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Abstract

This thesis analyses how workers in the twenty-first century adjust to labour demand

changes through mobility between occupations, employers and local labour markets.

Technological change systematically replaces routine and manual tasks while comple-

menting cognitive skills. Skill-biased technological change has diverse effects on the

workforce. Growing regional employment polarization, declining employment of low-

skilled workers, and rising educational wage gaps require deeper investigations in this

context. In addition to medium and long-term demand trends, differences between

occupations determine workers’ relative risk of experiencing short-term labour demand

fluctuations. The direct negative effects of work-hour instability on income volatility,

work-life imbalances and mental health are well-documented. However, the question

remains of how workers’ intra-year work-hour instability affects their occupational mo-

bility decisions. The main objective of this thesis is to investigate these topics.

Chapter 2 shows that task changes within occupations are occupation-biased and

how this affects the returns to tasks and the overall wage structure of the U.S. labour

market. I construct a balanced occupation panel and exploit the updated O*NET abil-

ity data to derive two occupation-specific manual and cognitive task intensity measures.

The decennial trend analysis shows that mainly non-routine cognitive occupations in-

creased in cognitive intensity. Moreover, non-routine cognitive occupations show a

larger decline in manual task intensity. A decomposition of the labour market by work-

ers’ education and experience shows that cognitive-intensity-increasing task changes are

more prevalent for workers with a college degree, younger and male workers. A returns

analysis shows that the polarizing effects of task changes within occupations led to a

substantial increase in the return to cognitive intensity between 2008 and 2017.

Although every fifth worker changes their occupation every year, the mechanisms

of occupational mobility are still not fully understood. Chapter 3 studies whether

the detrimental effects of work-hour instability, such as income volatility and work-life

imbalances, potentially influence occupational mobility decisions and whether changing

occupations alleviates the work-hour fluctuations of individuals. I construct a measure

of individuals’ intra-year work-hour variation using the longitudinal dimension of the

ix



monthly Current Population Survey (CPS). To observe occupational transitions, I track

individuals through a balanced occupation panel of 430 occupations. The results show

that workers with high work-hour fluctuations are likelier to change occupations from

month to month. In the highest quartile of hour variation, the marginal effect is almost

three times larger for women than men. Deeper investigations of the mechanisms behind

the gender gap unveil that men who are married or have children in the household do

not change occupations due to work-hour fluctuations. On the contrary, a positive and

significant effect is found for women across all household compositions. A difference-

in-differences model shows that only workers exposed to highly fluctuating work hours

sort themselves systematically into more stable occupations.

To test the supply adjustments of the labour market in response to cognitive-biased

task demand changes, Chapter 4 analyses population growth, employment and wage

effects of workers with different educational attainment. Therefore, I divide the U.S.

labour market into local labour markets using data from the American Community

Survey (ACS). The segmentation of the U.S. labour market allows me to use the local

industrial specialization for instrumenting my technological change measure based on

occupations’ task demands. The causal effects show a relative increase in the population

of both college and non-college workers in local labour markets with higher exposure

to cognitive-biased technological change. Cognitive-biased technological change has

detrimental wage and employment effects on non-college workers, including lower em-

ployment shares, reduced wages and higher labour force non-participation rates. More-

over, the downward pressure on wages of high-school workers on high-school dropouts

increases the college wage premium in regions with more substantial growth in cognitive-

biased task demand.

This thesis contributes to the empirical labour and macroeconomic literature by

unveiling new findings on heterogeneous task demand changes, work-hour instability

and labour mobility. The novel results can help policymakers combat precarious work-

ing conditions, rising educational wage gaps, and population polarization between local

labour markets.
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Chapter 1

Introduction

The greatest improvements in the

productive powers of labour, and the

greater part of the skill, dexterity,

and judgment, with which it is

anywhere directed, or applied, seem

to have been the effects of the

division of labour.

Adam Smith (1776)

The contemporary labour market is ever-changing, providing new opportunities and

posing new challenges to the workforce. This thesis divides the U.S. labour market into

detailed occupations to analyse labour demand and supply dynamics in the twenty-first

century. On the labour demand side, occupations can be decomposed into complement-

ing tasks. On the labour supply side, workers are endowed with abilities and accumu-

late skills which enable them to specialise in specific tasks. Advances in cutting-edge

technologies progressively reshape the occupational environment while continuous edu-

cational upgrading amplifies the competition between and within skill groups. Workers

adjust to these changes based on their skill endowment and preferences by resorting

between local labour markets, occupations and employers. The dynamic assignment of

skills to tasks is one of the cornerstones of the labour market. The main objective of

this thesis is to empirically explore these dynamics for a better understanding of the

contemporary labour market.

1



The motivating question of this thesis is whether one can observe a systematic

evolution in the task composition of the labour market. And, if so, how does it affect

the workforce? Understanding the impact of task demand changes on the workforce

is vital to providing appropriate job training, facilitating job search and matching and

preparing the labour force for long-term structural changes. While the traditional

technological change literature predominately focuses on changes in employment shares

between occupations, recent studies find that task changes are more concentrated within

occupations (Hershbein and Kahn, 2018; Atalay et al., 2020). Moreover, the studies

suggest that task demand changes within occupations systematically favour cognitive

skills consistent with the skill-biased technological change literature (see, e.g., Katz and

Murphy, 1992; Autor et al., 2006). Although these findings are enlightening, questions

remain about how different occupations and workers are affected by task changes within

occupations.

Chapter 2 investigates this question using a self-constructed balanced occupation

panel and data on occupations’ ability requirements from the Occupational Information

Network (O*NET). To make the multidimensional O*NET ability data useful for my

study, I conduct a principal component analysis to derive composite measures of occu-

pations’ cognitive and manual intensity. A trend analysis between 2008 and 2017 shows

that task changes within occupations systematically favoured cognitive-intensive over

routine-intensive occupations. This observation is linked with heterogeneous effects on

the workforce. Young and middle-aged men, workers with college or master’s degrees,

and workers in STEM occupations experienced the most substantial increases in cogni-

tive task intensity. At the same time, women with high-school degrees show the largest

decline in cognitive intensity within occupations. The heterogeneous but systematic

task changes within occupations caused a polarisation of cognitive task demand at the

top of the wage distribution, which led to an overall increase in the return to cognitive

ability by 8.3 per cent between 2008 and 2017. The unveiled increase in the return

to cognitive ability contrasts sharply with Castex and Dechter (2014), who report a

decline in the demand for cognitive ability in the 2000s but do not include task changes

within occupations.

Chapter 3 of this thesis is dedicated to the dynamics of labour supply. Occupational

2



mobility is constantly rising in the U.S. labour market while every fifth worker changes

their occupation every year (Kambourov and Manovskii, 2008). Understanding the

mechanisms of occupational mobility is crucial because it has medium to long-term

effects on workers’ human capital and income accumulation. Kambourov and Manovskii

(2009) show that five years of occupational tenure are associated with an increase in

wages between twelve and twenty per cent. If occupational mobility embarks a risk of

losing valuable human capital, why do workers move between occupations at such a

high rate? While the literature focuses mainly on the role of wages, my study explores

the relationship between work-hour instability and occupational mobility. One way to

think about occupational resorting is that workers look for occupations that align with

their preferences (Rosen, 1986). If workers have a distaste for work-hour instability,

changing occupations could be a way to alleviate the instability in work hours and

reconstitute a healthy work-life balance.

I analyse the mobility patterns of men and women separately to consider recent

findings that women value jobs with stable work hours more than men (Mas and Pal-

lais, 2017) and that gender differences in preferences potentially lead to different job

choices (Wiswall and Zafar, 2018). My results show that women in the top 25 per

cent of work-hour variation are 0.81 per cent more likely to switch occupations from

month to month compared to women without hour variation. The marginal effect is

substantial compared to an average monthly mobility rate in the labour market of 1.71

per cent. In comparison, men in the top 25 per cent have a 0.33 per cent higher prob-

ability of switching occupations. Interestingly, the lower but positive and significant

effect disappears when men are married and have children. This observation aligns with

Akerlof and Kranton (2000) suggesting that gender is crucial for women’s and men’s

specialisation within households. The high sensitivity of female workers to fluctuating

work hours shows that it is necessary to create a more stable working environment for

women, which allows them to maintain a better balance between non-working activities

and work. Fair Workweek laws, which are introduced in some cities and for some spe-

cific industries (see, e.g., Kesavan et al., 2022), could be the right tools if implemented

efficiently and at a broader scale. The last part of my study shows that workers with

high work-hour fluctuations sort themselves systematically into more stable occupa-

3



tions, confirming the importance of hour stability for the workforce.

Chapter 4 builds on the framework of task changes within occupations from Chapter

2 but goes beyond a demand-side analysis by answering if and how workers adjust to the

cognitive-biased changes in task demand. Complementing Chapter 3 on occupational

mobility, the crucial element of supply changes in Chapter 4 is the mobility of workers

between local labour markets. Due to their industrial specialisation, local labour mar-

kets are subject to different exposures to biased task demand changes (Autor and Dorn,

2013). If labour is at least partly mobile in the medium run, one would intuitively ex-

pect that workers endowed with high cognitive ability systematically reallocate to local

labour markets where the cognitive task intensity increases. If the reallocation process

were optimal, one would further expect that the supply adjustment of skills equalises

wages across labour markets (see, e.g., Beaudry et al., 2010). However, Topel (1994)

shows that labour adjustments are not always optimal in response to technology-induced

demand shocks. Suboptimal readjustment processes of the workforce potentially lead

to wage inequality within local labour markets if technological progress outpaces the

supply increase in complementing cognitive skills (Goldin and Katz, 2007).

In the local labour market analysis, I estimate the causal effects of within-occupation

cognitive-biased technological change on population growth, employment and wage

growth, and the college wage premium between local labour markets. I find that both

college and high-school workers move systematically to labour markets with a growing

demand for cognitive ability within occupations. I do not find a significant effect on

the wage rate of college workers, suggesting that the increase in cognitive skill demand

and the rising labour supply of college workers in cognitive-intensity-growing regions

have equalising effects on college workers’ wages. On the other hand, higher exposure

to cognitive-biased technological change creates downward pressure on the wages of

high-school workers. The relative decline in the wages of high-school workers leads to

rising wage inequality between college and high-school workers in growing labour mar-

kets. The adverse wage effects are accompanied by a relative decrease in employment

in non-routine-cognitive occupations and higher labour force non-participation rates of

workers without a college degree.

The cognitive-biased nature of technological change and the inefficient reallocation

4



of low-skilled workers create population polarisation between local labour markets and

increase educational wage gaps within growing local labour markets. Active labour mar-

ket policies and long-term strategic investments are required to combat these challenges

and support disadvantaged workers and local labour markets.

Chapter 5 summarises the findings of this thesis and discusses policy implications

and potential future challenges of the U.S. labour market in the twenty-first century.
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Abstract

The direction of change of the task composition in the contemporary labour
market is still not fully understood. By combining detailed and time-varying
occupation data with representative U.S. survey data, this paper documents cog-
nitive and manual task intensity changes within occupations between 2008 and
2017. Non-routine cognitive and high-wage occupations increased the most in
cognitive intensity, while routine and low-wage occupations decreased in cogni-
tive intensity. The decline in manual task intensity is also more substantial in
non-routine-cognitive and high-wage occupations. The differential task demand
changes between occupations imply heterogeneous effects on the segmented labour
market. Young men, workers with college degrees and workers in STEM occu-
pations experienced the most substantial increases in the demand for cognitive
ability. The polarising effects of task changes within occupations are associated
with an 8.3% rise in the return to cognitive task intensity in the U.S. labour
market between 2008 and 2017.

Keywords: O*NET ability data, principal component analysis, returns to task
intensities, wage decomposition.

JEL codes: J23, J24, J31.
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2.1 Introduction

Task heterogeneity is one of the cornerstones of the versatile U.S. labour market. The

Occupational Information Network (O*NET) currently records more than 23.000 differ-

ent tasks performed across all occupations. For an efficient assignment of workers with

different skills and abilities to tasks, as it is conceptualized in the task-based model

by Acemoglu and Autor (2011), it is essential to understand the direction of change in

the demand for tasks in the aggregate production process. Essentially, there are two

channels through which the evolution of tasks is shaped in the labour market: first,

relative changes in employment shares between occupations, and second, task changes

within occupations.

While aggregate task changes through relative employment shifts are thoroughly

analysed and well understood (Autor et al., 2006; Goos et al., 2009; Firpo et al., 2011;

Acemoglu and Autor, 2011; Autor and Dorn, 2013), focusing only on this channel

requires the assumption that the task content within occupations is constant over time.

However, occupations often undergo huge transformations. For example, as described

in the 1976 Occupational Outlook Handbook, “secretaries type, take short-hand and

deal with callers“ (US Department of Labor, 1976). Two decades later, “secretaries

now provide training and orientation to new staff, conduct research on the Internet and

learn to operate new office technologies” (US Department of Labor, 2000). Considering

task changes only at the ‘extensive margin’ is, therefore, insufficient, especially because

new advanced technologies (ICTs, automation technologies and AI) affect occupations

more heterogeneously in the twenty-first century (see, e.g., Brynjolfsson and McAfee,

2014; Frey and Osborne, 2017; Acemoglu et al., 2020). However, since the path-breaking

work by Autor et al. (2003) there has been a shortage of studies providing insights into

changes in task content within occupations. This study aims to close this gap.

Combining ability data from different O*NET databases with employment data

from the Occupational Employment Statistics (OES) and the Current Population Sur-

vey (CPS), I show that between 2008 and 2017, there were systematic changes in

occupations’ cognitive and manual task intensities. Using hourly wage data from the

CPS merged outgoing rotation groups (MORG), a simple counterfactual exercise shows
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that the return to cognitive task intensity increased by 8.3% in the U.S. labour mar-

ket and that the entire increase can be attributed to the heterogeneous but systematic

task changes within occupations. This observation contrasts sharply with a study con-

ducted by Castex and Dechter (2014), which unveils a decline in the return to cognitive

ability in the 2000s but fails to include task changes within occupations. On the other

hand, manual task intensities declined for eleven of the twelve major occupation groups.

Despite these changes, the return to manual intensity remained relatively constant be-

tween 2008 and 2017.

Following up on the unveiled systematic task changes in the 2000s, my study makes

two further contributions to the literature. First, I demonstrate the impact of within-

occupation changes on workers with different characteristics (education, labour market

experience and gender). The descriptive findings establish new facts: (i) the demand

for cognitive abilities increased only for individuals with at least a college degree; (ii)

increased on average for men but decreased for women; (iii) the increase in cognitive

intensity and the decline in manual intensity are more pronounced at the top of the wage

distribution. Second, I use an Oaxaca-Blinder decomposition (Blinder, 1973; Oaxaca,

1973) to quantify the relative contribution of changes in task intensities to the observed

wage differentials between 2008 and 2017 compared to other factors (labour unions,

industries, education and experience). The results show that task changes are more

critical within task-based occupation groups than across all occupations, suggesting

that occupations’ initial task content was decisive for their recent task evolution in the

twenty-first century.

A key component of this study is the systematic usage of the underlying O*NET

ability data for measuring task intensities. The O*NET ability rating procedure was

profoundly modified in rating cycle 12, which I use as the starting point of my anal-

ysis. In rating cycle 12 and all subsequent rating cycles, trained job analysts receive

additional information (“stimulus material”) concerning changes in occupations’ work

context, knowledge requirements and task content (Fleisher and Tsacoumis, 2012). The

consistent procedure of measuring abilities within occupations over time is a substantial

advantage over other O*NET domains, although their inconsistency pitfalls have often

been overlooked in other studies. To make the multidimensional O*NET data useful,
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I follow Yamaguchi (2012) and conduct two Principal Component Analyses (PCAs),

one for cognitive and one for manual abilities.1 In contrast to other studies using PCA

to derive composite task scores based on only one specific database, I pool O*NET

data from two different years (2008 and 2017) but assign the data to the same em-

ployed workforce of 2008. This strategy yields occupation-year-specific scores that can

directly be compared relative to the mean score of the 2008 employed population.

Although the literature on task changes within occupations is relatively scarce, some

key papers are worth mentioning. Using a survey-based data set from West Germany,

Spitz-Oener (2006) analyses the impact of workplace computerisation on skill require-

ments within and between occupations. Spitz-Oener (2006) provides evidence that

tasks requiring mostly cognitive abilities, such as tasks related to research and plan-

ning, have gained more importance than routine-intensive tasks from 1979 to 1999. This

development was more profound in occupations in which technological breakthroughs

took place. In another paper, Handel (2016b) evaluates changes in more than 160 job

items across five broad occupation groups using data from two waves of the Survey

of Skills, Technology and Management Practices (STAMP). The study finds that the

importance of learning new technologies is comparatively low for “lower blue-collar”

and “lower white-collar” occupations compared to “upper white-collar” occupations.2

The observation of heterogeneous task shifts between occupation groups is consistent

with my findings based on O*NET data. Another related paper by Freeman et al.

(2020) finds that task changes within occupations outweighed changes between occupa-

tions between 2005 and 2015 with the help of a shift-share analysis applied to different

O*NET job characteristics.3 My study contributes to this literature by going beyond

the micro-level analysis of occupations and analysing the most recent task intensity

changes representative of the U.S. labour market and their heterogeneous impact on

the workforce.

1 Other studies that use principal component analysis to derive composite task measures are con-
ducted by Autor et al. (2003), Caines et al. (2017), Guvenen et al. (2020).

2 Handel (2016b) categorises occupations into five groups whereby “upper white-collar” occupations
can be considered non-routine cognitive and “lower white-collar” occupations are equivalent to routine
cognitive occupations in my study.

3 Another strategy is adopted by Hershbein and Kahn (2018) and Atalay et al. (2020). Their studies
use job advertisements to analyse changes in task content and skill requirements within occupations,
finding substantial importance of within-occupation changes.
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Regarding returns estimation, my study is related to a study by Ross (2017), which

combines time-variant O*NET data on different work activities with individual data

from the Survey of Income and Program Participation (SIPP). The study documents

that within-occupation variation let the premium for routine tasks decline while the

premium for abstract tasks increased from 2004 to 2013. Boehm (2014) finds evidence

of significant changes in relative returns across all occupations through the 1990s and

2000s, whereas Cortes (2016) shows that wages in non-routine cognitive and non-routine

manual occupations have significantly increased compared to wages in routine occupa-

tions. In the framework of this literature, my study demonstrates the important role

of changes within occupations compared to changes between occupations.4

In a broader sense, this study is motivated by the accelerating momentum of new

technologies in the post-millennium era characterised by major advances in artificial

intelligence (Acemoglu and Restrepo, 2018a; Brynjolfsson et al., 2018; Webb, 2019;

Tolan et al., 2021), industrial robotics (Acemoglu and Restrepo, 2020) and information

technologies (Akerman et al., 2015; Bessen, 2016). The rising implementation of such

technologies in various working environments raises the question of how labour mar-

kets will be reshaped. Frey and Osborne (2017) use O*NET variables to quantify the

probability of different occupations becoming automated. Their analysis suggests that

at least half of the jobs in the U.S. are at risk of becoming completely automated in

the near future. On the other hand, a study by Tolan et al. (2021) predicts that most

artificial intelligence applications will not automate complete work-related tasks soon.

Instead, it is more likely that many occupations will become “transformed” rather than

completely automated, with new tasks emerging and some tasks only becoming partly

automated. However, the extent to which technological change might affect workers in

the future is hard to predict. I hope that the new insights that can be obtained from my

study help better understand the direction of potential long-term changes in cognitive

and manual task demand.

The remainder of this paper is organised as follows: The next section provides

conceptual thoughts on task changes grounded on a new task-based model in the theo-

4 From the studies mentioned above, only Ross (2017) incorporates task shifts within occupations
using yearly panel data. Regarding the empirical methodology, my study is more related to Ingram
and Neumann (2006) and Boehm (2014).
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retical literature. Section 2.2 explains in detail the O*NET data used in this study and

how the constructed measures capture changes in occupations’ task content. Section

2.3 documents the changes in task intensities within occupations and between broad

occupation groups. Moreover, this section sheds light on how workers with different

characteristics are affected differently by recent task shifts within occupations. Section

2.4 provides a returns analysis between 2008 and 2017 and highlights the contribution

of task changes within occupations. Section 2.5 concludes by summarising and evalu-

ating the main findings of this study.

2.2 Data and Methodology

To analyse changes within occupations representative of the employed labour force,

I combine occupation data with individual survey data. The individual survey data

comes from the annually Merged Outgoing Rotation Group (MORG) files of the Cur-

rent Populations Survey[s] (CPS), which contain information on various worker charac-

teristics, for example, workers’ hourly wage rate, working hours and detailed job titles.

To measure changes in task intensities within occupations, I use updated data on the

importance of cognitive and psychomotor abilities obtained from the Occupational In-

formation Network (O*NET). The two O*NET databases used in this study are 16.0

(July 2011) and 25.0 (August 2020).

I undertook two steps to link the occupation data with the individual survey data.

First, I constructed a balanced occupation panel of 460 detailed occupations in the

CPS-MORG files based on the 2010 Standard Occupational Classification (SOC). Sec-

ond, I assign the ability data of the finer O*NET occupations to my self-constructed

occupation panel. Since only a proportion of O*NET occupations (107 on average) are

updated in each rating cycle, most occupations differ in the year of their latest update

in a given database. To overcome this hurdle, I centre each of the two O*NET databases

on the average year of the occupations’ latest updates following Freeman et al. (2020).

Based on this procedure, the two databases represent occupations’ ability requirements

for 2008 and 2017. Finally, I match the O*NET data with the CPS-MORG data of

2008 and 2017, allowing for a cross-sectional trend analysis of the U.S. labour market.
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2.2.1 The O*NET Ability Rating Procedure

The Occupational Information Network (O*NET) replaced the Dictionary of Occupa-

tional Titles (DOT) in June 2003 with the release of its final analyst database (O*NET

4.0). The O*NET is a dynamic library in contrast to its static predecessor, containing

more than 900 O*NET occupations and more than 230 job items across all occupations.

However, the data-gathering process for the final analyst database relied mainly on pre-

existing sources like the DOT. Since 2003, occupation characteristics and related worker

requirements have been updated based on a “multiple-method data collection program”

(U.S. Department of Labor, 2018). Survey data from job incumbents is the preferential

source for equipping most O*NET domains with data (Generalised Work Activities,

Work Context, Knowledge, Education and Training, and Work Styles). However, data

from job incumbents is often combined with occupation assessments from job experts.

Moreover, the dynamic nature of the O*NET comes at the cost of intermingling differ-

ent data collection methods for the same occupation over time.

Being aware of the diversity of data collection methods in the O*NET, I identified

the ability domain as the most reliable data source for consistently measuring changes in

task content within occupations. Abilities often represent an abstract construct rather

than an apparent working activity that can easily be understood and recognised by

workers (U.S. Department of Labor, 2005). For example, evaluating the importance

of inductive reasoning might be challenging for workers if they cannot directly relate

their ability to the tasks they execute on the job. To eliminate a potential survey bias

that could arise from the complexity of the ability items, the data collection program

of abilities has been consigned to 16 analysts selected based on their education and

job experience (Tippins and Hilton, 2010). The analysts are trained by the Human

Resources Research Organization (HumRRO) to guarantee a consistent reevaluation

of the importance and required level of different abilities, including cognitive abilities

and psychomotor abilities. In each rating cycle, the analysts receive stimulus material

and rate the importance of the abilities on a scale from 1 (“not important”) to 5

(“extremely important”) for a set of occupations (Fleisher and Tsacoumis, 2012). The

stimulus material includes the following information:
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• Occupation title, definition, and vocational preparation (“Job Zone”)

• Mean importance of core and supplementary tasks for the targeted occupation5

• Mean importance of Generalized Work Activities (GWAs) that (1) have a mean

importance for the occupation ≥ 3.0, and (2) require the targeted ability to be

performed

• Mean rating of Work Context (WC) statements that (1) have a mean rating for

the targeted occupation ≥ 3.0, and (2) require the targeted ability to work in that

context

• Mean importance of the ten most important Knowledge domains associated with

the occupation with a mean importance rating of ≥ 3.0.

In addition, the trained raters receive specific information on changes in occupation

characteristics compared to the last rating cycle. For example, suppose a task (or

another occupation characteristic) no longer reaches the “relevance threshold” because

the task has partially been automated. In that case, the task is crossed out in the

stimulus material. Moreover, if a task has increased in importance or a new task

has emerged, the task is highlighted by an asterisk.6 The consideration of both task

automation and the emergence of new tasks is essential for understanding the dynamics

of skill demand both within and between occupations (see, e.g., Acemoglu and Restrepo,

2018b, 2019). It is important to note that the trained occupation analysts rate the

importance of occupations’ abilities on a continuous scale between 1 and 5 instead of

an ordinal scale, primarily used for other O*NET domains that rely on job incumbent

surveys. This allows researchers to go beyond an ordinal ranking of occupations by

considering the exact distance between occupations concerning specific abilities.

5 Tasks are classified into three categories based on survey answers of at least 15 job incumbents on
their relevance and importance: 1) Core Tasks with a relevance rating ≥ 67% and a mean importance
rating ≥ 3; 2) Supplementary Tasks with a relevance rating > 67% but mean importance rating <
3, or, tasks rated on relevance between 10% and 66% regardless of the mean importance rating; 3)
Non-Relevant Tasks rated on relevance < 10%. The importance scale of task measures and other
occupation characteristics is equivalent to the importance scale of abilities, ranging between 1 and 5.

6 The highlighting of occupation-specific task changes over time was implemented into the ability
rating procedure after the O*NET database 16.0 (2011) release, as most occupations have been rated
at least once in the previous rating cycles.
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There are two other significant advantages of using O*NET ability data in my

study: First, the O*NET ability rating procedure is consistent over time and across

all observed occupations, minimising the problem of inaccurate measurement.7 This is

important because intermingling survey data from job incumbents with data from job

experts would have distortionary effects on my analysis. Although this issue has been

neglected in previous studies relying on O*NET data, such distortions would be partic-

ularly severe when identifying slight differences in task changes between occupations.

Second, abilities are directly comparable between occupations. In contrast, specific

tasks and generalised work activities may differ substantially between occupations. For

example, the O*NET ability problem sensitivity is crucial for police officers, dentists

and psychologists, although they execute entirely different tasks. Likewise, being a

firefighter, dishwasher, or fisherman requires a high level of manual dexterity. However,

the work activities of firefighters do not have much in common with those of fishermen

or dishwashers. One objective of this study is to evaluate the dynamics within occu-

pations, considering that task content and worker characteristics are multidimensional

and have different relevance across occupations. Using O*NET ability data is a well-

suited approach to achieve this goal because the rating procedure of abilities evaluates

occupations based on their specific task content, including more than 20.000 different

core and complementary tasks, instead of comparing the same task measures across all

occupations.

It is worth mentioning that my approach of using O*NET ability data for analysing

the evolutionary changes in task demand in the U.S. labour market has some limita-

tions. Most importantly, it does not allow for a direct way of measuring changes in

occupations’ routine task intensity. While it is intuitive to assume that workers are

equipped with manual and cognitive abilities, it is much more challenging to think

about a category of abilities favouring particularly routine tasks. Moreover, changes in

occupations’ routine task intensity cannot be seen as a whole different dimension. Most

importantly, the change in occupations’ cognitive intensity and occupations’ transfor-

mation in terms of de-routinisation are mechanically linked based on the construction

7 The ability rating procedure is built upon the O*NET principles of “interrater agreement” and
“interrater reliability” to guarantee rating consistency within and between occupations. See Fleisher
and Tsacoumis (2012) for a detailed description of the underlying principles.
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of the ability measures. As outlined above, occupation analysts take into account the

“importance changes” of the most relevant work context measures when evaluating

changes in occupations’ ability requirements, including the measures which researchers

commonly use to measure the routine task content of occupations (“degree of automa-

tion”, “importance of repeating same tasks”, “structured versus unstructured work”,

“pace determined by speed of equipment”, “spend time making repetitive motions”).

Thus, if there is a systematic negative relationship between changes in cognitive task

demand and the de-routinisation of tasks, which is shown in Autor et al. (2003) as well

as in the more recent literature (see, e.g., Ross, 2017), measuring changes in the demand

for cognitive and manual abilities should be sufficient to characterise the development

of the current labour market accurately. A similar argument is provided by Yamaguchi

(2012), whose study also focuses on the cognitive and manual task dimension of occu-

pations.

2.2.2 Construction of the Task Intensity Measures

For constructing the task intensity measures, I rely on the importance ratings of thir-

teen cognitive and ten psychomotor abilities from the two O*NET databases, 16.0 (July

2011) and 25.0 (August 2020).8 More precisely, I use the verbal, idea generation and

reasoning and quantitative ability domains to and the fine manipulative, control move-

ment and reaction time and speed ability domains for my analysis. A summary of the

used O*NET abilities categorised into coarser ability rating domains is shown in Table

2.1. A detailed description of all 23 cognitive and psychomotor abilities is presented in

Appendix Table A.2.

If one used all original cognitive and psychomotor abilities, one would assume that

thirteen dimensions of cognitive task heterogeneity and ten dimensions of manual task

heterogeneity yield an informative representation of the labour market. However, a

well-known characteristic of the multidimensional O*NET data is that different items

often describe the same unobserved construct rather than describing multiple dimen-

8 In addition to the importance ratings, every ability item is rated on a level scale (from 0 to
7). However, Handel (2016a) shows that choosing between the importance and level rating is only of
minor significance as the same O*NET items evaluated on the different scales are highly correlated
(ρ = 0.92). This feature makes one of the two scales “redundant”.
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Table 2.1: Summary of O*NET Cognitive and Psychomotor Abilities

Occupation Group All NRC NRM RC RM

2008 2017 2008 2017 2008 2017 2008 2017 2008 2017

A. Cognitive Ability Domains

Verbal 3.547 3.552 3.936 3.950 3.166 3.152 3.643 3.631 3.079 3.021

Ideas & Reasoning 3.163 3.177 3.507 3.536 2.878 2.869 3.058 3.012 2.921 2.909

Quantitative 2.555 2.570 2.879 2.888 2.010 2.083 2.717 2.668 2.247 2.262

B. Psychomotor Ability Domains

Fine Manipulative 2.522 2.431 2.096 1.976 2.869 2.803 2.238 2.184 3.280 3.248

Control Movement 1.968 1.915 1.528 1.469 2.094 2.094 1.615 1.577 2.977 2.949

Reaction Time & Speed 1.689 1.676 1.352 1.355 1.837 1.845 1.416 1.423 2.424 2.392

Notes: The summary of the O*NET ability domains shows the average values of all detailed abilities included in the
respective domains. Abilities are rated on an importance scale from one (not important) to five (extremely important).
I use CPS employment shares along with CPS “earnings weights” to calculate the average values for the broad occu-
pation groups. The reported occupation groups are non-routine cognitive (NRC), non-routine manual (NRM), routine
cognitive (RC) and routine manual (RM) occupations. The mapping of the detailed SOC occupations to the four broad
occupation groups is reported in Appendix Table A.1.

sions (Handel, 2007). For example, both inductive reasoning and deductive reasoning

measure the ability to use information for problem-solving. Similarly, both arm-hand

steadiness and manual dexterity measure the ability to control hand movements. A

widely used statistical method to reduce the dimensionality of correlated variables that

measure the same unobserved construct while keeping the highest possible degree of

explanatory value is called Principal Component Analysis (PCA). Under the linearity

assumption and given the original variables x = [x1 + x2 + ... + xp], one can estimate

components z = [z1+z2+ ...+zp] which are a linear combination u = [u1+u2+ ...+up]
′

of x that achieve maximum variance. To compute the linear transformation and map

the high-dimensional O*NET ability data into a lower-dimensional space, I assume that

the two major task categories (cognitive and manual) are fully separable in a way that

cognitive abilities only determine the cognitive task intensity of an occupation and man-

ual abilities are only relevant for measuring their manual task intensity. This approach

is also employed by Bacolod and Blum (2010) and Yamaguchi (2010, 2012). It requires

to conduct two separate analyses for the two major task categories. This approach is

particularly suitable for this study, compared to conducting one PCA including all cog-

nitive and manual abilities combined, as it gives the constructed task intensity vectors

a clear interpretation.
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To test the suitability of the O*NET ability data for the use of PCA, I follow Handel

(2007) checking first the pairwise correlations of the abilities and second, “Cronbach’s

alpha” which is also known as “reliability coefficient” for measuring constructs. Tables

A.4 and A.5 show the correlations between the thirteen cognitive abilities and all cor-

relations between the ten manual abilities. The average correlation between cognitive

abilities is 70.0%, and the average correlation between manual abilities yields 77.9%.

In addition, the reliability coefficients are noticeably high with α=96.8% α=97.2% for

cognitive and manual abilities, respectively. The suitability checks proposed by Handel

(2007) suggest that a reduced number of components relative to the original number

of ability variables can potentially describe a large proportion of the variation in the

data.

To account for the fact that employment shares differ between different occupa-

tions (for example, high-school teachers and astronomers), one should use representa-

tive individual-level data of the employed population to compute the task components.

Otherwise, one would weigh all occupations equally, which does not accurately repre-

sent the labour market. While using representative survey data of a given year is the

standard approach in the literature when using statistical techniques of reducing the

dimensionality of ability or skill data (see, e.g., Yamaguchi, 2012; Robinson, 2018; Gu-

venen et al., 2020), the new feature of my analysis is that I include ability ratings of two

different years. Remember that the aim of PCA in this study is to obtain occupation-

year-specific task intensity scores to measure task intensity changes within occupations.

Particular care must be devoted to achieving this goal and constructing the measures,

as there are several pitfalls.

Three different strategies for the use of PCA are evaluated: first, two separate anal-

yses were conducted for 2008 and 2017 using the specific employment shares of the

different years. This approach is unsuitable as it yields different factor loadings when

computing the task intensity components of 2008 and 2017. It makes a direct compar-

ison over time incomparable both at the aggregate level and for a given occupation.

Alternatively, one can conduct PCA with employment weights and ability ratings of

2008 and take the computed ability loadings to reconstruct the same linear combina-

tion of abilities for the employed population in 2017. However, with this approach,
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the issue remains that the task intensity scores of 2008 and 2017 are related to their

year-specific occupational structures as different occupation weights are used for 2008

and 2017. To overcome these hurdles, I employ a third approach. More precisely, I

use CPS data of the employed population in 2008 and duplicate each individual in

the sample. The monotonic transformation of the data leaves the employment shares

of occupations unchanged and simultaneously allows the inclusion of occupations with

both 2008 and 2017 ability ratings. Next, I standardise the computed composite task

intensity scores with zero mean and a standard deviation of one so that aggregate and

occupation-specific changes are directly interpretable. This standardisation approach

is commonly used in the literature and is preferred as the underlying ability data has

no natural scale. Consequently, the occupation-year-specific scores show the deviation

from the mean score of all occupations weighted by 2008 employment shares. Equiva-

lently, any change in task intensity is measured in units of standard deviation relative

to the mean score in 2008. An overview of the highest and lowest-ranked occupations

evaluated at the cognitive and manual intensity scores in 2017 is presented in Appendix

Table A.3.

To determine the number of components after conducting PCA, researchers often

rely on the so-called “Kaiser Rule” (Kaiser, 1960), which is, in fact, more a heuristic

rule. More precisely, it suggests using all components with an eigenvalue greater than

one, as they are presumed to capture substantial variation from the underlying data.

Figure 2.1 shows the scree plots of the estimated eigenvalues from the two principal

component analyses for cognitive and manual abilities. Panel B shows that only one

component has an eigenvalue greater than one, explaining 80.4% of the manual ability

data variation. On the other hand, the PCA applied to cognitive abilities shows that the

first two components have an eigenvalue greater than one (see Panel A). Nonetheless,

in this case, I keep only the first component for two reasons: first, there is a large break

between the eigenvalue of the first component (9.4) and the eigenvalue of the second

component (1.1). Therefore, the first component explains the substantial part of the

underlying data variation (72.7%). Second, splitting the cognitive intensity index into

two separate components would hamper a meaningful interpretation of the results as one

would have to assume that the two components are orthogonal and thus independent.
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Such an assumption appears implausible as the underlying data captures abilities of

the same ability domain.9
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Figure 2.1: Components’ Eigenvalues after Principal Component Analysis

2.2.3 CPS-MORG Survey Data

The monthly CPS is the primary source of the official U.S. labour market statistics

(US Census Bureau, 2019). Households included in the survey are interviewed for four

consecutive months (rotation groups one to four) before they drop out of the sample

for eight months and rejoin the sample for four successive months for a second interval

(rotation groups five to eight). In addition to the monthly questions, households rotat-

ing out of the sample (rotation groups four and eight) answer supplementary questions

related to their labour status, hourly wage rate and weekly work hours. Based on the

underlying survey design, each household interviewed appears in the outgoing rotation

groups only once a calendar year. Every year, the outgoing rotation groups are ex-

tracted and merged into a CPS-MORG file, yielding a pooled sample size roughly three

times the Annual Social and Economic Supplement (ASEC) survey, which researchers

often use for wage analyses of the U.S. labour market. A large sample size is crucial

for this study in order to break down the U.S. labour market into 460 detailed occu-

pations. There are two other appealing features of the CPS-MORG data compared to

the ASEC data. First, the additional labour questions are related to current pay and

hours worked instead of last year’s pay and work hours, increasing the accuracy of the

9 A similar approach of choosing only the first component of multidimensional skill data is used,
for example, by Autor et al. (2003), Yamaguchi (2012) and Guvenen et al. (2020).
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households’ responses. Second, the CPS-MORG data provides information on workers’

union coverage, an essential factor to control for in the regression analysis.

This study draws on the CPS-MORG data files provided by the Center for Economic

and Policy Research (CEPR).10 The CEPR modifies the original CPS data to create a

consistent and robust hourly wage series. This feature is of major importance for the

second part of this study when I analyse occupations’ returns to tasks between 2008 and

2017. The adjustment process of the wage series is well described by Schmitt (2003).

To account for the CPS survey design, I use the ”earnings weights” recommended by

the US Census Bureau (2006) for all estimations throughout my study. I restrict the

two cross-sectional samples of 2008 and 2017 to the employed labour force and exclude

self-employed, unpaid family workers and workers employed in military occupations.

Further, I limit the analysis to workers aged 18 to 64. After imposing the sample

restrictions, the final sample contains 165,000 and 150,000 observations for 2008 and

2017, respectively.

Table 2.2 provides a summary of employment shares (or employment per-capita),

mean wages, educational attainment, experience (age - years of schooling - 6)11 and

other worker characteristics for the employed workforce and by task-based occupation

groups. The table shows some noticeable changes between the two analysed sample

years. The non-routine cognitive (NRC ) employment share increased by 9.4% while

the employment shares of routine cognitive (RC ) and routine manual (RM ) jobs fell

altogether. This observation is in line with the finding that technological progress

favours non-routine cognitive tasks compared to routine tasks (Autor et al., 2003; Goos

and Manning, 2007) and causes a disproportionate reallocation of workers into occupa-

tions where non-routine cognitive tasks are more dominant (Cortes, 2016; Cortes et al.,

2020). Routine manual occupations experienced a slight upward shift in worker experi-

ence. In contrast, non-routine cognitive occupations show a slight reduction in worker

experience potentially caused by attracting younger talent (Autor and Dorn, 2009).

10 CEPR data is maintained by the Center for Economic and Policy Research (CEPR) in Washing-
ton, DC. The CEPR CPS-ORG Uniform Extracts are accessible through www.cepr.net. The CEPR
exclusively uses raw data from the monthly CPS files.

11 Years of schooling are derived from a consistent education variable in the CEPR ORG files which
classifies individuals into 16 categories from no education to a doctoral degree. The used approach of
calculating potential labour market experience (age - years of schooling - 6) follows Mincer (1974) and
Lemieux (2006).
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Regarding education, one can obtain a general upgrading across all broad occupation

groups between 2008 and 2017.

Table 2.2: Worker Characteristics of the Employed Labour Force: 2008 and 2017

Occupation Group All NRC NRM RC RM

2008 2017 2008 2017 2008 2017 2008 2017 2008 2017

Employment Share .358 .392 .165 .172 .247 .221 .229 .215

Mean wage (2019$) 24.79 26.13 34.00 35.48 16.18 16.43 20.43 21.39 21.30 21.73

A. Average Experience (Years) and Education (Fractions within Occupation Groups)

Years of experience 19.21 19.32 19.23 19.11 17.60 17.87 18.77 18.74 20.81 21.47

LTHS .080 .062 .008 .007 .153 .121 .044 .035 .178 .141

High-school .301 .275 .106 .094 .395 .382 .348 .317 .487 .477

Some college .301 .292 .242 .216 .338 .356 .393 .377 .267 .292

College .213 .240 .384 .393 .098 .119 .184 .225 .058 .076

Advanced .105 .131 .258 .290 .015 .022 .030 .047 .010 .014

B. Other Worker Characteristics (Fractions within Occupation Groups)

Female .482 .480 .543 .544 .564 .560 .648 .625 .147 .153

Union .140 .121 .154 .131 .134 .112 .085 .073 .183 .161

Married .565 .533 .646 .618 .439 .413 .523 .477 .573 .533

White .673 .617 .755 .701 .560 .496 .690 .628 .610 .549

Black .117 .126 .092 .099 .165 .175 .124 .138 .112 .126

Hispanic .147 .176 .073 .099 .212 .248 .130 .165 .233 .270

Notes: I use CPS employment shares and CPS “earnings weights” for my calculations. This table represents the em-
ployed labour force in the U.S. aged 18 to 64 years, excluding workers employed in military occupations. The reported
occupation groups are non-routine cognitive (NRC), non-routine manual (NRM), routine cognitive (RC) and routine
manual (RM) occupations. The mapping of the detailed SOC occupations to the four broad occupation groups is re-
ported in Appendix Table A.1.

Moreover, Table 2.2 shows that men and women are sorted into different occupa-

tion groups. In particular, one can see that two-thirds of workers in routine cognitive

occupations are women. On the contrary, women make up only 15% of the workforce

in routine manual occupations. Considering the substantial male-female differences in

employment shares between different occupation groups, it is straightforward to as-

sume that women and men are affected differently by task changes within occupations.

One purpose of Section 2.3 is to demographically break down the impact of within-

occupation task changes on gender, age and education groups.
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2.3 Changes in Cognitive and Manual Task Inten-

sities

This section analyses the heterogeneous changes in cognitive and manual task inten-

sities between occupations and across the employed civilian population in the United

States. Figure 2.2 visualises the population-weighted aggregate changes in task intensi-

ties smoothed over the 460 occupations. The cognitive intensity distribution of 2017 in

Panel A shows two significant differences compared to the distribution of 2008: first, a

higher density at the upper end of the distribution, and second, a lower density in the

middle part, along with a stretch of the distribution to the left. The first observation

seems plausible, considering the recent increase in the proportion of people working

in non-routine cognitive occupations (see Table 2.2). The second observation can also

partly be explained by relative changes in employment shares between occupations.

Most importantly, office and sales occupations decreased substantially in relative em-

ployment shares, contributing to the shrinking of the middle part of the distribution.

To completely understand the distributional shift from 2008 to 2017 in Panel A, it

is crucial to consider the ‘intensive margin’ (dashed red line), which shows the distri-

bution of task intensities in 2017, holding the workforce distribution constant at 2008

levels. The intensive margin in Panel A indicates that occupations with comparatively

low levels of cognitive intensity in 2008 have further decreased in cognitive intensity

(stretching to the left), while the most cognitive-intensive occupations seem to have

contributed to the density increase at the upper end of the distribution (stretching to

the right). The counterfactual exercise is repeated for the manual intensity distribu-

tion in Panel B. In line with past trends of technological change, the manual intensity

distribution has shifted to the left over the last decade. However, in contrast to Panel

A, the intensive margin does not significantly differ from the actual manual intensity

distribution of 2017. This observation suggests that changes in employment shares had

no significant role regarding overall manual task shifts between 2008 and 2017. In addi-

tion, the joint distribution of cognitive and manual task intensity is plotted and shown

in Appendix Figure A.3 weighted by 2008 employment shares in the upper panel and

2017 employment shares in the lower panel.
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Figure 2.2: Smoothed Cognitive and Manual Intensity Distributions of the
Employed Labour Force: 2008 and 2017
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Although looking at aggregate distributions provides a good overview of the aggre-

gate task shifts, it obscures the heterogeneity in task intensity developments between

occupations. Therefore, the following sections analyse within-occupation changes in

more detail to disentangle the presented aggregate changes.

2.3.1 Breakdown by Occupation Groups

To shed more light on heterogeneous occupation developments, I break down the ag-

gregate changes into changes within and between smaller occupation groups based on

the 2010 SOC structure.12 In addition, this section aims to pinpoint the contribution

of task changes within occupations relative to the contribution of task changes caused

by shifts in employment shares. To achieve this goal, I decompose the total intensity

changes into a within-component and a between-component by using counterfactual

employment shares and task intensities. Table 2.3 documents the results of the task

intensity decomposition for different occupation groups.

Non-routine cognitive occupations increased in cognitive intensity from 2008 to 2017

with a positive change of 0.054 units of standard deviation. When splitting non-routine

cognitive occupations into smaller occupation groups, one can see that the growing

importance of cognitive abilities is mainly driven by computer, engineering and science

occupations, with a sizeable increase of 0.233 units of standard deviation. Management,

business and finance occupations experienced only a minor positive change in cognitive

intensity, while education and legal occupations experienced a minor decrease. Non-

routine manual occupations (service occupations) show a modest but negative cognitive

intensity shift. Routine cognitive occupations experienced a sizeable reduction in cog-

nitive intensity from 2008 to 2017, with score value changes of -0.118 and -0.097 for

sales and office occupations, respectively. A similar picture is unveiled when disentan-

gling task changes in routine manual occupations. On average, production jobs have

decreased in cognitive intensity by -0.036 units of standard deviation. During the same

time, transportation and material moving jobs show the most severe fall in cognitive in-

12 The Standard Occupation Classification (SOC) categorises occupations into groups based on
similarities in their task content and working activities following the SOC classification principles
(Cosca and Emmel, 2010). Detailed information on the 2010 SOC structure can be obtained from the
official website of the Bureau of Labour Statistics (https://www.bls.gov/soc/2010/).
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Table 2.3: Changes in Cognitive and Manual Task Intensities: 2008-2017

∆ Cognitive Intensity ∆ Manual Intensity

Occupation Group Within Between Total Within Between Total

A. Non-Routine Cognitive 0.052 0.007 0.054 -0.109 0.008 -0.099

Management/Business/Finance 0.026 -0.013 0.017 -0.132 -0.004 -0.134

Computer/Engineering/Science 0.212 0.032 0.233 -0.091 -0.038 -0.120

Education/Legal/Comm./Arts/Media -0.022 0.003 -0.027 -0.033 0.004 -0.027

Healthcare Practitioners and Technical 0.072 0.004 0.077 -0.201 -0.016 -0.223

B. Non-Routine Manual 0.002 -0.016 -0.015 -0.003 -0.016 -0.021

C. Routine Cognitive -0.126 0.021 -0.108 -0.056 0.001 -0.049

Sales and Related -0.118 -0.003 -0.118 -0.164 0.014 -0.147

Office and Admin. Support -0.132 0.043 -0.097 0.028 -0.013 0.015

D. Routine Manual -0.024 -0.027 -0.053 -0.050 0.002 -0.051

Farming/Fishing/Forestry -0.049 -0.023 -0.081 -0.098 -0.003 -0.114

Construction and Extraction 0.134 -0.020 0.084 -0.001 0.017 0.001

Installation/Maintenance/Repair 0.023 -0.025 -0.017 -0.107 0.018 -0.099

Production -0.040 0.002 -0.036 -0.003 0.004 -0.007

Transportation and Material Moving -0.154 -0.015 -0.158 -0.096 -0.028 -0.116

F. Employed labour Force -0.012 0.041 0.020 -0.066 -0.026 -0.090

Notes: All intensity changes presented in this table refer to changes in the deviation from the mean score of the entire
occupation panel (456 occupations) measured in standard deviation units. I use CPS employment shares and CPS “earn-
ings weights” for all calculations. Within-occupation changes are calculated by holding employment shares constant at
the 2017 levels and changing task intensities from 2008 to 2017. Between-occupation changes are computed by holding
task intensities within occupations constant at the 2017 levels and changing employment shares from 2008 to 2017.

tensity among all occupation groups with -0.158 units of standard deviation. Moreover,

within the group of routine manual occupations, only construction and extraction jobs

show a positive change in cognitive intensity with 0.084 units of standard deviation.

When comparing the within-component (column 1) with the between-component

(column 2) of the cognitive intensity changes, one can observe that the impact of task

changes within occupations is of comparatively larger magnitude for most groups. This

finding is in line with Freeman et al. (2020), who find that within-occupation changes

dominate between-occupation changes in nine out of ten O*NET job attributes. While

their analysis remains at the aggregated level, my study shows that the impact of

changes within occupations is substantially more prevalent when splitting the work-

force into task-based occupation groups as the dissimilarities in task content between

occupations within groups decrease.

The second part of Table 2.3 shows the within, between and total changes in the
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manual intensity of the presented occupation groups. All groups reveal a decrease in

manual intensity between 2008 and 2017, although there is some variation in the magni-

tudes. When comparing columns 4 and 5, it becomes evident that the intensity changes

predominately come from task changes within occupations, as the within-component

dominates the between-component in most cases. The impact of changes in employ-

ment shares is of comparatively minor importance, and its direction is not clear-cut.

At an aggregate level, both within and between-occupation changes contributed to the

overall decline in manual intensity.

Figure 2.3: Changes in Task Intensities Within Occupations by 2010 SOC
Intermediate Aggregation Occupation Groups

To highlight the heterogeneity in occupation changes, I hold the employment shares

within occupation groups constant at the 2017 levels and show the isolated effect of task

changes within occupations in Figure 2.3. Complementing the results of Table 2.3, one

can see a reduction in manual intensity across all occupation groups except for office

and administrative support occupations. The figure also illustrates the drifting apart

of the labour market regarding the demand for cognitive abilities. The results sug-

gest that non-routine cognitive occupations experienced the most substantial increase,
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and routine cognitive occupations experienced the largest decline in cognitive intensity

through the channel of within-occupation changes.

The results also emphasise that a change in one of the two measured task intensities

is not necessarily offset by an opposite change in the other task dimension. In fact,

I do not find a systematic relationship between the change in cognitive and manual

task intensity at the occupation level. At first glance, this appears counterintuitive, as

one could assume that technological change replaces other tasks with new cognitive-

intensive tasks (Acemoglu and Restrepo, 2019). However, this assumption does not

necessarily contradict the presented results in this section. For example, the cashier job

has changed substantially in the last ten to fifteen years due to the introduction of self-

service checkouts. While the manual task intensity decreased significantly for cashiers,

new tasks now include overlooking the self-service checkout and helping customers oc-

casionally with the new technology. Nonetheless, as long as the newly introduced tasks

are not of higher cognitive intensity than the average task performed by cashiers, the

new tasks do not cause an increase in the cognitive intensity of the job (except the time

spent on the more cognitive-intensive tasks increases as a result of a change in the task

composition of the job). Therefore, it depends on the intensity levels of the newly intro-

duced tasks relative to the average task to determine if and by how much the cognitive

and manual intensity within occupations change. A decrease in the demand along all

different task dimensions is, therefore, equivalent to a decrease in the relevance of an

occupation, potentially leading to complete job automation in the future.13

Although not the focus of this study, one could also ask whether there are other

dimensions to the systematic task intensity changes shown in this section. For example,

it is intuitive to assume that industries are affected differently as they differ in their oc-

cupational composition. For example, construction industries show the highest increase

in cognitive intensity with 0.120 units of standard deviation, while wholesale and retail

trade industries experienced the most substantial decrease with -0.086 standard devia-

tion units. Agricultural, forestry, fishing and hunting industries decreased the most in

the demand for manual abilities with -0.103, and none of the thirteen major industries

13 Note that this interpretation is based on focusing on occupations’ cognitive and manual intensities.
In fact, it is possible that other unobserved abilities and skills have also changed in importance, affecting
the overall relevance of an occupation.
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increased in the demand for manual abilities between 2008 and 2017. In contrast to

the noticeable differences between industries, I do not find a statistically significant

difference between the public and private sectors regarding cognitive and manual task

intensity changes.

2.3.2 Demographic Breakdown

Based on the finding that different occupations evolve differently over time along with

the assumption that individuals sort themselves into occupations based on their skills

and abilities (Roy, 1951)14, the next question to address is: are workers with different

characteristics affected differently by within-occupation task changes, and if so, how?

Figure 2.4 shows the standardised cognitive and manual intensity changes due

to task shifts within occupations for workers with different educational attainments.

Therefore, I hold the employment distribution constant at 2017 levels. It can be seen

that recent task shifts within occupations favour workers with high educational attain-

ment over less educated workers. Moreover, the increase in the importance of cognitive

abilities among the most educated workers is noticeably more considerable for men than

women. Both observations seem to contrast labour market trends during the second

half of the twentieth century, where the increase in the demand for non-routine cog-

nitive tasks was pervasive at all educational levels and equally present for both men

and women (Autor et al., 2003). However, the diverse effects on different education

groups are not surprising when taking into account that the average educational level

is significantly higher in occupations that have recently experienced a rapid increase

in cognitive intensity, for example, computer, engineering and science occupations. In

2017, almost 30% of all workers employed in non-routine cognitive jobs had a master’s

or postgraduate degree and 68% held at least a college degree. On the contrary, only

9% of workers in routine manual jobs held a college or master’s degree.

Figure 2.5 shows the impact of task changes within occupations on workers with

different potential labour market experiences, using the fixed 2017 employment distri-

14 Following the path-breaking work by Roy (1951), sorting models have been widely used over the
last decades to support empirical analyses that are based on employment decisions of individuals (see,
e.g., Costinot and Vogel, 2010; Firpo et al., 2011; Autor and Handel, 2013; Jung and Mercenier, 2014;
Cortes, 2016).
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Figure 2.4: Within-Occupation Task Intensity Changes by Education Groups

bution. Workers with the same years of experience are binned into cohorts, and the

average changes in cognitive and manual intensity between 2008 and 2017 are calculated

for each cohort. The binned scatter plots show a clear pattern of how the potential

workforce experience relates to cognitive and manual intensity changes. Workers with

five to twenty years of potential labour market experience show a more substantial

cognitive intensity increase (or lower cognitive intensity decline for women). Workers

with more than thirty years of experience show the largest decline in the demand for

cognitive abilities. This observation is likely related to older workers working in routine

manual and cognitive occupations more often than other workers. This finding also

resonates with a study by Autor and Dorn (2009), which shows that younger workers

are more likely to switch from “routine jobs” that are declining in employment shares

to “high-skill non-routine jobs”. On the other hand, middle-aged and older workers

switch more often to “low-skill non-routine jobs”. Equivalent to the more substantial

decrease in cognitive intensity, the most experienced workers show the lowest reduction

in the importance of manual tasks. Likewise, the least experienced workers (zero to

five years of experience) also show a substantial decline in cognitive intensity because

workers entering the labour market work more often in routine cognitive or manual

occupations. It is also worth mentioning that the most experienced women are outliers

as they make the only female cohort reaching the ‘zero change threshold’ regarding the

demand for cognitive ability in their jobs.

The reasons why men experienced a more significant increase in cognitive inten-
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Figure 2.5: Within-Occupation Task Intensity Changes by Years of Experience

sity and simultaneously a more considerable decrease in manual intensity compared to

women are manifold: first, women are less often employed in computer, engineering and

science occupations, with only 26% in 2017. Simultaneously, these occupations show the

most substantial increase in cognitive intensity between 2008 and 2017. Second, women

work more often in office and administrative support occupations, with a total share of

72% in 2017. Aside from the sizeable decrease in cognitive intensity, office occupations

make the only occupation group which shows an increase in manual intensity (see Table

2.4). Third, women work significantly less often in construction and extraction occu-

pations, with only 3% on average. On the contrary, the disproportionate increase in

cognitive intensity in construction and extraction occupations predominately affected

male high-school graduates and workers with some college experience.

In addition to the presented findings, the Appendix Tables A.6 and A.7 provide

a more detailed picture of the labour market by splitting the employed labour force

into 20 experience-education cells separately for men and women and by taking into

account both changes within occupations and changes in employment shares. From

this more comprehensive perspective, it becomes clear that only a small proportion of

workers benefited from task demand changes in the sense that the demand for cognitive

ability increased. For men, this includes experienced college graduates and those with

an advanced degree but less than 30 years of working experience. Regarding female

workers, only those with an advanced degree and moderate working experience (10 to 20

years) show increased cognitive intensity in their jobs. Particular care needs to be taken
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when interpreting these results as the changes shown in Tables A.6 and A.7 capture

both task changes within occupations and occupational resorting between 2008 and

2017. When looking at the weighted average changes, one can observe that the overall

change in cognitive intensity is positive for both men and women. However, the effect is

noticeably more substantial for men. As illustrated in Figures 2.4 and 2.5, the noticeable

difference between men and women stems from task changes within occupations. For

example, the overall change in cognitive intensity relative to the pooled sample of male

and female workers is negative for women, with -0.025 units of standard deviations

when using fixed employment shares of 2017. The same counterfactual exercise for men

unveils no significant change in cognitive intensity when holding employment shares

constant at 2017 levels.

Regarding the evolution of manual task demand in the male labour market, all 20

experience-education cells show a decline in manual intensity. On the other hand, only

the most experienced women without a degree and experienced women with a high

school degree but no college experience show substantial increases in manual intensity

with 0.079 and 0.057 units of standard deviation, respectively. As shown in panel B

and complementing the other findings in this section, both men and women record a

substantial decline in manual intensity on average when holding employment shares

constant at 2008 or 2017 levels. Interestingly, only men resort to occupations of lower

manual intensity, as indicated by the difference of 0.058 standard deviation units be-

tween the measured change when using actual employment shares and fixed shares of

2017.

2.4 Task Intensity Changes and Wage Effects

This section analyses how the heterogeneous task demand changes are related to the

wage structure in the U.S. and how the changes affected the returns to cognitive and

manual task intensity between 2008 and 2017. To understand the relationship between

wages and task intensity changes, I split the cross-sectional sample 2017 into 100 equally

sized bins based on workers’ hourly wage rate to plot the cognitive and manual inten-
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sity changes between 2008 and 2017 against the log wages.15 The left panel of Figure

2.6 shows a systematic and positive relationship between an individual’s position in

the wage distribution and the change in the importance of cognitive abilities. A log

wage of 3.3 (equal to 27 U.S. dollars) is the approximate threshold determining whether

individuals work with a lower or higher probability in a cognitive-intensity-increasing

occupation. On the contrary, the change in manual intensity is systematically decreas-

ing in the log wage rate, as illustrated in the right panel of Figure 2.6. The importance

of manual abilities fell for all calculated bins between 2008 and 2017, whereas the de-

crease was more significant for individuals with higher wages. It is intuitive to assume

that the unveiled systematic relationships have impacted the recent evolution of earn-

ings in the U.S. economy, which is worth analysing in more detail.

Figure 2.6: Wage Distribution and Within-Occupation Task Intensity Changes of the
Employed Labour Force (2017)

2.4.1 Returns to Task Intensities

To check the returns to task intensities in the two cross-sectional samples of 2008 and

2017, I extend the Mincer (1974) earnings equation for my study. The Mincer regression

framework relies on a human capital investment model and has been widely used by

researchers to analyse the impact of education and experience on earnings (Grossbard,

2006). In the original equation, log earnings are regressed on a linear function of years of

15 Each bin contains approximately 1,500 individuals independent of their occupation. To ensure
that differences in education and experience do not drive the relationship between the log wages and
intensity changes, I control for these factors to derive the two partial relationships.

34



schooling and a quadratic function of labour market experience. Although the original

equation has proven to fit the data well in various contexts, Autor and Handel (2013)

points out that the original equation is not capable of carrying over returns to tasks as

the equation does not include job-specific characteristics but relies entirely on workers’

skill endowments. Equation 2.1 includes both the return to general human capital and

the returns to occupation-specific task intensities:16

lnwij = lnw0 + δ1CIj + δ2MIj + αSi + β1Expi + β2Exp2i +
K∑
k=1

γXi + εij (2.1)

lnwij is the log wage rate of worker i employed in occupation j. CIj and MIj are the

occupation-specific cognitive and manual intensity. δ1 and δ2 estimate the returns to

the cognitive and manual intensity. Si is years of completed schooling, Expi is potential

labour market experience (age - years of schooling - 6) and Xi is a vector of k = 1, ..., K

different worker characteristics.17

Table 2.4 shows the estimation results of equation 2.1 for 2008 and 2017. The co-

efficients represent the returns to task intensities and different worker characteristics.

For example, in 2017, the preferred model specification of column 6 predicts that a

worker employed in an occupation with one standard deviation higher cognitive inten-

sity receives an hourly wage that is 18.2% higher than the mean wage. In contrast, the

coefficient of manual intensity is statistically significant but relatively modest, indicat-

ing a 1.1% higher return for one standard deviation higher manual intensity. When

comparing the coefficients of task intensities between the two cross-sectional samples,

the return to cognitive intensity increased by 8.3% ((0.182-0.168)/0.168). In contrast,

the return to manual intensity seems to have stayed the same during the ten-year pe-

riod.
16 Checking the relationship of the task intensity levels with the log wages of individual workers

suggests that a linear model is the most suitable to regress log wages on task intensities and other
regressors. It is important to note that the shown relationship in Figure 2.6, which appears to be
non-linear, is not the relationship of interest for the estimated model as it represents occupations’
changes in cognitive and manual task intensity instead of the occupation-specific levels used in the
model.

17 Worker characteristics that are controlled for are: gender, union coverage, race (white, black,
Hispanic, others) and marital status. In addition, I include thirteen dummies for major industries to
control for industry-fixed effects.
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Table 2.4: Returns to Task Intensities: 2008 and 2017

CPS Sample 2008 CPS Sample 2017

(1) (2) (3) (4) (5) (6)

Controls
√ √ √ √

Industry Fixed Effects
√ √

Cognitive Intensity 0.307** 0.179** 0.168** 0.318** 0.194** 0.182**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Manual Intensity 0.055** 0.019** 0.011** 0.052** 0.020** 0.011**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Years of Schooling 0.069** 0.071** 0.066** 0.068**
(0.001) (0.001) (0.001) (0.001)

Experience 0.030** 0.028** 0.028** 0.026**
(0.000) (0.000) (0.000) (0.000)

Experience2 -0.001** -0.000** -0.000** -0.000**
(0.000) (0.000) (0.000) (0.000)

Female -0.241** -0.200** -0.222** -0.180**
(0.003) (0.003) (0.003) (0.003)

Married 0.061** 0.055** 0.066** 0.061**
(0.003) (0.003) (0.003) (0.003)

Union 0.129** 0.131** 0.111** 0.120**
(0.004) (0.004) (0.004) (0.004)

Black -0.108** -0.103** -0.129** -0.122**
(0.004) (0.004) (0.005) (0.004)

Hispanic -0.019** -0.020** -0.028** -0.028**
(0.004) (0.004) (0.004) (0.004)

Other 0.017** 0.019** 0.035** 0.036**
(0.006) (0.006) (0.006) (0.006)

Constant 3.024** 1.788** 1.664** 3.066** 1.862** 1.881**
(0.002) (0.011) (0.016) (0.002) (0.012) (0.017)

R2 0.211 0.384 0.403 0.233 0.386 0.404

Observations 164,824 151,652

Notes: CPS “earnings weights” are used for all estimations. The method for estimating the un-
known parameters in the linear regression model is ordinary least squares (OLS). Robust standard
errors are shown in parentheses. **/* Significant at the 1%/5% level.

To better understand the role of task changes within rather than between occupa-

tions, Table 2.5 shows the results of a falsification exercise by holding the occupation-

specific task intensities constant at 2008 levels (columns 5-6). It turns out that the

estimated return to cognitive task intensity is insignificantly different from 2008. Thus,
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not including changes in task intensities within occupations mistakenly leads to the

interpretation that the return to cognitive intensity remained unchanged between 2008

and 2017. This interpretation is consistent with the descriptive findings shown in the

last sections and stands in contrast to a study conducted by Castex and Dechter (2014),

which finds a decline in the return to cognitive ability in the 2000s. On the other hand,

the result of the counterfactual exercise is in line with a study by Ross (2017) show-

ing that within-occupation changes let the premium for routine tasks decline and the

premium for abstract tasks increase. In contrast, the return to manual intensity shows

only a slight drop in the counterfactual exercise from 0.11 to 0.08.

Table 2.5: Returns and Counterfactual Returns to Task Intensities

CPS Sample 2008 CPS Sample 2017 Counterfactual Sample

(1) (2) (3) (4) (5) (6)

Full Controls
√ √ √

Cognitive Intensity 0.195** 0.168** 0.217** 0.182** 0.195** 0.169**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Manual Intensity 0.071** 0.011** 0.068** 0.011** 0.056** 0.008**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Notes: CPS “earnings weights” are used for all estimations. The method for estimating the unknown
parameters in the linear regression model is ordinary least squares (OLS). Controls include years of
schooling, experience, gender, union coverage, race and thirteen industry dummies. Robust standard
errors are shown in parentheses. **/* Significant at the 1% and 5% level.

2.4.2 Heterogeneity in Returns to Task Intensities

The objective of this section is to investigate if the systematic task changes within

occupations across the wage distribution are also prevalent within the four task-based

occupation groups.18 This exercise helps us to understand if the overall return to

cognitive intensity comes from increasing returns within occupation groups or from

diverging developments between occupation groups.

Figure 2.7 shows the binned scatter plots of the four task-based occupation groups,

which are analogous to the plots in Figure 2.6 using the fixed 2017 employment distribu-

18 The categorisation of occupations into the four groups is documented in Appendix Table A.1.
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tion.19 One can see that higher wages are associated with a more considerable increase

in cognitive intensity for all groups except for non-routine manual occupations. The

latter group does not show a clear relationship between an individual’s position in the

group-specific wage distribution and the change in the importance of cognitive ability.

All other occupation groups have a positive slope, indicating a positive relationship

between the log wage rate and the change in cognitive task intensity between 2008

and 2017. Non-routine cognitive occupations show a negative relationship between log

wages and manual task intensity changes. On the contrary, the wage distributions of

routine manual and routine cognitive occupations do not reveal a clear positive or neg-

ative relationship with the change in the importance of manual abilities.

Figure 2.7: Wage Distribution and Within-Occupation Task Intensity Changes by
Broad Occupation Groups (2017)

Table 2.6 reports the estimated returns to task intensities, formal education and

years of experience based on the different occupation groups.20 Non-routine cognitive

occupations show an increase in the return to cognitive intensity by 7% when measured

at the mean. This finding aligns with two stylised facts shown in Section 2.3: first,

non-routine cognitive jobs experienced the most significant upward shift in cognitive

19 I control for labour market experience and years of schooling to find the partial correlation between
task intensities and the log wage distribution within the broad occupation groups.

20 Following the preferred model specification in columns 3 and 6 of Table 2.4, I control for gender,
union coverage, race, marital status and industries.
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intensity among all occupation groups. Second, recent cognitive-biased task changes

favoured individuals employed in computer, engineering and science occupations, which

are often located at the upper end of the wage distribution. The largest increase in

the return to cognitive intensity is found in non-routine manual occupations (service

occupations), with a noticeable increase of 15% between 2008 and 2017. The return to

cognitive task intensity also increased for workers employed in routine manual occupa-

tions by a noticeable 7%. Routine cognitive occupations record the most substantial

decrease in the return to cognitive intensity with -12% between 2008 and 2017. This

finding is consistent with the fact that both sales and office administrative occupations

show a remarkable reduction in the importance of cognitive abilities (see Figure 2.3).

The return to manual task intensity decreased for non-routine cognitive occupations

by 19% between 2008 and 2017, confirming the lessened importance of manual abilities

in such jobs. While the return to manual intensity also decreased for routine cognitive

occupations, workers employed in both routine and non-routine manual occupations ex-

perienced an increase in the return to manual task intensity. From a pure demand-side

perspective, the increase in the return to manual intensity for routine and non-routine

manual occupations appears inconsistent with the general assumption that primarily

manual tasks become automated, which should reduce the relative importance of those

tasks and decrease their return. However, it is essential to note that the supply of

manual skills most likely decreases over time as workers sort themselves disproportion-

ately into non-routine cognitive occupations (see Table 2.2). This development possibly

increases the market value of manual abilities in manual-intensive occupations.

Although the shown results in this section are very informative, the Mincerian ap-

proach of regressing log wages on years of schooling, experience and task intensities

contains some crucial limitations, as discussed, for example, in Autor (2013). First,

the set of tasks a worker performs is not an exogenous state variable but a function

of the current wage distribution. In other words, the set of tasks that a worker per-

forms is “simultaneously determined by the worker’s stock of human capital and the

contemporaneous productivity of the tasks that human capital could accomplish.” In

this light, it would be more informative to regress wages on workers’ skills instead of

regressing wages on task intensities measured at the occupation level. In this regard,
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Table 2.6: Returns to Task Intensities by Broad Occupation Groups: 2008 and 2017

A. Returns 2008 NRC NRM RC RM

Cognitive Intensity 0.141** 0.078** 0.079** 0.134**
(0.005) (0.004) (0.005) (0.003)

Manual Intensity 0.062** 0.008 -0.036** 0.036**
(0.003) (0.007) (0.005) (0.005)

Years of Schooling 0.097** 0.042** 0.073** 0.039**
(0.001) (0.001) (0.002) (0.001)

Experience 0.033** 0.018** 0.030** 0.021**
(0.001) (0.001) (0.001) (0.001)

R2 0.288 0.257 0.294 0.291

Observations 60,145 26,768 40,761 55,573

B. Returns 2017 NRC NRM RC RM

Cognitive Intensity 0.151** 0.087** 0.067** 0.144**
(0.005) (0.005) (0.006) (0.004)

Manual Intensity 0.050** 0.033** -0.062** 0.042**
(0.004) (0.008) (0.008) (0.005)

Years of Schooling 0.098** 0.041** 0.071** 0.038**
(0.002) (0.001) (0.002) (0.001)

Experience 0.031** 0.017** 0.028** 0.019**
(0.001) (0.001) (0.001) (0.001)

R2 0.292 0.240 0.296 0.275

Observations 60,596 25,459 33,181 53,495

Notes: 2008 and 2017 employment shares and task intensities are used to estimate the returns. CPS
“earnings weights” are used for all estimations. The method for estimating the unknown parameters
in the linear regression model is ordinary least squares (OLS). The reported occupation groups are
non-routine cognitive (NRC), non-routine manual (NRM), routine cognitive (RC) and routine manual
(RM) occupations. The mapping of the detailed SOC occupations to the four broad occupation groups
is reported in Appendix Table A.1. Robust standard errors are shown in parentheses. **/* Significant
at the 1%/5% level.

one cannot assume that an occupation’s task intensities accurately mirror the underly-

ing skills of all workers employed in that occupation, as occupation choices depend not

only on individuals’ abilities and skills but also on their preferences (Yamaguchi, 2012).

Both workers’ abilities and preferences are unobserved. Second, equation 2.1 does not

include all relevant occupation characteristics, which could lead to biased estimates of

cognitive and manual task intensity measures. This is a well-known problem in the

occupation and skill literature. However, entering additional measures of arguably im-
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portant characteristics, such as occupations’ capability to offshore tasks or the routine

intensity of occupations, has been proven to cause severe multicollinearity due to sig-

nificant overlaps in the construction of the different measures when using O*NET data

(see, e.g., Yamaguchi, 2012; Autor, 2013). Third, the Mincerian regression approach

is not a suitable method to quantify the relative contribution of task shifts to wage

changes compared to other factors. The next section’s detailed Oaxaca-Blinder decom-

position of wage changes between 2008 and 2017 helps address this issue.

2.4.3 Oaxaca-Blinder Decomposition of Wage Changes

This section aims to shed light on the relative contribution of task changes, including

task changes within occupations, compared to changes related to socio-demographic

factors, industrial composition and labour unions. To answer this question, I use an

Oaxaca-Blinder decomposition (Blinder, 1973; Oaxaca, 1973) applied to the employed

labour force and the four different occupation groups.21 The method decomposes the

total effect of mean wage differentials into two separate components: a component

that captures the changes in the workforce composition (“composition effect”) and

another component that can be explained by changes in the market price of worker

and job characteristics (“wage structure effect”). The linear wage setting model for the

employed labour force in 2008 and 2017 can be written as

Wt = Xβt + υt for t = 2008, 2017 (2.2)

whereby the conditional mean of υt is assumed to be zero (E[υt|X] = 0). Letting G = 1

be an indicator for being in the labour force in 2017 and taking the expectations over

X, one can express the mean wage gap as follows:

21 The Oaxaca-Blinder decomposition approach has been widely used to analyse earnings differen-
tials between men and women, union members and non-union members or related to other worker
characteristics (see, e.g., O’Neill and O’Neill, 2006; Fortin et al., 2011). Thanks to the flexibility of
the approach, it can also be used to decompose wage gaps between two workforce samples of different
years.
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∆µ
T = E[W2017|G = 1]− E[W2008|G = 0]

= E[X|G = 1]β2017 − E[X|G = 1]β2008 + E[X|G = 1]β2008 − E[X|G = 0]β2008

(2.3)

By replacing the expected values of X with the mean values of the two samples, 2008

and 2017, one can estimate the wage decomposition

∆µ
T = X2017β̂2017 −X2017β̂2008 +X2017β̂2008 −X2008β̂2008

= X2017(β̂2017 − β̂2008) + (X2017 −X2008)β̂2008

= ∆µ
S +∆µ

X

(2.4)

to find the wage structure effect ∆µ
S and the composition effect ∆µ

X . In the second

step, each of the two effects is further decomposed into different factors, quantifying

the fraction of the average wage change between 2008 and 2017 attributable to each

factor. Based on the assumption that the true wage setting model is linear22, it is

straightforward to estimate the different factor contributions based on the two additive

equations

∆̂µ
S = (β̂2017,0 − β̂2008,0) +

K∑
k=1

X2017,k(β̂2017,k − β̂2008,k)

∆̂µ
X =

K∑
k=1

(X2017,k −X2008,k)β̂2008,k

(2.5)

where (β̂2017,0− β̂2008,0) is the unexplained difference between the 2008 and 2017 labour

force, and X2017,k(β̂2017,k − β̂2008,k) and (X2017,k − X2008,k)β̂2008,k are the contributions

of the kth factor to the wage structure and composition effect, respectively.

22 To test if the wage setting model of the two underlying samples is linear, I use a reweighted-
regression decomposition as proposed by Barsky et al. (2002) and check if the specification error term
is close to zero. More specifically, I use Rios-Avila (2020) procedures based on recentered influence
functions and find that the linearity assumption is indeed satisfied.
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I use the decomposition procedures of linear regression models provided by Jann

(2008). The results are shown in Table 2.7.23 As can be observed from column 1,

32% (0.014 out of 0.043 log points) of the wage change between 2008 and 2017 can be

explained by changes in the composition of the workforce, including task changes within

and between occupations. Cognitive task intensity changes contribute a positive 25%,

and manual task intensity changes a negative 7% to the overall composition effect. The

overall contribution of task changes is only of minor importance compared to the effect of

formal education, which contributes a noticeable 0.023 log points to the overall change.

However, compared to other factors like resorting mechanisms between industries or

changes in union coverage, the contribution of cognitive task shifts is of comparable

magnitude. Moreover, the contribution of both cognitive and manual intensity changes

is highly significant.

The wage structure effect shows very different results. The role of task changes

is only of minor importance. Moreover, the effect is insignificant for the manual task

intensity. On the contrary, formal education stands out as the factor with the most

considerable contribution to the wage structure effect. Interestingly, the contribution of

education is negative, with -0.041 log points indicating a decrease in the market price of

education between 2008 and 2017. In conjunction with the predicted stagnating return

to years of schooling (see Table 2.4), this trend stands in contrast to the increasing

demand for formal education and the rising skill premium in the late twentieth century

(see, e.g., Goldin and Katz, 2007).

Educational upgrading is also the most important factor regarding the composition

effects within broad occupation groups (columns 2-5). Interestingly, the effect of cogni-

tive task intensity changes within groups is noticeably larger than in the total employed

population. The noticeable effects can come from either changes within occupations,

shifts in employment shares between occupations, or a combination of both. However,

the findings in the last sections have unveiled that between-occupation changes play

a much less important role when evaluated within major occupation groups. A no-

ticeable and significant 71.2% (0.008 log points out of 0.011) of the composition effect

23 Table 2.7 shows the results when using the pooled sample as the reference wage structure, which
is recommended by Jann (2008). However, the results are robust when using the wage structure of
2017 as the reference structure instead of the pooled sample.
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Table 2.7: Oaxaca-Blinder Wage Decomposition Results - Composition Effects
and Wage Structure Effects

Employed LF NRC NRM RC RM

Total Change (×100) 4.277*** 3.413*** 2.492*** 3.273*** 1.789***

Composition (×100) 1.352*** 1.113*** 0.172 0.228 -1.714***

Wage Structure (×100) 2.925*** 2.300*** 2.320*** 3.045*** 3.503***

Composition Effects:

Cognitive Intensity 0.337*** 0.792*** -0.121* -0.807*** -0.721***

Manual Intensity -0.097*** -0.545*** -0.040*** 0.215*** -0.204***

Education 2.289*** 1.789*** 1.264*** 2.039*** 1.115***

Experience -0.454*** -0.712*** -0.170* -0.665*** -0.200**

Union -0.239*** -0.113*** -0.404*** -0.156*** -0.525***

Worker Characteristics -0.290*** -0.157** -0.168** -0.061 -0.930***

Industry -0.194*** 0.060 -0.188*** -0.337*** -0.249***

Wage Structure Effects:

Cognitive Intensity -0.022*** 0.894 -0.768 0.142* -0.371

Manual Intensity -0.001 0.764** 0.844** 1.244*** 1.931

Education -4.119*** 1.103 -1.506 -2.389 -8.054***

Experience -0.907** 0.508 0.883 -0.716 -4.799***

Union 0.435** 0.362 0.897 0.513 -0.049

Worker Characteristics -0.000 0.306 0.365 0.872** -0.854

Industry -0.361 -1.581** 2.967* -1.329 -0.005

Constant 7.900*** -0.057 -1.361 4.709 15.705***

Notes: All log point contributions are multiplied by 100 for convenience of presentation. The factor
“Worker Characteristics” represents aggregated decomposition results of a subset of variables, includ-
ing dummies for marital status, gender and four race categories (white, black, Hispanic and others).
Following Yun (2005), all categorical variables are normalized, capturing the deviation contrasts from
the aggregated mean. The reported occupation groups are non-routine cognitive (NRC), non-routine
manual (NRM), routine cognitive (RC) and routine manual (RM) occupations. The mapping of the
detailed SOC occupations to the four broad occupation groups is reported in Appendix Table A.1.
CPS “earnings weights” and robust standard errors are used for all estimations. ***/**/* Significant
at the 1%/5%/10% level.

in non-routine cognitive occupations can be explained by the change in cognitive in-

tensity. Regarding routine manual and routine cognitive occupations, the contribution

of cognitive task shifts is negative and significant, with -0.007 and -0.008 log points,

respectively. These findings are consistent with the documented heterogeneous changes
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in the importance of cognitive abilities between occupation groups (see Table 2.3).

When looking at the wage structure effects within occupation groups, the market

price of cognitive intensity evaluated at the group-specific mean has only significantly

changed for routine cognitive occupations. On the contrary, the contribution of manual

intensity is significant for all groups except for routine manual occupations. Moreover,

the impact of manual task shifts is positive and of noticeable magnitude. It is important

to mention that this finding is not inconsistent with the recent decreases in manual

intensity within most occupation groups. In fact, the total impact on the market price

of manual task intensity depends on the interaction between the demand for and supply

of manual skills in the labour market. Based on this note, it is well-known and partly

shown in this study that the workforce has shifted towards a disproportionate increase

in the supply of cognitive skills. If this trend generates a shortage of manual skills,

it pushes up their market price.24 The market price of formal education and labour

market experience only shows a significant decline within the group of routine manual

occupations, driving the overall considerable decrease in the employed labour force.

While the estimated contributions of education and experience (-0.081 and -0.048) to

the overall wage structure effect of routine manual occupations are enormous, they are

offset by a substantial increase in the constant reflecting an overall higher market price

paid to the average worker in routine manual occupations.

Regarding the other factors, one has to consider that the wage structure effects

are sensitive to the choice of the base category for categorical variables when applying

an Oaxaca-Blinder decomposition to wage changes (Oaxaca and Ransom, 1999). To

overcome this issue, I follow Yun (2005) and normalize the categorical variables to rep-

resent the deviation contrast from the mean of the pooled sample. The results show

that union status does not significantly contribute to the wage structure effects within

occupation groups. Industries play an important role only for the two non-routine

occupation groups, whereby the industry effect differs substantially between the two

groups, contributing a negative 0.016 log points for non-routine cognitive occupations

and a positive 0.030 log points for non-routine manual occupations. Moreover, the

24 There is a large literature that focuses on skill mismatch and skill shortages. See, for example,
Brunello and Wruuck (2021) for a good overview.
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factor that combines worker-specific characteristics (marital status, race, and gender)

substantially contributes only to the wage structure effect for routine cognitive occu-

pations.

2.5 Conclusion

Using the unique features of the O*NET ability rating procedure, this study analysed

heterogeneous occupation dynamics by focusing on task changes within occupations

between 2008 and 2017. Contrary to the assumption that task changes within occupa-

tions monotonically increase the demand for cognitive abilities in the labour market,

my results suggest that technological change is ability-biased for some occupations but

ability-saving for others.

My results show a disproportionate increase in cognitive intensity in non-routine

cognitive occupations and a cognitive intensity decline in routine cognitive and rou-

tine manual occupations. Moreover, non-routine cognitive occupations experienced the

most impactful decrease in manual intensity between 2008 and 2017. The system-

atic changes within occupations directly affect the workforce: experienced workers and

women who do not hold a college degree experienced the largest decreases in cognitive

intensity. The labour market analysis also unveils a systematic relationship between

workers’ position in the wage distribution and their cognitive and manual task demand

changes. High-paying occupations show a more substantial increase in the importance

of cognitive tasks, combined with a larger decrease in the importance of manual tasks.

These observations are consistent with the labour-increasing effects within non-routine-

cognitive occupations manifested through rising employment shares in the twenty-first

century.

The returns analysis of Section 2.4.1 suggests that the return to cognitive intensity

has increased by 8.3 per cent between 2008 and 2017, whereas the increase is entirely

attributable to task shifts within occupations. However, when interpreting the percent-

age change, one has to be aware that it only captures the demand side measured at

the occupation level, as individuals’ cognitive and manual ability is unobserved. This

study is open about this limitation, focusing on changes within occupations rather than
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unobserved individual characteristics. Finally, an Oaxaca-Blinder wage decomposition

shows that it is essential to consider the heterogeneity between different occupation

groups to evaluate the impact of task changes within and between occupations on the

wage structure.

My study emphasises the importance of task changes within occupations for future

research. Although data challenges like inconsistencies in the O*NET data gathering

program are often difficult to overcome, not taking into account changes within occupa-

tions potentially leads to wrong interpretations of the development of the contemporary

labour market.
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Appendix to Chapter 2

A.1 Appendix Tables

Table A.1: Mapping of SOC Occupations to Broad Occupation Groups

Broad Occupation Group 2010 SOC Major Groups 2010 SOC Codes

Non-Routine Cognitive Management 11-0000

Business and Financial Operations 13-0000

Computer and Mathematical 15-0000

Architecture and Engineering 17-0000

Life, Physical, and Social Science 19-0000

Community and Social Service 21-0000

Legal Occupations 23-0000

Education, Training, and Library 25-0000

Arts, Design, Entertainment, Sports, and Media 27-0000

Healthcare Practitioners and Technical 29-0000

Non-Routine Manual Healthcare Support 31-0000

Protective Service 33-0000

Food Preparation and Serving 35-0000

Building and Grounds Cleaning and Maintenance 37-0000

Personal Care and Service 39-0000

Routine Cognitive Sales and Related 41-0000

Office and Administrative Support 43-0000

Routine Manual Farming, Fishing, and Forestry 45-0000

Construction and Extraction 47-0000

Installation, Maintenance, and Repair 49-0000

Production Occupations 51-0000

Transportation and Material Moving 53-0000

Notes: All military occupations (SOC Codes 55-0000) are excluded from the sample. This mapping
follows the SOC High-Level Aggregation with the only exception that ”Natural Resources, Construc-
tion, and Maintenance Occupations” (45-49) and ”Production, Transportation, and Material Moving
Occupations” (51-53) are melted into the group of routine manual occupations.
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Table A.2: O*NET Cognitive and Psychomotor Abilities

Ability Domain ID Ability Name Description

1.A.1 Cognitive Abilities

Verbal 1.A.1.a.1 Oral Comprehension listen and understand what people say

Verbal 1.A.1.a.2 Written Comprehension read and understand what is written

Verbal 1.A.1.a.3 Oral Expression communicate by speaking

Verbal 1.A.1.a.4 Written Expression communicate by writing

Ideas & Reasoning 1.A.1.b.1 Fluency of Ideas come up with lots of ideas

Ideas & Reasoning 1.A.1.b.2 Originality create new and original ideas

Ideas & Reasoning 1.A.1.b.3 Problem Sensitivity realize when problems happen

Ideas & Reasoning 1.A.1.b.4 Deductive Reasoning use rules to solve problems

Ideas & Reasoning 1.A.1.b.5 Inductive Reasoning
make general rules to come up with ans-
wers from lots of detailed information

Ideas & Reasoning 1.A.1.b.6 Information Ordering order or arrange things

Ideas & Reasoning 1.A.1.b.7 Category Flexibility group things in different ways

Quantitative 1.A.1.c.1 Mathematical Reasoning
choose the right type of math
to solve a problem

Quantitative 1.A.1.c.2 Number Facility add, subtract, multiply or divide

1.A.2 Psychomotor Abilities

Fine Manipulative 1.A.2.a.1 Arm-Hand Steadiness keep your arm or hand steady

Fine Manipulative 1.A.2.a.2 Manual Dexterity hold or move items with your hands

Fine Manipulative 1.A.2.a.3 Finger Dexterity put together small parts with your fingers

Control Movement 1.A.2.b.1 Control Precision
quickly change the controls of
a machine, car, truck or boat

Control Movement 1.A.2.b.2 Multilimb Coordination
use your arms and/or legs together
while sitting, standing, or lying down

Control Movement 1.A.2.b.3 Response Orientation
quickly decide if you should move
your hand, foot, or other body part

Control Movement 1.A.2.b.4 Rate Control
change when and how fast you move
based on how something else is moving

Reaction Time & Speed 1.A.2.c.1 Reaction Time
quickly move your hand, finger, or foot
based on a sound, light, picture or other
command

Reaction Time & Speed 1.A.2.c.2 Wrist-Finger Speed
make fast, simple, repeated movements
of your fingers, hands, and wrists

Reaction Time & Speed 1.A.2.c.3 Speed of Limb Movement quickly move your arms and legs

Source: Occupational Information Network, O*NET OnLine.
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Table A.3: Occupations with Highest and Lowest Intensity Scores (2017)

Cognitive Intensity Manual Intensity

A. Highest Ranked Occupations C. Highest Ranked Occupations

1. Astronomers & physicists* 1. Manufact. building & mobile home installers

2. Operations research analysts* 2. Dredge, excavating & load. machine operators

3. Nuclear engineers* 3. Aircraft pilots & flight engineers

4. Chief executives 4. Fire fighters*

5. Biological scientists* 5. Structural iron & steel workers

6. Mining & geological engineers* 6. Industrial & refractory machinery mechanics

7. Architects* 7. Millwrights*

8. Chemical engineers* 8. Heavy vehicle & mobile equipment technicians

9. Civil engineers* 9. Crane & tower operators

10. Actuaries* 10. Locomotive engineers & operators

B. Lowest Ranked Occupations D. Lowest Ranked Occupations

1. Pressers of textile and garment materials 1. Economists

2. Graders & sorters, agricultural products* 2. Purchasing managers

3. Cleaners of vehicles & equipment* 3. Budget analysts

4. Food preparation & serving workers 4. Personal financial advisors

5. Dishwashers* 5. Actuaries

6. Packers & packagers, hand 6. Operations research analysts*

7. Janitors & building cleaners 7. Human resources assistants*

8. Maids & housekeeping cleaners* 8. Procurement clerks

9. Grounds maintenance workers 9. Management analysts*

10. Laundry & dry-cleaning workers* 10. Public relations specialists*

Notes: An asterisk denotes an increase in cognitive or manual intensity between 2008 and 2017; no
asterisk indicates an intensity decrease in the presented occupations.
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Table A.6: Cognitive and Manual Intensities by Experience-Education Cell for Men

Cognitive Intensity Manual Intensity

2008 2017 Change 2008 2017 Change

A. By Education and Experience

Less than high-school:

0-10 -1.030 -1.037 -0.007 0.861 0.728 -0.133

11-20 -1.037 -1.065 -0.028 1.149 1.072 -0.077

21-30 -0.992 -1.050 -0.058 1.098 1.075 -0.023

31+ -0.993 -1.035 -0.042 1.114 1.036 -0.078

High-school graduates:

0-10 -0.742 -0.805 -0.063 0.806 0.702 -0.104

11-20 -0.552 -0.613 -0.061 0.869 0.745 -0.124

21-30 -0.523 -0.563 -0.040 0.855 0.780 -0.075

31+ -0.539 -0.554 -0.015 0.835 0.756 -0.079

Some college:

0-10 -0.356 -0.430 -0.074 0.416 0.382 -0.034

11-20 -0.085 -0.151 -0.066 0.502 0.422 -0.080

21-30 -0.032 -0.088 -0.056 0.478 0.427 -0.051

31+ -0.113 -0.128 -0.015 0.422 0.370 -0.052

College graduates:

0-10 0.495 0.473 -0.022 -0.379 -0.389 -0.010

11-20 0.582 0.574 -0.010 -0.320 -0.431 -0.111

21-30 0.574 0.575 0.001 -0.329 -0.417 -0.088

31+ 0.533 0.548 0.015 -0.337 -0.410 -0.073

Master and postgraduates:

0-10 0.907 0.969 0.062 -0.631 -0.730 -0.099

11-20 0.964 0.972 0.008 -0.650 -0.752 -0.102

21-30 1.003 1.003 0.000 -0.673 -0.743 -0.070

31+ 0.992 0.968 -0.024 -0.711 -0.721 -0.010

B. Weighted Average

Actual Employment Shares: -0.132 -0.104 0.028 0.363 0.233 -0.130

2008 Employment Shares: -0.132 -0.139 -0.007 0.363 0.289 -0.074

2017 Employment Shares: -0.104 -0.104 0.000 0.305 0.233 -0.072

Notes: Intensity Scores are standardized, showing the deviation from the mean score value of the en-
tire sample measured in units of standard deviation. Recommended CPS ”earnings weights” are used
for all calculations.
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Table A.7: Cognitive and Manual Intensities by Experience-Education Cell for Women

Cognitive Intensity Manual Intensity

2008 2017 Change 2008 2017 Change

A. By Education and Experience

Less than high-school:

0-10 -0.757 -0.804 -0.047 0.099 0.060 -0.039

11-20 -0.953 -0.964 -0.011 0.257 0.247 -0.010

21-30 -1.039 -1.122 -0.083 0.305 0.352 0.047

31+ -1.069 -1.094 -0.025 0.266 0.345 0.079

High-school graduates:

0-10 -0.442 -0.553 -0.111 -0.027 -0.033 -0.006

11-20 -0.353 -0.423 -0.071 -0.067 -0.082 -0.015

21-30 -0.316 -0.382 -0.066 -0.123 -0.116 0.007

31+ -0.291 -0.379 -0.088 -0.189 -0.132 0.057

Some college:

0-10 -0.164 -0.248 -0.084 -0.149 -0.153 -0.004

11-20 0.114 0.034 -0.080 -0.231 -0.224 0.007

21-30 0.131 0.060 -0.071 -0.282 -0.297 -0.015

31+ 0.160 0.048 -0.112 -0.327 -0.335 -0.008

College graduates:

0-10 0.531 0.482 -0.049 -0.505 -0.513 -0.008

11-20 0.615 0.580 -0.035 -0.490 -0.561 -0.071

21-30 0.626 0.547 -0.079 -0.464 -0.573 -0.109

31+ 0.593 0.532 -0.061 -0.511 -0.559 -0.048

Master and postgraduates:

0-10 0.948 0.946 -0.002 -0.705 -0.678 0.027

11-20 0.940 0.953 0.013 -0.754 -0.764 -0.010

21-30 0.972 0.942 -0.030 -0.730 -0.786 -0.056

31+ 0.919 0.906 -0.013 -0.738 -0.744 -0.006

B. Weighted Average

Actual Employment Shares: 0.089 0.100 0.011 -0.283 -0.331 -0.048

2008 Employment Shares: 0.089 0.053 -0.036 -0.283 -0.336 -0.053

2017 Employment Shares: 0.125 0.100 -0.025 -0.271 -0.331 -0.060

Notes: Intensity Scores are standardized, showing the deviation from the mean score value of the en-
tire sample measured in units of standard deviation. Recommended CPS ”earnings weights” are used
for all calculations.
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A.2 Appendix Figures

Figure A.1: Smoothed Cognitive Task Intensity Distributions of 2008 and 2017 by
Broad Occupation Groups
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Figure A.2: Smoothed Manual Task Intensity Distributions of 2008 and 2017
by Broad Occupation Groups
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Figure A.3: Joint Distribution of Cognitive and Manual Intensities of 2008 and 2017
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Figure A.4: Returns to Cognitive Task Intensity over Wage Quantiles
by Broad Occupation Groups
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Figure A.5: Returns to Manual Task Intensity over Wage Quantiles
by Broad Occupation Groups
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Abstract

Although more than 20 per cent of the workforce changes their occupation ev-
ery year, we still do not fully understand the mechanisms behind the observed
mobility. This paper focuses on analysing the relationship between work-hour in-
stability and occupational mobility in the U.S. labour market. I use the longitu-
dinal dimension of the Current Population Survey (CPS) to measure individuals’
intra-year work-hour variation and analyse their mobility through a balanced oc-
cupation panel. Being in the highest quartile of work-hour variation is associated
with a higher mobility rate of 0.33% for men and 0.81% for women compared to
an average monthly mobility rate of 1.71%. Analysing the predicted marginal ef-
fects across different household compositions suggests that the substantial gender
gap can be explained by the intra-household specialisation of men and women.
The last part of this study shows that only workers with highly volatile work
hours sort themselves into more stable occupations.

Keywords: work hours, coefficient of variation, occupational resorting, gender.

JEL codes: J16, J22, J24, J62.

66



3.1 Introduction

Work-hour instability and its detrimental effects on the workforce have moved into the

focus of political debate1 and economic research over the last few years. Involuntary

fluctuations in work hours affect individuals negatively along two dimensions: first,

they cause volatility in earnings (Gottschalk and Moffitt, 2009; Finnigan, 2018), which

implies an economic risk for hourly-paid workers in low-wage occupations. Second,

work-hour instability negatively affects individuals’ health and subjective well-being

by increasing personal distress, poor sleep quality, and work-family imbalances (Kelly

et al., 2014; Olson et al., 2015; Moen et al., 2016; Schneider and Harknett, 2019).

Despite the growing literature documenting the direct adverse effects of work-hour

instability, we still do not fully understand its relationship to women’s and men’s mobil-

ity decisions in the labour market. With about one-fifth of U.S. workers changing their

occupations annually (Kambourov and Manovskii, 2008), understanding the mecha-

nisms of occupational mobility is critical for evaluating matching processes between

workers and occupations (Groes et al., 2015; Guvenen et al., 2020; Lise and Postel-

Vinay, 2020), assessing human capital accumulation and wage growth (Kambourov

and Manovskii, 2009a,b) and for the effective implementation of labour market poli-

cies. Nonetheless, the existing literature on occupational mobility is far from being

conclusive. This paper aims to contribute to closing this gap by creating a link between

individuals’ work-hour instability and their mobility patterns using representative U.S.

survey data.

Exploiting the short but rich panel dimension of the monthly Current Population

Survey (CPS), I show that workers who experience high volatility in work hours are more

likely to switch between occupations than workers with more stable work hours. This

pattern is significantly more dramatic for women than men. The finding of gender-

heterogeneous mobility patterns related to work-hour-instability complements a new

stream of literature showing that women have comparatively higher preferences for non-

1 Fair Workweek laws have recently been implemented to address the employer-driven unpredictabil-
ity and instability of work schedules (Wolfe et al., 2018; Lambert, 2020; Petrucci et al., 2022). However,
the enforced laws target only particular regions (Oregon, Seattle, New York City, Philadelphia, San
Francisco, Emeryville (California), San Jose, and Chicago), are limited to hospitality, food service and
retail industries, and exclude small firms and businesses.
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pecuniary positive job attributes (Mas and Pallais, 2017; Maestas et al., 2018; Wiswall

and Zafar, 2018). In contrast to these studies, in my work, I observe realized occupation

choices instead of relying on hypothetical job choice experiments or stated-preference

models that depend on constricting assumptions. For the identification of the gender-

specific monthly mobility rates, I track individuals in the CPS for four consecutive

months and over sixteen calendar months in total through a self-constructed balanced

occupation panel covering 430 detailed occupations from 2003 to 2022. To measure each

individual’s work-hour instability, I make use of their self-reported weekly working hours

(related to the main job) across different survey months and construct the coefficient

of variation (CV) following LaBriola and Schneider (2020).

The predicted mobility gap between workers without hour variation and workers

in the highest quartile of hour variation is 0.33 per cent for men and 0.81 per cent

for women, compared to an average monthly mobility rate of 1.71 per cent. Deeper

investigations unveil two potential explanations for the noticeable gender gap: first,

family commitments seem to affect men and women differently, as only women who are

married or have children show a clear positive relationship between hour fluctuations

and occupation choices. On the contrary, men with family commitments are completely

unaffected if they have to work significantly different hours across weeks. This finding

is supported by American Time Use Survey (ATUS) data documenting that women

are more likely to specialise in non-working activities (childcare and housework), which

are easier to plan with predictable and stable work schedules. Second, a simple joint

model of occupational and employer mobility shows that work-hour instability is pre-

dominately occupation-specific for women but employer-specific for men. While the

CPS data does not allow me to pinpoint the exact reasons why women are more likely

to switch between occupations and men between employers, this finding is nonetheless

a significant new contribution to the literature, opening the door for potential future

research in this direction.

Based on the uncovered relationship between work-hour instability and mobility in

the U.S. labour market, the second part of this study aims to answer whether indi-

viduals who switch occupations can achieve higher stability in work hours. If work-

hour stability is an important workplace characteristic and at least to some degree
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occupation-specific, as the first part of this study suggests, we would expect that espe-

cially individuals suffering from high work-hour fluctuations target stable occupations.

To test this assumption, I use all sixteen calendar months individuals can be tracked

in the CPS and link the CPS sample to the Annual Social and Economic Supplement

(ASEC) of the CPS to make use of the more reliable “dependent occupation coding”

scheme (Polivka and Rothgeb, 1993). After constructing the new dataset, I match in-

dividuals with similar characteristics to create a quasi-experimental setting that can be

used in a difference-in-differences model with two time periods. By analysing treatment

effects at different locations of the work-hour instability distribution, I show that only

workers with noticeably high work-hour fluctuations significantly reduce hour instabil-

ity after transitioning to a different occupation. In line with the results of the first part

of this study, this finding suggests that workers value stable work hours in the labour

market.

A study related to my work is conducted by Choper et al. (2022), showing that

unpredictable and unstable work schedules are associated with an increase in the like-

lihood of job turnover among retail and food service workers. Their finding aligns

with my result that work-hour instability is associated with higher mobility rates in

the U.S. labour market. However, my results must be seen differently as the measure-

ment approach and the underlying data differ substantially. First, my study focuses

on occupational mobility from month to month. As this approach excludes workers

who fall into short-term unemployment before becoming re-employed, it most likely

captures predominately voluntary mobility. Robinson (2018) shows that voluntary job

changes yield an average improvement in job-matching quality and wage growth. This

observation differs from the study by Choper et al. (2022), which shows a “cumulative

disadvantage” in turnover when workers’ job changes are evaluated based on surveys six

months apart.2 Second, my study is not necessarily limited to low-wage workers with

relatively less bargaining power due to lower education levels and union coverage rates.

Recent studies have shown that such disadvantages lead to higher work-hour instability

2 It is worth mentioning that the CPS data does not allow me to directly distinguish between
involuntary and voluntary occupation changes as the questionnaire does not ask individuals why they
change occupations. However, my approach of using monthly data helps to significantly reduce the risk
of measuring occupation changes that cannot be classified as voluntary from the workers’ perspective.
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and unpredictability (Finnigan and Hale, 2018; LaBriola and Schneider, 2020). Third,

this study relies upon intra-year work-hour fluctuations, which are more granular than

the qualitative work schedule questions used by Choper et al. (2022).

Concerning occupational mobility, my study is related to Groes et al. (2015) and

Robinson (2018), who focus on the “direction” of worker sorting across occupations.

The authors conclude that less productive workers and workers laid off by their employ-

ers are likelier to be “downgraded” when changing occupations. On the other hand,

workers who are more productive in their jobs and who change occupations voluntarily

are more likely to move “upward” when changing occupations. While the two studies

characterise upward and downward mobility by looking at changes in wages or skill

intensities, my study investigates whether voluntary occupational mobility potentially

improves the work-hour stability of occupation switchers. In this context, my findings

contribute to the literature by showing that other occupation characteristics than skills

and wages also matter for individuals’ mobility decisions.

This work is also motivated by recent experimental and empirical studies show-

ing significant differences in job preferences between female and male workers. Mas

and Pallais (2017) show that women have a noticeably stronger distaste for jobs with

unstable weekly work hours but a higher valuation for worker-friendly work arrange-

ments. Wiswall and Zafar (2018) reach similar conclusions based on a hypothetical

job choice experiment applied to university students and a follow-up survey to observe

their realised occupation choices. Their study shows that gender-specific preferences

for different job attributes naturally lead to heterogeneous occupation choices of new

labour market entrants. Complementing their findings, my results suggest that gender

differences in preferences for occupation characteristics may also be a reason for het-

erogeneous occupation resorting between men and women. Further explorations show

that the differences in “preferences” are strongly related to intra-household specialisa-

tion and the traditional male breadwinner role. These findings open the door to further

investigating the indicated mechanisms for future research, for example, by using dy-

namic household decision models.

The remainder of this paper is organised as follows: The next section describes the

construction of the measure of work-hour instability and how I overcome the sample
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selection problem. Section 3.3 motivates my empirical analysis by illustrating that a

significant part of work-hour instability is occupation-specific. Section 3.4 shows that

the instability in work hours is associated with an increased probability of occupational

mobility and that women and men systematically differ in their mobility patterns. In

Section 3.5, I exploit additional information from the CPS data on individuals’ work

hours to estimate the effect of occupational mobility on work-hour stability. Section

3.6 discusses and concludes this study in the context of future research opportunities.

3.2 Data Usage and Sample Construction

The monthly Current Population Survey (CPS) is a representative survey conducted

by the Bureau of Labor Statistics and includes roughly 60,000 households. Although

the CPS is widely known as a cross-sectional survey, it has a short but rich longitudinal

dimension. The rotation pattern of the survey enables researchers to follow the same

individuals over 16 calendar months, whereby individuals are not interviewed for eight

months between the first and the second 4-month survey interval (Rivera Drew et al.,

2014). This study draws on CPS data from the Integrated Public Use Microdata Series

(IPUMS) to make use of a unique person identifier variable and longitudinal weights

that account for attrition of individuals between different survey months (Flood et al.,

2022). To strengthen the validity of individual linkages across survey months, I use the

matching criteria proposed by Madrian and Lefgren (2000), including gender, race, and

age.

Figure 3.1: Longitudinal Data Usage of 4 Survey Months in the CPS

Figure 3.1 illustrates the longitudinal dimension of the monthly CPS and how it
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is used in this study. I construct the coefficient of work-hour variation of individuals

based on their reported work hours across three consecutive months (1-3 and 5-7) and

identify occupational transitions from survey months 3 to 4 and 7 to 8. All individuals

are observed two times over four months (1-4 and 5-8) if they do not drop out of the

survey for any reason.

3.2.1 Sample Selection

First, I exclude individuals who are not in the labour force, employed in military occu-

pations, unpaid family workers, self-employed, or not between 23 and 61 years of age.

Next, I impose additional sample restrictions following LaBriola and Schneider (2020):

I exclude all individuals who a) are unemployed in at least one month of a 4-month

CPS interval, b) change their employer during the first three months, c) miss work for

non-economic reasons or d) work part-time for non-economic reasons during the first

three months of a given CPS interval.

Workers who report work-hour fluctuations for “non-economic reasons” are excluded

from the sample because the main objective is to measure involuntary work-hour in-

stability. To do so, I exploit the different CPS answer categories for why individuals

work part-time or miss work during a given week.3 Excluding all workers who report

having had non-standard work schedules in the last week due to personal obligations is

a significant improvement. Despite this improvement, the data still obscures the actual

reasons why individuals work different hours across weeks as there is no question in

the CPS directly asking for the reasons for working different hours if those reasons can

be categorized as “economic reasons”. While a related study conducted by LaBriola

and Schneider (2020) defines the remaining variation in work hours after implement-

ing equal sample restrictions as “employer-driven,” part of the fluctuations could also

stem from other firm-specific or macroeconomic factors. Considering the limitations

of the knowledge on the variation in work hours, I instead use the term ‘involuntary

3 “Non-economic reasons” for individuals who miss work include the following: vacation/personal
days, own illness/injury/medical problems, child care problems, other family/personal obligation,
maternity/paternity leave, school/training, civic/military duty and “other”. “Non-economic rea-
sons” for working part-time include the following: holiday, own illness, health/medical limita-
tion, vacation/personal day, child care problems, other family/personal obligations, school/training,
civic/military duty, and “other”.
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work-hour variation’ in this study. This term considers the fact that the constructed

measure captures a broader spectrum of reasons for fluctuations in work hours, in-

cluding idiosyncratic shocks to the labour market. Nonetheless, I cannot completely

rule out that, in some cases, individuals voluntarily work non-standard hours and are

therefore not excluded from the sample. The rare occurrence of such cases has to be

accepted to create some measurement error.

In addition to the outlined restrictions, which are equivalent to LaBriola and Schnei-

der (2020), I include only e) individuals who do not change occupations during the first

three survey months. The additional restrictions are critical to guarantee that the mea-

sured work-hour fluctuations are not caused by occupational mobility within employers.

Finally, I exclude all individuals who do not self-report their employment information

in all four consecutive survey months to avoid measurement error resulting from differ-

ences between self-reports and proxy reports in the CPS (see, e.g., Boehm, 1989).

Table 3.1: Retention Rates of the Different Sample Restrictions

conditional on employment

same same did not did not all
employed employer occupation work PT miss work self-report criteria

All 94.16% 96.88% 91.69% 76.27% 92.21% 37.07% 21.96%

Men 93.57% 96.88% 91.43% 83.19% 93.73% 33.00% 21.98%

Women 94.79% 96.88% 91.96% 69.10% 90.63% 41.33% 21.95%

Notes: The retention rates are constructed based on the sample after excluding all individuals who
are not in the labour force, employed in military occupations, unpaid family workers, self-employed,
and not between 23 and 61 years of age. The sample restrictions shown in columns 2-5 are calculated
conditional on four continuous months of employment.

Table 3.1 shows the retention rates for women and men based on the described

sample restrictions. 22% of all individuals who can be linked across four consecutive

survey months simultaneously fulfil all sample restrictions. While the final retention

rates are almost identical for men and women, the reasons for attrition differ starkly by

gender. Women drop out of the sample more frequently because they work part-time

for non-economic reasons in at least one considered month. This observation is in line

with Wiswall and Zafar (2018), suggesting that women value schedule flexibility and the

availability of part-time work more than men. On the other hand, men have a higher
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drop-out rate due to not self-reporting their labour force information. This observation

can be explained by men’s higher labour force participation, which implies that women

are more often available to reply to the CPS interview questions.

The imposed sample restrictions could cause selection bias due to non-probability

sampling. As Moscarini and Vella (2008) show in their paper on business cycles and

occupational mobility, selection into employment is endogenous to mobility. Further-

more, it is plausible to assume that being employed in the same job for three consecutive

months is also endogenous to mobility based on the notion that occupational mobility

contains a dynamic persistence (“job shopping”), which is especially relevant for young

workers who are more likely to mismatch with their first job (Neal, 1999). There are

at least three ways to deal with the sample selection problem: first, one could accept

that the results only represent a subgroup of the labour force with specific character-

istics. Second, one could follow the approach of Moscarini and Vella (2008) and use

a control function procedure to restore the orthogonality conditions violated by the

non-randomized selection process. Third, one could construct sampling weights that

account for the differential likelihood that the selected individuals have different char-

acteristics than those dropped out of the final sample. To remain consistent with my

overall strategy, I follow the third approach, which is also used by LaBriola and Schnei-

der (2020).

I construct analysis weights based on the IPUMS-CPS longitudinal weights, which

account for attrition of responding in four consecutive survey months. First, I adjust the

basic weights for differences in the probability of experiencing work-hour fluctuations,

becoming unemployed and changing occupations by sequentially including different

worker and job characteristics as well as categorical variables for broad occupation

and industry groups. Next, I use a probabilistic model to account for differences in

the likelihood of self-reporting employment information in the CPS. The weighting

procedure is documented in greater detail in Appendix B.1. The analysis weights are

used throughout the empirical analysis.4

4 The strategy for constructing the analysis weights is equivalent to LaBriola and Schneider (2020).
However, the results are qualitatively and quantitatively robust when using different versions of analysis
weights or dropping the weights altogether.
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3.2.2 Constructing the Measure of Work-Hour Instability

I measure individuals’ work-hour instability as the coefficient of variation (CV) of re-

ported weekly work hours in the main job individuals held over the last three survey

months.5 The reported weekly hours relate to the reference week when the CPS inter-

view is conducted. This week is usually the second week of a given month. For each

individual i, the coefficient of variation at time t is

CVi,t =

»
1
3
× ((hoursi,t−3 − µ(hoursi))2 + (hoursi,t−2 − µ(hoursi))2 + (hoursi,t−1 − µ(hoursi))2

µ(hoursi)
(3.1)

where µ(hoursi) is the mean of work hours across the last three months, and the nu-

merator is the standard deviation from the mean. Consequently, a higher coefficient

of variation (CV) implies a higher level of work-hour instability. The CV measure has

been used in previous studies to analyse households’ intra-year income volatility (Ba-

nia et al., 2009; Morduch and Siwicki, 2017; Bania and Leete, 2022) and to analyse

the heterogeneity in work-hour instability between demographic subgroups in the CPS

(LaBriola and Schneider, 2020). The two advantages of the measure are that the mea-

sure is scale-insensitive to the mean of work hours and reflects increases in the variation

of work hours in direct proportion. These characteristics are advantageous as my study

includes both full-time and part-time workers. Using other volatility measures, for ex-

ample, the variance, would not allow me to directly compare different types of workers

as the variance is sensitive to the mean of work hours.

Figure 3.2 plots men’s and women’s work-hour variation time series from 2003 to

2022.6 On average, the CV is 9% lower for women, indicating that women are either

sorted into more stable occupations or work in more stable jobs within occupations

or both. The trend line (purple line) shows a plateau from 2003 followed by a down-

ward trend from 2014 for both men and women. Moreover, Figure 3.2 indicates that

5 The CPS questionnaire asks individuals how many hours they worked in the last week in their
main job (“ahrswork1”) in addition to asking about the total hours worked in the last week. I use
the variable related to the main job to minimise measurement error from intermingling work hours of
different jobs.

6 To plot the Henderson trend line (purple line) and the seasonally adjusted series (blue line), I use
the X-13ARIMA-SEATS Seasonal Adjustment Program provided by the U.S. Census Bureau.
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Figure 3.2: Male and Female Coefficient of Variation of Work Hours: 2003-2022

women’s work-hour variation, when measured at the aggregate level, is more suscepti-

ble to cyclical economic fluctuations over the last twenty years and most noticeably in

the aftermath of the financial crisis. From eyeballing the data, it is not obvious what

drives the difference in the volatility of work-hour variation between the male and fe-

male labour markets. Although a more detailed analysis of this topic seems promising,

it is beyond the scope of this study, which exploits variation in the CV of work hours

between individuals and within gender-specific labour markets.

3.2.3 Occupational Mobility in the CPS

To measure monthly occupational mobility, I compare individuals’ assigned occupation

codes between adjacent months in the CPS. IPUMS provides an occupation category

system that encompasses occupations from 1976 to today. However, the proposed

occupation system, which is an update of the occupation system constructed by Meyer

et al. (2005), is unbalanced. This feature causes measurement error as workers are

assigned to different occupation codes when occupations are dropped out of the system

and would, therefore, mistakenly be classified as occupation switchers. To overcome

this hurdle, I use a self-constructed balanced panel of 430 occupations that can be used

from 2003 to 2023.7

In the beginning of 2003, the CPS changed to the 2000 Census occupation cate-

gories. As this marks a significant structural break in occupation coding, it is a natural

7 The detailed crosswalk of the constructed occupation panel across the different IPUMS CPS data
files 2003-2023 is available upon request.
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starting point for my analysis. The Census Bureau introduced two other occupation

category changes adopted by the CPS in 2011 and 2020. The most common changes

that need to be taken care of include splitting single occupations into multiple occu-

pations, dealing with emerging new occupations, and pooling two or more occupations

into one. For example, computer occupations have become much more diverse since

the beginning of the 2000s. Workers classified very broadly as network analysts have

been split into more detailed computer-related occupations like web developers or com-

puter network architects. On the other hand, numerous production occupations have

been pooled together in response to job automation and declining employment. For

instance, printing machine operators and job printers are now categorized as printing

press operators.

Another challenge is identifying valid occupation changes in the noisy CPS data.

Although the introduction of a “dependent occupation coding” procedure in 1994 con-

tained a significant part of coding error, it could not solve the problem entirely (Kam-

bourov and Manovskii, 2013).8 One way to address this issue is to use filters that

account for differences in the likelihood that an occupation change is valid dependent

on the “occupation trajectory” of individuals in the observed four consecutive survey

months. Moscarini and Thomsson (2007) use such filters to design a cleaning algorithm

and to identify valid occupation changes between the survey months 2 and 3 in the

monthly CPS. They argue that occupation changes are more likely valid if individuals’

occupation codes are consistent two months before and two months after a potential

change. My sample restrictions for identifying involuntary work-hour instability are

similar, requiring both employer and occupational stability between survey months 1

and 3.

Table 3.2 shows that every sample restriction reduces the observed mobility rate in

the sample. All sample restrictions in combination yield an unweighted mobility rate of

1.64%, which is significantly lower than the mobility rate of 3.5% found by Moscarini

and Thomsson (2007) but closer to Kambourov and Manovskii (2008), who study oc-

8 Based on the dependent coding procedure, individuals’ occupations are only re-coded if they
report a change in employer or daily working activities. Before 1994, occupations were re-coded every
month based on the blunt interview question “What is your occupation?” (Polivka and Rothgeb,
1993).
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Table 3.2: Monthly Occupational Mobility Rates Based on Sample Restrictions

no same same final sample final sample
restrictions employer occupation self-report unweighted weighted

All 4.53 3.73 2.28 3.24 1.64 1.71

Men 4.72 3.82 2.27 3.35 1.61 1.72

Women 4.34 3.65 2.29 3.16 1.66 1.70

Notes: The calculated monthly mobility rates in columns 2 and 3 are based on the condition that
individuals are employed in all four consecutive survey months. All other mobility rates are calcu-
lated only based on the restrictions shown in the specific table columns. Columns 5 and 6 combine
all shown sample restrictions of columns 1-4 and the restrictions that individuals did not miss work
or worked part-time for non-economic reasons in the last three months. The construction of the sam-
pling weights applied in column 6 is documented in Appendix B.1.

cupational mobility in the PSID.9 A lower mobility rate when all sample restrictions

are used indicates that my approach excludes a fair proportion of individuals with a

higher probability of being incorrectly classified as occupation switchers. Nonetheless, I

cannot completely rule out the possibility that my approach simultaneously eliminates

a small fraction of valid transitions. Another approach to reducing the measurement

error of occupational mobility is to consider an occupation change only valid if it coin-

cides with an employer change (Neal, 1999). However, this strategy is not optimal as

this study also analyses occupational mobility within employers.

3.3 Work-Hour Instability and Occupations

To the best of my knowledge, this study is the first that ties the instability of work

hours to a detailed occupation system representative of the U.S. labour market. This

section aims to motivate the subsequent empirical study by illustrating that a sig-

nificant part of work-hour instability is specific to occupations. Figure 3.3 plots the

population-weighted trend line of the coefficient of variation (CV) averaged within ma-

jor occupation groups.10 Occupations are categorized into five major groups using the

9 Kambourov and Manovskii (2008) calculate a yearly mobility rate of 18%. Without considering
time aggregation effects, their found yearly rate is equivalent to a monthly rate of 1.5%.

10 As this section’s purpose is to highlight occupation heterogeneity in work-hour-instability, it
does not need to consider occupational mobility between survey months 3 and 4. Therefore, I use
individuals’ work-hour variation over four consecutive months instead of three months to construct
the occupation-specific CV measures. While the occupation-specific CV measure is based on a slightly

78



Standard Occupation Classification System (SOC). Figure 3.3 shows that white-collar

jobs (management, business, science, sales and office) have a comparatively lower CV

of work hours. Moreover, one can see that the CV decreased over the last 20 years

for management, business and science occupations. On the contrary, all other broad

occupation groups show a relatively stable long-term CV development.

Figure 3.3: Trend Line of the Coefficient of Variation of Work Hours of Broad
Occupation Groups: 2003-2022

Table 3.3 shows selected detailed occupations and their average CVs by percentiles

of the occupation distribution based on the pooled samples from 2003 to 2022. The table

indicates substantial differences in the risk of work-hour instability between occupations

at the bottom and the top of the distribution. Administrative support occupations, for

example, new accounts, insurance claims, and credit clerks, show the lowest risk of

experiencing high hour variation. Other occupations with comparatively low CVs are

air traffic controllers, financial examiners, and credit analysts. Occupations at the upper

end of the distribution include extraction and construction jobs such as cement masons,

terrazzo workers, and roofers, but also actors, crossing guards, massage therapists,

different sample, using this approach increases the measurement accuracy of occupations’ CVs when
averaged across individuals. All other sample restrictions described in the last section also apply to
constructing the occupation-specific CV measure used in this section.
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janitors, fishing and hunting workers, and sailors. The occupation ranking suggests

that the risk of unstable work hours is prevalent across different occupation groups and

industries.

Table 3.3: Selected Occupations by Percentiles of Work-Hour Variation

Percentiles Detailed Occupation CV

Lowest New accounts clerks .021

1% Insurance claims and policy processing clerks .032

10% Budget analysts .043

25% Logisticians .052

50% Security guards and gaming surveillance officers .062

75% Driver/sales workers and truck drivers .079

90% Millwrights .099

99% Fishing and hunting workers .166

Highest Crossing guards .215

Notes: The 430 detailed occupations are ranked based on their population-weighted co-
efficient of variation (CV) of work hours obtained from the pooled sample 2003-2022.

In the next step, I explore why occupations differ in their risk of work-hour in-

stability. One way to characterize occupations is based on the conception that each

occupation combines different tasks while workers are assigned to tasks based on their

skills and abilities (Acemoglu and Autor, 2011). I use occupation-specific data on 52

required abilities from the Occupational Information Network (O*NET) and map the

importance ratings of the abilities (from 1 “not important” to 5 “extremely important”)

to the matched occupations of my self-constructed panel. Next, I apply an exploratory

factor analysis to derive broader and more meaningful task categories (factors) from the

multidimensional ability data following Ingram and Neumann (2006) and Poletaev and

Robinson (2008). Appendix B.2 documents the exploratory factor analysis procedure

in more detail. The factor analysis results suggest that five task categories can explain

most of the variation in the original ability data. The five categories relate to occupa-

tions’ ‘physical’, ‘analytical’, ‘sensory perceptional’, ‘fine motor’, and ‘communication’

intensity.

Other occupation-specific characteristics plausibly related to the work-hour insta-

bility of occupations are the ability to work remotely and the social importance (“essen-
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Figure 3.4: Correlation between Occupation-Specific Characteristics and Occupations’
Coefficient of Variation of Work Hours
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tiality”) of occupations. Jobs that can be done from home provide workers with more

flexibility. If workers dislike high fluctuations in work hours, as the prevalent literature

suggests, one would assume that remote workers organize their tasks in such a way

that it leads to more stable weekly work hours across adjacent months. I make use of

the constructed measures in del Rio-Chanona et al. (2020), which capture occupations’

“remote work ability” and their “essentiality”.11

Figure 3.4 plots the CV of work hours averaged within occupations against the

standardized population-weighted scores of the different occupation-specific character-

istics.12 Occupations’ instability of work hours is negatively related to their remote

work ability and essentiality. Concerning task content, higher physical, sensory per-

ceptional and communication task intensities seem to increase occupations’ risk of high

work hour fluctuations. On the contrary, a higher intensity in analytical or fine motor

tasks is related to lower work-hour fluctuations. To test the robustness of the relation-

ships, Table 3.4 reports linear regressions of the form

CVj = α +
K∑
k=1

βXj + εj (3.2)

where CVj is the coefficient of variation of occupation j, and Xkj is a vector of the stan-

dardized occupation characteristics k = 1, ..., K, which are entered separately (columns

1-3) and in combination (columns 4-5) into the regression model. In addition, I enter

five occupation group dummies to account for the possibility that the entered occu-

pation characteristics do not capture systematic differences between broad occupation

groups.

Table 3.4 shows that the selected characteristics explain a noticeable proportion

of variation in the occupation-specific CV of work hours. Moreover, the effects are

generally robust and significant across the different model specifications. One exception

is the ability to work remotely. While the coefficient is negative and significant when

11 To equip occupations with the “remote work ability” and “essentiality” measures provided by del
Rio-Chanona et al. (2020), I conduct a reversed mapping of their occupation scores to the original
O*NET occupation codes. In the second step, I assign the O*NET occupation codes to the balanced
occupation panel.

12 All occupation measures presented in figure 3.4 are normalized between zero and one. Occupations
are plotted in relative size based on employment shares in January 2012, marking the focal point of
the monthly CPS data used in this study.
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Table 3.4: Predicting the Coefficient of Work-Hour Variation of Occupations

(1) (2) (3) (4) (5)

Remote Work Ability -0.0343*** 0.0044 0.0105
(0.0043) (0.0097) (0.0098)

Essentiality -0.0233*** -0.0155*** -0.0162***
(0.0050) (0.0055) (0.0055)

Physical 0.0105*** 0.0098*** 0.0097***
(0.0011) (0.0019) (0.0019)

Analytical -0.0039*** -0.0026 -0.0065***
(0.0011) (0.0017) (0.0021)

Sensory Perceptional 0.0063*** 0.0069*** 0.0084***
(0.0013) (0.0016) (0.0019)

Fine Motor -0.0037*** -0.0036*** -0.0019
(0.0011) (0.0012) (0.0013)

Communication 0.0025** 0.0034*** 0.0032**
(0.0011) (0.0013) (0.0013)

Broad Occupation Group FE X X X X
√

R2 0.112 0.064 0.300 0.321 0.359

Observations 430 430 430 430 430

Notes: The dependent variable is the coefficient of variation of work hours averaged within occupa-
tions. The estimation method is ordinary least squares (OLS). Robust standard errors are shown in
parentheses. ***/**/* Significant at the 1%/5%/10% level.

entered individually, it turns positive and insignificant when controlling for other task

intensities. This result is potentially related to the fact that occupations’ task content

simultaneously predicts their work-hour variation and the ability to work remotely. I

confirm this assumption by conducting a simple linear regression of occupations’ remote

work ability on the five-dimensional task vector, yielding an R-squared of 0.77.

Column 5 of Table 3.4 shows that one standard deviation higher level of analytical

task intensity is associated with a reduced occupation-specific CV of work hours by

0.007. This is equivalent to a 12% lower CV relative to the sample mean. On the

contrary, one standard deviation higher level of physical, sensory perception, and com-

munication task intensity is associated with an elevated CV of work hours by 0.010,

0.008, and 0.003 (14%, 12%, and 5%), respectively. The results suggest that their work

context and task content can predict a significant part of occupations’ susceptibility to

work-hour instability.13 Based on this section’s motivational and descriptive analysis,

13 This section highlights the potential of occupation-specific characteristics to explain differences in
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the following section investigates whether individuals consider the heterogeneity of oc-

cupations regarding their instability in work hours when making mobility decisions.

3.4 Relationship BetweenWork-Hour Instability and

Occupational Mobility

The analysis in this section builds on the intuition that workers sort themselves into

occupations based on their preferences for pecuniary and non-pecuniary job attributes

(Rosen, 1986). While theoretical models traditionally assume that workers have perfect

information about the labour market and their preferences, empirical evidence suggests

that workers often mismatch with occupations. This induces resorting mechanisms to

“correct” for previous mismatches (see, e.g., Groes et al., 2015; Guvenen et al., 2020).

While the literature predominately focuses on skill mismatches, this section investigates

whether work-hour fluctuations are a potential determinant of occupational mobility

decisions of individuals in the U.S. labour market. In this context, it is important to

mention that this section does not claim any causality between work-hour volatility and

mobility but establishes an economically important relationship that has so far been

overlooked in the literature. I conduct the following empirical analysis separately by

gender based on new evidence that women value “positive” job attributes more than

men (Mas and Pallais, 2017), which leads to systematic differences in occupation choices

(Wiswall and Zafar, 2018).

3.4.1 Identification Strategy

First, I fit a probabilistic choice model with a binary outcome variable of occupational

mobility. The probability of observing Switchi = 1 for individual i in occupation j is

Pr[Switchi = 1|Xi] = G(x′
iβ) (3.3)

occupations’ work-hour instability. The tested variables appear to be reliable predictors of occupations’
work-hour instability. However, the used variables can arguably be considered an arbitrary choice,
whereas other omitted characteristics could be equally important.
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where G(·) is the cumulative distribution function given individual i’s characteristics

Xi including i′s preferences for job attributes - such as work-hour stability, average

work hours, job security, expected wages, the ability to work remotely - and occupation-

specific mobility costs. The intuition of using the model variables and their construction

are detailed in Appendix B.3. Based on the observed individuals’ decisions to switch

occupations yi = 1 or not yi = 0, the log-likelihood function

LN =
N∑
i=1

yilog[G(x′
iβ)] + (1− yi)log[1−G(x′

iβ)] (3.4)

can be estimated for the pooled cross-sectional sample. I assume G(x′
ijβ) to be a

standard normal cdf , which naturally leads to a probit model. However, I find no

differences in how well a normal or logistic distribution fits the data when comparing

different model selection criteria.14 The model shown in equation 3.4 is the baseline

model for the empirical analysis.

One limitation of the baseline model shown in equation 3.4 is that it does not account

for the fact that work-hour instability measured at the individual level is sometimes

more specific to the employer than the occupation. Moreover, occupation and employer

changes cannot be classified as independent labour market outcomes. The data unveils

that 37% of all job turnovers are associated with simultaneous occupation and employer

changes. Using a model that does not consider the mobility between employers could

lead to upward-biased estimates if mobility decisions were mainly related to precarious

working conditions within employers. Moreover, switching between employers automat-

ically leads to a new “independent” coding of workers’ occupations in the CPS, which

is another source of measurement error and potential upward bias (see, e.g., Polivka

and Rothgeb, 1993).15 To address these issues, I use a joint employer and occupational

mobility model, which helps to disentangle and better understand the different mobility

14 I use the deviance information criterion (DIC) of Spiegelhalter et al. (2003) for model comparison.
In addition, I compare the Akaike information criterion (AIC) and pseudo R-squared and fitted log-
likelihood values between the two models. None of the different criteria suggests either a logit or probit
model. A robustness check confirms that using a logit model instead of a probit model leads to similar
results both quantitatively and qualitatively.

15 The independent coding refers to an assignment of new occupation codes independent of the last
occupation, which might or might not have changed due to the change of employer. Section 3.5.1
provides a more detailed explanation of this issue.
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decisions in the labour market.

The commonly used models to jointly identify two different labour market outcomes

are the bivariate probit model and the multinomial logit model. I do not find clear

evidence that either model is preferred based on the different selection criteria proposed

by Hahn and Soyer (2005). Therefore, I choose to work with a bivariate probit model

because it allows for relaxation of the Independence of Irrelevant Alternatives (IIA)

assumption, which is restrictive for the multinomial logit model (McFadden et al.,

1973).

Starting from the latent variable framework, one can write

y∗1,i = (x′
1,iβ1) + ϵ1,i

y∗2,i = (x′
2,iβ2) + ϵ2,i

(3.5)

where ϵ1,i, ϵ2,i are joint normal with means zero, unit variances and correlation ρ. The

bivariate probit model specifies the observed outcomes related to occupational and

employer mobility to be

y1,i = 1 if y∗1,i > 0 and = 0 , otherwise

y2,i = 1 if y∗2,i > 0 and = 0 , otherwise
(3.6)

allowing us to write down the probability for each realisation of the pairs y1,i and y2,i.

For instance, for a simultaneous change of occupation and employer, we have

Pr[Y1,i = 1, Y2,i = 1] = Pr[y∗1,i > 0, y∗2,i > 0]

= Pr[−ϵ1,i < x′
1,iβ1,−ϵ2,i < x′

2,iβ2]

=

∫ x′
1β1

∞
ϕ(z1, z2, ρ)dz1dz2

= Φ(x′
1β1, x

′
2β2, ρ)

(3.7)

where ϕ(z1, z2, ρ) and Φ(x′
1β1, x

′
2β2, ρ) are the standardised bivariate normal density

and cdf for (z1, z2) with zero means, unit variances, and correlation ρ. The general

expression for the other possible outcomes is
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pj,k = Pr[Y1,i = j, Y2,i = k]

= Φ(q1,ix
′
1β1, q2,ix

′
2β2, ρ)

(3.8)

where qs,i = 1 if ys,i = 1 and qs,i = -1 if ys,i = 0, for s = 1, 2. In Section 3.4.3, I

particularly focus on documenting the predicted marginal effects. The objective is to

quantify how much the probability of switching occupation (and/or employer) differs

when characteristic k differs by one unit for continuous variables and by one category

for categorical variables. Standard errors are adjusted for clustering at the individual

level, as individuals can potentially be observed twice in the sample.

3.4.2 Descriptive Statistics

Table 3.5 presents the workforce characteristics of the baseline category, including all

workers with no work-hour variation (CV = 0), and of the highest quartile of positive

work-hour variation.16 Table 3.5 illustrates how individuals differ between these two

groups at the poles and by gender. First, it is noticeable that the mobility rates are

markedly higher in the highest quartile, whereby the gap between the base category and

the highest quartile is more substantial for women. For example, the propensity of job

turnover, including both employer and occupation changes, is 41% higher for women

and 23% higher for men in the highest quartile compared to women and men without

hour variation. Simultaneously, workers in the highest quartile of hour variation face

a higher job loss probability and fewer opportunities to work remotely. Moreover, the

highest quartile shows a higher ‘mean task distance’, which implies higher task-specific

mobility costs.17 Appendix B.3 documents the construction of the included worker and

occupation characteristics in detail.

16 Note that Table 3.5 does not include workers of the first, second and third quartile of positive
work-hour variation. How I categorize workers into quartiles of work-hour variation is explained in
detail in Appendix B.3.

17 The ‘mean task distance’ of an occupation is its unweighted average of the Euclidean distances
of the five different task categories derived from the factor analysis (analytical, physical, sensory
perception, fine motor and communication) relative to the population-weighted means of the task
categories. Consequently, a higher mean task distance implies that an occupation is more specific in
its task composition than others. A higher task specificity leads, in turn, to higher mobility costs due
to a more substantial loss of task-specific human capital. See Appendix B.3.3 for the construction of
the occupation-specific mean task distance measure.
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Table 3.5: Characteristics of Workers without Hour Variation and Workers in
the Highest Quartile of Hour Variation

No Hour Variation Highest Quartile

Worker Characteristics Men Women Men Women

Job Change in % 2.08 1.95 2.55 2.74

Occupation Change in % 1.65 1.52 1.93 2.16

Employer Change in % 1.01 0.99 1.62 1.79

Avg. Hour Volatility (CV) 0 0 0.236 0.225

Avg. Work Hours 41.35 39.85 44.55 38.26

Avg. Occupation Wage 26.76 24.28 25.42 23.26

Job Loss Probability in % 3.46 2.76 3.92 3.03

Remote Jobs in % 28.93 41.60 21.27 31.06

Mean Task Distance 0.963 0.947 1.005 0.955

Age 42.50 43.23 42.08 43.37

Non-White in% 23.08 24.10 17.80 22.16

Married in % 67.94 58.49 63.54 52.86

College Degree in % 48.78 48.92 43.75 49.68

Government Worker in % 16.26 21.38 14.69 20.60

Part-Time Worker in % 1.23 3.35 9.29 23.86

Shares in High-Level Occupation Groups

% in Management, Business, Science, Arts 39.22 43.84 32.98 43.94

% in Service 13.46 16.80 16.61 26.26

% in Sales and Office 16.49 33.43 12.75 21.75

% in Resources, Construction, Maintenance 15.10 0.78 18.08 0.99

% in Production and Transportation 15.73 5.16 19.57 7.05

Observations 96,411 101,106 33,445 30,013

Notes: The worker characteristics are constructed for the pooled sample 2003-2022. The construction
of the different worker and occupation characteristics is documented in Appendix B.3. The mobility
rates (Job Change, Occupation Change, and Employer Change) are obtained from the unweighted
sample. All other presented characteristics of men and women with different work-hour variations are
calculated using the analysis weights shown in Appendix B.1.

Both female and male workers are less likely to be married when exposed to ex-

tremely high work-hour variation. Regarding education, the proportion of men with at

least a college degree is 5% lower in the highest quartile of hour variation. In contrast,
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women are slightly better educated in the highest quartile. One plausible reason for

this observation is that a comparatively high share of women experience extreme hour

variation work in management, business, science, and arts occupations. Entry into such

occupations typically requires a college degree. Moreover, one can see that the com-

position of the five broad occupation groups differs remarkably between the baseline

category and the upper quartile for both men and women. This observation confirms

the documentation in Section 3.3 that different occupations vary significantly in their

average work-hour variation.

In accordance with previous empirical research on unpredictable work scheduling

practices, Table 3.5 suggests that workers in service occupations and part-time work-

ers are more often sorted into jobs with very high work-hour variation. It is worth

mentioning that the share of women in the upper quartile who work part-time is no-

ticeably larger at 24% compared to 9% for male workers. Based on this observation,

it is plausible to assume that the larger share of women in part-time jobs could drive

the results of the subsequent analysis, hampering a fair comparison between women

and men. Therefore, I exclude all individuals who usually work part-time in one of

the robustness checks shown in Appendix B.4. The results show that the differential

sorting into part-time jobs is not the driving factor of the gender-heterogeneous results

presented in the following sections.

3.4.3 Results

Baseline Model Results

All tables and figures presented in the following sections are based on the preferred

model specification, including all occupation-specific and demographic control variables

and year, month, state, and industry-fixed effects (see Appendix B.3 for detailed vari-

able description). Table 3.6 shows the predicted occupational mobility rates based on

the baseline probit regression model displayed in equations 3.3 and 3.4. The reference

category contains all workers without work-hour variation (CV = 0). Columns 1-3

present the results for the benchmark categorization of workers into quartiles across all

occupations, whereas columns 4-6 are based on the worker categorization into quartiles
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of work-hour variation within 2-digit SOC occupations (see Appendix B.3.1 for a de-

scription of the two different categorization strategies). The difference in the predicted

mobility rate between those with a coefficient of variation (CV) equal to zero and the

highest quartile is substantial. More precisely, individuals with stable work schedules

show a predicted monthly mobility rate of 1.59%. In contrast, the mobility rate is

2.18% for individuals in the highest quartile of work-hour variation. The predicted gap

of 0.59% is about one-third of the average mobility rate of the final sample, including

both men and women.

Table 3.6: Predicted Monthly Rates of Occupational Mobility by Quartiles
of Work-Hour Variation

Quartiles Across All Workers Quartiles Within Occupations

All Men Women All Men Women

CV=0 1.59% 1.71% 1.47% 1.59% 1.72% 1.47%
(0.0004) (0.0006) (0.0005) (0.0004) (0.0006) (0.0005)

1. Quartile 1.61% 1.66% 1.59% 1.58% 1.62% 1.53%
(0.0008) (0.0010) (0.0011) (0.0007) (0.0010) (0.0011)

2. Quartile 1.76% 1.73% 1.75% 1.73% 1.64% 1.82%
(0.0007) (0.0010) (0.0011) (0.0007) (0.0010) (0.0011)

3. Quartile 1.69% 1.47% 1.99% 1.80% 1.62% 1.95%
(0.0007) (0.0012) (0.0011) (0.0007) (0.0009) (0.0010)

4. Quartile 2.18% 2.04% 2.28% 2.15% 2.02% 2.32%
(0.0009) (0.0011) (0.0014) (0.0009) (0.0011) (0.0015)

Notes: The first category contains all workers without work-hour variation (CV=0). The four quar-
tiles of work-hour variation are constructed for the subsample of workers with a positive work-hour
variation. The demographic controls include a cubic polynomial of age, categorical variables for the
head of household, marital status, class of worker (government or private), number of children in the
household, and five education groups. The occupation controls include average wages, job loss prob-
abilities, remote work ability, task distance and five occupation categories of vocational preparation.
The model controls for time, state and industry fixed effects. Standard errors are clustered at the in-
dividual level and shown in parentheses.

The second approach of categorizing workers within 2-digit occupations shows the

effect of work-hour variation on mobility conditional on the initial occupation. This

approach follows the intuition that workers are more likely to compare themselves with

other workers in their field when making mobility decisions. Thus, treating the hetero-

geneity in individual-level work-hour instability as exogenous variation appears more

plausible when comparing workers in relative terms within occupations. It is reassuring

that the predicted mobility rates estimated within occupations are essentially congru-
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ent to those presented in columns 1-3, as seen from Table 3.6.

Turning to the predicted marginal effects presented in Table 3.7, one can see that

the estimated gap in mobility between the base category and the highest quartile of

hour variation is statistically significant at the 1%-level for both men and women. Con-

cerning the second and third quartiles, the coefficients are only positive and significant

for female workers. In numbers, being in the second, third, and fourth quartile of work

hour variation is associated with an elevated probability of switching occupations by

0.27%, 0.52% and 0.80%, respectively. The predicted marginal effects are substantial

compared to an average monthly female switching rate of 1.70%. Moreover, the esti-

mated marginal effects are robust when categorizing women into work-hour variation

quartiles within 2-digit occupations instead of across all occupations.

The relationship between work-hour variation and occupational mobility is less clear-

cut for men. Although being in the highest quartile predicts men’s occupational mo-

bility rate to be elevated by 0.33%, it appears counterintuitive that being in the third

quartile is associated with a lower switching probability compared to the base category.

The differences in the predicted marginal effects between women and men (with 95%

confidence intervals) are illustrated by Figure 3.5. The substantial gender differences

are also robust across various sample constructions, as shown in the Appendix Figures

B.1-B.2.

Figure 3.5: Marginal Effects of Work-Hour Variation on the Probability of
Occupational Mobility by Quartiles

Concerning the predicted marginal effects of other occupation-specific characteris-

tics, the results confirm the importance of both pecuniary and non-pecuniary determi-
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Table 3.7: Marginal Effects of Work-Hour Variation on Occupational Mobility

Quartiles Across All Workers Quartiles Within Occupations

Men Women Men Women

Hour Variation (Baseline: CV=0)

1. Quartile -0.0005 0.0012 -0.0010 0.0005
(0.0012) (0.0012) (0.0012) (0.0012)

2. Quartile 0.0002 0.0027** -0.0008 0.0035***
(0.0012) (0.0012) (0.0011) (0.0012)

3. Quartile -0.0024** 0.0052*** -0.0009 0.0048***
(0.0010) (0.0012) (0.0011) (0.0011)

4. Quartile 0.0033*** 0.0080*** 0.0030** 0.0085***
(0.0013) (0.0015) (0.0013) (0.0015)

Average Working Hours -0.0030*** -0.0023*** -0.0026*** -0.0023***
(0.0005) (0.0005) (0.0005) (0.0004)

Occupation Wage -0.0019** 0.0012 -0.0022*** 0.0007
(0.0007) (0.0008) (0.0007) (0.0008)

Probability of Job Loss 0.0011** 0.0024*** 0.0013** 0.0024***
(0.0005) (0.0005) (0.0005) (0.0005)

Remote Work Ability 0.0033*** 0.0018** 0.0035*** 0.0016*
(0.0012) (0.0008) (0.0012) (0.0008)

Task Distance -0.0049*** -0.0042*** -0.0047*** -0.0040***
(0.0014) (0.0015) (0.0014) (0.0015)

Occupation Categories (Baseline=1)

Occ Category 2 0.0004 -0.0018 0.0002 -0.0024
(0.0024) (0.0024) (0.0024) (0.0024)

Occ Category 3 0.0018 -0.0035 0.0017 -0.0038
(0.0026) (0.0028) (0.0027) (0.0028)

Occ Category 4 0.0011 -0.0070** 0.0010 -0.0071**
(0.0030) (0.0029) (0.0029) (0.0030)

Occ Category 5 -0.0017 -0.0079** -0.0020 -0.0079**
(0.0034) (0.0033) (0.0034) (0.0034)

Demographic Controls
√ √ √ √

Year and Month Fixed Effects
√ √ √ √

State Fixed Effects
√ √ √ √

Industry Fixed Effects
√ √ √ √

Observations 232,339 222,769 232,339 222,769

Notes: The four quartiles of work-hour variation are constructed for the subsample of workers with
a positive work-hour variation. The baseline category includes all workers who report no work-hour
variation during the last three months. The demographic controls include a cubic polynomial of age,
categorical variables for the head of household, marital status, class of worker (government or pri-
vate), number of children in the household, and five education groups. Standard errors are clustered
at the individual level and shown in parentheses. ***/**/* significant at the 1% 5% and 10% level.
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nants. Moreover, some predicted marginal effects differ starkly by gender, which aligns

with other studies on preferences for occupation characteristics (Arcidiacono et al.,

2014; Mas and Pallais, 2017; Wiswall and Zafar, 2018). Table 3.7 shows that an in-

creased job loss probability by one standard deviation from the gender-specific mean

is linked to an elevated likelihood of switching occupations by 0.24% for women but

only by 0.11% for men. In contrast to job security, the expected wage rate appears to

be only a driving factor for the mobility decisions of male workers. Regarding work-

ing from home, potential remote workers show a higher probability of occupational

mobility. This observation is significant for both women and men. Moreover, Table

3.7 unveils that labour market frictions are negatively related to individuals’ mobility.

One standard deviation higher mean task distance predicts an increased probability of

switching occupations from month to month by 0.42% for women and 0.49% for men.

Compared to task-related mobility costs, task-unrelated mobility costs appear to affect

only female workers. For example, the female monthly mobility rate is reduced by

0.70% for women working in the second-highest occupation category, requiring at least

a college degree.

It is important to note that the cross-sectional CPS data cannot control for un-

observed individual characteristics. This could lead to an omitted variable problem

as other individual-specific but unobserved job characteristics likely correlate with the

involuntary work-hour variation of individuals.18 To address this issue under the given

limitations of the CPS data, I include a battery of occupation-specific characteristics

and other controls in a stepwise manner and evaluate the sensitivity of the coefficient

of work-hour variation. The results shown in the Appendix Tables B.2-B.3 confirm

the stability of the estimated effects of work-hour variation on occupational mobility.

Moreover, the coefficient of interest remains highly significant for women with high

levels of work-hour instability throughout all model specifications. The effects are also

relatively robust to different sample constructions, as shown in the Appendix Figures

B.1-B.2. The found robustness across different samples at least partly eliminates doubts

that the substantial difference in the predicted mobility effect between male and female

18 This issue is well-known in the related literature. A recent study by Wiswall and Zafar (2018)
accentuates that any empirical cross-sectional model based on realised job choices potentially does not
include all variables for identifying worker preferences.
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workers is driven by the fact that women work more often part-time. Part-time jobs

generally provide a more dynamic working landscape, making occupational mobility

easier. Especially women in the third quartile of work-hour variation are significantly

more likely to switch occupations than men, irrespective of the sample construction.

The predicted marginal effects are also robust when estimated within occupations

instead of across all occupations. Although measuring work-hour variation within oc-

cupations cannot eliminate potential bias stemming from within-occupation-group dif-

ferences, it eradicates any bias arising from differences in unobserved occupation char-

acteristics. For example, shift work is a work model typically prevalent in production

and service occupations. Simultaneously, shift work is likely to be correlated with

work-hour variation across weeks. Investigating the relationship between work-hour in-

stability and mobility within occupations is, therefore, helpful to reduce potential bias

from that correlation. Nonetheless, at least partly, the unobserved variation between

individuals within occupations remains an issue and must be considered when inter-

preting the results. In particular, wage differences within occupations are potentially

problematic regarding the goal of unbiased estimates. Lower wages are positively cor-

related with both work-hour instability (see, e.g., LaBriola and Schneider, 2020) and

occupational mobility (Groes et al., 2015). Controlling for average occupation wages

can only partly address this issue.

Joint Model Results

The results of this section are based on equations 3.5-3.8, analysing individuals’ occu-

pational and employer mobility jointly. Every month, the CPS asks the question if an

individual “still works for the same employer” compared to the previous month. This

information can be exploited to identify workers’ direct transitions between employers.

If survey respondents do not provide information on their previous or current employer,

I exclude them from the following analysis.19

19 As pointed out by Fujita et al. (2020), one can observe a significant increase in the fraction
of individuals who do not share their employer details if they do not self-report their employment
information since 2007. However, this is not a problem in this study as the imposed sample restrictions
only consider individuals in the CPS who self-report all employment information. The rate of employer
non-responses in the sample conditional on the used restrictions is only 1.5%.
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Table 3.8: Marginal Effects of Work-Hour Variation on the Probability of
Occupational Mobility and/or Employer Change

Men Women

Only Only Employer & Only Only Employer &
Change in Employer Occupation Occupation Employer Occupation Occupation

1. Quartile -0.0002 0.0008 0.0002 -0.0000 0.0013* 0.0007
(0.0004) (0.0007) (0.0011) (0.0005) (0.0007) (0.0005)

2. Quartile 0.0004 0.0004 0.0006 0.0008 0.0014** 0.0015***
(0.0005) (0.0007) (0.0011) (0.0006) (0.0007) (0.0005)

3. Quartile 0.0009* -0.0012** 0.0000 0.0009 0.0028*** 0.0025***
(0.0005) (0.0006) (0.0011) (0.0006) (0.0007) (0.0006)

4. Quartile 0.0035*** 0.0006 0.0035*** 0.0021*** 0.0040*** 0.0044***
(0.0006) (0.0007) (0.0014) (0.0006) (0.0009) (0.0007)

Notes: The omitted category is the baseline category of workers with no hour variation (CV=0). The
demographic controls include a cubic polynomial of age, categorical variables for the head of house-
hold, marital status, class of worker (government or private), number of children in the household,
and five education groups. The occupation controls include average wages, job loss probabilities, re-
mote work ability, task distance and five occupation categories of vocational preparation. The model
controls for time, state and industry fixed effects. Standard errors are clustered at the individual level
and shown in parentheses. ***/**/* significant at the 1% 5% and 10% level.

Table 3.8 and Figure 3.6 document the predicted marginal effects for changing (i)

employer within occupation, (ii) occupation within employer, and (iii) changing both

employer and occupation. All presented results in this section are for the baseline

categorization of workers into quartiles across all occupations. The results reveal some

interesting patterns which differ clearly by gender. Men with extreme fluctuations in

work hours are more likely to change their employer from month to month. On the

contrary, I do not find evidence that men are more likely to change occupations within

employers if they are subject to unstable work hours. On the other hand, women

show a higher probability of switching occupations within employers in all quartiles

of positive hour variation. The described differences between men and women are

also noteworthy in magnitudes. Female workers in the highest quartile only show a

0.21% higher propensity to change their employer without an occupation change. In

comparison, the job-switching propensity within occupations is 0.35% higher for male

workers compared to their baseline category. Regarding mobility within employers, I

find a significantly higher mobility rate for women across all quartiles of positive work-

hour fluctuations compared to the base category. In numbers, the mobility propensities
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in the female labour market are elevated by 0.13%, 0.14%, 0.28%, and 0.40% for the

first, second, third, and fourth quartile, respectively. For evaluating these results, it

is worth mentioning that occupational mobility within employers is not a phenomenon

predominately prevalent in the segregated female labour market. In numbers, 52%

of men and 51% of women who switch occupations do not change their employers

simultaneously.

Figure 3.6: Marginal Effects of Work-Hour Variation on the Probability of
Occupational Mobility and/or Employer Change

The two different channels of occupational mobility (within and between employ-

ers) are discussed, for example, by Moscarini and Thomsson (2007) and Kambourov

and Manovskii (2008). However, these studies do not examine differences in mobility

patterns between male and female workers due to work-hour instability. This section

unveils that work-hour instability is more occupation-specific for women and employer-

specific for men regarding their job mobility. The gender-heterogeneous mobility pat-
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terns shown in the last two sections require deeper investigations. Why are women

more likely to switch occupations when they face high levels of involuntary work-hour

variation? The subsequent section’s objective is to shed light on this question.

Gender Disparities

In this section, I exploit information on individual and household characteristics pro-

vided by the CPS to narrow down and discuss why women are apparently more affected

by fluctuating work hours regarding their occupational mobility decisions. A natural

way to think about the gender differences relates to time allocation between work and

work-unrelated obligations (i.e. housework and childcare). Data from the American

Time Use Survey (ATUS) shows that women in 2021 spent on average 51% more time

on household activities20 and 94% more time on caring for household members, in-

cluding children. On the contrary, men spent more time on working and work-related

activities, such as commuting between home and workplace. These observations align

with the “gender identity theory” proposed by Akerlof and Kranton (2000), based on

the core idea that gender is central to individuals’ specialization within households.

Table 3.9 reports the predicted marginal effects on occupational mobility for women

and men in the highest quartile of work-hour variation across different household com-

positions. For the subsample regressions, I use the model equations 3.3 and 3.4. The

results show positive and statistically significant coefficients across all household compo-

sitions when the full sample is included. The same model applied to gender-segregated

labour markets shows that only unmarried men and men without children living in the

household have a higher propensity to switch occupations when exposed to extreme

hour fluctuations. For men in all other household compositions, the coefficients are in-

significant and, for the most part, insignificantly different from zero. On the contrary,

women show significant and positive predicted marginal effects across all household

compositions. The fact that men are more likely to specialize in working activities

within households and are more often the main breadwinners seems to be a plausi-

ble explanation for these findings. Another possible explanation could be related to

20 Household activities in the American Time Use Survey (ATUS) include housework, food prepa-
ration and cleanup, lawn and garden care, and household management.
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Table 3.9: Marginal Effect of Being in the Highest Quartile of Work-Hour Variation
on Occupational Mobility by Household Composition

Unmarried

No Children Children No Children 1 Child >1 Children
Unmarried Married in HH in HH in HH in HH in HH

Marginal Effects of Highest Quartile of Hour Variation

All 0.0084*** 0.0042*** 0.0072*** 0.0047*** 0.0074*** 0.0086*** 0.0125***
(0.0013) (0.0014) (0.0014) (0.0013) (0.0015) (0.0031) (0.0038)

Men 0.0083*** 0.0004 0.0065*** -0.0005 0.0086*** 0.0047 0.0008
(0.0020) (0.0016) (0.0018) (0.0018) (0.0021) (0.0058) (0.0065)

Women 0.0083*** 0.0078*** 0.0079*** 0.0082*** 0.0062*** 0.0092*** 0.0125***
(0.0017) (0.0022) (0.0022) (0.0018) (0.0021) (0.0034) (0.0042)

Number of Observations

Men 117,732 114,607 143,369 88,970 100,295 9,273 6,083

Women 130,200 92,569 114,731 108,038 78,411 26,963 24,826

Notes: This table presents the marginal effects of the highest quartile compared to the base category of workers without
work-hour variation on the monthly occupational mobility rates. The demographic controls include a cubic polynomial
of age, categorical variables for the head of household, marital status, class of worker (government or private), number
of children in the household, and five education groups. The occupation controls include average wages, job loss proba-
bilities, remote work ability, task distance and five occupation categories of vocational preparation. The model controls
for time, state and industry fixed effects. Standard errors are clustered at the individual level and shown in parentheses.
***/**/* significant at the 1% 5% and 10% level.

gender-specific discrimination in the workplace. However, contradicting the ‘female

discrimination hypothesis’, McCrate et al. (2019) finds that neither women nor men

are compensated for employer-driven work schedule unpredictability.21

A complementing pattern can be observed from columns 5-8, showing the predicted

marginal effects for unmarried women and men with no children, one child and more

than one child. While the female switching probability positively varies with the number

of children, the opposite effect is true for men. A closer look into the household-level

CPS data shows that women who are unmarried and have children live more often

without a partner (single mothers), implying an additional burden regarding balancing

work duties and childcare. On the contrary, men with more than one child living in the

household usually live with a partner in the same household. As occupational mobility

contains the risk of human capital loss (Kambourov and Manovskii, 2009b), men could

have a higher tolerance regarding precarious working conditions in terms of work-hour

21 It is worth mentioning that the study by McCrate et al. (2019) can only give an indication of
possible compensation mechanisms in the U.S. labour market as the study focuses on the compensation
for work schedule unpredictability in the Canadian labour market. However, the similarities between
the two labour markets, such as the high labour market flexibility in the U.S. and Canada, make a
comparison reasonable.
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instability in order to fulfil the male breadwinner role. Related to this suggestion, a

recent study by Gonalons-Pons and Gangl (2021) shows that the “importance of male-

breadwinner norms is strongest among couples for whom the male-breadwinner identity

is most salient.”

Table 3.10: Marginal Effect of Being in the Highest Quartile of Work-Hour Variation
on Occupational Mobility by Age-Education Cells

No College Degree College Degree

Age <= 35 Age 36-50 Age 51-61 Age <= 35 Age 36-50 Age 51-61

Marginal Effects of Highest Quartile of Hour Variation

All 0.0167*** 0.0042** 0.0034** 0.0058** 0.0017 0.0013
(0.0034) (0.0017) (0.0018) (0.0023) (0.0017) (0.0019)

Men 0.0122*** 0.0005 0.0018 0.0024 0.0011 -0.0026
(0.0039) (0.0022) (0.0026) (0.0031) (0.0023) (0.0026)

Women 0.0198*** 0.0078*** 0.0052** 0.0095*** 0.0017 0.0046*
(0.0055) (0.0025) (0.0026) (0.0033) (0.0022) (0.0027)

Number of Observations

Men 32,522 47,432 31,590 39,218 50,438 30,796

Women 24,983 43,394 34,368 36,241 51,006 32,724

Notes: This table presents the marginal effects of the highest quartile compared to the base category
of workers without work-hour variation on the monthly occupational mobility rates. The demographic
controls include a cubic polynomial of age, categorical variables for the head of household, marital
status, class of worker (government or private), number of children in the household, and five edu-
cation groups. The occupation controls include average wages, job loss probabilities, remote work
ability, task distance and five occupation categories of vocational preparation. The model controls for
time, state and industry fixed effects. Standard errors are clustered at the individual level and shown
in parentheses. ***/**/* significant at the 1% 5% and 10% level.

Another perspective of how work-hour instability might be linked to mobility be-

comes visible when splitting the sample based on workers’ education and potential

labour market experience. Both labour market experience and education enhance the

matching quality between workers and jobs and decrease the propensity of occupa-

tional mobility. In addition, Addison et al. (2020) find that women mismatch more

often than men. Table 3.10 reveals that the predicted marginal effects are indeed

significantly different between young male and female workers with at least a college

degree. Women have a higher propensity of changing occupations of 0.95% compared

to the gender-specific base category of no work-hour variation. On the other hand,

male college workers do not show statistically significant changes in their propensity
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to switch occupations when exposed to different levels of work-hour instability. Re-

garding workers without a college degree, I find that the predicted marginal effect is

positive and significant for women in all age cohorts. However, the predicted difference

to the base category is noticeably more substantial for younger women, with 1.98%.

Recall that the average monthly mobility rate in the female labour market is 1.71%.

Regarding men, a positive and significant predicted marginal effect is only found for

young workers but not middle-aged and older workers without a college degree. There-

fore, as gender differences persist even in more experienced cohorts, the gender-specific

household specialization theory by Akerlof and Kranton (2000) seems to be the more

coherent explanation for the observed gender-heterogeneous mobility patterns.

3.5 Do Workers Switch to Stable Occupations?

The findings of the last section show a clear relationship between workers’ instability

in work hours and occupational mobility. However, it remains unclear so far if workers

sort themselves into different occupations because they potentially seek a more stable

working environment.22 This section’s main objective is to shed new light on this ques-

tion by analysing the potential effect of occupational mobility on individuals’ variation

in weekly work hours.

3.5.1 Identification Strategy

To test if workers move to more stable occupations requires two measures of individu-

als’ work-hour variation: one associated with their occupation before the change and

one with the new occupation after the change. My previous identification strategy of

following individuals over four consecutive months is not ideal for the purpose in this

section. Instead, I exploit the complete eight survey months of the panel dimension

in the CPS by measuring occupation changes between survey months 4 and 5. This

strategy allows me to construct two detailed measures of work-hour variation, each

22 While studies usually focus on the impact of occupational resorting on the level of wages and wage
growth (see, e.g., Groes et al., 2015; Guvenen et al., 2020), the literature does not look at work-hour
instability in this context.

100



combining four weekly work-hour observations. The modified approach is visualized in

Figure 3.7.

Figure 3.7: Longitudinal Data Usage of 8 Survey Months in the CPS

Combining Monthly CPS and ASEC CPS Data

One drawback of the CPS structure is that individuals are not included in the survey for

eight months after month four before re-entering the survey. Because of the drop-out for

eight months, new occupation codes are assigned to individuals who re-enter the survey

independent of job information known from survey month 4.23 In comparison, the more

reliable “dependent coding” technique, which is used between survey months 2-4 and

6-8, assigns a new occupation code to workers only if they report an employer change or

a change in daily work activities compared to the last calendar month. However, such

information is unavailable for individuals in survey month 5 as they were not observed

in the last calendar month. Instead, CPS staff code occupations independently based

on the blunt interview question “What is your occupation?” (Polivka and Rothgeb,

1993). This procedure leads to spurious occupational transitions, especially at the 6-

digit occupation level.24

Figure 3.8 illustrates the scope of the overestimated mobility rate measured between

survey months 4 and 5. The adjusted monthly mobility rate based on independent

23 A more detailed discussion on the “independent occupation coding” issue is provided in Polivka
and Rothgeb (1993).

24 One plausible reason for the invalid classification of individuals into 6-digit occupations is that
the occupation definition provided by respondents is often not detailed enough to map it to the
fine Census Occupation Codes used by CPS coders. For a more detailed discussion about potential
occupation coding errors in the CPS, see, for example, Moscarini and Thomsson (2007) or Kambourov
and Manovskii (2013).
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Figure 3.8: Monthly Occupational Mobility Rates in the CPS Based on Different
Occupation Coding Techniques

occupation coding is almost three times higher than the rate based on the dependent

coding technique (1.7% compared to 4.6%).25 To overcome this issue, I identify valid

occupation changes between CPS months 4 and 5 by linking individuals with the Annual

Social and Economic Supplement (ASEC) data files. The ASEC is also called the March

CPS because the supplementary questions are only asked to all CPS survey respondents

in March. Most importantly, the questionnaire asks about the current job and the

longest main job held in the last year using an equivalent procedure of “dependent

coding” as in the CPS months 2-4 and 6-8.

First, I link individuals in the CPS across all sixteen calendar months (equivalent

to eight survey months) following the same procedure described in Section 3.2. The

attrition rate for linking individuals across all eight survey months is significantly higher

since individuals are dropped out of the CPS for eight calendar months between survey

months 4 and 5.26. Next, I construct individuals’ work-hour variation (CV) coefficients

based on the complete 4-month intervals by imposing the sample restrictions described

in Section 3.2.1. In the next step, I use a unique person identifier constructed by

Flood and Pacas (2017) to link individuals between the March CPS data files and

the supplementary ASEC CPS data files. Because only four out of twelve yearly CPS

25 Every monthly observation of the time series based on independent coding is divided by nine
to make the time series comparable to the monthly time series based on dependent coding. The
transformation of the time series is required as the series measures occupational mobility between nine
calendar months due to the dropout of individuals for eight months between survey months 4 and 5.

26 For detailed documentation of the expected attrition rates in the CPS when linking individuals
across different survey months based on the identifier “cpsidp”, see Rivera Drew et al. (2014).
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cohorts undergo the ASEC questionnaire each year, I have to drop the eight cohorts

that cannot be linked between the CPS and the ASEC data files. As a result, the

original sample shrinks by about 65% to 23,100 individual observations. Finally, the

analysis weights are appropriately adjusted to account for the higher attrition rate for

linking individuals across all eight survey months (see Appendix B.1).

Table 3.11: Occupation Switching Indicators in the Monthly CPS
and ASEC (March) CPS Files

ASEC Indicator

Monthly CPS Indicator Switch = 0 Switch = 1 Total

Switch = 0 12,927 558 13,485

Switch = 1 8,823 819 9,642

Total 21,750 1,377 23,127

Notes: The indicator numbers are based on all individuals in the final sam-
ple linked between monthly CPS and yearly ASEC (March) CPS data files
for 2003-2022.

Based on the matched sample, I can check the validity of occupational transitions

in the monthly CPS by comparing individuals’ occupation codes in the monthly CPS

data files with those in the yearly ASEC CPS data files. Table 3.11 shows that the

occupation switching indicator is not harmonious for a significant proportion of individ-

uals between the two surveys. The main reason is related to the different occupation

coding techniques outlined above. A second possible reason is that the ASEC ques-

tionnaire asks individuals about the longest main job held in the last year instead of

the job held twelve months ago.27 A straightforward approach to eliminate spurious

occupational transitions is to consider only individuals for whom the two switching

indicators are congruent by using a double flag to identify valid occupation switchers

and non-switchers. Table 3.11 shows that the constructed double flag identifies 12,900

non-switchers (control group) and 800 switchers (treatment group), yielding 13,700 ob-

served individuals in total. This sample is the underlying sample used for the empirical

27 For example, consider individuals whose work-hour variation is measured in year X between De-
cember and March. In practice, they may switch occupations between April and May while remaining
in the new occupation till March (or longer) next year. When asked in the March CPS of year X+1 if
they still work in the “same job compared to the longest job held in the last year”, they are supposed
to answer “yes”. Nonetheless, they should be classified as occupation switchers if compared to last
year’s CPS in March.
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analysis in the next section.28

A Propensity-Score Matching Quantile Difference-in-Differences Model

The modified sample construction provides a simple setting for using a difference-in-

differences model with two groups (treated and untreated) and two time periods (pre-

treatment and post-treatment) for each combination of two adjacent years from 2003

to 2022. The selective treatment occurs between CPS survey months 4 and 5 when

realized occupation changes are observed. The pre-treatment period is the first 4-

month interval, and the post-treatment period is the second 4-month interval. Each

of the two intervals contains a measure of work-hour variation, as visualized in Figure

3.7. I estimate the following difference-in-differences model at the mean as well as at

specified quantiles of pre-treatment work-hour variation:

CV (WorkHoursi) = α + βPosti + γMobi + δPosti ∗Mobi + ηY eari + ϵi (3.9)

The dependent variable is individual i’s coefficient of variation (CV) of work hours,

Posti is an indicator variable taking the value of zero in the pre-treatment period and

the value of one in the post-treatment period, Mobi is the treatment indicator, and

the interaction term of Posti and Mobi captures the difference-in-differences effect. In

addition, I control for year-fixed effects captured by Y eari to account for variation in

the treatment probability over time.

The identification strategy could raise concerns regarding sample selection and

causal inference, which must be addressed appropriately. First, as I work with ob-

servational data, I must ensure that the sample construction does not cause selection

bias. In other words, the sample selection should not depend on unobserved potential

outcomes (Ho et al., 2007). Selection bias could arise because the sample only includes

individuals who work for the same employer and in the same occupation for at least

28 It is worth mentioning that this approach relies on the assumption that eliminating all individuals
who do not match between the two surveys follows a random selection process. Careful examination
of the data does not show systematic differences in characteristics between matched and unmatched
individuals. Therefore, I proceed without adjusting the analysis weights at this stage and treat the
matched sample as a random sample selected from the main sample.
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four consecutive months before the treatment occurs. It is intuitive to assume that

working for the same employer over a more extended period increases workers’ bargain-

ing power, which could be related to their potential outcomes of work-hour stability.

To address this issue, I use the analysis weights described in Appendix B.1 to give

more weight to individuals with underrepresented characteristics due to the underlying

selection procedure.

Second, observing individuals over two 4-month intervals does not allow me to test

whether the instability of work hours follows the same trend for the treated and control

groups before the treatment. Although the parallel trend assumption cannot directly be

replaced in theory, I can improve the validity of the estimates and reduce their bias by

exploiting the rich information from the pre-treatment control variables Xi through the

use of a propensity score matching procedure (Rubin, 1973; Angrist and Pischke, 2009;

Imbens and Rubin, 2015). I predict individuals’ probability of treatment (propensity

scores) based on selected covariates29, pi = E(Zi = 1|Xi), and match workers with

similar scores in order to construct kernel weights following Heckman et al. (1997).

In the second step, the kernel weights are integrated into the difference-in-differences

model, yielding an adjusted treatment effect conditional on the given covariates.30

Table 3.12 compares the baseline characteristics between the treated and control

group for the unadjusted and the propensity-score adjusted sample. The matched

sample reports a significant reduction in deviation for most covariates. Moreover, the

balancing t-test shows that the calculated deviation remains statistically significant only

for age and union coverage. Although this implies that individuals in the treated group

are younger and less often covered by union agreements, the clear deviation reductions

by 50.9% and 64.2% help improve the initially more enormous imbalances between the

two groups. From an economic point of view, more experienced workers and workers

covered by union agreements have more bargaining power, which is negatively correlated

with work-hour instability (Finnigan and Hale, 2018; LaBriola and Schneider, 2020).

29 The covariates include three continuous variables (age, hourly wages and average work hours),
seven categorical variables (female, white, married, children, college degree, union coverage and hourly
paid), and controls for regional, time, occupation and industry fixed effects.

30 Stata codes for implementing the kernel propensity-score matching DiD and the kernel propensity-
score matching quantile DiD are provided by Villa (2016). I use a logit model along with an epanech-
nikov kernel function with a bandwidth of 0.06 to construct the weights. However, my results are not
sensitive to choosing different functions and/or bandwidths.
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Table 3.12: Comparison of Baseline Balance in Individual Characteristics Between
Unmatched (U) and Propensity-Score Matched (M) Sample

Mean deviation t-test

Treated Control % total % reduction t p > |t|

CV of Work Hours U 0.080 0.086 -7.2 -2.21 0.027
M 0.080 0.084 -4.8 33.9 -1.08 0.282

Age U 42.282 44.909 -26.4 -8.07 0.000
M 42.301 43.591 -12.9 50.9 -2.86 0.004

% Female U 0.429 0.452 -4.6 -1.41 0.157
M 0.430 0.436 -1.2 73.6 -0.27 0.785

% White U 0.821 0.863 -11.5 -3.71 0.000
M 0.822 0.832 -2.7 76.7 -0.57 0.566

% Married U 0.363 0.428 -13.3 -4.03 0.000
M 0.362 0.397 -7.3 45.6 -1.62 0.105

% Children in HH U 0.423 0.406 3.5 1.06 0.288
M 0.424 0.407 3.5 -2.3 0.79 0.431

% College Degree U 0.520 0.576 -11.3 -3.48 0.001
M 0.521 0.537 -3.1 72.4 -0.69 0.490

Wage Rate U 26.645 28.976 -13.4 -4.14 0.000
M 26.654 27.481 -4.8 64.5 -1.08 0.282

Average Work Hours U 43.337 44.106 -9.3 -2.84 0.004
M 43.337 43.846 -6.2 33.7 -1.40 0.162

% Union Coverage U 0.098 0.179 -23.6 -6.54 0.000
M 0.098 0.127 -8.5 64.2 -2.04 0.041

% Hourly Paid U 0.511 0.470 8.3 2.54 0.011
M 0.511 0.480 6.3 24.6 1.39 0.164

Notes: Workers without work-hour variation (CV=0) are excluded from the sample. The sample in-
cludes 8,417 individuals in the control group and 496 in the treatment group. The balancing t-test is
conducted with the weighted covariates. The % deviation is the % difference of the sample means in
the treated and control groups as a percentage of the average standard deviation of the two groups
following (Rosenbaum and Rubin, 1985).

Thus, it is most likely that the lower age and union coverage rate of individuals in

the treated group lead to an underestimation of the treatment effect of occupational

mobility on work-hour instability. This has to be considered for interpreting the results

in the following section.

Table 3.12 also reports the baseline level of work-hour variation for the unmatched

and matched samples. Although individuals’ pre-treatment work-hour variation is not

included in the propensity-score estimation, the difference in pre-treatment work-hour

variation between the treated and control groups decreases and becomes statistically
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insignificant due to the matching procedure. This result is a valuable improvement as

it helps to account for the fact that the treatment assignment is potentially selective

in that workers with higher fluctuations in work hours have higher incentives to sort

themselves into more stable jobs.

Figure 3.9: Propensity Score Densities of the Treatment and Control Group

To further strengthen the internal validity of the results, I restrict the identification

to the “common support” for propensity scores between the treated and control groups.

Figure 3.9 illustrates the propensity score densities of the treatment and control groups.

The sizeable overlapping area indicates that both groups have comparable and positive

treatment probabilities. A fraction of individuals with very low propensity scores who

do not change occupations are dropped from the analysis as they cannot be matched

with individuals in the treatment group.

3.5.2 The Effect of Occupational Mobility on Work-Hour In-

stability

Table 3.13 reports the difference-in-differences effects evaluated at the mean and differ-

ent quantiles for the entire sample (columns 1-2) and the restricted sample (columns

3-4). The restricted sample excludes part-time workers and multiple job holders in or-

der to remove the possibility that occupation changes between part-time and full-time

jobs as well as between first and second jobs affect the treatment effect.31

31 Note that workers who report to work usually full-time (35 hours or more) but are observed to
work only part-time due to “economic reasons” are not excluded. In fact, this is the variation in work
hours I aim to investigate in this study (involuntary work-hour variation).
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Table 3.13: The Effect of Occupational Mobility on Work-Hour Instability

Treatment Effect Treatment Effect
(includes part-time workers and (excludes part-time workers and

multiple job holders) multiple job holders)

Estimation Method DiD Matching & DiD DiD Matching & DiD

Mean -0.006 -0.011** -0.003 -0.010*
(0.008) (0.005) (0.008) (0.005)

0.5 Quantile -0.009 -0.009 -0.007 -0.008
(0.005) (0.005) (0.006) (0.007)

0.75 Quantile -0.011 -0.011 -0.009 -0.008
(0.007) (0.007) (0.008) (0.008)

0.9 Quantile -0.024* -0.025* -0.033** -0.030**
(0.014) (0.014) (0.015) (0.014)

Control Group 8,417 8,293 6,480 6,232

Treatment Group 496 495 346 346

Off Support - 125 - 248

Notes: Workers without work-hour volatility (CV=0) are excluded from the samples. Robust standard
errors for the mean regression model and bootstrap standard errors (1,000 replications) for the quan-
tile regression model are shown in parentheses. ***/**/* are significant at the 1% 5% and 10% level.

Table 3.13 shows a negative effect of occupational mobility on work-hour instability

for both the unadjusted (columns 1 and 3) and the propensity-score matching adjusted

(columns 2 and 4) difference-in-differences model. The effect evaluated at the mean is

statistically significant only for the adjusted samples. In numbers, individuals’ average

coefficient of variation (CV) decreases by 0.011 (column 2) and 0.10 (column 4) after

being treated. This result is equivalent to a decline in work-hour variation by about

13% compared to individuals who remain in the same occupation. Moreover, the effect

is only significant at the highest quantile, showing that only workers with extreme

fluctuations in work hours sort themselves into more stable occupations. The significant

and negative effect is more substantial when part-time workers and multiple job holders

are excluded from the sample.

As mentioned above, the results presented in this section must be interpreted with

caution because I cannot directly test the parallel trends assumption, which is funda-

mental for difference-in-differences models. Instead, my approach relies on the “condi-

tional independence” assumption (see, e.g., Imbens and Wooldridge, 2009). I further
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strengthen the internal validity of the results through the common support of matched

individuals. Relying on the conditional independence assumption, the robustness of the

negative effect for workers exposed to extreme work-hour instability across the differ-

ent samples and model specifications indicates that occupational mobility could be an

important driver for improving their work-hour stability.

However, despite the illuminating findings, the question remains of why individuals

with high fluctuations of work hours switch occupations and if the estimated improve-

ment in work-hour stability comes as a side effect of other unobserved mechanisms or

if individuals specifically target more stable occupations. It is important to note that

this section does not restrict the analysed sample to individuals who switch occupa-

tions due to the harmful effects of work-hour instability. Instead, I observe occupational

transitions of matched individuals and their corresponding change in hour variation af-

ter transitioning. This is a clear limitation stemming from the CPS data, which does

not allow for pinpointing the exact reason for mobility. In this regard, it would be

highly beneficial for researchers if the U.S. Bureau of Labour Statistics included further

questions in the CPS to help identify the reasons for the mobility of those who switch

occupations from month to month (without unemployment spells). Such information

would help better understand the mechanisms of the discovered mobility patterns re-

lated to the instability of work hours.

3.6 Discussion and Conclusion

This study provides a novel perspective on occupational mobility by linking individuals’

instability in work hours to their realised occupation changes based on representative

U.S. survey data. First, this study illustrates that occupations’ task content and other

occupation-specific characteristics can explain a significant fraction of workers’ intra-

year work-hour variation. In the second part of this study, I use a probabilistic model to

establish a relationship between work-hour instability and occupational mobility. The

positive relationship between work-hour instability and mobility is most significant for

workers in the highest quartile of hour variation and noticeably more substantial for

female workers. In the last part of this study, I show that only workers at the highest
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quantile of work-hour variation move to more stable jobs.

The findings of the second part of this study are partly in line with a study by Choper

et al. (2022), which analyses the effect of unstable and unpredictable work schedules

on job turnover in retail and food service industries. While work-hour instability is

assumed to be more concentrated in “low-wage” occupations as well as in retail and

food service industries (LaBriola and Schneider, 2020), my study suggests that it is

a far more widespread phenomenon than anticipated in the literature, predicting the

mobility decisions of different types of workers. Therefore, policymakers should consider

extending current labour market policies that have the potential to reduce the risk

of work-hour instability in all industries and occupations. Although the efficiency of

recently introduced Fair Workweek laws remains to be seen, broader implementations

of such laws at the state or country level could be a potential tool for containing the

related adverse effects on the workforce, including the loss of occupation-specific human

capital.

This study also contributes to the literature on gender-specific preferences for work-

ing arrangements. While most studies predominately build on experimental designs

or hypothetical job choice models (see, e.g., Mas and Pallais, 2017; Wiswall and Za-

far, 2018), my results suggest that women have a stronger distaste for unstable work

schedules based on observational survey data. Investigations of the household compo-

sition role let me conclude that the traditional breadwinner role provides a plausible

explanation for the gender disparities. This assumption is also confirmed by American

Time Use Data (ATUS), which shows that women are more specialised in non-working

activities than men. The probabilistic model also sheds light on workers’ preferences

for other occupation–specific characteristics suggesting that women tend to have higher

preferences for employment stability and remote work opportunities. This is in line

with previous research.

Besides the limiting knowledge about the reasons for occupational mobility in the

CPS data, another limitation of this study relates to potential omitted variable bias.

Although I exploit the longitudinal dimension of the Current Population Survey (CPS)

for constructing the work-hour instability measure, I draw on a pooled cross-sectional

sample for the probabilistic regression analysis. It would be of high value if one could
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use panel data to investigate further the relationship between work-hour instability

and mobility patterns in the labour market. Further, this would allow researchers to

evaluate the long-term individual effects of hour variation on wage growth and human

capital accumulation - an understudied field of research. Unfortunately, no reliable

high-frequency data on individuals’ work hours is available for the U.S. labour market.

The most promising survey seems to be the Survey of Income and Program Participation

(SIPP), which collects weekly and monthly data on individuals’ working arrangements.

However, an exploration of the data shows that individuals’ reported weekly work

hours suffer from extreme “seam bias” since the survey is conducted in quarterly or

yearly waves instead of on a regular monthly basis (Moore, 2008). Therefore, using the

longitudinal dimension of the more reliable CPS data is a reasonable compromise at

this point. Overall, further explorations in this area of research are warranted, given

the strong relationship between work-hour instability and occupational mobility.
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Appendix to Chapter 3

B.1 Analysis Weights

For the construction of the analysis weights, my approach follows LaBriola and Schnei-
der (2020) with some essential adjustments. For the analysis in Sections 3.3 and 3.4, I
use the CPS individual basic weight WTFINL, and for Section 3.5, I use the earnings
weight EARNWT as basic weights for the construction of the final analysis weights.
The earnings weight is recommended if the CPS earner study variables are included in
the analysis. Recall that I use data on individual wages, union coverage and whether
an individual is paid by the hour in the kernel propensity score matching procedure,
which requires the usage of the earnings weight.

The Integrated Public Use Microdata Series (IPUMS) provides two longitudinal
weights based on WTFINL accounting for attrition during the first four survey months
(LNKFWMIS14WT) and the second four survey months (LNKFWMIS58WT). To
maintain a simpler notation, I define the two longitudinal weights as w1

i for the construc-
tion of the final analysis weights in Sections 3.3 and 3.4. For the analysis in Section
3.5, I link individuals across all eight CPS survey months. While IPUMS provides
the longitudinal weight LNKFW8WT to account for attrition during all eight survey
months, I need to modify LNKFW8WT such that it is based on EARNWT instead of
WTFINL:

w2
i =

LNKFW8WTi ∗ EARNWTi

WTFINLi
(B.1)

Next, I adjust w1
i and w2

i for each individual i in the sample in two more steps: first, I
adjust the weights for systematic differences in individuals’ personal and job character-
istics between those who are dropped out of the sample and those who remain in the
final sample. This step aims to give more weight to individuals whose characteristics are
underrepresented in the analysis sample conditional on the imposed sample restrictions
described in Section 3.2.1. This procedure accounts for differences in the probability of
experiencing work-hour variation across different months and the likelihood of switch-
ing occupations. For each individual i, the categorical variables are used sequentially
for the construction of the adjusted weight:

w3
i = w1,2

i

N∏
n=1

Pr(xnt = xni,t | In labour force)

Pr(xnt = xni,t | Under sample restrictions)
(B.2)
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where xn
i,t is a vector of n categorical variables including race, sex, age, education,

marital status, number of children in household, union coverage, wage quartile, broad
occupation and broad industry.1. This procedure is repeated for each monthly CPS
survey separately denoted by the time subscript t. The calculated relative probabilities
are multiplied by w1

i and w2
i .

In the next step, w3
i is adjusted for the probability that individuals who fulfil all

sample restrictions self-report their labour force information across all four (or eight)
survey months. At the end of this procedure, all individuals who do not self-report their
work hours are dropped. To achieve the weight adjustment, I use a probit regression
model (by using the adjusted individual weight w3

i ) with a dependent indicator variable
equal to 1 if a person does self-report information across all months and equal to 0
otherwise. I include the same categorical variables for each individual i as in equation
B.2 to predict the probability of self-reporting:

Pr(SRi = 1) = Φ(Xiβ) (B.3)

Finally, I amend the weights by dividing w3
i by individuals’ probability of self-reporting

to give more weight to those who remain in the sample but are less likely to self-report
their labour force information based on their individual and job characteristics Xi:

w4
i =

w3
i

Pr(SRi = 1)
(B.4)

The final analysis weights w4
i are used in all empirical analyses in this paper.

1 The broad occupation groups include 22 different 2-digit occupation categories based on the 2010
SOC occupation structure. The broad industry groups are based on the consistent IND1990 variable
provided by IPUMS. I reclassify the more detailed industry categories into 13 broader groups following
LaBriola and Schneider (2020). These groups are: agriculture, forestry, and fisheries (10-32); mining
(40-50); construction (60); manufacturing (100-392); transportation, communications, and other pub-
lic utilities (400-472); wholesale trade (500-571); retail trade (580-691); finance, insurance, and real
estate (700-712); business and repair services (721-760); personal services (761-791); entertainment
and recreation services (800-810); professional and related services (812-893); public administration
(900-932).

118



B.2 Exploratory Factor Analysis of O*NET Data

The basic idea for conducting a factor analysis is that the 52-dimensional O*NET ability
data can be reduced to a significantly lower number of more meaningful task categories
(factors). To achieve this goal, I draw on the 25.0 O*NET database (November 2020),
the latest updated database based on the 2010 Standard Occupational Classification
(SOC) structure. Job analysts rate all ability items through two different scales. The
“importance” scale ranges from 1 to 5, and the “level” scale from 0 to 7. However,
Handel (2016) shows that the different ratings for the same ability items are highly
correlated (r = 0.95), making one of the two scales redundant. This study uses the
importance rating for the factor analysis, but the results are insensitive to this choice.

The O*NET occupation classification is more detailed (970 occupations) than this
study’s balanced occupation system (430 occupations). Therefore, I take the un-
weighted average of O*NET occupations’ ability rating if more than one occupation
is matched with an occupation in my panel. Next, one has to choose a sample for
conducting the factor analysis. Although one could use the unweighted occupation
panel, this strategy would not accurately represent the labour force as some occupa-
tions have significantly larger employment shares (e.g. elementary and middle school
teachers) than others (e.g. marine engineers and architects). Instead, I map the 52
occupation-specific ability ratings to the employed workforce in the January 2012 Cur-
rent Population Survey (CPS).2

Before conducting the factor analysis, all ability scores are standardised with zero
mean and a standard deviation of one using the January 2012 workforce sample of
the CPS. Next, I run the factor analysis of the correlation matrix to produce “principal
factors” which are orthogonal to each other and, thus, contain independent information
of the underlying ability data.3 The orthogonal (uncorrelated) factors are produced by
using a “varimax rotation” procedure (Costello and Osborne, 2005). Finally, one has to
decide how many principal factors to retain. Following Kaiser (1960), I keep all factors
with Eigenvalues greater than one. The five derived factors can be characterised as
‘physical’, ‘analytical’, ‘sensory perceptional’, ‘fine motor’ and ‘communication’ task
intensities based on carefully examining the ability factor loadings.

2 The factor analysis includes all employed individuals who are not self-employed or work in military
occupations. The factor analysis sample is further restricted to workers between 23 and 61 years of
age to maintain consistency with the overall sample construction in this study.

3 The principal factor method is recommended if the assumption of multivariate normality cannot
be guaranteed (Fabrigar et al., 1999; Costello and Osborne, 2005). A multivariate normality test of
the underlying ability data rejects the multivariate normality assumption.
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B.3 Construction of Probit Model Variables

B.3.1 Work-Hour Instability

To systematically use the coefficient of variation (CV) measure, which is constructed
for each individual as described in Section 3.2.2, I first divide the sample by gender.
Next, all female and male workers are assigned to one of two categories: first, workers
with positive work-hour variation, and second, workers without work-hour variation
(CV=0). I set the second category as the base category for the empirical analysis. In the
next step, I sort all individuals with positive hour variation into population-weighted
quartiles. This approach allows me to compare workers from different quartiles of
work-hour instability to the base category of workers without hour variation, providing
a more meaningful interpretation than an evaluation of work-hour instability at the
mean. Male and female workers are sorted separately into quartiles within years to
avoid unobserved and time-varying confounders affecting the categorization.

In addition to the baseline strategy, I categorize individuals into quartiles within
2-digit SOC occupations in each year-gender cell.4 The categorization of individuals
within occupations accounts for the possibility that workers are more likely to compare
their working conditions with colleagues or workers in similar occupations. For exam-
ple, one could argue that comparing bricklayers and insurance clerks is not very useful
because they work in substantially different occupational environments. On the other
hand, comparing insurance clerks and new account clerks, or bricklayers and roofers,
seems more plausible as they are subject to very similar working conditions. To illus-
trate the robustness of my findings, I show the results of both categorizations.

B.3.2 Average Work Hours

Following the two measurement approaches of work-hour instability, I construct two
measures of individuals’ average work hours: first, by taking the average of self-reported
work hours across the last three months and standardizing the average work hours of
individuals within year-gender cells. In the second approach, average work hours are
standardized within year-gender-occupation cells.

4 The 22 different 2-digit occupation groups based on the 2010 Standard Occupational Classification
(SOC) include: Management Occupations (11-), Business and Financial Operations (13-), Computer
and Mathematical Occupations (15-), Architecture and Engineering Occupations (17-), Life, Physical
and Social Science Occupations (19-), Community and Social Service Occupations (21-), Legal Occu-
pations (23-), Education, Training and Library Occupations (25-), Arts, Design, Sports and Media
Occupations (27-), Health Care Practitioners and Technical Occupations (29-), Health Care Support
Occupations (31-), Protective Service Occupations (33-), Food Preparation and Serving Related Occu-
pations (-35), Building and Grounds Cleaning and Maintenance Occupations (37-), Personal Care and
Service Occupations (39-), Sales and Related Occupations (41-), Office and Administrative Support
Occupations (43-), Farming, Fishing and Forestry Occupations (45-), Construction and Extraction
Occupations (47-), Installation, Maintenance and Repair Occupations (49-), Production Occupations
(51-), Transportation and Material Moving Occupations (53-).
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B.3.3 Mobility Costs

I include two types of mobility costs to account for the fact that human capital is, at least
to some part, occupation-specific and not transferable between different occupations
(Kambourov and Manovskii, 2009b; Sullivan, 2010). First, switching between occupa-
tions is not frictionless because occupations differ in their task content. Second, legal
requirements such as degrees, certificates and work experience create additional barriers
preventing workers from switching occupations without proper vocational preparation.

To account for mobility costs related to differences in task content between occu-
pations, for example, preparing a meal in a kitchen and laying bricks, I follow previ-
ous studies using measures of “task distance” between occupation pairs (Poletaev and
Robinson, 2008; Gathmann and Schönberg, 2010; Cortes and Gallipoli, 2018; Robinson,
2018). I use the derived five task categories (physical, analytical, sensory perception,
fine motor, and communication) to construct the mean task distance for each occupa-
tion. First, the five task categories are standardized based on employment shares in
the January 2012 CPS. Next, I combine the five standardized task distance measures
of each occupation to construct their ‘mean task distance’ based on the following Eu-
clidean distance formula:

µj(edist5) =
»
dist21jw1 + dist22jw2 + dist23jw3 + dist24jw4 + dist25jw5 (B.5)

where distkj =
taskkj−µ(taskk)

σ(taskk)
is the standardized distance of occupation j from the

population mean in task category k. I use equal weights (w = 0.2) for each of the five
different task categories.5 The mean task distance µj(edist5) of occupation j is equal
to λ when there is a change of λ standard deviations in each of the five task distances
distkj.

In addition to task-related costs, mobility costs can be occupation-specific but “task-
unrelated” (Cortes and Gallipoli, 2018). I measure such costs based on occupations’
required vocational preparation adopted from the “O*NET Job Zones”. Let us call
them ‘occupation categories’ hereafter to avoid any confusion. As higher occupation
categories are associated with a higher level of vocational preparation and a more
specific degree, it is intuitive that the loss of occupation-specific human capital is more
significant if workers of higher categories switch occupations. Table B.1 shows the
category system, including some example occupations for each category.6

B.3.4 Occupation Characteristics

Three additional occupation characteristics are added to the model: expected wages,
job loss probabilities, and occupations’ ability to work remotely. To construct the ex-

5 As a robustness check, I construct a measure with different weights based on the proportion of
explained variation in task content proposed by the factor analysis (see Appendix B.3). Both measures
of the mean task distance provide very similar results. All reported results in the body of this study
are based on the benchmark measure with equal weights.

6 Because the occupation codes of the O*NET SOC system are finer compared to the used occupa-
tion system in this study, I take the unweighted average of the occupation category values if multiple
O*NET occupations are mapped to one occupation.
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Table B.1: Occupation Categories from O*NET Job Zones

SVP Range Required Degree Examples

Category 1 Up to 3 months Less than high school dishwashers, landscaping workers, baristas

Category 2 3 months to 1 year High school diploma counter clerks, security guards, orderlies

Category 3 1-2 years Vocational training barbers, electricians, court reporters

Category 4 2-4 years Bachelor degree sales managers, art directors, graphic designers

Category 5 Over 4 years Graduate degree lawyers, biologists, astronomers

Notes: The occupation category system is based on the O*NET Job Zones.

pected occupation wages, I use hourly wage data from the earner study of the monthly
outgoing rotation groups in the CPS.7 I use the Consumer Price Index adjustment fac-
tors provided by IPUMS to construct a consistent wage series. Reported hourly wages
below one and higher than 200 U.S. dollars are censored following Schmitt (2003). One
problem of constructing average occupation wages in the CPS is the low number of
observations of some occupations for a given year. I overcome this hurdle by construct-
ing a five-year moving average wage series for each occupation. In the last step, the
average occupation wages are standardized within year-gender cells. Consequently, the
marginal effects shown in Table 3.7 report the change in the predicted probability of
occupational mobility when the expected wage rate in occupation j increases by one
standard deviation relative to the gender-specific mean in a given year.

To construct the job loss probabilities, I first identify all individuals in the monthly
CPS who are unemployed due to involuntary job termination, including “job losers” and
those who are “temporarily laid off”. Next, I calculate the proportion of involuntarily
unemployed relative to the total workforce within each occupation in a given year. I
construct a five-year moving average series of job loss probability for each occupation in
an equivalent manner to the expected occupation wages. Finally, all occupation-specific
job loss probabilities are standardized within year-gender cells.

I use the binary measure constructed by Dingel and Neiman (2020) to account for
differences between occupations’ ability to work remotely. The measure is based on
survey responses to selected O*NET “Work Context” and “Generalized Working Ac-
tivities” questions. These questions relate to the frequency of email communication, the
importance of working with heavy machinery, and the exposure to hazardous materials
at work. The measure takes a value of one if all tasks can be performed remotely and
zero otherwise. I map the O*NET occupations into my balanced occupation panel using
crosswalks that assign O*NET SOC codes to Census occupation codes.8 The binary
measure suggests that 112 out of 430 occupations in my panel can be done entirely
from home.

7 If workers are not paid by the hour, they report their weekly earnings instead. To calculate their
hourly wage rate, I divide their weekly earnings by their reported “usual hours worked per week”.

8 I classify occupations in my panel as ‘remote work occupations’ only if all assigned O*NET
occupations are also classified as such. I also use a more granular measure provided by del Rio-Chanona
et al. (2020) as a robustness check. The results are very similar quantitatively and qualitatively.
However, I present only the results of the Dingel and Neiman (2020) measure as interpreting the
binary variable is more straightforward.
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B.3.5 Control Variables

The control variables for demographic characteristics include four race categories, five
education categories, a cubic polynomial of age, marital status, and the number of chil-
dren in a household. Further, I include three dummy variables for classifying individuals
as head of the household, part-time worker, and government worker. In addition, I con-
trol for year and month-fixed effects, state-fixed effects based on 51 different Census
states, and industry-fixed effects, including 13 different major industries.
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B.4 Robustness Checks of the Probit Model Re-

sults

Figure B.1: Predicted Occupational Mobility Rates for Different Types of Workers
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Figure B.2: Marginal Effects of Work-Hour Instability for Different Types of Workers
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Abstract

Why do regions with growing populations in the United States suffer from ris-
ing wage inequality? This paper provides a novel explanation by showing the
differential effects of directed technological change on worker mobility, employ-
ment and wages between local labour markets. The identification strategy is
twofold: first, using detailed occupation data, I construct a systematic measure
of cognitive-biased technological change. Second, I use an industry shift-share de-
sign to estimate the causal effects of the biased technology shocks on the labour
market. The results show that the low- and high-skilled working-age popula-
tion increases in local labour markets with higher exposure to cognitive-biased
technological change. Despite the labour-augmenting effects, low-skilled workers
experience adverse wage effects and relative employment rate declines. While I
do not find a significant effect on the wages of high-skilled workers, the negative
impact on low-skilled workers’ wages leads to an increase in the college wage
premium. The rise in the college wage premium is most pronounced within non-
routine cognitive occupations.

Keywords: directed technological change, task demand changes, worker mobility,
college wage premium.

JEL codes: E24, J21, J24, J31, O11.
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4.1 Introduction

Technological change affects workers by automating or complementing the tasks they

perform. Task-biased technological change in the second half of the twentieth century

systematically replaced routine tasks but complemented cognitive tasks, leading to

employment and wage polarization in the U.S. labour market (Autor et al., 2003) as well

as within local labour markets (Autor and Dorn, 2013). However, compared to the last

episode, new advanced technologies are capable of affecting a much more comprehensive

range of tasks and occupations (Brynjolfsson and McAfee, 2014; Frey and Osborne,

2017; Bessen, 2019; Tolan et al., 2021), making it difficult to determine the direction of

technological change in the twenty-first century.

At the same time, economists observe a flattening employment growth in non-routine

cognitive occupations (Autor and Price, 2013; Beaudry et al., 2014, 2016) and decreasing

returns to cognitive ability (Castex and Dechter, 2014), often referred to as the “great

reversal” (Beaudry et al., 2016) of the demand for cognitive skills in the 2000s. The

increasing relative importance of other skills, such as social skills (see, e.g., Deming,

2017; Aghion et al., 2023) and non-cognitive skills (see, e.g., Edin et al., 2022), is one

plausible explanation.1 Social tasks are complicated to automate as technology does not

yet understand the “rules” of such tasks. However, this explanation seems incomplete,

given the continuous rise in the supply of cognitive skills in the labour market and the

simultaneous (although flattened) increase in relative wages of college-educated workers.

Moreover, the college wage premium increase has recently been more substantial in

regions that attract comparatively more college-educated workers. This relationship

is depicted in Figure 4.1, representing all U.S. states weighted by their working-age

population. The existing literature fails to provide a conclusive explanation for the

observed regional supply dynamics potentially related to task-biased demand changes.

The core idea of this paper to address this puzzle is to look within occupations.

By examining newspaper job advertisements and online job postings, two recent stud-

ies conducted by Hershbein and Kahn (2018) and Atalay et al. (2020) find that most

changes can be observed within occupations rather than between them. Moreover, the

1 The term “non-cognitive skills” in the study conducted by Edin et al. (2022) relates to a
psychologist-assessed measure of teamwork and leadership skills.
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Figure 4.1: Relationship Between the Change in the College-Educated Share and
College Wage Premium at State Level: 2006-2017

changes appear to systematically favour cognitive skills consistent with the skill-biased

technological change literature (see, e.g., Katz and Murphy, 1992; Autor et al., 2006).

Analysing the interaction of skill supply and demand solely based on changes in rela-

tive employment shares, consequently, underestimates the true effect of technological

change on cognitive skill demand. By using time-varying ability data from the Occu-

pational Information Network (O*NET), I isolate the channel of task changes within

occupations between 2008 and 2017. I find that the relative demand for cognitive

ability, when measured within occupations rather than through changes in relative em-

ployment shares, increases in all local labour markets but with substantial variation

between them. Next, I use this finding by exploiting the exogenous spatial variation

in cognitive-biased shock exposure between local labour markets using an industry

shift-share design (Bartik, 1991; Borusyak et al., 2022). The results show that higher

exposure crowds in both low-skilled (high-school or no degree) and high-skilled (college

degree) workers but does not affect middle-skilled (some college experience) workers.

The heterogeneous and potentially imperfect supply adjustments have adverse wage ef-

fects on low-skilled workers, increasing the college wage premium in regions with higher

exposure to cognitive-biased task demand changes. Moreover, the share of low-skilled

workers declines in more exposed regions as they are systematically crowded out of
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non-routine cognitive occupations (business, management, and science occupations).

In the medium term, the crowding-out effect is mirrored by higher rates of labour force

exit of low-skilled workers but is not associated with higher unemployment rates.

A key feature of this study is the approach of measuring task changes within occupa-

tions. This approach is grounded on the theoretical model by Acemoglu and Restrepo

(2018, 2019), according to which the change in the task input mixture depends on two

factors: first, the automation of tasks, and second, the emergence of new tasks whereby

new tasks are assumed to be cognitive-intensive and to complement high-skilled workers.

Based on this notion, I draw on the updated O*NET ability rating procedure (Fleisher

and Tsacoumis, 2012). Every year, trained job analysts evaluate occupations’ required

abilities based on various measures of occupations’ work context, knowledge require-

ment and task content. The essential feature of the updated rating procedure used in

this study is that job analysts take into account detailed information on changes in the

task content of occupations compared to their last rating. The possibility of tracking

back changes within occupations enables them to consider the automation of tasks and

the emergence of new tasks when evaluating their up-to-date ability requirements. To

make use of the multidimensional O*NET ability data, I conduct a ‘pooled factor anal-

ysis’ for the years 2008 and 2017, building on but extending the approaches of Ingram

and Neumann (2006) and Robinson (2018). Including two years into the factor analysis

enables me to compute year-specific composite task scores (factors) for the 430 detailed

occupations under scrutiny. Based on the cognitive and non-cognitive (manual, physi-

cal, coordination and communication) task intensity scores, I construct a novel measure

that captures the change in the cognitive task bias within occupations.

Very few researchers attempted to identify the recent effects of task changes within

occupations on the U.S. labour market. Although their findings are illuminating, most

studies mainly remain on the demand side, precluding, to a large extent, labour mobil-

ity and the supply of skills (see, e.g., Atalay et al., 2020; Freeman et al., 2020). On the

other hand, studies that consider both demand and supply changes usually operate at

the occupation level. Ross (2017) uses different O*NET databases between 2003 and

2014 to construct a panel of task content, finding that the wage returns to cognitive

tasks increased while the return to routine tasks declined over the same period. Cortes
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et al. (2021) focuses instead on long-distance changes in occupations’ task content us-

ing the Dictionary of Occupational Titles (DOT) 1977 in combination with O*NET

2016 databases in a similar fashion as Autor et al. (2003).2 Two other studies draw

on a unique individual-level data set from West Germany. Spitz-Oener (2006) finds

that within-occupation task changes can explain a significant part of educational up-

grading since the 1970s. Using the same dataset, Antonczyk et al. (2009) examines

the impact of within-occupation task changes on the German wage structure, finding

that task developments within occupations are not associated with rising wage inequal-

ity at the aggregate level. My study significantly expands the existing literature on

within-occupation changes by going beyond an aggregate or occupation-level analysis

and studying worker adjustments across local labour markets covering the entirety of

the United States.

In contrast to studies conducted at the aggregate level, analysing the differential

growth of wages and wage inequality between local labour markets requires the consid-

eration of the mobility of labour. Despite the traditional conception that high-skilled

workers are more mobile than low-skilled workers (Topel, 1986; Bound and Holzer,

2000; Notowidigdo, 2020), my study shows that both high-skilled and low-skilled work-

ers are equally drawn into local labour markets with increasing cognitive task demand.

The consequent adverse effects on low-skilled workers are consistent with a study by

Topel (1994), finding that technological change favours disproportionately high-skilled

workers and increases wage inequality in regions where the “labour force quality” does

not adjust to the differential changes in skill demand. In line with their results, I find

that the downward pressure on low-skilled workers’ wages causes a differential increase

in the college wage premium by 2.1 log points measured between the 80th and 20th

percentile of exposure to cognitive-biased technological change. Another related study

conducted by Beaudry et al. (2010) analyses the impact of computer adoption across

different metropolitan areas on the returns to skills but does not find significant sup-

port for their hypothesis that the uncovered wage equalisation effects across local labour

markets between 1980 and 2000 are driven by changes in relative skill supply.

2 The study conducted by Cortes et al. (2021) focuses, in particular, on the growing importance of
social task content and the increasing tendency of women to sort themselves into social-task-intensity-
increasing occupations.
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Finally, my study builds upon and closely relates to Autor and Dorn (2013). Similar

to the observed mobility patterns in my study, the authors also find relative population

growth of both highly educated (college or advanced) and the least educated (high-

school or no degree) workers compared to workers with some college experience in

regions exposed to more rapid technological change. However, one has to be careful

in comparing my results with Autor and Dorn (2013) as well as with other studies’

results, as the existing literature focuses either on skill demand changes due to shifts in

employment shares or based on start-of-analysis skill or task endowments. In contrast,

my technological change measure captures a more profound dimension by reflecting

task changes within occupations. This strategy is more appropriate to analyse the

contemporary labour market in which technological change affects a considerable variety

of tasks (see, e.g., Brynjolfsson and McAfee, 2014) and is more concentrated within

occupations (see, e.g., Atalay et al., 2020) in the twenty-first century. My results confirm

this assumption by showing that cognitive-biased task changes within occupations are a

powerful predictor of population growth, skill composition changes, and wage inequality

between skill groups.

The remainder of this paper is organised as follows: The next section describes

in detail the features of the O*NET ability rating procedure and how they are used

to construct the measure of within-occupation technological change. In addition, it

illustrates the systematic task changes within occupations in the twenty-first century.

Section 4.3 describes the identification strategy of exploiting the spatial variation in

industrial specialisation and national employment shares within industries. Section 4.4

documents the main results regarding differential population growth, skill composition

changes and the rise in the college wage premium between local labour markets. Section

4.5 concludes this study and discusses relevant policy implications.

4.2 Measuring Task Changes Within Occupations

Occupations are the natural dimension to measure the impact of technology on task

demand, providing deeper insights compared to changes in relative employment shares

between occupations. For example, the cashier job has changed substantially in the
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last ten to fifteen years due to the introduction of self-service checkouts. However,

the invention and implementation of self-service checkouts have not completely auto-

mated the job of cashiers. Instead, new tasks now include overlooking the self-service

checkout and helping customers occasionally with the new technology. This example is

similar to the earlier invention of the automatic teller machine, which led to transform-

ing the bank teller job in a way that oriented more toward customer service. Despite

the general conception that technological change has become more concentrated within

occupations in the twenty-first century (see, e.g., Brynjolfsson and McAfee, 2014), a

systematic approach to measuring technology’s impact on task demand within occupa-

tions is barely available It is one objective of this paper to close this gap by proposing

a novel measure of directed technological change based on the 2011 updated O*NET

ability rating procedure (Fleisher and Tsacoumis, 2012).

4.2.1 The O*NET Ability Rating Procedure

The Occupational Information Network (O*NET) regularly updates occupations along

different O*NET domains, including Education and Training, Knowledge, Work Activ-

ities, Work Context, Work Styles, Skills and Abilities. The standard approach in the

existing literature is to characterize occupations by selecting single measures that ar-

guably correspond well to a particular task dimension (e.g. using “finger dexterity” to

proxy routine manual tasks) or constructing composite measures by combining different

occupation characteristics of a given O*NET database. Such an approach is unsuitable

for this study as the objective is to identify task changes within occupations over time.

The essential criterion regarding the data selection to achieve this goal is that all oc-

cupations are updated in a consistent manner. However, using time-varying O*NET

data in longitudinal studies is problematic as the multi-method O*NET data collection

program makes comparisons between occupations as well as within occupations over

time difficult. Occupation ratings obtained by surveying employees in different firms

are frequently intermingled with ratings from job experts, whereby the rating procedure

often changes between rating cycles, even within the same occupation. An exception is

the O*NET ability domain, which is based on a systematic rating procedure described

in the following paragraphs.
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Abilities are “relatively enduring attributes of an individual’s capability for perform-

ing a particular range of different task” (Donsbach et al., 2003). Due to the complexity

of the ability items, the ability rating procedure has been consigned to specialised

analysts selected based on their education and job experience (Tippins and Hilton,

2010). The selected job analysts are further trained by the Human Resources Research

Organization (HumRRO) to guarantee a consistent evaluation of occupations’ ability

requirements: first, for a given ability across occupations (“interrater agreement”), and

second, for the relative importance of different abilities within occupations (“interrater

reliability”). The interrater principles include the computation of standard errors and

other consistency parameters - for example, the Shrout and Fleiss (1979) intraclass

correlations coefficients - for maintaining a reliable measurement both regarding the

ordering of occupations and the relative distance between occupations by rating occu-

pations’ abilities on an importance scale between 1 (not important) and 5 (extremely

important). I choose to work with the importance rating of abilities rather than with

their level rating because the level anchors often relate to arbitrary examples of specific

occupations instead of relating to uniform anchors.3 As documented by Handel (2016),

this leads in many cases to a violation of the “equal interval assumption” between the

anchors of the level rating scale. The arbitrary choice of scale anchors is also mirrored

by higher standard errors and lower values in consistency parameters for ability ratings

(see, Noble et al., 2003). On the contrary, the more transparent anchors of the im-

portance rating (from “not important” to “extremely important”) are especially useful

for a reliable measurement of changes in occupation distances, which is crucial for this

study.

The key feature of the ability rating procedure exploited in this study to measure

changes within occupations was introduced in 2011 (rating cycle 12). Before the estab-

lishment of the updated rating procedure (cycles 1-11), occupations were only partly

rated by trained job analysts but partly by so-called “legacy analysts” based on sources

3 For example, related to the ability “critical thinking”, one of the level anchors shows the example
“Write a legal brief challenging a federal law” for a level of 6 from a range between 0 and 7. Clearly,
the mentioned example does not relate to the task content of many occupations, making it difficult to
use it for orientation when evaluating their abilities. Nonetheless, the level and importance ratings are
highly correlated with an average correlation of 0.92 (Handel, 2016). Therefore, the results presented
in this study are insensitive to using either the level or importance rating scale.
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such as the DOT - the predecessor of the O*NET. As discussed above, this hampers

comparing the same abilities between different occupations in earlier released databases.

From rating cycle 12, as the vast majority of O*NET occupations had been rated at least

once by trained job analysts in the previous cycles, additional information on changes

in occupations’ most important tasks as well as other relevant changes in occupation

characteristics compared to their last rating is made available to the job analysts. For

example, in step 2 of the 7-step rating procedure, job analysts evaluate information on

relevant core and supplementary tasks related to a specific occupation.4 More precisely,

all tasks that reach the minimum relevance or importance threshold for that occupation

are presented to the raters. In addition, new tasks are highlighted, while tasks that

do not reach the minimum threshold anymore are crossed out. Only once they have

reviewed all current occupation information as well as all relevant changes between the

previous and current rating cycle do analysts enter their final importance rating. The

dynamic nature of the new rating procedure enables job analysts to consider both the

automation of job tasks and the emergence of new tasks - the two critical elements for

the evolution of occupations Acemoglu and Restrepo (2018, 2019).

4.2.2 Factor Analysis

In this study, I use the O*NET ability data from the databases 16.0 (July 2011) and

25.0 (August 2020). Before making systematic use of the data with factor analysis, I

undertake two data-preparatory steps. First, I construct a balanced occupation panel in

the American Community Survey (ACS) that better reflects the contemporary labour

market compared to previously constructed occupation panels (see, e.g., Meyer et al.,

2005; Dorn, 2009). Second, I assign the O*NET ability data to my occupation panel

by taking the weighted average of the finer O*NET occupations based on employment

counts from the 2008 Occupation and Employment Statistics (OES). The two steps are

4 For each occupation, the provided information (“stimulus material”) in the 7-step rating procedure
includes 1) the mean importance of Generalized Work Activities (GWAs) with (1) a rating ≥ 3, and
(2) that require the evaluated ability to perform the GWA; 2) the mean rating of Work Context (WC)
statements that (1) have a rating ≥ 3, and (2) require the evaluated ability to work in that context; 3)
the mean importance of the ten most important Knowledge domains with a mean importance rating
≥ 3; 4) tasks classified into three categories (core tasks, supplementary tasks and non-relevant tasks)
based on survey answers of at least 15 job incumbents on their relevance and importance. All relevance
and importance ratings are based on a scale from 1 to 5.
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described in more detail in Appendix C.1. The occupation crosswalk is documented in

Appendix C.2.

There are two approaches for using the 52 different O*NET abilities assigned to each

occupation in the occupation panel: first, constructing composite task measures using

a subset of preselected abilities in a principal component analysis (PCA), and second,

considering all abilities simultaneously using factor analysis (FA). As pointed out by

Yamaguchi (2012), it seems impossible to determine which approach is “better” as they

rely on completely different assumptions.5 The first approach assumes that a subset

of abilities is only relevant for explaining one particular task dimension. For example,

abilities that are useful for explaining the cognitive task intensity of occupations do

not explain any variation of other task dimensions. This requires prior knowledge of

the assignment of abilities to tasks, which appears to be a limitation given the complex

nature of some of the ability measures. The second approach relies on the assumption

that all abilities potentially contain valuable information on multiple underlying task

constructs. This paper draws on the second approach, allowing me to exploit all di-

mensions of variation prevalent in the O*NET ability data.

Because only a proportion of O*NET occupations (107 on average) are updated in

each O*NET rating cycle, most occupations differ in the year of their latest update in

a given database. To overcome this hurdle, I centre each of the two O*NET databases

(16.0 and 25.0) at the midpoint of the occupations’ latest updates following Freeman

et al. (2020). Based on this approach, the two data files represent occupations’ ability

requirements of 2008 and 2017. As the key target of my study is to analyse task

changes within occupations, I assign the ability ratings of the two different years to

the same employed working-age population, using the American Community Survey

(ACS) 2008.6 This is equivalent to treating occupations equipped with 2017 ability

scores as different occupations from 2008 while holding the occupation distribution

constant. This approach yields occupation-year-specific factor scores relative to the

2008 population-weighted mean scores. Another method would be to conduct two

5 The first approach is used, for example, by Autor et al. (2003), Yamaguchi (2012), Caines et al.
(2017), Guvenen et al. (2020) and Aghion et al. (2023). The second approach is used by Ingram and
Neumann (2006), Poletaev and Robinson (2008) and Robinson (2018).

6 Self-employed, workers employed in military occupations and unpaid family workers are excluded.

138



Table 4.1: Highest O*NET Ability Factor Loadings and Highest Ranked Occupations

Highest Factor Loadings Highest Ranked Occupations in 2008 by Factor

O*NET Ability Loading Occupation Factor Score

Factor 1: Physical Intensity

Stamina 0.904 1. Dancers and choreographers 4.19

Gross Body Coordination 0.889 2. Structural iron and steel workers 2.28

Trunk Strength 0.850 3. Recreation and fitness workers 2.27

Extent Flexibility 0.839 4. Masons and reinforcing iron workers 2.20

Dynamic Strength 0.838 5. Practical and vocational nurses 2.14

Factor 2: Cognitive Intensity

Deductive Reasoning 0.882 1. Astronomers and physicists 2.79

Problem Sensitivity 0.876 2. Architects (except naval) 2.71

Inductive Reasoning 0.863 3. Environmental engineers 2.31

Speed of Closure 0.838 4. Physical scientists, n.e.c. 2.05

Flexibility of Closure 0.838 5. Dentists 2.04

Factor 3: Coordination Intensity

Night Vision 0.942 1. Aircraft pilots and flight engineers 4.94

Peripheral Vision 0.940 2. Taxi drivers and chauffeurs 4.28

Glare Sensitivity 0.906 3. Bus drivers 4.24

Spatial Orientation 0.901 4. Ship and boat captains and operators 3.86

Sound Localization 0.891 5. Motor vehicle operators, n.e.c. 3.72

Factor 4: Communication Intensity

Speech Recognition 0.658 1. Announcers 3.18

Speech Clarity 0.631 2. Telephone operators 2.86

Time Sharing 0.607 3. Communication equipment operators, n.e.c. 2.64

Oral Expression 0.565 4. Switchboard operators 2.61

Oral Comprehension 0.548 5. Bailiffs, correctional officers, and jailers 2.42

Factor 5: Manual Intensity

Finger Dexterity 0.661 1. Data entry keyers 4.35

Wrist-Finger Speed 0.532 2. Dentists 3.55

Perceptual Speed 0.523 3. Optometrists 3.11

Control Precision 0.438 4. Aircraft pilots and flight engineers 3.03

Manual Dexterity 0.419 5. Medical and dental laboratory technicians 2.91

Notes: The presented factor scores are standardized, showing occupations’ standard deviation from
their population-weighted mean of 2008. The Kaiser-Meyer-Olkin measure of sampling adequacy is
0.96.
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separate factor analyses for 2008 and 2017. However, this would lead to different factor

loadings between the two years, making a direct comparison of year-specific factor scores

of occupations implausible.

Table 4.1 summarises the factor analysis output. The derived factors are by con-

struction orthogonal and represent different dimensions of task input.7 Five factors se-

lected based on the Kaiser-Rule that their eigenvalue must be greater than one (Kaiser,

1960) explain 90% of the total variation of the 52-dimensional O*NET ability data. The

factor with the highest explanatory power (27%) is related to physical abilities such as

body strength and flexibility. The second factor (26%) reflects the cognitive intensity of

occupations with problem-solving and reasoning abilities as the highest factor loadings.

The third factor (24%) is associated with sensory perceptional abilities that are im-

portant for coordination. The two other factors provide comparatively less additional

explanatory power with 7% each. These two factors can be categorised as communica-

tion and manual task intensity. I additionally check the highest-ranked occupations of

each factor to confirm the plausibility of the selected factor definitions. For example,

dancers, fitness workers, and construction workers rank highest on physical intensity,

while physicists, architects, and engineers have the highest cognitive intensity scores.

Four of the five factors which are related to physical, cognitive, coordination and

manual intensity are in line with the four task dimensions derived by Ingram and Neu-

mann (2006) and Robinson (2018) using data from the DOT. Although the computed

factors cover various dimensions, it is worth mentioning that they probably do not

represent all relevant task dimensions in the labour market. Especially social skills,

which have received much attention in recent research studies (see, e.g., Deming, 2017;

Cortes et al., 2021; Aghion et al., 2023), are seemingly not directly captured by the

five factors due to the lack of underlying data on social skills in the O*NET ability do-

main. Although the O*NET skill domain provides different measures related to social

skills, such as “Social Perceptiveness” and “Coordinate or Lead Others”, skills are only

recently measured in a similar consistent manner as abilities. This prevents me from

including skill measures in the factor analysis, as the identification strategy relies upon

7 The orthogonality assumption is achieved by applying the principle factor method and a “varimax
rotation” of factors (Fabrigar et al., 1999; Costello and Osborne, 2005).
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the consistency of the measurement of abilities between the two chosen databases. De-

spite the non-inclusion of social skill measures, it is well-known that leadership skills,

often associated with social skills, are highly correlated with general cognitive abili-

ties. Therefore, the cognitive intensity factor presumably captures partly social task

intensity. Moreover, the communication intensity factor mainly captures oral commu-

nication abilities. While such abilities are crucial to performing some social tasks, the

communication task intensity of occupations should not be confused with their social

task intensity, as social skills are not directly observed in the underlying data.

4.2.3 Cognitive-Biased Task Changes Within Occupations

In this section, I document occupations’ task intensity changes between 2008 and 2017.

To get a better understanding of the relative importance of task changes within oc-

cupations compared to task changes between occupations due to shifts in employment

shares, I decompose the measured task changes by using the following equation:8

TI i,2017 = TI i,2008+
K∑
k=1

θk,2008(›TI i,k,2017−›TI i,k,2008)+ K∑
k=1

(θk,2017−θk,2008)›TI i,k,2017 (4.1)

In equation 4.1, the weighted average task intensity i in 2017 is equal to the average

task intensity in 2008, adjusted by the within-occupation task intensity changes and

occupations’ shifts in relative shares of total working hours between 2008 and 2017.

Therefore, ›TIk,2008 and ›TIk,2017 are the year-specific task intensities of occupation k,

and θk,2008 and θk,2017 are the corresponding ‘effective employment shares’.

Table 4.2 shows a systematic trend of cognitive-intensity-increasing labour demand

between 2008 and 2017. On average, the cognitive intensity of the U.S. labour force

increased by 0.076 units of standard deviation compared to the weighted mean of the

workforce in 2008.9 Task changes within occupations account for almost half of the

8 The decomposition shown in equation 4.1 is used by Atalay et al. (2020).
9 To increase the ease of interpretation of the measured changes in the standardised factors (task

intensities), one can evaluate them relative to their 75/25 population-weighted percentile values: cog-
nitive [-0.81:0.81]; physical [-0.86:0.80]; manual [-0.73:0.77]; communication [-0.81:0.68]; coordination
[-0.62:0.41].
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Table 4.2: Task Intensity Changes by Task-Based Occupation Groups: 2008-2017

∆ Non-Cognitive Task Intensities

∆ Cognitive All Non- Coor- Inter-
Occupation Group Task Intensity Cognitive Physical dination personal Manual

Total 0.076 -0.134 0.071 -0.083 -0.249 -0.274
(0.002) (0.001) (0.002) (0.002) (0.002) (0.002)

Within 0.036 -0.114 0.066 -0.052 -0.233 -0.236
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Between 0.040 -0.020 0.006 -0.031 -0.015 -0.037
(0.002) (0.001) (0.002) (0.002) (0.002) (0.002)

Notes: The task intensity changes refer to changes in the deviation from the mean score of the self-
constructed occupation panel (430 occupations) measured in standard deviation units. Non-cognitive
task intensity changes are the unweighted average changes of the physical, coordination, communi-
cation and manual tasks. Occupations are categorized into task-based groups following Acemoglu
and Autor (2011) and Autor and Dorn (2013). Occupations are weighted by the provided population
weights of the American Community Surveys 2008 and 2017 multiplied by yearly working hours. Ex-
cluded are all self-employed individuals, those who work in military occupations, or are younger than
16 or older than 64 years. Standard errors are shown in parentheses.

total cognitive intensity increase. The relative contribution is approximately in line

with Autor et al. (2003), which compares job characteristics between the DOT of 1977

and the updated DOT version of 1991. On the other hand, the average importance of

non-cognitive task input declined by 0.134 units of standard deviation, with more than

80 per cent of the decrease caused by within-occupation changes. This result is closer

to a more recent study by Atalay et al. (2020), which analyses changes in occupations’

task content based on job advertisements. Among all non-cognitive task intensities, the

most substantial decreases are associated with communication and manual abilities.

The demand for coordination-intensive tasks decreased on average but only by one-

third of the magnitude of communication and manual tasks. This observation aligns

with the view that machines and robots cannot yet successfully replace visual and

perceptional abilities. Such abilities have particular importance for navigating motor

vehicles, for example. However, it can be expected that the accelerating technological

progress in autonomous driving will soon challenge specialised workers in this task

domain. The most surprising finding of Table 4.2 is the increased importance of physical

task content. One plausible explanation could be that employers reassign workers from

communication and manual tasks to more physically intensive tasks as they are less
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susceptible to automation. This finding is in line with Ingram and Neumann (2006)

showing that the return to physical tasks increased over the last decades.

Following the conception of Acemoglu and Autor (2011), occupations can be de-

fined as bundles of tasks. To put more structure on the observed task changes within

occupations, let us consider only two bundles of tasks that can characterise each oc-

cupation: cognitive and non-cognitive. While the cognitive task intensity is derived

from the factor analysis, the four remaining task dimensions can be considered non-

cognitive, including physical, coordination, communication and manual tasks. One can

define occupation k’s ‘non-cognitive task intensity’ as

·�NCTIk,t =
1

4

4∑
i=1

›TIk,i,t (4.2)

whereas workers’ time spent on cognitive and non-cognitive tasks may change over time

due to task automation and the emergence of new tasks (Acemoglu and Restrepo, 2019).

Recall that task automation and the emergence of new tasks are directly integrated

into the underlying ability rating procedure presented in Section 4.2.1. Related to this

intuition, occupation k′s cognitive bias of task changes can be defined as

∆WOCBk,2017 = (flCTIk,2017 −flCTIk,2008)− (·�NCTIk,2017 −·�NCTIk,2008) (4.3)

where ∆WOCBk,2017 is the change of the within-occupation cognitive bias that can

be decomposed into a ‘direct effect’ and a ‘replacement effect’. The direct effect is

occupation k′s change in cognitive task intensity (∆flCTI). The replacement effect is

k′s change in non-cognitive task intensity (∆·�NCTI). By construction, the bias is zero

if both effects go in the same direction with the same magnitude. However, if the

estimated increase in cognitive intensity is larger than the increase in non-cognitive

intensity (or if the non-cognitive intensity decreases), task changes within occupation

k will be positively cognitive-biased.

Table 4.3 shows the occupations with the most substantial changes in cognitive

task bias. While Panel A shows occupations with the largest increase and decrease
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Table 4.3: Occupations with the Largest Increases and Decreases in
Within-Occupation Cognitive Bias Between 2008 and 2017

Largest Increases Largest Decreases

Occupation Change Occupation Change

A. Total Cognitive Bias

Construction laborers 1.601 Library assistants, clerical -0.850

Graders and sorters, agricultural products 1.151 Office machine operators, exc. computer -0.716

Maids and housekeeping cleaners 1.096 Ushers, lobby attendants, ticket takers -0.667

Cabinetmakers and bench carpenters 1.074 Lodging managers -0.653

Public relations managers 0.920 Industrial/refractory machinery mechanics -0.643

B. Direct Effect

Graders and sorters, agricultural products 1.359 Parking attendants -0.926

Maids and housekeeping cleaners 1.263 Office machine operators, exc. computer -0.869

Construction laborers 1.257 Environmental engineers -0.712

Embalmers and crematory operators 1.155 Automotive glass installers -0.697

Photographic process workers 0.805 Industrial/refractory machinery mechanics -0.684

C. Replacement Effect

Technical writers 0.479 Public relations managers -0.675

Atmospheric and space scientists 0.438 Cabinetmakers and bench carpenters -0.661

Security and fire alarm systems installers 0.432 Computer and information systems managers -0.615

Door-to-door sales/news/street vendors 0.431 Environmental engineers -0.597

Advertising sales agents 0.409 Coin/vending/amusement machine repairers -0.573

Notes: The change in the occupation-specific cognitive bias is calculated as the direct effect minus the replacement effect
following equation 4.3. The changes are measured in units of standard deviation from the occupation-weighted mean
2008. Based on the updated ability rating procedure, 15 out of 430 occupations of my self-constructed panel have not
been re-evaluated. Consequently, their change in cognitive bias is expected to be equal to zero.

in total cognitive bias, Panels B and C show occupations with the largest direct and

replacement effects changes. Panel A shows that construction labourers, graders and

sorters of agricultural products, maids and housekeeping cleaners benefited the most

from cognitive-biased task changes. On the other hand, library assistants, office machine

operators, ushers, lobby attendants and ticket takers experienced the largest decreases

in the measured cognitive task bias. Only 133 out of 430 occupations experienced a

decline in cognitive task bias, confirming the general nature of task changes within

occupations highlighted in Table 4.2.

A more systematic picture of cognitive-biased task changes within occupations can

be obtained from Figure 4.2. The red bar shows the standardized change in within-

occupation cognitive task intensity (direct effect), and the green bar illustrates the

within-occupation change in non-cognitive task intensity (replacement effect) averaged
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Figure 4.2: Within-Occupation Cognitive and Non-Cognitive Task Intensity Changes
by SOC Intermediate Aggregation Occupation Groups

within SOC Intermediate Occupation Groups. The direct effect is most substantial for

construction and extraction occupations and computer, engineering and science occu-

pations. On the other hand, the replacement effect is most dominant in transportation,

material-moving, management, business, and finance occupations. The blue bar repre-

sents the total change in cognitive bias within occupations. Notably, the total cognitive

task bias change is positive for all occupation groups except for sales occupations. More-

over, Figure 4.2 illustrates that the growth variation in cognitive task bias is substantial

even between aggregated occupation groups. The observed occupation heterogeneity is

a crucial element of my identification strategy, described in the next section.

4.3 Data and Identification Strategy

Studying local labour markets requires a large sample size to represent the segmented

workforce accurately. My analysis draws on the IPUMS American Community Survey
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(ACS) 1% population samples (Ruggles et al., 2023). To increase the sample size, I

make use of the combined ACS 3% sample of 2005-2007 and the ACS 5% sample of

2015-2019. The pooled samples match the two focal points of the constructed task

intensity measures obtained from the O*NET ability data as accurately as possible.

The start-of-analysis sample of 2005-2007 does not perfectly match the start-of-analysis

task intensity measures for 2008. However, the 2005-2007 population sample is preferred

over the 2007-2009 sample as the latter coincides with the direct effects of the financial

crisis. This could lead to measurement error and biased estimates due to the related

short-term labour market fluctuations, which are not the focus of this study.

The underlying sample comprises the U.S. working-age population aged 16-64, ex-

cluding individuals who are part of “institutional group quarters” (e.g. mental institu-

tions and prisons) or categorized as unpaid family workers. In addition, workers em-

ployed in military occupations are excluded as the O*NET does not provide occupation

data for military occupations. Labour supply is measured by multiplying individuals’

weeks worked in the last twelve months by their reported weekly working hours. To

construct the analysis weights of the employed workforce, I multiply ACS sampling

weights by the effective labour supply units. For the computation of wages and the col-

lege wage premium, I restrict the sample to ‘full-time year-round workers’ who worked

at least 35 hours a week on average and not less than 48 weeks (including paid time off)

during the last twelve months.10 The yearly pre-tax wage and salary incomes used for

constructing the wage series are top-coded based on state-specific IPUMS top codes.

Hourly wages below the first percentile of the hourly wage distribution are set equal to

the first percentile. All wages are adjusted to constant 2010 U.S. dollars.

4.3.1 Public Use Microdata Areas (PUMAs)

In the American Community Survey, local labour markets can be approximately de-

fined by the boundaries of Public Use Microdata Areas (PUMAs).11 PUMAs represent

10 Between 2008 and 2018, the ACS reports individuals’ weeks worked in intervals. I centre the two
intervals, 48-49 and 50-52, at their midpoint for calculating hourly wages. Including individuals who
worked less than 48 weeks a year would yield much less precise wage estimates as the intervals become
much coarser. Therefore, my wage analysis is restricted to full-time year-round workers.

11 My study includes all 50 US states, including Alaska, Hawaii, and the District of Colombia. Puerto
Rico and island areas that do not reach sufficient population counts are excluded from my analysis.
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the smallest identifiable regional units, are state-dependent and follow the boundaries

of county groups but are split into multiple units if a single county exceeds 200,000

residents (Coggins and Jarmin, 2021). A well-known challenge for making direct use

of PUMAs is the fact that they are delineated for each decennial Census (see, e.g.,

Dorn, 2009) depending on changes in their population sizes. To address the issue of

time-varying PUMA boundaries, IPUMS created a consistent panel of 1,078 PUMAs

from the Census 2000 onward. The panel is constructed by aggregating 2000 Census

PUMAs such that they align closely with aggregated 2010 Census PUMAs “within a

1% population mismatch tolerance”. The new computational aggregation algorithm

used for the construction of consistent PUMAs marks a substantial improvement. On

the contrary, the previous method relied on researchers who visually identified bound-

aries and “hand-selected” sets of PUMAs that appeared to be closely aligned with each

other.

The crucial advantage of using a consistent PUMA panel linked with ACS data

is the accurate and consistent assignment of housing units to regional units, as the

household locations are directly recorded by the Census Bureau when conducting the

survey. In a more indirect approach, researchers often assign smaller regional units

from survey data to self-constructed consistent “labour market areas” (Tolbert, 1987;

Tolbert and Sizer, 1996) or “commuting zones” (Dorn, 2009; Autor and Dorn, 2013;

Autor et al., 2013). As pointed out by Greenland et al. (2019), this contains a risk of

substantial measurement error as the identified regional units (for example, counties or

PUMAs) often overlap with multiple units of the self-constructed local labour markets.

On the other hand, commuting zones are a better representation of local labour markets

in areas that are only sparsely populated because the delineation of consistent PUMA

boundaries depends, among others, on areas’ population sizes. Consequently, three

sparsely populated states (Idaho, Montana and South Dakota) cannot be split into

more than one consistent PUMA. On the other hand, the highest number of PUMAs

can be found in the state of New York (123). PUMAs in the centre of major cities

such as New York or Boston cover only small geographical areas. Therefore, they may

not always accurately represent the typical concept of local labour markets. The only

way to address this issue would be to combine multiple PUMAs within other defined
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urban statistical areas, for example, Metropolitan Statistical Areas (SMAs). Again, this

approach would lead to substantial measurement error as PUMA boundaries do often

not align with the boundaries of metropolitan area units either (see, e.g., Schroeder

and Pacas, 2021, for a discussion on the regional variables). For this study, I find it

more important to eliminate the measurement error stemming from random assignment

of households to overlapping regional units, which is why I rely on consistent PUMA

boundaries throughout this study.

Overall, most U.S. states contain a reasonable number of PUMAs, providing a good

approximation of local labour markets. On average, a state includes 21 consistent

PUMAs, allowing me to include state-fixed effects and analyse within-state differences

in labour market outcomes unaffected by state-dependent policies or interventions. To

account for differences in population sizes, I weigh all models in Section 4.4 by PUMAs’

population shares.

4.3.2 Measuring Within-Occupation Cognitive-Biased Tech-

nological Change of PUMAs

Local labour markets are specialized in different industries, requiring specialized workers

of different occupations. Consequently, the occupational composition differs between

local labour markets. The spatial variation in occupational composition, together with

the differential changes in cognitive task bias between different occupations, can be

exploited for my analysis. The PUMA-specific measure of within-occupation cognitive-

biased technological change (‘WO-CBTC’ hereafter) is constructed as

WOCBTCj,t =
K∑
k=1

Φj,k,t−1

î
(flCTIk,t −flCTIk,t−1)− (·�NCTIk,t −·�NCTIk,t−1)

ó
(4.4)

where the technological change measure, WOCBTCj,t, depends on the shares of total

working hours Φ of occupations k = 1, ..., K in PUMA j and the occupation-specific

changes in cognitive task bias measured between t− 1 and t. Recall that k’s change in

non-cognitive task intensity, (·�NCTIk,t−·�NCTIk,t−1), is equivalent to the average change
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of physical, coordination, communication and manual task intensity. As the shares of

total working hours within PUMAs are held constant at t− 1, the constructed measure

predicts j’s exposure to cognitive-biased technological change stemming exclusively

from task shifts within occupations.

Figure 4.3: PUMA’s Exposure to Within-Occupation Cognitive-Biased Technological
Change Based on Occupation Shares in 2005-2007

Figure 4.3 visualizes the differential impact of WO-CBTC in the United States by

categorizing PUMAs into quintiles with darker colours representing higher exposure

to technological change.12 The exposure to WO-CBTC is positive across all PUMAs,

underpinning the systematic increase in cognitive task input in the U.S. economy. The

variation between PUMAs ranges from 0.059 to 0.269, measured in units of standard

deviation from the national occupation-weighted mean of cognitive bias in 2008. The

population-weighted 80/20 percentile range is 0.030 with WOCBTCP20 = 0.134 and

WOCBTCP80 = 0.164.

Due to the novelty of my measurement approach based on factor analysis and equa-

12 For a more convenient display, Alaska and Hawaii are excluded from Figure 4.3 due to their far-off
locations. The two states are split into four and eight separate PUMAs, respectively.
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tion 4.4, I check the robustness of the results shown in Section 4.4 by using two modified

specifications of the WO-CBTC measure. First, I use a hand-picked selection of O*NET

cognitive abilities instead of deriving a composite measure from factor analysis. Second,

I use only occupations’ direct cognitive bias instead of the derived compound measure

that combines occupations’ direct and replacement effects. The two alternative ap-

proaches lead to qualitatively and quantitatively similar results.13

Is the measure of within-occupation technological change just another static routine-

biased technological change (RBTC) measure in disguise? To shed light on this ques-

tion, I use O*NET data to reconstruct an updated version of the routine-intensity index

of Autor et al. (2003) and check its correlation with my WO-CBTC measure.14 The

weak correlation of ρ = −0.123 unveils that occupations’ routine intensity is not a reli-

able predictor of their cognitive task bias evolution. In addition, I check the correlation

with three other occupation-specific technology measures, finding only weak relation-

ships throughout all tested measures, including automation technologies (ρ = −0.142),

artificial intelligence (ρ = 0.089) and ICT technologies (ρ = 0.092).15 The weak corre-

lations - although they are of a descriptive nature - suggest that cognitive-biased task

changes within occupations capture a different dimension of technological change.

4.3.3 Instrumental Variable Approach

The measure constructed in the last section captures PUMAs’ exposure to cognitive-

biased technological change based on two characteristics: first, occupation-specific task-

intensity changes between 2008 and 2017, and second, PUMAs’ occupational compo-

sition in 2005-2007. The occupational composition 2005-2007 is potentially subject

to contemporary economic disturbances. Technically, this causes measurement error

and leads to upward or downward-biased estimates. Second, and more fundamentally,

13 The codes for replicating the different robustness checks are available upon request.
14 The updated automation/routinization measure is constructed following Firpo et al. (2011) and

is described in more detail in Section 4.4.1.
15 The AI measure is from Felten et al. (2018) while the measure of automation is from Frey and

Osborne (2017). The ICT index is reconstructed based on Firpo et al. (2011). All used measures
are built based on O*NET data, increasing the risk of high correlation. I do not find substantial
relationships between the different static technology measures and my measure of task changes within
occupations.
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Acemoglu (1998) shows that a sustained increase in the supply of skills induces tech-

nological progress to become more skill-complementary as more market opportunities

for skill-complementary technologies arise. If the directed technology effect is strong

enough, this increases the relative wages of high-skilled workers in the long run. Ac-

cording to this perspective, the causal relationship goes - at least partly - from skill

supply to skill-biased technological change to changes in the skill premium.

To address the described potential measurement error and reverse causality, I need

to identify some exogenous variation that is correlated with my technology measure but

uncorrelated with other contemporary confounders that potentially affect the measure.

Therefore, I use the quasi-fixed industry specialization of local labour markets following

Autor and Dorn (2013).16 First, I calculate the employment share Ω of each industry

n in PUMA j based on the lagged workforce distribution obtained from the 5% sample

of the 2000 Census.17 Second, I calculate each industry’s expected change in cognitive

task bias based on the national occupational composition within industries of the year

2000, excluding the state that includes PUMA j.18 The product of the two measures

predicts j’s exposure to WO-CBTC dependent on its preexisting industrial structure

together with the national occupational structure within industries:

¤�WOCBTCj,t =
N∑

n=1

Ωn,j,2000 × E [WOCBTCn,−j,2000] (4.5)

Although using Census data from half a decade before the start of the analysis

potentially removes substantial short-term labour market disturbances, the claim for

validity of the shift-share instrument must rely on some assumptions. There are es-

sentially two ways of establishing validity. Goldsmith-Pinkham et al. (2020) formalizes

an approach that relies on the assumption that exposure shares are exogenous (“share

exogeneity”). Using a different framework, Borusyak et al. (2022) leverages exogenous

16 The approach of using a shift-share (“Bartik”) instrument to measure the exogenous variation
of shock exposure at the regional level follows Bartik (1991). More recent studies relying on that
approach include Autor et al. (2013), Acemoglu et al. (2016) and Diamond (2016).

17 Workers of the 2000 Census are assigned to industries based on the 1990 Census Bureau industrial
classification scheme including 224 different industries.

18 Following Autor and Duggan (2003), I exclude the state that includes PUMA j from the construc-
tion of the instrument to avoid a mechanical correlation between the instrument and the endogenous
measure of technological change.
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variation in the underlying shocks but allows exposure shares to be endogenous (“shock

exogeneity”). The identification strategy in this study is based on the second approach

because the industry shares within PUMAs can barely be regarded as being exogenous

due to other unobserved industry shocks influencing PUMA-level outcomes through the

same mixture of industry shares. Shock exogeneity, in contrast, seems more plausible

in the context of my study.

To evaluate the plausibility of the central assumption that shocks are “quasi-randomly

assigned” to PUMAs, I implement a shock-orthogonality falsification test following

Borusyak et al. (2022). More precisely, I separately regress the shift-share instrument

on various potential confounders, including a constant but no other covariates. The

included controls that account for the socio-demographic structure of the working-age

population are basically in line with Autor et al. (2013) and Autor and Dorn (2013).

These are the start-of-analysis share of college-educated, the fraction of employment

among women and the share of the foreign-born population. In addition, I check the re-

lationship between the instrument and the share of young as well as old workers to take

into account the heterogeneous sorting of workers of different cohorts into industries

and occupations. I also test the shock balance regarding PUMAs’ manufacturing share

and exposure to offshoring as well as their exposure to different technologies, including

automation, ICT and artificial intelligence.

Table 4.4 shows the relationships between eleven potential confounders related to

regional supply and demand shocks and my shift-share instrument. As indicated by

the correlation checks in Section 4.3.2, the results of Table 4.4 confirm that the shock

orthogonality assumption holds for all included specific technologies. Overall, only

two out of eleven regional balance variables show a significant relationship with the

constructed shift-share instrument.19 Nonetheless, the significant results for the share

of foreign-born and young workers imply that these groups may be subject to different

labour supply dynamics. The sensitivity analysis in the next section will further explore

the role of these potential confounders, showing that they do not affect the significance

19 This result is similar to the shock balance test that is conducted by Borusyak et al. (2022) to
evaluate the shock orthogonality assumption in the context of the China shock study by Autor et al.
(2013).
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Table 4.4: Shock Balance Tests at PUMA Level
(Dependent Variable: Industry Shift-Share Instrument)

Regional Balance Variable Coefficient Standard Error

Start-of-analysis % of college-educated population 0.421 (0.490)

Start-of-analysis % of employment among women -0.976 (1.039)

Start-of-analysis % of foreign-born population 1.369 (0.641)

Start-of-analysis % of working-age population ≤ 25 -4.976 (1.258)

Start-of-analysis % of working-age population ≥ 55 -4.282 (2.634)

Start-of-analysis % of manufacturing employment -2.024 (1.262)

Start-of-analysis exposure to offshoring 0.083 (0.067)

Start-of-analysis routine intensity -0.090 (0.065)

Start-of-analysis exposure to automation 0.018 (0.067)

Start-of-analysis exposure to ICT 0.010 (0.072)

Start-of-analysis exposure to artificial intelligence 0.034 (0.059)

Notes: This table reports coefficients from regressions of PUMA-level covariates on the shift-share
instrument. 1,078 Public Use Microdata Areas (PUMAs) are used for the estimation, and the shift-
share instrument is standardized with zero mean and unit variance. All models include a constant
and are weighted by PUMAs’ population shares at the start of analysis in 2006. Robust standard er-
rors are clustered at the state level and shown in parentheses. The offshoring and ICT measures are
constructed following Firpo et al. (2011). The routine intensity measure is an updated version of the
manual routine index of Autor and Dorn (2013). The measure of exposure to artificial intelligence is
based on Felten et al. (2018). The index capturing exposure to job automation is re-constructed fol-
lowing Frey and Osborne (2017). All technology measures are initially measured at the occupation
level and mapped into the balanced occupation panel. The average regional exposure values are stan-
dardized between PUMAs with zero mean and standard deviation of one.

nor the economic interpretation of the effect of WO-CBTC on labour mobility.20

One concern that remains is that PUMAs’ industrial specialization observed in 2000

may be influenced by the supply of skills in earlier decades. It is not possible to directly

check the shock orthogonality condition for preceding changes in skill supply because

PUMAs are only inconsistently defined before the year 2000. However, I can exploit

variation at the state level to get an idea if preceding skill supply changes could be an

underlying causal factor confounding my results. Using measures of changes in the frac-

tion of college-educated workers across U.S. states between 1980 and 2000, I do not find

20 To ensure that the young and foreign population does not systematically affect the results, I
exclude these two groups from the underlying sample, which yields robust results for the conducted
labour market analysis. The results of the robustness checks are provided upon request.
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evidence that the cross-state historical evolution of relative skill supply well predicts

cognitive-biased task changes within occupations in the twenty-first century. This ob-

servation also aligns with Section 4.4.1, showing that PUMAs with higher exposure to

WO-CBTC experience a more substantial population inflow of college and non-college

workers. These observations confirm the validity of my instrumental variable approach.
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Figure 4.4: Partial Correlation of Predicted Within-Occupation CBTC and
Measured Within-Occupation CBTC

Finally, I want to check the first-stage relevance of the shift-share instrument. Figure

4.4 shows the partial correlation between PUMAs’ predicted exposure to WO-CBTC

and measured exposure to WO-CBTC based on the first-stage regression equation 4.5

and by including state dummies as additional covariates. The predictive value of the

shown relationship is highly significant, with a t-ratio of 14.27 underpinning the rele-

vance of my instrument. More precisely, a one per cent increase in predicted exposure

to WO-CBTC corresponds to an increase of 1.58 percentage points in measured expo-

sure to WO-CBTC. The following empirical analysis focuses mainly on presenting 2SLS

estimation results but also shows OLS estimates for comparison.
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4.4 Labour Market Analysis

As a starting point, let us consider that the observed cognitive-biased task shifts within

occupations shown in Section 4.2.3 potentially increase the return to cognitive ability

for a given supply of skills in the labour market. This assumption can be tested in a

falsification exercise by holding the workforce distribution constant at 2008 levels and

changing the task intensity measures from 2008 to 2017 to estimate the counterfactual

returns to task intensities. Therefore, I use hourly wage data from the merged outgoing

rotation groups (MORG) of the Current Population Survey (CPS). In the estimated

wage equations, I enter the five task intensity measures derived in Section 4.2.2 and

additionally control for years of schooling, experience, gender, union coverage, race and

industries. I find that the observed within-occupation task changes lead to an increase

in the return to cognitive ability by 6.5 percentage points in the U.S. labour market.

Based on the observation that PUMAs are subject to heterogeneous WO-CBTC,

does the return to cognitive ability also change differently across PUMAs? If this is

the case, it is intuitive to assume that it leads to a reassignment of skills to tasks along

two dimensions: first, workers with different skill endowment reallocate between local

labour markets (Topel, 1986; Beaudry et al., 2010; Greenland et al., 2019; Notowidigdo,

2020). Second, workers resort between occupations as well as between employment, un-

employment and non-participation within local labour markets (Autor and Dorn, 2013;

Autor et al., 2013, 2015). This section’s main objective is to analyse the local labour

market dynamics along these two dimensions in response to the predicted heterogeneous

within-occupation task demand shocks.

4.4.1 Population Growth Effect

For ease of interpretation, the following labour market analysis refers to changes be-

tween 2006 and 2017, the two years which reflect the midpoints of the used ACS

samples. Figure 4.5 presents the population-weighted bivariate relationship between

PUMAs’ exposure to WO-CBTC and their change in log population counts. The first

panel includes all PUMAs, whereas the second panel includes PUMAs with a minimum

national population share of 0.1 per cent. The figure unveils a positive relationship
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between WO-CBTC and population growth between 2006 and 2017. However, the

indicative relationship in Figure 4.5 does not account for start-of-analysis population

characteristics, nor does it take into account that the differential exposure to biased

task demand changes is not exogenous. A more systematic representation of how dif-

ferential WO-CBTC affects population growth is documented in Table 4.5 based on

regression equations of the form

∆Popj,s,t = γ0 + β1 ×WOCBTCj,s,t + β2Xj,s,t0 + δs + ej,s,t (4.6)

where the dependent variable is the change in log population counts between 2006 and

2017 in PUMA j in state s, and WOCBTCj,s,t is the measured within-occupation

cognitive-biased technological change which is instrumented by its predicted value¤�WOCBTCj,s,t based on j’s industry shares in 2000. Census state dummies δs are

included to control for state-dependent institutional factors such as unionization, the

minimum wage and labour laws. Thus, the exploited variation associated with the

results shown in columns 2-6 of Table 4.5 stems from the differential exposure to WO-

CBTC within states between PUMAs. In addition, I control for the start-of-analysis

labour market and population characteristics summarized by Xj,s,t0 . All models include

a constant, and standard errors are clustered at the state level.

The coefficients shown in Table 4.5 are multiplied by the factor 10/11 to represent a

decennial change in log population counts. In the baseline model, which includes only

an intercept and the WO-CBTC variable, the OLS model predicts a decennial increase

of 1.769 log population counts for PUMAs that are exposed to one standard deviation

higher WO-CBTC relative to the mean of the appointed population-weighted occupa-

tion distribution. Recall that the 80/20 percentile range is 0.03 standard deviations.

For a more convenient interpretation of the result, I multiply the estimated coefficient

of 1.769 by the 80/20 range to obtain the 80/20 differential increase in log population

counts, which yields 0.053. At face value, the 80/20 differential is substantial compared

to the U.S. average increase in log population counts of 0.051.

To validate the significance of the effect of WO-CBTC on regional population

growth, I include a battery of population and labour market characteristics that could
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Figure 4.5: Relationship Between PUMAs’ Exposure to Within-Occupation CBTC
and Change in Log Working-Age Population: 2006-2017
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Table 4.5: Exposure to Within-Occupation CBTC and Population Growth of PUMAs
(Dependent Variable: 10 × Annual Log Working-Age Population Change)

(1) (2) (3) (4) (5) (6)

Panel A. OLS Estimates

WO-CBTCt 1.769*** 1.103*** 0.609** 0.727*** 0.695** 0.584**
(0.297) (0.284) (0.274) (0.221) (0.311) (0.266)

College/popt−1 0.039 -0.298***
(0.056) (0.080)

Female empl/ 0.232** 0.259***
female popt−1 (0.113) (0.092)

Foreign/popt−1 0.144*** -0.059**
(0.029) (0.028)

Age ≤ 25/popt−1 -0.263*** -0.178*
(0.075) (0.099)

Age ≥ 55/popt−1 -1.722*** -1.618***
(0.191) (0.206)

manufact/emplt−1 -0.273*** -0.072
(0.082) (0.087)

Exposure to 0.025*** 0.006
offshorability of occst−1 (0.007) (0.008)

Exposure to 0.011 -0.039***
de-routinization of occst−1 (0.007) (0.009)

Census state dummies X
√ √ √ √ √

R2 0.160 0.463 0.500 0.592 0.514 0.635

Panel B. 2SLS Estimates

WO-CBTCt 2.612*** 1.130*** 0.801** 1.066*** 1.229*** 1.070***
(0.386) (0.353) (0.384) (0.334) (0.355) (0.352)

R2 0.124 0.463 0.499 0.588 0.506 0.630

Notes: N = 1,078 Public Use Microdata Areas (PUMAs). The dependent variable is the first differ-
ence of the log working-age population between 2006 and 2017 multiplied by 10/11 to represent a 10
× annual change. The technological change measure (WO-CBTC) represents the within-occupation
technological change averaged within PUMAs. Other covariates are expressed in levels of 2006. All
models include a constant and are weighted by PUMAs’ population shares in 2006. Robust standard
errors are clustered at the state level and shown in parentheses. ***/**/* significant at the 1% 5%
and 10% level.

simultaneously be correlated with the technology measure and the outcome variable.

The state dummies included in column 2 capture unobserved regional heterogeneity,

dampening the effect of WO-CBTC on population growth without affecting its sig-

nificance level. Column 3 introduces population characteristics measured at the start

of the analysis in 2006: college-educated relative to the total working-age population,

employed female relative to the female working-age population and the share of foreign-
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born in the working-age population. In addition, column 4 controls for the demographic

structure of local labour markets. Controlling for population characteristics decreases

the coefficient of WO-CBTC. One plausible explanation for this observation is that the

population structure - at least in part - jointly predicts PUMAs’ exposure to technolog-

ical change and population growth. Nonetheless, the variable of interest remains highly

significant, at least at the 5% level in all OLS model specifications.

Column 5 includes three variables capturing the industrial and occupational com-

position of PUMAs: first, the start-of-analysis manufacturing employment share based

on the observation that labour markets with a larger fraction of workers in manufac-

turing industries are more susceptible to trade shocks (Autor et al., 2013). Such shocks

potentially cause workers in manufacturing industries to lose their jobs and to resort

between local labour markets (see, e.g., Greenland et al., 2019). Moreover, column 5

includes two measures of PUMAs’ start-of-analysis occupational composition. The two

measures are constructed based on static O*NET data following Firpo et al. (2011)

and standardised across PUMAs with a mean of zero and a standard deviation of one.

The first measure captures the offshoribility of occupations. The second measure is an

updated version of the “manual routine index” of Autor et al. (2003) to address the

concern that the routine task intensity of occupations could be an unobserved causal

factor of both labour mobility and cognitive-biased task changes within occupations.21

As can be seen from columns 5 and 6, including the de-routinisation, manufacturing

and offshoribility index does not affect the significance of the WO-CBTC measure.

When the WO-CBTC measure is instrumented by the interaction between PUMAs’

industry specialisation and precedent national occupation shares within industries, the

estimated effect increases noticeably throughout all regression specifications, as can be

observed from Panel B. In this regard, the instrumental variable approach most likely

removes substantial attenuation bias by diminishing the effects of contemporary labour

market disturbances. In the following analysis, I focus on 2SLS estimations to assure

21 To construct the occupation-specific offshorability measure, I take the unweighted average of
different “face-to-face contact” and “on-site job” characteristics from the O*NET 16.0 database. For
the construction of an occupation-specific de-routinisation measure, I calculate the unweighted average
of the O*NET work context attributes “degree of automation”, “importance of repeating same tasks”,
“structured versus unstructured work (reverse)”, “pace determined by speed of equipment”, and “spend
time making repetitive motions”. In the second step, the occupation-specific scores are averaged within
PUMAs based on start-of-analysis employment shares.
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consistency and to avoid downward-biased coefficients arising from co-dependencies

between the WO-CBTC measure and start-of-analysis labour market characteristics -

a problem that is emphasised and investigated by Aydemir and Borjas (2011) in the

context of migration and wage effects.

Table 4.6: Within-Occupation CBTC and Population Growth by Gender & Education
(2SLS Estimation. Dependent Variable: 10 × Annual Log Working-Age Population Change)

LTHS High-School Some College College Advanced

Panel A. Working-Age Population

WO-CBTCt 1.905*** 1.066*** 0.377 1.102** 1.481***
(0.564) (0.389) (0.440) (0.443) (0.507)

R2 0.318 0.515 0.591 0.402 0.405

Panel B. Men

WO-CBTCt 1.375*** 0.732* 0.535 0.839* 1.291*
(0.564) (0.416) (0.466) (0.485) (0.680)

R2 0.250 0.441 0.483 0.340 0.347

Panel C. Women

WO-CBTCt 2.568*** 1.371*** 0.229 1.374*** 1.797***
(0.614) (0.417) (0.457) (0.470) (0.492)

R2 0.332 0.497 0.589 0.387 0.382

Notes: N = 1,078 Public Use Microdata Areas (PUMAs). The dependent variable is the first differ-
ence of the log working-age population between 2006 and 2017 multiplied by 10/11 to represent a 10
× annual change. The technological change measure (WO-CBTC) represents the within-occupation
technological change averaged within PUMAs. All 2SLS regressions include the complete set of con-
trols from column 6 of Table 4.5. Observations are weighted by PUMAs’ population shares in 2006.
Robust standard errors are clustered at the state level and shown in parentheses. ***/**/* significant
at the 1% 5% and 10% level.

While table 4.5 demonstrates a robust relationship between WO-CBTC and relative

population growth between different areas in the United States, it is silent on what

skill types potentially move to areas with increasing demand for cognitive task input.

Table 4.6 answers this question by splitting the working-age population into ten gender-

education cells. The table shows that individuals with a college or advanced degree

and those with high school or no degree reallocate systematically to areas with higher

exposure to WO-CBTC. The population growth effects are significant for both men

and women. At first glance, this seems counterintuitive as low-skilled workers are less

mobile than high-skilled workers (Topel, 1986; Bound and Holzer, 2000; Notowidigdo,

2020). Moreover, it contradicts the general assumption that WO-CBTC is associated
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with an increase in the relative productivity of high-skilled labour and, thus, a relative

productivity decline of low-skilled labour.

The only skill group not showing increased population growth in response to within-

occupation task demand shocks includes individuals with some college experience. One

possible explanation for the skill polarization is that WO-CBTC has labour-augmenting

effects on low-skill workers due to rising demand for different goods and services in

population-growing areas. This could create job opportunities for workers specialized

in non-cognitive task content. Moreover, it has to be taken into account that the

low-skilled relative to high-skilled employment effects depend on the elasticity of sub-

stitution between different skills as pointed out by Acemoglu and Autor (2011). The

objective of the following sections is to explore the labour market effects related to the

differential WO-CBTC and skill polarization in more detail.

4.4.2 Crowding-Out Effect

The results of Section 4.4.1 show a simultaneous increase in low-skilled (high-school

or no degree) and high-skilled workers (college or advanced degree) in areas with high

exposure to WO-CBTC. The skill-polarising population growth leaves the relative skill

supply basically unaffected but increases the labour supply at both ends of the cognitive

skill spectrum. Holding the relative supplies of skills constant, the task-based model

of Acemoglu and Autor (2011) predicts that technological change that complements

cognitive skills increases the proportion of tasks performed by high-skilled workers.

Or, to put it differently, low-skilled workers are assumed to be crowded out by high-

skilled workers due to high-skilled workers’ relative productivity increase (‘crowding-out

effect’).

The results in Table 4.7 confirm the model predictions using 2SLS estimations based

on equation 4.6 but with the share of college workers as the dependent variable. The

share of college workers is measured in relative total hours of workers with a college

degree or a higher degree compared to those without a college degree using the employed

workforce obtained from the pooled ACS samples 2005-2007 and 2015-2019. When the

complete set of controls is included in the model, PUMAs at the 80th percentile of
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WO-CBTC experience a 0.5% differential decennial increase (0.03*0.161) in the share

of college-educated workers compared to PUMAs at the 20th percentile.

Table 4.7: The Causal Effect of Within-Occupation CBTC on College Worker Shares
(2SLS Estimation. Dependent Variable: 10 × Annual Change in Share of College Workers)

∆ College Share Within Occupation Groups

∆College Share Non-Routine Routine Non-Routine Routine
of Employed Pop Cognitive Cognitive Manual Manual

Panel A. Census state dummies included

WO-CBTCt 0.240** 0.238** 0.175 0.072* -0.032
(0.097) (0.098) (0.125) (0.043) (0.168)

R2 0.166 0.103 0.186 0.134 0.068

Panel B. Full controls included

WO-CBTCt 0.161** 0.204*** 0.071 0.030 -0.074
(0.075) (0.058) (0.102) (0.072) (0.179)

R2 0.284 0.223 0.282 0.230 0.123

Notes: N = 1,078 Public Use Microdata Areas (PUMAs). The dependent variable is the first differ-
ence of the college share of the employed working-age population between 2006 and 2017 multiplied by
10/11 to represent a 10 × annual change. The technological change measure (WO-CBTC) represents
the within-occupation technological change averaged within PUMAs. Regressions of Panel A include
an intercept and 51 Census state dummies, whereas regressions of Panel B include the complete set
of controls from column 6 of Table 4.5. Observations are weighted by PUMAs’ population shares in
2006. Robust standard errors are clustered at the state level and shown in parentheses. ***/**/* sig-
nificant at the 1% 5% and 10% level.

In addition, Table 4.7 shows the effect of within-occupation technological progress

on the college share within the four major task-based occupation groups. The re-

sults indicate that the overall positive effect between PUMAs is entirely driven by the

disproportionate increase in the share of high-skilled workers in non-routine cognitive

occupations. This observation is in line with Roy (1951) models according to which

workers with high cognitive abilities sort themselves systematically into occupations

that maximize their productivity, namely occupations with the comparatively highest

demand for cognitive abilities.

Table 4.8 shows the causal effect of WO-CBTC on employment, unemployment and

non-participation shares for both college and non-college workers. College workers in

PUMAs at the 80th percentile show a 0.4% differential increase (0.03*0.128) in their

employment share compared to the 20th percentile. Moreover, the total increase in

relative employment is completely offset by a 0.4% differential decrease (0.03*0.128) in
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the non-participation rate. The results for the college-educated workforce are robust

to entering state dummies and the complete set of controls from column 6 of Table

4.5. Conversely, the effect of cognitive-biased task changes within occupations on the

working-age population without a college degree leads to a relative decline in employ-

ment of the same magnitude as the increase in college employment. The effect on the

non-participation rate is positive and significant when entering the control vector into

the model. These observations complement the findings in Table 4.7 that low-cognitive

workers are crowded out of the labour market in the medium run due to cognitive-

biased task changes within occupations.

Table 4.8: The Causal Effect of Within-Occupation CBTC on Labour Force Shares
(2SLS Estimation. Dependent Variable: 10 × Annual Change in Shares of Employment Status)

College Degree No College Degree

Employed Unemployed NILF Employed Unemployed NILF

Panel A. Census state dummies included

WO-CBTCt 0.144*** 0.001 -0.145*** -0.097* 0.022 0.075
(0.049) (0.016) (0.041) (0.055) (0.032) (0.060)

R2 0.145 0.131 0.139 0.154 0.259 0.120

Panel B. Full controls included

WO-CBTCt 0.128*** -0.000 -0.128** -0.131** 0.008 0.124**
(0.058) (0.018) (0.049) (0.055) (0.030) (0.058)

R2 0.175 0.157 0.173 0.336 0.309 0.265

Notes: N = 1,078 Public Use Microdata Areas (PUMAs). The dependent variable is the first difference
of the shares of employment status between 2006 and 2017 multiplied by 10/11 to represent a 10 ×
annual change. The technological change measure (WO-CBTC) represents the within-occupation tech-
nological change averaged within PUMAs. Regressions of Panel A include an intercept and 51 Census
state dummies, while regressions of Panel B include the complete set of controls from column 6 of Ta-
ble 4.5. Observations are weighted by PUMAs’ population shares in 2006. Robust standard errors are
clustered at the state level and shown in parentheses. ***/**/* significant at the 1% 5% and 10% level.

The fact that one cannot find significant effects on unemployment is potentially

related to the large time gap between 2006 and 2017. As it is pointed out by Autor

et al. (2015), who disentangle the effect of routine-biased technological change and trade

shocks on employment, the direct effects on unemployment are most likely visible in the

short run but vanish in the medium to long run due to labour force exit. This assump-

tion is consistent with the findings presented in Table 4.8. In addition to medium-run

labour market adjustments within PUMAs, low-skilled workers who become unem-
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ployed in PUMAs that are decreasing in demand for cognitive skills potentially move

to areas with better job opportunities. This hypothesis is reasonable considering the

low-skilled population growth in PUMAs with more considerable cognitive-biased task

demand changes, as shown in the last section. However, the labour-increasing but

cognitive-biased task demand changes in population-growing areas also appear to push

low-skilled workers out of the labour market due to the rising supply of high-skilled

labour.

4.4.3 Skill Composition Effect

This section aims to deepen the understanding of how the skill composition between

labour markets evolves based on the observed differential supply changes of different

skills. Therefore, I hold the task intensities within occupations constant at the start-of-

analysis levels and change only PUMAs’ occupation shares between 2006 and 2017. The

counterfactual distribution reflects the ‘extensive margin’ of skill composition changes

in local labour markets.

Figure 4.6, which shows the evolutionary change of the five task intensity scores

relative to the start-of-analysis population-weighted standardized mean scores, unveils

an important pattern: cognitive-biased technological progress also manifests through

resorting of workers across occupations. To better understand the magnitudes of the

presented changes, Figure 4.6 categorizes PUMAs into three groups based on their

population-weighted exposure to WO-CBTC. The increase in cognitive intensity is 0.047

for the lowest quintile, 0.060 for the combined mid-three quintiles and 0.081 units

of standard deviation for the highest quintile. In addition, the highest quintile of

PUMAs shows a more substantial decline in communication- and physical-intensive task

input and a less significant decrease in manual task input due to changes in relative

employment shares between occupations.

A deeper exploration of the data shows that the ‘extensive task intensity changes’ are

the outcome of two different mechanisms: first, mobility within task-based occupation

groups, and second, mobility between non-routine cognitive and other occupations.

Regarding the latter, the share of non-routine cognitive occupations (management,
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Figure 4.6: Changes in PUMAs’ Average Task Intensities from Changes in Relative
Employment Shares Between Occupations
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business, science, and arts) increased from 0.33 to 0.38 for the highest quintile but only

from 0.25 to 0.28 for the lowest quintile of WO-CBTC. However, there is no difference

between the highest and lowest quintiles when the changes in non-routine cognitive oc-

cupation shares are evaluated in percentage growth rates. Moreover, the figures must be

interpreted cautiously as it seems not entirely plausible that task changes between and

within occupations can be considered two completely different phenomena.22 Therefore,

this section relies entirely on a descriptive representation which intends to complement

the causal effects of the last sections and the following section.

4.4.4 Wage Effect and the College Wage Premium

A substantial finding of this study is that cognitive-biased technological change within

PUMAs attracts both high-skilled and low-skilled workers. Moreover, the last two

sections predict that non-college workers are crowded out of highly exposed local labour

markets. In this section, I investigate how within-occupation cognitive-biased task

changes shape the wage growth of high and low-skilled workers across local labour

markets. In contrast to the last sections, workers with some college experience but

no degree are excluded from this section as the findings of the previous sections do

not unveil a significant impact of WO-CBTC on this group. Moreover, workers with

some college experience but no degree cannot be clearly classified as either college or

high-school workers. Therefore, their inclusion would hamper the interpretation of

the college wage premium in this section. To identify the effect of WO-CBTC on the

differential wage growth of skill group g, I estimate equations of the form

∆wj,s,g,t = γ0 + β1 ×WOCBTCj,s,t + β2Xj,s,t0 + β3∆zj,s,t + δs + ej,s,g,t (4.7)

where the dependent variable is the change in the log hourly wage rate between 2006

and 2017 in PUMA j in state s. WOCBTCj,s,t is instrumented by its predicted value¤�WOCBTCj,s,t. The original start-of-analysis population characteristics of PUMA j

22 This intuition makes the usage of my instrument for estimating the effect of WO-CBTC on task
shifts between occupations implausible as the latter - likewise to task changes within occupations -
depend on the historical occupational composition.
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are amended by the vector zj,s,t, which controls for changes in relative employment

shares between the four task-based major occupation groups. The vector is included to

take into account the findings of the last section, along with the intuition that larger

growth of non-routine cognitive occupations could be systematically related to faster

wage growth within PUMAs.23 To obtain a more detailed picture of the predicted

wage changes due to cognitive-biased task changes within occupations, I additionally

estimate equation 4.7 by gender and occupation groups.

Panel A of Table 4.9 presents the results of the estimated wage equations. PUMAs

at the 80th percentile of WO-CBTC show a 1.3 log point differential decennial de-

cline (0.03*(-0.433)) in high-school wages compared to PUMAs at the 20th percentile,

whereby the differential decrease is almost twice the magnitude in non-routine cogni-

tive occupations with 2.4 log points (0.03*(-0.807)). No significant effect on the wages

of high-school workers is found in other occupation groups. This finding complements

the considerable decline in the share of non-college workers in non-routine cognitive

occupations shown in Table 4.7. On the contrary, Table 4.9 does not show a significant

effect on the wages of college workers despite the expected relative productivity increase

of high-skilled workers in local labour markets more exposed to WO-CBTC.

The different wage effects on college and high-school workers are consistent with my

previous findings on population growth of different skill groups between local labour

markets (see Section 4.4.1). While high-skilled workers reallocate to regions with in-

creasing demand for cognitive ability, the increased labour supply potentially has equal-

izing effects on their wages compared to less exposed regions. On the other hand, low-

skilled potentially face declining relative productivity effects and higher competition

with high-skilled workers in more exposed PUMAs. As a result, the growing low-skilled

working-age population and the increased supply of non-cognitive abilities possibly push

down workers’ wages with only a high-school degree or no degree.

Differences between the effects on men (columns 3-4) and women (columns 5-6) can

be observed within the group of routine cognitive occupations. Only male high-school

and female college workers experienced significantly less wage growth between 2006 and

2017 in more exposed PUMAs. In addition, female high school workers employed in

23 The results are robust when excluding the occupation share vector.
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Table 4.9: The Causal Effect of Within-Occupation CBTC on Wages
and the College Wage Premium

(2SLS. Dependent Variable: 10 × Annual Change in Log Wages and Log College Premium)

All Men Women

College High-School College High-School College High-School

Panel A. Change in log hourly wages (for all occupations and within groups)

(i) all occupations -0.044 -0.433** -0.046 -0.386 0.201 -0.527***
(0.184) (0.211) (0.235) (0.250) (0.184) (0.199)

(ii) non-routine cognitive 0.082 -0.807*** 0.116 -1.168** 0.356* -0.420
(0.233) (0.305) (0.321) (0.502) (0.198) (0.477)

(iii) routine cognitive -0.591* -0.192 -0.214 -0.878** -0.747** 0.260
(0.359) (0.223) (0.471) (0.368) (0.365) (0.298)

(iv) non-routine manual -0.129 -0.312 -0.188 -0.139 0.172 -0.415
(0.623) (0.269) (0.615) (0.310) (0.921) (0.313)

(v) routine manual 1.403 -0.103 0.589 0.075 1.045 -1.084**
(0.948) (0.366) (1.089) (0.534) (1.682) (0.474)

Panel B. Change in log college wage premium (for all occupations and within groups)

(i) all occupations 0.693** 0.755 0.985***
(0.329) (0.473) (0.340)

(ii) non-routine cognitive 1.539*** 1.957** 1.067**
(0.465) (0.775) (0.484)

(iii) routine cognitive -0.064 0.902 -0.807
(0.537) (0.728) (0.628)

(iv) non-routine manual 0.566 0.552 0.264
(0.629) (0.569) (1.200)

(v) routine manual 1.253 0.165 2.564
(1.062) (1.209) (1.772)

Notes: N = 1,078 Public Use Microdata Areas (PUMAs). The dependent variable in Panel A is the first difference of
the log hourly wage rate between 2006 and 2017. The college wage premium in Panel B is the log of the average hourly
wage rate of workers with at least a college degree divided by the average hourly wage rate of workers with a high-
school degree or no degree. All coefficients are multiplied by 10/11 to represent a 10 × annual change. The table shows
the estimated causal effect of PUMAs’ within-occupation cognitive-biased technological change (WO-CBTC) on wages
and the wage premium. All regressions include the complete set of controls from column 6 of Table 4.5 and additional
controls to account for the relative changes in employment shares between four major occupation groups (non-routine
cognitive, routine cognitive, non-routine manual and routine manual). The underlying sample includes all “full-time
year-round workers” who are not self-employed. Hourly wages are calculated by dividing the yearly pre-tax wage and
salary income (including wages, salaries, commissions, cash bonuses, tips, and other income received from an employer)
by the number of weeks worked multiplied by the usual hours worked per week. The pre-tax wage income is top-coded
based on IPUMS state and year-specific pre-tax labour income top codes. Hourly wages below the first percentile of
the wage distribution are set equal to the wage rate at the first percentile. Observations are weighted by PUMAs’ pop-
ulation shares in 2006. Robust standard errors are clustered at the state level and shown in parentheses. ***/**/*
significant at the 1% 5% and 10% level.

routine manual occupations show a significant relative wage decline if they reside in

PUMAs with higher exposure to cognitive-biased task changes. No such effect can be

observed for men. Besides these differences, the results align with the general findings

in columns 1 and 2.

Panel B of Table 4.9 documents the differential changes in the college wage premium

between PUMAs of different technology exposure. For the estimation of the college wage

premium, I use equation 4.7 but with the first difference of the log college wage premium
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(wc/whs) as the dependent variable. Complementing the decreased wages of high-

school workers, I find that PUMAs at the 80th percentile of WO-CBTC experienced a

2.1 log points differential decennial increase (0.03*0.693) in the college wage premium

compared to PUMAs at the 20th percentile. Consistent with previous findings, the

overall college wage premium increase is driven by non-routine-cognitive occupations,

which show a differential increase in the college wage premium of 4.6 log points. To

put these numbers into context, Autor et al. (1998) find an average annual increase

in the college wage premium of 0.25 log points from 1950 to 1996. The estimated

decennial 80/20 differential growth rate is comparable in size, although measuring the

college premium between local labour markets instead of aggregate changes over time.

Regarding gender disparities, the overall effect on the skill wage premium is positive for

both men and women, although the effect is only significant for women. Both men and

women show significantly increased college wage premiums within non-routine cognitive

occupations.

4.5 Conclusion

This study shows that task changes within occupations systematically increase the

demand for cognitive ability but with substantial heterogeneity between different oc-

cupations and across local labour markets. I exploited the differential changes in occu-

pations’ cognitive task bias together with local labour markets’ preexisting industrial

specialization to estimate the causal effect of local labour markets’ exposure to within-

occupation technological change on population growth, employment and wages by skill

group. Between 2006 and 2017, the population of high-skilled workers increased in lo-

cal labour markets with higher exposure to cognitive-biased technological change. At

the same time, highly exposed labour markets show a disproportionate increase in the

working-age population of low-skilled workers. At first glance, this trend seems coun-

terintuitive as the relative productivity of low-skilled workers in highly exposed regions

would be expected to diminish compared to the other areas. A plausible explana-

tion for the substantial population growth of low-skilled workers in cognitive-intensity-

increasing regions could be that workers anticipate negative wage or employment effects
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in areas that show slower growth rates in cognitive task demand. The conception that

workers adjust between local labour markets in anticipation of skill demand changes is

pointed out by Topel (1986) and Beaudry et al. (2010) - two studies closely related to

my work.

The technology-induced low-skilled population growth combined with the poten-

tially declining relative productivity puts downward pressure on the wages of high-

school workers and high-school dropouts. With the wages of high-skilled workers being

equalized through skill supply adjustments across local labour markets, the downward

pressure on the wages of low-skilled workers leads to rising college wage premiums.

This trend is most substantial within non-routine cognitive occupations. Moreover,

cognitive-biased within-occupation technological change crowds workers without a col-

lege degree out of non-routine cognitive occupations. The crowding-out effect is con-

sistent with the finding that non-routine cognitive occupations experienced the most

significant increase in the importance of cognitive ability. Finally, this leads to higher

employment shares of college workers and higher labour force non-participation rates

of non-college workers.

The results suggest that cognitive-biased technological progress adversely affects dis-

located low-skilled workers. Active labour market policies such as efficient job training

and skill improvement are necessary to address these issues and combat growing educa-

tional wage gaps. Another challenge in the long run will be to combat growing inequality

between local labour markets. The U.S. Department of Commerce recently announced

that “Geographic income inequality has risen more than 40% between 1980 and 2021”.

My study suggests that the diverging developments between local labour markets could

contribute to this trend. Making population-decreasing local labour markets more at-

tractive to high-skilled workers and investing in labour-enhancing technologies could be

the supporting instruments to tackle this problem.
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noncognitive skill. American Economic Journal: Applied Economics, 14(2):78–100.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., and Strahan, E. J. (1999). Eval-
uating the use of exploratory factor analysis in psychological research. Psychological
Methods, 4(3):272.

Felten, E. W., Raj, M., and Seamans, R. (2018). A method to link advances in artificial
intelligence to occupational abilities. In AEA Papers and Proceedings, volume 108,
pages 54–57. American Economic Association 2014 Broadway, Suite 305, Nashville,
TN 37203.

Firpo, S., Fortin, N. M., and Lemieux, T. (2011). Occupational tasks and changes in
the wage structure. IZA Discussion Paper.

Fleisher, M. S. and Tsacoumis, S. (2012). O*NET analyst occupational abilities ratings:
Procedures update. Alexandria, VA: Human Resources Research Organization.

Freeman, R. B., Ganguli, I., and Handel, M. J. (2020). Within-occupation changes
dominate changes in what workers do: A shift-share decomposition, 2005–2015. In
AEA Papers and Proceedings, volume 110, pages 394–399. American Economic As-
sociation 2014 Broadway, Suite 305, Nashville, TN 37203.

Frey, C. B. and Osborne, M. (2017). The future of employment: How susceptible are
jobs to computerisation? Technological Forecasting and Social Change, 114:254–280.

Goldsmith-Pinkham, P., Sorkin, I., and Swift, H. (2020). Bartik instruments: What,
when, why, and how. American Economic Review, 110(8):2586–2624.

Greenland, A., Lopresti, J., and McHenry, P. (2019). Import competition and internal
migration. Review of Economics and Statistics, 101(1):44–59.

Guvenen, F., Kuruscu, B., Tanaka, S., and Wiczer, D. (2020). Multidimensional skill
mismatch. American Economic Journal: Macroeconomics, 12(1):210–244.

Handel, M. J. (2016). The O*NET content model: strengths and limitations. Journal
for Labour Market Research, 49(2):157–176.

Hershbein, B. and Kahn, L. B. (2018). Do recessions accelerate routine-biased tech-
nological change? evidence from vacancy postings. American Economic Review,
108(7):1737–1772.

173



Ingram, B. F. and Neumann, G. R. (2006). The returns to skill. Labour Economics,
13(1):35–59.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Edu-
cational and Psychological Measurement, 20(1):141–151.

Katz, L. F. and Murphy, K. M. (1992). Changes in relative wages, 1963–1987: supply
and demand factors. The Quarterly Journal of Economics, 107(1):35–78.

Meyer, P. B., Osborne, A. M., et al. (2005). Proposed category system for 1960-2000
census occupations.

Noble, C. L., Sager, C., Tsacoumis, S., Updegraff, J., and Donsbach, J. (2003). O*NET
analyst occupational abilities ratings: Wave 1 results.

Notowidigdo, M. J. (2020). The incidence of local labor demand shocks. Journal of
Labor Economics, 38(3):687–725.

Poletaev, M. and Robinson, C. (2008). Human capital specificity: evidence from the
dictionary of occupational titles and displaced worker surveys, 1984–2000. Journal
of Labor Economics, 26(3):387–420.

Robinson, C. (2018). Occupational mobility, occupation distance, and specific human
capital. Journal of Human Resources, 53(2):513–551.

Ross, M. B. (2017). Routine-biased technical change: Panel evidence of task orientation
and wage effects. Labour Economics, 48:198–214.

Roy, A. D. (1951). Some thoughts on the distribution of earnings. Oxford Economic
Papers, 3(2):135–146.

Ruggles, S., Flood, S., Sobek, M., Brockman, D., Cooper, G., Richards,
S., and Schouweiler, M. (2023). Integrated Public Use Microdata Se-
ries. IPUMS USA: Version 13.0 [dataset] Minneapolis, MN: IPUMS, 2023.
https://doi.org/10.18128/D010.V13.0.

Schroeder, J. P. and Pacas, J. D. (2021). Across the rural–urban universe: Two contin-
uous indices of urbanization for us census microdata. Spatial Demography, 9:131–154.

Shrout, P. E. and Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater
reliability. Psychological Bulletin, 86(2):420.

Spitz-Oener, A. (2006). Technical change, job tasks, and rising educational demands:
Looking outside the wage structure. Journal of Labor Economics, 24(2):235–270.

Tippins, N. T. and Hilton, M. L. (2010). A database for a changing economy: Review
of the Occupational Information Network (O*NET). National Academies Press.

Tolan, S., Pesole, A., Mart́ınez-Plumed, F., Fernández-Maćıas, E., Hernández-Orallo,
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Appendix to Chapter 4

C.1 O*NET and IPUMS ACS Occupation Data

To make systematic use of the O*NET data in this study, I undertake two steps: first,
this study needs to work with a balanced occupation panel as it aims to investigate task
changes within detailed occupations and their effects on the U.S. labour market. While
a balanced occupation panel applied to the IPUMS Census and American Community
Survey (ACS) data has been carefully constructed by Dorn (2009), it only covers the
years between 1980 and 2005 and is based on an outdated Census occupation classi-
fication of 1990 following Meyer et al. (2005). The standard strategy of researchers
who work with more recent ACS data files is to extend this occupation panel (see, e.g.,
Deming, 2017). However, this is not an optimal solution for my analysis, which starts
after 2000, marking an essential break in the Census-based occupation structure. As
a result, the number of tractable occupations in the ACS dramatically increased since
the 2000s. As dropping a large proportion of occupations would cause a loss of valuable
information, I constructed a new balanced occupation panel (‘occ2010fr’), which can
be used from 2000 onward. The new occupation panel includes 430 different occupa-
tions and better reflects the contemporary labour market. Appendix B.2 documents
the conducted occupation crosswalk in the ACS.

Second, I map the O*NET ability importance ratings of the 16.0 and 25.0 databases
into the occupation panel. As the target is to measure changes within occupations, I can
only use O*NET occupations available in both databases, allowing me to include 862
different O*NET occupations. Although the O*NET occupation classification is finer
(8-digit) than the classification in the ACS (6-digit), both systems can be linked with
the Standard Occupation Classification System (SOC) to map the finer O*NET data
into my panel. To achieve this goal, I use a “weighted crosswalk” approach using start-
of-analysis population counts from the 2008 Occupation and Employment Statistics
(OES) provided by the Bureau of Labour Statistics. The population weights are held
constant at 2008 levels as I do not want to intermingle changes in ability requirements
within occupations with shifts in relative employment shares between the finer O*NET
occupations that are grouped into broader occupations in my panel.
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C.2 Balanced Occupation Panel: 2000-2023

ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

Management Occupations

10 Chief executives/legislators 10 10 10 10 10
30 10 10 10 10

20 General and operations 20 20 20 20 20
40 Advertising/promotions 40 40 40 40 40
50 Marketing/sales 50 50 50 50 51

52
60 Public relations 60 60 60 60 60
100 Admin. services 100 100 100 100 101

102
110 Computer/info. systems 110 110 110 110 110
120 Financial 120 120 120 120 120
130 Human resources 130 130 135 135 135

136 136 136
137 137 137

140 Industrial production 140 140 140 140 140
150 Purchasing 150 150 150 150 150
160 Transport./storage/distribution 160 160 160 160 160
205 Farmers/ranchers/agricultural 200 200 205 205 205

210 210
220 Construction 220 220 220 220 220
230 Education admin. 230 230 230 230 230
300 Architectural/engineering 300 300 300 300 300
310 Food service 310 310 310 310 310
330 Entertainment/recreation 330 330 330 330 335
340 Lodging 340 340 340 340 340
350 Medical/health services 350 350 350 350 350
360 Natural sciences 360 360 360 360 360
410 Property/real estate/community assoc. 410 410 410 410 410
420 Social/community service 420 420 420 420 420
430 Managers, nec 400 430 430 430 440

430 705

Business and Financial Operations Occupations

500 Agents of artists/perform./athletes 500 500 500 500 500
510 Purchasing agents, farm products 510 510 510 510 510
520 Retail buyers, exc. farm products 520 520 520 520 520
530 Purchasing agents, exc. retail/farm 530 530 530 530 530
540 Claims adjusters/appraisers/examiners 540 540 540 540 540
560 Compliance officers 560 560 565 565 565
600 Cost estimators 600 600 600 600 600
620 Human resources specialists 620 620 630 630 630

640 640 640
650 650 650

700 Logisticians 700 700 700 700 700
710 Management analysts 710 710 710 710 710
720 Meeting/convention/event planners 720 720 725 725 725
740 Business operations specialists, nec 730 730 425 425 425

740 740 750
800 Accountants/auditors 800 800 800 800 800
810 Property appraisers/assessors 810 810 810 810 810
820 Budget analysts 820 820 820 820 820
830 Credit analysts 830 830 830 830 830
840 Financial analysts 840 840 840 840 845
850 Personal financial advisors 850 850 850 850 850
860 Insurance underwriters 860 860 860 860 860
900 Financial examiners 900 900 900 900 900
910 Loan counselors/officers 910 910 910 910 910
930 Tax examiners/collectors/revenue agents 930 930 930 930 930
940 Tax prepares 940 940 940 940 940
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

950 Financial specialists, nec 950 950 950 950 960

Computer and Mathematical Occupations

1000 Computer scientists/systems analysts 1000 1000 1005 1005 1005
5800 5800 1006 1006 1006

1107 1107 1108
5800 5800

1010 Computer programmers 1010 1010 1010 1010 1010
1020 Software developers 1020 1020 1020 1020 1021

1022
1060 Database admin. 1060 1060 1060 1060 1065
1100 Network/computer systems admin. 1040 1040 1050 1050 1050

1100 1100 1105 1105 1105
1110 1110 1007 1007 1007

1106 1106 1106
1030 1030 1031

1032
1200 Actuaries 1200 1200 1200 1200 1200
1220 Operations research analysts 1220 1220 1220 1220 1220
1240 Mathematicians/statisticians 1210 1240 1240 1240 1240

1230
1240

Architecture and Engineering Occupations

1300 Architects, exc. naval 1300 1300 1300 1300 1305
1306

1310 Surveyors/cartographers/photogrammetrists 1310 1310 1310 1310 1310
1320 Aerospace engineers 1320 1320 1320 1320 1320
1340 Agricultural/biomedical engineers 1330 1340 1340 1340 1340

1340
1350 Chemical engineers 1350 1350 1350 1350 1350
1360 Civil engineers 1360 1360 1360 1360 1360
1400 Computer hardware engineers 1400 1400 1400 1400 1400
1410 Electrical/electronic engineers 1410 1410 1410 1410 1410
1420 Environmental engineers 1420 1420 1420 1420 1420
1430 Industrial engineers 1430 1430 1430 1430 1430
1440 Marine engineers 1440 1440 1440 1440 1440
1450 Materials engineers 1450 1450 1450 1450 1450
1460 Mechanical engineers 1460 1460 1460 1460 1460
1520 Petroleum/mining/geological engineers 1500 1520 1520 1520 1520

1520
1530 Engineers, nec 1510 1530 1530 1530 1530

1530
1540 Drafters 1540 1540 1540 1540 1541

1545
1550 Engineering technicians, exc. drafters 1550 1550 1550 1550 1551

1555
1560 Surveying/mapping technicians 1560 1560 1560 1560 1560

Life, Physical, and Social science Occupations

1600 Agricultural/food scientists 1600 1600 1600 1600 1600
1610 Biological scientists 1610 1610 1610 1610 1610
1640 Conservation scientists/foresters 1640 1640 1640 1640 1640
1650 Medical scientists 1650 1650 1650 1650 1650
1700 Astronomers/physicists 1700 1700 1700 1700 1700
1710 Atmospheric/space scientists 1710 1710 1710 1710 1710
1720 Chemists/materials scientists 1720 1720 1720 1720 1720
1740 Environmental scientists 1740 1740 1740 1740 1745

1750
1760 Physical scientists, nec 1760 1760 1760 1760 1760
1800 Economists 1800 1800 1800 1800 1800
1810 Market/survey researchers 1810 1810 735 735 735

1815 1815
1820 Psychologists 1820 1820 1820 1820 1821

1822
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

1825
1840 Urban/regional planners 1840 1840 1840 1840 1840
1860 Sociologists/social scientists, nec 1830 1860 1860 1860 1860

1860
1900 Agricultural/food science techs 1900 1900 1900 1900 1900
1910 Biological techs 1910 1910 1910 1910 1910
1920 Chemical techs 1920 1920 1920 1920 1920
1970 Life/physical/social science techs, nec 1930 1930 1930 1930 1935

1940 1940 1940 1940 1970
1960 1960 1950 1950

1965 1965

Community and Social Service Occupations

2000 Counselors 2000 2000 2000 2000 2001
2002
2003
2004
2005
2006

2010 Social workers 2010 2010 2010 2010 2011
2012
2013
2014

2020 Community/social service specialists, nec 2020 2020 2015 2015 2015
2016 2016 2016
2025 2025 2025

2040 Clergy 2040 2040 2040 2040 2040
2050 Directors, religious activities/education 2050 2050 2050 2050 2050
2060 Religious workers, nec 2060 2060 2060 2060 2060

Legal Occupations

2100 Lawyers/judges/magistrates 2100 2100 2100 2100 2100
2110

2160 Legal support workers 2140 2140 2105 2105 2105
2150 2150 2145 2145 2145

2160 2160 2170
2180
2862

Education, Training, and Library Occupations

2200 Postsecondary teachers 2200 2200 2200 2200 2205
2300 Preschool/kindergarten teachers 2300 2300 2300 2300 2300
2310 Elementary/middle school teachers 2310 2310 2310 2310 2310
2320 Secondary school teachers 2320 2320 2320 2320 2320
2330 Special education teachers 2330 2330 2330 2330 2330
2340 Teachers and instructors, nec 2340 2340 2340 2340 2350

2360
2400 Archivists/curators/museum techs 2400 2400 2400 2400 2400
2430 Librarians 2430 2430 2430 2430 2435
2440 Library techs 2440 2440 2440 2440 2440
2540 Teacher assistants 2540 2540 2540 2540 2545
2550 Education/training/library workers, nec 2550 2550 2550 2550 2555

Arts, Design, Entertainment, Sports, and Media Occupations

2600 Artists 2600 2600 2600 2600 2600
2630 Designers 2630 2630 2630 2630 2631

2632
2633
2334
2335
2336
2340

2700 Actors 2700 2700 2700 2700 2700
2710 Producers/directors 2710 2710 2710 2710 2710

179



ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

2720 Athletes/coaches/umpires 2720 2720 2720 2720 2721
2722
2723

2740 Dancers/choreographers 2740 2740 2740 2740 2740
2750 Musicians/singers 2750 2750 2750 2750 2751

2752
2760 Entertainers/performers, nec 2760 2760 2760 2760 2755

2770
2800 Announcers 2800 2800 2800 2800 2805
2810 News analysts/reporters/correspondents 2810 2810 2810 2810 2810
2820 Public relations specialists 2820 2820 2825 2825 2825
2830 Editors 2830 2830 2830 2830 2830
2840 Technical writers 2840 2840 2840 2840 2840
2850 Writers/authors 2850 2850 2850 2850 2850
2860 Media/communication workers, nec 2860 2860 2860 2860 2861

2865
2905 Broadcast/sound engineering techs 2900 2900 2900 2900 2905

2960
2910 Photographers 2910 2910 2910 2910 2910
2920 Television/video camera operators/editors 2920 2920 2920 2920 2920

Healthcare Practitioners and Technical Occupations

3000 Chiropractors 3000 3000 3000 3000 3000
3010 Dentists 3010 3010 3010 3010 3010
3030 Dietitians/nutritionists 3030 3030 3030 3030 3030
3040 Optometrists 3040 3040 3040 3040 3040
3050 Pharmacists 3050 3050 3050 3050 3050
3060 Physicians/surgeons 3060 3060 3060 3060 3090

3100
3110 Physician assistants 3110 3110 3110 3110 3110
3120 Podiatrists 3120 3120 3120 3120 3120
3130 Nurses 3130 3130 3255 3255 3255

3256 3256 3256
3258 3258 3258

3140 Audiologists 3140 3140 3140 3140 3140
3150 Occupational therapists 3150 3150 3150 3150 3150
3160 Physical therapists 3160 3160 3160 3160 3160
3200 Radiation therapists 3200 3200 3200 3200 3200
3210 Recreational therapists 3210 3210 3210 3210 3210
3220 Respiratory therapists 3220 3220 3220 3220 3220
3230 Speech-language pathologists 3230 3230 3230 3230 3230
3245 Therapists, nec 3240 3240 3245 3245 3245
3250 Veterinarians 3250 3250 3250 3250 3250
3260 Health diagnosing/treating, nec 3260 3260 3260 3260 3261

3270
3300 Clinical laboratory techs 3300 3300 3300 3300 3300
3310 Dental hygienists 3310 3310 3310 3310 3310
3320 Diagnostic related techs 3320 3320 3320 3320 3321

3322
3323
3324
3330

3400 Emergency medical techs/paramedics 3400 3400 3400 3400 3401
3402

3420 Health practitioner support techs 3410 3410 3420 3420 3421
3422
4323
3424
3430

3500 Licensed practical/vocational nurses 3500 3500 3500 3500 3500
3510 Medical records/health information techs 3510 3510 3510 3510 3515
3520 Opticians, dispensing 3520 3520 3520 3520 3520
3530 Health techs, nec 3530 3530 3535 3535 3545
3540 Healthcare practitioners, nec 3540 3540 3540 3540 1980

3550
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

Healthcare Support Occupations

3600 Nursing/psychiatric/home health aides 3600 3600 3600 3600 3601
3603
3605

3610 Occupational therapist assistants 3610 3610 3610 3610 3610
3620 Physical therapist assistants 3620 3620 3620 3620 3620
3630 Massage therapists 3630 3630 3630 3630 3630
3640 Dental assistants 3640 3640 3640 3640 3640
3650 Medical assistants, nec 3650 3650 3645 3645 3645

3646 3646 3646
3647 3647 3647
3648 3648 3648
3649 3649 3649
3655 3655 3655

Protective Service Occupations

3700 Supervisors of correctional officers 3700 3700 3700 3700 3700
3710 Supervisors of police/detectives 3710 3710 3710 3710 3710
3720 Supervisors of fire fighters 3720 3720 3720 3720 3720
3730 Supervisors of protective services, nec 3730 3730 3730 3730 3725
3740 Fire fighters 3740 3740 3740 3740 3740
3750 Fire inspectors 3750 3750 3750 3750 3750
3800 Bailiffs/correctional officers/jailers 3800 3800 3800 3800 3801

3802
3820 Detectives/criminal investigators 3820 3820 3820 3820 3820
3840 Law enforcement officers 3830 3840 3840 3840 3840

3840
3870 Police officers 3850 3850 3850 3850 3870

3860
3900 Animal control workers N/A 3900 3900 3900 3900
3910 Private detectives/investigators 3910 3910 3910 3910 3910
3930 Security guards/gaming surveillance 3920 3920 3930 3930 3930
3940 Crossing guards 3940 3940 3940 3940 3940
3950 Protective service workers, nec 3950 3950 3945 3945 3945

3955 3955 3946
3960

Food Preparation and Serving Related Occupations

4000 Chefs/head cooks 4000 4000 4000 4000 4000
4010 Supervisors of food serving workers 4010 4010 4010 4010 4010
4020 Cooks 4020 4020 4020 4020 4020
4030 Food preparation workers 4030 4030 4030 4030 4030
4040 Bartenders 4040 4040 4040 4040 4040
4055 Fast food/counter workers 4050 4050 4050 4050 4055

4060 4060 4060 4060
4110 Waiters/waitresses 4110 4110 4110 4110 4110
4120 Food servers, non-restaurant 4120 4120 4120 4120 4120
4140 Dishwashers 4140 4140 4140 4140 4140
4150 Hosts and hostesses, restaurant 4150 4150 4150 4150 4150
4160 Food preparation/serving workers, nec 4130 4130 4130 4130 4130

4160 4160

Building and Grounds Cleaning and Maintenance Occupations

4200 Supervisors of janitorial workers 4200 4200 4200 4200 4200
4210 Supervisors of landscaping workers 4210 4210 4210 4210 4210
4220 Janitors/building cleaners 4220 4220 4220 4220 4220
4230 Maids/housekeeping cleaners 4230 4230 4230 4230 4230
4240 Pest control workers 4240 4240 4240 4240 4240
4250 Grounds maintenance workers 4250 4250 4250 4250 4251

4252
4153

Personal Care and Service Occupations

4330 Supervisors of personal care workers 4300 4300 4300 4300 4330
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

4320 4320 4320 4320

4340 Animal trainers 4340 4340 4340 4340 4340
4350 Non-farm animal caretakers 4350 4350 4350 4350 4350
4400 Gaming services workers 4400 4400 4400 4400 4400
4420 Ushers/lobby attendants/ticket takers 4420 4420 4420 4420 4420
4435 Entertainment attendants, nec 4430 4410 4410 4410 4435

4430 4430 4430
4460 Embalmers/crematory operators 4460 4460 4460 4460 4461
4465 Morticians/undertakers/funeral directors 320 320 4465 4465 4465
4500 Barbers 4500 4500 4500 4500 4500
4510 Hairdressers/hairstylists/cosmetologists 4510 4510 4510 4510 4510
4520 Personal appearance workers, nec 4520 4520 4520 4520 4521

4522
4525

4530 Baggage porters/bellhops/concierges 4530 4530 4530 4530 4530
4540 Tour/travel guides 4540 4540 4540 4540 4540
4600 Childcare workers 4600 4600 4600 4600 4600
4610 Personal/home care aides 4610 4610 4610 4610 3602
4620 Recreation/fitness workers 4620 4620 4620 4620 4621

4622
4640 Residential advisors 4640 4640 4640 4640 4640
4650 Personal care/service workers, nec 4650 4650 4650 4650 4655

Sales and Related Occupations

4700 Supervisors of retail sales 4700 4700 4700 4700 4700
4710 Supervisors of non-retail sales 4710 4710 4710 4710 4710
4720 Cashiers 4720 4720 4720 4720 4720
4740 Counter/rental clerks 4740 4740 4740 4740 4740
4750 Parts salespersons 4750 4750 4750 4750 4750
4760 Retail salespersons 4760 4760 4760 4760 4760
4800 Advertising sales agents 4800 4800 4800 4800 4800
4810 Insurance sales agents 4810 4810 4810 4810 4810
4820 Securities/commodities/financial sales agents 4820 4820 4820 4820 4820
4830 Travel agents 4830 4830 4830 4830 4830
4840 Sales representatives. of services, nec 4840 4840 4840 4840 4840
4850 Sales representatives, wholesale/manufacturing 4850 4850 4850 4850 4850
4900 Models/demonstrators/product promoters 4900 4900 4900 4900 4900
4920 Real estate brokers/sales agents 4920 4920 4920 4920 4920
4930 Sales engineers 4930 4930 4930 4930 4930
4940 Telemarketers 4940 4940 4940 4940 4940
4950 Door-to-door sales/news/street vendors 4950 4950 4950 4950 4950
4960 Sales workers, nec 4960 4960 726 726 726

4965 4965 4965

Office and Administrative Support Occupations

5000 Supervisors of office/admin. support 5000 5000 5000 5000 5000
5010 Switchboard operators 5010 5010 5010 5010 5010
5020 Telephone operators 5020 5020 5020 5020 5020
5030 Communications equipment operators, nec 5030 5030 5030 5030 5040
5100 Bill/account collectors 5100 5100 5100 5100 5100
5110 Billing/posting clerks 5110 5110 5110 5110 5110
5120 Bookkeeping/accounting/auditing clerks 5120 5120 5120 5120 5120
5140 Payroll/timekeeping clerks 5140 5140 5140 5140 5140
5150 Procurement clerks 5150 5150 5150 5150 5150
5160 Tellers 5160 5160 5160 5160 5160
5220 Court/municipal/license clerks 5220 5220 5220 5220 5220
5230 Credit authorizers/checkers/clerks 5230 5230 5230 5230 5230
5240 Customer service representatives 5240 5240 5240 5240 5240
5250 Eligibility interviewers, govt programs 5250 5250 5250 5250 5250
5260 File Clerks 5260 5260 5260 5260 5260
5300 Hotel/motel/resort desk clerks 5300 5300 5300 5300 5300
5310 Interviewers, exc. eligibility/loan 5310 5310 5310 5310 5310
5320 Library assistants, clerical 5320 5320 5320 5320 5320
5330 Loan interviewers/clerks 5330 5330 5330 5330 5330
5340 New accounts clerks 5340 5340 5340 5340 5340
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

5350 Correspondence/order clerks 5210 5350 5350 5350 5350
5350

5360 Human resources assistants, exc. payroll 5360 5360 5360 5360 5360
5400 Receptionists/information clerks 5400 5400 5400 5400 5400
5410 Reservation/transportation agents 5410 5410 5410 5410 5410
5420 Information/record clerks, nec 5200 5200 5200 5200 5420

5420 5420 5420 5420
5500 Cargo/freight agents 5500 5500 5500 5500 5500
5510 Couriers/messengers 5510 5510 5510 5510 5510
5520 Dispatchers 5520 5520 5520 5520 5521

5522
5530 Meter readers, utilities 5530 5530 5530 5530 5530
5540 Postal service clerks 5540 5540 5540 5540 5540
5550 Postal service mail carriers 5550 5550 5550 5550 5550
5560 Postal service mail sorters/operators 5560 5560 5560 5560 5560
5600 Production/planning/expediting clerks 5600 5600 5600 5600 5600
5610 Shipping/receiving/traffic clerks 5610 5610 5610 5610 5610
5620 Stock clerks/order fillers 5620 5620 5620 5620 9645
5630 Weighers/measurers/checkers/samplers 5630 5630 5630 5630 5630
5700 Secretaries/administrative assistants 5700 5700 5700 5700 5710

5720
5730
5740

5810 Data entry keyers 5810 5810 5810 5810 5810
5820 Word processors/typists 5820 5820 5820 5820 5820
5840 Insurance claims/policy processing clerks 5840 5840 5840 5840 5840
5850 Mail clerks/machine operators, exc. postal 5850 5850 5850 5850 5850
5860 Office clerks, general 5860 5860 5860 5860 5860
5900 Office machine operators, exc. computer 5900 5900 5900 5900 5900
5910 Proofreaders/copy markers 5910 5910 5910 5910 5910
5920 Statistical assistants 5920 5920 5920 5920 5920
5930 Office/administrative support, nec 5130 5130 5130 5130 5165

5830 5930 5165 5165 5940
5930 5940 5940

Farming, Fishing, and Forestry Occupations

6000 Supervisors of farming/fishing/forestry 6000 6000 6005 6005 6005
6010 Agricultural inspectors 6010 6010 6010 6010 6010
6040 Graders/sorters, agricultural products 6040 6040 6040 6040 6040
6050 Agricultural workers, nec 6020 6050 6050 6050 6050

6050
6115 Fishing/hunting workers 6100 6100 6100 6100 6115

6110
6120 Forest/conservation workers 6120 6120 6120 6120 6120
6130 Logging workers 6130 6130 6130 6130 6130

Construction and Extraction Occupations

6200 Supervisors of construction/extraction 6200 6200 6200 6200 6200
6210 Boilermakers 6210 6210 6210 6210 6210
6220 Brickmasons/blockmasons/stonemasons 6220 6220 6220 6220 6220

6500 6500 6500
6230 Carpenters 6230 6230 6230 6230 6230
6240 Carpet/floor/tile installers 6240 6240 6240 6240 6240
6250 Cement masons/terrazzo workers 6250 6250 6250 6250 6250
6260 Construction laborers 6260 6260 6260 6260 6260
6305 Construction equip. operators 6300 6300 6300 6300 6305

6310 6320 6320 6320
6320

6330 Drywall/ceiling tile installers/tapers 6330 6330 6330 6330 6330
6350 Electricians 6350 6350 6355 6355 6355
6360 Glaziers 6360 6360 6360 6360 6360
6400 Insulation workers 6400 6400 6400 6400 6400
6410 Painters/paperhangers 6420 6420 6420 6420 6410

6430 6430 6430
6440 Pipelayers/plumbers/pipefitters 6440 6440 6440 6440 6441

183



ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

6442
6460 Plasterers/stucco masons 6460 6460 6460 6460 6460
6510 Roofers 6510 6510 6515 6515 6515
6520 Sheet metal workers 6520 6520 6520 6520 6520
6530 Structural iron/steel workers 6530 6540 6530 6530 6530
6600 Helpers, construction trades 6600 6600 6600 6600 6600
6660 Construction/building inspectors 6660 6660 6660 6660 6660
6700 Elevator installers/repairers 6700 6700 6700 6700 6700
6710 Fence erectors 6710 6710 6710 6710 6710
6720 Hazardous materials removal workers 6720 6720 6720 6720 6720
6730 Highway maintenance workers 6730 6730 6730 6730 6730
6740 Rail-track laying/maintenance operators 6740 6740 6740 6740 6740
6760 Construction workers, nec 6750 6760 6540 6540 6540

6760 6765 6765 6765
6800 Derrick operators, oil/gas/mining 6800 6800 6800 6800 6800

6920
6820 Earth drillers, except oil/gas 6820 6820 6820 6820 6825
6830 Explosives workers 6830 6830 6830 6830 6835
6850 Underground mining operators 6840 6840 6840 6840 6850

9730
6950 Extraction workers, nec 6910 6940 6940 6940 6950

6930
6940

Installation, Maintenance, and Repair Occupations

7000 Supervisors of mechanics/repairers 7000 7000 7000 7000 7000
7010 Computer/automated teller repairers 7010 7010 7010 7010 7010
7020 Radio/tele equip. repairers 7020 7020 7020 7020 7020
7030 Avionics techs 7030 7030 7030 7030 7030
7040 Electric motor/power tool repairers 7040 7040 7040 7040 7040
7100 Electrical repairers, industrial/utility/vehicles 7050 7100 7100 7100 7100

7100 7110 7110 7110
7110

7120 Electronic home entertain equip. installers 7120 7120 7120 7120 7120
7130 Security/fire alarm systems installers 7130 7130 7130 7130 7130
7140 Aircraft mechanics/service techs 7140 7140 7140 7140 7140
7150 Automotive body repairers 7150 7150 7150 7150 7150
7160 Automotive glass installers 7160 7160 7160 7160 7160
7200 Automotive service techs/mechanics 7200 7200 7200 7200 7200
7210 Bus/truck/diesel engine mechanics 7210 7210 7210 7210 7210
7220 Heavy vehicle/mobile equipment mechanics 7220 7220 7220 7220 7220
7240 Small engine mechanics 7240 7240 7240 7240 7240
7260 Vehicle/mobile equip. mechanics/repairers, nec 7260 7260 7260 7260 7260
7300 Control/valve installers/repairers 7300 7300 7300 7300 7300
7310 Heating/air conditioning/refrigeration mechanics 7310 7310 7315 7315 7315
7320 Home appliance repairers 7320 7320 7320 7320 7320
7330 Industrial/refractory machinery mechanics 7330 7330 7330 7330 7330
7340 Maintenance/repair workers, general 7340 7340 7340 7340 7340
7350 Maintenance workers, machinery 7350 7350 7350 7350 7350
7360 Millwrights 7360 7360 7360 7360 7360
7410 Electrical power-line installers 7410 7410 7410 7410 7410
7420 Telecommunications line installers 7420 7420 7420 7420 7420
7430 Precision instrument/equipment repairers 7430 7430 7430 7430 7430
7510 Coin/vending/amusement machine repairers 7510 7510 7510 7510 7510
7540 Locksmiths/safe repairers 7540 7540 7540 7540 7540
7560 Riggers 7560 7560 7560 7560 7560
7610 Helpers - installation/maintenance/repair 7610 7610 7610 7610 7610
7640 Installation/maintenance/repair, nec 7520 7550 7550 7630 7640

7550 7620 7630
7600
7620

Production Occupations

7700 Supervisors of production workers 7700 7700 7700 7700 7700
7720 Electrical/electronics assemblers 7720 7720 7720 7720 7720
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occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

7730 Engine/machine assemblers 7730 7730 7730 7730 7730
7740 Structural metal fabricators/fitters 7740 7740 7740 7740 7740
7750 Assemblers/fabricators, nec 7710 7710 7710 7710 7750

7750 7750 7750 7750
7800 Bakers 7800 7800 7800 7800 7800
7810 Butchers/meat processing workers 7810 7810 7810 7810 7810
7830 Food/tobacco/baking operators 7830 7830 7830 7830 7830
7840 Food batchmakers 7840 7840 7840 7840 7840
7850 Food cooking machine operators 7850 7850 7850 7850 7850
7900 Computer control programmers, metal/plastic 7900 7900 7900 7900 7905
7925 Forming machine operators, metal/plastic 7920 7920 7920 7920 7925

7930 7930 7930 7930
7940 7940 7940 7940

8025 Machine tool operators, metal/plastic, nec 7950 7950 7950 7950 7950
7960 7960 7960 8000
8000 8000 8000 8025
8010 8010 8010
8020

8030 Machinists 8030 8030 8030 8030 8030
8040 Metal furnace/kiln operators 8040 8040 8040 8040 8040
8100 Molders, metal/plastic 8060 8060 8060 8100 8100

8100 8100 8100
8130 Tool/die makers 8130 8130 8130 8130 8130
8140 Welding/soldering/brazing workers 8140 8140 8140 8140 8140
8225 Metal/plastic workers, nec 8120 8150 8150 8220 8225

8150 8200 8200
8160 8210 8210
8200 8220 8220
8210
8220

8250 Prepress techs/workers 8250 8250 8250 8250 8250
8260 Printing operators 8230 8230 8255 8255 8255

8240 8240 8256 8256 8256
8260 8260

8300 Laundry/dry-cleaning workers 8300 8300 8300 8300 8300
8310 Pressers, textile/garment 8310 8310 8310 8310 8310
8320 Sewing machine operators 8320 8320 8320 8320 8320
8335 Shoe and leather workers/repairers 8330 8330 8330 8330 8335

8340 8340 8340
8350 Tailors/dressmakers/sewers 8350 8350 8350 8350 8350
8365 Textile machine setters/operators 8360 8400 8400 8400 8365

8400 8410 8410 8410
8410 8420 8420 8420
8420

8450 Upholsterers 8450 8450 8450 8450 8450
8465 Textile/apparel/furnishings workers, nec 8430 8460 8460 8460 8465

8440
8460

8500 Cabinetmakers/bench carpenters 8500 8500 8500 8500 8500
8510 Furniture finishers 8510 8510 8510 8510 8510
8530 Sawing machine operators, wood 8530 8530 8530 8530 8530
8540 Woodworking machine operators, exc. sawing 8540 8540 8540 8540 8540
8555 Woodworkers, nec 8520 8550 8550 8550 8555

8550
8600 Power plant operators 8600 8600 8600 8600 8600
8610 Stationary engineers/boiler operators 8610 8610 8610 8610 8610
8620 Water/liquid waste plant operators 8620 8620 8620 8620 8620
8630 Plant/system operators, nec 8630 8630 8630 8630 8630
8640 Chemical processing machine operators 8640 8640 8640 8640 8640
8650 Crushing/grinding/polishing workers 8650 8650 8650 8650 8650
8710 Cutting workers 8710 8710 8710 8710 8710
8720 Extruding/pressing machine operators 8720 8720 8720 8720 8720
8730 Furnace/kiln/oven/drier/kettle operators 8730 8730 8730 8730 8730
8740 Inspectors/testers/sorters/samplers 8740 8740 8740 8740 8740
8750 Precious stone/metal workers 8750 8750 8750 8750 8750
8760 Medical/dental/ophthalmic laboratory techs 8760 8760 8760 8760 8760
8800 Packaging/filling machine operators 8800 8800 8800 8800 8800
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8810 Painting workers 8810 8810 8810 8810 8810
8830 Photographic process workers 8830 8830 8830 8830 8830
8850 Adhesive bonding machine operators 8850 8850 8850 8850 8850
8910 Etchers/engravers 8910 8910 8910 8910 8910
8920 Molders/shapers/casters, exc. metal/plastic 8920 8920 8920 8920 8920
8930 Paper goods machine operators 8930 8930 8930 8930 8930
8940 Tire builders 8940 8940 8940 8940 8940
8950 Helpers - production 8950 8950 8950 8950 8950
8990 Production workers, nec 8840 8860 7855 7855 7855

8860 8960 8860 8965 8990
8900 8965
8960

Transportation and Material Moving Occupationss

9000 Supervisors of transportation/material moving 9000 9000 9000 9000 9005
9030 Aircraft pilots/flight engineers 9030 9030 9030 9030 9030
9040 Air traffic controllers/specialists 9040 9040 9040 9040 9040
9050 Transportation attendants 4550 4550 9050 9050 9050

9415 9415 9415
9110 Ambulance drivers/attendants N/A 9110 9110 9110 9110
9120 Bus drivers 9120 9120 9120 9120 9121

9122
9130 Driver/sales workers and truck drivers 9130 9130 9130 9130 9130
9140 Taxi drivers/chauffeurs 9140 9140 9140 9140 9141

9142
9150 Motor vehicle operators, nec 9150 9150 9150 9150 9150
9200 Locomotive engineers/operators 9200 9200 9200 9200 9210
9240 Railroad conductors/yardmasters 9240 9240 9240 9240 9240
9265 Rail transportation workers, nec 9230 9230 9230 9260 9265

9260 9260 9260
9300 Sailors/marine oilers/ship engineers 9300 9300 9300 9300 9300

9330
9310 Ship/boat captains/operators 9310 9310 9310 9310 9310
9350 Parking attendants 9350 9350 9350 9350 9350
9410 Transportation inspectors 9410 9410 9410 9410 9410
9430 Transportation workers, nec 9340 9360 9360 9360 9365

9360 9420 9420 9420 9430
9420

9510 Crane/tower operators 9510 9510 9510 9510 9510
9570 Conveyor/dredge/hoist/winch operators 9500 9520 9520 9520 9570

9520 9560 9560 9560
9560

9600 Industrial truck/tractor operators 9600 9600 9600 9600 9600
9610 Cleaners of vehicles/equipment 9610 9610 9610 9610 9610
9620 Laborers and freight/stock/material movers, hand 9620 9620 9620 9620 9620
9630 Machine feeders/offbearers 9630 9630 9630 9630 9630
9640 Packers/packagers, hand 9640 9640 9640 9640 9640
9650 Pumping station operators 9650 9650 9650 9650 9650
9720 Refuse/recyclable material collectors 9720 9720 9720 9720 9720
9760 Material moving workers, nec 9740 9750 9750 9750 9760

9750
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Chapter 5

Conclusion

The accelerating momentum of new technologies, rising competition among high-skilled

workers and heterogeneous workplace preferences in a constantly changing society have

reshaped the labour market during the last two decades. At the same time, highly

mobile workers adjust to long-term demand changes and temporary disturbances by

reallocating between regions, occupations and employers. The limited knowledge of the

mechanisms behind the supply adjustments in such a flexible labour market prompted

me to explore these topics more thoroughly. My thesis contributes to the empirical

labour and macroeconomic literature on the evolution of skill demand, labour mobility

and wage inequality.

In Chapter 2, I analysed the impact of task demand changes on different occupation

groups and workers with different characteristics in the U.S. labour market. I derived

occupation-specific composite measures of manual and cognitive task intensity for the

years 2008 and 2017 by using the updated O*NET ability rating procedure. Com-

bining the task intensity measures with representative U.S. survey data revealed very

heterogeneous developments in cognitive task demand between occupation groups. The

theoretical literature often assumes that technology mainly automates tasks of lower

complexity while newly emerging tasks are of higher complexity and, therefore, more

cognitive-intensive. Although I find a systematic decline in the demand for manual tasks

across all occupation groups, my results suggest that this development does not auto-

matically imply a replacement of manual-intensive tasks by cognitive-intensive tasks.

Instead, task changes within occupations are cognitive-biased for non-routine cognitive

occupations but cognitive-saving for routine manual and routine cognitive occupations.
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The heterogeneous task changes within occupations led to a polarisation of cognitive

intensity at the top of the wage distribution and increasing returns to cognitive inten-

sity in the U.S. labour market between 2008 and 2017.

In Chapter 3, I analysed the impact of transitory work-hour fluctuations on occu-

pational mobility in the U.S. labour market using the longitudinal dimension of the

monthly Current Population Survey (CPS). My results show that women’s propensity

to change occupations from month to month increases by 47 per cent when they are

in the highest quartile of work-hour fluctuations compared to an increase of 19 per

cent for men. While the recent literature focuses mainly on work schedule practices in

hospitality, food service and retail industries, my findings show that the positive effects

on mobility are significant for the entire U.S. labour market. My results further sug-

gest that workers with extreme work-hour fluctuations use the channel of occupational

mobility to alleviate their work-hour instability.

As occupational mobility includes the risk of losing crucial human capital, imple-

menting Fair Workweek laws at a broader regional and industry level could help to

protect workers from employer-driven work-hour instability. Besides the general impor-

tance of better protecting the workforce from precarious working conditions, the gender

differences unveiled in Chapter 3 suggest that female workers require particular assis-

tance. American Time Use Survey (ATUS) data and my results of different household

compositions suggest that women face more severe challenges balancing working and

non-working activities. Further research is warranted to better understand the intra-

household specialisation between women and men and the implications on occupation

choices.

In Chapter 4, I analysed the effects of local labour markets’ differential exposure to

within-occupation cognitive-biased technological change on mobility, wage changes and

employment of workers with different educational attainment. The results show that

regions with higher exposure grew faster in their working-age population between 2006

and 2017 by attracting both college and high-school workers. The increasing demand

for cognitive ability and the simultaneous increase in the labour supply of college work-

ers in growing regions neutralised the wage effects on college workers. On the other

hand, wages of high-school workers decreased in areas more exposed to cognitive-biased
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technological change. At the same time, the employment rates of non-college workers

declined while their labour force non-participation rates went up in more exposed re-

gions. The adverse employment effects are driven by the crowding out of non-college

workers in non-routine cognitive occupations. This observation is consistent with the

finding that non-routine cognitive occupations show the most substantial increase in

cognitive task bias.

The results of Chapter 4 indicate challenges related to medium-term and long-term

trends of increasing local labour market inequality, rising educational wage gaps and

the crowding out of low-skilled workers in local labour markets with higher exposure to

cognitive-biased technological change. To combat these challenges, the U.S. Department

of Labor plays an instrumental role in efficiently implementing active labour market

policies to help disadvantaged and dislocated workers. Boosting high-school workers’

skills, providing better job training, and facilitating job search and matching are the

necessary tools for a better alignment of labour demand and supply of the workforce in

growing regions.

Besides helping low-skilled workers who are dislocated to growing regions, it is

crucial to support regions with declining populations and to attract new high-skilled

workers. A long-term strategic approach could be to invest more systematically in new

technologies that complement workers’ skills rather than replace them. However, the

potential dynamics of new technologies such as artificial intelligence (AI) are difficult to

predict, making long-term approaches to supporting local labour markets challenging.

It appears that the current tendency to develop new technologies is to foster further task

automation instead of creating new tasks. Moreover, the faster pace of technological

progress in recent years suggests that new machine-learning algorithms, autonomous

driverless cars, and industrial robots will soon be able to automate a much broader

scale of tasks compared to the routine-biased technological change in the last decades.

However, some tasks related to perception, complex problem-solving, creativity and

social intelligence seem challenging to automate. To maintain a healthy labour market

in the future, we need to support workers in accumulating the complementary skills to

such tasks.
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