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Abstract

IMPORTANCE Repeated doses of antenatal betamethasone are recommended for women at less
than 32 weeks’ gestation with ongoing risk of preterm birth. However, concern that this therapy may
be associated with adverse neurocognitive effects in children with fetal growth restriction
(FGR) remains.

OBJECTIVE To determine the influence of FGR on the effects of repeated doses of antenatal
betamethasone on neurocognitive function in midchildhood.

DESIGN, SETTING, AND PARTICIPANTS This preplanned secondary analysis of data from the
multicenter Australasian Collaborative Trial of Repeat Doses of Corticosteroids (ACTORDS) included
women at less than 32 weeks’ gestation with ongoing risk of preterm birth (<32 weeks) at least 7 days
after an initial course of antenatal corticosteroids who were treated at 23 hospitals across Australia
and New Zealand from April 1, 1998, through July 20, 2004. Participants were randomized to
intramuscular betamethasone or saline placebo; treatment could be repeated weekly if the woman
was judged to be at continued risk of preterm birth. All surviving children were invited to a
midchildhood outcome study. Data for this study were collected from October 27, 2006, through
March 18, 2011, and analyzed from June 1 through 30, 2018.

INTERVENTIONS At 6 to 8 years of corrected age, children were assessed by a pediatrician and
psychologist for neurosensory and cognitive function, and parents completed standardized
questionnaires.

MAIN OUTCOMES AND MEASURES The prespecified primary outcomes were survival free of any
disability and death or survival with moderate to severe disability.

RESULTS Of 1059 eligible children, 988 (55.0% male; mean [SD] age at follow-up, 7.5 [1.1] years)
were assessed at midchildhood. The FGR rate was 139 of 493 children (28.2%) in the repeated
betamethasone treatment group and 122 of 495 (24.6%) in the placebo group (P = .20). Primary
outcome rates were similar between treatment groups for the FGR and non-FGR subgroups, with no
evidence of an interaction effect for survival free of any disability (FGR group, 108 of 144 [75.0%]
for repeated betamethasone treatment vs 91 of 126 [72.2%] for placebo groups [odds ratio [OR], 1.1;
95% CI, 0.6-1.9]; non-FGR group, 267 of 335 [79.7%] for repeated betamethasone vs 283 of 358
[79.0%] for placebo groups [OR, 1.0; 95% CI, 0.7-1.5]; P = .77) and death or moderate to severe
disability (FGR group, 21 of 144 [14.6%] for repeated betamethasone treatment vs 20 of 126 [15.9%]
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Abstract (continued)

for placebo groups [OR, 0.9; 95% CI, 0.4-1.9]; non-FGR group, 29 of 335 [8.6%] for repeated
betamethasone vs 36 of 358 [10.0%] for placebo [OR, 0.8; 95% CI, 0.4-1.3]; P = .84).

CONCLUSIONS AND RELEVANCE In this study, repeated antenatal betamethasone treatment
compared with placebo was not associated with adverse effects on neurocognitive function at 6 to 8
years of age, even in the presence of FGR. Physicians should use repeated doses of antenatal
corticosteroids when indicated before preterm birth, regardless of FGR, in view of the associated
neonatal benefits and absence of later adverse effects.
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Introduction

Antenatal corticosteroid therapy remains one of the most effective treatments for preterm infants,
and administration of a repeated dose or doses in women who are at ongoing risk of preterm birth at
least 7 days after an initial course results in additional neonatal benefits.1 These benefits include
reduced risk of preterm lung disease (especially severe disease), other combined serious neonatal
morbidity, and patent ductus arteriosus. The absolute benefits of repeated-dose therapy are similar
to those of an initial course.2 These clinical data are supported by studies in animals and human fetal
lung explants showing that optimal structural and functional maturation requires serial exposure of
fetal tissues to corticosteroids.3

However, animal studies have also revealed the potential for adverse long-term effects on organ
development with increasing fetal exposure to corticosteroids. This potential is of particular concern
for neural tissues with demonstration in different species that repeated or higher doses of
corticosteroids can result in reduced brain mass,4 compromised structural development and
neuronal maturation,5 diminished cellular proliferation and differentiation,6 reduced population of
hippocampal neurons,7,8 and adverse development of the hypothalamic-pituitary-adrenal axis.9

These findings have contributed to the cautious clinical recommendations on the use of repeated
doses of antenatal corticosteroids.10

Recent evidence from the Australasian Collaborative Trial of Repeat Doses of Corticosteroids
(ACTORDS) has shown that use of repeated doses of antenatal corticosteroids in humans is not
associated with adverse effects in offspring at midchildhood, including neurocognitive function,
learning, behavior, growth, lung function, and cardiometabolic function.11,12 Nevertheless, clinical
uptake of repeated doses of corticosteroids has been limited, and concern remains about the safety
of this therapy in the context of fetal growth restriction (FGR), which is commonly associated with
very preterm birth.13,14 Preterm-born children with FGR are at increased risk of adverse long-term
neurodevelopmental outcomes and behavioral dysfunction,15 but at present, no published data are
available from randomized clinical trials on the efficacy and safety of repeated-dose corticosteroid
therapy in this important clinical subgroup. Therefore, we undertook a secondary analysis of data
from the ACTORDS to determine the influence of FGR on the effects of repeated doses of antenatal
betamethasone on neurocognitive function and behavior in midchildhood.11

Methods

ACTORDS Trial
ACTORDS was a placebo-controlled, randomized clinical trial of repeated antenatal betamethasone
treatment conducted at 23 collaborating hospitals across Australia and New Zealand.2 The full trial
protocol appears in Supplement 1. Eligible women had a single, twin, or triplet pregnancy at less than
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32 weeks’ gestation, with an ongoing risk of preterm birth at least 7 days after an initial course of
antenatal corticosteroids. A total of 982 women (1146 fetuses) were randomized, via a central
telephone service, to an intramuscular dose of betamethasone (Celestone Chronodose, consisting of
7.8 mg of betamethasone sodium phosphate and 6 mg of betamethasone acetate) or saline placebo.
The treatment could be repeated each week if the woman was judged to be at continued risk of
preterm birth, until 32 weeks’ gestation.2 At 2 years of corrected age, neurodevelopment, growth,
and general health were similar between groups.16 Although the midchildhood assessment was not
part of the original trial protocol, this assessment was planned before the completion of the 2-year
follow-up owing to concerns about the potential for long-term adverse effects of fetal corticosteroid
exposure.11 Written informed consent was obtained from caregivers, and children provided assent
for assessment. The Midchildhood Outcomes Study was approved by the National Health and
Disability Ethics Committee in New Zealand and by regional Health Research Ethics Committees in
Australia. This report has been prepared according to the Consolidated Standards of Reporting Trials
(CONSORT) reporting guidelines for clinical trials.

Midchildhood Outcomes Study
All surviving children of mothers who had participated in ACTORDS were invited to partake in the
Midchildhood Outcomes Study of neurocognitive function and general health at 6 to 8 years of
corrected age.11 Children were assessed by a pediatrician and a psychologist who were blinded to
treatment allocation.11 The pediatric assessment included a physical and neurologic examination,
vision and hearing screening, and tests of fine and gross motor function using the Movement
Assessment Battery for Children, Second Edition (MABC-2).17 Several children underwent
assessment using the earlier edition of the MABC. Cerebral palsy was defined as a nonprogressive
loss of motor function with disordered muscle tone or tendon reflexes18 and was graded according to
gross motor function criteria of Palisano et al19 (mild, grade 1; moderate, grades 2-3; and severe,
grades 4-5). Blindness consisted of visual acuity of worse than 20/200 in the better eye. Deafness
consisted of hearing loss requiring hearing aids or worse.

The psychological assessment included the Wechsler Abbreviated Scale of Intelligence.20 The
full-scale IQ was derived from the Vocabulary, Similarities, Block Design, and Matrix Reasoning
subtests. Scores were age standardized with a normative mean (SD) of 100 (15). Intellectual
impairment was classified as mild (IQ of 1-2 SDs below the mean), moderate (IQ of >2 to 3 SDs below
the mean), and severe (IQ of >3 SDs below the mean). Children with severe intellectual impairment
who were unable to complete the Wechsler Abbreviated Scale of Intelligence were assigned an IQ
score of 40.

Attention was assessed using subtests from the Test of Everyday Attention for Children.21

Selective visual attention was assessed using the Sky Search subtest; sustained attention, the Score!
subtest; shifting attention, the Creature Counting subtest; and divided attention, the Sky Search Dual
Task subtest. Scores in the Sky Search, Score!, and Creature Counting subtests were age standardized
(test mean [SD], 10 [3]). Performance in the Sky Search Dual Task subtest was determined by the
mean of the proportion of visual targets correctly identified plus the proportion of correct auditory
counting games multiplied by 100.21 The range of possible values is 0 to 100, and although this
scoring procedure has no published norms, the mean (SD) score in a study of 173 control children at
8 years of age was 80.3 (16.5).22

Executive function was assessed using the Rey Complex Figure Test23 and the Fruit Stroop
Task.24 The Complex Figure Test assesses complex spatial organization; children’s copying of a
complex geometrical figure was scored for accuracy (maximum score of 36)23 and strategic
organization.25 The Fruit Stroop Task assessed impulse control, with performance determined by the
number of correct responses in 45 seconds (naming the true color of fruit that was presented in
conflicting colors).11 Academic skills were assessed using the word reading, spelling, and math
computation subtests of the Wide Range Achievement Test, fourth edition.26 Each scale is age
standardized with a normative mean (SD) of 100 (15).
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Caregivers completed questionnaires, including the Strengths and Difficulties Questionnaire to
assess general behavioral and emotional problems,27 the Behavior Rating Inventory of Executive
Function to assess behavioral manifestations of inattention and executive function,28 and the
Conners’ ADHD/DSM-IV Scales29 to assess for features of attention-deficit/hyperactivity disorder.
Neurosensory disability included cerebral palsy, intellectual impairment, or blindness or deafness and
was graded as mild (mild cerebral palsy or IQ of 70-84), moderate (deafness, moderate cerebral
palsy, or IQ of 55-69), or severe (blindness, severe cerebral palsy, or IQ of <55).

Study Hypothesis
Children who completed 1 or more of the neurocognitive tests at 6 to 8 years of corrected age were
included in this secondary analysis of data from the midchildhood assessments of the ACTORDS.11

The prespecified primary outcomes for this study were survival free of any neurosensory disability
and death or moderate to severe disability. To reduce the risk of type I error, the following secondary
outcomes were selected a priori as key indicators of function in the each neurocognitive domain: (1)
cognition using full-scale IQ and cognitive impairment (IQ <85); (2) motor using cerebral palsy and
low motor function (MABC total score <15th centile); (3) attention using Test of Everyday Attention
for Children subtest scores; (4) executive function using Rey Complex Figure Test accuracy and
organization scores and the number of correct Fruit Stroop Task responses (trial 4); (5) educational
achievement using Wide Range Achievement Test, edition 4, scores in reading, spelling, and
mathematics; and (6) behavior using the Strengths and Difficulties Questionnaire Total Difficulties
score (range, 0-40, with 14-16 indicating borderline and �17 abnormal),27 Behavior Rating Inventory
of Executive Function Global Executive Composite t score (mean [SD], 50 [10]), and Conners’
ADHD/DSM-IV Scales ADHD Index t score (mean [SD], 50 [10]).

We hypothesized that exposure to repeated antenatal betamethasone treatment, compared
with a single course of treatment, would have adverse effects on neurosensory function, general
cognition, attention, executive function, academic performance, and behavior at 6 to 8 years of
corrected age in children with FGR but not for those with normal prenatal growth. As previously
described,30 FGR was defined a priori as 1 or more of the following: obstetric diagnosis of FGR at trial
entry; cesarean delivery for FGR; or customized birth weight of no greater than the third centile
(GROW, version 6.7.8.3; Perinatal Institute). Although this definition includes postrandomization
factors, these were judged to be important because antenatal diagnosis of FGR substantially
underrepresents the true incidence of FGR in the preterm population.14 However, we used a
conservative birth weight threshold of the third centile. Customized centiles, which incorporate fetal
growth curves and account for normal maternal constraint on fetal growth, were used because these
have been shown to improve detection of FGR.31 Further, meta-analysis of randomized clinical trials
has shown that repeated doses of corticosteroids do not increase the risk of being small for
gestational age.1

Statistical Analysis
Analyses were performed using SAS software (version 9.4; SAS Institute, Inc). Data are presented as
number (percentage) or mean (SD). For all prespecified outcomes, treatment groups were compared
using generalized linear models with adjustment for gestational age at trial entry, preterm prelabor
rupture of membranes, antepartum hemorrhage, country of birth, and clustering of children from
multiple pregnancy by generalized estimating equations.2 The influence of FGR on treatment effect
was assessed by an interaction test. Treatment effects within the FGR and non-FGR subgroups are
reported as odds ratios (ORs) for binary outcomes or mean difference (MD) for continuous outcomes
with 95% CI. Two-tailed α < .05 was considered statistically significant.
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Results

Of the 1059 surviving children eligible for the Midchildhood Outcomes Study, 988 (445 [45.0%]
female and 543 [55.0%] male; mean [SD] age at follow-up, 7.5 [1.1] years) completed 1 or more tests
of neurocognitive function (repeated betamethasone treatment, 493 participants; placebo, 495
participants) (Figure).11 The rate of FGR was similar between those exposed to repeated
betamethasone therapy (139 of 493 [28.2%]) and placebo (122 of 495 [24.6%]) (P = .20).

The FGR subgroup, compared with the non-FGR subgroup, was characterized by older mean
maternal age (31.9 [5.8] vs 30.4 [5.9] years; P = .002), higher maternal parity (parity �4, 29 of 216
[13.4%] vs 54 of 673 [8.0%]; P = .02), and increased rates of multiple pregnancy (79 of 216 [36.6%]
vs 93 of 673 [13.8%]; P < .001) and preeclampsia (67 of 216 [31.0%] vs 27 of 673 [4.0%]; P < .001)
(Table 1). Fetal growth restriction was associated with lower rates of preterm prelabor rupture of
membranes (35 of 216 [16.2%] vs 248 of 673 [36.8%]; P < .001), cervical incompetence (11 of 216
[5.1%] vs 67 of 673 [10.0%]; P = .03), antepartum hemorrhage (34 of 216 [15.7%] vs 218 of 673
[32.4%]; P < .001), and shorter mean gestation (31.8 [3.1] vs 32.9 [4.0] weeks; P < .001) (Table 1).
Women in the FGR group were less likely to speak English at home (177 of /216 [81.9%] vs 594 of 673
[88.3%]; P = .02) (Table 1). Neonates with FGR had substantially reduced z scores for mean birth
weight (−1.2 [0.8] vs 0.1 [0.7]; P < .001) and head circumference (−0.9 [0.9] vs 0.2 [1.1]; P < .001) and
increased rates of mechanical ventilation (154 of 261 [59.0%] vs 344 of 727 [47.3%]; P = .002); and
serious neonatal morbidity (78 of 261 [29.9%] vs 132 of 727 [18.2%]; P < .001) (Table 1).

Figure. CONSORT Diagram of Participant Randomization, Treatment, and Follow-up for Neurodevelopment
at Midchildhood
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Table 1. Characteristics of Children and Their Mothers at Midchildhood Assessment

Characteristic

FGR Group Non-FGR Group

Total

Repeated-Dose
Betamethasone
Treatment Placebo Total

Repeated-Dose
Betamethasone
Treatment Placebo

Maternal Characteristics

No. of mothers 216 118 98 673 330 343

Age, mean (SD), y 31.9 (5.8)a 31.5 (6.0) 32.4 (5.4) 30.4 (5.9) 30.5 (5.9) 30.4 (5.9)

Parity, No. (%)

0 77 (35.6) 43 (36.4) 34 (34.7) 207 (30.8) 102 (30.9) 105 (30.6)

1-3 110 (50.9)a 58 (49.2) 52 (53.1) 412 (61.2) 204 (61.8) 208 (60.6)

≥4 29 (13.4)a 17 (14.4) 12 (12.2) 54 (8.0) 24 (7.3) 30 (8.7)

Multiple pregnancy, No. (%) 79 (36.6)a 39 (33.1) 40 (40.8) 93 (13.8) 48 (14.5) 45 (13.1)

Smoking during pregnancy, No. (%) 58 (26.9) 36 (30.5) 22 (22.4) 210 (31.2) 97 (29.4) 113 (32.9)

Gestational age at trial entry, mean (SD), wk 28.5 (2.1) 28.5 (2.1) 28.5 (2.1) 28.3 (2.2) 28.3 (2.3) 28.4 (2.2)

Main reasons for risk of preterm birth, No. (%)b

Preterm prelabor rupture of membranes, No. (%) 35 (16.2)a 19 (16.1) 16 (16.3) 248 (36.8) 108 (32.7)c 140 (40.8)

Preterm labor 34 (15.7)a 23 (19.5) 11 (11.2) 192 (28.5) 98 (29.7) 94 (27.4)

Severe FGR 46 (21.3)a 26 (22.0) 20 (20.4) NA NA NA

Preeclampsia 67 (31.0)a 32 (27.1) 35 (35.7) 27 (4.0) 16 (4.8) 11 (3.2)

Cervical incompetence 11 (5.1)a 5 (4.2) 6 (6.1) 67 (10.0) 38 (11.5) 29 (8.4)

Antepartum hemorrhage 34 (15.7)a 20 (16.9) 14 (14.3) 218 (32.4) 118 (35.8) 100 (29.2)

Multiple pregnancy 13 (6.0) 6 (5.1) 7 (7.1) 21 (3.1) 14 (4.2) 7 (2.0)

Other 63 (29.2)a 34 (28.8) 29 (29.6) 96 (14.3) 44 (13.3) 52 (15.2)

No. of trial treatments, No. (%)

1 92 (42.6) 47 (39.8) 45 (45.9) 274 (40.7) 130 (39.4) 144 (42.0)

2-3 72 (33.3) 33 (28.0) 39 (39.8) 245 (36.4) 118 (35.8) 127 (37.0)

≥4 52 (24.1) 38 (32.2)c 14 (14.3) 154 (22.9) 82 (24.8) 72 (21.0)

Speak only English at home, No. (%) 177 (81.9)a 96 (81.4) 81 (82.6) 594 (88.3) 293 (88.8) 301 (87.8)

Intact family, No. (%) 146 (67.6) 80 (67.8) 66 (67.3) 413 (61.4) 196 (59.4) 217 (63.3)

Occupation home duties only, No. (%) 66 (30.6) 41 (34.7) 25 (25.5) 186 (27.6) 87 (26.4) 99 (28.9)

Neonatal Characteristics

No. of infants 261 139 122 727 354 373

Female, No. (%) 126 (48.3) 74 (53.2) 52 (42.6) 319 (43.9) 144 (40.7) 175 (46.9)

Gestational age at birth, mean (SD), wk 31.8 (3.1)a 32.2 (3.2)c 31.2 (3.0) 32.9 (4.0) 32.9 (4.1) 33 (3.9)

Birth weight, mean (SD), g 1407 (525)a 1476 (519)c 1328 (521) 2095 (830) 2090 (867) 2100 (795)

Birth weight z score, mean (SD) −1.2 (0.8)a −1.3 (0.8) −1.2 (0.8) 0.1 (0.7) 0.1 (0.8) 0.2 (0.7)

Head circumference z score, mean (SD) −0.9 (0.9)a −0.9 (1.0) −0.9 (0.9) 0.2 (1.1) 0.1 (1.1) 0.2 (1.0)

Respiratory distress syndrome, No. (%)d 106 (40.6) 43 (30.9)c 63 (51.6) 245 (33.7) 107 (30.2) 138 (37.0)

Severity of neonatal lung disease, No. (%)e c c

Severe 40 (15.3) 11 (7.9) 29 (23.8) 85 (11.7) 29 (8.2) 56 (15.0)

Moderate 43 (16.5) 22 (15.8) 21 (17.2) 130 (17.9) 58 (16.4) 72 (19.3)

Mild 90 (34.5) 43 (30.9) 47 (38.5) 217 (29.8) 119 (33.6) 98 (26.3)

None 88 (33.7) 63 (45.3) 25 (20.5) 295 (40.6) 148 (41.8) 147 (39.4)

Mechanical ventilation, No. (%) 154 (59.0)a 67 (48.2)c 87 (71.3) 344 (47.3) 163 (46.0) 181 (48.5)

Oxygen therapy, No. (%) 159 (60.9) 73 (52.5)c 86 (70.5) 407 (56.0) 190 (53.7) 217 (58.2)

Surfactant, No. (%) 76 (29.1) 26 (18.7)c 50 (41.0) 182 (25.0) 81 (22.9) 101 (27.1)

Serious neonatal morbidity, No. (%)f 78 (29.9)a 31 (22.3)c 47 (38.5) 132 (18.2) 57 (16.1) 75 (20.1)

Abbreviations: FGR, fetal growth restriction; NA, not applicable.
a P < .05 for comparison between subgroups (Fisher exact test or unpaired, 2-tailed

t test).
b Indicates at trial entry; categories are not mutually exclusive.
c P < .05 for comparison between trial intervention groups within subgroup (Fisher

exact test or t test).
d Indicates clinical signs of respiratory distress syndrome and a ground-glass appearance

on chest radiograph.

e Mild indicates mean airway pressure (MAP) of less than 7 cm or fractional inspired
oxygen (FiO2) of less than 0.40; moderate, MAP of 7 to less than 10 cm H2O or FiO2

0.40 to 0.79; and severe, MAP of at least 10 cm or FiO2 of at least 0.80.
f Indicates air leak syndrome, patent ductus arteriosus, need for oxygen therapy at 36

weeks’ postmenstrual age, severe intraventricular hemorrhage (grade 3 or 4),
periventricular leukomalacia, proven necrotizing enterocolitis, and/or retinopathy of
prematurity.
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In the FGR subgroup, those exposed to repeated-dose betamethasone therapy were more likely
than those exposed to placebo to have received at least 4 trial treatments (38 of 118 [32.2%] vs 14 of
98 [14.3%]; P = .002) and to be born at a later mean gestational age (32.2 [3.2] vs 31.2 [3.0] weeks;
P � .001). Repeated betamethasone therapy reduced the incidence of respiratory distress
syndrome, the severity of neonatal lung disease, and serious neonatal morbidity, as well as the need
for mechanical ventilation, oxygen, and surfactant therapy (Table 1).

In the non-FGR subgroup, those exposed to repeated betamethasone treatment were less likely
than those exposed to placebo to have preterm prelabor rupture of membranes (108 of 330 [32.7%]
vs 140 of 343 [40.8%]; P = .03) as the main reason for being at risk of preterm birth. Repeated
betamethasone therapy significantly reduced the severity of neonatal lung disease (Table 1).

For the primary outcomes at 6 to 8 years of corrected age, rates were similar between
treatment groups in the FGR and non-FGR subgroups, with no evidence of an interaction effect for
survival free of any disability (FGR, 108 of 144 [75.0%] with repeated betamethasone vs 91 of 126
[72.2%] with placebo [odds ratio (OR), 1.1; 95% CI, 0.6-1.9]; non-FGR, 267 of 335 [79.7%] with
repeated betamethasone vs 283 of 358 [79.0%] with placebo [OR, 1.0; 95% CI, 0.7-1.5]; P = .77) or
for death or moderate to severe disability (FGR, 21 of 144 [14.6%] with repeated betamethasone vs
20 of 126 [15.9%] with placebo [OR, 0.9; 95% CI, 0.4-1.9]; non-FGR, 29 of 335 [8.6%] with repeated
betamethasone vs 36 of 358 [10.0%] with placebo [OR, 0.8; 95% CI, 0.4-1.3]; P = .84) (Table 2).

For the secondary outcomes of Sky Search Dual Task (divided attention) and Fruit Stroop Task
(executive function), a significant interaction occurred for the effect of repeated antenatal
betamethasone therapy and FGR. In the FGR subgroup, children exposed to repeated
betamethasone performed better on the Sky Search Dual Task than those exposed to placebo; no
significant difference was seen between treatment groups in the non-FGR subgroup (FGR MD, 7.1
[95% CI, −0.8 to 15.2]; non-FGR MD, −3.5 [95% CI, −8.4 to 1.3]; P = .02 for interaction) (Table 2).
Conversely, in the non-FGR subgroup, children exposed to repeated betamethasone performed
worse on the Fruit Stroop Task than those exposed to placebo; no significant difference was seen
between treatment groups in the FGR subgroup for number correct (FGR MD, 1.0 [95% CI, −1.1 to 3.1];
non-FGR MD, −2.1 [95% CI, −3.5 to −0.8]; P = .02 for interaction) (Table 2). In post hoc analyses, these
interactions remained significant after adjustment for maternal parity and number of trial
treatments. For all other secondary outcomes, rates and scores were similar between the FGR and
non-FGR subgroups, with no evidence of an interaction (Table 2, Table 3, and Table 4).

Regardless of treatment exposure, children with compared with those without FGR had an
increased risk of death or moderate to severe disability (OR, 1.6; 95% CI, 1.1-1.4) and motor
impairment (MABC total score <15th centile: OR, 1.5 [95% CI, 1.2-1.8) and had lower IQ (MD, −3.3;
95% CI, −5.8 to −0.8) and lower scores for measures of attention, executive function, and reading
(eTable in Supplement 2).

Discussion

In this secondary analysis of data from the midchildhood assessments of the ACTORDS randomized
clinical trial,11 we found that exposure to repeated antenatal betamethasone treatment was not
associated with adverse effects on survival free of any disability or on death or moderate to severe
disability at 6 to 8 years of age, in children with and without FGR. Some evidence suggested a
differential effect for several secondary outcomes, with better scores for selective and divided
attention after exposure to repeated antenatal betamethasone in children with FGR, but poorer
scores for impulse control in children without FGR. These effects were small and of uncertain clinical
significance and may reflect type I error. For all other measures of neurocognitive function and
learning, exposure to repeated antenatal betamethasone treatment did not alter performance in
midchildhood, even in the presence of FGR.

For preterm- and term-born patients, FGR is associated with adverse neurodevelopmental
outcomes in childhood and adulthood, including neurosensory disability, cognitive impairments,
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executive dysfunction, and emotional and behavioral difficulties.15,32 Imaging studies indicate that
infants with FGR have abnormal structural and metabolic brain development,33-35 which may reflect
suboptimal intrauterine conditions, including hypoxia-ischemia, nutritional deprivation, and/or
perinatal injury. Preterm infants with FGR have decreased cortical growth36 and microstructural
complexity, especially in the basal ganglia, brainstem, cerebellum, and frontal lobes.37,38 Neonatal
morbidities such as chronic lung disease and necrotizing enterocolitis, which are more common in
preterm infants with FGR, may exacerbate these changes.39

Therefore, that infants with FGR exhibit abnormal neurodevelopment is not surprising. School-
aged children with FGR are reported to be more likely to have impaired social awareness, autistic
mannerisms, and psychosocial issues.40 Concurrent with our data, cohort studies and meta-analyses
have shown that children with FGR have significantly lower IQ scores and poorer overall educational
achievement compared with children without FGR.41 By adulthood, those with FGR tend to have

Table 2. Neurocognitive Function at Midchildhood of Children Exposed to Repeated-Dose Betamethasone Treatment or Placebo

Outcome Subgroup

Repeated-Dose Betamethasone
Treatment Group Placebo Group

Treatment Effect (95% CI)a

P Value
for
InteractionData Total No. Data Total No.

Survival free of any disability, No. (%)b FGR 108 (75.0) 144 91 (72.2) 126 OR, 1.1 (0.6 to 1.9)
.77

Non-FGR 267 (79.7) 335 283 (79.0) 358 OR, 1.0 (0.7 to 1.5)

Death or moderate to severe disability,
No. (%)b

FGR 21 (14.6) 144 20 (15.9) 126 OR, 0.9 (0.4 to 1.9)
.84

Non-FGR 29 (8.6) 335 36 (10.0) 358 OR, 0.8 (0.4 to 1.3)

Cognition

Full-scale IQ, mean (SD) FGR 97.3 (16.1) 130 97.5 (14.3) 111 MD, −0.3 (−4.5 to 3.9)
.83

Non-FGR 101.0 (16.1) 314 100.5 (16.2) 334 MD, 0.3 (−2.2 to 2.9)

Full-scale IQ <85, No. (%) FGR 20 (15.4) 130 15 (13.5) 111 OR, 1.1 (0.5 to 2.5)
.85

Non-FGR 40 (12.7) 314 41 (12.3) 334 OR, 1.0 (0.6 to 1.7)

Motor, No. (%)

Cerebral palsy FGR 6 (4.3) 139 5 (4.1) 122 OR, 1.0 (0.3 to 3.4)
.86

Non-FGR 13 (3.7) 354 15 (4.1) 372 OR, 0.9 (0.4 to 1.9)

Low movement, ABC total score <15th
centile

FGR 43 (33.3) 129 36 (33.3) 108 OR, 0.9 (0.5 to 1.7)
.86

Non-FGR 66 (21.8) 303 78 (23.9) 327 OR, 0.9 (0.6 to 1.4)

TEA-Ch subtest score, mean (SD)c

Selective attention: Sky Search FGR 9.3 (3.1) 125 8.6 (3.4) 108 MD, 0.7 (−0.1 to 1.5)
.05

Non-FGR 9.1 (3.1) 301 9.3 (3.2) 320 MD, −0.2 (−0.7 to 0.2)

Sustained attention: Score! FGR 8.7 (3.7) 123 9.0 (3.6) 103 MD, −0.2 (−1.2 to 0.7)
.68

Non-FGR 8.7 (3.4) 299 8.6 (3.6) 305 MD, 0.0 (−0.5 to 0.6)

Shifting attention: Creature Counting FGR 9.1 (3.6) 104 8.8 (3.7) 90 MD, 0.3 (−0.7 to 1.3)
.83

Non-FGR 9.8 (3.6) 273 9.6 (3.5) 280 MD, 0.1 (−0.4 to 0.7)

Divided attention: Sky Search Dual Task FGR 59.9 (26.9) 118 52.6 (30.2) 98 MD, 7.1 (−0.8 to 15.2)
.02

Non-FGR 58.4 (29.8) 290 62.2 (28.7) 292 MD, −3.5 (−8.4 to 1.3)

Executive function, mean (SD)

Rey Complex Figure Accuracy scored FGR 15.1 (7.1) 124 13.4 (7.4) 106 MD, 1.8 (−0.1 to 3.8)
.08

Non-FGR 15.6 (7.9) 302 15.9 (7.9) 316 MD, −0.4 (−1.7 to 0.8)

Rey Complex Figure Organization scoree FGR 3.6 (1.2) 124 3.4 (1.1) 106 MD, 0.3 (0.0 to 0.6)
.14

Non-FGR 3.7 (1.1) 300 3.6 (1.1) 315 MD, 0.0 (−0.2 to 0.1)

Fruit Stroop Task, No. correct (trial 4) FGR 20.0 (8.4) 119 19.2 (7.7) 106 MD, 1.0 (−1.1 to 3.1)
.02

Non-FGR 19.3 (8.2)e 294 21.3 (8.6) 310 MD, −2.1 (−3.5 to −0.8)

Abbreviations: ABC, Assessment Battery for Children; FGR, fetal growth restriction; MD,
mean difference; OR, odds ratio; TEA-Ch, Test of Everyday Attention for Children.
a Adjusted for potential confounders (gestational age at trial entry, antepartum

hemorrhage, preterm prelabor rupture of membranes, and country of birth) and
clustering of children from multiple pregnancy.

b Disability defined as any of cerebral palsy, blindness or deafness, or IQ of less than 85;
moderate or severe, deafness, moderate to severe cerebral palsy, or IQ of less than 70.

c Scores range from 0 to 20, with higher scores indicating better attention.
d Scores range from 0 to 36, with higher scores indicating better executive function.
e P < .05 for comparison between trial intervention groups within subgroup.
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lower incomes because they are less likely to have professional or skilled employment.42

Furthermore, they also have a greater risk of adverse psychological outcomes, including
schizophrenia, anxiety, and mood disorders.43

Although the benefits of repeated antenatal corticosteroid therapy are well established and
human studies have demonstrated long-term safety,11,44 concerns remain about the use of this
treatment in FGR, given reports from animal studies suggesting long-term adverse effects of
treatment on neurosensory function.4,45 For example, in FGR sheep, antenatal betamethasone
exposure was associated with significantly reduced expression of 5α-reductase and the subsequent
concentration of the endogenous neuroprotective steroid allopregnanolone.46 Animal studies4,5,7

have also reported adverse effects, including reduced brain growth, disrupted expression of
neuronal components involved with plasticity and apoptosis, and delayed glial cell maturation. Many
of these studies administered corticosteroids at gestations analogous to 23 to 34 weeks’ pregnancy,
a period in which severe FGR is common.14 On this basis, we hypothesized that repeated antenatal
corticosteroid treatment may compound the adverse effects already imposed by FGR.

However, contrary to our hypothesis, we did not find any evidence of adverse effects of
repeated-dose antenatal corticosteroid treatment on neurocognitive function in children with FGR.
One explanation for this might be that infants with FGR appeared to have greater benefit from
repeated antenatal corticosteroid therapy, with a nearly 2-fold reduction in serious neonatal
morbidity. Thus, the decrease in serious postnatal complications may have counteracted any
potential adverse effects of corticosteroid exposure. Cartwright et al30 have shown that exposure to
repeated-dose antenatal corticosteroid treatment was associated with improved postnatal linear
growth in children with FGR, which may have a positive influence on neurodevelopment. For

Table 3. Academic Skills at Midchildhood of Children Exposed to Repeated-Dose Betamethasone Treatment or Placebo

WRAT-4 Outcomea Subgroup

Repeated-Dose Betamethasone
Treatment Group Placebo Group

Treatment Effect,
MD (95% CI)b

P Value
for
InteractionMean (SD) Score Total No. Mean (SD) Score Total No.

Reading FGR 97.6 (14.7) 121 96.3 (17.9) 107 1.2 (−3.7 to 6.2)
.52

Non-FGR 99.7 (17.2) 306 100.1 (17.7) 324 −0.4 (−3.2 to 2.4)

Spelling FGR 98.8 (14.0) 119 98.1 (16.5) 107 0.6 (−4.1 to 5.4)
.48

Non-FGR 100.1 (16.0) 305 101.4 (16.9) 323 −1.2 (−4.0 to 1.4)

Mathematics FGR 94.7 (14.9) 120 95.2 (16.1) 107 −0.4 (−4.9 to 4.1)
.85

Non-FGR 97.5 (16.0) 303 97.0 (15.9) 323 0.2 (−2.3 to 2.9)

Abbreviations: FGR, fetal growth restriction; MD, mean difference; WRAT-4, Wide Range
Achievement Test, fourth edition.
a Scales were age standardized with a normative mean (SD) of 100 (15).

b Adjusted for potential confounders (gestational age at trial entry, antepartum
hemorrhage, preterm prelabor rupture of membranes, and country of birth) and
clustering of children from multiple pregnancy.

Table 4. Parental Rating of Behavior at Midchildhood of Children Exposed to Repeated-Dose Betamethasone Treatment or Placebo

Outcome Subgroup

Repeated-Dose Betamethasone
Treatment Group Placebo Group

Treatment Effect,
MD (95% CI)

P Value
for
InteractionaMean (SD) Score Total No. Mean (SD) Score Total No.

SDQ total difficulties scoreb FGR 11.4 (6.7) 121 10.4 (5.5) 108 1.0 (−0.6 to 2.7)
.36

Non-FGR 10.8 (6.9) 310 10.7 (6.7) 326 0.0 (−1.1 to 1.1)

BRIEF global executive composite t scorec FGR 52.1 (13.0) 120 51.8 (11.5) 106 0.3 (−3.2 to 3.7)
.98

Non-FGR 52.5 (13.0) 308 52.1 (12.8) 323 0.2 (−1.9 to 2.3)

CADS ADHD index t scorec FGR 50.9 (6.2) 122 51.7 (6.7) 109 −0.8 (−2.5 to 0.8)
.52

Non-FGR 51.1 (6.9) 310 51.3 (7.0) 326 −0.1 (−1.3 to 0.9)

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; BRIEF, Behavior Rating
Inventory of Executive Function; CADS, Conners’ ADHD/DSM-IV Scales; FGR, fetal
growth restriction; MD, mean difference; SDQ, Strengths and Difficulty Questionnaire.
a Adjusted for potential confounders (gestational age at trial entry, antepartum

hemorrhage, preterm prelabor rupture of membranes, and country of birth) and
clustering of children from multiple pregnancy.

b Scores range from 0 to 40, with 14 to 16 indicating borderline and at least 17, abnormal.
c Mean (SD) score, 50 (10).
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example, low birth weight followed by rapid catch-up growth during infancy is associated with
improved neurodevelopment at 2 years of age.47 Further, height in late childhood and early
adulthood is positively associated with IQ,48 and improved linear growth during early childhood and
late adolescence is independently and positively associated with later cognitive ability and
educational attainment.49 Thus, several possible mechanisms may explain why effects on
neurodevelopment in human trials may be different than those of animal studies, as Cartwright
et al30 have shown for long-term cardiometabolic function.

One particular concern is whether use of repeated antenatal corticosteroids in FGR could
increase the risk of attention-deficit/hyperactivity disorder. Attention-deficit/hyperactivity disorder
is associated with altered concentration of neurotrophins, which regulate neuronal growth,
morphology, migration, and apoptosis,50-53 and evidence suggests that neurotrophin expression is
regulated by corticosteroids.54,55 Fetal growth restriction did not influence the parent-reported
attention-deficit/hyperactivity disorder scale, but repeated betamethasone treatment had a small,
positive association with the direct assessment of divided attention and possibly impulse control in
children with FGR. Although a type I error cannot be excluded, this raises the possibility that
treatment with antenatal corticosteroids could be neuroprotective in FGR. This possibility is
supported by the finding of higher umbilical cord blood neurotrophin concentrations, such as brain-
derived neurotrophic factor and neurotrophin-3, in infants exposed to antenatal corticosteroids.56

In infants with FGR, exposure to repeated-dose antenatal corticosteroid treatment was not
associated with a change in head circumference z score at birth.

Limitations
A key limitation of this study is the inherent risk of bias in subgroup analyses. Nevertheless, given the
high rates of FGR among preterm infants and the ongoing concerns around efficacy and safety of
repeated exposure to corticosteroid treatment in this subgroup, we believed that this exploratory
analysis was important, particularly because further trials of repeated exposure to antenatal
corticosteroid treatment are unlikely to be performed. Another potential source of bias in this study
is the inclusion of birth weight in the definition of FGR because subgroup analysis should strictly only
involve factors identified before randomization. However, we were concerned that the rate of FGR
reported at trial entry (5%) underrepresented the actual degree of FGR in this high-risk cohort and
could potentially obscure the effect of FGR on outcomes. We took a conservative approach, defining
FGR as a birth weight less than the third centile rather than the more commonly used 10th centile,
and used customized rather than population centiles because of the strong association between
preterm birth and FGR. The key strengths of our study include the high follow-up rate and
comprehensive assessment of participants.11

The findings of this study relate to single repeated doses of betamethasone and may not
necessarily apply to other repeated-dose corticosteroid regimens. The relative effect of repeated-
dose antenatal corticosteroid treatment at very early compared with later gestational ages, in the
short and long terms, is also not known.

Conclusions

Repeated antenatal betamethasone treatment was not associated with adverse effects on survival
free of any disability or on death or moderate to severe disability at 6 to 8 years of age, even in the
presence of FGR. Physicians should use repeated doses of antenatal corticosteroids when indicated
before preterm birth, regardless of FGR, in view of the associated neonatal benefits and absence of
later adverse effects.
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