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Abstract

The closing lemma is a result in dynamical system theory originating from the study of

orbits of celestial bodies. In general, it refers to the problem of perturbing a dynamical

system so as to obtain an arbitrarily close system for which there is a periodic orbit

passing through a given point with a recurrence property. The problem often takes a

variety of forms depending on the constraints one imposes and the setting of the given

dynamical system, with many closing lemmas still unproven today.

In this thesis, we prove closing lemmas in the setting of Riemann surfaces with dy-

namical systems determined by holomorphic endomorphisms, and with points given the

non-wandering property. We aim to provide elementary proofs of these results using the

techniques and powerful machinery available to us from Riemann surface theory and the

theory of holomorphic dynamics in one complex variable, amongst other areas. Detailed

proofs that the closing lemma holds for endomorphisms of the plane C, punctured plane

C∗, complex tori, and all Riemann surfaces of hyperbolic type will be presented, with the

former two cases forming the main body of the thesis. For the case of the Riemann sphere

P, we furnish a proof that the closing lemma holds provided that the given endomorphism

admits no Siegel discs and Herman rings.
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Chapter 1

Introduction

1.1 Context

The problem known as the closing lemma is well known amongst dynamical system theo-

rists, with origins from Poincaré’s paper concerning orbits of celestial bodies [14]. It refers

to the problem of perturbing a dynamical system so as to obtain an arbitrarily close sys-

tem (with respect to the topology on the space of considered dynamical systems) with

periodic orbit passing through a given point. The given point is normally endowed with a

recurrence property. Solutions to this problem depend on the type of recurrence property,

the topology on the given space of dynamical systems, and constraints that one may have

on obtaining the required perturbations. Consequently, closing lemma problems can vary

drastically in both level of difficulty and available solution methods. For example, the

closing lemma for C1 diffeomorphisms on compact smooth manifolds with a given recur-

rent point was proved by Pugh in 1967 [15], but generalisations to Cr diffeomorphisms for

r ≥ 2 remain elusive in the present day. In fact, the closing lemma for smooth dynamics

is Smale’s 10th problem, a list of unresolved mathematical problems to be tackled by

1



2 Chapter 1. Introduction

mathematicians in the 21st century [19]. For more information on the many varieties of

the closing lemma, we point to the comprehensive survey article written by Anosov and

Zhuzhoma [1].

The closing lemma problem has now recently been asked in the setting of holomorphic

dynamics. That is, for a complex manifold X and a holomorphic endomorphism f of X,

if p ∈ X is non-wandering, then is it true that every open neighbourhood (with respect

to the compact-open topology) of f in the space of endomorphisms EndX contains an

endomorphism g for which p is periodic? Here, we say that p is periodic under g if there

exists n ∈ N for which the n-th composition gn maps p to itself. As far as we know,

variations of the closing lemma in the setting of holomorphic dynamics in Cn first appear

in Fornæss and Sibony’s landmark papers [6] and [7]. The results in these papers were

then generalised and adapted to Oka-Stein manifolds in Arosio and Lárusson’s paper [3].

In fact, they give an affirmative answer to the question we posed above in the case that X

is an Oka-Stein manifold. However, the techniques and machinery they apply are rooted

in the theory of several complex variables, as is to be expected by the generality of the

problem, and hence tend to be complicated and subtle.

The focus of our research is to give an affirmative answer to the closing lemma problem

in the case that X is a Riemann surface, a connected 2-dimensional topological manifold

modelled on the plane C. To achieve this, we will use some of the ideas in [3] as inspiration.

Our contribution will not only pertain to elaborating some of these complicated and subtle

arguments, but to also furnish elementary and accessible arguments in our proofs wherever

possible. For example, a key theorem that will see repeated use in our proofs is the Runge

approximation theorem (Theorem 2.1.6), which has no analogous result as elegant in the

theory of several complex variables.
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1.2 Structure of the thesis and our results

With the above context, we look to prove that the closing lemma holds for a variety

of Riemann surfaces. Indeed, the significant contribution of this thesis is in providing

a proof to this theorem for almost all kinds of Riemann surfaces. In our journey, we

will begin by providing a detailed overview of the many background results that will be

present in our research. The areas that we draw upon are varied, with the backbone

of our work constituted by Riemann surface theory and holomorphic dynamics. These

areas are themselves quite general and underpinned by complex analysis seen in standard

undergraduate courses. Hence, we will assume a base understanding of the ideas in

complex analysis throughout the thesis. We will, however, endeavour to make this thesis

as self-contained as possible, and so we provide as many relevant results as needed. This

includes detailed treatments of Weil’s lemma (Theorem 2.4.4) and Šura-Bura’s theorem

(Theorem 2.2.4), both of which are results that are perhaps rarer to encounter in the

literature. The collection of background material is collated in Chapter 2.

To clarify what we mean by “almost” all Riemann surfaces, our strategy will be to

utilise the power of the uniformisation theorem (Theorem 2.1.7) which classifies all the

possible types of Riemann surfaces that can be encountered (up to isomorphism). Namely,

these are the elliptic type, the parabolic type, and the hyperbolic type. There is only one

Riemann surface of elliptic type, the Riemann sphere P, and the surfaces of parabolic

type are the plane C, the punctured plane C∗, and complex tori T. All other surfaces

are of hyperbolic type, in particular, the unit disc D. We prove the closing lemma for

the plane, punctured plane, complex tori, and all hyperbolic surfaces. The case of the

Riemann sphere is not quite complete, but we will produce a proof of a version of the

closing lemma with an additional assumption.

The crown jewels of our work will be proving the closing lemma for the two non-
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compact parabolic Riemann surfaces, C and C∗. These results are highly non-trivial and

so each have dedicated chapters, namely Chapters 3 and 4 respectively. In Chapter 3, we

come across our first main result.

Main Theorem 1 (Closing lemma for C). Let p ∈ C be a non-wandering point of an

endomorphism f : C → C. Then every open neighbourhood of f in EndC contains an

endomorphism of which p is a periodic point.

The chapter consists of two sections, each detail the proof of the closing lemma for

C under conflicting assumptions. More precisely, we introduce a definition concerning

our holomorphic endomorphism f and non-wandering point p, first seen in [2], called

the robustly non-expelling property. Ignoring the details of the definition, the idea of the

property is that it allows us to separate the proof of the closing lemma for C to when we

can apply Montel’s theorem on the family of iterates of f , and when we cannot. This is

according to whether f has the robustly non-expelling property at p or not, respectively.

Interestingly, the case that f does not exhibit the robustly non-expelling property at p is

easier for us to deal with in comparison to when f does enjoy the property. In fact, we

will see that the bulk of the background material are ingredients to the proof for the case

when f has the robustly non-expelling property at p.

The general argument for the case that f does not enjoy the robustly non-expelling

property at p, as seen in [3], utilises results in Oka theory and differential geometry. We

however, furnish a proof that only relies on simple arguments involving normed vector

spaces, polynomial interpolation, and Runge’s approximation theorem. For the case that

f enjoys the robustly non-expelling property at p, we provide a significantly streamlined

and simplified proof using some of the ideas in [3]. Here, we exploit the unique topological

properties of C in comparison with a general complex manifold. In particular, we use the

fact that connected Runge sets in C are necessarily simply connected.
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Chapter 4 is our treatment of the closing lemma for C∗ and thus where we present our

second main result.

Main Theorem 2 (Closing lemma for C∗). Let p ∈ C∗ be a non-wandering point of an

endomorphism f : C∗ → C∗. Then every open neighbourhood of f in EndC∗ contains an

endomorphism of which p is a periodic point.

It should be noted that our proof of the closing lemma for C∗ follows the same lines as

our proof of the closing lemma for C. The chapter is again split into two sections, when

our endomorphism f of C∗ has the robustly non-expelling property at p, and when it does

not. Once again, we will see that the case that f does not enjoy the robustly non-expelling

property at p is easier to deal with; it closely resembles our corresponding proof for C

with the appropriate adjustments. On the other hand, we will see many divergences from

our corresponding arguments in the case of C for when f is robustly non-expelling at p.

These diverging arguments originate from the different topological properties carried by

C∗ compared to C. The greatest difference is that connected Runge sets in C∗ are no

longer necessarily only simply connected, but may also be doubly connected.

Finally, Chapter 5 concludes this thesis and contains proofs of the closing lemma for

the remaining Riemann surfaces: hyperbolic Riemann surfaces, complex tori T = C/Γ

(where Γ denotes a lattice), and the Riemann sphere P. This gives our final three main

results.

Main Theorem 3 (Closing lemma for hyperbolic surfaces). Let p ∈ X be a non-

wandering point of an endomorphism f of a hyperbolic Riemann surface X. Then every

open neighbourhood of f in EndX contains an endomorphism of which p is a periodic

point.

Main Theorem 4 (Closing lemma for T). Let p+Γ ∈ T and let f be an endomorphism

of T. Then every open neighbourhood of f in EndT contains an endomorphism of which
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p+ Γ is a periodic point.

Main Theorem 5 (Closing lemma for P). Let p ∈ P be a non-wandering point of a

rational map f on P. Suppose f does not admit Siegel discs and Herman rings. Then

every open neighbourhood of f in EndP contains a rational map of which p is a periodic

point.

This chapter is heavily reliant on the ideas seen in holomorphic dynamics, where we

will take advantage of the power of several classification theorems. In particular, we

use the dichotomy of the Fatou and Julia sets and its consequences, the classification of

dynamics on hyperbolic Riemann surfaces (Theorem 2.3.4), and the classification of Fatou

components on the Riemann sphere (Theorem 2.3.5). We also observe that our statement

of the closing lemma for T does not include the hypothesis that p has some recurrence

property. This implies that the closing lemma on T is independent of the behaviour of

the given point. Further note however, that we do not quite manage to affirm the closing

lemma for the Riemann sphere. We instead adjust our problem to omit the case that

our endomorphism of P admits Siegel discs and Herman rings. Following the proof of our

adjusted closing lemma for P, we provide detailed justification on the reason behind these

omitted scenarios. As mentioned above, this is the only case where we have not been able

to verify the closing lemma for Riemann surfaces.

1.3 Further research

Summarising our work, we prove that the closing lemma holds for almost all Riemann

surfaces. The only unresolved case is when we have a rational map on the Riemann

sphere that exhibits cycles of either Siegel discs or Herman rings. More precisely, it seems

especially non-trivial to find a perturbed rational map for which the given non-wandering

point p lies on either a Siegel disc or Herman ring exhibited by the original map. As such,
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the natural direction in which one can take to continue the work presented in this thesis

is to prove or disprove the closing lemma for P for this specific case.

Another possible direction is to explore variations of the closing lemma. As the nature

of the problem is dependent on our specification of the type of recurrence of our point p

in our Riemann surface, we may generalise our non-wandering hypothesis to, say, chain

recurrent. Other directions include obtaining results on controlling our new-found periodic

orbit. It may be of interest to produce perturbed maps with periodic point p whose orbit

stays close to its orbit under the original map. Our results and proofs seemingly do not

suggest any sort of control since we were only interested in producing perturbed maps

with specified periodic point. It should be noted that progress on this matter can be

found in [7].
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Chapter 2

Background material

This chapter will introduce the main ideas and the common ingredients we will see in

the ensuing proofs presented in later chapters. We will see that the areas of mathematics

involved in our proofs are varied; from Riemann surface theory to holomorphic dynamics,

then from general topology to topological and Lie group theory. Although the majority

of the results that we will call upon will be cited, we will provide proofs of the results

that are more difficult to obtain. In particular, we dedicate entire sections to detailed

expositions of Šura-Bura’s theorem and Weil’s lemma, both are major contributors to our

proof of the closing lemma for C and C∗.

2.1 Riemann surfaces

We begin by providing a glossary of the definitions and theorems on Riemann surfaces

that underpin the majority of the complex geometric and analytic theory we use. Here, we

will assume some basic manifold and covering space theory, and will use Forster’s Lectures

on Riemann Surfaces as our primary reference (unless explicitly stated otherwise) [8].

9



10 Chapter 2. Background material

For a 2n-dimensional manifold X, we say that U = {ψi : Ui → Vi : Ui ⊂ X, Vi ⊂

Cn for all i ∈ I} is a complex atlas on X if U is a system of holomorphically compatible

charts (that is, the maps ψj ◦ ψ−1
i : ψi(Ui ∩ Uj) → ψj(Ui ∩ Uj) are biholomorphic for

all i, j ∈ I) and the collection of open sets (Ui)i∈I cover X. We also say that two

complex atlases U and U′ are analytically equivalent if every chart of U is holomorphically

compatible with every chart of U′. Moreover, we give the remark that as the composition

of biholomorphic maps is also biholomorphic, analytic equivalence of complex atlases is

an equivalence relation.

We now specialise to the case when X is a 2-dimensional manifold.

Definition 2.1.1. A Riemann surface is a pair (X,Σ), where X is a connected two-

dimensional manifold and Σ is a complex structure on X. That is, X is a Hausdorff

topological space that is locally homeomorphic to R2 and is given an equivalence class of

analytically equivalent complex atlases on X.

Observe that every Riemann surface is metrisable. For by Radó’s theorem [8, Theo-

rem 23.3], every Riemann surface is second-countable and hence metrisable by Urysohn’s

metrisation theorem. Thus, we may employ the arguments seen in geometry and analysis

on metric spaces to deduce results on Riemann surfaces.

When the context is clear, we will omit the complex structure Σ and will refer to a

Riemann surface by only its underlying two-dimensional manifold X. To further illustrate

these objects, we provide some standard examples of Riemann surfaces that will also arise

in the ensuing chapters.

Examples. 1. The complex plane C is a Riemann surface, where its complex structure

is defined by the atlas whose only chart is the identity map id on C.

2. Any domain Y ⊂ X, that is, connected open subset, of a Riemann surface X is
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itself a Riemann surface. Indeed, Y inherits the complex structure on X by taking

the atlas of those complex charts U → V on X such that U ⊂ Y . In particular, the

punctured plane C∗ = C \ {0} and the unit disc D = {z ∈ C : |z| < 1} are domains

of C.

3. The Riemann sphere P = C ∪ {∞} is a Riemann surface, where the symbol ∞ is

not contained in C. Here, the topology on P is given by the usual open sets on C

together with sets of the form V ∪{∞}, where V = C\K for compact K ⊂ C. Now

set U1 = C and U2 = C∗ ∪ {∞}, and define the maps ψ1 : U1 → C and ψ2 : U2 → C

by ψ1(z) = z and

ψ2(z) =


1/z for z ∈ C∗,

0 for z = ∞.

One can easily verify that ψ1 and ψ2 are holomorphically compatible. We therefore

obtain a complex structure on P, given by the atlas consisting of the charts ψ1

and ψ2. We further note that with this construction, P is a compact, connected

Hausdorff space that is homeomorphic to the 2-sphere S2.

4. Finally, the following construction of a quotient space is a Riemann surface. Let

ω1, ω2 ∈ C be linearly independent over R. Define Γ = Zω1 + Zω2 = {mω1 + nω2 :

m,n ∈ Z} to be the lattice spanned by ω1 and ω2. We define an equivalence relation

on C by decreeing that z, z′ ∈ C are equivalent mod Γ if z− z′ ∈ Γ. Denote C/Γ to

be the set of all equivalence classes defined by this relation and let π : C → C/Γ be

the canonical projection. Then by endowing C/Γ with the quotient topology, C/Γ

is a connected, compact Hausdorff space, and π is continuous and an open map.

We can then give a complex structure on C/Γ in the following way. Let V ⊂ C be

an open set for which no two points in V are equivalent under Γ. Then U = π(V )

is open and the restriction π|V : V → U is a homeomorphism. The inverse of π|V
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is then a complex chart on C/Γ and we let U be the set of all charts defined in this

way. After noting that Γ is discrete, it is straightforward to check the charts in U

are holomorphically compatible and hence that U defines a complex structure on

C/Γ. With this construction, we call such space T = C/Γ a complex torus.

We now define what we mean by a holomorphic map between Riemann surfaces.

Definition 2.1.2. Let X and Y be Riemann surfaces. A continuous map f : X → Y is

called holomorphic if for every pair of charts ψ1 : U1 → V1 on X and ψ2 : U2 → V2 on Y

with f(U1) ⊂ U2, the map

ψ2 ◦ f ◦ ψ−1
1 : V1 → V2

is holomorphic in the usual sense. A map f : X → Y is called biholomorphic if it is

bijective and both f : X → Y and its inverse f−1 : Y → X are holomorphic. We say that

X and Y are isomorphic if there exists a biholomorphic map f : X → Y . For the special

case of Y = X, we say that a general holomorphic map f : X → X is a holomorphic

endomorphism of X, and a holomorphic automorphism whenever f is also biholomorphic.

Throughout the following chapters, we will omit the word “holomorphic” when dealing

with either holomorphic endomorphisms or automorphisms if the context is clear.

Example. As it happens, the holomorphic endomorphisms of P have a very special form.

First, letX be a general Riemann surface and let Y ⊂ X be open. Then by ameromorphic

map on Y , we mean a holomorphic map f : Y ′ → C on an open subset Y ′ ⊂ Y such that

Y \Y ′ contains only isolated points (called poles) and lim
z→p

|f(z)| = ∞ for every p ∈ Y \Y ′.

With this definition, we can identify meromorphic maps on X as the holomorphic maps

X → P by defining p 7→ ∞ for each pole p (except for the constant map with value

∞, which is not considered a meromorphic map). It is then a standard fact that every

meromorphic map P → C is a rational map, that is, can be written as the quotient of two

polynomials. Hence, under the above identification, the endomorphisms of P are precisely
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the rational maps (see [8] for more details). In particular, the automorphisms of P are

precisely the Möbius transformations: z 7→ az + b

cz + d
where a, b, c, d ∈ C satisfy ad− bc ̸= 0.

Example. For a general complex torus T = C/Γ with lattice Γ = Zω1 + Zω2, it is a

standard fact that T is isomorphic to a torus of the form C/(Z+Zτ) where τ has positive

imaginary part. Hence, for our purposes, we may assume that our complex torus T is of

the form C/(Z + Zτ). Furthermore, for any two lattices Γ and Γ′, f : C/Γ → C/Γ′ is

a non-constant holomorphic map if and only if there exists α ∈ C∗ such that αΓ ⊂ Γ′

and β ∈ C for which f(z + Γ) = αz + β + Γ′. In particular, f is biholomorphic if and

only if αΓ = Γ. Thus, the only non-constant holomorphic maps between complex tori are

precisely the affine linear maps. We point to [8] and [12] for further information.

With these definitions, we can introduce the essential results in Riemann surface theory

that will see repeated usage in later chapters.

Theorem 2.1.3 (Identity theorem). Suppose X and Y are Riemann surfaces and f, g :

X → Y are two holomorphic maps which coincide on a set in X with an accumulation

point. Then f and g are identically equal.

Proof. See [8, Theorem 1.11].

Theorem 2.1.4 (Maximum modulus principle). Suppose X is a Riemann surface and

f : X → C is a non-constant holomorphic map. Then the modulus of f , |f |, does not

attain its maximum.

Proof. See [8, Corollary 2.6]

Remark. We observe that P, C, and D are not pairwise isomorphic. Indeed, any holo-

morphic map P → C, P → D, and C → D must be constant by the maximum modulus

principle and Liouville’s theorem.
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Next, we introduce a topological hull operator that will be essential in many of our

results. In fact, this operator is key in the proof of the celebrated Runge’s approximation

theorem.

Definition 2.1.5. Let X be a non-compact Riemann surface. For any subset Y ⊂ X,

let Ŷ denote the union of Y with all the relatively compact connected components of

X \Y . If Y is open, then we say that Y is Runge if Y = Ŷ , that is, none of the connected

components of X \ Y are compact.

Remark. Observe that this hull operator is dependent on the Riemann surface X. For

example, take the annulus Ar = {z ∈ C : 1 < |z| < r} for r > 1. Then treated as a subset

of C, Âr = D(0, r) = {z ∈ C : |z| < r}. But if treated as a subset of C∗, we see that

Âr = Ar.

This hull operator also satisfies the following properties (see [8, Theorem 23.5] for

details):

(i)
̂̂
Y = Ŷ for any subset Y ⊂ X,

(ii) Ŷ1 ⊂ Ŷ2 whenever Y1 ⊂ Y2,

(iii) Ŷ is closed whenever Y is closed, and

(iv) Ŷ is compact whenever Y is compact.

Moreover, if Y is a Runge subset of a Riemann surfaceX, then every connected component

of Y is also Runge (see [8, Theorem 23.8]).

Note that we have denoted this hull operator with the “wide hat” symbol in reference

to the standard notation for the holomorphically convex hull of a set in an n-dimensional

complex manifold X. More precisely, for a subset K of a domain D ⊂ X, its holomorphi-
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cally convex hull K̂O(D) in D is defined by

K̂O(D) =

{
z ∈ D : |f(z)| ≤ sup

w∈K
|f(w)| for all f ∈ O(D)

}
,

where O(D) denotes the set of holomorphic maps from D to C. In particular for Rie-

mann surfaces, the definition of the holomorphically convex hull coincides with our more

topological definition of the hull operator (one can see this via the maximum modulus

principle).

As mentioned above, Runge sets are key in the Runge approximation theorem.

Theorem 2.1.6 (Runge approximation theorem). Let X be a non-compact Riemann sur-

face and Y a Runge subset of X. Then every holomorphic map on Y can be approximated

uniformly on every compact subset of Y by holomorphic maps on X.

Proof. See [8, Theorem 25.5].

Finally, we reference the generalisation of the classic Riemann mapping theorem for

simply connected domains on C to arbitrary Riemann surfaces: the uniformisation theo-

rem.

Theorem 2.1.7 (Uniformisation theorem). Suppose X is a simply connected Riemann

surface. Then X is isomorphic to either the Riemann sphere P, the complex plane C, or

the unit disc D.

Proof. See [8, Theorem 27.9].

An important application of the uniformisation theorem is the following. From cover-

ing space theory, if X and Y are connected manifolds and p : X → Y is a covering map,

then p is the universal covering of Y if and only if X is simply connected. In particular,
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any Riemann surface Y has universal covering p : X → Y where X is also a Riemann

surface and p is holomorphic. Hence, we may apply the uniformisation theorem on X.

Let Deck(p) denote the group of covering transformations of the universal covering p :

X → Y of a Riemann surface Y . Then any σ ∈ Deck(p) is a holomorphic automorphism

of X and Deck(p) acts freely and discretely on X, that is, the only automorphism in

Deck(p) with fixed points is the identity map itself and every orbit under Deck(p) is a

discrete subset of X. It can then be shown that any Riemann surface Y with universal

covering map p : X → Y is isomorphic to the quotient X/Deck(p). Here, the equivalence

relation is defined by identifying points of X that can be transformed to each other by

elements of Deck(p). Thus, by the uniformisation theorem, every Riemann surface Y is

isomorphic to either P/Deck(p), C/Deck(p), or D/Deck(p) according to whether Y has

universal covering p : P → Y , p : C → Y , or p : D → Y respectively.

Now, as every automorphism of P has a fixed point, Deck(p) is trivial for the universal

covering p : P → Y . Thus Y is isomorphic to P itself. On the other hand, the group

of automorphisms of C which act freely and discretely on C is either trivial, consists

of all translations of the form z 7→ z + nγ for γ ∈ C∗ and n ∈ Z, or consists of all

translations of the form z 7→ z + mγ1 + nγ2 where γ1, γ2 ∈ C are linearly independent

over R and m,n ∈ Z. Hence, Y is isomorphic to either C, C∗, or torus C/Γ according

to whether Deck(p) consists of the aforementioned types of automorphisms, respectively.

Every other Riemann surface is isomorphic to D/Deck(p) where Deck(p) is the group of

automorphisms of D acting freely and discretely. We point to [8] for further details.

Remark. With the above classification, we say that P is elliptic, C, C∗, and any complex

tori C/Γ are parabolic, and that every other Riemann surface is hyperbolic.
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2.2 Šura-Bura’s theorem and its consequences

In the previous section, we saw what it means for an open subset of a Riemann surface

X to be Runge and the celebrated Runge approximation theorem. This theorem will be

essential in many of our arguments in the ensuing chapters, so it is key for us to determine

when an open set U ⊂ X yields compact components in X \ U . As such, this section is

dedicated to providing another tool for us to apply to this problem.

We will see thatX\U has compact components if and only ifX\U has non-empty open

compact sets, and that these arguments will be purely topological in nature. The driving

force behind this equivalence is Šura-Bura’s theorem, a somewhat obscure topological

result that we will prove in full detail. We acknowledge Remmert’s Classical Topics in

Complex Function Theory as our reference material for this section, particularly [16, p.

289–307].

Let X be a compact Hausdorff topological space. For any compact K ⊂ X, denote by

F the family of all open compact sets in X that contain K. Note that F is non-empty,

for X ⊃ K. Moreover, as X is Hausdorff, every member in F is closed and hence the

intersection
⋂

F of all the sets in F is compact and contains K. With this notation, we

prove the following lemma.

Lemma 2.2.1. Every open set U ⊂ X containing
⋂
F contains an element of F .

Proof. Let U be an open set in X containing
⋂
F . Then (X \ U) ∩

⋂
F = ∅. We claim

that there exist finitely many sets F1, . . . , Fr ∈ F such that

(X \ U) ∩
r⋂

i=1

Fi = ∅.

To see this, consider the family G = F ∪ {X \ U}. As F is a family of (open) compact

sets in a Hausdorff space, every member of G is closed in X. Note that
⋂

G = ∅. Further
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observe that (X \G)G∈G is an open cover of X \ U . For if there exists x ∈ X \ U that is

not contained in X \G for any G ∈ G, then x ∈
⋂
G, a contradiction. Now, as X \U is a

closed subset of X, it is compact. So there exists a finite subcover of X \U in (X \G)G∈G,

say (X \ Gi)i=1,...,m. Without loss of generality, we may assume that Gi ̸= X \ U for all

i = 1, . . . ,m (for if Gi = X \ U for some i, then X \ Gi = U). Thus, after relabelling,

Gi ∈ F for all i = 1, . . . , r. It follows that (X \ U) ∩
r⋂

i=1

Gi = ∅. This verifies the claim.

But
r⋂

i=1

Gi ∈ F , so as (X \ U) ∩
r⋂

i=1

Gi = ∅,
r⋂

i=1

Gi ⊂ U , as required.

We now introduce the topological objects called quasicomponents.

Definition 2.2.2. For a topological space X and x ∈ X, the quasicomponent of x in X

is the intersection of all the sets that are both open and closed in X containing x.

Hence, for an arbitrary subset U ⊂ X, the quasicomponent of U is the intersection of

all the sets that are both open and closed in X and contain U . With this definition, we

prove the following theorem.

Theorem 2.2.3. Every compact connected component K of a compact Hausdorff space

X coincides with the quasicomponent containing K.

Proof. Let K be a compact connected component of X and let F be defined as above.

If we prove that
⋂

F is connected, then it will follow from the fact that K ⊂
⋂
F that

K =
⋂

F . In other words, it suffices to prove that if
⋂

F = I1 ∪ I2, where I1 and I2 are

disjoint closed subsets of X, then either I1 or I2 is empty. As K = (K ∩ I1) ∪ (K ∩ I2)

and since K is a connected component, either K = K ∩ I1 or K = K ∩ I2.

Without loss of generality, suppose K ⊂ I1. Then as I1 and I2 are closed subsets

of the Hausdorff space X, they are compact. So as I1 and I2 are disjoint, we can find

disjoint open sets U1 and U2 in X such that I1 ⊂ U1 and I2 ⊂ U2 (recall that compact

Hausdorff spaces are normal). Now, because
⋂
F ⊂ U1∪U2, there exists F ∈ F for which
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⋂
F ⊂ F ⊂ U1 ∪ U2 by Lemma 2.2.1. But then

F ∩ (X \ U2) = F ∩ U1.

Since F and U1 are open (by definition of F), F ∩ U1 is open. Moreover, as U2 is open,

X \U2 is closed in X and therefore compact. Hence, as F is compact, F ∩U1 is compact.

Since we have the inclusions

K ⊂
⋂

F ⊂ F and K ⊂ I1 ⊂ U1,

it follows that F ∩ U1 is an open compact subset of X satisfying K ⊂ F ∩ U1. Thus,

F ∩ U1 ∈ F and
⋂

F ⊂ F ∩ U1 ⊂ U1 and consequently U2 ∩
⋂
F = ∅. Hence,

⋂
F is

connected, for I2 = ∅, and therefore K =
⋂

F , as required.

Remark. Since we have shown that in a compact Hausdorff space X, any compact con-

nected component K coincides with the quasicomponent containing it, Lemma 2.2.1 im-

plies that for any open set U containingK, there is an open compact set in U that contains

K. Hence, we deduce that in a compact Hausdorff space, every compact connected com-

ponent has a neighbourhood basis of open compact subsets. In fact, this remains true if

we weaken X to be locally compact: this is known as Šura-Bura’s theorem.

Theorem 2.2.4 (Šura-Bura’s theorem). Every compact connected component K of a

locally compact Hausdorff space X has a neighbourhood basis in X consisting of open

compact subsets of X.

Proof. As we know that the theorem is true in the case that X is compact, we may

assume this result when proving the case when X is locally compact. Let U be an open

neighbourhood ofK inX. SinceX is locally compact, there exists an open neighbourhood

V of K in X whose closure V is a compact subset of U . Note that any connected subspace

of V is connected as a subspace of X. Thus, we deduce that K is a connected component

of the space V .
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By hypothesis, K has a neighbourhood basis in V consisting of open compact subsets

of V . Hence, there exists an open compact subset C of V such that K ⊂ C ⊂ V , as V is

an open neighbourhood of K in X. But then C is also open in V and hence in X. This

implies that C is an open compact subset of X for which K ⊂ C ⊂ U . As U was an

arbitrary open neighbourhood of K in X, we conclude that K has a neighbourhood basis

in X consisting of open compact subsets of X.

Remark. Observe that every subspace Y of a Hausdorff space X that is both open and

closed is a union of connected components of X. Indeed, suppose Y ⊂ X is both open

and closed. Consider the set
⋃
y∈Y

Xy ⊂ X, where Xy denotes the connected component

of X containing y ∈ Y . Clearly Y ⊂
⋃
y∈Y

Xy, so it suffices to show the reverse inclusion.

In other words, it suffices to show that for any y ∈ Y , Xy ⊂ Y . Let U = Xy ∩ Y and

V = Xy ∩ (X \ Y ). We have Xy = U ∪ V , where U and V are disjoint. Moreover, by

definition of the subspace topology on Xy and the fact that every connected component of

a topological space is closed, U and V are closed in Xy. Since Xy is connected, it follows

that either U = ∅ or V = ∅. But y ∈ Xy ∩ Y = U , so we must have V = ∅ and hence

that Xy ⊂ Y .

With this observation, we have the following corollary of Šura-Bura’s theorem.

Corollary 2.2.5. A locally compact Hausdorff space X has compact connected compo-

nents if and only if there exist non-empty open compact sets in X. The union of all

the compact connected components of X coincides with the union of all the open compact

subsets of X, and in particular, is open in X.

Proof. ( =⇒ ) Suppose K is a compact connected component of X. Then by Šura-Bura’s

theorem, K has a neighbourhood basis in X consisting of open compact subsets of X.

Since K is non-empty (for it is a connected component), we conclude that there exist
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non-empty open compact subsets of X.

( ⇐= ) Suppose there exists a non-empty open compact subset Y in X. Then as X

is Hausdorff, Y is closed. Thus, by the previous remark, Y must be a union of connected

components of X. Since Y is compact and non-empty, these components must also be

compact.

Next, we prove the latter statement. Let K denote the family of all compact connected

components of X and let F denote the family of all non-empty open compact subsets of

X. We will show that
⋃

K =
⋃

F . Let x ∈
⋃
K. Then there exists a compact connected

component K ⊂ X containing x. By Šura-Bura’s theorem, there exists an open compact

set F ⊃ K in X (as X is an open set containing K). So x ∈ F and hence x ∈
⋃

F .

On the other hand, let x ∈
⋃
F . Then there exists an open compact subset F ⊂ X

containing x. As X is Hausdorff, F is an open and closed subspace of X and therefore

is a union of connected components in X. Once again, as F is compact, these connected

components are also compact and hence x is contained in a compact connected component

of X. Thus, x ∈
⋃

K. It follows that
⋃
K =

⋃
F , as was to be proved.

Corollary 2.2.5 is the first of two topological results in this section that will see direct

application in proofs presented in later chapters, for any Riemann surface is a locally

compact Hausdorff topological space. Moreover, any open or closed subspace of a Riemann

surface is locally compact and Hausdorff.

To be more precise, recall that an open set U in a Riemann surface X is Runge if and

only if X \U has no compact connected components. Since X \U is a closed subspace of

X, by Corollary 2.2.5, U is Runge if and only if the only open compact subset of X \ U

is empty. So when proving when certain sets are Runge, it can be more practical to work

with open compact subsets instead of compact connected components.



22 Chapter 2. Background material

To complete this section, we provide the second topological result that will be imple-

mented in conjunction with Corollary 2.2.5. An analogous result can be found in [16,

Chapter 13, Section 2], whose proof applied the various machinery afforded by working

on C, such as the Heine-Borel theorem. However, in the spirit of the preceding text

within this section, we prove a more general result that only relies on the locally compact

Hausdorff topology on a set X. Using this theorem in the context of Riemann surfaces,

it allows us to find a relatively compact, open neighbourhood of any given open compact

set for which we can apply the maximum modulus principle in a clever manner. We will

see such usage in Chapters 3 and 4.

Theorem 2.2.6. Let U ⊂ X be an open subset of a locally compact Hausdorff space X.

Then for every open compact subset K of X \ U , there exists a relatively compact, open

neighbourhood V of K in X with ∂V ⊂ U , where ∂V denotes the boundary of V in X.

Proof. Since K is open in X \U , we can write X \U = K ∪C, where C = (X \U) \K is

closed in X \U . Because X \U is closed in X, C must also be closed in X. Note that K

is a compact subset of X. As X is locally compact and Hausdorff, it is regular. Hence,

we can find disjoint open sets W,W ′ ⊂ X such that K ⊂ W and C ⊂ W ′.

We may assume that K ̸= ∅, for otherwise the required open neighbourhood V in X

is the empty set itself. So fix x ∈ K. Then as X is locally compact, there exists a compact

neighbourhood Nx of x in X. Given the subspace topology, Nx is a compact Hausdorff

space and hence normal. Note that the set W ∩Nx is open in Nx and so Nx \ (W ∩Nx)

is closed in Nx. Hence, as {x} is closed in Nx and disjoint to Nx \ (W ∩ Nx), we can

find disjoint open sets Vx and V ′
x in Nx such that {x} ⊂ Vx and Nx \ (W ∩ Nx) ⊂ V ′

x.

By definition of subspace topology, we can find open sets Yx and Y ′
x in X such that

Vx = Nx∩Yx and V ′
x = Nx∩Y ′

x. Take the interior V
◦
x of Vx in X. Then V ◦

x = N◦
x ∩Yx and

hence is an open neighbourhood of x in X. Furthermore, V ◦
x ⊂ Vx ⊂ Nx and so taking
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closures in X, we obtain

V ◦
x ⊂ Nx = Nx,

for Nx is compact and thus closed in X. Additionally,

V ◦
x ∩ Y ′

x ⊂ Vx ∩ Y ′
x = (Nx ∩ Yx) ∩ Y ′

x = (Nx ∩ Yx) ∩ (Nx ∩ Y ′
x) = Vx ∩ V ′

x = ∅.

Thus, V ◦
x and Y ′

x are disjoint open subsets of X, and consequently V ◦
x and Y ′

x are also

disjoint subsets of X. Therefore, V ◦
x ⊂ X \Y ′

x. As V
◦
x ⊂ Nx and Nx\(W ∩Nx) ⊂ V ′

x ⊂ Y ′
x,

we obtain

V ◦
x ⊂ Nx ∩ (X \ Y ′

x)

⊂ Nx ∩ (X \ (Nx \ (W ∩Nx)))

= Nx ∩ [(X ∩ (W ∩Nx)) ∪ (X \Nx)]

= Nx ∩ (X ∩ (W ∩Nx))

= Nx ∩W

⊂ W.

Hence, as x ∈ K was arbitrary, this shows that for any x ∈ K, we can find a relatively

compact, open neighbourhood Vx of x in X such that Vx ⊂ Vx ⊂ W . Taking such open

neighbourhoods, we see that K ⊂
⋃

x∈K
Vx ⊂ W . Thus, (Vx)x∈K is an open cover of K

and so as K is compact, there exists finitely many x1, . . . , xn ∈ K such that K ⊂
n⋃

i=1

Vxi
.

Choose V =
n⋃

i=1

Vxi
to be the candidate open neighbourhood of K in X. Taking closures

in X, we obtain

K ⊂ V =
n⋃

i=1

Vxi
=

n⋃
i=1

Vxi
⊂ W.

Now, as V is a finite union of relatively compact subsets ofX, it is itself relatively compact

in X. Moreover, since W and W ′ are disjoint, V ⊂ X \W ′ ⊂ X \C and so ∂V ∩C = ∅.
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But V is open and contains K, so ∂V ∩ K = ∅. Consequently, as X \ U = K ∪ C,

∂V ⊂ U , completing the proof.

2.3 Holomorphic dynamics

Next, we establish some of the fundamentals of holomorphic dynamics in one complex

variable. That is, the dynamics of holomorphic endomorphisms on Riemann surfaces.

Many of the results that we cite in this section will be key in the ensuing chapters. Here,

we appeal to Milnor’s Dynamics in One Complex Variable as our reference material [12].

Throughout this thesis, we will say that a sequence of holomorphic maps (fn)n∈N on

an open subset U of a Riemann surface converges locally uniformly to mean that (fn)n∈N

uniformly converges on compact subsets of U . (The usual, more familiar, notion of local

uniform convergence seen in analysis coincides with uniform convergence on compact

subsets since Riemann surfaces are locally compact.)

Definition 2.3.1. For an endomorphism f of an arbitrary Riemann surface X, the Fatou

set F(f) of f is the union of all open sets U ⊂ X such that every sequence of iterates

(fnj |U) either

(i) contains a subsequence (fnjk |U) that converges locally uniformly, or

(ii) contains a subsequence (fnjk |U) which diverges locally uniformly from X. That is,

for every compact subsets K,K ′ ⊂ X, fnjk (K)∩K ′ = ∅ for all k sufficiently large.

We say that the complement of the Fatou set J (f) = X \ F(f) is the Julia set of f .

Remark. The definition of Fatou set is motivated by the more general concept of normal

families of holomorphic maps. We say that a family H in the space of holomorphic maps

O(X, Y ) between Riemann surfaces X and Y is normal if every sequence of maps in H

contains either a subsequence which converges locally uniformly, or a subsequence that
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converges locally uniformly to the point at infinity in Y . (We say that a sequence (fn)n∈N

of maps X → Y converges locally uniformly to the point at infinity in Y if for every

compact sets K ⊂ X and K ′ ⊂ Y , fn(K) ∩K ′ = ∅ for all sufficiently large n.)

For the case of non-constant holomorphic maps between compact Riemann surfaces

X and Y , there is a unique integer that can be associated to each of these maps. This

integer will play a pivotal role in many of our arguments in Chapter 5. Let x ∈ X and

f : X → Y be a non-constant holomorphic map. Set b = f(x). Then by [8, Theorem 2.1],

there exists an integer k ≥ 1 such that f is locally of the form zk near x (up to chart).

Denote mult(f, x) = k, which we call the multiplicity of f at x. Imprecisely, for each

number y ̸= b near b, we can think of mult(f, x) as the number of times for which f takes

the value y on an open neighbourhood of x.

Definition 2.3.2. Let f : X → Y be a non-constant holomorphic map between compact

Riemann surfaces. Then for any y ∈ Y , the number

deg(f) =
∑

x∈f−1(y)

mult(f, x)

is a well-defined positive integer called the degree of f [8, Theorem 4.24].

Remark. There is an analogous characterisation of deg(f) using de Rham cohomology.

Let f : X → Y be a non-constant holomorphic map between compact Riemann surfaces.

Then there is an integer d such that∫∫
X

f ∗ω = d

∫∫
Y

ω

for every differentiable 2-form ω on Y . Moreover, d is necessarily equal to deg(f). (The

above is a special case of applying de Rham cohomologies on smooth manifolds, see [11]

and [13] for further details.)

We now look at some of the types of possible behaviour of points under iteration of

an endomorphism f of a Riemann surface X. We say that p ∈ X is periodic under f if
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there exists n ∈ N such that fn(p) = p. For the special case that n = 1, we say that p

is a fixed point of f . More generally, we say that p is preperiodic under f if there exists

m,n ∈ N such that fm(p) = fm+n(p).

Definition 2.3.3. Let X be a Riemann surface and let z0 ∈ X. Consider a periodic orbit

or cycle

z0, f(z0) = z1, . . . , f
m−1(z0) = zm−1, f

m(z0) = zm = z0

for an endomorphism f of X. If the points z1, . . . , zm are all distinct, then the integer

m ≥ 1 is called the period. Furthermore, the first derivative of the m-fold iterate fm at

a point of the cycle is a well-defined (that is, independent of chart) complex number λ

called the multiplier of the cycle [12, Definition 4.5].

There are two generalisations of periodic points that we will frequently use. We say

that p ∈ X is recurrent for an endomorphism f of X if there exists a subsequence

of (fn(p))n∈N that converges to p. We also say that p ∈ X is non-wandering for an

endomorphism f of X if for every open neighbourhood U of p in X, there exists k ∈ N

such that U∩fk(U) ̸= ∅. It is easy to see that every periodic point is recurrent, and every

recurrent point is non-wandering. We also note that the set of non-wandering points of f

form a closed subset of X, or equivalently, the set of wandering points of f is open in X.

Indeed, if p ∈ X is wandering, then there exists an open neighbourhood U of p in X such

that U ∩ fk(U) = ∅ for all k ∈ N. But then every point in U must also be wandering,

and so U is an open neighbourhood of p contained in the set of wandering points of f .

We say that a periodic orbit is either attracting or repelling if its multiplier λ satisfies

either |λ| < 1 or |λ| > 1, respectively. The periodic orbit will be called superattracting if

λ = 0. Also, we say that a periodic orbit is indifferent if |λ| = 1, and specifically parabolic

or irrationally indifferent if λ is a root of unity or not a root of unity, respectively.

Next, if O is an attracting periodic orbit of period m, we define the basin of attraction
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to be the open set A ⊂ X consisting of all points z ∈ X for which the successive iterates

fm(z), f 2m(z), . . . converge towards some point in O. For a given attracting periodic point

p in O, we say that the connected component in A containing p is the immediate basin

of attraction of p. There also exist basins of attraction for parabolic periodic orbits, but

we will cite [12] for the details.

Finally, in the interests of brevity as the following objects have highly technical def-

initions, we cite [12] for precise treatments of parabolic petals, Siegel discs, and Herman

rings. Informally however, a parabolic petal is a connected open set for which a parabolic

periodic point lies on its boundary, whereas Siegel discs and Herman rings correspond to

irrational rotations on discs and annuli, respectively.

Remark. One of the most useful tools for studying dynamical systems is to be able to

conjugate the map defining the dynamical system to a map whose dynamics is simpler

to study. Informally, the dynamical properties exhibited by f will carry over to the map

φ◦ f ◦φ−1, where φ is a bijection, since we are essentially looking at the dynamics of f in

a different coordinate system. In particular, conjugation by a homeomorphism preserves

all topological dynamics exhibited by the original map. One can see this via the following

defining equation: if g = φ ◦ f ◦ φ−1, then for all n ∈ Z,

gn = φ ◦ fn ◦ φ−1

(whenever fn is well-defined for n < 0). Hence, the orbits of f are in a one-to-one

correspondence with the orbits of g.

With these definitions, we are prepared to list the following results that describe the

behaviour of orbits of points lying in F(f) under an endomorphism f : X → X. The

ensuing theorem is underpinned by hyperbolic geometry. For those interested, we cite

[12] for the details of the machinery behind this theorem.
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Theorem 2.3.4 (Classification of dynamics on hyperbolic surfaces). For any endomor-

phism f of a hyperbolic Riemann surface X, exactly one of the following four possibilities

holds:

• Attracting case. If f has an attracting fixed point z0, then all orbits under f

converge towards z0. In fact, (fn) converges locally uniformly to the constant map

with value equal to z0.

• Escape case. If some orbit under f has no accumulation point in X, then no orbit

has an accumulation point. In fact, for any compact set K ⊂ X there exists an

integer nK so that K ∩ fn(K) = ∅ for n ≥ nK.

• Finite order case. If f has two distinct periodic points, then some iterate fn is

the identity map and every point of X is periodic.

• Irrational rotation case. In all other cases, (X, f) is a rotation domain. That

is, X is isomorphic either to the unit disc D, the punctured disc D \ {0}, or to the

annulus Ar = {z : 1 < |z| < r} where r > 1, and f is conjugate to an irrational

rotation z 7→ e2πiαz with α ∈ R \Q.

Proof. See [12, Theorem 5.2].

This fundamental result is key in the proof of the celebrated classification theorem of

Fatou components.

Theorem 2.3.5 (Classification of Fatou components). Let f : P → P be a rational map

of degree at least 2. If f maps the Fatou component U ⊂ P onto itself, then there are just

four possibilities, as follows:

• U is the immediate basin of attraction for an attracting fixed point,

• U is the immediate basin of attraction for a parabolic fixed point,



2.3. Holomorphic dynamics 29

• U is a Siegel disc,

• U is a Herman ring.

Proof. See [12, Theorem 16.1].

Remark. In fact, we can generalise Theorem 2.3.5 to Fatou components which cycle pe-

riodically under f , for U would be mapped onto itself by some iterate of f . Hence, the

Fatou component U is either the immediate attractive basin for an attracting periodic

point, the immediate basin for some petal of a parabolic periodic point, or it is either a

member of a cycle of Siegel discs or a cycle of Herman rings.

The final major result in holomorphic dynamics on Riemann surfaces that we will cite

is Sullivan’s non-wandering theorem.

Theorem 2.3.6 (Sullivan’s non-wandering theorem). Every Fatou component U for a

rational map f : P → P of degree at least 2 is preperiodic. That is, there exists integers

n ≥ 0 and m ≥ 1 so that the n-th forward image fn(U) is mapped onto itself by fm.

Proof. An outline of the proof can be found in [12], but one can also find the complete

proof in [5].

Interestingly, it follows from Sullivan’s non-wandering theorem that every Fatou com-

ponent is either a branched covering or a biholomorphic copy of some periodic Fatou

component. These components must then belong to one of the four types described by

Theorem 2.3.5. As such, the dynamics of the Fatou set for a rational map of degree at

least 2 have been completely determined.

We end this section by referencing an interesting equivalent definition of the Julia set

J (f) of a rational map of degree at least 2.
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Theorem 2.3.7. The Julia set for any rational map of degree at least 2 is equal to the

closure of its set of repelling periodic points.

Proof. See [12, Theorem 14.1].

2.4 Weil’s lemma

In this section, we give a brief overview of topological groups and provide a proof of Weil’s

lemma, whose statement and proof first appears in Weil’s 1940 monograph L’intégration

dans les groupes topologiques et ses applications [20]. Weil’s lemma will be a useful tool

in the proof of the closing lemma for C and C∗, and the proof we provide here has been

carefully translated and expanded upon from the original text.

Definition 2.4.1. A topological group G is a topological space that is also a group, such

that the maps

· : G×G→ G, (x, y) 7→ x · y, −1 : G→ G, x 7→ x−1,

are continuous, where G×G is given the product topology.

Remark. Note that with this definition, the translation map x 7→ g · x for any g ∈ G are

homeomorphisms, since its inverse x 7→ g−1 · x is continuous by definition. Furthermore,

many authors require that the topology on G is Hausdorff. We opt to make no such

assumption, to keep our definition as general as possible.

Henceforth, we will omit the product symbol denoting the group operation and simply

juxtapose if the operation is clear.

Proceeding to Weil’s lemma, we start by introducing two lemmas. The first of which

is a well-known result, but we have provided a proof for the convenience of the reader.
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Lemma 2.4.2. Let G be a Hausdorff topological group and let H ⊂ G be a locally compact

subgroup. Then H is closed in G.

Proof. We claim thatH is open in its closureH in G. Let x ∈ H. AsH is locally compact,

we can find an open neighbourhood U of x in H whose closure U in H is compact. By

definition of the subspace topology, we can write U = V ∩H for some open set V ⊂ H.

Since U is compact and H is Hausdorff, U is closed in H. Thus, V \ U = (H \ U) ∩ V

is open in H. Now, as V ∩ H = U ⊂ U , then (V \ U) ∩ H = ∅. But H is dense in H,

so we must have V \ U = ∅. Consequently, V ⊂ U ⊂ H and is thus an open subset of

H containing x. Since x ∈ H was arbitrary, we conclude that H is open in H. But an

open subgroup of a Hausdorff topological group is also closed for it can be written as the

complement of a union of cosets. Hence, H = H, and so H is closed in G.

Lemma 2.4.3. Let H denote either of the additive groups Z or R and f : H → G be

a homomorphism from H into a locally compact Hausdorff topological group G. Suppose

there is an open neighbourhood V of the identity e ∈ G and a number M > 0 such that

every t ∈ H satisfying f(t) ∈ V also satisfies |t| ≤M . Then f is an isomorphism onto a

closed subgroup of G.

Proof. We begin by noting that ker f = {0} and hence f is injective. For if there exists

t0 ̸= 0 inH such that f(t0) = e, then nt0 ∈ ker f for any n ∈ Z since f is a homomorphism.

Thus, ker f is unbounded, a contradiction as |nt0| > M for sufficiently large |n|. It follows

that f is bijective onto its image, the subgroup f(H) of G given the subspace topology.

Moreover, the set H ′ = {t ∈ H : |t| ≤M} is clearly compact. As G is Hausdorff, then

so too is f(H ′) with respect to the subspace topology. It follows that f is a continuous and

closed bijective map fromH ′ to f(H ′) and hence thatH ′ is homeomorphic to f(H ′). Thus,

f−1 : f(H) → H is a continuous map when restricted to V ∩f(H), since V ∩f(H) ⊂ f(H ′)
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is open and non-empty. This implies that f−1 is continuous at e and hence must be

continuous everywhere on f(H), as the translation maps x 7→ gx are homeomorphisms

for all g ∈ G. This shows that f : H → f(H) is an isomorphism.

Finally, we are left to show that f(H) is closed in G. By Lemma 2.4.2 it suffices to

show that f(H) is locally compact. But we saw that f : H → f(H) is an isomorphism,

so f(H) is indeed locally compact since H is locally compact.

Theorem 2.4.4 (Weil’s lemma). Let H denote either of the additive groups Z or R and

f : H → G be a homomorphism from H into a locally compact Hausdorff topological group

G. Then either f is an isomorphism onto a closed subgroup of G or the closure of f(H) in

G is a compact abelian subgroup. In the second case, we can, for any open neighbourhood

V of the identity in G, find a corresponding T > 0 such that any interval in R of length

T contains an element of H whose image under f lies in V .

Proof. Suppose that f is not an isomorphism onto a closed subgroup of G. Then by

Lemma 2.4.3, we may assume that for any open neighbourhood V of the identity e in G

and M > 0, there is an element t ∈ H such that f(t) ∈ V and |t| > M . Without loss of

generality we may also assume that G = f(H). We claim that for any non-empty open

set U in G, there is t > 0 such that f(t) ∈ U . Indeed, the image of H under f being dense

in G, there is z ∈ H such that f(z) ∈ U . Since U is open, we may find a symmetric open

neighbourhood V = V −1 of e in G such that f(z) · V = {f(z)v : v ∈ V } ⊂ U . Then by

assumption, there is u ∈ H such that f(u) ∈ V and |u| > |z|, and hence f(z + |u|) ∈ U

where z + |u| > 0.

Next, let V = V −1 be a symmetric relatively compact neighbourhood of e in G. Then

for any x ∈ G, there is some t > 0 such that f(t) ∈ x ·V , that is, x ∈ f(t) ·V by symmetry.

In particular, any x ∈ V belongs to a set f(t) · V with t > 0. Thus, the collection of
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open sets (f(t) · V )t>0 is an open cover of V . As V is compact, there are finitely many

ti > 0 such that V ⊂
⋃

i f(ti) · V . Let T be the largest of these ti. For any x ∈ G, let

τ ≥ 0 be the smallest element of H such that f(τ)x−1 ∈ V . Such τ exists by continuity

of the group operation on G and by denseness of f(H) in G. Then f(τ)x−1 belongs to

some open set f(ti) · V and thus f(τ − ti)x
−1 ∈ V . By the definition of τ , we must have

τ − ti < 0 and therefore 0 ≤ τ < T . Since then we have x ∈ V · f(τ), it follows that if I

is the image of the set of elements of H such that 0 ≤ τ ≤ T under f , we have G ⊂ V · I.

As V and I are compact, the same is true for G.

Moreover, as f(H) is dense in G, if we take x = f(−t), then we see that there exists

τ ∈ H such that 0 ≤ τ < T and f(t + τ) ∈ V . The second claim of Weil’s lemma

then follows after noting that locally compact Hausdorff topological spaces are regular.

Indeed, for any open neighbourhood U of e in G, we can find a symmetric relatively

compact neighbourhood V of e such that V ⊂ U . Finally, G is abelian since it contains

a dense abelian subgroup. This completes the proof.

2.5 Lie groups and Lie algebras

Extending our notion of groups endowed with a topology, we now consider groups endowed

with a notion of differentiability. We will assume familiarity with Lie groups and Lie

algebras. Our first theorem in this section shows that compact abelian Lie groups are all

have a certain form.

Theorem 2.5.1 (Structure of compact abelian Lie groups). Let G be a compact abelian

Lie group. Then G is isomorphic to the direct product (S1)n × A for some n ≥ 0, where

S1 is the unit circle in the complex plane and A is a finite abelian group.

Proof. See [18, Theorem 5.2]. (The whole proof is quite involved, requiring multiple



34 Chapter 2. Background material

non-trivial but elementary lemmas.)

Continuing the theme of compact Lie groups, we are interested in the “largest” possible

compact Lie subgroup of a given Lie group. To make this precise, we give the following

definition.

Definition 2.5.2. Let G be a topological group. A compact subgroup K in G is maximal

compact if whenever K ′ is a compact subgroup of G such that K ⊂ K ′, then K = K ′.

Applied to Lie groups, there is a non-trivial result pertaining to maximal compact

subgroups: for a Lie group with finitely many connected components, every compact

subgroup is contained in a maximal compact subgroup, and any two maximal compact

subgroups are conjugate. (To find a proof of this result, we point to [4, Chapter VII,

Theorem 1.2].) This means that for Lie groups with finitely many connected components,

maximal compact subgroups always exist and that they are unique up to conjugation.

We now introduce some relevant Lie algebra theory. The following background is taken

from Knapp’s Lie Groups: Beyond an Introduction [9].

Definition 2.5.3. Let g be a semisimple Lie algebra and B denote the Killing form on g.

A Cartan involution θ of g is an automorphism of g satisfying θ2(X) = X for all X ∈ g

and such that the symmetric bilinear form

Bθ(X, Y ) = −B(X, θ(Y ))

is positive definite.

Note that every semisimple matrix Lie algebra has a faithful representation in which

the map θ(X) = −X∗ = −X⊤
is a Cartan involution.

Next, we observe that as θ2 is equal to the identity mapping, then it only has eigen-

values ±1. Thus, a Cartan involution θ yields an eigenspace decomposition g = k ⊕ p,
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where k and p correspond to the +1 and −1 eigenspaces respectively. Furthermore, as θ

is a Lie algebra automorphism, these eigenspaces must bracket to the rules

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (2.1)

Using these rules, we observe that for X ∈ k and Y ∈ p, the adjoint map ad(X) ◦ ad(Y )

carries k to p and p to k. It follows that the trace of ad(X) ◦ ad(Y ) is equal to zero (since

the only eigenvalue of ad(X) ◦ ad(Y ) is zero) and thus that the Killing form on g satisfies

B(X, Y ) = 0 for all X ∈ k, Y ∈ p. Moreover, as θ(Y ) = −Y , then Bθ(X, Y ) = B(X, Y ) =

0 for all X ∈ k and Y ∈ p. Hence, k and p are orthogonal under B and Bθ. In fact, as Bθ

is positive definite, the eigenspaces k and p have the additional property that the Killing

form

B is


negative definite on k

postive definite on p.

(2.2)

Using these facts, we say that a decomposition g = k⊕ p into a direct sum of eigenspaces

that satisfies (2.1) and (2.2) is a Cartan decomposition of g. This construction yields the

following.

Theorem 2.5.4. Let G be a semisimple Lie group and θ be a Cartan involution of its

Lie algebra g. Let k ⊕ p be the corresponding Cartan decomposition and K the analytic

subgroup of G with the Lie algebra k. Then

(i) there exists a Lie group automorphism Θ of G with differential θ and Θ2 = 1,

(ii) the subgroup of G fixed by Θ is K,

(iii) the mapping K×p → G given by (k,X) 7→ k exp(X) is a surjective diffeomorphism,

(iv) K is closed,

(v) K contains the center Z of G,
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(vi) K is compact if and only if Z is finite, and

(vii) when Z is finite, K is a maximal compact subgroup of G.

Proof. See [9, Theorem 6.31].

To see this theorem in action, we apply it to the Lie group of automorphisms of the

unit disc D: PSL(2,R) = SL(2,R)/{±I}. Moreover, the following proposition will be a

very useful tool in the proof of the closing lemma for C and C∗.

Proposition 2.5.5. The 3-dimensional, connected, real Lie group PSL(2,R) contains a

1-dimensional maximal compact Lie subgroup.

Proof. Let K be a maximal compact Lie subgroup of PSL(2,R) and denote its dimension

as m. Note that m is at most equal to 3. In fact, m is at most equal to 2 for if m = 3, then

K must be isomorphic to PSL(2,R). This is impossible since PSL(2,R) is not compact.

Now we rule out the case that m = 2 as follows.

Observe that if K is a maximal compact subgroup of SL(2,R), then K/{±I} is a

maximal compact subgroup of PSL(2,R). So it suffices to determine a maximal compact

subgroup of the semisimple Lie group SL(2,R). Take θ(X) = −X∗ to be the Cartan

involution to the corresponding Lie algebra of SL(2,R): the algebra of traceless 2 × 2

matrices with real entries, sl(2,R). Then we may write

sl(2,R) = k⊕ p,

where k = {X ∈ sl(2,R) : X = −X⊤} and p = {X ∈ sl(2,R) : X = X⊤}. Computing

the matrix exponential on k, we see that the corresponding analytic subgroup of SL(2,R)

with Lie algebra k is

K = {A ∈ SL(2,R) : AA⊤ = I} = SO(2).
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As the center of SL(2,R) is precisely Z = {±I} and as SO(2) is closed, we conclude

that SO(2) is a maximal compact Lie subgroup of SL(2,R) by Theorem 2.5.4. Thus,

SO(2)/{±I} is a maximal compact Lie subgroup of PSL(2,R). In particular, SO(2)/{±I}

is a one-dimensional real Lie group.
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Chapter 3

The closing lemma for C

In this chapter, we will furnish a complete, detailed proof of the closing lemma for C.

We use the methods devised in [2] and [3] as a guide. Let X be a complex manifold and

let EndX denote the monoid of holomorphic endomorphisms on X endowed with the

compact-open topology. In particular, we note that EndC is a Fréchet space over C, for

the compact-open topology on EndC is induced by a family of seminorms.

Theorem 3.0.1 (Closing lemma for C). Let p ∈ C be a non-wandering point of an

endomorphism f : C → C. Then every open neighbourhood of f in EndC contains an

endomorphism of which p is a periodic point.

Before we begin the proof of the closing lemma for C, we first introduce a key definition.

Definition 3.0.2. Let X be a complex manifold and let p ∈ X. We say that f ∈ EndX

is robustly non-expelling at p if there is an open neighbourhood W of f in EndX, an open

neighbourhood V of p in X, and a compact subset K ⊂ X such that gj(V ) ⊂ K for all

g ∈ W and j ≥ 0.

Remark. A set that we will frequently see for the case that f is robustly non-expelling at

39
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p ∈ X is defined as follows. Since f is assumed to be robustly non-expelling at p ∈ X,

there exists an open neighbourhood W of f in EndX, an open neighbourhood V of p in

X, and a compact set K ⊂ X such that the iterated images gj(V ) are contained in K for

all g ∈ W and j ≥ 0. Let U be the interior of the closed set

T = {(x, g) ∈ X × EndX : gj(x) ∈ K for all j ≥ 0}

and let Uf be the slice {x ∈ X : (x, f) ∈ U}. Then Uf is a non-empty open subset of X

that is forward invariant under f . Moreover, Uf is relatively compact.

With this definition, the proof of the closing lemma for C will be completed in two

steps. That is, we will see that the closing lemma for C holds both in the case that our

endomorphism f is robustly non-expelling at our non-wandering point p ∈ C, and when

it is not. We will also see that many ingredients in the proofs presented in this chapter

are transferable to the closing lemma for C∗, which we prove in Chapter 4.

Interestingly, the latter case is easier to prove and the assumption that p is non-

wandering is unnecessary. Hence, we will tackle the case that f is not robustly non-

expelling at p first.

3.1 The case that f is not robustly non-expelling at p

Define the set

Pm = {P : C → C : P is a polynomial of degree ≤ m− 1}

and fix a compact set K ⊂ C containing at least m distinct points. Note that Pm is an

m-dimensional vector space over C, which we can equip with a norm with respect to K

by giving it the sup norm ∥P∥K = sup
z∈K

|P (z)|. Now fix a finite set M = {z1, . . . , zm} in

K, where z1, . . . , zm are distinct. Then the function ∥ · ∥M : Pm → R defined by

∥P∥M = max
z∈M

|P (z)|
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is also a norm on Pm. Using the fact that any two norms on a finite-dimensional vector

space are equivalent and hence induce the same topology on the vector space, we can find

constants 0 < C1 ≤ C2 such that

C1∥P∥M ≤ ∥P∥K ≤ C2∥P∥M

for all P ∈ Pm. Knowing this, we prove the subsequent theorem.

Theorem 3.1.1. Let p ∈ C and f ∈ EndC. Suppose that f is not robustly non-expelling

at p. Then every open neighbourhood of f in EndC contains an endomorphism of which

p is a periodic point.

Remark. Since C is a metric space, the compact-open topology on EndC coincides with the

topology of compact convergence. As the latter topology is generated by basis elements

of the form BK(h, ϵ) =

{
g ∈ EndC : sup

z∈K
|h(z)− g(z)| < ϵ

}
, where h ∈ EndC, K ⊂

C is compact, and ϵ > 0, it suffices to prove the theorem on arbitrary basis elements

containing f .

Proof. Let BK(f, ϵ) be a basis element containing f in EndC, where K ⊂ C is compact

and ϵ > 0. Pick a relatively compact, open neighbourhood V of p in C. Observe that

for any g ∈ BK(f, ϵ), g(K) is contained in the ϵ-neighbourhood of f(K). Since f(K) is

compact, for all sufficiently large r > 0, the disc D(0, r) contains the ϵ-neighbourhood

of f(K). Choose r > 0 such that D(0, r) contains V and the ϵ-neighbourhood of f(K).

Then by hypothesis, there exists g ∈ BK(f, ϵ) and a point q ∈ V whose g-orbit is not

contained in D(0, r). Assume that gk(q) ∈ D(0, r) for 0 ≤ k ≤ m−1 and gm(q) /∈ D(0, r).

Note that this implies that the set {q, g(q), . . . , gm(q)} consists of m+1 distinct elements.

Since gm(q) ∈ C \ D(0, r), there exists r′ > 0 such that D(0, r) ∩ D(gm(q), r′) = ∅.

After possibly shrinking r′ > 0, we can find disjoint open discs U1 and U2 containing
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D(0, r) and D(gm(q), r′), respectively. Define a holomorphic map ϕ : U1 ∪ U2 → C by

ϕ(z) =


z if z ∈ U1,

q if z ∈ U2.

Next, let M = {g(q), g2(q), . . . , gm(q)}. Choose a constant C > 0 such that ∥P∥K′ ≤

C∥P∥M for all P ∈ Pm with K ′ = D(0, r) ∪ D(gm(q), r′). We claim that we can find a

polynomial P : C → C arbitrarily close to ϕ onD(0, r)∪D(gm(q), r′) satisfying P (gk(q)) =

gk(q) for 1 ≤ k ≤ m− 1 and P (gm(q)) = q.

Let ε > 0. As U1 ∪ U2 is Runge in C, the Runge approximation theorem gives a

polynomial Q : C → C satisfying

∥Q− ϕ∥K′ <
ε

C + 1

on D(0, r) ∪ D(gm(q), r′). Set ak = Q(gk(q)) − ϕ(gk(q)) for 1 ≤ k ≤ m and note that

|ak| < ε/(C +1) for all such k. Via polynomial interpolation, take the unique polynomial

R : C → C of degree at most m − 1 satisfying R(gk(q)) = ak for 1 ≤ k ≤ m. Then the

polynomial

P (z) = Q(z)−R(z)

satisfies P (gk(q)) = gk(q) for 1 ≤ k ≤ m − 1 and P (gm(q)) = q by definition of ϕ. Since

R ∈ Pm, we see that

∥R∥K′ ≤ C∥R∥M = Cmax
z∈M

|R(z)| = C max
1≤k≤m

|ak| <
Cε

C + 1
.

Hence, by the triangle inequality,

∥P − ϕ∥K′ ≤ ∥Q− ϕ∥K′ + ∥R∥K′ <
ε

C + 1
+

Cε

C + 1
= ε.

Since ε > 0 was arbitrary, the claim follows.

By taking such a polynomial P : C → C, we obtain an endomorphism P ◦ g : C → C

that is arbitrarily close to g on g−1
(
D(0, r)

)
with a periodic point q. In particular, as
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g(K) ⊂ D(0, r), we can find a polynomial P : C → C with these properties such that

P ◦ g ∈ BK(f, ϵ). Finally, let T (z) = z − p+ q be the translation map sending p to q. By

shrinking V if necessary, we can ensure that ∥T − id ∥K is as small as desired. Hence, the

map

T−1 ◦ P ◦ g ◦ T : C → C

is an endomorphism with periodic point p and lies in BK(f, ϵ) after choosing T sufficiently

close to the identity map. Since BK(f, ϵ) was an arbitrary basis element containing f in

EndC, the proof is complete.

3.2 The case that f is robustly non-expelling at p

To complete the proof of the closing lemma for C, we are left to tackle the case that our

endomorphism f is robustly non-expelling at our non-wandering point p ∈ C. Contrasting

the proof in the previous section, this step is more difficult. The idea of the proof is to

show that our non-wandering point p, with the added assumption that f is robustly

non-expelling at it, is already a periodic point of f .

First, the assumption that f is robustly non-expelling at p allows us to conclude the

following.

Lemma 3.2.1. Let X be a non-compact Riemann surface and let f ∈ EndX. Let p ∈ X

be a non-wandering point of f . If f is robustly non-expelling at p, then p is a recurrent

point of f .

Remark. The proof of Lemma 3.2.1 uses a result pertaining to normal families of holo-

morphic maps. In particular, we use the fact that if X and Y are hyperbolic Riemann

surfaces, then every family in the space O(X, Y ) of holomorphic maps from X to Y is

normal [12, Corollary 3.3]. This is a generalisation of the classic Montel’s theorem for
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uniformly bounded families of holomorphic maps on open subsets of C.

Proof. With the notation and setting described in the beginning of this section, we con-

sider the open set Uf . Let U0 denote the connected component of Uf containing p. Since

p is non-wandering, there exists a smallest integer ℓ ≥ 1 so that f ℓ(U0) ∩ U0 ̸= ∅. As U0

is a connected component and as Uf is forward invariant under f , f must map U0 into a

connected component of Uf . Thus, f ℓ(U0) ⊂ U0 and so p is non-wandering for the map

g = f ℓ. We claim that p is in fact recurrent for g (and hence for f). To prove this, let

(Vk)k∈N be a decreasing neighbourhood basis of p, that is, Vk ⊃ Vk+1 for all k ≥ 1. As p is

non-wandering, for each k there is an integer jk such that gjk(Vk) ∩ Vk ̸= ∅. Now, either

the sequence (jk)k∈N has a strictly increasing subsequence or a constant subsequence. In

the latter case, as (Vk) is a decreasing neighbourhood basis of p, we immediately conclude

that p is a periodic point of g, and hence of f .

So after passing to a subsequence, let us assume that (jk) is strictly increasing. We

claim that every sequence in the family {gjk : Uf → Uf : k ∈ N} has a subsequence that

converges locally uniformly. Utilising the uniformisation theorem, we will argue according

to whether X is hyperbolic or parabolic (X cannot be elliptic for it is non-compact).

If X is hyperbolic, then every family of maps in EndX is normal. In particular,

{fn : X → X : n ∈ N} is a normal family. Restricting f to Uf and using the fact that f is

robustly non-expelling at p, we see that there does not exist subsequences of (gjk)k∈N on

Uf that converge locally uniformly to the point at infinity in X. Hence, every sequence

in the family {gjk : Uf → Uf : k ∈ N} has a subsequence that converges locally uniformly

to a holomorphic limit h : Uf → X. On the other hand, suppose X is parabolic. Since X

is non-compact, it is either C or C∗. But as Uf is relatively compact in X and forward

invariant under f , the family {fn : X → X : n ∈ N} is uniformly bounded on Uf . By

Montel’s theorem, it follows that every sequence in the family {gjk : Uf → Uf : k ∈ N}
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has a subsequence that converges locally uniformly to a holomorphic limit h : Uf → X.

This proves the claim.

We are now ready to prove that p is a recurrent point of f . After possibly passing to a

subsequence, (gjk)k∈N converges locally uniformly on Uf to a holomorphic limit h : Uf →

X. If h(p) ̸= p, then h(Vk) ∩ Vk = ∅ for large enough k, in which case gjk(Vk) ∩ Vk = ∅

for large enough k. But this contradicts the fact that p is a non-wandering point of g, and

so we must have h(p) = p. It follows that p must be a recurrent point of g and therefore

of f , completing the proof.

The last result we will need is a perturbation lemma.

Lemma 3.2.2. Let z1, . . . , zn be distinct points in C. For every open neighbourhood U of

the identity map id in EndC, there is an open neighbourhood V of 1 in C such that for

all λ ∈ V , there exists a polynomial h ∈ U so that:

(i) h(zj) = zj for all j = 1, . . . , n,

(ii) h′(zj) = 1 for all j = 2, . . . , n,

(iii) h′(z1) = λ.

Proof. Let U be an open neighbourhood of id in EndC. We will show that a polynomial

h of degree 2n− 1 will satisfy every condition as stated. Let

A =



1 z1 z21 · · · z2n−1
1

...
...

...
...

1 zn z2n · · · z2n−1
n

0 1 2z1 · · · (2n− 1)z2n−2
1

...
...

...
...

0 1 2zn · · · (2n− 1)z2n−2
n


.
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Then to prove the existence of a polynomial h satisfying conditions (i) – (iii) is equivalent

to solving the equation Av = (z1, . . . , zn, λ, 1, . . . , 1)
⊤ for some v ∈ C2n.

To do this, we will show that A is invertible and hence the map x 7→ Ax is a home-

omorphism of C2n endowed with the Euclidean topology to itself. Let u ∈ kerA be a

non-zero vector, say u = (u1, . . . , u2n)
⊤. Pick the largest j ∈ {1, . . . , 2n} so that uj ̸= 0.

Then as Au = 0, we see that

u1 + u2z1 + u3z
2
2 + · · ·+ ujz

j−1
1 = 0,

...

u1 + u2zn + u3z
2
n + · · ·+ ujz

j−1
n = 0,

u2 + 2u3z1 + · · ·+ (j − 1)ujz
j−2
1 = 0,

...

u2 + 2u3zn + · · ·+ (j − 1)ujz
j−2
n = 0.

This implies that z1, . . . , zn are distinct roots of the polynomial f(z) = u1 + u2z + u3z
2 +

· · ·+ujzj−1 and its derivative f ′(z). It follows that z1, . . . , zn must each have multiplicity

at least 2 and hence that f has at least 2n roots, counted with multiplicity. But f has

degree at most 2n − 1 and so must be the zero polynomial by the fundamental theorem

of algebra, a contradiction to the fact that uj ̸= 0. Thus, kerA is trivial and so A is

indeed invertible. Since the map x 7→ Ax is continuous with respect to the Euclidean

topology on C2n, we conclude that it is also a homeomorphism for its inverse x 7→ A−1x

is continuous.

Now, the finite-dimensional subspace Pm ⊂ EndC of polynomials with degree bounded

by m − 1 inherits the compact-open topology on EndC. But since finite-dimensional

Hausdorff topological vector spaces of the same dimension are topologically isomorphic,

it suffices to work with the usual Euclidean topology on Cm. In particular, we can consider

U as an open neighbourhood of the vector (0, 1, 0, . . . , 0)⊤ in C2n.
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Let pn+1 : C2n → C denote the projection map on the (n + 1)-th component. Then

pn+1 is continuous and open. Since the map x 7→ Ax is a homeomorphism, A(U) is

an open neighbourhood of (z1, . . . , zn, 1, . . . , 1)
⊤ in C2n. Take V = pn+1(A(U)) as an

open neighbourhood of 1 in C. Then for any λ ∈ V , U is an open neighbourhood of

A−1(z1, . . . , zn, λ, 1, . . . , 1)
⊤ = (a1, . . . , a2n)

⊤ in C2n. It clearly follows that the polynomial

h(z) = a1 + a2z + · · ·+ a2nz
2n−1

is a map satisfying the conditions in the lemma.

Theorem 3.2.3. Let p ∈ C and f ∈ EndC. Suppose that p is a non-wandering point of

f and that f is robustly non-expelling at p. Then p is a periodic point of f .

The strategy of our proof is as follows.

1. Use our hypotheses to construct a certain relatively compact Runge set Uf ⊂ C

containing p that is forward invariant under f .

2. Examining the connected component U0 of Uf containing p, we deduce that there

exists a smallest positive integer ℓ for which U0 is forward invariant under g = f ℓ.

3. Use Lemma 3.2.1 to deduce that p is a recurrent point of f and g.

4. Show that a subsequence of (gn)n∈N converges locally uniformly to a map ρ on U0

that fixes p.

5. By the identity theorem, the set of fixed points of ρ is either discrete or U0. If the

former holds, it will follow that p is a periodic point of f . Hence, the proof will be

complete once we show that the case that ρ pointwise fixes U0 is impossible. We

will do this via contradiction.

6. So supposing that the set of fixed points of ρ is U0, we show that g|U0 is necessarily

an automorphism of U0. It then follows from Weil’s lemma (Theorem 2.4.4) that
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the group G = {(g|U0)
n : n ∈ Z} is isomorphic to either the discrete group Z or a

compact abelian subgroup of AutU0.

7. If G is isomorphic to the discrete group Z, then it will follow that G is finite since

some iterate of g|U0 must be the identity map. But this is absurd, so we are left to

deal with the case that G is a compact abelian subgroup of AutU0.

8. For this case, we will derive a contradiction using the fact that Uf is Runge in C,

and Lemma 3.2.2 together with the Cauchy estimates. This will show that ρ cannot

pointwise fix U0, thus completing the proof.

Proof. We remind readers of the following construction. By assumption, there exists an

open neighbourhood W of f in EndC, an open neighbourhood V of p in C, and a number

r > 0 for which the iterated images gj(V ) are contained in D(0, r) for all g ∈ W and

j ≥ 0. Let U be the interior of the closed set

T =
{
(z, g) ∈ C× EndC : gj(z) ∈ D(0, r) for all j ≥ 0

}
and let Uf be the slice {z ∈ C : (z, f) ∈ U}. Recall that Uf is a non-empty, relatively

compact, open subset of C such that f(Uf ) ⊂ Uf .

Claim 1. Uf is Runge in C. To see this, we will show that C \ Uf has no compact

components. Our strategy will be to utilise Corollary 2.2.5 and Theorem 2.2.6. Suppose

there exists an open compact subset K ⊂ C \ Uf . Then by Theorem 2.2.6, we can find

a relatively compact, open set V ′ ⊂ C for which K ⊂ V ′ and ∂V ′ ⊂ Uf . We will argue

that V ′ ⊂ Uf . As ∂V ′ ⊂ Uf , ∂V
′ × {f} ⊂ U . Observe that ∂V ′ is compact in C, for it

is closed and V ′ is relatively compact. So there exist open sets U ′ ⊂ C and W ′ ⊂ EndC

such that ∂V ′ × {f} ⊂ U ′ ×W ′ ⊂ U . Hence, ∂V ′ ×W ′ ⊂ U . Let g ∈ W ′. Then as

∂V ′ × {g} ⊂ U ⊂ T , gj(∂V ′) ⊂ D(0, r) for all j ≥ 0. Thus, for any z ∈ ∂V ′, we have

|gj(z)| ≤ r for all j ≥ 0. Now, by the maximum modulus principle, for each j ≥ 0, the
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modulus of gj|V ′ attains a maximum at some point on ∂V ′. Therefore, for any z ∈ V ′

and j ≥ 0,

|gj(z)| < max
x∈V ′

|gj(x)| = max
x∈∂V ′

|gj(x)| ≤ r.

As z ∈ V ′ was arbitrary, gj(V ′) ⊂ D(0, r) for all j ≥ 0 and thus V ′ × {g} ⊂ T . But as

g ∈ W ′ was arbitrary, we deduce that V ′ ×W ′ ⊂ T . Since V ′ ×W ′ is open, it follows

that V ′ ×W ′ ⊂ U . Consequently, V ′ × {f} ⊂ U and so V ′ ⊂ Uf , as required. But since

V ′ ⊃ K and K ⊂ C \ Uf , the only open compact subset of C \ Uf must be the empty

set. By Corollary 2.2.5, this shows that C \ Uf has no compact connected components,

proving Claim 1.

It follows that each connected component of Uf is also Runge. Let U0 denote the

connected component of Uf containing p. As p is non-wandering, there exists a smallest

integer ℓ ≥ 1 for which f ℓ(U0) ∩ U0 ̸= ∅. In fact, as Uf is forward invariant under f

and since U0 is a connected component of Uf , we deduce that f ℓ(U0) ⊂ U0. Set g = f ℓ.

Note that by Lemma 3.2.1, p is a recurrent point for g (and hence of f). Further observe

from the proof of Lemma 3.2.1 that we can extract a subsequence (gjk)k∈N that converges

locally uniformly on Uf to a holomorphic limit h : Uf → C that fixes p.

Since (gjk) converges locally uniformly on Uf to h : Uf → C, (gjk) also converges

locally uniformly on U0 to ρ = h|U0 . LetM ⊂ U0 be the set of fixed points of ρ and letM0

be the connected component of M containing p. Observe that by the identity theorem,

eitherM is discrete and henceM0 = {p}, orM =M0 = U0 (the case that ρ is the identity

map on U0).

Since ρ is the uniform limit of a subsequence of (gj) on U0 and as g(U0) ⊂ U0, g and

ρ commute on U0 and it follows that g(M) ⊂ M . As p is a recurrent point of g, there

exists a sequence of points gjk(p) → p as k → ∞. In particular, if M is discrete, then as

gjk(p) ∈M for all k ∈ N, we have a convergent sequence of points in a discrete set. Such
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a sequence is eventually constant. That is, there exists N ∈ N such that gjk(p) = p for

all k ≥ N . Hence, p is a periodic point of g and therefore of f , and we have completed

the proof.

Now we specialise to the case that M = U0 and ρ is the identity map on U0. We will

show that this case can never arise by obtaining a contradiction. To begin, we prove that

under this hypothesis, the following holds.

Claim 2. The map g|U0 : U0 → U0 is an automorphism of U0. It suffices to show

that g|U0 : U0 → U0 is bijective. Recall that ((g|U0)
j)j∈N has a subsequence ((g|U0)

jk)k∈N

that converges locally uniformly to the identity map ρ on U0. First, we show that g|U0

is injective. Suppose that g|U0(z1) = g|U0(z2) for some z1, z2 ∈ U0. Then as k → ∞, we

have (g|U0)
jk(z1) → ρ(z1) = z1 and (g|U0)

jk(z2) → z2 as k → ∞. But since (g|U0)
jk(z1) =

(g|U0)
jk(z2) for all k ∈ N, z1 = z2 by uniqueness of limits.

Next, we show that an iterate of g|U0 is surjective. Let a ∈ U0 and pick r > 0 such that

D(a, r) ⊂ U0. Then the sequence ((g|U0)
jk(z)− a)k∈N uniformly converges to ρ(z)− a on

D(a, r). Note that ρ(z)−a ̸= 0 on the boundary ∂D(a, r). Thus, as ρ(z)−a is continuous

and the boundary ∂D(a, r) is compact, there is m > 0 so that |ρ(z) − a| ≥ m for all

z ∈ ∂D(a, r). By uniform convergence, we can choose N ∈ N such that for all k > N and

all z ∈ ∂D(a, r) we have∣∣((g|U0)
jk(z)− a

)
− (ρ(z)− a)

∣∣ < m

2
< m ≤ |ρ(z)− a|.

It follows from Rouché’s theorem that ρ(z)− a and (g|U0)
jk(z)− a have the same number

of zeros in D(a, r) for all sufficiently large k, and hence that (g|U0)
jk(z) − a has a single

zero in D(a, r) for all sufficiently large k. Thus, for all such k, a ∈ (g|U0)
jk(U0) =

g|U0 ((g|U0)
jk−1(U0)) ⊂ g|U0(U0). Hence, as a ∈ U0 was arbitrary, U0 ⊂ g|U0(U0) and it

follows that g|U0 is surjective. We conclude that g|U0 must be an automorphism of U0,

thus completing Claim 2.
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Now, since Uf is Runge in C and relatively compact, we see that the connected compo-

nent U0 of Uf is isomorphic to the unit disc D by the Riemann mapping theorem. Hence,

the group of automorphisms AutU0 is isomorphic to AutD ∼= PSL(2,R). It follows that

AutU0 is a 3-dimensional real Lie group. As the group generated by g|U0 is an abelian

subgroup of AutU0, the closure G = {(g|U0)
n : n ∈ Z} of this subgroup in AutU0 is also

an abelian subgroup of AutU0. Consequently, G is either isomorphic to the discrete group

Z or is compact by Weil’s lemma. If G is isomorphic to the discrete group Z, then some

iterate of g|U0 must be the identity map, for a sequence of iterates of g|U0 converges lo-

cally uniformly to the identity map on U0. But then G must be a finite group, which is

clearly absurd if it is isomorphic to Z. So we are left to deal with the case that G is a

compact abelian subgroup of AutU0. We will show that this is impossible by deriving a

contradiction as follows.

By Theorem 2.5.1, we see that G is isomorphic to (S1)n × A, where n ≥ 0 and A is

a finite abelian group. But by Proposition 2.5.5, we deduce that n ≤ 1, for the maximal

compact subgroups of PSL(2,R) are 1-dimensional. Take the connected component con-

taining the identity map G0 in G, which is a compact subgroup of G. Then G0
∼= (S1)n

where n ≤ 1. Hence, the orbit G0z for any z ∈ U0 is either the singleton {z}, or a

1-dimensional, connected, compact submanifold of U0. For the latter, note that G0z is

necessarily diffeomorphic to the unit circle.

Let us suppose, for the moment, that G0q = {q} for some q ∈ U0. Then we can

obtain our sought-after contradiction as follows. Recall that U is the interior of the

closed set T = {(z, g) ∈ C × EndC : gj(z) ∈ D(0, r) for all j ≥ 0}. Note that U is an

open neighbourhood of (q, f) in C × EndC. Since every connected component of G is

diffeomorphic to G0, the orbit Gq is finite. Consequently, q is a periodic point of g|U0 and

therefore of g, say with period τ . Since g = f ℓ and ℓ was the smallest positive integer

such that f ℓ(U0) ⊂ U0, we deduce that q is a periodic point of f with period τℓ. Thus,
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for all j = 0, . . . , τℓ − 1, f j(q) are distinct points in Uf . Moreover, as a subsequence of

(fn) converges locally uniformly on U0 to the identity map,
∣∣∣(f τℓ

)′
(q)
∣∣∣ = 1. (Note that q

is a parabolic or irrationally indifferent periodic point of f .)

Now, since U is an open neighbourhood of (q, f), for all α ∈ EndC sufficiently close to

the identity map, (q, α ◦ f) lies in U . In other words, there exists an open neighbourhood

U ′ of the identity map in EndC such that (q, α ◦ f) ∈ U for all α ∈ U ′. By Lemma 3.2.2,

there is a corresponding open neighbourhood V ′ of 1 in C such that for any λ ∈ V ′, there

is α in U ′ fixing f j(q) for all j = 0, . . . , τℓ− 1 and whose derivative satisfies

α′(q) = λ, α′(f(q)) = 1, . . . , α′ (f τℓ−1(q)
)
= 1.

In particular, take |λ| > 1. Picking such α and setting f0 = α ◦ f , we observe that

f j
0 (q) = f j(q) for any j ≥ 1. Thus, q is a periodic point of f0 with period τℓ. Calculating

the multiplier of f τℓ
0 at q, we obtain

(
f τℓ
0

)′
(q) =

τℓ∏
j=1

f ′
0

(
f j−1
0 (q)

)
=

τℓ∏
j=1

(α ◦ f)′
(
f j−1(q)

)
=

τℓ∏
j=1

α′ (f j(q)
) τℓ∏
j=1

f ′ (f j−1(q)
)
.

But since
τℓ∏
j=1

f ′ (f j−1(q)) =
(
f τℓ
)′
(q),

∣∣∣(f τℓ
0

)′
(q)
∣∣∣ = |α′(q)|

(
τℓ−1∏
j=1

∣∣α′ (f j(q)
)∣∣) ∣∣∣(f τℓ

)′
(q)
∣∣∣ = |λ| > 1

by definition of α.

Finally, we note that the slice Uf0 = {z ∈ C : (z, f0) ∈ U} is open and forward invariant

under f0, and hence is forward invariant under f τℓ
0 . Since Uf0 is an open neighbourhood

of q, we can choose r0 > 0 so that D(q, r0) ⊂ Uf0 . By definition of Uf0 ,

max
|z|=r0

∣∣∣f τℓj
0 (z)

∣∣∣ ≤ r
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for all j ≥ 1. The Cauchy estimates at q then yield

|λ|j =
∣∣∣∣(f τℓj

0

)′
(q)

∣∣∣∣ ≤ 1

r0
max
|z|=r0

∣∣∣f τℓj
0 (z)

∣∣∣ ≤ r

r0

for all j ≥ 1, where r and r0 are clearly independent of j. But |λ|j → ∞ as j → ∞, the

required contradiction.

Thus, we have completed the proof if we can find q ∈ U0 that is fixed by G0. To see

that such q ∈ U0 exists, recall the hull operator as introduced in Chapter 2, Section 2.1.

Observe that since U0 is Runge, the hull (with respect to C) Ĝ0z ⊂ U0 for any z ∈ U0.

We also note that z ∈ U0 is fixed by G0 if and only if G0z = Ĝ0z, since Ĝ0z is the union

of the connected set G0z and the unique bounded connected component of C \G0z.

Claim 3. There exists q ∈ U0 such that Ĝ0q = G0q. We first assert that if w, z ∈ U0

such that z ∈ Ĝ0w \ G0w, then Ĝ0z ⊂ Ĝ0w \ G0w. Indeed, if G0w = {w} = Ĝ0w, then

this assertion is vacuously true. So suppose that G0w is diffeomorphic to the unit circle.

If G0z = {z} = Ĝ0z, then clearly Ĝ0z ⊂ Ĝ0w \ G0w by assumption. Otherwise, G0z is

diffeomorphic to the unit circle, and we have G0z ⊂ Ĝ0w \ G0w since G0w ∩ G0z ̸= ∅

would imply G0w = G0z. Hence, Ĝ0z ⊂ Ĝ0w. Thus, as Ĝ0z is the union of G0z and the

unique bounded connected component of C \ G0z, Ĝ0z ∩ G0w = ∅ for G0w lies in the

unbounded connected component of C \G0z. It follows that Ĝ0z ⊂ Ĝ0w \G0w.

Knowing this, we define a partial order on the set
{
Ĝ0z : z ∈ U0

}
by reverse inclusion,

that is, Ĝ0x ≤ Ĝ0y if and only if Ĝ0y ⊂ Ĝ0x. Hence, if Ĝ0q is maximal with respect to

this partial order, then Ĝ0q = Ĝ0y holds whenever Ĝ0y ⊂ Ĝ0q. Moreover, we see that

Ĝ0q = G0q, for if x ∈ Ĝ0q \ G0q, then Ĝ0x is a proper subset of Ĝ0q by the assertion

above, a contradiction to maximality. So to verify Claim 3, it suffices to exhibit a maximal

element of
{
Ĝ0z : z ∈ U0

}
.

Let C be a totally ordered subset of
{
Ĝ0z : z ∈ U0

}
. Then as C is a chain (with

respect to the given partial order) of non-empty compact subsets of U0, the intersection



54 Chapter 3. The closing lemma for C

⋂
C is not empty. Pick q ∈

⋂
C . Then Ĝ0q is an upper bound for C . Indeed, as q ∈

⋂
C ,

q ∈ Ĝ0z for all Ĝ0z ∈ C . But then for all Ĝ0z ∈ C , q is either contained in G0z, or it

is contained in Ĝ0z \ G0z. If q ∈ G0z, then G0q = G0z and so Ĝ0q = Ĝ0z. Otherwise,

the assertion above gives Ĝ0q ⊂ Ĝ0z \ G0z ⊂ Ĝ0z. Thus, Ĝ0q ⊂ Ĝ0z and so Ĝ0z ≤ Ĝ0q

for all Ĝ0z ∈ C . Since C was an arbitrary totally ordered subset of
{
Ĝ0z : z ∈ U0

}
, we

conclude from Zorn’s lemma that the set
{
Ĝ0z : z ∈ U0

}
has a maximal element. This

completes Claim 3 and hence the proof of the theorem.

The closing lemma for C then follows from Theorems 3.1.1 and 3.2.3.



Chapter 4

The closing lemma for C∗

Following from the closing lemma for C, we ask whether the closing lemma also holds on

C∗. As it will turn out, this is an affirmative and we will adapt the reasoning provided in

Chapter 3 in our proofs.

Theorem 4.0.1 (Closing Lemma for C∗). Let p ∈ C∗ be a non-wandering point of an

endomorphism f : C∗ → C∗. Then every open neighbourhood of f in EndC∗ contains an

endomorphism of which p is a periodic point.

An important result that underpins many of the ensuing arguments presented in this

chapter is the structure theorem for endomorphisms of C∗.

Theorem 4.0.2. Every holomorphic endomorphism f of C∗ is of the form

f(z) = zn exp(F (z)),

where n ∈ Z and F : C∗ → C is holomorphic.

Remark. To prove this result, we take advantage of the fact that a closed differential

1-form (in particular, a holomorphic 1-form) ω on a Riemann surface X has a primitive

55
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f on X, that is df = ω, if and only if
∫
γ
ω = 0 for any homotopy class γ in X (see [8,

Theorem 10.15]). Here, we compute
∫
γ
ω by choosing a loop representing γ and integrating

along that loop. Note that the integer n in the theorem is in fact the winding number of

the given endomorphism f . Further details can be found in [8].

Proof. Clearly every map on C∗ of the form z 7→ zn exp(F (z)), where n ∈ Z and F :

C∗ → C is holomorphic, is an endomorphism of C∗. So it suffices to show that for a

given endomorphism f of C∗, there exists n ∈ Z and F : C∗ → C holomorphic such that

f(z) = zn exp(F (z)). Let z = x + iy be the usual coordinate on C∗ and let ω = dz/z be

a holomorphic 1-form on C∗. Note that the fundamental group on C∗ is isomorphic to

Z and a generator of this fundamental group is represented by the loop γ : [0, 1] → C∗,

γ(t) = e2πit. The integral of the pullback f ∗ω along γ is hence∫
γ

f ∗ω =

∫
f◦γ

ω =

∫
f◦γ

dz

z
= 2πin,

where n ∈ Z. Define the holomorphic endomorphism g : C∗ → C∗ by

g(z) = z−nf(z).

Then the pullback g∗ω is

g∗ω =
dg

g
=

−nz−n−1f + z−nf ′

z−nf
dz = −n

z
dz +

f ′

f
dz = −nω + f ∗ω.

The integral of g∗ω along γ is therefore∫
γ

g∗ω = −n
∫
γ

ω +

∫
γ

f ∗ω = 0.

Hence, by the remark above, there exists a holomorphic map F : C∗ → C such that dF =

g∗ω. This implies that F ′ = g′/g on C∗. But then the non-vanishing holomorphic map

g(z) exp(−F (z)) defined on C∗ has derivative g′(z) exp(−F (z))−g(z)F ′(z) exp(−F (z)) =

0. Thus, g(z) exp(−F (z)) = exp(c) for some constant c ∈ C and so it follows that

f(z) = zn exp(F (z) + c). Absorbing c into F then completes the proof.



4.1. The case that f is not robustly non-expelling at p 57

For a more extensive study of endomorphisms of C∗, see [17].

With this in mind, we will prove the closing lemma for C∗ in two stages: when f is

robustly non-expelling at p, and when f is not. We again tackle the latter scenario first.

4.1 The case that f is not robustly non-expelling at p

Fix integers m,n ≥ 0. Define the set

Lm,n =

{
L : C∗ → C : L(z) =

n∑
j=−m

ajz
j, aj ∈ C for all j = −m, . . . , 0, . . . , n

}
.

That is, Lm,n is the set of Laurent polynomials C∗ → C of the form P (z)/zm, where P (z)

is a polynomial of degree at most m + n. Now fix a compact set K ⊂ C∗ containing at

least m + n + 1 distinct points. Observe that Lm,n is a (m + n + 1)-dimensional vector

space over C, which we can equip with a norm with respect to K by giving it the sup norm

∥L∥K = sup
z∈K

|L(z)|. Furthermore, note that for integers 0 ≤ m′ ≤ m and 0 ≤ n′ ≤ n,

Lm′,n′ is a subspace of Lm,n.

Next, let M = {z1, . . . , zm+n+1} be a set of m+ n+ 1 distinct points in K. Then the

function ∥ · ∥ : Lm,n → R defined by

∥L∥M = max
z∈M

|L(z)|.

is also a norm on Lm,n. Once again using the fact that any two norms on a finite-

dimensional vector space are equivalent and hence induce the same topology on the vector

space, we can obtain constants 0 < C1 ≤ C2 such that

C1∥L∥M ≤ ∥L∥K ≤ C2∥L∥M

for all L ∈ Lm,n. We are now fully equipped to prove the following theorem.
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Theorem 4.1.1. Let p ∈ C∗ and f ∈ EndC∗. Suppose that f is not robustly non-expelling

at p. Then every open neighbourhood of f in EndC∗ contains an endomorphism of which

p is a periodic point.

Proof. Beginning in a similar way to Theorem 3.1.1, C∗ is a metric space and so the

compact-open topology coincides with the topology of compact convergence on EndC∗.

Hence, it suffices to prove the theorem for arbitrary basis elements

BK(f, ϵ) =

{
g ∈ EndC∗ : sup

z∈K
|f(z)− g(z)| < ϵ

}
containing f , where K ⊂ C∗ is compact and ϵ > 0.

So let BK(f, ϵ) be a basis element containing f . Without loss of generality, we may

assume that ϵ <
1

2
inf
z∈K

|f(z)|, for K is compact and f has no zeros. Pick a relatively

compact, open neighbourhood V of p in C∗. Observe that for all g ∈ BK(f, ϵ), g(K)

is contained in the ϵ-neighbourhood of f(K) in C∗. As f(K) is compact and by our

assumption on ϵ > 0, the annulus Ar,R = {z ∈ C∗ : r < |z| < R} contains the ϵ-

neighbourhood of f(K) for all sufficiently small r > 0 and sufficiently large R > r.

Choose 0 < r < R such that Ar,R contains the ϵ-neighbourhood of f(K) and V . Then

by assumption, there exist g ∈ BK(f, ϵ) and q ∈ V whose g-orbit is not contained in the

closed annulus Ar,R = {z ∈ C∗ : r ≤ |z| ≤ R}. Choose the smallest n ∈ N such that

gn(q) /∈ Ar,R. Note that this implies that the set {q, g(q), . . . , gn(q)} consists of n + 1

distinct elements.

We will construct a holomorphic endomorphism h : C∗ → C∗ arbitrarily close to the

identity map on Ar,R such that h(gk(q)) = gk(q) for all 1 ≤ k < n, and h(gn(q)) = q.

Since the exponential map exp : C → C∗ is surjective, we can pick x ∈ exp−1(q/gn(q)).

Let d > 0 denote the distance between Ar,R and gn(q). Let A denote a closed annulus

centred at zero whose interior A contains Ar,R and such that the distance between A and
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gn(q) is d/2. Then A is a Runge set in C∗ containing Ar,R. Take r′ > 0 such that the

open disc D(gn(q), r′) is contained in C∗ \A. After possibly shrinking r′ > 0, we can find

an open disc U in C∗ containing D(gn(q), r′) such that A∩U = ∅. Define a holomorphic

function φ : A ∪ U → C by

φ(z) =


0 if z ∈ A,

x if z ∈ U.

We claim that we can find a Laurent polynomial L : C∗ → C arbitrarily close to φ on

the compact set K ′ = Ar,R ∪ D(gn(q), r′) satisfying L(gk(q)) = 0 for all 1 ≤ k < n and

L(gn(q)) = x.

To see this, take M = {g(q), . . . , gn(q)} and let ε > 0. As discussed above, choose a

constant C > 0 such that ∥L∥K′ ≤ C∥L∥M for all L ∈ L0,n−1. As A ∪ U is Runge in C∗,

we can employ Runge’s approximation theorem to find a Laurent polynomial Q : C∗ → C

such that

∥Q− φ∥K′ <
ε

C + 1

on K ′. Set ak = Q(gk(q))− φ(gk(q)) for 1 ≤ k ≤ n and note that |ak| < ε/(C + 1) for all

such k. Via polynomial interpolation, take the unique polynomial S : C → C of degree at

most n− 1 satisfying S(gk(q)) = ak for 1 ≤ k ≤ n. Then the restriction S|C∗ is a Laurent

polynomial C∗ → C of degree at most n− 1 satisfying S|C∗(gk(q)) = ak for all 1 ≤ k ≤ n.

Hence, the Laurent polynomial

L(z) = Q(z)− S|C∗(z)

satisfies L(gk(q)) = 0 for all 1 ≤ k < n and L(gn(q)) = x by definition of φ. Since

S|C∗ ∈ L0,n−1, we see that

∥S|C∗∥K′ ≤ C∥S|C∗∥M = Cmax
z∈M

|S(z)| = C max
1≤k≤m

|ak| <
Cε

C + 1
.
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Consequently, by the triangle inequality,

∥L− φ∥K′ ≤ ∥Q− φ∥K′ + ∥S|C∗∥K′ <
ε

C + 1
+

Cε

C + 1
= ε.

Since ε > 0 was arbitrary, the claim follows.

Now, by taking such a Laurent polynomial L : C∗ → C, we can construct the required

endomorphism h : C∗ → C∗ by defining

h(z) = z exp(L(z)).

Indeed, the post-composition map exp∗ is continuous on the space of holomorphic func-

tions C∗ → C (with the compact-open topology). Hence, exp(L(z)) can be taken arbi-

trarily close to the constant map z 7→ 1 on Ar,R, for L is arbitrarily close to the constant

map z 7→ 0 on Ar,R. Thus, h can be made arbitrarily close to the identity map on Ar,R

satisfying h(gk(q)) = gk(q) for all 1 ≤ k < n and h(gn(q)) = q. It follows that the endo-

morphism h ◦ g : C∗ → C∗ is arbitrarily close to g on g−1
(
Ar,R

)
with periodic point q. In

particular, as g(K) ⊂ Ar,R, we can obtain such h : C∗ → C∗ so that h ◦ g ∈ BK(f, ϵ).

Finally, let F : C∗ → C∗ be the automorphism

F (z) =
q

p
z.

By shrinking V if necessary, we can ensure that |1− q/p| is as small as desired and hence

that ∥F − id ∥K is as small as desired. Thus, the map

F−1 ◦ h ◦ g ◦ F : C∗ → C∗

is an endomorphism with periodic point p and lies in BK(f, ϵ) after choosing F sufficiently

close to the identity map. Since BK(f, ϵ) was an arbitrary basis element containing f in

EndC∗, this finishes the proof.
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4.2 The case that f is robustly non-expelling at p

As in the proof of the closing lemma for C, we will require a perturbation lemma in our

proof of the closing lemma for C∗. Obtaining an endomorphism of C∗ that satisfies the

conditions in Lemma 3.2.2 is somewhat trickier than obtaining such an endomorphism of

C. However, we will see that much of our arguments will be of a similar spirit.

Lemma 4.2.1. Let z1, . . . , zn be distinct points in C∗. For every open neighbourhood U

of the zero map 0 in EndC, there is an open neighbourhood V of 1 in C such that for all

λ ∈ V , there exists a polynomial h ∈ U so that:

(i) h(zj) = 0 for all j = 1, . . . , n,

(ii) h′(zj) = 0 for all j = 2, . . . , n,

(iii) h′(z1) =
λ− 1

z1
.

Proof. Let U be an open neighbourhood of the zero map 0 in EndC. As we saw in the

proof of the closing lemma for C, we will show that a polynomial h of degree 2n− 1 will

satisfy every condition as stated. Recall that the matrix

A =



1 z1 z21 · · · z2n−1
1

...
...

...
...

1 zn z2n · · · z2n−1
n

0 1 2z1 · · · (2n− 1)z2n−2
1

...
...

...
...

0 1 2zn · · · (2n− 1)z2n−2
n


is invertible and hence defines a homeomorphism x 7→ Ax of C2n endowed with the

Euclidean topology to itself (see Lemma 3.2.2).

As finite-dimensional Hausdorff topological vector spaces of the same dimension are
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topologically isomorphic and as the subspace Pm ⊂ EndC of polynomials with degree

bounded by m− 1 inherits the compact-open topology, it suffices to work with the usual

Euclidean topology on Cm. Hence, we can consider U to be an open neighbourhood of

the zero vector 0 in C2n.

Let pn+1 : C2n → C denote the projection map on the (n + 1)-th component. Then

pn+1 is continuous and open by definition. Since the map x 7→ Ax is a homeomorphism,

A(U) is an open neighbourhood of 0 in C2n. Let T : C → C be the automorphism

T (z) = z1z + 1. The composition T ◦ pn+1 : C2n → C is hence continuous and open.

Take V = (T ◦ pn+1)(A(U)) as the open neighbourhood of 1 in C. Then for any λ ∈ V ,

A(U) is an open neighbourhood of (0, . . . , 0, (λ − 1)/z1, 0, . . . , 0)
⊤. Hence, U is an open

neighbourhood of A−1(0, . . . , 0, (λ−1)/z1, 0, . . . , 0)
⊤ = (a1, . . . , a2n)

⊤. But then it follows

that the polynomial

h(z) = a1 + a2z + · · ·+ a2nz
2n−1

is a map satisfying the conditions in the lemma.

With this lemma, we obtain the following corollary and hence the perturbation result

we require for the proof of the closing lemma for C∗.

Corollary 4.2.2. Let z1, . . . , zn be distinct points in C∗. For every open neighbourhood

U of id in EndC∗, there is an open neighbourhood V of 1 in C such that for all λ ∈ V ,

there exists H ∈ U so that:

(i) H(zj) = zj for all j = 1, . . . , n,

(ii) H ′(zj) = 1 for all j = 2, . . . , n,

(iii) H ′(z1) = λ.

Proof. Let U be an open neighbourhood of id in EndC∗. Define an endomorphism H of
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C∗ by

H(z) = z exp(h(z)),

where h : C∗ → C is holomorphic. We will show that we may choose h so that every

condition in the corollary is satisfied.

For Riemann surfaces X and Y , denote by O(X, Y ) the set of all holomorphic maps

X → Y endowed with the compact-open topology. For an open subset Z ⊂ X, observe

that the restriction map r : O(X, Y ) → O(Z, Y ), f 7→ f |Z , is continuous. Also, for a

given Riemann surface Z, we see that for any g ∈ O(Y, Z), the inclusion ι1g : O(X, Y ) ↪−→

O(Y, Z)× O(X, Y ) defined by f 7→ (g, f) is continuous.

Next, we claim that the map ϕ : O(X, Y )× O(X, Y ) → O(X, Y × Y ) defined by

(f, g) 7→ f × g

where (f×g)(x) = (f(x), g(x)) is continuous. Let K ⊂ X be compact and letW,W ′ ⊂ Y

be open. Let V (K,W × W ′) be a subbasis element of the compact-open topology on

O(X, Y × Y ). Then

ϕ−1(V (K,W ×W ′)) = {(f, g) ∈ O(X, Y )× O(X, Y ) : f(K)× g(K) ⊂ W ×W ′}

= {(f, g) ∈ O(X, Y )× O(X, Y ) : f(K) ⊂ W and g(K) ⊂ W ′}

= V (K,W )× V (K,W ′).

But by definition, V (K,W )× V (K,W ′) is open in O(X, Y )×O(X, Y ). Since V (K,W ×

W ′) was an arbitrary subbasis element, it follows that ϕ is continuous.

We now specialise to C and C∗. Observe that the multiplication mapm : C∗×C∗ → C∗,

(z, w) 7→ zw, is holomorphic. Since the composition map (f, g) 7→ f ◦ g is continuous

whenever defined, we have a sequence of continuous maps as follows:
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EndC O(C∗,C) O(C,C∗)× O(C∗,C) EndC∗r ι1exp ◦

EndC∗ × EndC∗ O(C∗,C∗ × C∗)
ι1id ϕ

O(C∗ × C∗,C∗)× O(C∗,C∗ × C∗) EndC∗,
ι1m ◦

f(z) 7→ id(z) exp(f |C∗(z)).

Hence, as the composition of continuous maps is continuous, the above map is continuous.

Call this map F . As U is an open neighbourhood of id in EndC∗, F−1(U) is an open

neighbourhood of the zero map 0 in EndC. By Lemma 4.2.1, there is an open neighbour-

hood V of 1 in C such that for all λ ∈ V , there exists h ∈ F−1(U) so that h(zj) = 0 for

all j = 1, . . . , n, h′(zj) = 0 for all j = 2, . . . , n, and h′(z1) = (λ− 1)/z1. Choose such h ∈

F−1(U) and such open neighbourhood V ⊂ C. Then we have H(z) = z exp(h|C∗(z)) ∈ U

with derivative H ′(z) = exp(h|C∗(z)) (1 + zh|′C∗(z)). But by definition of h, H(zj) = zj

for all j = 1, . . . , n, H ′(zj) = 1 for all j = 2, . . . , n, and H ′(z1) = λ for any λ ∈ V . This

completes the proof.

The topology on C∗ will also play a pivotal role in our proof. It is well known that the

Riemann mapping theorem completely classifies any non-empty simply connected open

subset of C; every such subset is either C itself, or it is isomorphic to the unit disc D.

By Liouville’s theorem, C and D are not isomorphic, and so we have a mutually disjoint

classification.

For domains that are not simply connected, we do not have such a strong result.

However, there is a lesser known theorem that addresses domains in C with finitely many

connected components in its complement. But first, we introduce some terminology. We

say that a domain U ⊂ C ⊂ P is doubly connected if P\U has two connected components,
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and in general, we say that U is n-connected if P \ U has n ≥ 1 connected components.

Note that U ⊂ C is simply connected if and only if P \ U is connected.

Theorem 4.2.3. Let U ⊂ C be a domain that is n-connected, with n ≥ 2. If none of

the connected components of P \ U are singletons, then U is isomorphic to an annulus

Ar = {z ∈ C : 1 < |z| < r}, where r > 1, minus n− 2 mutually disjoint concentric closed

arcs lying on circles in Ar centred at zero.

Proof. See [10, Theorem 4.2.3].

In particular, if U is a doubly connected domain in C for which both of the connected

components of P\U are not singletons, then U is isomorphic to Ar for some r > 0. We note

that this theorem is not as strong as the Riemann mapping theorem since annuli Ar and

Ar′ are isomorphic if and only if r = r′. As such, our classification of finitely connected

domains is only up to the number of connected components of their complement in P.

For n ≥ 2, two n-connected domains U and U ′ need not be isomorphic to each other, but

they must be isomorphic to some annuli minus n− 2 concentric arcs.

Next, we prove a classification theorem regarding Runge sets in C∗.

Lemma 4.2.4. Suppose U ⊂ C∗ is relatively compact, connected, and Runge in C∗. Then

U is either simply connected or doubly connected. Moreover, if U is doubly connected, then

P \ U is the union of two disjoint compact neighbourhoods W0 and W∞ of 0 and ∞ in P

respectively.

Proof. Since U is relatively compact in C∗, there exists numbers 0 < s < t such that

U ⊂ As,t = {z ∈ C : s ≤ |z| ≤ t}. Hence, P \ As,t ⊂ P \ U . Observe that P \ As,t

has precisely two connected components, one containing 0 and one containing ∞. Call

these connected components V0 and V∞ respectively. As the inclusion P \As,t ↪→ P \U is
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continuous, V0 and V∞ must be contained in connected components W0 and W∞ in P\U ,

respectively. Note that either W0 ∩W∞ = ∅ or W0 = W∞.

The lemma will be proven once we show that any connected component of P \U must

contain either 0 or ∞, for then W0 and W∞ are the only connected components of P \U .

Suppose on the contrary that C ⊂ P \U is a connected component that does not contain

either 0 and ∞. We will show that C is a relatively compact component of C∗ \ U . As

C ∩ U = ∅,

C ⊂ C∗ \ U ⊂ P \ U.

Thus, C is a connected subset of C∗ \ U .

Now, since C does not contain 0 and ∞ and as it is a connected component of P \ U ,

we have C ∩V0 = ∅ and C ∩V∞ = ∅. Hence, (P \As,t)∩C = ∅ and so C ⊂ As,t. Taking

closures with respect to C∗, we have C ⊂ As,t. It follows that C is relatively compact

in C∗.

Next, assume that C ′ ⊃ C, where C ′ is connected in C∗ \U . As the inclusion C\U ↪→

P \ U , is continuous, C ′ is connected in P \ U . But C was assumed to be a connected

component of P \ U , and so we must have C = C ′. Consequently, C must be a maximal

connected set in C∗ \ U and thus a connected component of C∗ \ U . We conclude that C

is a relatively compact, connected component of C∗ \ U , contradicting the fact that U is

Runge in C∗. Thus, any connected component of P \U contains either 0 or ∞, whence U

is either simply connected or doubly connected.

Finally, if U is doubly connected, then P \ U = W0 ∪W∞, where W0 ∩W∞ = ∅. But

as seen above, the connected components V0 and V∞ of P \ As,t are contained in W0 and

W∞ respectively. Since V0 and V∞ are the only connected components of P \ As,t, they

are open in P \ As,t. Hence, V0 and V∞ are open in P as P \ As,t is open in P. Note that

W0 and W∞ are closed in P \ U since they are connected components. As P \ U is closed
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in P, W0 and W∞ are closed in P and hence compact. This shows that W0 and W∞ are

disjoint compact neighbourhoods of 0 and ∞ respectively.

The final preparatory result that we will need concerns vector fields. Let X be a

Riemann surface and let z = x + iy denote a coordinate on an open set in X. Here, we

adopt terminology presented in [3]. We say that a holomorphic vector field η on X is an

EndX-velocity if there is a holomorphic map Ψ : C×X → X such that

• Ψt = Ψ(t, ·) ∈ EndX for all t ∈ C,

• Ψ0 = idX , and

•
∂

∂t
Ψ(z)

∣∣∣∣
t=0

d

dz
= η.

Remark. As in the proof of the closing lemma for C, the following set will make a crucial

appearance. Let p ∈ C∗ be a non-wandering point of f ∈ EndC∗ and suppose f is

robustly non-expelling at p. Then we can take an open neighbourhood W of f in EndC∗,

an open neighbourhood V of p in C∗, and numbers 0 < r < R such that gj(V ) ⊂ Ar,R =

{z ∈ C∗ : r ≤ |z| ≤ R} for all g ∈ W and j ≥ 0. Let U be the interior of the closed set

T =
{
(z, g) ∈ C∗ × EndC∗ : gj(z) ∈ Ar,R for all j ≥ 0

}
and let Uf be the slice {z ∈ C∗ : (z, f) ∈ U}. Once again, observe that Uf is a non-empty,

relatively compact, open subset of C∗ such that f(Uf ) ⊂ Uf .

The following lemma is a specific version of [3, Lemma 2], whose proof has been

adapted and expounded upon for our purposes.

Lemma 4.2.5. Let f ∈ EndC∗ be robustly non-expelling at p ∈ C∗. Let C ⊂ Uf be a

non-empty compact set that is forward invariant under f . Then there does not exist a

continuous, zero-free, f -invariant vector field on C which is uniformly approximable by

EndC∗-velocities on C.



68 Chapter 4. The closing lemma for C∗

Remark. Here, we say that a vector field ξ is f -invariant on C if ξ(f(x)) = f ′(x)ξ(x) for

all x ∈ C.

Proof. Adopting the notation as defined in the previous remark, we proceed by contra-

diction. Let ξ be a continuous, zero-free, f -invariant vector field on C which is uniformly

approximable on C by EndC∗-velocities. Then there exists a continuous map g : C → C∗

such that ξ = g
d

dz
. We first claim that

M = sup
j≥0,x∈C

|(f j)′(x)| (4.1)

is finite. Indeed, for each x ∈ C, there exists rx > 0 such that the closed disc D(x, rx)

is contained in Uf . The collection (D(x, rx/2))x∈C is an open cover of C and so as C

is compact, there exists a finite subcover (D(xm, rxm/2))m=1,...,n of C. Fix j ≥ 0. For a

given m = 1, . . . , n, let x ∈ C ∩D(xm, rxm/2). By Cauchy’s integral formula,

(f j)′(x) =
1

2πi

∫
∂D(xm,rxm )

f j(ζ)

(ζ − x)2
dζ.

Thus,

|(f j)′(x)| ≤ 1

2π

∫
∂D(xm,rxm )

|f j(ζ)|
|ζ − x|2

|dζ| ≤ rxm sup
ζ∈∂D(xm,rxm )

|f j(ζ)|
|ζ − x|2

.

Now, as f j(w) ∈ Ar,R for all j ≥ 0 and w ∈ Uf , |f j(ζ)| ≤ R for all ζ ∈ ∂D(xm, rxm).

Since x ∈ D(xm, rxm/2) and |ζ − xm| = rxm for any ζ ∈ ∂D(xm, rxm), the reverse triangle

inequality yields

|ζ − x| ≥ |ζ − xm| − |xm − x| = rxm − |xm − x| > rxm − rxm/2 = rxm/2.

Hence,

sup
ζ∈∂D(xm,rxm )

|f j(ζ)|
|ζ − x|2

≤ R

(rxm/2)
2
=

4R

r2xm

.

Combining everything, we get

|(f j)′(x)| ≤ 4R

rxm
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for any x ∈ C ∩ D(xm, rxm/2). Since m = 1, . . . , n was arbitrary, this inequality holds

for any such m. Set N = max{4R/rxm : m = 1, . . . , n}. Then for any m = 1, . . . , n,

|(f j)′(x)| ≤ N for all x ∈ C ∩ D(xm, rxm/2). In fact, this inequality holds for any

x ∈ C ∩
n⋃

m=1

D(xm, rxm/2) = C. Since j ≥ 0 was arbitrary, we see that

|(f j)′(x)| ≤ N <∞

for all j ≥ 0 and x ∈ C. It follows that M is finite, as was claimed.

Next, since ξ is continuous and zero-free and as C is compact, |g| attains a minimum

value on C which cannot be zero. Call this value c. Since ξ is uniformly approximable on

C by EndC∗-velocities, there exists an EndC∗-velocity η such that

sup
x∈C

|ξ(x)− η(x)| ≤ c

2M
. (4.2)

Let Ψ : C×C∗ → C∗ be the associated holomorphic map to η, as per the definition of an

EndC∗-velocity.

Because C × {f} ⊂ U , where U is the interior of the set T as defined in the above

remark, there is an open neighbourhood W ′ of f in EndC∗ such that H ×W ′ ⊂ U . Since

Φt → idC∗ as t→ 0, by continuity, there exists δ > 0 such that Ψt ◦ f ∈ W ′ when |t| < δ.

It follows from the robustly non-expelling property that

(Ψt ◦ f)j(x) ∈ Ar,R

when |t| < δ, for any x ∈ C and j ≥ 0. We next claim that there exists a constant k such

that for all x ∈ C and j ≥ 0, ∣∣∣∣ ∂∂t(Ψt ◦ f)j(x)
∣∣∣∣
t=0

∣∣∣∣ ≤ k. (4.3)

Let j ≥ 0 and fix x ∈ C. Then for any t0 ∈ D(0, δ/4), Cauchy’s integral formula gives

∂

∂t
(Ψt ◦ f)j(x)

∣∣∣∣
t=t0

=
1

2πi

∫
∂D(0,δ/2)

(Ψs ◦ f)j(x)
(s− t0)2

ds
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and hence we have ∣∣∣∣∣ ∂∂t(Ψt ◦ f)j(x)
∣∣∣∣
t=t0

∣∣∣∣∣ ≤ δ sup
s∈∂D(0,δ/2)

|(Ψs ◦ f)j(x)|
|s− t0|2

.

Since (Ψs ◦ f)j(x) ∈ Ar,R when |s| < δ, for any x ∈ C and j ≥ 0,

|(Ψs ◦ f)j(x)| ≤ R

for all s ∈ ∂D(0, δ/2). As |t0| < δ/4 and |s| = δ/2, the reverse triangle inequality yields

|s− t0| ≥ |s| − |t0| = δ/2− |t0| > δ/2− δ/4 = δ/4.

Hence, combining everything, we have∣∣∣∣∣ ∂∂t(Ψt ◦ f)j(x)
∣∣∣∣
t=t0

∣∣∣∣∣ ≤ δ
R

(δ/4)2
=

16R

δ

for all t0 ∈ D(0, δ/4) and for all j ≥ 0. Moreover, this inequality holds for any x ∈ C. In

particular, taking k = 16R/δ and t0 = 0 verifies the claim.

Now, by the chain rule,

∂

∂t
(Ψt ◦ f)j(x)

∣∣∣∣
t=0

=

j∑
i=0

(f i)′(f j−i(x))
∂

∂t
Ψt(f

j−i(x))

∣∣∣∣
t=0

for any x ∈ C and j ≥ 0. As η is an EndC∗-velocity, we see that

∂

∂t
(Ψt ◦ f)j(x)

∣∣∣∣
t=0

d

dz

∣∣∣∣
z=x

=

j∑
i=0

(f j)′(f j−i(x))η(f j−i(x)) (4.4)

for any x ∈ C and j ≥ 0.

Fix j ≥ 1. Then for x ∈ C and i = 0, . . . , j − 1, by using the f -invariance of ξ and
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forward invariance of C under f , we get

∣∣(f i)′(f j−i(x))η(f j−i(x))− ξ(f j(x))
∣∣

=

∣∣∣∣∣(f i)′(f j−i(x))η(f j−i(x))−

(
i∏

a=1

f ′(f j−a(x))

)
ξ(f j−i(x))

∣∣∣∣∣
=
∣∣(f i)′(f j−i(x))η(f j−i(x))− (f i)′(f j−i(x))ξ(f j−i(x))

∣∣
=
∣∣(f i)′(f j−i(x))

∣∣ ∣∣η(f j−i(x))− ξ(f j−i(x))
∣∣

≤M
c

2M
=
c

2
,

where we have used (4.1) and (4.2) to obtain the inequality. Hence, by using (4.4), for

any j ≥ 0 and x ∈ H we obtain∣∣∣∣ ∂∂t(Ψt ◦ f)j(x)
∣∣∣∣
t=0

d

dz

∣∣∣∣
z=x

− jξ(f j(x))

∣∣∣∣ ≤ cj

2
.

But by the reverse triangle inequality, for any x ∈ C and j ≥ 0,∣∣∣∣ ∂∂t(Ψt ◦ f)j(x)
∣∣∣∣
t=0

d

dz

∣∣∣∣
z=x

− jξ(f j(x))

∣∣∣∣
≥
∣∣∣∣ ∂∂t(Ψt ◦ f)j(x)

∣∣∣∣
t=0

d

dz

∣∣∣∣
z=x

∣∣∣∣− j|ξ(f j(x))|

≥ cj − k,

where we have used (4.3) to obtain the final inequality. It follows that for any x ∈ C and

j ≥ 0,

cj − k ≤
∣∣∣∣ ∂∂t(Ψt ◦ f)j(x)

∣∣∣∣
t=0

d

dz

∣∣∣∣
z=x

− jξ(f j(x))

∣∣∣∣ ≤ cj

2
.

In other words, cj/2 ≤ k, which is impossible for all sufficiently large j ≥ 0.

We are now equipped to prove the closing lemma for C∗ in the case that f is robustly

non-expelling at p.
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Theorem 4.2.6. Let p ∈ C and f ∈ EndC∗. Suppose that p is a non-wandering point of

f and that f is robustly non-expelling at p. Then p is a periodic point of f .

The strategy of this proof is comparatively more complicated than the analogous proof

of Theorem 3.2.3.

1. We again use our hypotheses to construct the relatively compact Runge set Uf ⊂ C∗

containing p that is forward invariant under f .

2. Use Lemma 4.2.4 to deduce that the connected component U0 of Uf containing p

is either simply connected or doubly connected. The proof will then bifurcate to

dealing with the case when U0 is simply connected, and the case when U0 is doubly

connected.

3. For the case that U0 is simply connected, the proof proceeds similarly to the case

of C. As such, we provide an abridged version, with only the necessary details

included.

4. The case that U0 is doubly connected is harder. We begin by constructing a Runge

set Ω ⊂ Uf out of certain connected components of Uf , with U0 one such connected

component. Then, we show that Ω is forward invariant under f .

5. Use Lemma 3.2.1 to deduce that p and some iterates f j(p) are recurrent points of f .

We also show that a subsequence of (fn)n∈N converges locally uniformly to a map

ρ on Ω that fix p and these iterates f j(p).

6. On each connected component of Ω, the identity theorem yields that the set of fixed

points of ρ is either discrete or the connected component itself. If any of these sets

are discrete, then it will follow that p is periodic.

7. So we are left to deal with the case that the set of fixed points of ρ is Ω itself. We

will show that this case can never arise by obtaining a contradiction.
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8. Assuming that ρ pointwise fixes Ω, we will prove that f |Ω is an automorphism and

hence that Ω must be connected. Consequently, Ω = U0.

9. We then use Weil’s lemma to conclude that the group G = {(f |U0)
n : n ∈ Z} is

either isomorphic to Z or it is compact in AutU0. Similar to the case of C, the

former cannot arise, and so we reduce the proof to when G is compact.

10. Using Theorem 4.2.3, we deduce that f |U0 must correspond to an irrational rotation

of an annulus. With this observation, we will extract a contradiction to Lemma

4.2.5 and thus conclude the proof.

Proof. Take an open neighbourhood W of f in EndC∗, an open neighbourhood V of p in

C∗, and numbers 0 < r < R such that gj(V ) ⊂ Ar,R for all g ∈ W and j ≥ 0. Let U be

the interior of the closed set

T =
{
(z, g) ∈ C∗ × EndC∗ : gj(z) ∈ Ar,R for all j ≥ 0

}
and let Uf be the slice {z ∈ C∗ : (z, f) ∈ U}. Note that Uf is a non-empty, relatively

compact, open subset of C∗ such that f(Uf ) ⊂ Uf . With this setting, we will prove that

p is a periodic point of f . As in the case for C, we achieve this through a series of claims.

Claim 1. Uf is Runge in C∗, that is, C∗ \ Uf has no compact connected components.

Our strategy will be to utilise Corollary 2.2.5 and Theorem 2.2.6. Suppose there exists

an open compact subset K ⊂ C∗ \ Uf . Then by Theorem 2.2.6, we can find a relatively

compact, open set V ′ ⊂ C∗ for which K ⊂ V ′ and ∂V ′ ⊂ Uf . We will argue that

V ′ ⊂ Uf . As ∂V ′ ⊂ Uf , ∂V
′ × {f} ⊂ U . Observe that ∂V ′ is compact in C∗, for it is

closed and V ′ is relatively compact. So there exist open sets U ′ ⊂ C∗ and W ′ ⊂ EndC∗

such that ∂V ′ × {f} ⊂ U ′ ×W ′ ⊂ U . Hence, ∂V ′ ×W ′ ⊂ U . Let g ∈ W ′. Then as

∂V ′ × {g} ⊂ U ⊂ T , gj(∂V ′) ⊂ Ar,R for all j ≥ 0. Thus, for any z ∈ ∂V ′, we have

r ≤ |gj(z)| ≤ R for all j ≥ 0. Now, by the maximum modulus principle, for each j ≥ 0,
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the modulus of gj|V ′ attains a maximum and minimum somewhere on ∂V ′. Therefore, for

any z ∈ V ′ and j ≥ 0,

r ≤ min
x∈∂V ′

|gj(x)| = min
x∈V ′

|gj(x)| < |gj(z)| < max
x∈V ′

|gj(x)| = max
x∈∂V ′

|gj(x)| ≤ R.

As z ∈ V ′ was arbitrary, gj(V ′) ⊂ Ar,R for all j ≥ 0 and thus V ′ × {g} ⊂ T . But as

g ∈ W ′ was arbitrary, we deduce that V ′ ×W ′ ⊂ T . Since V ′ ×W ′ is open, it follows

that V ′ ×W ′ ⊂ U . Consequently, V ′ × {f} ⊂ U and so V ′ ⊂ Uf , as required. But since

V ′ ⊃ K and K ⊂ C∗ \ Uf , the only open compact subset of C∗ \ Uf must be the empty

set. By Corollary 2.2.5, this shows that C∗ \ Uf has no compact connected components,

proving Claim 1.

It follows that each connected component of Uf is also Runge. Let U0 denote the

connected component of Uf containing p. Note that as Uf is relatively compact in C∗,

U0 is relatively compact in C∗. So by Lemma 4.2.4, U0 is either simply connected or

doubly connected. As p is non-wandering, there exists a smallest integer ℓ ≥ 1 for which

f ℓ(U0)∩U0 ̸= ∅. Since Uf is forward invariant under f and as U0 is a connected component

of Uf , f
ℓ(U0) ⊂ U0. Set g = f ℓ. Note that by Lemma 3.2.1, p is a recurrent point for g

(and hence of f). Also recall that we can extract a subsequence (gjk)k∈N that converges

locally uniformly on Uf to a holomorphic limit h : Uf → C∗ that fixes p.

Case 1: U0 is simply connected. We proceed similarly to the proof of the closing

lemma for C. Since (gjk) converges locally uniformly on Uf to h : Uf → C∗, (gjk) also

converges locally uniformly on U0 to ρ = h|U0 . Let M ⊂ U0 be the set of fixed points of ρ

and let M0 be the connected component of M containing p. From the identity theorem,

either M is discrete and so M0 = {p}, or M =M0 = U0. The latter occurs when ρ = id.

Because ρ is the uniform limit of a subsequence of (gj) on U0 and as g(U0) ⊂ U0, g and

ρ commute on U0 and it follows that g(M) ⊂M . As p is a recurrent point of g, we have

gjk(p) → p as k → ∞. In particular, if M is discrete, then as gjk(p) ∈ M for all k ∈ N,
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we have a convergent sequence of points in a discrete set. Such a sequence is eventually

constant, that is, gjk(p) = p for all sufficiently large k. It follows that p is a periodic point

of g and hence of f , thereby completing the proof.

On the other hand, if M = U0 and ρ is the identity map on U0, then we argue as

follows. Our arguments will again be similar to the proof given for C.

Claim 2. The map g|U0 : U0 → U0 is an automorphism of U0. The proof of this claim

proceeds verbatim as the one given in the proof for the closing lemma for C.

Now, as U0 is simply connected, it is isomorphic to the unit disc D by the Riemann

mapping theorem. It follows that the group of automorphisms AutU0 is isomorphic to

AutD ∼= PSL(2,R). Subsequently, AutU0 is a 3-dimensional real Lie group.

Next, the group generated by g|U0 is an abelian subgroup of AutU0, and so the closure

G = {(g|U0)
n : n ∈ Z} of this subgroup in AutU0 is also an abelian subgroup. By Weil’s

lemma, G is isomorphic to the discrete group Z or it is compact. Analogously to the proof

of the closing lemma for C, if G is isomorphic to the discrete group Z, then some iterate

of g|U0 must be the identity map for a sequence of iterates converges locally uniformly

to id on U0. But then G is a finite group, which is clearly impossible. So we are again

left to deal with the case that G is a compact abelian subgroup of AutU0. We will show

that this can never occur, and hence that p is a periodic point of f , by deriving a similar

contradiction in the proof of Theorem 3.2.3.

By Theorem 2.5.1, we see that G is isomorphic to (S1)n × A, where n ≥ 0 and A

is a finite abelian subgroup. But since the maximal compact subgroups of PSL(2,R)

are 1-dimensional, we must have n ≤ 1. Taking the connected component containing

the identity map G0 in G, which is a compact subgroup of G, we have G0
∼= (S1)n

where n ≤ 1. Hence, the orbit G0z for any z ∈ U0 is either the singleton {z}, or a 1-

dimensional, connected, compact submanifold of U0. As seen previously, we observe that
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G0z is diffeomorphic to the unit circle when we are in the latter situation.

Since U0 is isomorphic to D, we may apply the reasoning presented in the proof of the

closing lemma for C. Indeed, as U0 is simply connected, it is Runge with respect to C.

Hence, taking the hull of a subset of U0 with respect to C∗ coincides with taking its hull

with respect to C. So considering U0 as a Runge set in C, we have Ĝ0z ⊂ U0, where Ĝ0z

is the union of the connected set G0z and the unique unbounded connected component

of C \G0z for any z ∈ U0. It follows that G0z = Ĝ0z if and only if z ∈ U0 is fixed by G0.

Producing q ∈ U0 that is fixed by G0 as per Claim 3 in the proof of Theorem 3.2.3, we

therefore obtain a periodic point of g and hence of f . We then proceed with our argument

as seen towards the end of the proof of Theorem 3.2.3. If q has period τ under g, then

q has period τℓ under f . So for all j = 0, . . . , τℓ − 1, f j(q) are distinct points in Uf .

Furthermore, as a subsequence of (fn) converges locally uniformly to the identity map on

U0,
∣∣∣(f τℓ

)′
(q)
∣∣∣ = 1.

Now, as U is the interior of the closed set

T =
{
(z, g) ∈ C∗ × EndC∗ : gj(z) ∈ Ar,R for all j ≥ 0

}
,

it is an open neighbourhood of (q, f) in C∗ × EndC∗. Hence, there exists an open neigh-

bourhood U ′ of the identity map in EndC∗ such that (q, α ◦ f) ∈ U for all α ∈ U ′. By

Corollary 4.2.2, there is a corresponding open neighbourhood V ′ of 1 in C such that for

all λ in V ′, there is α in U ′ fixing f j(q) for all j = 0, . . . , τℓ − 1 and whose derivative

satisfies

α′(q) = λ, α′(f(q)) = 1, . . . , α′ (f τℓ−1(q)
)
.

Take |λ| > 1. But then continuing with a completely verbatim argument with the Cauchy

estimates as in the proof of Theorem 3.2.3 supplies the required contradiction. As such,

G cannot be a compact abelian subgroup of AutU0 and so we may dispose of the case

when U0 is isomorphic to D.
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Case 2: U0 is doubly connected. By the reasoning presented at the beginning of the

proof for Case 1, either U0 is pointwise fixed by h, or p is a periodic point of g and hence

of f . So suppose that U0 is pointwise fixed by h. By Theorem 4.2.3 and Lemma 4.2.4, U0

is isomorphic to an annulus Ar′ = {z ∈ C : 1 < |z| < r′}, r′ > 1. For j = 0, . . . , ℓ − 1,

let Uj be the connected component of Uf containing f j(U0). Note that g(Uj) ⊂ Uj for

all j = 0, . . . , ℓ − 1. Define Ω =
ℓ−1⋃
j=0

Uj. Since Ω is a union of disjoint Runge sets,

it is also Runge (observe that some of the Uj may coincide). Further note that Ω is

relatively compact, for it is a subset of Uf . Observe that for each j = 0, . . . , ℓ − 1, we

have f(Uj) ⊂ Uj+1, where Uℓ = U0. Indeed, since Uj is the connected component of Uf

containing f j(U0),

f(Uj) ⊃ f(f j(U0)) = f j+1(U0)

and so f(Uj) ∩ Uj+1 ̸= ∅. As the Uj are connected components of Uf and Uf is forward

invariant under f , it follows that f(Uj) ⊂ Uj+1. Hence, f(Ω) =
ℓ−1⋃
j=0

f(Uj) ⊂
ℓ−1⋃
j=0

Uj = Ω

and so Ω is forward invariant under f .

Since (gjk) converges locally uniformly on Uf to h : Uf → C∗, it converges locally

uniformly on Ω to ρ = h|Ω. Let M ⊂ Ω be the set of fixed points of ρ in Ω. Note

that U0 ⊂ M by assumption. Further observe that for j = 0, . . . , ℓ − 1, gjk(f j(p)) =

f j(gjk(p)) → f j(p) as k → ∞, since p is recurrent for g. Hence, for j = 0, . . . , ℓ− 1, f j(p)

is recurrent for g. It follows that h(f j(p)) = f j(p) for all j = 0, . . . , ℓ− 1. Let Mj denote

the connected component of M containing f j(p) and note that M0 = U0. Also note that

Mj ⊂ Uj for all j = 0, . . . , ℓ− 1.

Now, for each j = 1, . . . , ℓ − 1, either M ∩ Uj is discrete and so Mj is the singleton

{pj}, or Mj = Uj. Suppose that M ∩ Uj is discrete for some j = 1, . . . , ℓ − 1. Since ρ is

the uniform limit of a subsequence of (gn) on Ω, and therefore on Uj, and as g(Uj) ⊂ Uj,

g and ρ commute on Uj. Hence, g(M ∩ Uj) ⊂ M ∩ Uj. Because M ∩ Uj is discrete and
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gjk(f j(p)) ∈M ∩Uj for all k ∈ N, we must have gjk(f j(p)) = f j(p) for all sufficiently large

k. This implies that f j(p) is periodic under g and therefore under f . In other words, p

is preperiodic under f . But since p is also recurrent under f , it follows that p must be

periodic. So if M ∩ Uj is discrete for any j = 1, . . . , ℓ− 1, the proof will be complete.

Hence, we reduce the proof to the case that Mj = Uj for all j = 0, . . . , ℓ − 1. This

occurs when ρ is the identity map on each connected component Uj of Ω. Here, we will

show that this case can never occur by deriving a contradiction and therefore conclude

that some M ∩ Uj is discrete. By the reasoning presented in Claim 2, we see that g|Uj
:

Uj → Uj is an automorphism of Uj for every j = 0, . . . , ℓ − 1. Hence, g|Ω : Ω → Ω is an

automorphism of Ω. Since Ω is forward invariant under f , this implies that f |Ω : Ω → Ω

is an automorphism of Ω. Moreover, f maps Uj biholomorphically onto Uj+1 for all

j = 0, . . . , ℓ− 1. Consequently, as U0 is doubly connected, Uj is doubly connected for all

j = 0, . . . , ℓ− 1. This fact will allow us to prove the following.

Claim 3. Ω is connected. Proceeding by contradiction, suppose Uj and Uk were dis-

tinct connected components of Ω. Intuitively, if we were to have two disjoint open annuli

in C∗ whose complement in P are compact neighbourhoods of 0 and ∞, the complement

of the union of these annuli in P would consist of three compact connected components.

One such compact connected component must lie in C∗, and so if the union of these annuli

was assumed to be Runge in C∗, we would have an immediate contradiction. With this

in mind, we will use the fact that for any connected topological space X and connected

subset Y ⊂ X, if A and B form a separation of X \ Y (that is, A and B are disjoint,

non-empty open subsets of X \ Y whose union is X \ Y ), then Y ∪ A and Y ∪ B are

connected. Since Uj ⊂ C∗ is doubly connected, P \ Uj = W0,j ∪W∞,j, where W0,j and

W∞,j are connected, compact, disjoint neighbourhoods of 0 and ∞ respectively. Similarly,

P \ Uk = W0,k ∪W∞,k. As Uk is connected and disjoint from Uj, either Uk is contained in
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W0,j or contained in W∞,j. Note that if Uk ⊂ W0,j, then

P \ Uk = W0,k ∪W∞,k ⊃ P \W0,j = Uj ∪W∞,j.

Since Uj ∪W∞,j is connected and contains ∞, it follows that Uj ∪W∞,j is contained in

W∞,k. Hence, Uj is contained in W∞,k.

So after relabelling, we may assume without loss of generality that Uk ⊂ W∞,j. Note

that P \ Uk = W0,k ∪W∞,k ⊃ P \W∞,j = Uj ∪W0,j. As Uj ∪W0,j is connected, P \W∞,j

is either contained in W0,k or contained in W∞,k. But 0 ∈ P \W∞,j, so we must have

P \W∞,j ⊂ W0,k. Consequently, W0,j ⊂ W0,k. As W0,k ∩W∞,k = ∅ and P \W∞,j ⊂ W0,k,

we also see that W∞,k ⊂ W∞,j.

Knowing this, we have

P \ (Uj ∪ Uk) = (P \ Uj) ∩ (P \ Uk)

= (W0,j ∪W∞,j) ∩ (W∞,k ∪W∞,k)

= (W0,j ∩W0,k) ∪ (W0,j ∩W∞,k) ∪ (W∞,j ∩W0,k) ∪ (W∞,j ∩W∞,k)

= W0,j ∪ (W0,j ∩W∞,k) ∪ (W∞,j ∩W0,k) ∪W∞,k.

Since W0,j ⊂ W0,k and W0,k ∩ W∞,k = ∅, W0,j ∩ W∞,k = ∅. So P \ (Uj ∪ Uk) =

W0,j ∪ (W∞,j ∩W0,k) ∪W∞,k. Observe that W∞,j ∩W0,k ⊂ C∗ \ (Uj ∪ Uk). Moreover,

as W∞,j and W0,k are compact subsets of P, their intersection is a compact subset of

C∗ \ (Uj ∪ Uk). Hence, to obtain the required contradiction, it suffices to prove that

W∞,j∩W0,k is non-empty, for connected components of a compact space are also compact.

Suppose that in fact W∞,j ∩W0,k = ∅. Then P \ (Uj ∪ Uk) = W0,j ∪W∞,k and so

P = (W0,j∪Uj)∪(W∞,k∪Uk). As P\W∞,j = W0,j∪Uj and P\W0,k = W∞,k∪Uk, we see that

W0,j∪Uj andW∞,k∪Uk are open and non-empty in P. AsW0,j is contained inW0,k and as

W0,k is disjoint from Uk,W0,j∩(W∞,k∪Uk) = ∅. Furthermore, Uj∩(W∞,k∪Uk) = ∅, for Uj
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and Uk are disjoint and W∞,k is contained in W∞,j. Hence, (W0,j ∪Uj)∩ (W∞,k∪Uk) = ∅,

and so W0,j ∪ Uj and W∞,k ∪ Uk are disjoint. But this implies that we can write P as a

union of disjoint, non-empty open subsets, a contradiction to the fact that P is connected.

Hence, W∞,j ∩W0,k is the required non-empty compact subset of C∗ \ (Uj ∪ Uk).

Since the connected components of Ω are Runge and as Uj and Uk are distinct, Uj∪Uk

is Runge in C∗. But as argued above, W∞,j ∩ W0,k is a non-empty compact subset of

C∗ \ (Uj ∪ Uk), supplying the sought-after contradiction and completing Claim 3.

From Claim 3, we conclude that Ω = U0 and hence that f |U0 is an automorphism

of U0. Proceeding as in the proof for the case that U0 is simply connected, the group

generated by f |U0 is an abelian subgroup of AutU0, and so its closure G in AutU0 is also

an abelian subgroup. Again by Weil’s lemma, G is either isomorphic to the discrete group

Z or it is compact. The case that G is isomorphic to Z is impossible, so we may assume

that G is a compact abelian subgroup of AutU0. Since AutU0 is isomorphic to S1 ⋊ Z2,

the maximal compact subgroups of AutU0 are 1-dimensional. Let G0 be the connected

component of G containing the identity map, which is itself a compact subgroup of G.

Then G0
∼= (S1)n where n ≤ 1. Note that if n = 0, then G0 = {id} and we are again in

the case that G is isomorphic to Z. So we may assume that G0
∼= S1.

Observe that this is the case where f |U0 corresponds to an irrational rotation of Ar′ ,

and so has no periodic points in U0. We will show that this is incompatible with the

robustly non-expelling property and hence that G also cannot be compact. Subsequently,

some M ∩ Uj is discrete and it follows that p is periodic under f , completing the proof.

Let φ : Ar′ → U0 be a biholomorphic map and let F : Ar′ → Ar′ be the map defined by

F = φ−1 ◦f |U0 ◦φ. Then F (z) = e2πiαz, where α ∈ R\Q. Observe that the set generated

by e2πiα is dense in S1, and hence that G0 = G.

For any q ∈ U0, the orbit Gq is a 1-dimensional, compact connected submanifold of
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U0 and therefore is diffeomorphic to the unit circle. As G ∼= S1, we can write G as a

1-parameter group (ht)t∈R such that h1 = f |U0 . Note that for every t ∈ R, ht corresponds

to the automorphism of Ar′ defined by Ht(z) = e2πiαtz. With the usual local coordinate

z = x + iy on C∗, consider the holomorphic vector field ξ =
∂

∂t
ht

∣∣∣∣
t=0

d

dz
on U0. By the

chain rule, at each q ∈ U0, we have

∂

∂t
ht(q)

∣∣∣∣
t=0

=
∂

∂t
(φ ◦Ht ◦ φ−1)(q)

∣∣∣∣
t=0

= 2πiαφ′(H0(φ
−1(q)))φ−1(q)(φ−1)′(q)

= 2πiαφ−1(q).

But since φ is a biholomorphic map from Ar′ to U0, φ
−1 is non-vanishing. Hence,

∂

∂t
ht

∣∣∣∣
t=0

has no zeros and so ξ is zero-free. Furthermore, for each t ∈ R, as ht is the uniform limit

of a subsequence of (fn) on compact subsets of U0, ht and f |U0 commute on U0. Thus,

for each q ∈ U0,

∂

∂t
(ht ◦ f)(q)

∣∣∣∣
t=0

=
∂

∂t
(f ◦ ht)(q)

∣∣∣∣
t=0

= f ′(q)
∂

∂t
ht(q)

∣∣∣∣
t=0

.

It follows that the vector field ξ is f -invariant.

We are now at the stage where we can derive a contradiction to Lemma 4.2.5 using our

candidate holomorphic vector field ξ. Indeed, for any q ∈ U0, the orbit Gq ⊂ U0 is clearly a

non-empty compact set that is forward invariant under f . So we obtain our contradiction

once we show that ξ is uniformly approximable by EndC∗-velocities on Gq. Since U0 is

Runge in C∗, we can employ Runge’s approximation theorem to find holomorphic maps

on C∗ that uniformly approximate
∂

∂t
ht

∣∣∣∣
t=0

on compact subsets of U0. Let β : C∗ → C

be such a holomorphic map. Define the holomorphic vector field η = β
d

dz
on C∗. Then

by construction, η uniformly approximates ξ on compact subsets of U0. We claim that η
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is an EndC∗-velocity. Indeed, define the holomorphic map Ψ : C× C∗ → C∗ by

Ψt(z) = z exp

(
tβ(z)

z

)
,

for t ∈ C and z ∈ C∗. Clearly, Ψ0 = idC∗ , and for any t ∈ C, Ψt ∈ EndC∗ since

β : C∗ → C is holomorphic. Finally, we see that for any q ∈ C∗,

∂

∂t
Ψt(q)

∣∣∣∣
t=0

d

dz

∣∣∣∣
z=q

= β(q) exp

(
tβ(q)

q

)∣∣∣∣
t=0

d

dz

∣∣∣∣
z=q

= η(q).

So for q ∈ U0, this shows that η is an EndC∗-velocity that uniformly approximates ξ

on Gq, contradicting Lemma 4.2.5. With this final contradiction, we conclude that some

M ∩ Uj, for j = 0, . . . , ℓ− 1, must be discrete. Hence, p is periodic under f .

So as in the case for C, the closing lemma for C∗ follows from Theorems 4.1.1 and

4.2.6.

Remark. Clearly, our proof of the closing lemma for C∗ is significantly more complicated

than the corresponding proof for C. This can be attributed to the fact that C∗ is no

longer simply connected and hence that a Runge set in C∗ is not necessarily Runge in C,

and vice versa. Rather, in the proof of the closing lemma for C and Case 1 of the proof

above, the Runge set U0 is simply connected is crucial. It allows us to use a hull argument

to extract a periodic point of f in U0. Armed with this periodic point, we can use the

theory of holomorphic dynamics in one complex variable to obtain a contradiction.

On the other hand, relatively compact Runge sets in C∗ can also be doubly connected.

In this case, before the conclusion of the preceding proof, f need not have any periodic

points in U0 a priori, preventing us from using our well acquainted theory of holomorphic

dynamics. Hence, we require a completely separate argument to obtain our sought-after

contradiction. This difference highlights the fact that although C∗ is seemingly just C

with the removal of a point, its different topological properties obstruct us from apply-
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ing powerful theorems commonplace in the theory of Riemann surfaces and holomorphic

dynamics.
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Chapter 5

Hyperbolic surfaces, complex tori,

and the Riemann sphere

For the final chapter, we will show that the closing lemma holds for any hyperbolic

Riemann surface and any complex torus T = C/Γ (where Γ is a lattice). We will also see

that the closing lemma holds for the Riemann sphere, with the exception of two special

cases. The proofs of the closing lemma for each of these Riemann surfaces are wildly

different, utilising a variety of techniques from holomorphic dynamics in one complex

variable.

As a precursor to the results presented in this chapter, we give the following useful

remark. We will soon see that this observation will be essential in many of the ensuing

proofs.

Remark. Let X and Y be Riemann surfaces and let O(X, Y ) denote the space of holo-

morphic maps X → Y equipped with the compact-open topology. Note that O(X,X) =

EndX for any Riemann surface X. Then since any Riemann surface is a locally com-

pact Hausdorff topological space, the map O(Y, Z) × O(X, Y ) → O(X,Z) defined by

85
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(g, f) 7→ g ◦ f is continuous for any Riemann surfaces X, Y and Z. Now, for any

g ∈ O(Y, Z), the inclusion ι1g : O(X, Y ) ↪→ O(Y, Z) × O(X, Y ) defined by ι1g(f) = (g, f)

is continuous. Analogously, the inclusion ι2h : O(Y, Z) ↪→ O(Y, Z) × O(X, Y ) defined by

ι2h(f) = (f, h) is continuous for any h ∈ O(X, Y ). Hence, the composition

O(Y, Z) O(Y, Z)× O(X, Y ) O(X,Z)
ι2h ◦

O(Z,W )× O(X,Z) O(X,W ),
ι1g ◦

f 7→ g ◦ f ◦ h,

is continuous for all g ∈ O(Z,W ) and h ∈ O(X, Y ).

5.1 The closing lemma for hyperbolic surfaces

Theorem 5.1.1 (Closing lemma for hyperbolic surfaces). Let p ∈ X be a non-wandering

point of an endomorphism f of a hyperbolic Riemann surface X. Then every open neigh-

bourhood of f in EndX contains an endomorphism of which p is a periodic point.

Remark. In the following proof, we will take for granted the fact that every hyperbolic

Riemann surface X has a preferred Riemannian metric which induces a distance function

distX . In fact, using the uniformisation theorem, this preferred metric comes from the

Poincaré metric on the disc via the universal covering map. Hence, hyperbolic Riemann

surfaces are metric spaces and we call distX the Poincaré distance on X. We cite [12] for

further details.

Proof. We will prove this result in four cases by employing Theorem 2.3.4.

Finite order case. The closing lemma clearly holds since every point of X is a

periodic point of f .
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Irrational rotation case. For this case, we will not need to use the assumption that

p is non-wandering. Indeed, suppose that X is isomorphic to either Y = D, D \ {0}, or

Ar = {z ∈ C : 1 < |z| < r}, r > 1, and f : X → X is conjugate to an irrational rotation

z 7→ e2πiαz on Y , α ∈ R \Q. Then we claim that for any open neighbourhood U of f in

EndX, there exists g ∈ U such that gτ = id for some τ ∈ N. In particular, we can find g

arbitrarily close to f for which every x ∈ X is a periodic point.

For t ∈ R, let ft : Y → Y denote the automorphism ft(z) = e2πitz. Then there

exists a biholomorphic map φ : X → Y and α ∈ R \ Q such that φ ◦ f ◦ φ−1 = fα.

Let U be an open neighbourhood of f in EndX. From the remark at the beginning of

Chapter 5, the map F : EndX → EndY defined by h 7→ φ ◦ h ◦ φ−1 is continuous with

respect to the compact-open topology on EndX and EndY . Moreover, it has continuous

inverse EndY → EndX defined by h 7→ φ−1 ◦ h ◦ φ, and so F defines a homeomorphism

between EndX and EndY . Thus, F (U) = φUφ−1 = {φ ◦ h ◦ φ−1 : h ∈ U} is an open

neighbourhood of fα in EndY .

Now, observe that the map G : R → EndY defined by G(t) = ft is continuous, where

R has the usual topology. Indeed, this follows from the continuity of the map R×Y → Y

given by (t, z) 7→ e2πitz (for this map is the product of the continuous maps t 7→ e2πit

and z 7→ z). Then for any open set V in EndY , G−1(V ) is open in R. In particular,

G−1(φUφ−1) is open in R. As Q is dense in R, there exists θ ∈ Q∩G−1(φUφ−1). Hence,

G(θ) = fθ ∈ φUφ−1,

where fθ(z) = e2πiθz is a rational rotation on Y . By definition of φUφ−1, there exists

g ∈ U such that g = φ−1 ◦ fθ ◦ φ. But then since fθ is a rational rotation, there exists

τ ∈ N so that gτ = id. As U was an arbitrary open neighbourhood of f in EndX, we

conclude that we can find g arbitrarily close to f for which gτ = id for some τ ∈ N, and

hence there is g arbitrarily close to f for which every x ∈ X is a periodic point. The
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closing lemma then follows for the irrational rotation case.

Escape case. We will show that f has no non-wandering points and therefore the

closing lemma holds vacuously. Let x ∈ X and let K = D(x, r), r > 0, be a compact

neighbourhood of x in X. Then there exists an integer nK so that fn(K)∩K = ∅ for all

n ≥ nK . Choose the smallest such nK .

We claim that there exists R1 > 0 such that D(x, r′) ∩ f
(
D(x, r′)

)
= ∅ for all

0 < r′ ≤ R1. Suppose not. Then for all R > 0, there exists 0 < r′ ≤ R such that

D(x, r′) ∩ f
(
D(x, r′)

)
̸= ∅. In particular, for each n ∈ N, there exists 0 < r′n ≤ 1/2n

such that D(x, r′n) ∩ f
(
D(x, r′n)

)
̸= ∅. Thus, we have a sequence (r′n)n∈N of positive

numbers converging to zero as n → ∞, for which there exists xn ∈ D(x, r′n) satisfying

distX(f(xn), x) ≤ r′n for each n ∈ N. But this implies that we have a sequence of points

xn → x satisfying f(xn) → x as n → ∞. Thus, by continuity of f , x is fixed by f . But

{x} is compact, so by assumption, there exists N ∈ N such that fn({x}) ∩ {x} = ∅ for

all n ≥ N , which is not possible for a fixed point.

Observe that this claim also holds for the sets f 2
(
D(x, r′)

)
, . . . , fnK−1

(
D(x, r′)

)
in

place of f
(
D(x, r′)

)
(we would conclude that x is a periodic point of f instead of fixed).

Hence, we can obtain corresponding positive numbers R1, R2, . . . , RnK−1 so that

D(x, r′j) ∩ f j
(
D(x, r′j)

)
= ∅

for all 0 < r′j ≤ Rj, j = 1, . . . , nK − 1. Let R = min{R1, . . . , RnK−1, r}. Then for all

j ∈ N, the sets f j
(
D(x,R)

)
are mutually disjoint to D(x,R). Moreover, U = D(x,R)

is an open neighbourhood of x such that fn(U) ∩ U = ∅ for all n ∈ N, and thus x is a

wandering point. Since x ∈ X was arbitrary, f has no non-wandering points and therefore

the closing lemma holds vacuously.

Attracting case. This case follows in a similar vein to the escape case. Here, we will

show that the only non-wandering point of f in X is the attracting fixed point itself. It
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will hence follow that p is already a periodic point of f . Let x0 be this attracting fixed

point and let x ∈ X \ {x0}. Choose r > 0 such that x0 /∈ D(x, r). Pick ϵ > 0 such that

D(x0, ϵ) ∩ D(x, r) = ∅. Since (fn)n∈N converges locally uniformly to the constant map

x 7→ x0, there exists N ∈ N such that for all n ≥ N and y ∈ D(x, r),

distX(f
n(y), x0) <

ϵ

2
.

Pick the smallest N for which this holds. Observe that

distX
(
fn
(
D(x, r)

)
, x0
)
= inf

{
distX(f

n(y), x0) : y ∈ D(x, r)
}
≤ ϵ

2
< ϵ

for all n ≥ N . Therefore, fn
(
D(x, r)

)
∩D(x, r) = ∅ for all n ≥ N .

Next, as in the escape case, we claim that there exists R1 > 0 such that D(x, r′) ∩

f
(
D(x, r′)

)
= ∅ for all 0 < r′ ≤ R1. Suppose not. Then for each n ∈ N, there exists

0 < r′n ≤ 1/2n such that D(x, r′n) ∩ f
(
D(x, r′n)

)
̸= ∅. Thus, we have a sequence (r′n)n∈N

of positive numbers converging to zero as n → ∞, for which there exists xn ∈ D(x, r′n)

satisfying distX(f(xn), x) ≤ r′n for each n ∈ N. But this implies that we have a sequence

of points xn → x satisfying f(xn) → x as n → ∞. So as in the escape case, x is a fixed

point of f . But since we are considering the attracting case, every orbit under f converges

to the unique attracting fixed point x0 and so we must have x = x0. But this contradicts

our choice of x.

Once again, we observe that this claim also holds for f 2
(
D(x, r′)

)
, . . . , fN−1

(
D(x, r′)

)
in place of f

(
D(x, r′)

)
. Here, we would conclude that x is a periodic point of f , and so

as every orbit under f converges to x0, every subsequence of (fn(x))n∈N converges to x0.

In particular, if τ was the period of x, the sequence (fnτ (x))n∈N converges to x0 and we

obtain the same contradiction as above.

Thus, we can find numbers R1, . . . , RN−1 > 0 such that

D(x, r′j) ∩ f j
(
D(x, r′j)

)
= ∅
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for all 0 < r′j ≤ Rj, and j = 1, . . . , N − 1. Take R = min{R1, . . . , RN−1, r}. Then by

construction, the open neighbourhood U = D(x,R) of x satisfies fn(U) ∩ U = ∅ for all

n ∈ N. Hence, x is a wandering point of f and so as x ̸= x0 was arbitrary in X, we

conclude that the attracting fixed point x0 is the only non-wandering point of f . Hence,

p = x0 and the closing lemma clearly follows for the attracting case.

Remark. Interestingly, the case where our endomorphism f corresponds to an irrational

rotation is the only case for which we need to perturb f . However, there are some parallels

of the closing lemma for hyperbolic surfaces (ignoring the vacuous escape case) with the

closing lemma for C. In both proofs, we have seen that under certain assumptions, we

can either make a small enough perturbation of our endomorphism f so that our non-

wandering point p is periodic, or p was periodic under f from the very beginning.

As far as we know, our proof of the closing lemma for hyperbolic Riemann surfaces is

original and the result is not available in the literature.

5.2 The closing lemma for complex tori

Recall from Section 2.1 that any complex torus T can be normalised to the form C/Γ

where Γ = Z + Zτ and τ has positive imaginary part. Hence, without loss of generality,

we will assume that T = C/(Z+Zτ) in the following results. Further recall that f : T → T

is a non-constant endomorphism if and only if f is of the form f(z + Γ) = αz + β + Γ

where α ∈ C∗ is a number such that αΓ ⊂ Γ, and β ∈ C.

Moreover, the degree of f is equal to |α|2, and so |α|2 is necessarily a positive integer.

To see this, first suppose that α = 1. Then f is a pure translation and hence has degree

equal to 1. Now suppose that α ̸= 1. With respect to a chart, let ω = dz∧dz̄ be a 2-form

on T. Then the pullback of ω with respect to f is f ∗ω = |α|2dz∧dz̄. But then the number
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|α|2 must necessarily be the degree of f (by the immediate remark after Definition 2.3.2),

for it satisfies ∫
T

f ∗ω = |α|2
∫
T

dz ∧ dz̄ = |α|2
∫
T

ω.

With this setting, we proceed to prove the closing lemma for T. The following lemma is

stated without proof in [12], but we will of course supply our own proof for the convenience

of the reader.

Lemma 5.2.1. Let α /∈ Z and suppose f(z +Γ) = αz + β +Γ is an endomorphism of T.

Then α satisfies the quadratic equation

α2 + pα + d = 0,

where d is the degree of f and p is an integer for which p2 ≤ 4d.

Proof. First observe that as we necessarily require αΓ ⊂ Γ for f to be an endomorphism

of T, we can write α = n1 + τm1 and ατ = n2 + τm2 for m1,m2, n1, n2 ∈ Z. Since τ has

positive imaginary part, m1 ̸= 0 for otherwise α = n1 ∈ Z. Moreover, we see that τ ̸= τ

and hence that α ̸= α. Next, we observe that as τ ̸= 0 and α ̸= 0,

τ =
ατ

α
=
n2 + τm2

n1 + τm1

.

Rearranging, we obtain the quadratic m1τ
2 + (n1 −m2)τ − n2 = 0. Since α = n1 + τm1,

we can rearrange for τ and substitute into this quadratic equation to obtain

α2 − (n1 +m2)α + (n1m2 − n2m1) = 0. (5.1)

We will now show that the degree of f is |α|2 = n1m2 − n2m1. Set A =

n1 m1

n2 m2

. Note
that detA = n1m2 − n2m1 and trA = n1 + m2. By (5.1), α satisfies the characteristic

equation x2 − (trA)x + detA = 0. But the solutions to this equation are precisely the
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eigenvalues of A. Since this characteristic equation has integer coefficients, α is also an

eigenvalue of A. It follows that detA = αα = |α|2, as required.

Now let p = − trA, which is an integer by definition. Then (5.1) is equivalent to

α2 + pα + |α|2 = 0 and p2 = (trA)2 = (α + α)2 = (2Real(α))2 ≤ 4|α|2. This proves the

lemma.

Theorem 5.2.2 (Closing lemma for T). Let p + Γ ∈ T and let f be an endomorphism

of T. Then every open neighbourhood of f in EndT contains an endomorphism of which

p+ Γ is a periodic point.

Proof. Let f : T → T be defined by f(z + Γ) = αz + β + Γ and let U be an open

neighbourhood of f in EndT. We will prove the closing lemma for complex tori via

considering the possible cases of α ∈ C∗ satisfying |α| ≥ 1 (since |α|2 ∈ N).

Case 1. α = 1. Here, f is a pure translation. Observe that z + Γ is a periodic point

of f with period n ∈ N if and only if nβ ∈ Γ if and only if β ∈ 1
n
Γ. Hence, f has periodic

points if and only if β = γ/n for γ ∈ Γ and n ∈ N (if fact, every point in T would be

periodic).

Knowing this, we will show that the set G = {γ/n ∈ C : γ ∈ Γ and n ∈ N} is dense in

C. Let D(z0, r) be an open disc centred at z0 of radius r > 0. Since 1 and τ are linearly

independent over R, {1, τ} is a basis of the vector space C over R. Hence, there exists

a, b ∈ R such that z0 = a+ bτ .

We claim that there exists k,m ∈ Z and N ∈ N such that∣∣∣∣a− k

N

∣∣∣∣ < r

2
and

∣∣∣b− m

N

∣∣∣ < r

2|τ |
.

To see this, choose n1, n2 ∈ N such that 1/n2
1 < r/2 and 1/n2

2 < r/(2|τ |). Set N =

max{n1, n2}. Then 1/N2 ≤ min{1/n2
1, 1/n

2
2}. By Dirichlet’s approximation theorem,
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there exists k,m ∈ Z such that∣∣∣∣a− k

N

∣∣∣∣ < 1

N2
and

∣∣∣b− m

N

∣∣∣ < 1

N2
.

This proves the claim, for 1/N2 < r/2 and 1/N2 < r/(2|τ |).

Now, pick γ = k +mτ and choose N ∈ N as in the claim above. Then∣∣∣z0 − γ

N

∣∣∣ = ∣∣∣∣(a− k

N

)
+
(
b− m

N

)
τ

∣∣∣∣ ≤ ∣∣∣∣a− k

N

∣∣∣∣+ ∣∣∣b− m

N

∣∣∣ |τ | < r

2
+
r

2
= r.

Hence, γ/N lies in D(z0, r) and so it follows that G is dense in C.

After identifying the subspace {f ∈ EndT : f(z + Γ) = z + β + Γ for β ∈ C} of pure

translations in EndT with C, we conclude that the subset{
fγ,n ∈ EndT : fγ,n(z + Γ) = z +

γ

n
+ Γ for γ ∈ Γ, n ∈ N

}
is dense in {f ∈ EndT : f(z+Γ) = z+β+Γ for β ∈ C} (with respect to the compact-open

topology). Thus, there exists fγ,n ∈ U , and so as U was an arbitrary open neighbourhood

of f in EndT, we can find an arbitrarily close endomorphism to f of which p + Γ is a

periodic point. Hence, the case that α = 1 is complete.

Case 2. |α| = 1. Here, f is the composition of a rotation fixing Γ and a translation.

Suppose that α ∈ Z. Then α = 1 or −1. The case that α = 1 has already been covered,

so we may assume that α = −1. But then f(z + Γ) = −z + β + Γ is an involution and it

immediately follows that p+ Γ is already a periodic point of f .

Next, suppose that α /∈ Z. Then by Lemma 5.2.1, α satisfies the quadratic equation

α2 + pα + 1 = 0 where p is an integer and p2 ≤ 4. Hence,

α =
−p±

√
p2 − 4

2

and p = 0,±1 or ±2. If p = ±2, then α = ∓1 respectively. If p = 1, then α = −1
2
± i

√
3
2

and so either α = e2πi/3 or e4πi/3. While if p = −1, then α = 1
2
± i

√
3
2

and so either
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α = e2πi/6 or e10πi/6. Finally, if p = 0, then α = ±i and so either α = e2πi/4 or e6πi/4. This

shows that whenever |α| = 1, α must be a root of unity.

Now, as α ̸= 1, f has β
1−α

+ Γ as a fixed point. Hence, by conjugating with the

translation φ(z + Γ) = z − β
1−α

+ Γ,

(φ ◦ f ◦ φ−1)(z + Γ) = αz + Γ.

But as α is a root of unity, there exists some n ∈ N so that φ ◦ fn ◦φ−1 = id. Thus, every

point in T is periodic under f . In particular, p + Γ is periodic under f . This completes

the case when |α| = 1.

Case 3. |α| > 1. This case follows in a similar vein as the two preceding cases. Since

α ̸= 1, then we may conjugate f by a translation φ to obtain the endomorphism

g = φ ◦ f ◦ φ−1, z + Γ 7→ αz + Γ.

Observe that z+Γ is a periodic point of g with period n ∈ N if and only if αnz+Γ = z+Γ

if and only if z ∈ 1
αn−1

Γ.

Knowing this, we will show that the set H = {γ/(αn − 1) : γ ∈ Γ and n ∈ N} is dense

in C. First, we observe that as |α| > 1, |αn| > 1 for any n ∈ N. So by the reverse triangle

inequality,

|αn − 1| ≥ ||αn| − 1| > 0 ⇐⇒ 1

|αn − 1|
≤ 1

||αn| − 1|
.

Hence, 1/|αn − 1| → 0 as n→ ∞. Write bn = 1/(αn − 1). We claim that the set

H =
⋃
n∈N

bnΓ

is dense in C. To see this, let D(z0, r) be an open disc centred at z0 of radius r > 0. For

each n ∈ N, let Rn denote the longer diagonal in the fundamental parallelogram defined

by the lattice bnΓ = bnZ + bnτZ. Clearly Rn → 0 as n → ∞, for |bn| → 0 as n → ∞.



5.3. The closing lemma for the Riemann sphere 95

Choose n0 ∈ N for which Rn0 < r/2. Since the filled parallelograms determined by the

lattices bnΓ tessellate C, there exists a filled parallelogram determined by bn0Γ that is

completely contained in D(z0, r). Hence, bn0Γ ∩ D(z0, r) ̸= ∅ and so we can find an

element in H that lies in D(z0, r). It follows that H is dense in C.

Now, note that the set φUφ−1 = {φ ◦ h ◦ φ−1 : h ∈ U} is an open neighbourhood of

g in EndT. As H is dense in C, we can choose a point of the form γ/(αn − 1) ∈ H such

that the translation T (z + Γ) = z − φ(p + Γ) + γ/(αn − 1) + Γ sending φ(p + Γ) + Γ to

γ/(αn − 1) + Γ is arbitrarily close to the identity map on T. Thus, as φUφ−1 is open, we

can find T so that T−1 ◦ g ◦ T ∈ φUφ−1. Consequently, (T ◦ φ)−1 ◦ g ◦ (T ◦ φ) : T → T

is an endomorphism in U for which p + Γ is a periodic point. Hence, the closing lemma

holds whenever |α| > 1.

Since U was an arbitrary open neighbourhood of f in EndT, the closing lemma for T

follows from Cases 1, 2, and 3.

Like the closing lemma for hyperbolic Riemann surfaces, we note that our proof of the

closing lemma for T is original as far as we know, and that this result cannot be found in

the literature.

5.3 The closing lemma for the Riemann sphere

For the Riemann sphere P, we will see that the closing lemma holds with some reservations.

However, this is by no means an assertion that the closing lemma does not hold for P

at all. Rather, what we furnish in this section is a proof of the closing lemma for P

provided that our rational map does not admit Siegel discs or Herman rings. We will

later explain in this section why the presence of Siegel discs and Herman rings is such a

difficult hurdle for us to surmount. Furthermore, in this section we will see many of the
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ideas behind holomorphic dynamics on the Riemann sphere behind our proofs. Here is

where the results seen in Section 2.3 truly come to the fore, and we again refer to [12] as

our main reference.

We first recall the following fact. Let f be an endomorphism of a Riemann surface X

and let φ : X → Y be a biholomorphic map between Riemann surfaces. Then p ∈ X is

a non-wandering point of f if and only if φ(p) is a non-wandering point of φ ◦ f ◦ φ−1.

That is, conjugation by biholomorphic maps preserve non-wandering points.

Theorem 5.3.1 (Closing lemma for P). Let p ∈ P be a non-wandering point of a rational

map f on P. Suppose f does not admit Siegel discs and Herman rings. Then every open

neighbourhood of f in EndP contains a rational map of which p is a periodic point.

Proof. Let U be an open neighbourhood of f in EndP. We will prove the closing lemma

for P through the following cases.

Case 1. deg f = 1. Here, f is a Möbius transformation. We may assume that f is not

the identity map, for otherwise f fixes p and we are done. Therefore, since f is a Möbius

transformation, f must either have a single fixed point or two distinct fixed points.

Suppose f has a single fixed point. After possibly conjugating f with a Möbius

transformation, we may assume that this fixed point lies at infinity. Thus, f(z) = z + c

where c ∈ C∗ is a constant. But then f is a pure translation on P, so the only non-

wandering point of f is the fixed point at infinity itself. Hence, p = ∞ is already a

periodic point of f .

Now suppose f has two distinct fixed points. After again possibly conjugating f with

a Möbius transformation, we may assume that f fixes 0 and the point at infinity. Then

f(z) = λz where λ ∈ C∗ is a constant. Thus, the behaviour of orbits under f is determined

by whether 0 < |λ| < 1, |λ| > 1, or |λ| = 1.
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Assume that 0 < |λ| < 1. Then 0 is an attracting fixed point and ∞ is a repelling fixed

point. Observe that the sequence (fn)n∈N uniformly converges on C to the constant map

z 7→ 0. But as in the attracting case in the proof of Theorem 5.1.1, we conclude that the

only non-wandering points of f are the fixed points 0 and ∞ themselves. Consequently,

p = 0 or ∞ and is thus already periodic under f .

The case that |λ| > 1 is completely analogous to the case 0 < |λ| < 1, for now we have

that 0 is the repelling fixed point and ∞ the attracting fixed point of f . Thus, we are

left to check the case of |λ| = 1, that is, λ = e2πiθ for θ ∈ R. If θ ∈ Q, then λ is a root of

unity and hence every point is periodic under f . In particular, p is a periodic point of f .

Finally, suppose θ ∈ R \ Q. In other words, f is an irrational rotation on P. But by

similar reasoning as in the irrational rotation case in the proof of Theorem 5.1.1, we can

find g in U so that g is a rational rotation of P. Hence, there exists τ ∈ N such that

gτ = id. It follows that there is g arbitrarily close to f for which every z ∈ P is a periodic

point. In particular, p is a periodic point of g.

As there are no other cases to consider and as U was an arbitrary open neighbourhood

of f , we conclude that the closing lemma holds whenever f has degree 1.

Case 2. deg f ≥ 2. We will prove this case in two sub-cases, namely whether p lies

in the Julia set J (f) or the Fatou set F(f). Without loss of generality, we may assume

that p is finite, for otherwise we simply conjugate f by the map z 7→ 1/z.

Suppose p ∈ J (f). Recall that J (f) is equal to the closure of the set of repelling

periodic points of f (Theorem 2.3.7). Define T : P → P to be the translation map

T (z) = z − p+ q where q ∈ J (f) is a finite repelling periodic point of f . Since the set of

repelling periodic points of f is dense in J (f), we can find such T arbitrarily close to the

identity map on P. Hence, as U is open in EndP, we may choose T so that T−1◦f ◦T ∈ U .

But then T−1 ◦ f ◦ T is a rational map with periodic point p, and so the closing lemma
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holds whenever p ∈ J (f).

Now suppose p ∈ F(f). Let V be the connected component of F(f) containing p.

Then V is either a wandering domain or preperiodic. That is, V is an open connected set

such that either:

• the family (fn(V ))n∈N is mutually disjoint, or

• there exist integers n ≥ 0 and m ≥ 1 so that fn(V ) = fm+n(V ),

respectively. Note that if V is preperiodic and n = 0, then V is in fact periodic. Clearly

the case that V is a wandering domain is impossible, for V itself is an open neighbourhood

of the non-wandering point p. (In fact, wandering domains do not exist for rational maps

by Sullivan’s non-wandering theorem (Theorem 2.3.6).)

Thus, we may assume that V is a preperiodic Fatou component. We will show that

V is necessarily periodic. Since V is an open set containing the non-wandering point p,

there exists j ∈ N such that f j(V )∩V ̸= ∅. Using the fact that V is connected and F(f)

is completely invariant under the rational map f , that is, f−1(F(f)) = F(f) = f(F(f)),

we conclude that f j(V ) = V . Hence, V must be a periodic Fatou component, as claimed.

Knowing this, we can use the classification theorem of periodic Fatou components

(Theorem 2.3.5). We see that V is either:

• the immediate attractive basin of an attracting periodic point,

• the immediate basin of attraction for some petal of a parabolic periodic point,

• a member of a cycle of Siegel discs, or

• a member of a cycle of Herman rings.

By assumption, f does not admit any Siegel discs or Herman rings, so it suffices to prove

the closing lemma when V is some immediate basin. Let τ ≥ 1 be the period of V under
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f , that is, τ ≥ 1 is the smallest integer for which f τ (V ) = V . Observe that p is also a

non-wandering point of the iterate f τ . Indeed, let V ′ ⊂ V be an open neighbourhood of

p. As p is a non-wandering point of f , there exists n ∈ N such that fn(V ′) ∩ V ′ ̸= ∅.

But as fn(V ′) ∩ V ′ ⊂ fn(V ) ∩ V and as V is a periodic Fatou component, n must be

a positive multiple of τ , say n = mτ . It follows that m is a positive integer for which

(f τ )m(V ′)∩V ′ ̸= ∅. Since V ′ was an arbitrary open neighbourhood of p, the observation

follows.

Now, if V is an attracting basin, then p cannot be a non-wandering point of f τ unless

it is the attracting periodic point itself. Indeed, every orbit in V under f τ must converge

to a member, say f j(q) for j ≥ 0, of this attracting periodic orbit. Then from similar

reasoning to the attracting case in the proof of Theorem 5.1.1, p = f j(q). Consequently,

p must be a periodic point of f and the closing lemma holds.

On the other hand, if V is an immediate basin of a petal of a parabolic periodic point,

then every orbit in V under f τ converges to a member, say f j(q) for j ≥ 0, of this periodic

orbit. But by definition of parabolic petal, f j(q) lies on the boundary of V . Thus, no

orbit in V under f τ can have an accumulation point in V . Hence, we can apply analogous

reasoning as in the escape case in the proof of Theorem 5.1.1 to conclude that there are

no non-wandering points of f τ in V . Consequently, the case that V is an immediate basin

of a petal of a parabolic periodic point is impossible, for it cannot contain p. As there are

no other cases to consider, we conclude that the closing lemma holds for rational maps f

of degree at least 2 under the assumption that f admits no Siegel discs or Herman rings.

Subsequently, the proof of the closing lemma for P is complete.

As promised, we will now explain why the presence of Siegel discs or Herman rings

in the dynamics of rational maps gives us an obstacle which we cannot yet overcome.

We first observe that Möbius transformations do not admit Siegel discs or Herman rings.
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Indeed, the Julia set of such maps contain at most one point, while the entire topological

boundary of Siegel discs and Herman rings (whenever they arise) is also contained in the

Julia set. So in the setting of rational maps, Siegel discs and Herman rings only arise

from maps of degree 2 or more.

Here, we will run into some issues. Let us assume, for simplicity, that our Siegel disc or

Herman ring R is completely invariant under our rational map f of degree at least 2 (so a

member of a cycle of length 1). Then since f is conjugate to an irrational rotation on the

unit disc or an annulus, every point in R is recurrent under f and hence non-wandering.

(In fact, since f is conjugate to an irrational rotation, no point in R is periodic except

for the unique fixed point in the case that R is a Siegel disc.) Thus, there is nothing

inherently special about the assumption that f has a non-wandering point p contained

in R. This would imply, a priori, that we cannot garner further information from the

existence of p.

Now let us turn to perturbing f . Hypothetically, suppose we can produce a small

perturbation fϵ of f for which p is periodic. Then for a small enough perturbation, let us

assume that the dynamics exhibited by fϵ closely resembles that of f . More precisely, if

there exists a completely invariant Fatou component V of f , then there is a corresponding

completely invariant Fatou component V ′ of fϵ such that V ∩V ′ is an open neighbourhood

of p. Hence, there is a Fatou component R′ of fϵ containing p that corresponds to R, and

so must be isomorphic to D or an annulus. By the classification theorem of periodic Fatou

components, R′ must be the immediate basin of an attracting fixed point or parabolic

fixed point, for it contains a periodic point p. But as we have already seen above, p must

be an attracting fixed point of fϵ and R
′ is necessarily the immediate attractive basin of

p. Thus, for the closing lemma to hold for rational maps with Siegel discs or Herman

rings, we would be asking the following question.
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Question. Given a point p in a cycle of Siegel discs or Herman rings admitted by a

rational map f , does there exist arbitrarily close rational maps to f for which p is an

attracting periodic point?

We currently do not know the answer to this question, and it appears to be deeply

non-trivial. Nevertheless, we can point to [7] for some variants of the closing lemma that

are proved in the setting of holomorphic maps. In particular, Theorem 2.1 and Corollary

4.3 treat a version of the closing lemma for rational maps that admit Siegel discs and

Herman rings respectively. As such, it may be fruitful to analyse these highly technical

results to settle the above question. However, due to the difficulty of the proofs of these

results exceeding those presented in this thesis, we will not provide a treatment of this

paper and will leave the above question open.
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