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Summary

� Using microscopy to investigate stomatal behaviour is common in plant physiology

research. Manual inspection and measurement of stomatal pore features is low throughput,

relies upon expert knowledge to record stomatal features accurately, requires significant

researcher time and investment, and can represent a significant bottleneck to research pipe-

lines.
� To alleviate this, we introduce StomaAI (SAI): a reliable, user-friendly and adaptable tool for

stomatal pore and density measurements via the application of deep computer vision, which

has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop

plant barley (monocot grass).
� SAI is capable of producing measurements consistent with human experts and successfully

reproduced conclusions of published datasets.
� SAI boosts the number of images that can be evaluated in a fraction of the time, so can

obtain a more accurate representation of stomatal traits than is routine through manual mea-

surement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local

application is publicly available for free on GitHub through https://github.com/xdynames/

sai-app.

Introduction

Stomata, derived from the Greek word for mouth, are small pores
in the epidermal surface of plant aerial organs (leaves and stems).
Dicot plants most commonly have a pair of kidney-shape guard
cells surrounding each stomatal pore (Fig. 1). In monocot grasses
however, such as barley or maize, the stomatal pore is surrounded
by dumbbell-shaped guard cells, which are flanked in turn by a
pair of subsidiary cells (Cai et al., 2017; Gray et al., 2020). Sto-
matal pores play a critical role in plant physiology by limiting the
diffusion of carbon dioxide (CO2) into leaves, impacting the rate
of photosynthesis – the process that releases oxygen as a by-
product and produces the carbohydrates that fuel plant metabolic
functions, growth and development. At the same time, water
vapour released via stomatal pores enables water transport
through plants (Rizhsky et al., 2004; Sinha, 2004). Some plants
survive exposure to excessive heat by keeping stomata open and
cooling leaves through the evaporation of water. Conversely,

stomata close during drought to prevent water loss (Rizhsky
et al., 2004). Stomata also respond to stimuli over diel cycles,
such as light and dark, and a multitude of other signals to opti-
mise CO2 gain and water loss (Roelfsema & Hedrich, 2005; Shi-
mazaki et al., 2007). As a consequence, stomatal aperture
regulation during daily light and dark cycles, or in response to
environmental stresses, directly impacts plant growth, develop-
ment and survival (Hetherington & Woodward, 2003; Shima-
zaki et al., 2007; McLachlan et al., 2014).

Due to the importance of stomata, investigating stomatal regu-
lation has become a common task for biologists studying plant
signalling pathways and stress perception (Shimazaki et al., 2007;
Kim et al., 2010; Ye & Murata, 2016). To study stomatal traits
(i.e. size or density) and behaviour, researchers commonly use
microscopy (Chater et al., 2015; Eisele et al., 2016; Xu
et al., 2021), but this method is not straightforward. Morpholo-
gical differences in stomata of different species (Fig. 1) and vari-
able image quality make accurate stomatal density and pore
measurement a task that requires experience and training. Tradi-
tionally, stomatal pore measurement requires manual inspection*These authors contributed equally to this work.
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to identify and measure relevant features (i.e. stomatal counts,
pore area and aperture). Hundreds of stomatal images need to be
analysed to gain sufficient statistical power to support a biological
conclusion, a time-consuming and laborious task. Although man-
ual counting and measurement can be aided by image processing
software such as FIJI-IMAGEJ (Schindelin et al., 2012), manually
tuned parameters are required to produce acceptable performance
(Cheng et al., 2014). Thus, an automated stomatal counting and
pore measurement system is highly desirable and, with recent
advances in computer vision, such a system has become possible
to build.

Microscopy-aided imaging presents a uniquely controlled
environment in which to apply modern computer vision techni-
ques. Images can be captured in high resolution via calibrated
optics, reducing systematic noise. Plant anatomy also enforces
regularity in pattern, appearance and orientation (in monocot
grasses); these factors remove several of the common Achilles’ heels
of applied vision systems. Previous attempts have been made to
quantify stomatal density, pore width and area using traditional
computer vision techniques (Omasa & Onoe, 1984; Laga
et al., 2014; Vialet-Chabrand & Brendel, 2014; Duarte
et al., 2017; Bourdais et al., 2019; Sakoda et al., 2019). Although
these methods demonstrate efficacy on their respective tasks, they
rely on handcrafted and/or multistage processes. The use of Con-
volutional Neural Networks (CNNs) to detect stomatal attributes
has recently increased in popularity (Jayakody et al., 2017; Sapo-
naro et al., 2017; Toda et al., 2018; Bhugra et al., 2018, 2019;
Falk et al., 2019; Fetter et al., 2019; Li et al., 2019; Meeus
et al., 2020; Gibbs et al., 2021). Convolutional Neural Networks
enable a series of pertinent operations to be learnt from examples
– acting as a data-driven approximation of a sequence of compu-
ter vision operations.

More recently, Mask Regions with Convolutional Neural Net-
work features (Mask R-CNN) has been used to perform identifi-
cation and localisation of stomata. This method involves the
entire stomatal complex being detected, encircled by a polygon
with its orientation and stomatal complex area captured, infer-
ring axis length (Jayakody et al., 2021; Xie et al., 2021) or stoma-
tal density (Bheemanahalli et al., 2021). The algorithms were
successfully used across different species with varying image qual-
ity (Jayakody et al., 2021). Many studies only estimate stomatal
counts for density calculations (Vialet-Chabrand & Brendel,
2014; Duarte et al., 2017; Falk et al., 2019; Fetter et al., 2019;
Sakoda et al., 2019; Meeus et al., 2020; Bheemanahalli
et al., 2021). Of these methods, Fetter et al. (2019) is the only
study to provide a user-friendly application for researchers,
named ‘Stomata Counter’.

Fewer studies focus on stomatal pore measurements, with
semi-automated methods that require handcrafted feature
extractors or manual post-processing following model inference
(Laga et al., 2014; Jayakody et al., 2017; Bhugra et al., 2018,
2019; Li et al., 2019). Ellipse fitting is the common solution
used among these studies, for which the fitted ellipse’s area,
minor axis and major axis are used to estimate pore area, width
and length, respectively (Jayakody et al., 2017; Bhugra
et al., 2018, 2019; Li et al., 2019; Liang et al., 2021). However,
the fitting method is restricted to stomata with an ovular-
shaped pore (e.g. Arabidopsis stomata), so other pore shapes
(e.g. barley stomata) cannot be represented correctly, resulting
in under- or overestimation of pore features (Fig. 1c). None of
these studies offers a user-friendly automated stomatal pore
measurement tool.

Here, we present StomaAI (SAI) as an accessible and auto-
mated tool that allows stomatal counting (for stomatal density
estimation) and pore measurement of microscope images. Pre-
cise pore measurement is the core novelty of SAI, which is cap-
able of measuring pore area, length, width (i.e. aperture) and
width/length ratio. We demonstrate that measurements
obtained using SAI are comparable to those taken by human
experts, providing assurance of prediction reliability. This key
comparison has not been provided by contemporary studies that
normally use traditional computer vision evaluation criteria
such as F1 score or average precision (AP) to evaluate machine
performance. Due to differences in stomatal morphology, SAI
includes two class-specific models: a dicot model trained with
Arabidopsis data, and a monocot cereal model trained with bar-
ley data. We demonstrate that with c. 150 annotated images
containing c. 1700 stomata, SAI can be trained to count and
measure pores of different plant species. An online demonstra-
tion of our software, where model inference can be viewed, is
hosted at https://sai.aiml.team. To measure user-acquired sam-
ples, we provide a local version of SAI that can be accessed via
https://github.com/xdynames/sai-app. This article contains our
experimental materials and the information required to use SAI
in the Methods; information to implement and retrain the tool
in the Supporting Information; performance of the tool in the
Results (and Supporting Information); and the significance of
SAI in the discussion.

Fig. 1 Stomata of Arabidopsis thaliana and barley (Hordeum vulgare).
Representative captured Arabidopsis (a) and barley (b) epidermis used as
inputs to StomaAI. Arabidopsis images were captured at 25929 1944
pixel resolution with 109 20 magnification, and barley images were
captured at 28809 2048 pixel resolution with 109 10 magnification.
Components of Arabidopsis and barley stomata (c) that are rotated and
magnified from original image (a) and (b) (indicated by black bounding
box) are highlighted in pseudo colour and labelled; bars, 10 lm.
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Materials and Methods

Plant material, data annotation and modelling

Arabidopsis thaliana ecotype Col-0 and barley (Hordeum vulgare,
cv Barke) fresh epidermal peels were used as plant materials for
image capture. Arabidopsis images were captured using Axiophot
Pol Photomicroscope (Carl Zeiss) with 109 20 magnification at
25929 1944 resolution. A Nikon DS-Fi3 digital camera with a
Nikon Diaphot 200 inverted microscope was used to capture
barley images with 109 10 magnification at 28809 2048 reso-
lution.

As mentioned above, researchers currently inspect each cap-
tured microscope image to count and/or measure relevant struc-
tures manually. Pore measurement depends upon the pore’s
opening status. The area of an open stoma can be measured by
drawing a polygon that encloses its mouth. Pore width and length
can either be directly measured or estimated by applying fitting
methods to the aforementioned polygon. Lengths of closed pores
are acquired by selecting points that mark the beginning and end
of their tightly shut mouth.

For SAI, we re-created this process with pore feature annota-
tion using RectLabel (v.3.03.8, https://rectlabel.com). In a given
annotation, two labels were ascribed to each stoma – a bounding
box delineating a single stoma and its status (open or closed;
Fig. 2), and stomatal pore features were recorded as a polygon for
open stomata or as a line for closed stomata. In an open stoma, a
series of points were labelled such that they form a polygon. This
polygon enclosed the area formed between guard cells as a result
of the pore opening. Stomatal pore area was derived from the
polygon area. Two of the points were positioned where the two
guard cells intersect at each end of the pore (where the polygon
was longest). These points were extracted and used as the open
pore’s length/keypoint annotation. However, when a stoma was
closed, the pore’s length and associated keypoints were derived
from the beginning and the end of the line formed by the guard
cells pushing against one another (see Fig. 2, indicated by
arrows). All information was organised for compatibility with
Microsoft Common Objects in Context (MS-COCO), a widely
used computer vision benchmark (Lin et al., 2014). Summary
statistics of the created database of microscopy images are pre-
sented in Table 1.

When a model emulates a researcher performing these mea-
surements, it must locate target structures within a sample, com-
ment on their state and gather relevant measurements. We have
reformulated each one of these tasks into a computer vision task.
A researcher’s initial identification (counting) of stomata and
their opening status is re-framed as object detection, which consists
of drawing boxes around salient objects and predicting that
object’s semantics. Drawing polygons indicating stomatal pore
opening becomes segmentation, which highlights regions of inter-
est within images. Selecting end points for a stomatal pore is ana-
logous to keypoint detection, which reduces visual features of
interest to a defining pixel. Each of these tasks has a library of
possible models capable of solving them individually, but candi-
date models that can solve object detection, segmentation and

keypoint detection in tandem are much rarer. The Mask R-CNN
is one such model and represents an incremental change atop an
already established series of deep-learning architectures (Girshick
et al., 2014; Girshick, 2015; He et al., 2017; Ren et al., 2017).
Through the use of specialised predictive heads, this iteration
comes armed with the requisite predictive powers for our physio-
logical needs.

Deep-learning models were built using DETECTRON 2 (Wu
et al., 2019), an open-source framework sitting on top of
PYTORCH (Paszke et al., 2019). Both packages were created by
Facebook’s Artificial Intelligence Research division (FAIR).
Adaptions were made to FAIR’s Mask R-CNN model to better
suit stomatal pore measurement, specifically, increasing the reso-
lution of prediction heads responsible for segmentation and key-
point detection. Mean average precision (mAP), as defined in the
MS-COCO Challenge 2017, was used to evaluate and compare
models on all tasks (Lin et al., 2014). Justification and verifica-
tion of model design choices and training regimes are presented
in Supporting Information Methods S1–S8. Pseudocode for the
tool’s core measurement and processing loop is provided in

Fig. 2 Annotation examples of Arabidopsis and barley stomata. Bounding
boxes contain a single Arabidopsis or barley stoma (i.e. a pair of guard cells
and a pair of subsidiary cells from barley) and its opening status is
determined in different labels (open stoma in cyan, closed stoma in
yellow). The red polygon and line define the stomatal pore. Red arrows
indicated the position of points that were extracted from the polygon or
line as stomatal pore length annotation. Bars: 10 lm in Arabidopsis; 20 lm
in barley.

Table 1 Summary metrics for stomatal pore dataset used in model training
and evaluation.

Images
Stoma instance
(Open/Closed)

Train Validation Train Validation

Arabidopsis 200 42 974/293 235/55
Barley 150 33 1000/692 268/89
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Method S9. Code used to train models, associated model weights
and relevant image data can be found at GitFront: https://
gitfront.io/r/jpb/u6BtFFMkNGCv/SAI-training/. The local ver-
sion of SAI is available at https://github.com/xdynames/sai-app.
Detailed user installation instructions and user guide are available
in the Notes S1 and S2.

Average-Human/Machine Test

To determine whether SAI predictions were consistent with
human measurement, an Average-Human/Machine Test was
designed. In total, 35 microscopy images (15 of barley and 20 of
Arabidopsis) were collated as a test dataset (details summarised in
Table 2). Four plant stomatal morphology experts manually mea-
sured stomata (Arabidopsis: n = 149, barley: n = 175) in the 35
images. For stomatal counts, the human-level reference was the
number that the majority of experts identified; where there was
no majority count, a mean was used. For other measurement
attributes, mean values derived from the four human experts were
used as the human-level reference. Participants used the data
annotation schema as described above.

To compare SAI and human expert measurements, stomatal
counts and density were matched on a per-image basis, while sto-
matal pore width, length, area and width/length ratio were
matched per stoma. Differences between SAI/human experts and
human-level reference measurements were visualised with scatter
plots and quantified by relative error (RE). Error in stomatal
counting was evaluated using the difference between SAI’s and
the human-level reference’s count. To evaluate the agreement
between SAI, human experts and the human-level reference, the
concordance correlation coefficient (CCC; ranging from �1 to
1) was applied (Lin, 1989). Furthermore, for each measurer, the
total number of stomata counted and the means of the other
measurement attributes were compared using one-way ANOVA
with a Tukey’s Honest Significance Difference (HSD) test.

SAI in practice

To justify whether SAI can be used as a replacement for tradi-
tional stomatal pore measurement methods, we compared a pre-
viously published conventionally measured dataset with SAI
measurements to ascertain whether the same scientific conclu-
sions using both measurement techniques were aligned. Manually
measured image datasets of both Arabidopsis and barley were
obtained from Xu et al. (2021). Two different experimental
designs were selected to evaluate SAI’s real-world performance:
the 25 lM abscisic acid (ABA)� 2 mM c-aminobutyric acid

(GABA) for Arabidopsis; and dark-to-light transition �1 mM
GABA for barley (figs 3b, 5g from Xu et al., 2021). Reference
measurements for the two datasets were made by different
researchers: Arabidopsis measurements were taken by human
expert 2, and barley samples were measured by human expert 4.
Measurements produced by SAI were subjected to the same sta-
tistical tests used in Xu et al. (2021) to examine whether SAI pro-
vides results consistent with human experts.

Inference time assay

The efficiency of SAI was tested on a range of commonly avail-
able computer hardware using the same set of 35 sample images
used in the above Average-Human/Machine Test (details sum-
marised in Table 2). A series of processors were tested on the
same image set of Arabidopsis and barley at the native resolution
of images for each species. For all tests, no user-defined filter was
applied. Time to process each image was recorded and used to
estimate the average model inference time with post-processing
with sample standard deviation for each processor (Arabidopsis:
n = 20, barley: n = 15). These measures were then used to com-
pare throughputs.

Overview of SAI workflow

The inference and post-processing pipeline used in SAI is simpli-
fied and illustrated in Fig. 3. Images of stomata from fresh epi-
dermal peels captured using a bright field optical microscope are
required for SAI. A 109 20 magnification at 25929 1944 reso-
lution for Arabidopsis images and 109 10 magnification at
28809 2048 resolution for barley are recommended for best
results. Captured microscope images may require format conver-
sion if images are not in a supported format (png, bmp, jpg, jpe,
jp2 and tiff).

At its core, SAI uses the deep neural network Mask-R-CNN to
generate proposals for pore measurements in two main stages.
Initially, an image is parsed by the region proposal network and
smaller image areas are identified as regions of interest. In our
case, regions being selected should contain a single stoma. Once
the region proposals are generated, each one is passed to four dif-
ferent prediction heads, each responsible for a different type of
measurement. One head produces a bounding box that further
localises the stomatal complex; another predicts whether the sto-
matal pore is open or closed; a third attempts to mask the open
region of the pore; and the final head estimates the location of
two keypoints denoting the beginning and end of the stomatal
pore.

Many of these predictions can be duplicated, incomplete or
contain errors and thus require treatment. SAI has a series of
post-processing steps to increase measurement validity. Remov-
ing duplicate detections is done using nonmaximum suppression.
This technique finds predicted bounding boxes with significant
overlap – an intersection over union (IoU) of > 0.2 – and dis-
cards the measurements for the complex with the lowest confi-
dence score. The confidence score is an arbitrary scalar between 0
and 1 output by the network, which indicates how strong the

Table 2 Summary of Average-Human/Machine Test dataset.

Images

Stomata

Open Closed

Arabidopsis 20 129 20
Barley 15 109 66
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response of its classification head was to the region. SAI internally
filters all measurements from detected complexes with a confi-
dence score < 0.6 as this allows the majority of false positives to
be removed while retaining valid detections for counting and
pore measurement. Occasionally, images will contain stomata
that are cut off by the image’s framing; detections found close to
the edge have their associated pore measurements discarded, but
those whose bounding box is > 50% of the average size for that
image are retained for counting. Any stomata whose pore length
measurement is extremely small (< 5 pixels) will also have their
measurements discarded, but the bounding box retained for
counting.

After this initial filtering, additional measurements are com-
puted for each stoma. All detections will have their length esti-
mated from keypoint detections. Depending on their opening

status, detections are treated differently. If a stoma is classified as
closed, the pore’s width and area measurements are set to zero.
Open stomata have their pore areas and widths calculated from
their mask and keypoint detections, respectively. Stomatal pore
width calculation is done by finding the intersection points of the
stomatal pore mask and the mid-line normal to the length key-
points (Fig. 3, right upper panel). Collectively, measurements
from all stomata across all images are used to inform anomaly
removal via interquartile range (IQR) filtering. All samples whose
pore length is < 2 IQRs below the median are excluded, as are
samples whose bounding box width or height are 2 IQRs above
or below the median value (bounding box IQR calculation
excludes stomata on image edges). Samples that pass all these cri-
teria are then subjected to two user-defined filters, where users
can adjust the confidence score threshold to > 0.6 and/or exclude

Fig. 3 The inference and post-processing pipeline of StomaAI (SAI). The image-to-measurement process is divided into several stages. At the measurement
calculation stage, stomatal pore area was calculated by the number of pixels within pore mask (blue); length was calculated through the geometric distance
between predicted keypoints (AB), and width was obtained by finding the intersection points of pore mask and mid-perpendicular line of AB (i.e. points C
and D). Arrow indicate the direction of data flow. ^Supported image format: ‘png’, ‘bmp’, ‘jpeg’, ‘jpg, ‘jpe’, ‘jp2’, ‘tiff’, ‘tif’. #Internal confidence thresh-
old = 0.6. *User defined threshold including immature stomata filtering (via stomate pore length) and confidence threshold.
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samples below a minimum length to discard immature stomata.
The minimum length filter is not applied to the results of the
counting task.

After user-defined filtering, the remaining samples have their
width/length ratios and stomatal density calculated, and output
as two comma-separated values (CSV) files for further analysis.
For pore measurements, each stoma has a row that includes an
identifier for the pore (id), the name of the image it was extracted
from (image name), whether the pore is open or closed (class), its
measured pore length, width, area, width/length ratio and the sto-
matal pore’s associated confidence score (confidence). For count-
ing, each image has a separate row that contains the image name
(image name), number of stomata and estimated density. This
information can be saved by the users in an image format visualis-
ing the masks and measurements overlaid onto the original
images to allow users to verify SAI’s predictions. Bounding boxes
indicate counted stomata, while polygon and lines mask over the
stomatal pore indicate pore measurements. Example of output
CSV and measurement visualisation are illustrated in the Fig. S1.

Results

Average-Human/Machine Test

Beyond assessing performance using traditional metrics (details
in Methods S2), we show that SAI produces measurements
equivalent to human-level performance. To compare independent
human operators (multiple plant physiology researchers) with
SAI, we applied an Average-Human/Machine Test. Stomatal
counts, density, pore width, length, area and width/length ratio
were measured by SAI (Figs 4, S2) and human experts (Fig. S3).
Stomatal counts and pore width measurements obtained from
SAI, when plotted against human-level reference, generally align
with y = x; indicating that number and pore width measurements
are consistent with the human-level reference (Fig. 4). Stomata
incorrectly identified as open or closed can be identified along
the x- or y-axes (Fig. 4b).

Overall, SAI achieved a CCC in Arabidopsis and barley of
0.969 and 0.992 in stomata counting (Fig. 4a), and 0.891 and
0.984 for stomatal pore width (Fig. 4b), respectively. Concor-
dance correlation coefficients in stomatal density (Fig. S2a), and
pore length, area and width/length ratio (Fig. S2b) were 0.971,
0.909, 0.928 and 0.865 for Arabidopsis, and 0.978, 0.965, 0.985
and 0.985 for barley, respectively. Considering that any open
Arabidopsis stomata with a pore width of < 1 lm will have a
minimal impact on transpiration, excluding them from the
human-level reference increases the SAI CCC to 0.916. Human
experts show average CCCs of 0.949 and 0.985 in Arabidopsis
and barley stomata counting (Fig. S3a), and 0.945 and 0.985 in
Arabidopsis and barley stomatal pore width (Fig. S3c), respec-
tively. Relative error in stomatal density and pore measurements
from SAI were distributed in a similar pattern to those from
human measurements (Figs 4b, S3b–f). Judging stomatal pore
width and area for near-closed stomata is more difficult than for
open stomata, which creates a skew in the RE histogram where
errors are more frequently observed in small measurements.

Estimation of stomatal pore length was not affected by stomatal
opening status, so REs were spread evenly between under- and
overestimation.

The total number of counted stomata, means of stomatal den-
sity and pore measurements were calculated and compared from
each measurement source (SAI and human experts; Fig. 5;
Tables S1, S2). No significant differences were found for stoma-
tal density (Fig. 5a) or stomatal pore features (Fig. 5b) across
either Arabidopsis or barley samples when SAI was compared
with the human-level reference. Additionally, SAI exhibits no sig-
nificant difference from individual human experts, except in the
case of expert 2 for Arabidopsis length measurements (Fig. 5b).
In fact, human expert 2 provided the most conservative results
for Arabidopsis, with significantly smaller measurements for pore
area, length or width than human experts 1 and 3, and pore
length measurements than SAI.

Application on real-world physiological experiments

SAI was used to measure two sets of published physiological
experiments. The original images used for Xu et al. (2021) were
processed with SAI. Traditionally, researchers will exercise their
discretion by consciously measuring only stomata they deem
mature. SAI measures indiscriminately. However, we were able
to emulate this human practice via filtering detections by exclud-
ing stomata with pore length < 2 lm in Arabidopsis and < 16 lm
in barley. SAI and the original manual measurements from Xu
et al. (2021) were compared using one-way ANOVA with
Tukey’s HSD (Fig. 6). Scientific conclusions drawn from the sta-
tistical tests were consistent between SAI and the original
researchers: Arabidopsis stomata close in response to 25 lM ABA
�2 mM GABA, and light-induced barley stomatal opening was
inhibited by the presence of 1 mM GABA.

The mean and distribution of stomatal pore widths obtained
by SAI in each treatment group were compared with the original
published measurements. SAI detected 66.4% and 91.4% of the
manually measured data reported by Xu et al. (2021) in Arabi-
dopsis and barley, respectively. The better detection performance
on barley stomata is likely due to the regular stomatal orientation
and distribution on a barley leaf, and the higher image quality of
barley data (see Fig. 1b). For both barley and Arabidopsis, distri-
butions of stomatal pore width measurements produced by SAI
were similar to those produced via manual inspection (Fig. S4).
Human expert 2, who was identified as the most conservative
measurer in our Average-Human/Machine Test, was responsible
for measuring Arabidopsis stomata in the Xu et al. (2021) report,
so the lower mean value for published Arabidopsis stomatal pore
widths was expected (Figs 5, 6).

Inference time assay

Fig. 7 shows the average time required to process a microscope
image (module inference time and post-processing time) on a
range of commonly available hardware. Model inference time is
predominantly limited by image resolution and computation
speed. Due to this, barley data (28809 2048 resolution)
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generally took longer to process than Arabidopsis data
(25929 1944 resolution) on the same processor.

Discussion

SAI provides a new way to analyse stomata, one of the most stu-
died plant cell types. Our tool allows stomatal counting and mea-
surement of a series of stomatal pore features including stomatal
density and pore opening status, width, length and area to be
extracted from one set of images simultaneously. SAI generally
produced better predictions on barley than Arabidopsis reflected
in the CCC values obtained (Figs 4, S2), largely due to image
quality used in this study, and leaf epidermis morphological
structure (Fig. 1). Although stomata themselves have a relatively
uniform structure, the random distribution and orientation of
Arabidopsis stomata (Fig. 1a) make the measurement task more
challenging than for barley, whose stomata are aligned in parallel
rows with fixed orientations (Fig. 1b). Using criteria outlined in
Jayakody et al. (2021) to assess image quality, we found that

Arabidopsis samples were rated as medium quality, whereas bar-
ley samples are considered high quality. The observed disparity
in measurement quality supports the claim that image quality has
a major impact on model performance (Jayakody et al., 2021).

Ellipse fitting is a commonly used method in automated sto-
matal pore measurement systems to estimate pore area, width
and length (Jayakody et al., 2017; Bhugra et al., 2018, 2019; Li
et al., 2019; Liang et al., 2021). However, ellipse fitting is limited
to stomatal pores that have ovular shapes, such as dicot stomata
delineated by kidney-shaped guard cells (Fig. 1c). Plants like bar-
ley, which have stomatal pores delineated by dumbbell-shaped
guard cells, have pores that resemble a coin slot, which cannot be
represented accurately by an ellipse, leading to under- or overesti-
mation in derived measurements (Fig. 1c). SAI uses direct mask
segmentation of the stomatal pores, which can flexibly represent
any pore shape and calculate pore area from the masked pixel
area. Moreover, the efficacy of ellipse fitting is positively corre-
lated with the extent of stomatal pore opening (Li et al., 2019),
so it cannot be used effectively for stomatal pore assays under

Fig. 4 StomaAI (SAI) prediction vs average
human-level reference set in Arabidopsis and
barley stomatal counting (a) and pore width
(b). Stomatal counts and pore measurements
from four human experts were collected and
converted to a human-level reference. In the
upper panel, SAI predictions were compared
against the reference and the concordance
correlation coefficient (CCC, ranging from
�1 to 1) was used to determine accuracy
performance. The black diagonal line
represents y = x and CCC is a measure of
dispersion for the points from this line. The
corresponding count difference and relative
error to human-level reference is presented
in the lower panel.

New Phytologist (2023) 238: 904–915
www.newphytologist.com

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

Research Methods
New
Phytologist910

 14698137, 2023, 2, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18765 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [16/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



experimental conditions that measure stomata that are partially
or completely closed (e.g. stomata exposed to ABA, high CO2,
H2O2, or darkness; Zhang et al., 2001; Chater et al., 2015; Xu
et al., 2021). To solve this issue, SAI classifies stomata before
measuring, so that open and closed stomata are managed sepa-
rately and accurately reported (Fig. 3, status-specific processing).

We have determined that SAI achieves human-level perfor-
mance and produces consistent conclusions with human
researchers (Figs 4–6). Beyond this, SAI has many advantages
compared with manual measurement. SAI produces stable and
reproducible measurements, unlike rater’s bias created by indivi-
dual humans as observed in our Average-Human/Machine Test
(Figs 5, S3). SAI’s consistent predictions guarantees that counting
and measurements are reproducible from the same set of samples.
SAI can also enable researchers to rapidly verify conclusions from

existing reports without weeks of human effort. Provided that the
samples from which a biologist draws their conclusions are avail-
able, SAI can produce a set of measurements within minutes,
ready for statistical analysis and assessment (Fig. 7).

SAI detects fewer stomata than experts for pore measurement
but not counting (Tables S1, S2). The tasks of stomatal counting
and pore measurement have different purposes. Stomatal count-
ing aims to identify each stoma in an image, while pore measure-
ment requires analysis of fine details of the stomatal pore.
Human experts can use their experience to measure stomatal
pores that are blurry, occluded, truncated or unresolved, whereas
SAI will ascribe a low level of confidence to such samples and dis-
cards them below a minimum value of confidence (0.6) to pre-
vent false positives (incorrect prediction of stomatal presence).
SAI prioritises measurement precision over quantity, discarding

Fig. 5 Measurement comparison of stomatal
density (a) and pore measurements (b) in
width, length, area and width/length ratio of
Arabidopsis and barley. Stomatal density
from individual image and stomatal pore
measurement were visualised in box and
whiskers plots. Whiskers plot represents
minimum and maximum values, and box plot
represents first quartile, median and third
quartile. Four human experts on stomatal
morphology, human-level reference (the
average of human measurements) and
StomaAI (SAI) presented with one-way
ANOVA with Tukey’s Honest Significance
Difference test (density: n = 20 in
Arabidopsis, n = 15 in barley; pore
measurements: n > 120/measurer in
Arabidopsis, n > 160/measurer in barley). No
differences found between source of
measurements in stomatal density and all
pore measurement attributes barley, a and b
represent groups without significant
difference in Arabidopsis, P ≤ 0.05 between
group.
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blurry, occluded or unresolved stomata, or those that appear to
be truncated by an image edge, although these latter may be
retained for counting. While pore measurements that could be
salvaged by experts are often discarded by SAI, it is important to
note that the extraction of pore measurements from every stoma
in an image becomes less important due to SAI’s high throughput
and ability to measure orders of magnitude more stomatal pores
across many more images in a fraction of the time. Future
enhancements to SAI could incorporate the ability to measure
stomatal pore apertures from images that cover the same area but
at a different focal plane to incorporate the majority of currently
discarded stomata.

Compared with manual processes, SAI is exceptionally effi-
cient. From experience, human experts take 2–5 min to process

one image depending on its quality, the number of stomata pre-
sent, the measurements required and stomatal opening status.
SAI can produce measurements from a high-resolution image in
6–12 s while running on a mid-range desktop computer’s central
processing unit (CPU; Fig. 7). When using a graphics processing
unit (GPU), SAI further increases the disparity between human
and machine measurement. On an Nvidia GTX 1070, SAI is able
to process an image in 700 ms. With a higher-level GPU, SAI
can process hundreds of images per minute – the equivalent out-
put of 4–9 h of human work. Automatically processing images
using SAI makes it trivial to quickly achieve minimum measure-
ment numbers required per treatment group for statistical testing
(100–200 stomata are routinely used in physiological research);
indeed, SAI enables researchers to increase the statistical power of

Fig. 6 StomaAI (SAI) predicted
measurements are consistent with outcomes
obtained by human researchers. Stomatal
pore width in SAI predictions and human
measurements collected from original
microscope images with treatment under
25 lMABA with 2mM GABA (Arabidopsis)
or 1mM GABA (barley) during a dark-to-
light transition (Xu et al., 2021). Boxes show
first quartile, median and third quartile;
whiskers extend to minimum and maximum
values. Data were tested using one-way
ANOVA followed by Tukey’s Honest
Significance Difference (n > 140/group in
Arabidopsis, n > 150/group in barley). Letters
indicate significant differences at P ≤ 0.0001;
****, P ≤ 0.0001.

Fig. 7 Time elapsed for measurement from
start to finish was measured when processing
a single microscope image using StomaAI
Image processing time (model inference time
and post-processing time) were recorded. All
processors are tested on the same image set
of Arabidopsis and barley at the native
resolution of images from each species. For
all tests, the confidence threshold was set to
0.6. Bars shown mean� SD of inference time
per sample (Arabidopsis: n = 20, barley:
n = 15). All processors were on desktop
computers, except Intel i5-7267U (MacBook
Pro 2017), Intel i5-10310U, Ryzen 5800H,
Apple M1 Pro (MacBook Pro 2022) and
Nvidia 3070, which were on a laptop.
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their conclusions by easily counting thousands of stomata, a pre-
viously unthinkable number. By decoupling human effort from
measurement, researchers can also analyse stomata under many
more experimental conditions. The law of large numbers will
provide more accurate summary statistics and presumably allow
detection of smaller variations in stomatal function due to treat-
ments or genetics than at present.

This hassle-free, high-resolution, time-efficient data acquisi-
tion assistant has the potential to accelerate research on a cell type
that has a major impact on plant physiology. Moreover, SAI’s
ability to learn how to measure stomata from both barley and
Arabidopsis gives us confidence in its ability to do so in other spe-
cies. Towards this, we provide an additional model with SAI that
has been trained on a combined species dataset (available at Git-
Front https://gitfront.io/r/jpb/u6BtFFMkNGCv/SAI-training).
As stomata share some common visual features, this model can
be used as a starting point for researchers wishing to use SAI on a
new type of plant. A set of measured examples that conform to
our annotation format could be used to fine-tune the provided
combined species model.

In this study, we only consider using SAI in stomata counting
and pore feature measurement. However, given sufficient labelled
data, extension to measurement of other relevant cell structures
would be possible (e.g. total stomatal size to extrapolate conduc-
tance measurements, or measurements of subsidiary cell charac-
teristics). More generally, SAI could be used to measure other
structures captured via microscopy (e.g. trichomes or surface
lesions caused by pathogens). We encourage researchers to contri-
bute to SAI themselves, or to contact us and collaborate to
increase its utility.

StomaAI is a reliable and efficient solution to automate stoma-
tal pore measuring for plant biologists via a user-friendly web app
(online demo at https://sai.aiml.team; the full version is available
at https://github.com/XDynames/SAI-app). StomaAI is a new
tool that can free researchers from labour-intensive, low-
throughput measurement tasks, accelerating the speed of
physiology-based plant research, regardless of the shape of the
stomatal pore.
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