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A B S T R A C T   

The mechanism of internal erosion in porous media involves the microstructural evolutions induced by washing 
out of fine particles under different loading and seepage flow actions. Consequently, the effective stress on the 
solid skeleton is governed by the transition in velocity and stress of fine particles due to their detachment from 
the skeleton and then transport through pore channels, in addition to pore pressure. This study is to develop a 
formulation of work input to account for the interactions and mass exchanges between solid and fluid phases. 
Coupled mechanical-hydraulic erosion processes can be properly reflected through mass, momentum and energy 
balances based on Biot’s mixture theory of a three-phase model. This leads to three separate stress-like variables, 
effective stress, erosion force and hydraulic gradient, in conjugation with three strain-like variables, strain, mass 
loss and seepage velocity, respectively. The effective stress tensor, different from the classical form by Terzaghi 
due to the effect of erosion, and coupled hydro-mechanical-erosion criteria are naturally derived from the 
proposed work input. They consider grain scale mechanisms describing the transition of erodible particles from 
the solid skeleton to the fluidized state. Systematic formulations and discussions are presented to highlight the 
promising features of our approach.   

1. Introduction 

Internal erosion has been frequently encountered in many geo-
hazards (e.g. failure of embankment, sinkholes and cavities in dams and 
dikes) (Foster et al., 2000). This phenomenon involves the volume 
change and progressive degradation of soil strength due to the mass loss 
triggered by hydrodynamic forces of fluid flows as observed in several 
experiments (Kuwano et al., 2021; Liang et al., 2019; Prasomsri and 
Takahashi, 2020; Sato and Kuwano, 2018). It is governed by the mutual 
solid-fluid transformations and interactions (Hu et al., 2019; Zhou et al., 
2020) under inseparable effects of several key factors: soil susceptibility 
(Chang and Zhang, 2013; Wan and Fell, 2008), stress condition (Bend-
ahmane et al., 2008; Chang and Zhang, 2011), and hydraulic gradient 
(Moffat and Fannin, 2006). 

The macro hydromechanical behaviour of fully saturated porous 
media under the effects of internal erosion is intrinsically linked to the 
grain-scale interaction between the movement of eroded grains and 
seepage flow. This interaction has been extensively investigated in 
numerous experiments (Chang and Zhang, 2013; Hunter and Bowman, 
2018; Prasomsri and Takahashi, 2020; Sato and Kuwano, 2018; Nguyen 
et al., 2018; Nguyen et al., 2019) and numerical studies using the 

coupled hydro-mechanical numerical methods (e.g. DEM-CFD) for in-
sights into grain scale mechanisms (Cheng et al., 2021; Gu et al., 2019; 
Hu et al., 2020; Yin et al., 2021; Zou et al., 2020). It is reflected through 
continuous actions of detachment of erodible particles from the soil 
skeleton and followed by their transport through pore channels (Zhou 
et al., 2020; Bonelli and Marot, 2011) in various loading and seepage 
flow conditions. This transition usually exhibits sudden changes of ve-
locity and stress on erodible fine particles within a short timeframe, 
associated with the release of strain energy due to loss of grain-to-grain 
contacts (Liu et al., 2020). As a consequence, the lateral support of fine 
particles in the force chain of the soil skeleton is suddenly lost (Liu et al. 
2020; Hu et al., 2019), causing the variation in the averaged effective 
stress at the macro scale. This change of effective stress due to erosion 
should be taken into account in constitutive modelling of soils consid-
ering erosion effects. 

Given the above physical observations, the grain scale mechanisms 
of internal erosion should be essentially reflected by the representative 
macroscopic variables and their evolutions from the aspects of consti-
tutive modelling. For example, in some models (Wang et al., 2020; 
Zhang et al., 2015; Muir Wood et al, 2010), the evolution of additional 
erosion variables is used to track effects of mass losses on the stress- 
strain behaviour. Nevertheless, an erosion criterion that is usually a 
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result of experimental investigations (Wan and Fell, 2004; Zhou et al., 
2019; Cividini et al, 2009), based on relationships between hydraulic 
gradients and fine content or mass loss, is missing in these models. As a 
consequence, the ability to capture the influences of onset and evolution 
of erosion processes on the response of soils is not adequate in the above- 
mentioned models, due to lacking terms for representing the behaviour 
of fluid phase (e.g. hydraulic gradient, seepage velocity) and the hy-
dromechanical coupling. In other words, the interdependence between 
seepage flow and transport of eroded grains is not reflected well in these 

models. The coupled hydro-mechanical-erosion response has been well 
recognised in Yang et al. (2019) where an erosion law representing the 
relationship between hydraulic gradient and mass loss is adopted. This 
erosion law considers an essential critical threshold of hydraulic shear 
stress at which the internal erosion starts to take place (Wan and Fell, 
2004; Zhou et al., 2019; Cividini et al, 2009). However, this study (Yang 
et al., 2019) neglected the effects of mass exchange and interaction 
between phases (solid, water) during erosion. Therefore the identifica-
tion of variables used in erosion law can be questionable, affecting the 

Nomenclature 

xj the spatial coordinate 
t the current time 
V the current volume 
Vs the partial volume of the solid phase 
Ves the partial volume of the transition phase 
Vwf the partial volume of the mixture of water-fluidized flow 
S the surface area S of volume V 
nj the outward unit normal vector on the surface S 
ns the volume fraction of the solid phase 
nes the volume fraction of the transition phase 
nwf the volume fraction of the mixture of water-fluidized flow 
nw the volume fraction of the water phase 
ρ the average mass density of the mixture 
ρs the partial mass density of the solid phase 
ρes the partial mass density of the transition phase 
ρwf the partial mass density of the mixture of water-fluidized 

flow 
ρs the intrinsic density of the solid phase 
ρes the intrinsic density of the transition phase 
ρwf the intrinsic density of the mixture of water-fluidized flow 
ρw the intrinsic density of the water phase 
σij the total stress tensor 
σ′

ij the effective stress tensor 
σs

ij the partial stress of the solid phase 
σes

ij the partial stress of the transition phase 

σwf
ij the partial stress of the mixture of water-fluidized flow 

σs
ij the intrinsic stress tensor of the solid phase 

σes
ij the intrinsic stress tensor of the transition phase 

σwf
ij the intrinsic stress tensor of the mixture of water-fluidized 

flow 
p the total mean stress 
ps the mean intrinsic stress of the solid phase 
pw the water pressure 
pes the mean intrinsic stress of the transition phase 
p′ the effective mean stress 
q the deviatoric stress 
p the Terzaghi mean stress 
δij the Kronecker delta 
ρs− es

ex the mass exchanges between solid and transition phases 
ρes− f

ex the mass exchanges between transition and fluidized 
phases 

ρex the mass exchange 
vs

i the velocity of solid phase 
ves

i the velocity of transition phase 
vw

i the water velocity 
Bi the body force of the mass ρϰdV induced by the gravity 

acceleration constant g 
Rs

i the viscous drag force acting on the solid phase 

Res
i the viscous drag force acting on the transition phase 

Rwf
i the viscous drag force acting on the mixture of water- 

fluidized flow 
Rf

i the viscous drag force acting on the fluidized phase 
Rw

i the viscous drag force acting on the water phase 
L the power input 
εij the strain tensor 
α, β parameters controlling transition between solid and fluid- 

like phases of erodible particles during erosion processes 
p′

e the erosion-driving force 
θi the water flux 
εv the volumetric strain 
εs the deviatoric strain 
E the erosion index 
ρu

ex the ultimate mass loss 
ψ the Helmholtz free energy 
μ the function of E used for describing the effect of erosion on 

the elastic stiffness 
Φ̃ the dissipation potential 
χν the thermodynamic conjugates to rates of volumetric 

plastic strain ε̇p
ν 

χs the thermodynamic conjugates to rates of deviatoric plastic 
strain ε̇p

s 

χe the thermodynamic conjugates to rates of erosion index Ė 
χw the thermodynamic conjugates to rates of water flux θi 
χν the volumetric dissipative generalised stress 
χs the deviatoric dissipative generalised stress 
χe the erosion dissipative generalised stress 
χw

i the hydraulic dissipative generalised stress 
Φ̃

me 
the mechanical dissipation potential 

Φ̃
h 

the hydraulic dissipation potential 
zw the rate-dependent potential 
φν, φs, φe functions of stresses, internal variables (plastic strain and 

E) and hydraulic gradient ∂pw

∂xi 

φw
i the function dependent on θi to reflect rate-dependent 

hydraulic dissipation 
C the kinematic constraint 
A, B the general functions governing dilation responses 
Λ the Lagrangian kinematic multiplier 
y*(m) the mechanical yield function in generalised stress space 

(χν, χs) 
y*(e) the erosion criterion in generalised dissipative stress space 

of χe 

λ̇m the plasticity multiplier 
λ̇e the erosion multiplier 
Π, Λ, Ω, Y terms in the tangent stiffness matrix 
Dνν, Dνs, Dνe, Dsν, Dss, Dse, Deν, Des, Dee terms of the tangent stiffnes 

written in the form of effective stress (p′, q). 
ϕ the function of ns, nes, nwf  
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predictive capability of the model in reproducing the macro behaviour 
governed by the grain-scale mechanisms of the transition from con-
tactable to floating states of eroded grains. 

Numerical studies (e.g. using DEM-CFD) have shown the change of 
contact forces as a consequence of the loss of fine grains that carry non- 
neglectable levels of energy (and hence stress). This loss of contact forces 
due to erosion induces a change in effective stress, which should be 
reflected in a thermodynamic framework for continuum modelling. In 
this sense, better descriptions of the coupled hydro-mechanical behav-
iour in internal erosion, accounting for the interaction between states of 
eroded grains from being attached to the solid skeleton to fluidized, has 
successfully been addressed in several studies (Steeb and Diebels, 2003; 
Rousseau et al., 2020; Zhang et al., 2013). These studies use 
thermodynamics-based approaches to incorporate rigorously and sys-
tematically all essential behavioural characteristics associated with in-
ternal erosion in constitutive models. In these models, appropriate forms 
of work input are derived using fundamental mass balance and mo-
mentum equations and energy principles to identify work conjugated 
variables representing mutually coupled processes of seepage, particle 
transport, and mechanical response. As a result, they are able to capture 
the coexisting mechanical and hydraulic terms for reflecting the in-
teractions between the mechanical deformation and seepage flow 
dependent on the mass exchange. Nevertheless, the sudden transitions in 
stress and velocity of eroded grains from solid to fluidized states as 
observed in grain scale simulations by Liu et al. (2020) and Zhou et al. 
(2020) are not reflected well in these studies, resulting in lack of effect of 
erosion on effective stress of the soil skeleton. 

This paper provides a formulation of work input to describe the ef-
fects of grain-scale mechanisms of internal erosion on the effective stress 
and behaviour of a continuum model. Our proposed form of work input 
accounts for the interaction between volume change, mass loss and 
seepage flow along with the sudden transition in different stress and 
velocity regimes of erodible particles during erosion. A 
thermodynamics-based approach taking into account the transitions of 
fine particles from soil skeleton to fluidized state is adopted in this study. 
Using Biot’s mixture theory, fully saturated porous media are made up of 
three constituents representing three phases of the solid-fluid mixture (e. 
g. soil skeleton, transition, fluidization) during erosion, where each of 
them is assumed to be continuous and occupies every material point in 
the space at any arbitrary time instant. The transition phase is needed to 
describe the sudden change in stress and velocity of erodible particles 
during erosion within a very short time. The obtained formulation of 
work input can capture the inseparable interaction between solid and 
fluid states and phases through three work conjugate variable pairs (e.g. 
effective stress-strain, seepage force-water flux and erosion force-mass 
loss). This allows us to naturally derive appropriate forms of the effec-
tive stress contributed by each phase and its volume fraction, implying 
its dependence on the material geometry properties and the transition 
process. A generic coupled hydro-mechanical model, including plas-
ticity, seepage, erosion criteria and their interactions can also be 
formulated from the proposed work input and effective stress using a 
thermodynamics-based approach. 

The outline of this paper is as follows. In Section 2, micromechanical 
observations as the basis for continuum modelling are analysed, fol-
lowed by corresponding assumptions and basic principles of Biot’s 
mixture theory. The formulation of the work input to saturated soils 
undergoing internal erosion is presented in Section 3. Details on how to 
use the obtained theoretical findings for the development of a generic 
constitutive model are presented in Section 4, followed by the conclu-
sion in Section 5. 

2. Micromechanical basis and assumptions for continuum 
modelling 

Essential micromechanical basis and basic concepts of Biot’s mixture 
theory (Biot, 1941; Zienkiewicz et al., 1990) for internal erosion of fully 

saturated porous media are introduced in this section. 

2.1. Micromechanical basis 

The overall response of eroded soils is dependent on the state of the 
solid skeleton, how the solid-water phases are connected and trans-
formed, and the way forces interact along these interfaces at the grain 
scale. From the aspects of constitutive modelling, the material behaviour 
at the grain scale can be represented by the representative macroscopic 
variables (Yang et al., 2015; Vernerey, 2011) and their evolutions during 
erosion processes. Direct one-to-one mapping is usually impossible 
given a huge amount of grain scale information against a few internal 
variables of the constitutive model representing grain scale processes. 
Therefore, key grain scale mechanisms should be understood and 
encapsulated in a few macro quantities of a constitutive model. 

Given the numerical results on the evolution of the average ratio 
between contact and fluid forces on the fine particles (e.g. Particles 1, 2 
and 3, see Fig. 1) based on DEM-CFD (Liu et al., 2020), it can be observed 
that the decrease in the contact forces in eroded particles (and increase 
in their velocities) takes place suddenly. They undergo a transition be-
tween a state where they remain within the strong contact networks and 
a state where they detach from the soil skeleton and transport freely as 
fluid flows. The whole amount of these grains is not eroded at once 
because different groups of particles undergo this transition process at 
different times. In other words, if a few groups of several particles are 
fully eroded over a large enough time scale, at a given instant within that 
time scale, only a fraction of these particles is fully eroded. Clogging can 
also happen and result in particles trapped in the pores that could 
contribute to the stress transfer mechanisms in the soil skeleton. The net 
effect of erosion and clogging is assumed to be erosion-dominated. 
Collective (or homogenised) behaviour of all groups of particles un-
dergoing erosion and clogging over a time scale suitable for continuum 
modelling results in a distinct phase that has velocity and stress between 
their corresponding fluid and solid counterparts. This intermediate 
phase is termed transition phase in this study, reflecting the fast or slow 
transition from solid to fluid. It is noted that the existence of this phase is 
associated with continuum constitutive modelling, to reflect effects of 
erosion and clogging over a continuum time scale. 

This transition phase reflects the underlying erosion process, 
together with the interactions between solid and fluidised phases over a 
large enough time scale appropriate for continuum constitutive model-
ling. These interactions are totally missing in existing approaches, 
leading to no influence of erosion on effective stress in existing studies, 

Fig. 1. Evolution of the ratio of the average contact force to the fluid force for 
the fine particles in a local packing (results, after Liu et al. (2020), are replotted 
in the figure). 
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which is not appropriate in our opinions. 
The mechanism of internal erosion of erodible particles can be, thus, 

described through three continuous states (see Fig. 1):  

(I) Solid-like state: staying within strong contact networks of the soil 
skeleton (e.g. including both fine and coarse particles) and car-
rying physical properties of soil skeleton,  

(II) Transition state: stress-drop in weak contact networks before 
detaching from the soil skeleton in higher velocities and  

(III) Fluidized state: free transport within voids as fluid flows. 

These states are intrinsically associated with the release of kinematic 
strain energy stored in contacts produced by the transmission of velocity 
and force/stress (see Fig. 1) on erodible particles during their transition 

from contactable to floating (e.g. fluid-like) states. The detachment of 
fine particles from the soil skeleton, induced by the fluid flow, weakens 
the soil skeleton since fine particles connect the stress-transfer matrix. 
As a result, the contact force chains are suddenly buckled with a local 
burst of kinetic energy, leading to a sudden rearrangement of particles 
into a new equilibrium and then a decrease in inter-particle voids. It 
induces a change in volume and effective stress at the macro level. Such 
microscopic mechanisms are of importance to understanding the effects 
of internal erosion on the soil response. 

The above-metioned features will be used in this study to identify a 
micromechanical basis and corresponding assumptions for our 
thermodynamics-based continuum framework. In particular, the tran-
sition from solid to fluidised observed from the above micromechanical 
analysis (Liu et al., 2020) can be generalised, using several groups of 

Fig. 2. Illustration on the transition mechanism of eight groups of fine particles during erosion (a) Configuration of particles within fully saturated soils (b) Evolution 
in stress (c) Evolution in velocity. 
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particles, each of which is associated with a different time of transition. 
In this presentation, eight typical groups of fine particles, representing 
eight possible erosion cases within a short timeframe, from t1, to t2 and 
t3 (Fig. 2), can be assumed and presented in Fig. 2. Each group includes 
several fine particles at the same state of transformation from solid to 
fluidised. As seen in the micromechanical analysis of results obtained 
from Liu et al. (2020) (see Fig. 1), this transition can be reasonably 
assumed to happen within a very short time from t1 to t3. For continuum 
modelling, it is also assumed that the state of all particles in each group 
are a result of both erosion and deposition within a short timeframe from 
t1 to t3. In other words, net effect of both erosion and deposition results 
in the state of all particles in each group. 

Based on Fig. 1, properties of each group can be described through 
assumptions of their evolutions in stress (decrease) (see Fig. 2b) and 
velocity (increase) (see Fig. 2c) between three regimes: (I) soil skeleton, 
(II) transition and (III) fluidisation, as summarised in Table 1. 

It can be seen in Fig. 2 and Table 1 that there are always three states 
of fine particles (still attached to soil skeleton, in transition state, fully 
fluidised) coexisting within an eroding soil specimen at a given instant 
(e.g. t1, or t2 or t3), apart from coarse particles and fluid. Therefore 
within a time scale appropriate for continuum modelling, at a given 
instant a transition phase for fine particles in-between the states of fluid 
and solid (skeleton) must exist. Given this mechanim, a three-phase- 
framework under isothermal condition can be assumed based on the 
evolution of erosion processes described above and in Fig. 2. The three 
phases, depecited in Fig. 3, are:  

(i) solid phase with both coarse and fine particles in strong contact 
networks, considered as the soil skeleton (denoted as “s”);  

(ii) transition phase consisting of fine particles that are still in the 
transition from solid to fluidised. This phase transition from the 
soil-skeleton to the fluidized-particle constituents is associated 
with mass production, velocity and stress variation of fine par-
ticles in weak contact networks (denoted as “es”);  

(iii) water-fluidized phase is a mixture of fluid and mobilized solid 
particles in water (fluidised) (denoted as “wf”, a combination of 
“w” of the original water phase and “f” of the fluidised phase). 

We note that these above phases represent both original (e.g. solid, 
water) and production phases (e.g. transition, fluidised fines) linked 
through the mass exchanges (ρ̇s− es

ex representing the mass exchange be-
tween “s” and “es” phases, ρ̇es− f

ex representing the mass exchange between 
“es” and “f” phases) during the erosion process. They involve the tran-
sition in velocity and intrinsic stress, as shown in Figs. 1 and 2. 

In this framework, the solid velocity vs
i , intrinsic solid stress σs

ij and 
intrinsic density of solid ρs are used for the solid phase. The response of 
the water-fluidized flow phase (e.g. including fluidized and water pha-
ses) is characterised by the water velocity vw

i , the intrinsic water pressure 
σwf

ij = pwδij (pw being water pressure, δij being Kronecker delta) and the 
intrinsic density of the water-fluidized phase ρwf being the combination 
of intrinsic solid and water densities (see further details in Section 2.2). 
The transition phase owns intrinsic solid density ρs, while its velocity ves

i 
and intrinsic stress σes

ij can be averaged values of solid and water phases 

and can be further discussed later in Section 3.1. It can be addressed that 
the proposed transition phase is not considered in all existing studies on 
erosion despite its existence (at continuum scale) and importance for 
understanding the intrinsic mechanisms of internal erosion. This is the 
key difference from other existing theoretical studies on internal 
erosion. 

It is acknowledged that these assumptions may be still far from 
perfection, given the use of an approach that requires several phenom-
enological treatments based on CFD-DEM modelling in the context of 
lacking strong experimental data. Our paper is a step towards better 
understanding the mechanism of internal erosion in fully saturated soils, 
and further investigation is still required in future work. 

2.2. Basic principles and concepts for continuum modelling 

In Biot’s mixture theory, definitions of volume fraction are funda-
mental for the development of any framework of porous media. They are 
the results of mathematical integration and average techniques of 
microscopic quantity over volume and area of a Representative Volume 
Element (REV) to obtain the averaged macroscopic quantities (Gray 
et al., 2009; Loret and Rizzi, 1999; Ricken et al., 2022). As illustrated in 
Fig. 2, their basis is the current total volume V (superimposed continua) 
defined as the sum of the partial volumes Vϰ: 

V = Vs +Ves +Vwf (1)  

where the superscript ϰ denotes the constituent with “ϰ” standing for “s” 
for soil skeleton, or “es” for the transition phase, or “wf” for the mixture 
of water-fluidized flow. 

The volume fraction nϰ can be expressed as a variable related to the 
current volume V based on Eq. (1), taking the following form: 

nϰ =
Vϰ

V
(2) 

It is noted that nϰ are Eulerian volume fractions, which are different 
from Lagrangian porosities related to the initial overall porous volume, 
as mentioned in Coussy et al., (2010), Gajo (2011) and Sciarra (2016). 

The volume fraction of each phase nϰ of the media meets the 
following condition of mixture theory: 

ns + nes + nwf = 1 (3) 

Given volume fractions written in Eq. (2), we can write the average 
mass density of the mixture ρ as: 

ρ = ρs + ρes + ρwf = nsρs + nesρs + nwf ρwf = nsρs + nesρs + nf ρs + nwρw (4)  

where ρϰ = nϰρϰ is the partial mass density with ρϰ being the intrinsic 
density of phase ϰ. The intrinsic density of the water-fluidized phase is 
assumed to be ρwf = nf ρs+nwρw

nf+nw =
nf ρs+nwρw

nwf to reflect the mixture between 
phases of original water and eroded/fluidized particles. The assumption 
of incompressibility of each constituent is employed with constant 
intrinsic densities (Madeo, et al., 2013). 

Using Biot’s mixture theory allows us to write the total stress tensor 
σij of the whole system as a combination of partial stresses σϰ

ij = nϰσϰ
ij: 

σij = σs
ij + σes

ij + σwf
ij = nsσs

ij + nesσes
ij + nwf pwδij (5) 

with σϰ
ij being the intrinsic stress tensor of phase ϰ. 

3. Formulation 

Given the assumptions and basic principles in Section 2, this section 
presents a systematic procedure for deriving the formulation of work 
input for fully saturated soils under the effects of internal erosion. The 
approach for the derivation of work input (Houlsby, 1979; Houlsby, 
1997, Einav and Liu, 2018) is used as the basis for saturated soils un-
dergoing internal erosion. 

Table 1 
Summary of states of eight fine-particle groups at t1, t2 and t3.   

t1 t2 t3 

Group (1) Solid Solid Solid 
Group (2) Solid Solid Transition 
Group (3) Solid Transition Transition 
Group (4) Solid Transition Fluidisation 
Group (5) Transition Transition Transition 
Group (6) Transition Transition Fluidisation 
Group (7) Transition Fluidisation Fluidisation 
Group (8) Fluidisation Fluidisation Fluidisation  
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3.1. Mass conservation equations 

This section presents the derivation of mass conservation laws for 
individual phases of the mixture based on the Reynolds transport the-
orem. A part of the solid phase is transformed into the transition phase 
and then mobilized grains in the seepage flow during internal erosion. 
Thus, there are terms representing mass exchanges ρ̇ϑ

ex between three 
phases (ϑ denoting “s − es” or “es − f”). Given this observation, the 
generic form of mass conservation law for the ϰ-phase can be expressed 
through the Reynolds transport theorem as follows: 

dϰ

dt

∫

V
ρϰdV =

∫

V
ρ̇ϑ

exdV (6) 

Or, 
∫

V

[
∂ρϰ

∂t
+ vϰ

i
∂ρϰ

∂xi
+ ρϰ∂vϰ

i

∂xi

]

dV =

∫

V
ρ̇ϑ

exdV (7) 

Thanks to the arbitrary property of V, we can rewrite Eq. (7) as: 

Dϰρϰ

Dt
= − ρϰ∂vϰ

i

∂xi
+ ρ̇ϑ

ex (8) 

From Eq. (8) and by using the assumption of the sufficiently small 
changes of volume fractions with the location within the soil body (e.g. 
∂nϰ

∂xi
≈ 0) (Oka et al., 2010; Einav and Liu, 2018; Bui and Nguyen, 2017), 

the mass conservation of three constituents with respect to the motion of 
solid skeleton takes the following forms: 

Dsρs

Dt
= − ρs∂vs

i

∂xi
− ρ̇s− es

ex (9)  

Desρes

Dt
=

Dsρes

Dt
= − ρes∂ves

i

∂xi
+ ρ̇s− es

ex − ρ̇es− f
ex (10)  

Dwf ρwf

Dt
=

Dsρwf

Dt
= − ρwf ∂vw

i

∂xi
+ ρ̇es− f

ex (11) 

Taking ρs = const and ρw = const, while using ρϰ = nϰρϰ, Eqs. (9) to 
(11) can be rewritten as: 

ṅs = − ns∂vs
i

∂xi
−

ρ̇s− es
ex

ρs (12)  

ṅes = − nes∂ves
i

∂xi
+

ρ̇s− es
ex

ρs −
ρ̇es− f

ex

ρs (13)  

ρsṅf + ρwṅw = −
(
ρsnf + ρwnw) ∂vw

i

∂xi
+ ρ̇es− f

ex (14) 

In the above expressions, we use the superposed dot in ṅϰ for 
simplicity to replace Dsnϰ

Dt representing the rate of volume fractions of 
each phase with respect to the motion of the solid skeleton. 

The mass of the original water phase within the water-fluidized 
phase is always conservative in porous media as shown in the 
following form: 

Dwρw

Dt
=

Dsρw

Dt
= − ρw∂vw

i

∂xi
(15) 

It is illustrated in Eq. (15) that there is no mass exchange between the 
original water phase and others. Manipulating Eq. (15) in the form of the 
superposed dot in ṅϰ with the assumption of ρw = const and substituting 
it into Eq. (14), one obtains: 

ṅw = − nw∂vw
i

∂xi
(16)  

ṅf = − nf ∂vw
i

∂xi
+

ρ̇es− f
ex

ρs (17) 

Fig. 3. Continuum approximation of fully saturated porous media (a) Eroded soil configuration (b) Phase assumption.  
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These two above expressions can be combined to obtain the 
following expression: 

ṅwf = − nwf ∂vw
i

∂xi
+

ρ̇es− f
ex

ρs (18) 

It can be assumed that the inflow and outflow of erodible fine par-
ticles in the transition phase have the same mass (ρ̇s− es

ex = ρ̇es− f
ex = ρ̇ex) so 

that their exchange terms are assumed to sum to zero, allowing Eqs. (12) 
to (13) and Eq. (18) to be rewritten as: 

ṅs = − ns∂vs
i

∂xi
−

ρ̇ex

ρs (19)  

ṅes = − nes∂ves
i

∂xi
(20)  

ṅwf = − nwf ∂vw
i

∂xi
+

ρ̇ex

ρs (21) 

Given ns + nes + nwf = 1, adding Eqs. (19) to (21) results in: 

nwf δij
∂vw

i

∂xj
= − nsδij

∂vs
i

∂xj
− nesδij

∂ves
i

∂xj
(22) 

Eqs. (19) to (22) represent the reciprocity between incremental 
forms of volume fraction and volumetric strain thanks to the assumption 
of incompressible soil skeleton. 

3.2. Momentum equations 

The momentum of a constituent is conservative in the sense that the 
momentum change is equal to the total external force on its volume 
(Chen et al., 2021). This is reflected through the following form: 

dϰ

dt

∫

V
ρϰvϰ

i dV = −

∫

S

(
σϰ

ijnj

)
dS+

∫

V
ρϰBidV +

∫

V
Rϰ

i dV (23) 

In the above equation, σϰ
ijnj represents the partial traction force 

acting on the surface area dS of volume V with nj being the outward unit 
normal vector on this surface (e.g. negative sign indicating the 
compressive positive conventions of the stresses), Bi is the body force of 
the mass ρϰdV induced by the gravity acceleration constant g and Rϰ

i 
denotes the viscous drag force acting on the ϰ-phase. 

We adopt the Reynolds transport theorem and the material time 
derivative of ρϰ and vϰ

i for the left-hand side term of Eq. (23) to obtain: 

dϰ

dt

∫

V
ρϰvϰ

i dV =

∫

V

[

vϰ
i

(
Dϰρϰ

Dt
+ ρϰ∂vϰ

i

∂xi

)

+ ρϰDϰvϰ
i

Dt

]

dV (24) 

From Eqs. (8) and (24), the following relation can be obtained: 

dϰ

dt

∫

V
ρϰvϰ

i dV =

∫

V

(

vϰ
i ρ̇ϑ

ex + ρϰDϰvϰ
i

Dt

)

dV (25) 

Using the Gauss theorem and comparing Eqs. (25) and (23) result in 
the balance of linear momentum for phase ϰ as follows: 
∫

V

(

vϰ
i ρ̇ϑ

ex + ρϰDϰvϰ
i

Dt

)

dV = −

∫

V

∂σϰ
ij

∂xj
dV +

∫

V
ρϰBidV +

∫

V
Rϰ

i dV (26) 

which can become the following expression due to the arbitrary 
property of V: 

ρϰDϰvϰ
i

Dt
= −

∂σϰ
ij

∂xj
+ ρϰBi +Rϰ

i − vϰ
i ρ̇ϑ

ex (27) 

The seepage flow is assumed to be laminar in the case of low water 
velocities, while the velocity of the solid is usually small within the 
porous media. Therefore, the acceleration of all phases and macroscopic 
viscous effects are considered to be sufficiently inconsiderable (e.g. 
Dϰvϰ

i
Dt ≈ 0) (Borja and White, 2010; Gray et al., 2010). By applying this 

assumption and using ρ̇ϑ
ex = ρ̇ex as mentioned in Eqs. (19) to (21), the 

momentum balance of each phase in Eq. (27) can be written as: 

−
∂σs

ij

∂xj
+ ρsBi = − Rs

i − vs
i ρ̇ex (28)  

−
∂σes

ij

∂xj
+ ρesBi = − Res

i (29)  

−
∂σwf

ij

∂xj
+ ρwf Bi = − Rwf

i + vw
i ρ̇ex (30) 

The above expressions and Eqs. (19) to (22) are considered basic 
governing equations of the separate phases. They are then used to 
construct the formulation of work input with influences of the internal 
erosion process, reproducing the gain or loss of mass and the interaction 
of constituents within a heterogeneous system. 

3.3. Work input 

The work input is needed to consider the intrinsic transition of the 
state of fine particles at the grain scale, bridging their states from being 
attached to soil skeleton to fluidized. It can be reflected in the simulta-
neous activation and evolution of three phases within a short period 
observed at the continuum level, as illustrated in Figs. 1 and 2. This 
nature requires the interdependence of mechanical, seepage and erosion 
responses, leading to a unified work input of mixture representing the 
coupled hydro-mechanical responses, as described in the following 
formulations. 

Utilizing homogenization reasoning, the power input L to any arbi-
trary volume fixed in space is obtained from the sum of the products of 
the various forces acting on the material with their respective velocities 
(Houlsby, 1979; Houlsby, 1997), taking the form below: 
∫

V
LdV = −

∫

S

(
σs

ijv
s
i +σes

ij ves
i +σwf

ij vw
i

)
njdS+

∫

V

(
ρsBivs

i +ρesBives
i +ρwf Bivw

i

)
dV

(31) 

in which the negative sign (e.g. −
∫

s

(
σs

ijvs
i +σes

ij ves
i +σwf

ij vw
i

)
njdS) is used 

to represent the compressive positive conventions of the stresses. 
Using the divergence theorem of Gauss and the arbitrary property of 

V in Eq. (31) leads to the following expression: 

L = − σs
ij
∂vs

i

∂xj
− σes

ij
∂ves

i

∂xj
− σwf

ij
∂vw

i

∂xj
+

(

−
∂σs

ij

∂xj
+ ρsBi

)

vs
i +

(

−
∂σes

ij

∂xj
+ ρesBi

)

ves
i

+

(

−
∂σwf

ij

∂xj
+ ρwf Bi

)

vw
i

(32) 

Combining Eqs. (28) to (30) and (32) results in: 

L = − σs
ij
∂vs

i

∂xj
− σes

ij
∂ves

i

∂xj
− σwf

ij
∂vw

i

∂xj
+
(
vw

i vw
i − vs

i v
s
i

)
ρ̇ex − Rs

i v
s
i − Res

i ves
i − Rwf

i vw
i

(33) 

Due to Rs
i + Res

i + Rwf
i = 0, Eq. (33) can be rewritten as: 

L= − σs
ij
∂vs

i

∂xj
− σes

ij
∂ves

i

∂xj
− σwf

ij
∂vw

i

∂xj
+
(
vw

i vw
i − vs

i v
s
i

)
ρ̇ex+Res

i

(
vs

i − ves
i

)
+Rwf

i
(
vs

i − vw
i

)

(34) 

By using Eq. (5), we can rewrite Eq. (34) as follows: 

L=−
(

σij − nesσes
ij − nwf pwδij

)∂vs
i

∂xj
− nesσes

ij
∂ves

i

∂xj
− nwf pwδij

∂vw
i

∂xj
+
(
vw

i vw
i − vs

i v
s
i

)
ρ̇ex

+Res
i

(
vs

i − ves
i

)
+Rwf

i
(
vs

i − vw
i

)

(35) 

Substitution of Eq. (22) into Eq. (35) leads to: 
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L = −
[
σij − pwδij + nes

(
pwδij − σes

ij

) ] ∂vs
i

∂xj
+ nes

(
pwδij − σes

ij

) ∂ves
i

∂xj

+
(
vw

i vw
i − vs

i v
s
i

)
ρ̇ex +Res

i

(
vs

i − ves
i

)
+Rwf

i
(
vs

i − vw
i

)
(36) 

In the above expression, − ∂vs
i

∂xj
= ε̇ij is the rate of the strain tensor 

where the negative sign results from the assumption of the compressive 
positive conventions of the strain. It can be assumed that the shear 
component of σes

ij are negligible due to weak contact forces between 
detachable particles and others immediately before detachment (Shire 
and O’Sullivan, 2013). In addition, the drag force Res

i during the phase 
transition from solid to fluidized is small since this phase is considered 
an idealised immediate phase taking place within a very short time. 

Given the above assumptions, Eq. (36) can be rewritten as: 

L =
[
σij − pwδij + nes(pw

− pes)δij
]
ε̇ij + nes(pw − pes)δij

∂ves
i

∂xj
+
(
vw

i vw
i − vs

i v
s
i

)
ρ̇ex +Rwf

i
(
vs

i − vw
i

)

(37)  

where pes is mean intrinsic stress of the transition phase. 
What makes the current approach distinct from other existing works 

(Steeb and Diebels, 2003; Rousseau et al., 2020; Zhang et al., 2013) is 
the first and second terms of the right-hand side of Eq. (37) where 
nes(pw − pes)δij appears. This term describes the change in effective stress 
associated with the loss of contacts during the transition of eroded solid 
from soil skeleton to fluidization. Further discussions on this feature will 
be followed in Section 4. 

In Eq. (37), pes and ves
i are essential variables of the transition phase 

representing the phase transition of erodible particles. Nevertheless, it is 
difficult to include the time-dependent transition of pes and ves

i in tack-
ling responses of erodible particles during the process of internal erosion 
in terms of continuum models due to the lack of experimental data at the 
micro scale. It is noted that this transition process usually takes place 
suddenly, as illustrated in grain scale simulations (Liu et al., 2020, Zhou 
et al., 2020). Thus, assumptions on forms of pes and ves

i are essential for 
the development of a theoretical framework. It is acknowledged that 
these assumptions should strike a balance between rigour, performance 
and simplicity to describe necessary behavioural features of soils to 
make them more accessible to practical engineering. Given the transi-
tion between solid and fluid-like states, it is reasonable to assume pes and 
ves

i as follows: 

pes = αpw +(1 − α)ps (38)  

ves
i = βvw

i +(1 − β)vs
i (39) 

where ps is the mean intrinsic stress of solid phase. 
Using parameters α and β in Eqs. (38) and (39) is considered as a 

simple way to demonstrate how the transition process can be incorpo-
rated into the constitutive formulation over a continuum time scale. 
They control the transition in stress and velocity between solid and fluid- 
like phases of erodible particles during erosion processes. In other 
words, parameters α and β are the consequences of the introduction of 
the transition phase in continuum modelling. Their values (ranging from 
0 to 1) allow describing how fast or slow the internal erosion process is. 
For example, the combinations of different values of α and β enables us 
to flexibly describe different extreme cases of internal erosion (i) 
entirely-eroded transition phase (fluid-like) (ii) no erosion at all (the 
transition phase holds pressure and velocity of solid skeleton) (iii) a very 
fast transition (a sudden loss of fine grains holding very high stresses 
which are “instantly” washed out by fluid) (iv) a very slow erosion 
process (transition phase holding fluid pressure, but still moving with 
the solid skeleton). Further details can be found in Section 4.2. This 
treatment is believed to be acceptable as long as these two parameters 
can be identified and calibrated using standard tests, and the calibrated 
models can reproduce the experimental trends over a range of 

mechanical and hydraulic conditions under effects of erosion. This is one 
of our planned investigations in future papers on internal erosion. 

Substituting Eqs. (38) and (39) into Eq. (37) allows us to rewrite Eq. 
(37) as follows: 

L =

{

σij − pwδij +
(1 − α)βnes

(βnes + nwf )
(pw

− ps)δij

}

ε̇ij +
(
vw

i vw
i − vs

i v
s
i

)
ρ̇ex +Rwf

i
(
vs

i − vw
i

)
(40) 

For further expansion of Eq. (40), Eq. (5) can be recalled in the form 
of the total mean stress p as follows: 

p = nsps + nespes + nwf pw (41) 

From Eqs. (41) and (38), the intrinsic pressure of the solid phase can 
take the following form: 

ps =
p − (αnes + nwf )pw

ns + (1 − α)nes (42) 

which can be substituted into Eq. (40) to obtain the form below: 

L =

{

σij − pwδij +
(1 − α)βnes

(βnes + nwf )[ns + (1 − α)nes ]
(pw − p)δij

}

ε̇ij

+
(
vw

i vw
i − vs

i v
s
i

)
ρ̇ex +Rwf

i
(
vs

i − vw
i

)
(43) 

On the other hand, the body force of the mass can be neglected 
(Bi ≈ 0) in Eq. (30). The viscous drag force of Rwf

i acting on the wf -phase 
can be assumed to be equal to Rf

i of the fluidized phase, due to the mix of 
eroded particles and water within the seepage flow: 

Rwf
i = Rw

i = nw∂pw

∂xi
(44) 

Substituting the above expression into Eq. (43), we obtain: 

L = σ′
ijε̇ij + p′

eρ̇ex +
∂pw

∂xi
θi

=

{

σij − pwδij +
(1 − α)βnes

(βnes + nwf )[ns + (1 − α)nes ]
(pw − p)δij

}

ε̇ij

+
(
vw

i vw
i − vs

i v
s
i

)
ρ̇ex +

∂pw

∂xi
nw( vs

i − vw
i

)

(45) 

where σ′
ij = σij − pwδij +

(1− α)βnes

(βnes+nwf)[ns+(1− α)nes ]
(pw − p)δij, p′

e = vw
i vw

i − vs
i vs

i 

and θi = nw
(
vs

i − vw
i
)

are effective stress, erosion-driving force and water 
flux, respectively. 

The formulations in Section 3 present a derivation of work input 
accounting for the most fundamental features of the coupling between 
the matrix of porous material and fluid flow in the case of internal 
erosion. Our formulation aims to obtain a good balance between rigour 
and simplicity. It is expected to form a basis for the development of 
constitutive models taking into account internal erosion (see Section 
4.3). The above expressions allow quantifying the amounts of hydraulic 
and mechanical energy produced or dissipated within the total budget of 
work input by conjugate pairs. This is associated with the simultaneous 
processes of deformation, erosion and seepage, hence reflecting essen-
tial hydro-mechanical responses under the effects of erosion. Our pro-
posed work input includes the effects of the transformation process 
between soil skeleton and fluidized states, as key difference with other 
existing forms of work input for soils undergoing internal erosion. It can 
be seen that the proposed form of the work input can automatically 
become the classical form for fully saturated soils (Houlsby, 1979) if 
ρ̇ex = 0 and nes = 0, capturing the transition between states of non- 
eroded and eroded soils. 

4. How to use the proposed work input in constitutive modelling 
of soils undergoing erosion 

In this section, some discussions are made to gain a general picture of 

D.G. Phan et al.                                                                                                                                                                                                                                 



International Journal of Solids and Structures 283 (2023) 112487

9

how the proposed work input can be used for developing continuum 
models to capture the hydromechanical coupling of saturated soils 
under the effects of internal erosion. 

4.1. Work conjugate pairs 

Our proposed formulation is expected to provide an appropriate 
choice of work conjugate variable pairs reflecting interaction and tran-
sition between solid and water phases during internal erosion. This is 
essential for the development of constitutive models for describing the 
coupling between mechanical response, fluid transport and erosion 
process (e.g. see Section 4.3) under various loading, hydraulic and 
erosion cases. 

The proposed form of work input reflects underlying micro- 
mechanisms of deformation, fluid transport and erosion. The underly-
ing micromechanical quantities and their interactions are represented at 
the macro scale by macroscopic stress-like variables (e.g. σ′

ij, 
∂pw

∂xi 
and p′

e) 

in continuum modelling. Effective stress σ′
ij is the stress on soil skeleton 

governed by contact forces between particles. The seepage force ∂pw

∂xi 
is to 

describe coupled solid deformation-fluid flow in fully saturated porous 
media. ∂pw

∂xi 
is one of the main components in governing the overall rate of 

energy loss associated with friction at the water-solid interphase 
(Houlsby, 1979; Houlsby, 1997). The erosion-driving force p′

e is related 
to the kinematic energy controlling the process of mass loss due to 
detachment of fine grains. Given its appearance in the expression of 
work input, p′

e should appear in criteria for activation and evolution of 
internal erosion. 

The above effective stress σ′
ij, fluid pressure gradient ∂pw

∂xi 
and erosion- 

driving p′
e, are work conjugated with strain ε̇ij (Borja and Koliji, 2009; 

Song and Silling, 2020), water flux θi and mass loss ρ̇ex, respectively, 
associated with a change in the system state. Apart from strain rate ε̇ij 

and water flux θi in the traditional form of work input (Houlsby, 1979; 
Houlsby, 1997), the mass loss ρ̇ex appears as an additional variable 
associated with erosion representing the rate of mass loss induced by 
seepage flow. 

4.2. Effective stress accounting for the process of internal erosion 

Effective stress can be considered as the stress at the inter-particle 
contacts, related to the deformation and failure of the soil skeleton, 
and governed by both the external load and contact-level action (Loret 
and Khalili, 2002; Andrade et al., 2022; Duriez et al., 2017). According 
to Houlsby (1997), Borja and Koliji (2009) and Coussy et al (2010), the 
effective stress is work conjugated with the strain rate of the solid 
skeleton, indicating mechanical work input associated with changes in 
the soil skeleton. Accordingly, the traditional form of Terzaghi’s effec-
tive stress (Andrade et al., 2022; Duriez et al., 2017; Jiang et al., 2017; 
Selvadurai and Suvorov, 2016; Serpieri et al., 2015) or its extended form 
accounting for the Biot coefficient (Borja and Koliji, 2009; Benallal and 
Claudia, 2003; El Tabbal et al., 2020; Gawin et al., 2020; Aichi and 
Tokunaga, 2012) have been widely used for porous media. However, 
loss of contacts of fine particles due to erosion induces changes to the 
soil skeleton and these changes should be reflected in the effective stress. 
In this sense, it can be argued that the form of Terzaghi’s effective stress 
usually used for internal erosion (e.g. Steeb and Diebels, 2003; Rousseau 
et al., 2020; Zhang et al., 2013) may not faithfully represent the effect of 
internal erosion on soil skeleton. Missing details on the transition phase 
is the key here. This is because the lateral support of fine particles in the 
force chain of the soil skeleton is suddenly lost during the state transition 
process of fine particles from solid to fluidization. Such a transition re-
sults in the development of the buckling of the chained particles and 
then the variation in the averaged effective stress. This behavioural 
feature can be addressed by our new form of effective stress drawn from 

Eq. (45) as follows: 

σ′
ij = σij − pwδij

⏞̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅ ⏞
Terzaghi′s effective stress

+
(1 − α)βnes

(βnes + nwf )[ns + (1 − α)nes ]
(pw − p)δij

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
Erosion− induced term

(46) 

Eq. (46) indicates that our current effective stress tensor consists of 
two components: Terzaghi’s effective stress and Erosion-induced term. 
The second component accounts for the transition of erodible particles 
before and after fluidization (see Part II in Eq. (46)). The volume fraction 
nes of the transition phase represents the amount of fine grains ready to 
detach from the soil skeleton induced by the seepage flow. These fine 
grains are in weak force chains which, in Discrete Element Methods, can 
be identified when their contact forces are smaller than the average 
contact force (e.g. Radjai et al., 1998; Nie et al., 2020) or with incon-
siderable deviatoric stresses (e.g. Thornton and Antony, 1998; Shire and 
O’Sullivan, 2013). Weakly connected grains have a minor contribution 
to the force transmission in the soil skeleton and are progressively dis-
rupted upon seepage forces of water flow, going with releasing the strain 
energy stored in contacts (Liu et al., 2020). In principle, micro- 
mechanical approaches allow detecting whether particles are in all 
low-connectivity particles in the heterogeneous network of particle 
contacts (Shire et al., 2014; Ma et al., 2021). From this, the number of 
weakly connected particles and corresponding volume fraction can be 
then computed. 

The effect of nes on the normalised mean effective stress 
p′

p− pw = 1 −
(1− α)βnes

[1− ns − (1− β)nes ][ns+(1− α)nes ]
can be seen in Fig. 4, using α = 0.5 and 

β = 0.5. As can be seen in Fig. 4, the nominalised mean effective stress 
decreases with increasing nes. This indicates considerable effect of the 
transition phase on the stress of the soil skeleton, reflecting the depen-
dence of soil strength on the size of weak contact networks. The range of 
nes requires DEM-CFD analyses and will be considered in future works. 

Parameters α and β in the expression of effective stress are used to 
control the transition process and hence the effects of erosion on effec-
tive stress. Recalling Eq. (38), 0 < α < 1 indicates that for the consid-
ered state, the averaged pressure pes of the transition phase is lower than 
the mean intrinsic pressure ps of the solid skeleton (assuming fluid 
pressure is smaller than ps). Therefore a fraction of this phase can 
potentially be washed away if the hydraulic gradient is high enough. It is 
noted that the volume fraction of the transition phase indicates the total 
amount of fine grains that can be potentially eroded at a given instant. It 
does not mean the whole phase will be eroded at once. In a similar sense, 
0 < β < 1 in Eq. (39) reflects how fast or slow the erosion process is, 
with the transition phase transforming from solid to fluidized state. The 
combination of α and β allows describing the effects of erosion on 
effective stress and extreme cases (see Fig. 5). It is noted that the par-
ticles in Fig. 5 are indicative for illustration purposes only, given we are 
working on quantities at continuum scale, following Biot’s mixture 
theory. The extreme cases in Fig. 5 are described below: 

Fig. 4. Variation in nominalised mean effective stress against nes at α = 0.5 and 
β = 0.5 
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a) The effective stress can reduce to the classical Terzaghi’s form when 
α = 1 and β = 1, indicating that the whole transition phase has been 
eroded, given its intrinsic pressure and velocity coincide with the 
fluid’s counterparts. On the other hand, the same classical Terzaghi’s 
effective stress is obtained for α = 0 and β = 0, in which the tran-
sition phase holds pressure and velocity of solid skeleton, indicating 
no erosion at all. It is noted that the evolution of effective stress is 
linked with the evolution of shear strength due to erosion, and 
although in both extreme cases (α = 1, β = 1, and α = 0, β = 0) 
Terzaghi’s effective stress is recovered, the former (α = 1, β = 1) is 
associated with lower shear strength given the loss of fine particles 
due to erosion.  

b) The influence of erosion on effective stress is most profound if there 
is a sudden loss of fine grains holding very high stresses, represented 
by α = 0 (e.g. pes = ps), which are “instantly” washed out by fluid, 
represented by β = 1 (e.g. ves

i = vw
i ). Such cases indicate a very fast 

transition: sudden loss of total energy hold by transition phase to 
fluid phase. Fig. 6 shows such effects for different values of nes. 

c) A very slow erosion process, represented by α = 1 and β = 0 (tran-
sition phase holding fluid pressure, but still moving with the solid 
skeleton), leads to no influence on effective stress, as seen in Fig. 5. 

Other combinations of α and β to represent the stress state and ve-
locity of transition phase can be used to describe how fast or slow 
erosion process is. As can be seen, the formulation results in three key 
parameters, nes, α and β, and their effect on effective stress of the soil 

skeleton. The prospect of using all these three key parameters, as vari-
ables to describe the evolution of erosion process and its effect on shear 
strength at continuum scale will need further investigations and cannot 
be covered in this study. 

The combined effect of all parameters, nes, α and β, on effective stress 
are presented in Fig. 6. Stronger effect can be seen for increasing value of 
nes, indicating soils that are more susceptible to erosion. In combination 

Fig. 5. Extreme cases of erosion and how fast or slow the transition from solid to fluidized is (through different values of α and β; see Eqs. (38) and (39)) at nes = 0.1.  

Fig. 6. Effect on mean effective stress, due to the amount of transition phase in 
the system, using nes = 0, 0.01, 0.06 and 0.1. 

D.G. Phan et al.                                                                                                                                                                                                                                 



International Journal of Solids and Structures 283 (2023) 112487

11

with parameters α and β that characterise the pressure and velocity of 
the transition phase, the effect nes can be accelerated or negated 
depending on how the erosion processs is, e.g. fast or slow. 

4.3. Formulating constitutive models accounting for seepage, plasticity 
and erosion criteria 

The behaviour of eroded soils is experimentally observed in the 
interdependence and transformation between fine and fluid phases due 
to mass loss. These mutual solid-fluid transformations and interactions 
are intrinsically governed by four main factors: soil susceptibility, stress 
condition, loading path, and hydraulic gradient. They all must be 
essentially taken into account in plasticity, seepage and erosion criteria 
for representing the hydro-mechanical behaviour in constitutive 
modelling as described in this section through an example of generic 
criteria. 

4.3.1. Fundamental relationships 
The derivation of plasticity, seepage and erosion criteria can start 

with the obtained rate of work input (see Eq. (45)) written in the triaxial 
form as follows: 

L = p′ε̇ν + qε̇s + ρu
exp

′
eĖ+

∂pw

∂xi
θi

=

{

p − pw +
(1 − α)βnes

(βnes + nwf )[ns + (1 − α)nes ]
(pw − p)δij

}

ε̇ν + qε̇s +

+ ρu
ex

(
vw

i vw
i − vs

i v
s
i

)
Ė +

∂pw

∂xi
nw( vs

i − vw
i

)

(47)  

where E =
ρex
ρu

ex 
is the erosion index defined as the ratio between the cur-

rent mass loss ρex and ultimate mass loss ρu
ex; εv is the volumetric strain; 

εs is the deviatoric strain; p′ is the effective mean stress and q is the 
deviatoric stress. The triaxial stresses (p′, q) and triaxial strains (εv, εs) 

can be expressed in the following forms of Cauchy effective stress 
(

σ′
ij

)

and strain tensors 
(
εij
)
, respectively. 

p′ = −
1
3
σ′

kk, andq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2

(

σ′
ij −

1
3

σ′
kkδij

)(

σ′
ij −

1
3
σ′

kkδij

)√

(48)  

εv = − εkk, andεs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3

(

εij −
1
3
εvδij

)(

εij −
1
3
εvδij

)√

(49) 

The Helmholtz free energy can assume the general form below: 

ψ = μ(E)ψm( εν, εs, εp
ν, εp

s

)
(50) 

In the above expression, εp
ν and εp

s are plastic volumetric and devia-
toric strains, respectively. They are considered internal variables of 
plasticity. ψm is the Helmholtz free energy of uneroded soils. μ(E) is a 
function of E used for describing the effect of erosion on the elastic 
stiffness, where μ(E) = 1 in the case of E = 0 (uneroded). In this sense E 
plays a similar role as a scalar damage indicator in Damage Mechanics 
(Lemaitre, 2012), or scalar breakage indicator in Breakage Mechanics 
theory (Einav, 2007a; Einav, 2007b; Das et al., 2014; Tengattini et al., 
2014; Einav and Valdes, 2008; Nguyen and Einav, 2010). The specific 
forms of μ(E) requires micromechanical insights and are a subject of 
future investigation. For the presentation in this study, the generic form 
of μ(E) is used. 

Therefore, the rate of Helmholtz free energy can be expressed as 
follows: 

ψ̇ = μ
(

∂ψm

∂εν
ε̇ν +

∂ψm

∂εs
ε̇s +

∂ψm

∂εp
ν

ε̇p
ν +

∂ψm

∂εp
s

ε̇p
s

)

+
∂μ
∂E

ψmĖ (51) 

Under isothermal conditions, the energy balance (Coussy, 2006), 
written for a volume element undergoing dissipative processes due to 
mechanical behaviour, seepage flow and internal erosion, is of the form: 

L = ψ̇ + Φ̃ = μ
(

∂ψm

∂εν
ε̇ν +

∂ψm

∂εs
ε̇s +

∂ψm

∂εp
ν

ε̇p
ν +

∂ψm

∂εp
s

ε̇p
s

)

+
∂μ
∂E

ψmĖ + Φ̃ (52) 

with Φ̃ being the dissipation potential. 
By comparing Eqs. (52) and (47), the following fundamental re-

lationships can be obtained: 

p′ = μ ∂ψm

∂εν
(53)  

q = μ ∂ψm

∂εs
(54) 

and 

Φ̃ = − μ ∂ψm

∂εp
ν

ε̇p
ν − μ ∂ψm

∂εp
s

ε̇p
s +

(

ρu
exp

′
e +

∂μ
∂E

ψm
)

Ė −
∂pw

∂xi
θi

= χνε̇p
ν + χsε̇p

s + χeĖ + χw
i θi (55) 

in which the generalised stresses χν = − μ ∂ψm

∂εp
ν
, χs = − μ ∂ψm

∂εp
s
, 

χe = ρu
exp′

e +
∂μ
∂Eψm and χw

i = − ∂pw

∂xi 
are the thermodynamic conjugates to 

rates of volumetric plastic strain ε̇p
ν, deviatoric plastic strain ε̇p

s , erosion 
index Ė and water flux θi, respectively. 

The dissipation can also be written as follows: 

Φ̃ = Φ̃
me
+ Φ̃

h
=

∂Φ̃
∂ε̇p

ν
ε̇p

ν +
∂Φ̃
∂ε̇p

s
ε̇p

s +
∂Φ̃
∂E

Ė
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Φ̃me

+ χw
i θi
⏟⏞⏞⏟

Φ̃h

= χνε̇p
ν + χsε̇p

s + χeĖ + χw
i θi

(56)  

where χν,χs, χe and χw
i are volumetric, deviatoric, erosion and hydraulic 

dissipative generalised stresses, respectively. It is noted that dissipations 
due to mechanical responses and erosion can be reasonably assumed 
rate-independent, resulting in first order homogeneous dissipation po-
tential Φ̃

me 
in terms of corresponding rates of internal variables 

(Houlsby and Puzrin, 2000; Houlsby and Puzrin, 2007). On the other 

hand, hydraulic dissipation is generally rate-dependent, and hence Φ̃
h 

is 
not a homogeneous first order function in terms of the water flux θi =

nw( vs
i − vw

i
)
. In that sense, a potential zw is needed for the definition of 

χw
i , e.g. χw

i = ∂zw

∂θi 
. The details on rate-dependent dissipation processes 

due to hydraulic dissipation are not covered in this study. The readers 
can refer to Houlsby and Puzrin (2000), Houlsby and Puzrin (2007) for 
formulation of rate-dependent constitutive models based on 
thermodynamics. 

Comparing Eq. (56) with Eq. (55), a form of Ziegler’s orthogonality 
condition (Ziegler, 2012) can be obtained as: 

χν =
∂Φ̃
∂ε̇p

ν
= χν = − μ ∂ψm

∂εp
ν

(57)  

χs =
∂Φ̃
∂ε̇p

s
= χs = − μ ∂ψm

∂εp
s

(58)  

χe =
∂Φ̃
∂E

= χe = ρu
exp′

e +
∂μ
∂E

ψm (59)  

χw
i = χw

i = −
∂pw

∂xi
(60)  

4.3.2. A generic model 
The evolutions of mechanical, hydraulic and erosion dissipative 

processes reflecting underlying grain-scale hydromechanical mecha-
nisms can be incorporated into the model formulation through the 
approach by means of constraint equations. In this approach, dissipation 
potential takes the generic form set out below: 
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Φ̃ = φνε̇p
ν +φsε̇p

s +φeĖ +φw
i θi ≥ 0 (61) 

In the above expression, φν, φs, φe are generally functions of stresses, 
internal variables (plastic strain and E) and hydraulic gradient ∂pw

∂xi
, while 

and φw
i can be dependent on θi to reflect rate-dependent hydraulic 

dissipation. In this framework, to reflect kinematic interdependencies 
between two internal variables ε̇p

ν and ε̇p
s , the following kinematic 

constraint equation (C) is introduced: 

C = Bε̇p
ν +Aε̇p

s = 0 (62)  

where A and B are general functions associated with the dilation angle 
(Andrade et al., 2012; Borja, et al., 2013), governing dilation responses 
(Nguyen and Bui, 2020). 

The kinematic constraint equation is also homogeneous first-order 
functions in terms of the rates of internal variables. Thanks to zero 
values, it can be used to supplement the dissipation potential to obtain 
an equivalent dissipation function using the standard method of 
Lagrangian multipliers (Houlsby and Puzrin, 2000) as follows: 

Φ̃ = Φ̃+ΛC = φνε̇p
ν +φsε̇p

s +φeĖ+φw
i θi +Λ

(
Bε̇p

ν +Aε̇p
s

)
≥ 0 (63) 

in which Λ is the Lagrangian kinematic multiplier. Using Eqs. (56) 
and (63), dissipative generalized stresses take the following forms: 

χν =
∂Φ̃
∂ε̇p

ν
= φν +BΛ (64)  

χs =
∂Φ̃
∂ε̇p

s
= φs +AΛ (65)  

χe =
∂Φ̃
∂Ė

= φe (66)  

χw
i = φw

i (67)  

4.3.2.1. Seepage law. From Eqs. (67) and (60), the generic expression of 
seepage law can be obtained as follows: 

∂pw

∂xi
= − φw

i (68) 

which illustrates the hydraulic dissipation induced by the relative 
motion between solid and fluid phases and facilitates the establishment 
of Darcy’s law if φw

i is assumed as a function of seepage velocity (e.g. θi) 
(Houlsby, 1979; Houlsby, 1997; Selvadurai and Suvorov, 2016). It is 
noted that this generic seepage law is only valid for the slow flow of a 
macroscopically inviscid fluid through fully saturated soils. 

4.3.2.2. Plasticity criterion. By combining Eqs. (64) and (65), the 
loading function in the dissipative stress space y*(m) is obtained: 

χν = φν +
B
A
(χs − φs) (69) 

A mechanical yield function y*(m) in generalised stress space (χν, χs) 
can be obtained from Eq. (69) as: 

y*(m) = Aχν − Bχs − Aφν +Bφs ≤ 0 (70) 

Along with this, the expressions for the mechanical flow rules are 
hence obtained as follows: 

ε̇p
ν = λ̇m

y*(m)

∂χν = λ̇mA (71)  

ε̇p
s = λ̇m

y*(m)

∂χs = − λ̇mB (72)  

where λ̇m is the plasticity multiplier. 

Eqs. (70) to (72) present a generic form of plasticity criterion in 
generalised stress space (χν, χs) (see its illustration in Fig. 7) for saturated 
soils under the effects of internal erosion. χν and χs are dependent on p′, q 
and yield stress, allowing us to write Eqs. (70) to (72) in true stress space 
(p′, q). A,B,φν and φs can be assumed to be dependent on stresses (p′, q), 
erosion (E) and hydraulic gradient (∂pw

∂xi
) terms to capture the effects of 

hydraulic response and mass loss on the stress-strain behaviour. Thus, 
the yield surface for mechanical responses in true stress space can take 
the following generic form: 

y(m)

(

p′, q,
∂pw

∂xi
, εp

ν , εp
s ,E
)

≤ 0 (73) 

It is noted that the derivation of the proposed plasticity criterion is 
based on the use of constraints in thermodynamic formulation. Alter-
natively, the special form of dissipation potential (Phan, 2021; Phan 
et al., 2021a; Phan et al., 2021b; Phan et al., 2023a; Phan et al., 2023b) 
can be adopted to construct a similar form of yield criterion. 

4.3.2.3. Erosion criterion. To derive the erosion criterion based on our 
form of work input, Eq. (66) can be used to write the following erosion 
criterion in generalised dissipative stress space: 

y*(e) = χe − φe ≤ 0 (74) 

which leads to the following evolution rule for erosion: 

Ė = λ̇e
y*(e)

∂χe = λ̇e (75) 

with λ̇e being the erosion multiplier. 
Given χe = ρu

exp′
e +

∂μ
∂Eψm, the erosion criterion in true stress space is 

y(e) = ρu
exp

′
e +

∂μ
∂E

ψm − φe ≤ 0 (76) 

The erosion criterion can be furnished by the choices of φe where in 
general we can assume φe as a generic function of p′, q, ∂pw

∂xi 
and E. 

Eqs. (53), (54), (68), Eqs. (71) to (73) and Eqs. (75) to (76) represent 
the generic form of our model. In the proposed model, the assumption of 
transition phase may bring challenges for reaching a good validation 
between predictive and measured results on natural granular materials. 
The key challenge here is determination of variables (volume fraction, 
nes) and calibration of parameters (α, β) related to the transition phase. 
At this stage, we acknowledge that there is a lack of adequate experi-
mental data in existing laboratory that can provide sufficient details on 
these parameters and variables. The prospect of using them to describe 

Fig. 7. Geometric representation of yield potential in dissipative stress 
for plasticity. 
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the evolution of erosion process and its effect at continuum scale will 
need further investigations. 

The volume fraction of transition phase nes can be computed based 
on gradients of solid and water velocities through Eq. (20) (mass con-
servation) but the assumption on the initial value of nes is required and 
considered as a parameter. The appropriate ranges of the initial value of 
nes is an important information for us to calibrate it. CFD-DEM simula-
tions can be used for this calibration purpose where we can possibly 
identify number of fine grains in weak force chains and their corre-
sponding volume fraction. Given the obtained range, the initial value of 
nes can be adjusted together with values of α and β to allow model re-
sponses (e.g. stress-strain responses, and degree of erosion) to match 
with experimental data. It is, however, not yet adopted in this study, and 
left here as future work on the model development. 

α and β reflect the transition speed (fast, slow, non-eroded, fully- 
eroded) through state properties of erodible particles closer to solid or 
fluid-like state. Thus, they can be adjusted within a range of 0 to 1 in the 
parameter calibration process so that macro quantities (stress, strain, 
degree of erosion) can match the experimental data at different levels of 
erosion. 

4.3.3. Coupled hydro-mechanical-erosion tangent stiffness tensor 
A consistent tangent stiffness matrix linking proposed stress-like 

variables and strain-like variables is one of the indispensable compo-
nents in the development of a constitutive model. In the case of models 
for internal erosion, the tangent stiffness matrix can serve as an explicit 
indicator of the interaction between mechanical, hydraulic and mass 
loss processes in inelastic and erosion regimes, which can be shown in 
this section. 

For the purpose of formulation derivation of the tangent stiffness, 
several essential formulations of the proposed generic model in Section 
4.3.1 are first recalled. In particular, the generic stress-strain relation-
ships can be assumed to be drawn from Eqs. (53) and (54) as follows: 

p′ = μ(E) ∂ψm

∂εν

(
εν, εp

ν
)

(77)  

q = μ(E) ∂ψm

∂εs

(
εs, εp

s

)
(78) 

From Eqs. (71) to (73), the yield function and evolution rules are of 
the following generic forms for plasticity: 

y(m)

(

p′, q,
∂pw

∂xi
, εp

ν, εp
s ,E
)

≤ 0 (79)  

ε̇p
ν = λ̇m

y*(m)

∂χν (80)  

ε̇p
s = λ̇m

y*(m)

∂χs (81) 

while the generic functions of erosion criterion and corresponding 
evolution rule are summarised as follows: 

y(e)
(

p′, q,
∂pw

∂xi
,E
)

≤ 0 (82)  

Ė = λ̇e
y*(e)

∂χe (83) 

From Eqs. (77) and (78), the incremental forms of stresses can be 
described as: 

ṗ′ = μ ∂2ψm

∂ε2
ν

ε̇ν + μ ∂2ψm

∂εν∂εp
ν
ε̇p

ν +
∂μ
∂E

∂ψm

∂εν
Ė (84)  

q̇ = μ ∂2ψm

∂ε2
s

ε̇s + μ ∂2ψm

∂εs∂εp
s
ε̇p

s +
∂μ
∂E

∂ψm

∂εs
Ė (85) 

By substituting Eqs. (80) and (81) into Eqs. (84) and (85) and 
combining with Eq. (83), the incremental coupled hydro-mechanical- 
erosion relationships can be written in the following matrix form, 
given ε̇ν, ε̇s and ∂ṗw

∂xi 
as inputs: 

⎧
⎨

⎩

ṗ′

q̇
Ė

⎫
⎬

⎭
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ∂2ψm

∂ε2
ν

0 0

0 μ∂2ψm

∂ε2
s

0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε̇ν

ε̇s

∂ṗw

∂xi

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ ∂2ψm

∂εν∂εp
ν

y*(m)

∂χν
∂μ
∂E

∂ψm

∂εν

y*(e)

∂χe

μ ∂2ψm

∂εs∂εp
s

y*(m)

∂χs
∂μ
∂E

∂ψm

∂εs

y*(e)

∂χe

0
y*(e)

∂χe

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎨

⎩

λ̇m
λ̇e

⎫
⎬

⎭

(86) 

Using yield functions in Eqs. (79) and (82), consistency conditions 
can be written as: 

ẏ(m) =
∂y(m)

∂p′ ṗ′ +
∂y(m)

∂q
q̇+

∂y(m)

∂
(

∂pw

∂xi

)
∂ṗw

∂xi
+

∂y(m)

∂εp
ν

ε̇p
ν +

∂y(m)

∂εp
s

ε̇p
s +

∂y(m)

∂E
Ė = 0 (87)  

ẏ(e) =
∂y(e)

∂p′ ṗ′+
∂y(e)

∂q
q̇+

∂y(e)

∂
(

∂pw

∂xi

)
∂ṗw

∂xi
+

∂y(e)

∂E
Ė = 0 (88) 

Substituting Eqs. (80) and (81), (83) and Eqs. (84) and (85) into Eqs. 
(87) and (88) leads to: 

ẏ(m) =
∂y(m)

∂p′ μ ∂2ψm

∂ε2
ν

ε̇ν +
∂y(m)

∂q
μ ∂2ψm

∂ε2
s

ε̇s +
∂y(m)

∂
(

∂pw

∂xi

)
∂ṗw

∂xi
+

[(
∂y(m)

∂p′ μ ∂2ψm

∂εν∂εp
ν

+
∂y(m)

∂εp
ν

)
y*(m)

∂χν +

(
∂y(m)

∂q
μ ∂2ψm

∂εs∂εp
s

+
∂y(m)

∂εp
s

)
y*(m)

∂χs

]

λ̇m +

(
∂y(m)

∂p′
∂μ
∂E

∂ψm

∂εν
+

∂y(m)

∂q
∂μ
∂E

∂ψm

∂εs
+

∂y(m)

∂E

)
y*(e)

∂χe λ̇e

= 0
(89) 

and 

ẏ(e) =
∂y(e)

∂p′ μ ∂2ψm

∂ε2
ν

ε̇ν +
∂y(e)

∂q
μ ∂2ψm

∂ε2
s

ε̇s +
∂y(e)

∂
(

∂pw

∂xi

)
∂ṗw

∂xi

+

(
∂y(e)

∂p′ μ ∂2ψm

∂εν∂εp
ν

y*(m)

∂χν +
∂y(e)

∂q
μ ∂2ψm

∂εs∂εp
s

y*(m)

∂χs

)

λ̇m

+

(
∂y(e)

∂p′
∂μ
∂E

∂ψm

∂εν
+

∂y(e)

∂q
∂μ
∂E

∂ψm

∂εs
+

∂y(e)

∂E

)
y*(e)

∂χe λ̇e = 0

(90) 

multipliers λ̇m and λ̇e can be obtained from Eqs. (89) and (90) in the 
following matrix form: 

⎧
⎨

⎩

λ̇m
λ̇e

⎫
⎬

⎭
= −

[
Π Λ
Ω Y

]− 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂y(m)

∂p′ μ ∂2ψm

∂ε2
ν

∂y(m)

∂q
μ ∂2ψm

∂ε2
s

∂y(m)

∂
(∂pw

∂xi

)

∂y(e)

∂p′ μ ∂2ψm

∂ε2
ν

∂y(e)

∂q
μ ∂2ψm

∂ε2
s

∂y(e)

∂
(∂pw

∂xi

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε̇ν

ε̇s

∂ṗw

∂xi

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(91) 

where, 

Π =

(
∂y(m)

∂p′ μ ∂2ψm

∂εν∂εp
ν
+

∂y(m)

∂εp
ν

)
y*(m)

∂χν +

(
∂y(m)

∂q
μ ∂2ψm

∂εs∂εp
s
+

∂y(m)

∂εp
s

)
y*(m)

∂χs (92)  

Λ =

(
∂y(m)

∂p′
∂μ
∂E

∂ψm

∂εν
+

∂y(m)

∂q
∂μ
∂E

∂ψm

∂εs
+

∂y(m)

∂E

)
y*(e)

∂χe (93)  

Ω =
∂y(e)

∂p′ μ ∂2ψm

∂εν∂εp
ν

y*(m)

∂χν +
∂y(e)

∂q
μ ∂2ψm

∂εs∂εp
s

y*(m)

∂χs (94) 
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Y =

(
∂y(e)

∂p′
∂μ
∂E

∂ψm

∂εν
+

∂y(e)

∂q
∂μ
∂E

∂ψm

∂εs
+

∂y(e)

∂E

)
y*(e)

∂χe (95) 

Substituting Eq. (91) into Eq. (86), the expression of constitutive 
relationship can be presented as follows:  

where Dνν, Dνs, Dνe, Dsν, Dss, Dse, Deν, Des and Dee are terms of the tangent 
stiffnes written in the form of effective stress (p′, q). 

It can be seen in Eq. (96) that the inter-dependence between me-
chanical, hydraulic and erosion responses are reflected through the 
cross-coupling terms, leading to the path-dependent erosion law gov-
erned by hydro-mechanical loading paths. As a result, different re-
sponses under different hydraulic and mechanical loading conditions 
are induced by this path-dependence nature of both mechanical, seepage 
and erosion responses. This allows the current generic model to capture 
the grain-scale coupling between seepage flow, fine removals and grain 
rearrangements during processes of erosion and deformation. 

We can rewrite the above incremental constitutive relationship of 
mean effective stress p′ in an alternative form of Terzaghi stress (p with 
p = p − pw) by using the incremental form of effective stress presented in 

Eq. (46) (p′ = ϕp =
[
1 −

(1− α)βnes

(βnes+nwf )[ns+(1− α)nes ]

]
p with ϕ =

1 −
(1− α)βnes

(βnes+nwf )[ns+(1− α)nes ]
) as follows: 

ṗ =
1
ϕ

ṗ′ −
1
ϕ

p
(

∂ϕ
∂nesṅ

es +
∂ϕ
∂nsṅ

s +
∂ϕ

∂nwf ṅ
wf
)

(97) 

In the above expression, ṅes, ṅs and ṅwf can be replaced with the 
following expressions derived from Eqs. (19) to (22) and Eq. (39), using 
ρ̇ex = ρu

exĖ and ∂vs
i

∂xi
= − ε̇ν: 

ṅs = nsε̇ν −
ρu

ex

ρs Ė (98)  

ṅes = nes
(

1 −
β

nwf + nesβ

)

ε̇ν (99)  

ṅwf = − nwf [ns + nes(1 − β) ]
nwf + nesβ

ε̇ν +
ρu

ex

ρs Ė (100) 

Consequently, Eq. (97) can be rewritten as follows: 

ṗ =
1
ϕ

ṗ′ +
p
ϕ

{

nwf ∂ϕ
∂nwf

[ns + nes(1 − β) ]
nwf + nesβ

− nes ∂ϕ
∂nes

(

1

−
β

nwf + nesβ

)

− ns ∂ϕ
∂ns

}

ε̇ν +
p
ϕ

(
∂ϕ
∂ns

ρu
ex

ρs −
∂ϕ

∂nwf

ρu
ex

ρs

)

Ė (101) 

Substituting ṗ′
= Dννε̇ν +Dνsε̇s +Dνe∂ṗw

∂xi 
and Ė = Deνε̇ν +Des ε̇s +Dee∂ṗw

∂xi 
as 

obtained from Eq. (96) into Eq. (101) results in: 

ṗ=
p
ϕ

{
Dνν

p
+nwf ∂ϕ

∂nwf

[ns +nes(1 − β) ]
nwf +nesβ

+Deν
(

∂ϕ
∂ns

ρu
ex

ρs −
∂ϕ

∂nwf

ρu
ex

ρs

)

− nes ∂ϕ
∂nes

(

1

−
β

nwf +nesβ

)

− ns ∂ϕ
∂ns

}

ε̇ν+
p
ϕ

[
Dνs

p
+Des

(
∂ϕ
∂ns

ρu
ex

ρs

−
∂ϕ

∂nwf

ρu
ex

ρs

)]

ε̇s +
p
ϕ

[
Dνe

p
+Dee

(
∂ϕ
∂ns

ρu
ex

ρs −
∂ϕ

∂nwf

ρu
ex

ρs

)]
∂ṗw

∂xi

(102) 

As can be seen in Eq. (102), α, β and nes appear explicitly in tangent- 
stiffness terms for computing the increment of Terzaghi stress p, indi-
cating significant effects of the transition phase and erosion processes on 
behaviour of soils. 

It is acknowledged that lack of data from both experiments and nu-
merical simulations is the key challenge for the development and cali-
bration of models derived from the proposed approach. Nevertheless, 
this key challenge in our opinion is a consequence of the lack of a 
theoretical framework that can appropriately describe internal erosion 
processes and their effects on both mechanical and hydraulic responses 
of soils at the continuum scale. The proposed theoretical approach in 
this study fits into that gap, in providing work conjugate quantities along 
with expression of effective stress with the influence of internal erosion. 
These findings can help direct the design of both numerical and physical 
experiments, along with the quantification of the produced data so that 
findings from can be useful for constitutive modelling. Based on the 
proposed form of work, we can quantify how much hydraulic and me-
chanical energy is produced or dissipated within the total budget of 
energy. This allows the formulation of seepage (see Eq. (68)), mechan-
ical ((see Eqs. (71) to (73))) and erosion (see Eqs. (75) and (76)) criteria, 
leading to tangent stiffness matrix with the cross-coupling terms in Eqs. 
(96) and (102). 

The above features reflect the promising capacity of our formulation 
in capturing the coupling between erosion, hydraulic and mechanical 
processes. This coupling is implicitly reflected in the mutual solid-fluid 
transformations and interactions governed by four main factors: soil 
susceptibility, stress condition, loading path, and hydraulic gradient as 
investigated in several experiments (Chang and Zhang, 2013; Hunter 

⎧
⎨

⎩

ṗ′

q̇
Ė

⎫
⎬

⎭
=

⎡

⎣
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Dsν Dss Dse

Deν Des Dee

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε̇ν
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⎫
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∂ε2
ν

0 0

0 μ ∂2ψm
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(96)   
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and Bowman, 2018; Prasomsri and Takahashi, 2020; Sato and Kuwano, 
2018; Nguyen et al., 2018; Nguyen et al., 2019). 

5. Conclusions 

In this study, we develop a formulation of work input to reflect un-
derlying mechanisms of internal erosion in fully saturated soils. The 
basis of the formulation development is the intrinsic nature of the 
mutual transition and interaction between grain and fluid at the grain 
contacts, which governs the simultaneous processes of deformation, 
seepage velocity and mass loss at the continuum level. For this purpose, 
a transition phase containing grains potentially to be eroded is needed to 
describe the sudden transition in stress and velocity of the erodible solid 
and their influence on effective stress of the soil skeleton. This mecha-
nism is integrated into a thermodynamics-based approach taking into 
account mass exchanges and momentum conservation equations of 
different phases, in conjunction with their interaction. This automati-
cally leads to three work conjugate pairs governing mechanical (effec-
tive stress-strain), erosion (erosion force-mass loss) and seepage 
(hydraulic gradient-water flux) responses within a new form of work 
input (see Eq. (45)) to reflect the effect of erosion on hydromechanical 
coupling. 

The proposed approach also leads to a new form of effective stress 
(see Eq. (46)) being able to account for the effect of mass loss due to 
erosion on soil skeleton stress. The work-conjugate pairs obtained allows 
an appropriate selection of variables and their interactions which is 
important for the development of constitutive models for soils under-
going internal erosion. This is demonstrated through an example of a 
generic thermodynamics-based constitutive model with seepage (see Eq. 
(68)), mechanical ((see Eqs. (71) to (73))) and erosion (see Eqs. (75) and 
(76)) criteria as presented in Section 4.3. Its hydromechanical tangent 
stiffness with cross-coupling terms (see Eqs. (96) and (102)) shows the 
inter-dependence between mechanical, hydraulic and erosion responses. 
The thermodynamic formulation and model are presented in generic 
forms and further work is needed to explore the potentials of the pro-
posed framework. 
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