming method in stockpile management. It
refers to a method that involves reclaiming material by cutting a series of terraces
into it. Each terrace, or bench, is partially reclaimed before the next one is started.
The subsequent benches must end before the one above it to prevent the material
from collapsing. This method allows for better management of the space where the
material is stored and can help avoid some issues with the material being separated,
but it may result in a slight decrease in the efficiency of the reclaiming process.

To evaluate Randomised greedy algorithms, MMAS and iterative local search in
stockpile recovery, we employ a heuristic representing a rule of thumb that is used
for manual planning of the reclaiming sequence in practice. Pilgrim Step Reclaiming
Heuristic (PSRH) reclaims one stockpile completely from one end to another. First,

82 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery

it reclaims the top bench partially, then the lower bench for the reclaimed cut and
reclamation repeats till one end is completely reclaimed. Next, the reclaimer machine
proceeds and reclaims the rest of the stockpile alike to previous steps from the top
bench to the bottom. For example, the following sequence follows PSRH for the first
stockpile: We show a solution x obtained by PSRH by the position of cuts as follows.

{(1-1-1), (1-2-1), (1-3-1), (1-4-1), (1-1-2), . . . , (1-4-2), . . . , (1-4-10)}

6.3 Experimental Setup

In this section, we describe our experimental setup and the assumptions. We consider
a real-world stockyard model provided by our industrial partner. This stockpile (as
shown in Figure 6.1 has been created using the GPS information of trucks while they
stacked the stockpile. There is one machine that can reclaim cuts in one direction,
which is South to North. This means that a machine can reclaim only in one direction
but can move backward to perform a reclamation. The machine can only process one
reclamation task at a time, and the task should be completed before performing the
next reclaiming task. For scenarios 2 and 3, we assume that the required tonnage for
each delivery is 100,000 tonnes.

DGA is deterministic, and there is no parameter to configure. However, RGA
has the parameter λ to control the amount of greediness of the algorithm. We set
λ = {1, 3, 5, 7, 10, 15, 20} and we name the RGA variants as RGA-λ. For MMAS, we
set α = 1, β = 2, ρ = 0.5 and Π∗ only contains best ant in the iteration. We also
consider ten ants, and the termination criterion for ACO is when 1000 generations
elapsed. With respect to the scenario, a solution construction continues until the
solution is complete for all algorithms.

For the randomised algorithms, we run each for 50 times to evaluate them fairly.
We also carry out statistical comparisons for randomised algorithms by the Kruskal-
Wallis test with a 95% confidence interval integrated with the posteriori Bonferroni
test for pair-wise comparisons [CF14]. We rank the obtained solutions by the objective
function’s lexicographic order to perform the statistical test, and we use their ranks
for the statistical test.

For a closer look, we report the median, best and worst solutions obtained by
the algorithms in corresponding tables. Note that for PSRH and DGA as they are
deterministic algorithms, we report the same value. We also evaluate algorithms by
success rate. This measure is the percentage of success for algorithms in obtaining
a zero-violation solution. For deterministic algorithms, it could be 0 or 1, but we
calculate the fraction out of 50 runs for randomised algorithms.

The implemented framework is available on https://bit.ly/3AIJVHJ. The frame-
work includes DGA, RGA, MMAS with and without local search operators. The
framework also includes instructions on how to run the code.

6.4 Results And Discussion

Figure 6.2 provides a summary of the results by showing the significance for all sce-
narios and experiments. Among other, we observe that RGA and MMAS behave
differently, while within each group the results are not always different.

https://bit.ly/3AIJVHJ

6.4. Results and Discussion 83

(a
) S

ce
na

rio
 1

Experiment. 1 Experiment. 2 Experiment. 3 Experiment. 4

(b
) S

ce
na

rio
 2

(c
) S

ce
na

rio
 3

R
G

A
-1

R
G

A
-3

R
G

A
-5

R
G

A
-7

R
G

A
-1

0
R

G
A

-1
5

R
G

A
-2

0
M

M
A

S
M

M
A

S-
sw

p
M

M
A

S-
in

s
M

M
A

S-
in

v

RGA-1
RGA-3
RGA-5
RGA-7

RGA-10
RGA-15
RGA-20
MMAS

MMAS-swp
MMAS-ins
MMAS-inv

RGA-1
RGA-3
RGA-5
RGA-7

RGA-10
RGA-15
RGA-20
MMAS

MMAS-swp
MMAS-ins
MMAS-inv

RGA-1
RGA-3
RGA-5
RGA-7

RGA-10
RGA-15
RGA-20
MMAS

MMAS-swp
MMAS-ins
MMAS-inv

R
G

A
-1

R
G

A
-3

R
G

A
-5

R
G

A
-7

R
G

A
-1

0
R

G
A

-1
5

R
G

A
-2

0
M

M
A

S
M

M
A

S-
sw

p
M

M
A

S-
in

s
M

M
A

S-
in

v

R
G

A
-1

R
G

A
-3

R
G

A
-5

R
G

A
-7

R
G

A
-1

0
R

G
A

-1
5

R
G

A
-2

0
M

M
A

S
M

M
A

S-
sw

p
M

M
A

S-
in

s
M

M
A

S-
in

v

R
G

A
-1

R
G

A
-3

R
G

A
-5

R
G

A
-7

R
G

A
-1

0
R

G
A

-1
5

R
G

A
-2

0
M

M
A

S
M

M
A

S-
sw

p
M

M
A

S-
in

s
M

M
A

S-
in

v

p < 0.001p < 0.01p < 0.05NS

Figure 6.2. Significance plot of statistical test for randomised algo-
rithms. p denotes the p-value and NS refers to no significant difference.

84 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery
T
a
ble

6.1.
F
itness

values
obtained

for
the

optim
ised

solutions
in

Scenarios
1

and
2

P
SR

H
D

G
A

best
R

G
A

M
M

A
S

M
M

A
S-sw

p
M

M
A

S-ins
M

M
A

S-inv
Instance

SC
1-1

M
edian

(0.0,24.6291)
(0.0,23.685)

(0.0,24.0001)
(0.0,23.1543)

(0.0,
23.0988)

(0.0,23.1042)
(0.0,

23.0988)
B

est
(0.0,24.6291)

(0.0,23.685)
(0.0,23.3787)

(0.0,23.1502)
(0.0,

23.0472)
(0.0,23.0504)

(0.0,
23.0472)

W
orst

(0.0,24.6291)
(0.0,23.685)

(0.0,24.8425)
(0.0,23.1661)

(0.0,
23.1021)

(0.0,23.1535)
(0.0,23.1229)

Success
rate

1
1

1
1

1
1

1

SC
1-2

M
edian

(0.0,49.6518)
(0.0,48.1309)

(0.0,48.1309)
(0.0,46.6986)

(0.0,46.4339)
(0.0,46.6783)

(0.0,
46.4335)

B
est

(0.0,49.6518)
(0.0,48.1309)

(0.0,47.7301)
(0.0,46.598)

(0.0,46.4005)
(0.0,46.5274)

(0.0,
46.3633)

W
orst

(0.0,49.6518)
(0.0,48.1309)

(0.0,48.3392)
(0.0,46.8059)

(0.0,46.4774)
(0.0,46.7635)

(0.0,
46.4756)

Success
rate

1
1

1
1

1
1

1

SC
1-3

M
edian

(0.0,74.6085)
(0.0,72.1901)

(0.0,72.4698)
(0.0,70.0757)

(0.0,
69.7819)

(0.0,70.0914)
(0.0,69.7826)

B
est

(0.0,74.6085)
(0.0,72.1901)

(0.0,71.8263)
(0.0,69.8758)

(0.0,
69.501)

(0.0,69.921)
(0.0,69.54)

W
orst

(0.0,74.6085)
(0.0,72.1901)

(0.0,76.5797)
(0.0,70.289)

(0.0,
69.9158)

(0.0,70.2281)
(0.0,69.9478)

Success
rate

1
1

1
1

1
1

1

SC
1-4

M
edian

(0.0,99.5444)
(0.0,96.2366)

(0.0,96.6943)
(0.0,93.7738)

(0.0,
93.1774)

(0.0,93.8173)
(0.0,93.2369)

B
est

(0.0,99.5444)
(0.0,96.2366)

(0.0,95.8881)
(0.0,93.4327)

(0.0,92.9711)
(0.0,93.4237)

(0.0,
92.9587)

W
orst

(0.0,99.5444)
(0.0,96.2366)

(0.0,106.4864)
(0.0,94.3409)

(0.0,93.497)
(0.0,94.1342)

(0.0,
93.4529)

Success
rate

1
1

1
1

1
1

1

SC
2-1

M
edian

(0.0,15.9225)
(0.0,17.4546)

(0.0,19.4966)
(0.0,

15.2188)
(0.0,17.2239)

(0.0,15.2251)
(0.0,17.1897)

B
est

(0.0,15.9225)
(0.0,17.4546)

(0.0,15.4309)
(0.0,15.1747)

(0.0,15.1392)
(0.0,

15.0877)
(0.0,

15.0877)
W

orst
(0.0,15.9225)

(0.0,17.4546)
(0.0,29.3699)

(0.0,
15.2474)

(0.0,19.6106)
(0.0,15.2504)

(0.0,19.1453)
Success

rate
1

1
1

1
1

1
1

SC
2-2

M
edian

(0.0,34.7849)
(0.0,41.1948)

(0.0,37.5494)
(0.0,31.8562)

(0.0,34.427)
(0.0,

31.8151)
(0.0,34.4242)

B
est

(0.0,34.7849)
(0.0,41.1948)

(0.0,31.2005)
(0.0,31.218)

(0.0,33.5467)
(0.0,

31.0527)
(0.0,33.4021)

W
orst

(0.0,34.7849)
(0.0,41.1948)

(0.0,48.4085)
(0.0,36.0702)

(0.0,35.6118)
(0.0,35.8257)

(0.0,
35.3716)

Success
rate

1
1

1
1

1
1

1

SC
2-3

M
edian

(0.0304,49.6518)
(0.1094,65.5448)

(0.0743,61.5351)
(0.0,51.3597)

(0.0,51.2627)
(0.0,51.3262)

(0.0,
51.1625)

B
est

(0.0304,49.6518)
(0.1094,65.5448)

(0.0,49.9985)
(0.0,48.9855)

(0.0,48.906)
(0.0,49.4875)

(0.0,
48.3031)

W
orst

(0.0304,49.6518)
(0.1094,65.5448)

(0.1953,64.7137)
(0.0,52.7509)

(0.0,
52.2798)

(0.0,52.6403)
(0.0,52.403)

Success
rate

0
0

0.36
1

1
1

1

SC
2-4

M
edian

(0.1297,65.5358)
(0.2492,85.2887)

(0.135,93.8736)
(0.0,67.107)

(0.0,
66.7176)

(0.0,67.1275)
(0.0,67.0235)

B
est

(0.1297,65.5358)
(0.2492,85.2887)

(0.0,72.2375)
(0.0,65.3268)

(0.0,
63.1248)

(0.0,64.164)
(0.0,64.8839)

W
orst

(0.1297,65.5358)
(0.2492,85.2887)

(0.276,93.0093)
(0.0,68.4933)

(0.0,68.0874)
(0.0,

68.0108)
(0.0,68.0841)

Success
rate

0
0

0.1
1

1
1

1

6.4. Results and Discussion 85
T
a
bl

e
6.

2.
F
it

ne
ss

va
lu

es
ob

ta
in

ed
fo

r
th

e
op

ti
m

is
ed

so
lu

ti
on

s
by

R
G

A
va

ri
an

ts
in

Sc
en

ar
io

s
1

an
d

2

R
G

A
-1

R
G

A
-3

R
G

A
-5

R
G

A
-7

R
G

A
-1

0
R

G
A

-1
5

R
G

A
-2

0
In

st
an

ce

SC
1-

1

M
ed

ia
n

(0
.0

,2
4.

54
38

)
(0

.0
,2

4.
38

39
)

(0
.0

,2
4.

00
01

)
(0

.0
,2

3.
95

99
)

(0
.0

,2
3.

90
59

)
(0

.0
,2

3.
75

38
)

(0
.0

,2
3.

68
5)

B
es

t
(0

.0
,2

3.
80

67
)

(0
.0

,2
3.

62
49

)
(0

.0
,2

3.
37

87
)

(0
.0

,2
3.

55
5)

(0
.0

,2
3.

67
36

)
(0

.0
,2

3.
68

5)
(0

.0
,2

3.
68

5)
W

or
st

(0
.0

,2
5.

52
81

)
(0

.0
,2

5.
17

17
)

(0
.0

,2
4.

84
25

)
(0

.0
,2

4.
95

14
)

(0
.0

,2
4.

18
4)

(0
.0

,2
4.

08
23

)
(0

.0
,2

3.
87

64
)

Su
cc

es
s

ra
te

1
1

1
1

1
1

1

SC
1-

2

M
ed

ia
n

(0
.0

,5
3.

01
94

)
(0

.0
,5

1.
42

09
)

(0
.0

,4
9.

78
99

)
(0

.0
,4

8.
39

97
)

(0
.0

,4
8.

31
36

)
(0

.0
,4

8.
22

5)
(0

.0
,4

8.
13

09
)

B
es

t
(0

.0
,5

0.
12

11
)

(0
.0

,4
8.

25
98

)
(0

.0
,4

7.
92

63
)

(0
.0

,4
7.

85
7)

(0
.0

,4
7.

83
82

)
(0

.0
,4

7.
73

01
)

(0
.0

,4
7.

73
01

)
W

or
st

(0
.0

,5
5.

90
81

)
(0

.0
,5

5.
24

65
)

(0
.0

,5
3.

70
38

)
(0

.0
,5

1.
23

56
)

(0
.0

,5
1.

30
81

)
(0

.0
,4

8.
50

25
)

(0
.0

,4
8.

33
92

)
Su

cc
es

s
ra

te
1

1
1

1
1

1
1

SC
1-

3

M
ed

ia
n

(0
.0

,9
1.

20
78

)
(0

.0
,8

5.
44

23
)

(0
.0

,8
0.

24
5)

(0
.0

,7
6.

25
18

)
(0

.0
,7

3.
53

49
)

(0
.0

,7
2.

71
43

)
(0

.0
,7

2.
46

98
)

B
es

t
(0

.0
,8

2.
39

09
)

(0
.0

,7
7.

84
63

)
(0

.0
,7

3.
63

28
)

(0
.0

,7
2.

85
49

)
(0

.0
,7

2.
35

44
)

(0
.0

,7
1.

94
52

)
(0

.0
,7

1.
82

63
)

W
or

st
(0

.0
,9

7.
29

94
)

(0
.0

,9
2.

49
79

)
(0

.0
,8

7.
79

98
)

(0
.0

,8
3.

35
02

)
(0

.0
,8

1.
62

65
)

(0
.0

,7
8.

03
95

)
(0

.0
,7

6.
57

97
)

Su
cc

es
s

ra
te

1
1

1
1

1
1

1

SC
1-

4

M
ed

ia
n

(0
.0

,1
32

.2
59

9)
(0

.0
,1

21
.5

26
8)

(0
.0

,1
14

.4
08

4)
(0

.0
,1

08
.0

17
)

(0
.0

,1
03

.2
11

4)
(0

.0
,9

7.
84

69
)

(0
.0

,9
6.

69
43

)
B

es
t

(0
.0

,1
21

.8
83

2)
(0

.0
,1

11
.9

09
7)

(0
.0

,9
8.

38
46

)
(0

.0
,9

7.
51

43
)

(0
.0

,9
7.

15
17

)
(0

.0
,9

5.
90

42
)

(0
.0

,9
5.

88
81

)
W

or
st

(0
.0

,1
41

.1
38

1)
(0

.0
,1

32
.5

83
6)

(0
.0

,1
30

.0
94

3)
(0

.0
,1

19
.5

97
6)

(0
.0

,1
12

.6
48

5)
(0

.0
,1

09
.5

42
)

(0
.0

,1
06

.4
86

4)
Su

cc
es

s
ra

te
1

1
1

1
1

1
1

SC
2-

1

M
ed

ia
n

(0
.0

,4
0.

53
56

)
(0

.0
,3

0.
95

4)
(0

.0
,2

5.
03

67
)

(0
.0

,2
2.

85
01

)
(0

.0
,1

9.
49

66
)

(0
.0

,1
8.

11
33

)
(0

.0
,1

7.
45

46
)

B
es

t
(0

.0
,2

8.
61

18
)

(0
.0

,2
1.

40
39

)
(0

.0
,1

5.
68

73
)

(0
.0

,1
5.

68
81

)
(0

.0
,1

5.
43

09
)

(0
.0

,1
5.

83
39

)
(0

.0
,1

5.
66

27
)

W
or

st
(0

.0
33

8,
56

.0
96

4)
(0

.0
,4

2.
08

07
)

(0
.0

,3
5.

68
51

)
(0

.0
,3

0.
69

13
)

(0
.0

,2
9.

36
99

)
(0

.0
,2

5.
55

33
)

(0
.0

,2
3.

39
73

)
Su

cc
es

s
ra

te
0.

94
1

1
1

1
1

1

SC
2-

2

M
ed

ia
n

(0
.0

,5
9.

48
7)

(0
.0

,5
1.

23
16

)
(0

.0
,4

4.
32

95
)

(0
.0

,3
8.

91
05

)
(0

.0
,3

7.
54

94
)

(0
.0

,3
9.

10
54

)
(0

.0
,4

0.
90

76
)

B
es

t
(0

.0
,4

2.
73

86
)

(0
.0

,3
9.

67
49

)
(0

.0
,3

4.
84

43
)

(0
.0

,3
1.

77
95

)
(0

.0
,3

1.
20

05
)

(0
.0

,3
4.

19
88

)
(0

.0
,3

1.
50

22
)

W
or

st
(0

.0
29

9,
61

.5
49

2)
(0

.0
46

8,
58

.6
26

)
(0

.0
,5

7.
74

5)
(0

.0
96

8,
53

.9
37

3)
(0

.0
,4

8.
40

85
)

(0
.0

95
8,

57
.4

94
2)

(0
.1

96
6,

49
.9

64
2)

Su
cc

es
s

ra
te

0.
96

0.
98

1
0.

96
1

0.
94

0.
9

SC
2-

3

M
ed

ia
n

(0
.0

,8
1.

81
3)

(0
.0

,7
3.

34
63

)
(0

.0
,7

0.
46

31
)

(0
.0

67
2,

71
.3

79
8)

(0
.0

74
3,

61
.5

35
1)

(0
.0

77
,6

6.
71

36
)

(0
.0

88
1,

74
.3

81
5)

B
es

t
(0

.0
,6

9.
00

95
)

(0
.0

,5
7.

26
19

)
(0

.0
,5

2.
31

24
)

(0
.0

,5
0.

81
4)

(0
.0

,4
9.

99
85

)
(0

.0
,5

0.
52

3)
(0

.0
,5

0.
17

81
)

W
or

st
(0

.0
87

5,
85

.7
63

4)
(0

.1
42

7,
78

.1
66

3)
(0

.1
68

4,
83

.8
00

3)
(0

.1
60

8,
77

.6
21

6)
(0

.1
95

3,
64

.7
13

7)
(0

.1
78

5,
75

.2
63

)
(0

.1
83

8,
67

.9
05

9)
Su

cc
es

s
ra

te
0.

8
0.

76
0.

54
0.

36
0.

36
0.

22
0.

08

SC
2-

4

M
ed

ia
n

(0
.0

48
8,

96
.8

37
5)

(0
.0

9,
86

.8
19

9)
(0

.1
35

,9
3.

87
36

)
(0

.1
65

9,
78

.5
03

4)
(0

.1
89

4,
83

.6
35

9)
(0

.1
96

9,
92

.1
30

1)
(0

.1
77

5,
85

.9
6)

B
es

t
(0

.0
,8

2.
37

83
)

(0
.0

,8
1.

81
2)

(0
.0

,7
2.

23
75

)
(0

.0
,7

2.
87

84
)

(0
.0

,7
7.

80
25

)
(0

.0
54

9,
80

.3
51

3)
(0

.0
,7

5.
74

59
)

W
or

st
(0

.1
63

7,
95

.7
11

5)
(0

.2
40

5,
10

1.
11

36
)

(0
.2

76
,9

3.
00

93
)

(0
.2

61
2,

89
.2

84
6)

(0
.2

79
5,

84
.3

99
3)

(0
.2

62
2,

98
.1

77
1)

(0
.2

76
5,

85
.3

48
)

Su
cc

es
s

ra
te

0.
34

0.
14

0.
1

0.
04

0.
02

0
0.

02

86 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery

6.4.1 Scenario 1

Here, we assume that the problem aim is reclaiming the whole stockyard. Table 6.1
lists the obtained objectives for Scenarios 1 and 2. Note that we only report the best
RGA variant for each experiment for brevity. The complete information regarding the
outcomes from the RGA variants can be found in Table 6.2.

For all experiments, we observe that all algorithms can obtain a success rate of
100%. Therefore, for the evaluation, we only look at the utility cost. We can also
see that DGA outperforms PSRH, meaning that acting deterministic greedy is better
than using PSRH for this scenario. We observe the same pattern for RGA, but with
there is a statistical difference for various experiments. We can see for all experiments
that RGA-15 and RGA-20 are not significantly different.

RGA-1, RGA-3, RGA-5 can find solutions with large utility, as the worst obtained
utility among these variants are 25.5281, 25.1717, 24.8425, respectively. We see that
as λ increases, the median value of utility decreases, where it leads to better solutions.
We see for experiments 2-4, RGA-20 can obtain the best solution with the utility of
47.7301, 71.8263, and 95.8881, respectively. However, for experiment 1, which is the
most straightforward instance in our study, RGA-5 obtains the best solution with a
utility of 23.3787, but with a higher median than the RGA variant where λ ≥ 7.

We also observe that the best solution obtained by RGA is the same as DGA in
experiment 1. However, as the stockyard’s size becomes larger, adding randomness re-
sults in RGA outperforming DGA. To determine the best RGA variant of experiments
2-4, we report RGA-20, and for experiment 1. and we report RGA-5 for experiment
1.

We see that all MMAS variants with or without local search outperform PSRH,
DGA and RGA variants. For experiment 1, the local search variants outperform those
without. Moreover, there is no significant difference among the local search variants.
However, for experiments 2-4, we see MMAS-swp and MMAS-ins are significantly
different and better than other variants. Nonetheless, there exists no significant dif-
ference between MMAS and MMAS-inv.

6.4.2 Scenario 2

In this scenario, we aim to plan the reclamation to fulfill deliveries. We observe that
PRSH and DGA can obtain a zero violation solution for the first two experiments.
However, for the last two experiments, their obtained solutions are a non-zero violation
solution. Moreover, DGA obtains worse solutions than PSRH. For this scenario, we
can see that acting greedy by DGA leads to weaker solutions, unlike scenario 1 when
the problem is more similar to real-world conditions.

For all experiments, among RGA variants, we see no significant difference where
3 ≤ λ ≤ 10. Moreover, in experiment 1, we observe that the RGA-1 success rate is
94%; however, other RGA variants are 100% successful. For experiment 1, we report
RGA-10, where it can obtain the best solution among RGA variants. For experiment
2, we see that RGA-1, RGA-3, RGA-7, RGA-15, and RGA-20 success rates are at least
90%. Among RGA-10, RGA-15, and RGA-20 where all are non-significant different
from each other, we report RGA-10 because its success rate is 100% and it can obtain
reasonably good solutions.

Experiments 3 and 4 are more challenging instances because we can see that as
the number of deliveries increases, the resources in the stockyard are close to being
exhausted. It makes it harder for the algorithm to provide non-zero violations for
all the deliveries. For experiment 3, we observe that among RGA variants, as λ
increases, the success rate decreases from 80% to 8%. We report RGA-10 as the best

6.5. Conclusions 87

RGA variant for experiment 3. For experiment 4, the success rate for RGA variants
decreases from 34% to 0%, where RGA-15 success rate is zero. We report RGA-5 as
the best RGA variant where it can find the best solution (0.0, 72.2375).

Similar to experiments 2-4 in scenario 1, we see no significant difference between
MMAS and MMAS-inv. We also observe that MMAS with or without local search
outperforms PSRH, DGA and RGA variants. The success rate for all MMAS variants
is 100%, where it enables us to only look at their utility function to compare them more
easily. We can see that in experiments 1 and 2, MMAS-ins outperforms MMAS-swp.
However, in experiments 3 and 4, with more complicated instances, MMAS-swp is the
best among the two. However, in experiment 4, as the most challenging experiment
in this scenario, all MMAS variants are not significantly different.

6.4.3 Scenario 3

This scenario is the most challenging one and the most similar to the real-world
application which considers window target quality. Table 6.3 lists the results. Note
that The complete information regarding the outcomes from the RGA variants can
be found in Table 6.4. In all experiments, we observe that PSRH and DGA obtain
non-zero violation solutions where DGA can obtain a better solution. Among RGA
variants for experiments 1-3, we see that variants with 3 ≤ λ ≤ 7 are non-significant
different from each other, and the same behavior applies to the variants with 10 ≤
λ ≤ 20.

RGA-3 and RGA-5 obtain solutions with a higher partial success rate. Similar
to other scenarios, MMAS and its variants outperform other algorithms, and for ex-
periments 1-3, all show a 100% success rate. However, for experiment 4, we see an
occasional success for only the MMAS variants. This could be because of the way the
experiments were defined: almost all resources are exhausted, and it is hard to find a
solution without violating the quality objectives.

For experiment 1, RGA-10, RGA-15 and RGA-20 obtain their best solutions with
zero violation with utility of 17.0583, 17.1489 and 16.714 with algorithm success rates
of 68%, 44% and 42% respectively. Similarly, for experiment 2, RGA-5, RGA-7, RGA-
20 obtain their best solutions as zero-violation with utility of 34.3946, 34.6121 and
34.332 with their success rates as 42%, 20% and 2% respectively. It shows that for
these complex scenarios in both experiments, some RGA variants are able to find
better solutions than MMAS but with a lower success rate. It shows that there
exists room for improvement of MMAS variants with a proper tuning of MMAS and
improve MMAS ability to explore the search space better. For experiment 1-3, we
report RGA-20 as the best RGA variant.

Experiment 4 of this scenario is the most difficult instance for our study. We
can see that all RGA variants are unsuccessful. However, all MMAS variants can
obtain a zero-violation solution but note that the success rate of MMAS is low. It
demonstrates that MMAS and its variants can find a good solution. However, the
algorithm’s quality for robustness in finding zero-violation solutions in multiple runs
could be improved. For experiment 4, we report RGA-3 as the best RGA variant.
It can obtain a solution where v1(x) = 0 as (0.0, 0.3736, 84.114) and it is the best
solution among RGA variants.

6.5 Conclusions

We stated the stockpile recovery problem as a combinatorial optimisation problem
with a lexicographic objective function considering technical restrictions in practice.

88 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery

T
a
ble

6.3.
F
itness

values
obtained

for
the

optim
ised

solutions
in

Scenario
3

P
SR

H
D

G
A

best
R

G
A

M
M

A
S

M
M

A
S-sw

p
M

M
A

S-ins
M

M
A

S-inv
Instance

SC
3-1

M
edian

(0.0,0.0801,15.9225)
(0.0,0.0033,31.9449)

(0.0,0.0,26.1112)
(0.0,

0.0,
21.6272)

(0.0,0.0,22.5023)
(0.0,0.0,22.3799)

(0.0,0.0,22.4573)
B

est
(0.0,0.0801,15.9225)

(0.0,0.0033,31.9449)
(0.0,

0.0,
16.714)

(0.0,0.0,17.5283)
(0.0,0.0,20.5082)

(0.0,0.0,20.7674)
(0.0,0.0,19.6313)

W
orst

(0.0,0.0801,15.9225)
(0.0,0.0033,31.9449)

(0.0,0.0,27.6398)
(0.0,

0.0,
22.8708)

(0.0,0.0,23.553)
(0.0,0.0,23.0829)

(0.0,0.0,23.393)
Success

rate
0

0
0.42

1
1

1
1

SC
3-2

M
edian

(0.0,0.2286,34.7849)
(0.0,0.0668,54.3735)

(0.0,0.0,43.803)
(0.0,0.0,38.6463)

(0.0,
0.0,

37.7133)
(0.0,0.0,38.5856)

(0.0,0.0,37.966)
B

est
(0.0,0.2286,34.7849)

(0.0,0.0668,54.3735)
(0.0,

0.0,
34.332)

(0.0,0.0,35.2312)
(0.0,0.0,36.1584)

(0.0,0.0,36.916)
(0.0,0.0,36.012)

W
orst

(0.0,0.2286,34.7849)
(0.0,0.0668,54.3735)

(0.062,0.0,47.5242)
(0.0,0.0,41.0108)

(0.0,0.0,40.1809)
(0.0,0.0,39.9312)

(0.0,
0.0,

39.6312)
Success

rate
0

0
0.02

1
1

1
1

SC
3-3

M
edian

(0.0304,0.4242,49.6518)
(0.0,0.1015,70.2569)

(0.0496,0.0489,63.8654)
(0.0,0.0,59.6043)

(0.0,
0.0,

55.9089)
(0.0,0.0,58.6546)

(0.0,0.0,56.0387)
B

est
(0.0304,0.4242,49.6518)

(0.0,0.1015,70.2569)
(0.0,0.0489,57.0279)

(0.0,0.0,56.3588)
(0.0,

0.0,
53.7049)

(0.0,0.0,56.568)
(0.0,0.0,54.2217)

W
orst

(0.0304,0.4242,49.6518)
(0.0,0.1015,70.2569)

(0.1295,0.0489,79.1781)
(0.0,0.0,62.2242)

(0.0,
0.0,

57.2936)
(0.0,0.0,59.7979)

(0.0,0.0,57.5471)
Success

rate
0

0
0

1
1

1
1

SC
3-4

M
edian

(0.1297,2.0262,65.5358)
(0.0627,0.7477,84.094)

(0.126,0.3736,82.627)
(0.0,0.0064,81.1742)

(0.0,0.0,80.9867)
(0.0,0.0281,79.3744)

(0.0,
0.0,

76.3152)
B

est
(0.1297,2.0262,65.5358)

(0.0627,0.7477,84.094)
(0.0,0.3736,84.114)

(0.0,0.0064,88.1848)
(0.0,0.0,81.6204)

(0.0,0.0281,82.8373)
(0.0,

0.0,
72.6274)

W
orst

(0.1297,2.0262,65.5358)
(0.0627,0.7477,84.094)

(0.2251,0.3736,97.6799)
(0.0,0.0064,80.9308)

(0.0,
0.0,

77.0153)
(0.0,0.0281,82.1064)

(0.0,0.0,83.4832)
Success

rate
0

0
0

0
0.02

0
0.1

6.5. Conclusions 89

T
a
bl

e
6.

4.
F
it

ne
ss

va
lu

es
ob

ta
in

ed
fo

r
th

e
op

ti
m

is
ed

so
lu

ti
on

s
by

R
G

A
va

ri
an

ts
in

Sc
en

ar
io

3

R
G

A
-1

R
G

A
-3

R
G

A
-5

R
G

A
-7

R
G

A
-1

0
R

G
A

-1
5

R
G

A
-2

0
In

st
an

ce

SC
3-

1

M
ed

ia
n

(0
.0

,0
.0

,3
2.

24
1)

(0
.0

,0
.0

,3
0.

12
75

)
(0

.0
,0

.0
,2

6.
50

95
)

(0
.0

,0
.0

,2
3.

55
85

)
(0

.0
,0

.0
,2

2.
43

19
)

(0
.0

,0
.0

,2
3.

41
21

)
(0

.0
,0

.0
,2

6.
11

12
)

B
es

t
(0

.0
,0

.0
,2

9.
84

47
)

(0
.0

,0
.0

,2
1.

82
85

)
(0

.0
,0

.0
,1

9.
58

92
)

(0
.0

,0
.0

,1
7.

62
29

)
(0

.0
,0

.0
,1

7.
05

83
)

(0
.0

,0
.0

,1
7.

14
89

)
(0

.0
,0

.0
,1

6.
71

4)
W

or
st

(0
.0

07
4,

0.
0,

39
.8

09
)

(0
.0

,0
.0

,3
9.

65
59

)
(0

.0
,0

.0
,3

7.
85

51
)

(0
.0

,0
.0

,2
5.

16
39

)
(0

.0
,0

.0
,3

3.
08

18
)

(0
.0

,0
.0

,2
9.

88
02

)
(0

.0
,0

.0
,2

7.
63

98
)

Su
cc

es
s

ra
te

0.
2

0.
9

0.
92

0.
88

0.
68

0.
44

0.
42

SC
3-

2

M
ed

ia
n

(0
.0

,0
.0

,5
4.

88
51

)
(0

.0
,0

.0
,5

2.
25

06
)

(0
.0

,0
.0

,4
4.

35
13

)
(0

.0
,0

.0
,3

8.
27

91
)

(0
.0

,0
.0

,4
9.

21
67

)
(0

.0
,0

.0
,4

8.
96

37
)

(0
.0

,0
.0

,4
3.

80
3)

B
es

t
(0

.0
,0

.0
,5

9.
93

53
)

(0
.0

,0
.0

,3
7.

00
24

)
(0

.0
,0

.0
,3

4.
39

46
)

(0
.0

,0
.0

,3
4.

61
21

)
(0

.0
,0

.0
,4

1.
62

76
)

(0
.0

,0
.0

,4
0.

66
91

)
(0

.0
,0

.0
,3

4.
33

2)
W

or
st

(0
.0

,0
.0

,5
7.

51
76

)
(0

.0
66

3,
0.

0,
56

.4
75

8)
(0

.1
53

6,
0.

0,
62

.8
78

7)
(0

.0
79

8,
0.

0,
57

.2
65

4)
(0

.1
11

3,
0.

0,
61

.5
71

1)
(0

.0
96

,0
.0

,5
6.

48
24

)
(0

.0
62

,0
.0

,4
7.

52
42

)
Su

cc
es

s
ra

te
0.

02
0.

62
0.

42
0.

2
0.

02
0.

1
0.

02

SC
3-

3

M
ed

ia
n

(0
.0

,0
.0

78
7,

85
.3

03
3)

(0
.0

19
5,

0.
0,

65
.2

88
)

(0
.0

73
1,

0.
0,

79
.3

19
9)

(0
.0

74
7,

0.
1,

72
.9

86
3)

(0
.0

76
7,

0.
14

06
,6

7.
07

05
)

(0
.0

72
4,

0.
10

18
,6

7.
71

57
)

(0
.0

49
6,

0.
04

89
,6

3.
86

54
)

B
es

t
(0

.0
,0

.0
78

7,
86

.8
80

6)
(0

.0
,0

.0
,6

2.
65

15
)

(0
.0

,0
.0

,5
5.

81
03

)
(0

.0
,0

.1
,5

6.
75

36
)

(0
.0

,0
.1

40
6,

59
.9

47
2)

(0
.0

,0
.1

01
8,

58
.5

95
3)

(0
.0

,0
.0

48
9,

57
.0

27
9)

W
or

st
(0

.0
95

2,
0.

07
87

,7
2.

99
58

)
(0

.1
31

9,
0.

0,
68

.7
98

)
(0

.1
80

4,
0.

0,
82

.5
68

6)
(0

.1
52

9,
0.

1,
81

.8
51

4)
(0

.1
54

4,
0.

14
06

,7
6.

73
4)

(0
.1

67
3,

0.
10

18
,8

0.
84

84
)

(0
.1

29
5,

0.
04

89
,7

9.
17

81
)

Su
cc

es
s

ra
te

0
0.

1
0.

02
0

0
0

0

SC
3-

4

M
ed

ia
n

(0
.0

79
8,

0.
64

26
,9

3.
55

96
)

(0
.1

26
,0

.3
73

6,
82

.6
27

)
(0

.1
83

6,
1.

94
21

,8
8.

14
46

)
(0

.1
77

3,
1.

41
55

,9
0.

86
24

)
(0

.1
73

8,
2.

20
83

,9
1.

15
21

)
(0

.1
64

1,
1.

34
47

,8
8.

30
56

)
(0

.1
35

5,
1.

14
35

,7
8.

13
02

)
B

es
t

(0
.0

,0
.6

42
6,

10
2.

61
71

)
(0

.0
,0

.3
73

6,
84

.1
14

)
(0

.0
90

5,
1.

94
21

,8
7.

88
19

)
(0

.0
75

2,
1.

41
55

,8
0.

97
74

)
(0

.0
76

8,
2.

20
83

,7
6.

04
99

)
(0

.0
54

1,
1.

34
47

,8
0.

14
16

)
(0

.0
61

2,
1.

14
35

,8
1.

89
11

)
W

or
st

(0
.2

22
3,

0.
64

26
,8

6.
07

25
)

(0
.2

25
1,

0.
37

36
,9

7.
67

99
)

(0
.2

50
7,

1.
94

21
,1

02
.5

16
6)

(0
.2

47
5,

1.
41

55
,8

7.
74

91
)

(0
.2

29
,2

.2
08

3,
94

.0
73

6)
(0

.2
53

3,
1.

34
47

,9
9.

23
49

)
(0

.2
23

3,
1.

14
35

,8
1.

37
67

)
Su

cc
es

s
ra

te
0

0
0

0
0

0
0

90 Chapter 6. Modelling and Optimisation of Run-of-Mine Stockpile Recovery

We have used optimisation methods to construct a reclaiming schedule step by step
to meet the precedence constraints in solving the problem. For this purpose, we have
explored the use of deterministic and randomised greedy algorithms. We have also
employed MMAS as a variant of the ACO algorithm, and we considered three local
search operators for it, namely swap, insert, and inversion. We investigated multiple
scenarios and experiments. In our experiments, which have covered various real-world
aspects, We have developed multiple scenarios and experiments to investigate our
approach and study the problem model considering various complexities and simi-
larities to real-world applications. We have observed that adding randomness to the
deterministic greedy algorithm has helped it find better solutions when the scenario
is more similar to the real-world problem. We have also seen that MMAS, especially
with a local search, outperforms other algorithms with a high success rate. Among the
local search operators, the insert operator is not significantly different from MMAS
without the local search. However, swap and inverse operators can help to find better
solutions. We have used several default parameters for the algorithms. For future
studies, it could be interesting (1) to investigate automated online/offline tuning of
the parameters of algorithms, (2) to study other ACO variants, and (3) to develop
local search operators that are specific to this reclamation problem.

91

Chapter 7

Run-of-Mine Stockyard Recovery
Scheduling and Optimisation for
Multiple Reclaimers

We discussed in the previous chapter the stockpile recovery problem considering a
single reclaimer. This chapter extends the study for a stockyard recovery problem
scheduling using multiple reclaimers. We aim to develop an effecting reclaiming sched-
ule considering the quality objectives as discussed in the previous chapter and enable
long-term delivery planning using multiple reclaimers.

In Chapter 6, we considered the stockpile recovery problem with separate cuts
instead of a whole bulk item. We modelled the stockpile recovery scheduling problem
by considering realistic settings. We defined the problem as a combinatorial optimi-
sation problem with precedence constraints to address the inaccessibility issue of the
cuts in the stockyard. We introduced a lexicographic objective function to prioritise
penalty fees over operation costs with respect to the end-user preferences.

The main disadvantage of this initial study was that it only considers a single
reclaimer machine in the stockyard; however, stockyards are reclaimed in parallel
using multiple reclaimers in practice to prepare deliveries. Another assumption is
that we only considered a single type of reclaimer with a single mechanical direction
of reclamation. However, in practice, the types of reclaimers can be different, and the
variety can bring up different reclaiming directions using their mechanical arms. In the
previous chapter, our goal was to schedule reclaiming for up to four deliveries from four
stockpiles containing the same type of material. We used solution construction based
methods such as greedy algorithms and ant colony optimisation with local search to
build a valid solution step by step. We showed that deterministic greedy algorithms
might fail to obtain good solutions when the number of upcoming deliveries grows.
However, ant colony optimisation with local search can be a viable solver to these
complex problems.

In this chapter, we investigate the stockpile recovery scheduling problem using
multiple reclaimers with more realistic settings than before. We define the stockyard
as a directed graph with cuts as vertices and direction as the mechanical reclaiming
direction. The reclaiming direction is an inherent element of a reclaimer machine; for
example, front end loaders can only reclaim in one way, while bucket wheel reclaimers
can reclaim in two directions. By combining GPS data from the haul trucks and laser
scanning, our industry partner can model the stockpiles divided into smaller cuts with
their own quality characteristics instead of considering them as one large pile with
average quality. We consider the problem regardless of stockyard economic minerals
or reclaimer machines to reach a scalable method. We schedule multiple reclaimers
in the stockyard in order to provide deliveries sequentially. To avoid penalty fees and

92 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

reduce operational costs, we aspire to achieve a good schedule for the reclaimers while
preserving the target quality of deliveries.

With multiple reclaimers in this chapter, we must consider their interaction so
that when they work in parallel, they do not come too close to one another for safety
constraints. The schedule for a single reclaimer represents the sequence of cuts to be
reclaimed regardless of time. In comparison, schedules are obtained while consider-
ing multiple reclaimers that they reclaim cuts at a given time step according to the
reclaimers’ reclaiming directions.

These methods require a solution construction heuristic. In this study, to simulate
the interaction among reclaimers and ensure the safety distancing, we develop a cus-
tom solution construction heuristic to consider all reclaimers in preparing a delivery
simultaneously and sequentially. To select a job at each step, we employ selection
strategies from deterministic and randomised greedy algorithms, indicated as DGA
and RGA, respectively, and Max-Min Ant System (MMAS) with a customised local
search to tackle the problem. Our experiments consider realistic stockpile recovery
settings integrating different types of reclaimers, material, and interaction among the
reclaimers.

This chapter is based on the work published in 37th Annual ACM Symposium on
Applied Computing. ACM, 2022 [Ass+22a]. We added more experiments and the
rest of this chapter is organised as follows. We define the stockpile recovery problem
using multiple reclaimers before explaining the objective function. Next, we present
the optimisation algorithms and solution construction heuristic for simulating the
reclaimers interactions. Then, we set up experiments, fine-tune our algorithms and
report on the behaviour and quality of obtained solutions for each problem instance.
We find that MMAS with local search can outperform other methods in most of the
case studies. Finally, we finish with some concluding remarks and some suggestions
for future work.

7.1 Problem Statement

We discussed the stockpile recovery problem in Chapter 6 using single reclaimer. In
this section we extend the single reclaimer problem to cover a stockyard with multiple
reclaimers and we change the problem statement, constraints and objective functions
accordingly.

Similar to the previous Chapter, we model a given stockyard in form of a directed
graph G = (C, E) without cycles where C = {c1, c2, . . . , cJ} is the set of cuts in the
stockyard including J cuts with index j. Each cut denotes a slice of a stockpile at a
certain location in the stockyard with respect to the positioning of its bench, stockpile
and row in the stockyard. Each cut contains information on the mineral compositions
of economic and contaminant minerals, denoted by mj,k where k = {1, 2, . . . ,K},
which defines the set of chemical elements preferred by the end-user to be evaluated.

Operational constraints include the accessibility of cuts in the stockyard where
the lower benches are unreachable before reclaiming the higher bench. Furthermore,
if multiple stockpiles are present, the reclaimers should keep a safe distance between
themselves to avoid collisions.

Figure 7.1 shows the stockyard configuration in our problem for stockyard recovery
using multiple reclaimers. Note that the row 1 shown in this figure is the same row
we studied in Chapter 6 and shown in Figure 6.1. Similar to Chapter 6 each stockpile
can be split into 4 benches, each of which has 10 cuts. However, we have four rows,
each one containing four stockpiles. Some reclaimers, such as bucket wheel reclaimers,

7.1. Problem Statement 93

Row 1Row 2Row 3Row 4

R1

R2

R3

Material type

Type 1

Type 2

(a)(a)

Entry cuts of the stockpile

(b)

St
oc

kp
ile

 1
St

oc
kp

ile
 2

St
oc

kp
ile

 3
St

oc
kp

ile
 4

Bench 1

Bench 2

Bench 3

Bench 4

Figure 7.1. (a) Top view of the stockyard configuration (b) Layout
of a single stockpile with four benches each containing ten cuts

can move their mechanical arm in two different directions during recovery, which we
refer to as reclaiming direction (ϕ). We suppose there are two kinds of deliveries in
terms of the particle size distribution of stacked material. Each stockpile can only
contain one type of material. Entry cuts refer to the first cut of the stockpile that can
be accessed with a reclaimer with a specific reclaiming direction. We consider that a
reclaimer can operate on each row and they are parallel to each other.

Each cut (cj) has a specified tonnage given by Γj , and reclaiming a cut takes a
specific amount of time proportionate to its size denoted by τj . E denotes the set
of edges representing the immediate predecessors for each cut with its corresponding
reclaiming direction. ej,ϕj

∈ E denotes the edge connecting to the cj with reclaiming
direction of ϕj ; the edge physically represents the reclaimer job where reclaimer relo-
cates from its current position to cj and reclaims the destination cut with reclaiming
direction of ϕj . Precedence constraints determine the validity of a schedule. If it fails
for a segment of the solution, the schedule becomes unable to be processed.

Stockpile recovery is a time-consuming operation that entails the relocation of
reclaimers, such as front-end loaders and bucket wheel reclaimers, in the stockyard
and the time it takes to reclaim a cut proportionate to its size. A cut is a section of
piled material that can weigh 1000 to 5000 tonnes. Operation time and operation costs
are phrases that can be used interchangeably. To calculate a reclaimer’s relocation
cost shown as Ti,j,ϕi,ϕj

, we need to know its current position at cut i, the destination
(j), and their corresponding reclaiming directions, ϕi and ϕj , respectively.

A candidate solution for a schedule, x represents how jobs are scheduled for re-
claimers. Sets R and D denote the reclaimer and delivery sets, respectively. We show
a sub-segment of x for reclaimer r in preparation of delivery d as xrd.

We aim to maintain the target quality of deliveries in terms of economic and
contaminant minerals while lowering operating costs based on end-user preferences.
The first objective is to guarantee that the average of chemical minerals in delivery
remains within a predefined range depending on the type of material in delivery. We
calculate the average target quality for each mineral (k) with respect to the delivery

94 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

d as follows. Note that to form xd,k we consider all reclaimers.

x̂d,k =
1

|xd|
∑

ej,ϕj∈xd

mj,k

where, the predefined range constraint is

md,k ≤ x̂d,k ≤ md,k ∀k ∈ K

Each mineral has a different magnitude, as well as a lower and maximum limit. As
shown below, we utilise the bracket-operator penalty approach [Deb01] to evaluate
the degree of violation for average target quality.

〈
x̂d,k

〉
=

|x̂d,k−md,k|

|md,k| if x̂d,k > md,k

|x̂d,k−md,k|
|md,k| if x̂d,k < md,k

0 md,k ≤ x̂d,k ≤ md,k

To calculate the total violation for average target quality in x for all reclaimers for
the delivery d we have:

v1(xd) =

K∑
k=1

〈
x̂d,k

〉
Another objective is to ensure that a massive delivery in different packages remains

consistent. We refer to it as window target quality.

x̃d,j,k =
mj,k +mj−1,k +mj−2,k

3

We use the bracket operator, as we did for the first objective, to determine the
degree of violation for this objective, and we have:

v2(xd) =

K∑
k=1

|xd,k|∑
j=4

〈
x̃d,j,k

〉
j refers to the position of a cut in the solution segment since we want to calculate

the window target quality after three cuts have already been reclaimed for a delivery.
The third objective is to lowering the operation costs, where we want to have a schedule
for reclaimers to prepare the deliveries faster. We define a utility function as follows.

u(xd) =
∑
cj∈xd

Tej,ϕj

Γj

where Tej,ϕj
is the cost required to complete job ej,ϕj

considering the cost of
relocation and cut reclamation.

Tej,ϕj
= Ti,j,ϕi,ϕj

+ τj

7.1.1 Lexicographic Objective Function

We prioritise target quality over operational costs because if the target quality is
violated, the stockpile manager must pay financial penalties. As a result, the primary
objective is to avoid violating the average target quality; the second priority is to avoid

7.2. Optimisation Methods 95

violating window target quality and, subsequently, to reduce the utility. We employ
a lexicographic objective function for minimisation to consider these priorities.

f(x) =

(
D∑

d=1

v1(xd),
D∑

d=1

v2(xd),
D∑

d=1

u(xd)

)

Order in the objective function matters. To compare two solutions x and z, we
have:

f(x) ≤ f(z)

iff v1(x) ≤ v1(z)∨
(v1(x) = v1(z) ∧ v2(x) ≤ v2(z))∨
(v1(x) = v1(z) ∧ v2(x) = v2(z) ∧ u(x) ≤ u(z))

For example, among f(x) = (0.01, 0, 35) and f(z) = (0, 0.01, 15) and f(w) =
(0, 0, 45), first, we look at the first component, and we see that v1 is zero for solutions
z and w; thus, solution x is the worst of all solutions. To compare solutions z and w,
we consider the second component (v2) where solution w outperforms the solution z.
We have:

f(w) < f(z) < f(x)

Our problem can be viewed as an extended version of the Travelling Salesperson
Problem (TSP) with real-world constraints and objectives. In our case, we replace the
cities and TSP distances with mineral cuts and the reclamation job costs, respectively.
Furthermore, we have several agents (reclaimers) on graphs that must adhere to a no-
cross condition. We aim to find a solution to maintain the objectives with respect to
the end-user preferences. There are precedence constraints in accessing the cuts and
requirements to maintain the target quality of deliveries.

Note that Both knapsack problem (which represented the primary problem in
Chapter 4 and TSP problems are classic combinatorial problems, and they can repre-
sent a broad class of optimization problems that arise in many practical applications,
such as logistics and supply chain management, manufacturing, and logistics.

In logistics and supply chain management, for example, the knapsack problem is
used to model the problem of packing items into containers or vehicles in a way that
maximises their value while keeping them within a certain weight limit. This is a
common problem that arises in shipping, warehouse management, and other areas of
logistics. In manufacturing, the knapsack problem can be used to model the problem
of selecting a subset of machine tools or other resources to use in production to
maximise the output while minimising the cost. In logistics, the travelling salesman
problem is used to model the problem of finding the most efficient route for delivery
truck, ships or planes to visit a set of customers or delivery points. This problem is
of great importance for companies that need to plan their routes in an efficient way
to minimise the distance travelled, fuel consumption, and other expenses.

7.2 Optimisation Methods

In this section, we explain our methods. First, we present the solution construction
heuristic, which simulates the reclaimers interactions to construct a schedule. Next,
we explain the employed algorithms that generate a valid solution step by step while
adhering to the precedence constraints. We look at deterministic and randomised

96 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

variants of greedy algorithms and ant colony optimisation with and without the local
search.

7.2.1 Solution Construction Heuristic

Algorithm 7.1 shows the solution construction heuristic procedure. This solution con-
struction heuristic is more sophisticated compared to the counterpart in the previous
chapter because we need to consider the interaction among the reclaimers. We assume
that each reclaimer can only do one reclamation job at a time. Reclaimers cannot be
interrupted while performing a reclaiming job, and the job must be completed before
starting another (non-preemptive constraint).

Each reclaimer can only reclaim from its adjacent stockpiles. For example, in
Figure 7.1, R1 can only reclaim from Row 1 and Row 2, and all stockpiles in Row 2
are shared between R1 and R2. However, reclaimers on a shared row can not get too
close to one another in terms of a safety distance constraint.

Reclaimers can be idle or busy at a time. Initially, the solution set x is empty, and
reclaimers are idle. Reclaimers have access only to the entry cuts at their adjacent
stockpiles. The entry cuts are positioned opposite with respect to the other reclaiming
direction.

We assume that the reclaimers begin with reclaiming the fixed entry cut with the
fixed initial direction (ϕ0) from a stockpile with the material type of first delivery
(d = 1). We denote the initial reclamation job as ecr0,ϕ0 where cr0 is the fixed entry
cut for reclaimer r. Reclaimers record a completion time of the job as they become
busy and we push the cut to their queue. When the initial job’s completion time has
passed, the reclaimer(s) become idle, and we add the reclaimed cut to the reclaimer
schedule. Next, we can figure out what cuts are accessible for a reclaimer. N r

t shows
the available cuts in the neighbourhood of reclaimer r at its position at time step t.
If more than one reclaimer becomes idle at the same time, the total neighbourhood
is a set containing candidates from each reclaimer paired. Note that each reclaimer’s
neighbourhood is made up of a variety of reclaiming directions. The following criteria
are used to choose eligible cuts for inclusion in Nt.

• Reclaimers should not get too close to one another in terms of a safety distance

• The deliveries are prepared sequentially. However, suppose a reclaimer exhausts
all cuts of a specific type of delivery. In that case, for idle reclaimer, we begin
reclaiming the following delivery (with a different type of mineral) to save time
and be more efficient. In our settings, we refer to this exception as material
exhaustion exception.

Next, the idle reclaimer(s) select a job from its eligible neighbourhood as ej,ϕj
∈

N r
t . We evaluate the quality of each job as described in Section 7.1.1, and the selection

is carried out according to the applied algorithm selection approach. This procedure
is repeated for all reclaimers, and after completion of each job, the stockyard graph
is updated. The reclaimers continue to reclaim minerals until we reach the specified
tonnage of delivery d. The reclaimer will then begin reclaiming the next delivery
(d + 1). Note that if multiple reclaimers are idle at the same time, we evaluate a
combination of jobs with respect to the reclaimers. This cycle is repeated for each
delivery until all deliveries are completed.

7.2. Optimisation Methods 97

Algorithm 7.1: Solution Construction Heuristic
Input : Selection algorithm from [DGA, RGA, MMAS]

1 t← 0
2 x := ∅ ▷ Let x be the solution set
3 jobr ← ecr0 , ϕ0 ∀r ∈ R ▷ Add initial job to the queue
4 foreach r ∈ R do
5 dr ← 1
6 statusr ← busy
7 tr ← Tjobr ▷ Record completion time

8 while d ≤ D ▷ all deliveries are not planned
9 do

10 t← t+ 1 ▷ next time step
11 foreach r ∈ R do
12 if tr ≤ t then
13 xrd ← jobr ▷ Add completed job to x
14 Γxd

= Γxd
+ Γjobr ▷ Tracking tonnage of the delivery

15 if Γxd
> Γd then

16 d = d+ 1 ▷ We start reclaiming the next delivery

17 Generate N r
t ▷ wrt. dr

18 while N r
t = ∅ ∧ dr <= D do

19 dr = dr + 1 ▷ material exhaustion exception
20 Generate N r

t

21 Nt =
R∏
r

N r
t ∀r ∈ R if r is idle and typerd is identical

22 Evaluation of all candidate jobs in Nt

23 Selection of next job wrt. to input algorithm probability of selection

7.2.2 Deterministic And Randomised Greedy Algorithm

Similar to the initial study in Chapter 6, we use deterministic and randomised greedy
algorithm as shown in Algorithm 7.2. The deterministic greedy algorithm (DGA)
follows the principles introduced in the previous chapter where DGA selects the best
eligible job in the neighbourhood of a reclaimer with the highest greediness at each
time step. We also noticed that adding randomisation to DGA can result in finding
better solutions. Recall that randomised greedy algorithm (RGA) has a greedy control
parameter λ ≥ 0. When λ is small, RGA gives weight to candidates in the selection
where there is still a chance for weaker candidates to be selected.

The probability of selection of a cut in a neighbourhood of reclaimers at time step
t for RGA is:

p(ej,ϕj
|Nt) =

η(ej,ϕj
)λ∑

el,ϕl∈Nt
η(el,ϕl

)λ

This probabilistic selection is analogous to a roulette wheel, with the probability of
selecting a candidate in Nt is proportionate to η(ej,ϕj

)λ. η refers to the heuristic
information, and we calculate it as follows.

In the previous chapter, we used some arbitrary numbers to determine the fitness
proportionate based selection. However, in this chapter, we use the following principle.
If the average target quality and window target quality for all candidates are zero (

98 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

Algorithm 7.2: Greedy Algorithms
1 x := ∅
2 Construct a solution x step by step, using Algorithm 7.1 with following

selection probability
3 if Selection is deterministic (DGA) then
4 Choose a job e∗ = argminej,ϕj∈Nt

f(ej,ϕj
)

5 else
▷ RGA

6 Choose a job (e∗) according to probability

p(ej,ϕj
|Nt) =

η(ej,ϕj
)λ∑

el,ϕl∈Nt
η(el,ϕl

)λ

v1(ej,ϕj
) = 0 ∧ v2(ej,ϕj

) = 0 ∀ej,ϕj
∈ Nt), η(ej,ϕj

) will be as identical as u(ej,ϕj
).

Otherwise, we employ linear ranking as follows. We sort the jobs from the best to the
worst with index i from 0 to |Nt| − 1. We calculate the probability of selection based
on their rank as follows [ES15].

ηei,ϕi =
2− SP

µ
+

2i(SP − 1)

µ(µ− 1)

Figure 7.2 shows the behaviour of the preceding equation with respect to different
values of λ and 1 < SP ≤ 2 where the latter refers to the selection pressure parameter.
We assume that there are 10 jobs available in the neighbourhood of the reclaimer to
show the behaviour of the probability of selection. According to the fitness function,
these jobs are sorted from worst to the best. We can see that when λ and SP are
small, the selection probability of jobs is very close to each other. However, adding
λ to increase the RGA greediness and SP for the selection pressure results in more
than 80% chance of selection for the best job.

7.2.3 Max-Min Ant System (MMAS)

MMAS in this chapter also follows the same principles introduced before in Section
6 and Section 3.9. We focus mainly on the MMAS parameters here where MMAS
generates n artificial ants for its colony at the first generation. Each ant performs
a random walk using the solution construction heuristic to generate a valid solution
step by step. employing the following probabilistic selection strategy for our problem
with multiple reclaimers we have

p(ej,ϕj
|Nt) =

[ξej,ϕj]
α[η(ej,ϕj

)]β∑
el,ϕl∈Nt

[ξel,ϕl]
α[η(el,ϕl

)]β

where α and β are MMAS parameters that regulate the influence of heuristic and
pheromone information, respectively, the preceding equation implies that the selection
of the next cut is both dependent on the quality of jobs in terms of the objective
function and the pheromone information.

After all ants complete their random walk, pheromone evaporation occurs where
it aids in avoiding the unvisited paths as follows.

ξej,ϕj = (1− ρ).ξej,ϕj

7.2. Optimisation Methods 99

Available jobs in the neighborhood
(sorted according to their quality from the worst to the best)

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80
Pr

ob
ab

ili
ty

 o
f s

el
ec

tio
n

(%
)

λ= 1, SP=1.1
λ= 1, SP=1.5
λ= 1, SP=2.0
λ= 7, SP=1.1
λ= 7, SP=1.5
λ= 7, SP=2.0
λ= 15, SP=1.1
λ= 15, SP=1.5
λ= 15, SP=2.0

Figure 7.2. Probability of selection when linear ranking is active for
different values of λ and SP

where 0 < ρ ≤ 1 denotes the evaporation rate. Then, one specified ant (π∗) deposits
pheromone on their solution (x∗) edges as follows.

ξi,j,ϕi,ϕj
=

min{ξej,ϕj + ρ, 1− 1

J
} if (ej,ϕj

) ∈ x∗

max{ξej,ϕj ,
1

J
} otherwise.

π∗ could be the best-so-far-ant (BSFA) or the iteration-best-ant (IBA).

7.2.4 Iterative Local Search

In the previous chapter, we applied iterative local search (ILS) to improve the quality
of solutions obtained by MMAS. However, for a more realistic setting of stockyard
recovery problem with interaction of multiple reclaimers in delivering sequentially,
it is hard to define a local search neighbourhood for an obtained schedule produced
for multiple reclaimers which each delivery is scheduled sequentially. The precedence
connection between different reclaimers with respect to shared rows can complicate
the issue. As a result, a small neighbourhood is defined as follows. We consider the
deliveries in order and we begin with the first reclaimer, as xr=1

d=1.
In this segment, we can swap the positions of two adjacent jobs to get the per-

turbed solution as x∗. Next, we validate the precedence constraints with respect to all
reclaimers. If it meets the constraints, we evaluate the change in the objective func-
tion. Note that swapping adjacent jobs in a the defined segment only affects v2(x)

100 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

Algorithm 7.3: Iterative Local Search for MMAS
Input: x = Initial Solution

1 Stop criterion ← False
2 while Stop criterion = False do
3 foreach d ∈ D do
4 foreach r ∈ R do
5 Successful swap ← ∅
6 foreach ej,ϕj

∈ xrd do
7 x* = Swap(x) ▷ Swap this job with its succeeding

adjacent
8 if precedence constraints in x∗ are met then
9 Calculate new completion time for affected jobs

10 Calculate u(x∗) and v2(x
∗)

11 if f(x∗) < f(x) then
12 Record x∗ as a successful swap

13 x← Best solution out of recorded solutions in successful swaps

14 return x

and u(x), but v1(x) remains unchanged. Due to this neighbourhood, v1(x) does not
change and only v2(x) and u(x) are affected. If the perturbed solution outperforms
the original solution, we mark it as a successful swap, and if necessary, we reorder the
jobs to ensure time consistency in terms of affected jobs’ completion time.

After swapping all adjacent jobs in xr=1
d=1, the best one from the recorded ones

replaces the original solution, and we repeat the local search on the same segment.
The process is repeated until no improvement is observed. Then we proceed to the
next segment as the next reclaimer for the same delivery, and the iterative local search
technique described above is repeated.

7.3 Experimental Setup

In this section, we detail our experimental setup and assumptions and fine-tune the
algorithms we described in the previous section.

7.3.1 Problem Setup

We consider a real-world discretised stockyard model provided by our industrial part-
ner shown in Fig 7.1 that described previously. We suppose that no more than ten
deliveries should be planned (according to available material in the stockpile), with
each delivery requiring a tonnage in range of [100,000, 200,000] tonnes. Note that
the stockyard dataset allows us to schedule up to 10 deliveries, whereas more than 9
deliveries can be processed only with 3 reclaimers.

We define an instance as a three-tuple (R,D, ϕ) with the following components in
order: number of deliveries, number of reclaimers and how many reclaiming direction
is possible. For example, (6-2-2) depicts a situation in which six deliveries should
be planned, two reclaimers are available, and reclaimers can employ both ϕ1 and ϕ2

reclaiming directions. In all instances, we evaluate the objective function in the form
(v1(x), v2(x), u(x)).

7.3. Experimental Setup 101

(6-2-1)
(6-2-2)
(6-3-1)
(6-3-2)
(7-2-1)
(7-2-2)
(7-3-1)
(7-3-2)
(8-2-1)
(8-2-2)
(8-3-1)
(8-3-2)
(9-3-1)
(9-3-2)

(10-3-1)
(10-3-2) 2.0

1.9

1.8

1.7

1.6

1.7

1.6

1.4

1.3

1.1

15.0

14.0

12.0
11.0

9.0

8.0
7.0

2.0

3.0

Instance SP (Selection Pressure) λ

Figure 7.3. Best parameter configurations for RGA

7.3.2 Algorithm Setup

We see that our algorithms have several parameters that can influence the computa-
tional cost and their behaviour to discover good solutions.

DGA is deterministic, and there is no configuration parameter. On the other
hand, RGA has two parameters λ and SP to adjust greediness and selection pressure,
respectively. We use λ ∈ {1, 2, 3, . . . , 15} and SP ∈ {1.1, 1.2, 1.3, ..., 2}.

For MMAS, we set the number of ants as 10 and the termination criterion as
1000 maximum generations since they affect the computational expense. MMAS has
parameters of α, β, ρ, n, and π∗ to be configured as follows.

• α ∈ {1, 2, 3 . . . , 10}

• β ∈ {1, 2, 3 . . . , 10}

• ρ ∈ {0.1, 0.2, 0.3, . . . , 1.0}

• SP ∈ {1.1, 1.2, 1.3, . . . , 2.0}

• π∗ ∈ {BSFA, IBA}.

To find a suitable parameter configuration, we use the Irace software package [Lóp+16]
which employs the method of 1/F-Race [Bir+10] for automatic algorithm configura-
tion. We use the default parameters and limit the number of experiments to 5000 as
the termination criterion for parameter tuning.

Figure 7.3 and 7.4 show the configurations obtained by Irace for each instance for
RGA and MMAS, respectively. These parallel coordinate plots illustrate the value of
each parameter for an obtained setup which is represented by a line. Note that these
plots only show the configuration obtained for instances with more than 6 deliveries.

For RGA, we can see that selection pressures greater than 1.7 are more favourable;
the greedy parameter value should be small or large, with no value in the range of 4-6.

102 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

1.0

2.0

3.0

6.0

8.0

9.0

10.0

(6-2-1)
(6-2-2)
(6-3-1)
(6-3-2)
(7-2-1)
(7-2-2)
(7-3-1)
(7-3-2)
(8-2-1)
(8-2-2)
(8-3-1)
(8-3-2)
(9-3-1)
(9-3-2)
(10-3-1)
(10-3-2)

0.2

0.3

0.6

0.5

0.4

0.7

0.8

0.9

1.07.0

6.0

5.0

4.0

2.0

1.0

2.0IBA

BSFA

1.9

1.5

1.7

1.5

1.3

1.1

Instance α β 𝜌 π* SP

Figure 7.4. Best parameter configurations for MMAS

10 and 11 have not been identified for tuning. For MMAS, we can see that selection
pressure follows the same pattern in RGA. IBA is the best choice for updating the
pheromones for most instances. All values other than 0.1, 0.5, and 0.9 have been
utilised for evaporation rate (ρ). We can also see that the chosen values for α and β
are substantially different from ACO’s most typical settings of α = 1 and β = 2.

The source code has been implemented in Python and can be found in https:
//git.io/JyUI1. This framework includes the algorithms mentioned before and the
simulation tool to replicate the experiments. The framework also includes instructions
on how to run the code.

7.4 Results

We run RGA and MMAS on each instance 51 times to obtain reliable results and the
median could be easily calculated. We use the Kruskal-Wallis test with a 95% con-
fidence interval to compare randomised algorithms and check if there is a significant
difference between them. Next, for pair-wise comparisons, we use the Bonferroni pos-
teriori approach to correct the p-values. We rank the obtained solutions according to
our lexicographic objective function, and we use this ranking to perform the statistical
comparison.

Tables 7.1- 7.4 list the objective function obtained for optimised solution for plan-
ning deliveries with more than 2 deliveries. In reported tables, we list the median,
best and worst solutions obtained for our randomised algorithms. We report the same
value for DGA because it is deterministic.

We use a success rate (SR) indicator to show the percentage of observations for a
randomised algorithm where the first component of the objective function (the most
important objective) for an obtained solution is zero v1(x) = 0. Note that SR for
DGA (as a deterministic algorithm) is either 0.0 or 100.0.

https://git.io/JyUI1
https://git.io/JyUI1

7.4. Results 103
T
a
bl

e
7.

1.
O

bj
ec

ti
ve

fu
nc

ti
on

s
ob

ta
in

ed
fo

r
th

e
so

lu
ti

on
s

in
fo

r
in

st
an

ce
s

w
it

h
2-

3
de

liv
er

ie
s

D
G

A
R

G
A

M
M

A
S

M
M

A
S-

lo
ca

l
In

st
an

ce

(2-2-1)

M
ed

ia
n

(0
.0

,0
.0

,6
3.

13
84

)
(0

.0
,0

.0
09

2,
64

.8
68

8)
(0

.0
,0

.0
,4

9.
65

93
)

(0
.0

,0
.0

,4
9.

95
43

)
B

es
t

(0
.0

,0
.0

,6
3.

13
84

)
(0

.0
,0

.0
,5

4.
27

41
)

(0
.0

,0
.0

,4
7.

61
28

)
(0

.0
,0

.0
,4

7.
61

28
)

W
or

st
(0

.0
,0

.0
,6

3.
13

84
)

(0
.0

,0
.1

53
2,

77
.3

44
9)

(0
.0

,0
.0

,5
1.

36
63

)
(0

.0
,0

.0
,5

1.
33

35
)

SR
10

0.
0

10
0.

0
10

0.
0

10
0.

0

(2-2-2)

M
ed

ia
n

(0
.0

,0
.0

,6
1.

80
26

)
(0

.0
,0

.0
,7

0.
72

13
)

(0
.0

,0
.0

,4
8.

95
21

)
(0

.0
,0

.0
,4

9.
29

41
)

B
es

t
(0

.0
,0

.0
,6

1.
80

26
)

(0
.0

,0
.0

,5
5.

36
78

)
(0

.0
,0

.0
,4

8.
36

42
)

(0
.0

,0
.0

,4
8.

39
81

)
W

or
st

(0
.0

,0
.0

,6
1.

80
26

)
(0

.0
,0

.1
01

8,
60

.3
36

)
(0

.0
,0

.0
,5

0.
66

01
)

(0
.0

,0
.0

,5
1.

61
92

)
SR

10
0.

0
10

0.
0

10
0.

0
10

0.
0

(2-3-1)
M

ed
ia

n
(0

.0
,0

.0
,5

7.
08

3)
(0

.0
,0

.0
45

,6
9.

48
75

)
(0

.0
,0

.0
,4

7.
92

65
)

(0
.0

,0
.0

,4
8.

27
39

)
B

es
t

(0
.0

,0
.0

,5
7.

08
3)

(0
.0

,0
.0

,5
3.

30
86

)
(0

.0
,0

.0
,4

7.
28

92
)

(0
.0

,0
.0

,4
5.

69
8)

W
or

st
(0

.0
,0

.0
,5

7.
08

3)
(0

.0
,0

.0
,7

6.
51

26
)

(0
.0

,0
.0

,4
9.

42
29

)
(0

.0
,0

.0
,4

8.
97

82
)

SR
10

0.
0

98
.0

10
0.

0
10

0.
0

(2-3-2)

M
ed

ia
n

(0
.0

,0
.0

,5
7.

08
3)

(0
.0

,0
.0

,6
9.

09
28

)
(0

.0
,0

.0
,4

7.
61

85
)

(0
.0

,0
.0

,4
8.

20
93

)
B

es
t

(0
.0

,0
.0

,5
7.

08
3)

(0
.0

,0
.0

,5
8.

08
32

)
(0

.0
,0

.0
,4

7.
23

5)
(0

.0
,0

.0
,4

7.
19

49
)

W
or

st
(0

.0
,0

.0
,5

7.
08

3)
(0

.0
,0

.2
13

5,
71

.2
15

)
(0

.0
,0

.0
,4

9.
47

45
)

(0
.0

,0
.0

,4
9.

89
16

)
SR

10
0.

0
10

0.
0

10
0.

0
10

0.
0

(3-2-1)

M
ed

ia
n

(0
.0

,0
.0

57
5,

92
.4

52
1)

(0
.0

,0
.0

09
2,

90
.2

82
6)

(0
.0

,0
.0

,6
5.

95
64

)
(0

.0
,0

.0
,6

3.
14

6)
B

es
t

(0
.0

,0
.0

57
5,

92
.4

52
1)

(0
.0

,0
.0

,7
4.

41
69

)
(0

.0
,0

.0
,6

1.
65

92
)

(0
.0

,0
.0

,6
1.

64
15

)
W

or
st

(0
.0

,0
.0

57
5,

92
.4

52
1)

(0
.0

,0
.2

17
4,

89
.6

10
2)

(0
.0

,0
.0

,6
8.

83
2)

(0
.0

,0
.0

,6
7.

97
76

)
SR

10
0.

0
10

0.
0

10
0.

0
10

0.
0

(3-2-2)

M
ed

ia
n

(0
.0

,0
.0

,8
9.

32
36

)
(0

.0
,0

.0
,8

6.
68

43
)

(0
.0

,1
.3

75
7,

23
9.

99
6)

(0
.0

,0
.1

60
8,

21
4.

02
9)

B
es

t
(0

.0
,0

.0
,8

9.
32

36
)

(0
.0

,0
.0

,7
8.

28
)

(0
.0

,0
.8

92
6,

22
8.

85
28

)
(0

.0
,0

.0
55

,2
05

.8
03

4)
W

or
st

(0
.0

,0
.0

,8
9.

32
36

)
(0

.0
,0

.1
33

6,
10

4.
10

21
)

(0
.0

00
3,

3.
93

21
,2

22
.0

36
4)

(0
.0

05
9,

1.
32

83
,1

92
.7

01
)

SR
10

0.
0

10
0.

0
96

.0
88

.0

(3-3-1)

M
ed

ia
n

(0
.0

,0
.0

,7
5.

45
11

)
(0

.0
,0

.0
20

2,
77

.6
25

4)
(0

.0
,0

.0
,5

9.
44

7)
(0

.0
,0

.0
,6

4.
38

3)
B

es
t

(0
.0

,0
.0

,7
5.

45
11

)
(0

.0
,0

.0
,6

8.
30

09
)

(0
.0

,0
.0

,5
9.

26
53

)
(0

.0
,0

.0
,5

9.
09

69
)

W
or

st
(0

.0
,0

.0
,7

5.
45

11
)

(0
.0

,0
.2

24
8,

73
.6

19
7)

(0
.0

,0
.0

,6
4.

02
79

)
(0

.0
,0

.0
,6

5.
02

8)
SR

10
0.

0
10

0.
0

10
0.

0
10

0.
0

(3-3-2)

M
ed

ia
n

(0
.0

,0
.0

,7
5.

18
23

)
(0

.0
,0

.1
89

8,
84

.0
47

)
(0

.0
,0

.0
,6

1.
91

33
)

(0
.0

,0
.0

,6
3.

12
42

)
B

es
t

(0
.0

,0
.0

,7
5.

18
23

)
(0

.0
,0

.0
,7

2.
63

53
)

(0
.0

,0
.0

,5
9.

27
94

)
(0

.0
,0

.0
,5

9.
06

33
)

W
or

st
(0

.0
,0

.0
,7

5.
18

23
)

(0
.0

,0
.1

99
8,

97
.1

76
1)

(0
.0

,0
.0

,6
7.

14
1)

(0
.0

,0
.0

,6
9.

31
26

)
SR

10
0.

0
10

0.
0

10
0.

0
10

0.
0

104 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

T
a
ble

7.2.
O

bjective
functions

obtained
for

the
solutions

in
for

instances
w

ith
4-5

deliveries

D
G

A
R

G
A

M
M

A
S

M
M

A
S-local

Instance

(4-2-1)

M
edian

(0.0,58.5812,142.4239)
(0.0,57.9318,130.3273)

(0.0,54.2947,145.6548)
(0.0,54.7247,142.0836)

B
est

(0.0,58.5812,142.4239)
(0.0,57.6087,127.747)

(0.0,53.981,147.888)
(0.0,53.9013,139.6754)

W
orst

(0.0,58.5812,142.4239)
(0.0,60.3444,136.7928)

(0.0,54.8605,148.6741)
(0.0,54.7413,158.896)

SR
100.0

98.0
100.0

100.0

(4-2-2)

M
edian

(0.0063,60.835,144.9296)
(0.0,57.9492,132.1126)

(0.0,54.0759,157.611)
(0.0,53.8887,181.8816)

B
est

(0.0063,60.835,144.9296)
(0.0,57.6182,139.6121)

(0.0,53.9911,168.2198)
(0.0,53.8226,154.0985)

W
orst

(0.0063,60.835,144.9296)
(0.0,60.9878,141.42)

(0.0,54.2289,184.7501)
(0.0,54.0178,168.1702)

SR
0.0

98.0
100.0

100.0
(4-3-1)

M
edian

(0.0,67.5545,146.0696)
(0.0,66.7489,142.2)

(0.0,57.4258,149.6348)
(0.0,57.4523,133.0181)

B
est

(0.0,67.5545,146.0696)
(0.0,61.5783,174.9475)

(0.0,56.9379,149.3044)
(0.0,56.7025,127.3126)

W
orst

(0.0,67.5545,146.0696)
(0.0,70.9181,158.1506)

(0.0,57.639,159.8935)
(0.0,57.6516,147.3138)

SR
100.0

100.0
100.0

100.0

(4-3-2)

M
edian

(0.0,71.9556,157.8473)
(0.0,70.973,169.9409)

(0.0,57.4998,186.9824)
(0.0,57.4431,170.5191)

B
est

(0.0,71.9556,157.8473)
(0.0,63.7771,155.4851)

(0.0,56.8679,144.0387)
(0.0,56.4915,163.4503)

W
orst

(0.0,71.9556,157.8473)
(0.0,75.4247,176.1717)

(0.0,58.8066,172.2938)
(0.0,58.4295,164.8766)

SR
100.0

100.0
100.0

100.0

(5-2-1)

M
edian

(0.0438,102.1746,173.9782)
(0.0273,101.718,182.0756)

(0.0012,102.6828,228.5581)
(0.0011,99.5477,224.1774)

B
est

(0.0438,102.1746,173.9782)
(0.0046,103.263,167.8441)

(0.001,100.9133,229.5818)
(0.001,98.2025,239.3864)

W
orst

(0.0438,102.1746,173.9782)
(0.1935,103.6282,243.1028)

(0.0016,103.5916,223.3174)
(0.0018,99.4701,210.7622)

SR
0.0

0.0
0.0

0.0

(5-2-2)

M
edian

(0.0235,103.1665,175.0023)
(0.0131,101.6707,181.8164)

(0.0009,102.9038,302.4058)
(0.001,99.0435,312.2554)

B
est

(0.0235,103.1665,175.0023)
(0.0078,102.138,173.9245)

(0.0009,102.1923,328.4197)
(0.0009,98.9954,259.8169)

W
orst

(0.0235,103.1665,175.0023)
(0.1824,105.088,233.3203)

(0.001,107.2824,254.6951)
(0.0011,102.7451,295.7914)

SR
0.0

0.0
0.0

0.0

(5-3-1)

M
edian

(0.0,105.3406,173.8627)
(0.0,105.8641,168.4634)

(0.0,95.578,155.9611)
(0.0,96.8763,164.1394)

B
est

(0.0,105.3406,173.8627)
(0.0,99.5648,172.6111)

(0.0,95.1011,152.7925)
(0.0,95.1105,170.8295)

W
orst

(0.0,105.3406,173.8627)
(0.0,107.851,188.782)

(0.0,97.2515,160.8189)
(0.0,97.1006,169.9686)

SR
100.0

100.0
100.0

100.0

(5-3-2)

M
edian

(0.0,106.2677,181.9484)
(0.0,108.1915,206.6663)

(0.0,99.752,184.9368)
(0.0,97.9266,174.3664)

B
est

(0.0,106.2677,181.9484)
(0.0,103.0152,194.1108)

(0.0,97.9713,182.2523)
(0.0,96.924,159.4967)

W
orst

(0.0,106.2677,181.9484)
(0.0,113.0368,210.7794)

(0.0,101.0779,196.4892)
(0.0,101.6432,193.4623)

SR
100.0

100.0
100.0

100.0

7.4. Results 105
T
a
bl

e
7.

3.
O

bj
ec

ti
ve

fu
nc

ti
on

s
ob

ta
in

ed
fo

r
th

e
so

lu
ti

on
s

in
fo

r
in

st
an

ce
s

w
it

h
6-

7
de

liv
er

ie
s

D
G

A
R

G
A

M
M

A
S

M
M

A
S-

lo
ca

l
In

st
an

ce

(6-2-1)

M
ed

ia
n

(0
.0

43
8,

10
2.

17
46

,1
97

.4
26

7)
(0

.0
04

6,
10

4.
20

92
,2

46
.6

88
4)

(0
.0

01
1,

10
5.

01
68

,3
19

.2
17

3)
(0

.0
01

,9
9.

28
49

,3
13

.7
26

7)
B

es
t

(0
.0

43
8,

10
2.

17
46

,1
97

.4
26

7)
(0

.0
04

6,
10

4.
20

92
,2

46
.6

88
4)

(0
.0

00
9,

10
6.

15
39

,3
13

.9
70

8)
(0

.0
00

9,
99

.8
32

,2
97

.2
35

)
W

or
st

(0
.0

43
8,

10
2.

17
46

,1
97

.4
26

7)
(0

.3
94

6,
11

5.
15

96
,3

14
.2

06
7)

(0
.0

01
3,

10
4.

92
09

,3
19

.5
58

)
(0

.0
01

4,
10

0.
84

27
,3

00
.9

66
3)

SR
(%

)
0.

0
0.

0
0.

0
0.

0

(6-2-2)

M
ed

ia
n

(0
.0

23
5,

10
3.

16
65

,2
20

.0
88

2)
(0

.0
15

3,
10

3.
35

1,
30

3.
51

67
)

(0
.0

01
,1

02
.6

80
9,

40
7.

11
23

)
(0

.0
00

9,
10

1.
17

3,
36

6.
91

52
)

B
es

t
(0

.0
23

5,
10

3.
16

65
,2

20
.0

88
2)

(0
.0

02
4,

10
2.

99
86

,2
73

.2
04

9)
(0

.0
00

9,
10

1.
83

4,
42

9.
26

43
)

(0
.0

00
9,

98
.2

86
5,

36
9.

77
29

)
W

or
st

(0
.0

23
5,

10
3.

16
65

,2
20

.0
88

2)
(0

.1
19

,1
04

.6
89

9,
37

1.
94

84
)

(0
.0

01
,1

05
.9

10
5,

41
2.

34
81

)
(0

.0
01

,1
00

.9
82

6,
38

8.
39

12
)

SR
(%

)
0.

0
0.

0
0.

0
0.

0

(6-3-1)

M
ed

ia
n

(0
.0

,1
05

.3
40

6,
21

5.
40

17
)

(0
.0

,1
07

.8
44

2,
22

2.
07

22
)

(0
.0

,9
8.

15
78

,1
99

.2
54

8)
(0

.0
,9

6.
00

26
,1

96
.5

73
7)

B
es

t
(0

.0
,1

05
.3

40
6,

21
5.

40
17

)
(0

.0
,1

01
.5

87
9,

21
6.

18
34

)
(0

.0
,9

6.
10

19
,2

05
.8

20
8)

(0
.0

,9
5.

23
02

,1
92

.9
20

4)
W

or
st

(0
.0

,1
05

.3
40

6,
21

5.
40

17
)

(0
.0

,1
10

.0
31

3,
23

5.
19

67
)

(0
.0

,9
8.

22
92

,1
95

.2
23

4)
(0

.0
,9

7.
97

12
,1

83
.2

54
3)

SR
(%

)
10

0.
0

10
0.

0
10

0.
0

10
0.

0

(6-3-2)

M
ed

ia
n

(0
.0

,1
07

.1
64

5,
22

4.
30

89
)

(0
.0

,1
08

.7
69

5,
23

7.
89

31
)

(0
.0

,9
9.

87
83

,1
95

.6
31

8)
(0

.0
,9

9.
69

23
,2

05
.1

96
)

B
es

t
(0

.0
,1

07
.1

64
5,

22
4.

30
89

)
(0

.0
,1

03
.2

54
2,

22
3.

07
22

)
(0

.0
,9

7.
62

63
,2

55
.3

89
7)

(0
.0

,9
7.

77
67

,1
92

.1
04

5)
W

or
st

(0
.0

,1
07

.1
64

5,
22

4.
30

89
)

(0
.0

,1
12

.1
08

5,
25

2.
18

92
)

(0
.0

,1
00

.6
22

,2
19

.9
26

6)
(0

.0
,1

00
.5

49
1,

21
3.

41
96

)
SR

(%
)

10
0.

0
10

0.
0

10
0.

0
10

0.
0

(7-2-1)

M
ed

ia
n

(0
.0

43
8,

10
2.

17
46

,2
16

.3
17

)
(0

.0
46

2,
10

2.
50

59
,2

34
.9

08
5)

(0
.0

01
1,

10
3.

08
38

,3
31

.9
11

3)
(0

.0
01

1,
10

0.
50

98
,3

46
.8

45
3)

B
es

t
(0

.0
43

8,
10

2.
17

46
,2

16
.3

17
)

(0
.0

10
6,

10
0.

48
92

,2
27

.1
77

9)
(0

.0
00

9,
10

2.
08

94
,3

41
.0

69
6)

(0
.0

01
,9

8.
34

01
,3

30
.7

35
5)

W
or

st
(0

.0
43

8,
10

2.
17

46
,2

16
.3

17
)

(0
.2

41
8,

11
3.

38
67

,3
21

.4
93

8)
(0

.0
01

2,
10

3.
84

23
,3

50
.8

51
9)

(0
.0

01
3,

99
.0

28
5,

32
3.

71
3)

SR
(%

)
0.

0
0.

0
0.

0
0.

0

(7-2-2)

M
ed

ia
n

(0
.0

23
5,

10
3.

16
65

,2
38

.1
08

)
(0

.0
35

2,
10

4.
85

58
,3

10
.5

02
8)

(0
.0

00
9,

10
7.

58
79

,4
37

.6
70

2)
(0

.0
00

9,
10

0.
67

36
,3

94
.1

64
5)

B
es

t
(0

.0
23

5,
10

3.
16

65
,2

38
.1

08
)

(0
.0

02
4,

10
3.

68
03

,3
23

.8
80

9)
(0

.0
00

9,
10

3.
17

55
,4

17
.8

90
8)

(0
.0

00
9,

98
.3

22
1,

39
0.

23
79

)
W

or
st

(0
.0

23
5,

10
3.

16
65

,2
38

.1
08

)
(0

.1
73

9,
10

5.
32

39
,3

92
.1

91
1)

(0
.0

01
,1

06
.6

32
7,

41
9.

33
85

)
(0

.0
01

,1
00

.6
57

6,
39

8.
11

06
)

SR
(%

)
0.

0
0.

0
0.

0
0.

0

(7-3-1)

M
ed

ia
n

(0
.0

,1
05

.3
40

6,
22

4.
22

54
)

(0
.0

02
6,

10
5.

29
15

,2
46

.4
17

5)
(0

.0
,9

8.
21

64
,2

22
.4

84
9)

(0
.0

,9
8.

03
51

,2
08

.0
81

8)
B

es
t

(0
.0

,1
05

.3
40

6,
22

4.
22

54
)

(0
.0

,1
00

.3
99

,2
82

.8
22

6)
(0

.0
,9

5.
32

77
,2

10
.9

43
)

(0
.0

,9
5.

24
97

,2
09

.0
72

1)
W

or
st

(0
.0

,1
05

.3
40

6,
22

4.
22

54
)

(0
.0

02
6,

10
5.

29
15

,2
46

.4
17

5)
(0

.0
,9

9.
86

91
,2

30
.6

28
)

(0
.0

,9
9.

64
28

,2
14

.9
18

5)
SR

(%
)

10
0.

0
98

.0
10

0.
0

10
0.

0

(7-3-2)

M
ed

ia
n

(0
.0

,1
07

.1
64

5,
23

3.
19

17
)

(0
.0

,1
08

.2
16

7,
26

6.
02

3)
(0

.0
,9

9.
88

28
,2

34
.1

90
8)

(0
.0

,9
8.

95
4,

27
9.

10
73

)
B

es
t

(0
.0

,1
07

.1
64

5,
23

3.
19

17
)

(0
.0

,1
03

.4
49

,2
62

.2
94

6)
(0

.0
,9

7.
92

56
,2

11
.2

68
7)

(0
.0

,9
7.

13
07

,2
66

.3
45

8)
W

or
st

(0
.0

,1
07

.1
64

5,
23

3.
19

17
)

(0
.0

00
5,

10
6.

75
91

,2
59

.0
93

1)
(0

.0
,1

00
.7

63
4,

20
9.

61
84

)
(0

.0
,1

01
.4

50
3,

22
0.

10
84

)
SR

(%
)

10
0.

0
97

.0
10

0.
0

10
0.

0

106 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

T
a
ble

7.4.
O

bjective
functions

obtained
for

the
solutions

in
for

instances
w

ith
8-10

deliveries

D
G

A
R

G
A

M
M

A
S

M
M

A
S-local

Instance

(8-2-1)

M
edian

(0.0438,102.1746,251.1864)
(0.0273,101.6469,265.3198)

(0.001,107.6261,340.2463)
(0.001,100.4274,382.1242)

B
est

(0.0438,102.1746,251.1864)
(0.0061,99.7059,269.7227)

(0.001,104.662,364.4957)
(0.001,99.411,366.9006)

W
orst

(0.0438,102.1746,251.1864)
(0.3213,106.2929,350.9886)

(0.0014,108.9955,350.0817)
(0.0015,101.8406,334.152)

SR
(%

)
0.0

0.0
0.0

0.0

(8-2-2)

M
edian

(0.0235,103.2428,263.9633)
(0.051,102.3833,279.9597)

(0.001,103.8465,438.6782)
(0.0009,98.6669,419.5654)

B
est

(0.0235,103.2428,263.9633)
(0.0099,100.5136,281.1246)

(0.0009,104.757,464.8563)
(0.0009,98.4481,420.6694)

W
orst

(0.0235,103.2428,263.9633)
(0.2667,104.7104,399.3313)

(0.0011,110.8108,428.5091)
(0.001,101.8508,410.8488)

SR
(%

)
0.0

0.0
0.0

0.0
(8-3-1)

M
edian

(0.0,105.3626,261.8697)
(0.0,104.4384,311.0165)

(0.0,97.9676,285.1839)
(0.0,97.9992,248.4489)

B
est

(0.0,105.3626,261.8697)
(0.0,100.5335,308.9175)

(0.0,96.2408,234.5436)
(0.0,96.2062,257.1488)

W
orst

(0.0,105.3626,261.8697)
(0.0014,105.9245,270.8747)

(0.0,98.1712,308.6494)
(0.0,99.0334,242.9122)

SR
(%

)
100.0

92.0
100.0

100.0

(8-3-2)

M
edian

(0.0,107.1645,270.9)
(0.0,103.0842,293.0588)

(0.0,98.9443,259.0835)
(0.0,99.6151,237.5469)

B
est

(0.0,107.1645,270.9)
(0.0,103.0842,293.0588)

(0.0,98.1982,281.7398)
(0.0,97.8378,263.3097)

W
orst

(0.0,107.1645,270.9)
(0.0026,108.1778,299.4416)

(0.0,100.4589,293.1712)
(0.0,100.4663,267.3126)

SR
(%

)
100.0

91.0
100.0

100.0

(9-3-1)

M
edian

(0.0,105.4089,302.9124)
(0.0,106.8992,287.1712)

(0.0,97.7961,281.3341)
(0.0,97.7619,285.255)

B
est

(0.0,105.4089,302.9124)
(0.0,100.1781,331.6884)

(0.0,96.3332,292.1141)
(0.0,96.0063,274.6188)

W
orst

(0.0,105.4089,302.9124)
(0.0131,103.7835,356.1299)

(0.0,98.7486,270.1143)
(0.0,98.033,276.9183)

SR
(%

)
100.0

85.0
100.0

100.0

(9-3-2)

M
edian

(0.0,107.1828,321.2739)
(0.0,105.8886,345.9241)

(0.0,98.8647,305.6628)
(0.0,100.4717,305.733)

B
est

(0.0,107.1828,321.2739)
(0.0,105.1871,342.7084)

(0.0,98.8647,305.6628)
(0.0,98.6388,289.2822)

W
orst

(0.0,107.1828,321.2739)
(0.0035,107.1188,353.2033)

(0.0,101.6301,324.3876)
(0.0,100.6362,322.0756)

SR
(%

)
100.0

94.0
100.0

100.0

(10-3-1)

M
edian

(0.0,105.4252,311.0819)
(0.045,100.8182,367.499)

(0.0,97.4539,303.5063)
(0.0,98.0039,291.9887)

B
est

(0.0,105.4252,311.0819)
(0.0,102.7394,311.4885)

(0.0,96.3966,300.2111)
(0.0,96.1314,347.2854)

W
orst

(0.0,105.4252,311.0819)
(0.045,100.8182,367.499)

(0.0,98.3585,309.6789)
(0.0,98.5017,309.4715)

SR
(%

)
100.0

72.0
100.0

100.0

(10-3-2)

M
edian

(0.0,107.1865,339.3049)
(0.0,109.506,387.0197)

(0.0,100.4038,320.7127)
(0.0,99.2589,327.916)

B
est

(0.0,107.1865,339.3049)
(0.0,104.5479,358.7583)

(0.0,98.3857,319.6994)
(0.0,98.8018,322.0849)

W
orst

(0.0,107.1865,339.3049)
(0.0114,110.5372,390.1529)

(0.0,102.8742,319.4772)
(0.0,101.8307,325.0809)

SR
(%

)
100.0

82.0
100.0

100.0

7.4. Results 107

(a) (b)

(a) (b) (c) (d)

M
M

A
S

M
M

A
S-

lo
ca

l

R
G

A

M
M

A
S

M
M

A
S-

lo
ca

l

R
G

A

M
M

A
S

M
M

A
S-

lo
ca

l

R
G

A

M
M

A
S

M
M

A
S-

lo
ca

l

R
G

A

M
M

A
S

M
M

A
S-

lo
ca

l

R
G

A

MMAS

MMAS-local

RGA

p < 0.001

p < 0.01

p < 0.05

NS

Figure 7.5. Significance plot of statistical tests for randomised al-
gorithms for different instances. p refers to the p-value and NS shows
no significant difference. Each subplot refers to different instances as
follows. (a): (3-2-2), (4-2-1), (4-2-2), (4-3-2), (5-3-2), (7-2-2), (9-3-2).

(b): (5-2-1), (7-3-2). (c): (6-3-2), (d): other instances.

Figure 7.5 shows the statistical significance for all instances. There are four cate-
gories of significant differences observed. In all cases, there is a strongly significant dif-
ference between MMAS-local and other algorithms. In some instances, tuned MMAS
and RGA are weakly different; however, they are not significantly different in most
instances.

DGA is successful in finding solution with 100% SR in 10 instances out of 16 where
number of deliveries are more than six. As observed in Chapter 6, DGA exhaust good
material early in the stages of planning. In all instances, RGA outperforms DGA. We
can see the same trend in outperforming RGA by MMAS.

We can see that planning six deliveries or less using two reclaimers instead of three
can lead to a slight violation in v1(x). However, planning by three reclaimers results
in a 100% success rate for all randomised algorithms except in instance of (2-3-1) that
we see 98% success rate for RGA.

For two deliveries which is the most straightforward problem, we can see that DGA
is weaker than MMAS. MMAS-local and MMAS find the best solution. However,
when adding the second reclaimer direction, MMAS can outperform the MMAS-local.
Scheduling two deliveries using three reclaimers leads to lower utility values than
scheduling with two reclaimers. Adding a delivery into the schedule to provide three
deliveries using two reclaimers makes DGA find a solution with violated target window
quality. However, MMAS-local finds the best solution with a 100% success rate and no
target quality violation. Similar to two delivery instances, we can see that adding three
reclaimers results in providing the delivery faster. In addition, using two reclaiming
directions leads to target quality violation; however, using three reclaimers tackles
this issue.

Four deliveries planning makes the problem more complex where all the obtained
solutions violate the window target quality objective. However, for all directions and
the number of reclaimers, MMAS-local can find the best solution compared to other
methods. We can see that adding reclaimers can reduce the delivery time, but it also
exacerbates the window target quality. For example, comparing instances (4-3-1) with
(4-2-1), the former best solution has found a solution with better utility but a worse
window target quality.

Five deliveries scheduling can result in a violation in average target quality using
two reclaimers, but this violation is eradicated when three reclaimers are used. As
the number of delivery surpasses 6, we can see that RGA becomes less capable of

108 Chapter 7. Run-of-Mine Stockyard Recovery Scheduling and Optimisation for
Multiple Reclaimers

finding solutions with 100% SR. On the other hand, MMAS and MMAS-local can
find solutions with 100% SR always for these instances. MMAS-local can outperform
MMAS in most cases, but there exist some exceptions in our observations.

We see that for instance (6-3-2), the best solution obtained by MMAS is slightly
better than the one obtained by MMAS-local with respect to v1(x). However, MMAS-
local has found a worse solution, but with a better utility. The median and worst of
obtained solutions by MMAS-local is better than corresponding ones obtained by
MMAS. We can see the same trend for instances (7-2-1), (10-3-2). There could be
different reasons for this limitation. It could be due to the nature of our local search, in
which we just shift the jobs in a solution without changing their reclamation directions.
Therefore, there is potential to expand on the local search strategy to consider the
reclamation direction in specific where bi-directional reclamation is occurring such as
instance (6-3-2).

Another possibility is that there is a trade-off between v1(x) and u(x). For in-
stance (7-2-1), the difference in v1(x) between the solutions generated by MMAS-local
and MMAS is 0.0001 for the best obtained solution. We can see that MMAS-local has
obtained a better solution despite the minor variance in the first component. Accord-
ing to this observation, it is better to define a threshold to have flexibility in dealing
with hard constraints on comparing two solutions to identify more practical solutions.

Using two reclaimers for 7-8 delivery scheduling leads the algorithm to find solu-
tions with 0% success. Adding the third reclaimer to scheduling makes MMAS and
MMAS-local 100% successful in finding solutions with no average target quality vio-
lation. For the 9-10 delivery schedule, we see that MMAS and its variant with local
search can obtain solutions with a 100% success rate. However, using reclaimers with
two directions for nine deliveries leads to findings solutions with worse window target
quality and utility. However, the best solution obtained has a better utility for ten
delivery but worse window target quality.

7.5 Conclusions

Stockpiles are essential in the mining value chain, assisting in maximising value and
production. Quality control of taken minerals from the stockpiles is a significant
concern for stockpile managers where failure to meet some requirements can lead to
losing money. The previous chapter investigated the problem using a single reclaimer
and basic assumptions. This chapter extended the approach to consider multiple
reclaimers in preparing for short and long-term deliveries. The engagement of multiple
reclaimers complicates the problem in terms of their interaction in preparing a delivery
simultaneously and safety distancing of reclaimers. We also considered more realistic
settings, such as handling different minerals with different types of reclaimers. We
investigated deterministic and randomised greedy algorithms and a variation of ant
colony optimisation. We also used the automatic parameter tuning method to fine-
tune our algorithms and determine the best configuration for each instance to achieve
better results. We also designed a local search operator for MMAS to more finely
investigate a solution, and it can outperform other methods in most instances. Further
research may include (1) adding a human in the design loop to revise the algorithms’
solutions to facilitate the practical use of this work, (2) improving the local search to
account for changes in the reclamation direction and adding a threshold for trade-off
consideration among objectives, and (3) applying the platform to a dynamic problem
of stacking and reclaiming a stockpile where in practice stacking occurs in parallel to
reclaiming.

109

Chapter 8

Conclusions

Optimisation algorithms can either be designed for a specific problem or could be
general-purpose. Bio-inspired optimisation methods are general-purpose optimisa-
tion techniques that simulate natural phenomena. This thesis aimed to examine bio-
inspired methods to solve a range of combinatorial problems with different attributes
across the spectrum from fundamental to real-world problems. These attributes in-
clude dynamic and stochastic problems, problems with different types of decision vari-
ables in a solution representation and constructing a solution for scheduling problems
step by step.

We began Chapter 2 by outlining the combinatorial problems covered in the sub-
sequent chapters. After that, we discussed the deterministic and randomised methods
used to solve the optimisation problems in Chapter 3. Our first investigation step
was to solve the well-known knapsack problem with dynamic changes in the capacity
over time and stochastic weights of items in Chapter 4. We applied chance constraint
programming to convert the deterministic knapsack constraint to the probabilistic
constraint, where the probability of violating the capacity should be lower than a
threshold. We estimated the probabilistic term using inequality tails, namely Cheby-
shev’s inequality and Chernoff bound. We integrated these inequality tails with base-
line evolutionary algorithms in single and bi-objective settings. In the bi-objective
setting, we introduced new helper objective functions. Our results showed that our
approach leads to more efficient solutions in comparison with the single-objective
approach. Moreover, our approach using its population can adapt to the dynamic
environment of our problem. Extending these investigations would be an interesting
next step. This methodology can also be applied to other combinatorial problems and
is not restricted to the dynamic and stochastic knapsack problem, where a similar
second objective can be formulated to deal with the chance constraint.

Next, we investigated a combinatorial problem with a more real-world perspective
in Chapter 5: an engineering design problem known as the truss optimisation problem
was considered. In truss optimisation, the main aim is to minimise the weight of the
structure, which is the summation of the weight of truss members. The weight of each
member relies on their cross-section area and length. We used bi-level optimisation
to consider interactions among different aspects of the optimisation problem. We
showed that the upper level could be viewed as a combinatorial problem in deciding
whether to include or exclude a member. For small-scale problems, we rigorously
investigated truss design using exact methods. Additionally, we developed bio-inspired
approaches based on Novelty Search for more complex problems and obtained high-
quality solutions. Studying this approach for other structural problems such as plates,
shells, and frames could be interesting. Another suggestion could be to reduce the
computational cost of the problem.

Then, we introduced the stockpile recovery problem as a real-world scheduling

110 Chapter 8. Conclusions

problem in Chapter 6. Stockpile recovery is a complex problem in the mining indus-
try, where poor schedules can lead to financial penalties for providers. We consider
solution construction heuristics to develop a solution step by step to solve the problem
subject to technical constraints and using a single reclaimer for the operation. We pri-
oritised minimising penalty fees due to contaminants in delivery over operating costs
in comparing two solutions. At first, we considered relaxing some of the technical
requirements to make the problem more tractable. We developed deterministic and
randomised greedy algorithms and ant colony optimisation to solve the problem. Our
findings showed that ACO outperforms other algorithms, and the variant integrated
with swap and insert local search operators finds the best solutions.

In Chapter 7, we added more realistic settings to the stockpile recovery problem
considering multiple reclaimers and more technical requirements, such as handling
different minerals with different directions of reclaiming. We devised a heuristic for
solution construction to consider the interaction among reclaimers. We examined
deterministic and randomised greedy algorithms and an ant colony optimisation vari-
ation. Our algorithms were fine-tuned using automatic parameter tuning method, and
we determined the optimal configuration for each instance. Additionally, we developed
a local search operator for ant colony optimisation to refine the coarse search. As a
result, we concluded that ant colony optimisation is highly promising, outperforming
other methods in most instances similar to what we found in the initial study. We can
add a human to the loop to revise the algorithms’ solutions to facilitate the practical
application of the work. Adding dynamic settings to the problem might be interest-
ing to simulate stacking and reclaiming a stockpile, where stacking and reclaiming
occur simultaneously in practice. It could be interesting to investigate how to add a
threshold for considering trade-offs among objectives to achieve better schedules.

111

Bibliography

[AAD20] Ali Ahrari, Ali-Asghar Atai, and Kalyanmoy Deb. “A customized bilevel
optimization approach for solving large-scale truss design problems”. In:
Engineering Optimization 52.12 (2020), pp. 2062–2079.

[AD16] Ali Ahrari and Kalyanmoy Deb. “An improved fully stressed design evo-
lution strategy for layout optimization of truss structures”. In: Computers
& Structures 164 (2016), pp. 127–144.

[Ang+16] Enrico Angelelli, Thomas Kalinowski, Reena Kapoor, and Martin W P
Savelsbergh. “A reclaimer scheduling problem arising in coal stockyard
management”. In: Journal of Scheduling 19.5 (2016), pp. 563–582.

[Ass+20] Hirad Assimi, Oscar Harper, Yue Xie, Aneta Neumann, and Frank Neu-
mann. “Evolutionary Bi-objective Optimization for the Dynamic Chance-
Constrained Knapsack Problem Based on Tail Bound Objectives”. In:
Proceedings of the European Conference on Artificial Intelligence (ECAI’20).
Vol. 325. IOS Press, 2020, pp. 307–314.

[Ass+21] Hirad Assimi, Ben Koch, Chris Garcia, Markus Wagner, and Frank Neu-
mann. “Modelling and Optimization of Run-of-Mine Stockpile Recovery”.
In: 36th Annual ACM Symposium on Applied Computing. ACM, 2021,
pp. 450–458.

[Ass+22a] Hirad Assimi, Ben Koch, Chris Garcia, Markus Wagner, and Frank Neu-
mann. “Run-of-Mine Stockyard Recovery Scheduling and Optimisation
for Multiple Reclaimers”. In: Proceedings of the 37th ACM/SIGAPP Sym-
posium on Applied Computing. SAC ’22. Association for Computing Ma-
chinery, 2022, pp. 1074–1083. isbn: 9781450387132. doi: 10.1145/3477314.
3507130.

[Ass+22b] Hirad Assimi, Frank Neumann, Markus Wagner, and Xiaodong Li. “Novelty-
Driven Binary Particle Swarm Optimisation for Truss Optimisation Prob-
lems”. In: Evolutionary Computation in Combinatorial Optimization. Ed.
by Leslie Pérez Cáceres and Sébastien Verel. Cham: Springer Interna-
tional Publishing, 2022, pp. 111–126. isbn: 978-3-031-04148-8.

[BGN09] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Op-
timization. Princeton Series in Applied Mathematics. Princeton Univer-
sity Press, 2009, pp. 29–30. isbn: 9781400831050.

[Bir+10] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle.
“F-Race and iterated F-Race: An overview”. In: Experimental methods for
the analysis of optimization algorithms (2010), pp. 311–336.

[BKM17] Timothy R Brooks, Gaetan K Kenway, and Joaquim R R A Martins.
“Undeflected common research model (uCRM): an aerostructural model
for the study of high aspect ratio transport aircraft wings”. In: 35th AIAA
Applied Aerodynamics Conference. 2017, p. 4456.

https://doi.org/10.1145/3477314.3507130
https://doi.org/10.1145/3477314.3507130

112 Bibliography

[BS07] Hans-Georg Beyer and Bernhard Sendhoff. “Robust optimization–a com-
prehensive survey”. In: Computer methods in applied mechanics and en-
gineering 196.33-34 (2007), pp. 3190–3218.

[BT19] Daniel Blado and Alejandro Toriello. “Relaxation analysis for the dy-
namic knapsack problem with stochastic item sizes”. In: SIAM Journal
on Optimization 29.1 (2019), pp. 1–30.

[CB02] George Casella and Roger L Berger. Statistical inference. Vol. 2. Duxbury
Press, 2002.

[CC59] Abraham Charnes and William W Cooper. “Chance-constrained pro-
gramming”. In: Management science 6.1 (1959), pp. 73–79.

[CF14] Gregory W Corder and Dale I Foreman. Nonparametric statistics: A step-
by-step approach. John Wiley & Sons, 2014.

[Che16] M Cheng. “A Hybrid Harmony Search algorithm for discrete sizing opti-
mization of truss structure”. In: Automation in Construction 69 (2016),
pp. 21–33.

[CW20] Jonatas B C Chagas and Markus Wagner. “Ants can orienteer a thief in
their robbery”. In: Operations Research Letters 48.6 (2020), pp. 708–714.
issn: 0167-6377.

[CWM12] Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz. Variants
of evolutionary algorithms for real-world applications. Springer, 2012.

[Deb+02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T Meyarivan. “A
fast and elitist multiobjective genetic algorithm: NSGA-II”. In: IEEE
Transactions on Evolutionary Computation 6.2 (Apr. 2002), pp. 182–197.
issn: 1089-778X. doi: 10.1109/4235.996017.

[Deb01] Kalyanmoy Deb. Multi-objective optimization using evolutionary algo-
rithms. Vol. 16. John Wiley & Sons, 2001.

[DFJ54] George Dantzig, Ray Fulkerson, and Selmer Johnson. “Solution of a large-
scale traveling-salesman problem”. In: Journal of the operations research
society of America 2.4 (1954), pp. 393–410.

[DG01] Kalyanmoy Deb and Surendra Gulati. “Design of truss-structures for min-
imum weight using genetic algorithms”. In: Finite Elements in Analysis
and Design 37.5 (2001), pp. 447–465.

[DLU18] Sadk Ozgur Degertekin, Luciano Lamberti, and I B Ugur. “Sizing, lay-
out and topology design optimization of truss structures using the Jaya
algorithm”. In: Applied Soft Computing 70 (2018), pp. 903–928.

[DLU19] S O Degertekin, L Lamberti, and I B Ugur. “Discrete sizing/layout/topol-
ogy optimization of truss structures with an advanced Jaya algorithm”.
In: Applied Soft Computing 79 (2019), pp. 363–390.

[Doe+20] Benjamin Doerr, Carola Doerr, Aneta Neumann, Frank Neumann, and
Andrew M Sutton. “Optimization of Chance-Constrained Submodular
Functions”. In: Proc. of AAAI. 2020.

[DS04] Marco Dorigo and Thomas Stützle. Ant colony optimization. English.
Cambridge, MA: MIT Press, 2004. isbn: 0-262-04219-3.

[DS16] Annelies De Corte and Kenneth Sörensen. “An iterated local search algo-
rithm for water distribution network design optimization”. In: Networks
67.3 (2016), pp. 187–198.

https://doi.org/10.1109/4235.996017

Bibliography 113

[ES15] A E Eiben and J E Smith. “Fitness, Selection, and Population Manage-
ment”. In: Introduction to Evolutionary Computing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 79–98. isbn: 978-3-662-44874-8.

[Fen+14] Michael Fenton, Ciaran McNally, Jonathan Byrne, Erik Hemberg, James
McDermott, and Michael O’Neill. “Automatic innovative truss design us-
ing grammatical evolution”. In: Automation in Construction 39.C (2014),
pp. 59–69.

[FGS16] Marcello Farina, Luca Giulioni, and Riccardo Scattolini. “Stochastic lin-
ear model predictive control with chance constraints–a review”. In: Jour-
nal of Process Control 44 (2016), pp. 53–67.

[Fin+13] Vitor C Finotto, Wilson R L da Silva, M Valášek, and P Štemberk. “Hy-
brid fuzzy-genetic system for optimising cabled-truss structures”. In: Ad-
vances in Engineering Software 62 (2013), pp. 85–96.

[Fis+19] Iztok Fister, Andres Iglesias, Akemi Galvez, Javier Del Ser, Eneko Osaba,
Iztok Fister, Matjaž Perc, and Mitja Slavinec. “Novelty search for global
optimization”. In: Applied Mathematics and Computation 347 (2019),
pp. 865–881. issn: 0096-3003. doi: https://doi.org/10.1016/j.
amc.2018.11.052. url: https://www.sciencedirect.com/science/
article/pii/S0096300318310269.

[FLP16] Galvao Diana F., Joel Lehman, and Urbano Paulo. “Novelty-Driven Par-
ticle Swarm Optimization”. In: Artificial Evolution. Ed. by Bonnevay
Stéphane, Pierrick Legrand, Monmarché Nicolas, Lutton Evelyne, and
Schoenauer Marc. Springer, 2016, pp. 177–190.

[Gao+18] Wanru Gao, Tobias Friedrich, Frank Neumann, and Christian Hercher.
“Randomized greedy algorithms for covering problems”. In: Genetic and
Evolutionary Computation Conference. 2018, pp. 309–315.

[Gie03] Oliver Giel. “Expected runtimes of a simple multi-objective evolutionary
algorithm”. In: The 2003 Congress on Evolutionary Computation, 2003.
CEC’03. Vol. 3. 2003, pp. 1918–1925.

[GR10] Vineet Goyal and R Ravi. “A PTAS for the chance-constrained knapsack
problem with random item sizes”. In: Operations Research Letters 38.3
(2010), pp. 161–164.

[Has07] OĞUZHAN Hasancebi. “Optimization of truss bridges within a specified
design domain using evolution strategies”. In: Engineering Optimization
39.6 (2007), pp. 737–756.

[HE01] OĞUZHAN Hasancebi and F Erbatur. “Layout optimization of trusses
using improved GA methodologies”. In: Acta mechanica 146.1 (2001),
pp. 87–107.

[HE02] Oğuzhan Hasançebi and Fuat Erbatur. “Layout optimisation of trusses
using simulated annealing”. In: Advances in Engineering Software 33.7
(2002), pp. 681–696.

[Ho-+16] V Ho-Huu, T Nguyen-Thoi, T Vo-Duy, and T Nguyen-Trang. “An adap-
tive elitist differential evolution for optimization of truss structures with
discrete design variables”. In: Computers & Structures 165.C (2016), pp. 59–
75.

https://doi.org/https://doi.org/10.1016/j.amc.2018.11.052
https://doi.org/https://doi.org/10.1016/j.amc.2018.11.052
https://www.sciencedirect.com/science/article/pii/S0096300318310269
https://www.sciencedirect.com/science/article/pii/S0096300318310269

114 Bibliography

[HPW04] S He, E Prempain, and Q H Wu. “An improved particle swarm optimizer
for mechanical design optimization problems”. In: Engineering optimiza-
tion 36.5 (2004), pp. 585–605.

[HS04] Holger H Hoos and Thomas Stützle. Stochastic local search: Foundations
and applications. Elsevier, 2004.

[HS05] Holger H. Hoos and Thomas Stützle. “2 - SLS METHODS”. In: Stochastic
Local Search. Ed. by Holger H. Hoos and Thomas Stützle. The Morgan
Kaufmann Series in Artificial Intelligence. San Francisco: Morgan Kauf-
mann, 2005, pp. 61–112. isbn: 978-1-55860-872-6.

[Ibr+14] Maksud Ibrahimov, Arvind Mohais, Sven Schellenberg, and Zbigniew
Michalewicz. “Scheduling in iron ore open-pit mining”. In: The Inter-
national Journal of Advanced Manufacturing Technology 72.5-8 (2014),
pp. 1021–1037.

[ILM17] Md. Jakirul Islam, Xiaodong Li, and Yi Mei. “A time-varying transfer
function for balancing the exploration and exploitation ability of a binary
PSO”. In: Applied Soft Computing 59 (2017), pp. 182–196.

[JHE13] K Jupp, T J Howard, and J E Everett. “Role of pre-crusher stockpiling for
grade control in iron ore mining”. In: Applied Earth Science 122.4 (2013),
pp. 242–255.

[Jin+16] Han Jinil, Kyungsik Lee, Lee Chungmok, Choi Ki-Seok, and Park Sung-
soo. “Robust optimization approach for a chance-constrained binary knap-
sack problem”. In: Mathematical Programming 157.1 (2016), pp. 277–296.
issn: 1436-4646.

[Jin19] Ce Jin. “An improved FPTAS for 0-1 knapsack”. In: arXiv preprint arXiv:1904.09562
(2019).

[KAD05] Rafal Kicinger, Tomasz Arciszewski, and Kenneth De Jong. “Evolutionary
computation and structural design: A survey of the state-of-the-art”. In:
Computers & structures 83.23-24 (2005), pp. 1943–1978.

[KE95] James Kennedy and Russell Eberhart. “Particle swarm optimization”.
In: International Conference on Neural Networks (ICNN). Vol. 4. 1995,
pp. 1942–1948.

[Kha+20] Hamid Khayyam, Ali Jamali, Hirad Assimi, and Reza N Jazar. “Genetic
programming approaches in design and optimization of mechanical en-
gineering applications”. In: Nonlinear approaches in engineering applica-
tions. Springer, 2020, pp. 367–402.

[KN08] Olivier Klopfenstein and Dritan Nace. “A robust approach to the chance-
constrained knapsack problem”. In: Oper. Res. Lett. 36.5 (2008), pp. 628–
632. doi: 10.1016/j.orl.2008.03.006.

[Kos14] Stefanie Kosuch. “Approximability of the two-stage stochastic knapsack
problem with discretely distributed weights”. In: Discrete Applied Math-
ematics 165 (2014), pp. 192–204.

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. “Introduction to NP-
Completeness of knapsack problems”. In: Knapsack problems. Springer,
2004, pp. 483–493.

[KRT00] Jon Kleinberg, Yuval Rabani, and Éva Tardos. “Allocating bandwidth
for bursty connections”. In: SIAM Journal on Computing 30.1 (2000),
pp. 191–217.

https://doi.org/10.1016/j.orl.2008.03.006

Bibliography 115

[KT09] A Kaveh and S Talatahari. “A particle swarm ant colony optimization
for truss structures with discrete variables”. In: Journal of Constructional
Steel Research 65.8-9 (2009), pp. 1558–1568.

[Lee+05] Kang Seok Lee, Zong Woo Geem, Sang-ho Lee, and Kyu-woong Bae. “The
harmony search heuristic algorithm for discrete structural optimization”.
In: Engineering Optimization 37.7 (2005), pp. 663–684.

[LHL09] L J Li, Z B Huang, and F Liu. “A heuristic particle swarm optimization
method for truss structures with discrete variables”. In: Computers &
Structures 87.7-8 (2009), pp. 435–443.

[Li+16a] Guijie Li, Zhenzhou Lu, Luyi Li, and Bo Ren. “Aleatory and epistemic
uncertainties analysis based on non-probabilistic reliability and its kriging
solution”. In: Applied Mathematical Modelling 40.9-10 (2016), pp. 5703–
5716.

[Li+16b] Xiaodong Li, Michael G Epitropakis, Kalyanmoy Deb, and Andries Engel-
brecht. “Seeking multiple solutions: an updated survey on niching meth-
ods and their applications”. In: IEEE Transactions on Evolutionary Com-
putation 21.4 (2016), pp. 518–538.

[Li+19] Siyi Li, Marco de Werk, Louis St-Pierre, and Mustafa Kumral. “Dimen-
sioning a stockpile operation using principal component analysis”. In: In-
ternational Journal of Minerals, Metallurgy and Materials 26.12 (2019),
pp. 1485–1494.

[Liu+13] Bo Liu, Qingfu Zhang, Francisco V Fernandez, and Georges Gielen. “An
efficient evolutionary algorithm for chance-constrained bi-objective stochas-
tic optimization”. In: IEEE Transactions on Evolutionary Computation
17.6 (2013), pp. 786–796.

[LL15] Zhuangzhi Li and Zukui Li. “Chance constrained planning and scheduling
under uncertainty using robust optimization approximation”. In: IFAC-
PapersOnLine 48.8 (2015), pp. 1156–1161.

[LM10] Tien-Fu Lu and Maung Thi Rein Myo. “Optimization of reclaiming voxels
for quality grade target with reclaimer minimum movement”. In: 11th In-
ternational Conference on Control Automation Robotics & Vision. 2010,
pp. 341–345.

[LM11] Tien-Fu Lu and Maung Thi Rein Myo. “Optimal stockpile voxel iden-
tification based on reclaimer minimum movement for target grade”. In:
International Journal of Mineral Processing 98.1-2 (2011), pp. 74–81.

[LMS03] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. “Iterated local
search”. In: Handbook of metaheuristics. Springer, 2003, pp. 320–353.

[Lob+19] Fran Sérgio Lobato, Márcio Aurelio da Silva, Aldemir Aparecido Cavalini,
and Valder Steffen. “Reliability-Based Robust Optimization Applied to
Engineering System Design”. In: Computational Intelligence, Optimiza-
tion and Inverse Problems with Applications in Engineering. Springer,
2019, pp. 29–52.

[Lóp+16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro
Birattari, and Thomas Stützle. “The irace package: Iterated racing for au-
tomatic algorithm configuration”. In: Operations Research Perspectives 3
(2016), pp. 43–58.

116 Bibliography

[LS08] Joel Lehman and Kenneth O Stanley. “Exploiting open-endedness to solve
problems through the search for novelty.” In: ALIFE. 2008, pp. 329–336.

[LS11a] Joel Lehman and Kenneth O Stanley. “Abandoning objectives: Evolution
through the search for novelty alone”. In: Evolutionary computation 19.2
(2011), pp. 189–223.

[LS11b] Joel Lehman and Kenneth O. Stanley. “Improving evolvability through
novelty search and self-adaptation”. In: 2011 IEEE Congress of Evolu-
tionary Computation (CEC). 2011, pp. 2693–2700. doi: 10.1109/CEC.
2011.5949955.

[LYT15] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. “Con-
strained Novelty Search: A Study on Game Content Generation”. In: Evol.
Comput. 23.1 (Mar. 2015), pp. 101–129. issn: 1063-6560. doi: 10.1162/
EVCO_a_00123. url: https://doi.org/10.1162/EVCO_a_00123.

[MA94] Zbigniew Michalewicz and Jarosław Arabas. “Genetic algorithms for the
0/1 knapsack problem”. In: International Symposium on Methodologies
for Intelligent Systems. 1994, pp. 134–143.

[Mar+19] Aritz D. Martinez, Eneko Osaba, Izaskun Oregi, Iztok Fister, Iztok Fis-
ter, and Javier Del Ser. “Hybridizing Differential Evolution and Novelty
Search for Multimodal Optimization Problems”. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion. GECCO
’19. Prague, Czech Republic: Association for Computing Machinery, 2019,
pp. 1980–1989. isbn: 9781450367486. doi: 10.1145/3319619.3326799.
url: https://doi.org/10.1145/3319619.3326799.

[McD98] Colin McDiarmid. “Concentration”. In: Probabilistic Methods for Algo-
rithmic Discrete Mathematics. Ed. by Habib Michel, Colin McDiarmid,
Ramirez-Alfonsin Jorge, and Reed Bruce. Springer Berlin Heidelberg,
1998, pp. 195–248. isbn: 978-3-662-12788-9. doi: 10.1007/978-3-662-
12788-9{_}6.

[Mit98] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cam-
bridge University Press, 1995.

[NGS05] Efstratios Nikolaidis, Dan M Ghiocel, and Suren Singhal. Types of uncer-
tainty in design decision making. CRC Press, New York, 2005.

[NN20] Aneta Neumann and Frank Neumann. “Optimising monotone chance-
constrained submodular functions using evolutionary multi-objective al-
gorithms”. In: International Conference on Parallel Problem Solving from
Nature. Springer. 2020, pp. 404–417.

[NS19] Frank Neumann and Andrew M Sutton. “Runtime analysis of the (1+
1) evolutionary algorithm for the chance-constrained knapsack problem”.
In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of
Genetic Algorithms. 2019, pp. 147–153.

[NSW09] Frank Neumann, Dirk Sudholt, and Carsten Witt. “Analysis of different
MMAS ACO algorithms on unimodal functions and plateaus”. In: Swarm
Intelligence 3.1 (2009), pp. 35–68.

[NW06] Frank Neumann and Ingo Wegener. “Minimum spanning trees made eas-
ier via multi-objective optimization”. In: Natural Computing 5.3 (2006),
pp. 305–319.

https://doi.org/10.1109/CEC.2011.5949955
https://doi.org/10.1109/CEC.2011.5949955
https://doi.org/10.1162/EVCO_a_00123
https://doi.org/10.1162/EVCO_a_00123
https://doi.org/10.1162/EVCO_a_00123
https://doi.org/10.1145/3319619.3326799
https://doi.org/10.1145/3319619.3326799
https://doi.org/10.1007/978-3-662-12788-9{_}6
https://doi.org/10.1007/978-3-662-12788-9{_}6

Bibliography 117

[NW10] Frank Neumann and Carsten Witt. “Bioinspired Computation in Com-
binatorial Optimization”. In: Natural Computing Series (2010). doi: 10.
1007/978-3-642-16544-3.

[NW21] Frank Neumann and Carsten Witt. “Runtime Analysis of Single-and Multi-
Objective Evolutionary Algorithms for Chance Constrained Optimiza-
tion Problems with Normally Distributed Random Variables”. In: arXiv
preprint arXiv:2109.05799 (2021).

[NYB12] Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke. “Evolu-
tionary dynamic optimization: A survey of the state of the art”. In: Swarm
and Evolutionary Computation 6 (2012), pp. 1–24.

[PAS09] Bernardo K Pagnoncelli, Shapiro Ahmed, and Alexander Shapiro. “Sam-
ple average approximation method for chance constrained programming:
theory and applications”. In: Journal of optimization theory and applica-
tions 142.2 (2009), pp. 399–416.

[PB18] Natee Panagant and Sujin Bureerat. “Truss topology, shape and sizing
optimization by fully stressed design based on hybrid grey wolf optimiza-
tion and adaptive differential evolution”. In: Engineering Optimization
50.10 (2018), pp. 1645–1661.

[Pin16] Michael L Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer,
2016.

[Pol+14] Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbig-
niew Michalewicz, and Frank Neumann. “A comprehensive benchmark
set and heuristics for the traveling thief problem”. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2014. 2014,
pp. 477–484.

[Qia+17] Chao Qian, Jing-Cheng Shi, Yang Yu, and Ke Tang. “On Subset Selection
with General Cost Constraints”. In: International Joint Conference on
Artificial Intelligence, IJCAI 2017. 2017, pp. 2613–2619.

[QYZ15] Chao Qian, Yang Yu, and Zhi-Hua Zhou. “Subset Selection by Pareto
Optimization”. In: Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems, NIPS
2015. 2015, pp. 1774–1782.

[Rao95] G Visweswara Rao. “Optimum designs for transmission line towers”. In:
Computers & structures 57.1 (1995), pp. 81–92.

[RK92] S Rajeev and C S Krishnamoorthy. “Discrete optimization of structures
using genetic algorithms”. In: Journal of Structural Engineering 118.5
(1992), pp. 1233–1250.

[RNN18] Vahid Roostapour, Aneta Neumann, and Frank Neumann. “On the per-
formance of baseline evolutionary algorithms on the dynamic knapsack
problem”. In: Parallel Problem Solving from Nature, PPSN XV 2018. Lec-
ture Notes in Computer Science. 2018, pp. 158–169.

[Roo+19] Vahid Roostapour, Aneta Neumann, Frank Neumann, and Tobias Friedrich.
“Pareto optimization for subset selection with dynamic cost constraints”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33.
2019, pp. 2354–2361.

https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-3-642-16544-3

118 Bibliography

[Sam+17] Mehran Samavati, Daryl Essam, Micah Nehring, and Ruhul Sarker. “A
local branching heuristic for the open pit mine production scheduling
problem”. In: European Journal of Operational Research 257.1 (2017),
pp. 261–271.

[Seb+11] Guclu Seber, Hongjun Ran, Taeqoo Nam, Joseph Schetz, and Dimitri
Mavris. “Multidisciplinary design optimization of a truss braced wing
aircraft with upgraded aerodynamic analyses”. In: 29th AIAA Applied
Aerodynamics Conference. 2011, p. 3179.

[SH00] Thomas Stützle and Holger H Hoos. “MAX–MIN Ant System”. In: Future
Generation Computer Systems 16.8 (2000), pp. 889–914. issn: 0167-739X.

[Sip92] Michael Sipser. “The history and status of the P versus NP question”. In:
Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing. 1992, pp. 603–618.

[Sip97] M Sipser. “Introduction to the theory of computation, PWS Pub”. In:
Co., Boston (1997).

[SP97] Rainer Storn and Kenneth Price. “Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces”. In: Journal
of global optimization 11.4 (1997), pp. 341–359.

[SS15] Masoud Soleymani Shishvan and Javad Sattarvand. “Long term produc-
tion planning of open pit mines by ant colony optimization”. In: European
Journal of Operational Research 240.3 (2015), pp. 825–836.

[Top83] B H V Topping. “Shape optimization of skeletal structures: a review”. In:
Journal of Structural Engineering 109.8 (1983), pp. 1933–1951.

[UO19] Ozgur Unsal and Ceyda Oguz. “An exact algorithm for integrated plan-
ning of operations in dry bulk terminals”. In: Transportation Research
Part E: Logistics and Transportation Review 126 (2019), pp. 103–121.

[WC95] S J Wu and P T Chow. “Steady-state genetic algorithms for discrete
optimization of trusses”. In: Computers & Structures 56.6 (1995), pp. 979–
991.

[Xie+19] Yue Xie, Oscar Harper, Hirad Assimi, Aneta Neumann, and Frank Neu-
mann. “Evolutionary algorithms for the chance-constrained knapsack prob-
lem”. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO 2019. 2019, pp. 338–346.

[Xie+21] Yue Xie, Aneta Neumann, Frank Neumann, and Andrew M Sutton. “Run-
time analysis of RLS and the (1+ 1) EA for the chance-constrained knap-
sack problem with correlated uniform weights”. In: Proceedings of the Ge-
netic and Evolutionary Computation Conference. 2021, pp. 1187–1194.

[XNN20] Yue Xie, Aneta Neumann, and Frank Neumann. “Specific single-and multi-
objective evolutionary algorithms for the chance-constrained knapsack
problem”. In: Proceedings of the 2020 Genetic and Evolutionary Compu-
tation Conference. 2020, pp. 271–279.

[XNN21a] Yue Xie, Aneta Neumann, and Frank Neumann. “Heuristic Strategies
for Solving Complex Interacting Large-Scale Stockpile Blending Prob-
lems”. In: 2021 IEEE Congress on Evolutionary Computation (CEC).
2021, pp. 1288–1295.

Bibliography 119

[XNN21b] Yue Xie, Aneta Neumann, and Frank Neumann. “Heuristic Strategies for
Solving Complex Interacting Stockpile Blending Problem with Chance
Constraints”. In: Genetic and Evolutionary Computation Conference. ACM,
2021, pp. 1079–1087. isbn: 9781450383509.

[Zha+05] Yan-Nian Zhang, Ping Liu, Bin Liu, Chao-Yan Zhu, and Yi Li. “Ap-
plication of improved hybrid genetic algorithm to optimized design of
architecture structures”. In: Huanan Ligong Daxue Xuebai(Ziran Kexue
Ban)/ Journal of South China University of Technology(Natural Science
Edition)(China) 33.3 (2005), pp. 69–72.

	List of Figures
	List of Tables
	Acronyms
	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Contributions and Background
	Outline of the Thesis

	Combinatorial Problems and Stockpile Recovery
	Introduction
	Knapsack Problem
	Chance-constrained Knapsack Problem
	Inequality Tail Bounds for Chance-constraints

	Truss Optimisation Problem
	Multi-objective Optimisation Problems
	Stockpile Recovery Problem
	Conclusions

	Deterministic and Randomised Methods for Optimisation Problems
	Introduction
	Deterministic approaches
	Dynamic Programming
	Iterated Local Search
	Greedy Algorithms

	Randomised algorithms
	Evolutionary algorithms
	(1+1)-EA

	Multi-Objective Evolutionary Algorithms (MOEAs)
	G-SEMO
	NSGA-II

	Particle Swarm Optimisation
	Ant Colony Optimisation

	Novelty Search
	Conclusions

	Evolutionary Bi-objective Optimisation for the Dynamic Chance-Constrained Knapsack Problem Based on Tail Bound Objectives
	Dynamic Chance-Constrained Knapsack Problem
	Bi-objective Optimisation Model
	Evolutionary algorithms
	Single-objective Optimisation
	Bi-objective Optimisation

	Experimental Investigation
	Conclusions

	Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems
	Bilevel Truss Optimisation Problem
	Optimisation methods
	Lower Level Optimisation
	Exact Enumeration
	Novelty-Driven Bilevel Truss Optimisation
	Binary PSO
	Novelty-driven Binary PSO
	Repair Mechanism in the Upper Level
	Bilevel Novelty-Driven Binary PSO Framework

	Experimental investigations
	25-bar truss
	10-bar truss
	52-bar truss
	15-bar truss
	72-bar truss
	47-bar truss
	200-bar truss
	224-bar truss
	68-bar truss

	Conclusions

	Modelling and Optimisation of Run-of-Mine Stockpile Recovery
	Stockpile recovery problem statement
	Objective function
	Scenarios of the Problem

	Optimisation methods
	Greedy Algorithm and Randomisation
	Max-Min Ant System (MMAS)
	MMAS with Local Search
	Pilgrim Step Reclaiming Heuristic (PSRH)

	Experimental setup
	Results and Discussion
	Scenario 1
	Scenario 2
	Scenario 3

	Conclusions

	Run-of-Mine Stockyard Recovery Scheduling and Optimisation for Multiple Reclaimers
	Problem Statement
	Lexicographic Objective Function

	Optimisation Methods
	Solution Construction Heuristic
	Deterministic and Randomised Greedy Algorithm
	Max-Min Ant System (MMAS)
	Iterative Local Search

	Experimental Setup
	Problem Setup
	Algorithm Setup

	Results
	Conclusions

	Conclusions
	Bibliography

