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STATISTICAL TESTS OF AGREEMENT BETWEEN
OBSERVATION AND HYPOTHESIS

Author's Note (CMS 7.a)

Papers 31 & 34 are attempts to reconcile, with the aid of the new con-
cept of degrees of freedom, the discrepant and anomalous results ob-
served by different authors, in the first case when confronted by
data of a fourfold table, and in the second with distributions requir-
ing the fitting of parameters. The types of confusion which had
arisen are of some historical interest.
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Statistical Tests of Agreement
between Observation and Hypothesis

By R. A. IISHER.
I- INTRODUCTORY.

IN arecent number (January, 1922) of the Journal of the Royal Statis-
tical Sociely (Ref. 1) T put forward a proof that the distribution of
x% the Pearsonian test of goodness of fit, 1s not known merely from
the number of frequency classes. In cases where the population,
with which the sample is compared in calculating x? has been itsclf
reconstructed from the sample, we must also take account of the
number of degrees of freedom absorbed in this process of reconstrue-
tion. The two cases of widest application were (i) contingency
tables in which the population is reconstructed by assigning to the
margins the frequencies observed in the sample, and (ii) frequency
curves constructed to agree with the sanple in respect of one or
nore moments.  The common sense of this correction lies in the
fact that when the population with which the sample is compared
has been artificially identified with the sample in certain respects,
such as the marginal frequencies, or the moments, we shall evidently
make an exaggerated estimate of the closeness of agreement between
sample and population, if we regard the sample as an unsclected
sample of a population known 4 priors. It was possible to show
that the distribution was in fact that which arises when from any
population a large number of samples are taken, and only those
samples chosen which agree with the population in (say) the marginal
frequencics ; these samples compared to the true population will
give values of y* distributed in the same manner as in the practical
case in which we compare any sample with a population artificially
constructed from it. Inboth these cases the value of #! with which
Elderton’s Table should be entered is found by adding unity to the
number of degrees of {reedom in which the sample and the popula-
tion are free to differ.

The following scheme shows the various forms of sampling which
have been considered in this discussion, and which have not always

Random Sample. Sclected Sample.

True population ... ... | A—No correc- | B.—Correction
tion needed. needed.

Reconstructed population | C.—Correction
needed.
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been clearly distinguished. A is the type of sampling considered by
Professor Pearson in his memoir of 1900 (2) ; when the distribution
of a random sample is given by the frequencies x, . . . x,, while the
distribution of the true population from which the sample was drawn
is given by m, . . . m,, when S(x)=S(m), then Pearson showed that

o-s (£

was distributed in the Type III distribution made available by
Elderton’s Table. = The true distribution of x* for any finite value
of S(x) is, of course, discontinuous, but when the frequencies in all
the cells are fairly large, the distribution of ¥2 is nearly independent
of S(x), and tends to that of the Type III curve. The distribution
still depends on the number of cells, and this number is equated to
n! in entering Elderton’s Table.

Although the validity of Pearson’s method of testing goodness of
fit (in case A) is not universally accepted, I know of no published
criticism to which it has been exposed, and personally do not
question its correctness when the frequencies are sufficiently large.

In case B there is also, so far as I am aware, no disagreement.
Pearson (3), in 1916, showed that in this case a complete correction

was possible by entering Elderton’s Table with a value of #!lessthan

that of the frequency classes by the number of linear restrictions
imposed on the sample.

The really important casc is C, in which the theoretical distribu-
tion is unknown, and is reconstructed from the marginal values of
the sample ; this case is by far the most frequent in actual practice.
It was the contention of my paper of January, 1922, that this case
is equivalent to B, for the same relations are established between
the sample and the population to which it is compared, either by
selecting such samples as agree with a known population, or by
comparing a sample chosen at random with a population constructed
to agrec with it in the same respects.

2--FourrFoLD TABLES.

In any fourfold table in which the marginal totals agree, with those
of the population to which it is compared in the calculation of y?,
the differences (x — ), have the same value, positive or negative,
in all four quadrants. The magnitude of this difference is clearly
a measure of the departure of the sample from expectation, and if
it is divided by its standard error of random sampling, we find the
same value y which appears in the Pearsonian test of goodness of
fit. From this it would appear that, with large samples, x tends
to be normally distributed in the distribution

I ~ix
e d
Vam X

which is identical with the Type III distribution of Elderton’s
Table for n'=1.

df ==
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Using this fact, Bowley (5, p. 371) tests the significance of two
contingency tables; this was so far as I know the only instance
previous to my note of January, 1922, in which the value of x* had
been correctly used to calculate P for testing the independence of
the variety in a tourfold table. It may easily be shown in the same
way that if ¥ be any measure of divergence from proportionality in
the case of a fourfold table, such as the difference of the percentages,

" then

x2

—_— a2

. ol X

For the differences of percentages see (x). For other measures I
may quote Pearson (6, p. 29) :

oThk o TP
where 7,,, Q, ¢, are all measures of the departure of the observed
table from independence, and ,o, etc., are the standard errors of
random sampling for a population in which the variates are inde-
pendent. Pearson, however, denies that X is normally distributed,
on the ground that from Elderton’s Table with »n! = 4, its distri-
bution should be

2

df:—.\/? _%de

oy

If I am right, Pearson was misled by assuming that #* = 4 gave
the correct distribution when the marginal frequencies of the popu-
lation are reconstructed from the sample, into the wholly untenable
view that 7,, Q, ¢, and other such measures, are not normally
distributed even in large samples, but that their distribution is that
given above. Since each of these quantities may be defined by a
natural convention so as to be equally frequently positive and
negative, the latter view involves the belief that their distribution
is bimodal, with a zero frequency at the central point of the sym-
metrical distribution.

The proof that for large samples the distribution of these quanti-
ties is normal is not difficult ; in the fourfold table

a b a-+b
c a c+d
a-c b+d | a+b+c+d
: . a _ ¢
let R ITv o4
I have shown (1) that f— = x%
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It is necessary now to show that the distribution of y will tend to
normality as the sample is increased. Considering the sub-sample
@ -+ b, the distribution of « will be that of the bionomial

B+qet?
hence the distribution of = :_ 3 tends to normality as & 4+ b is
increased indefinitely. Similarly that of = —ic- 3 tends to normality

with the same mean, but different standard deviation. Moreover,
from a population in which the two attributes are independent,
these will be two independent samples ; and it is well known that
the distiibution of the difference of two independent normally
distributed variates is itself normally distributed. Consequently,
% tends to be normally distributed about mean at zero ; if then

%

X——
Ox . .
x must be normally distributed with standard deviation unity,
while for its positive value

— __%XZ
df::‘/_:-e dy,

and not df:V_f_xze %X‘dx,
w
The difference of opinion is a simple one of fact. If I am right,
the mean value of y* =1, if Professor Pearson is right, it is 3.
Professor Bowley, on the other hand, regards two assumptions as
possible : In speaking of a table showing Incculated—Not inocu-
lated, Recovered—Died (4, Doubtful Case, p. 4), he writes:

“ If we applied the method of Case IIT (red and black cards) we
should be assuming the total number recovered, inoculated, etc.,
were given, and ask whether, if recovery and inoculation were
totally unconnected, so large a number would be found by
chance in the first compartment.

‘“ It we applied the method of Case IV we should be assuming
that we were examining only a sample from a larger universe in
which the proportions recovered : died and inoculated : not
inoculated were not known.”

It is difficult to know what meaning is to be attached to this dis-
tinction. Professor Bowley does not explain what difference there
is between this case and that treated in his book (5, p. 372), where
the divisions are Recovered—Died ; Not Vaccinated— Vaccinated,
for which, rightly in my opinion, he takes y to be normally distri-
buted. Nor does he explain why this case is considered doubtful, as
against Case 1V (Dull—Not Dull; With defects—Without) where
he, wrongly in my opinion, uses the formula #! = 4. In all these
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cases the marginal totals ¢n the sample are given, and in the popula-
tson are unknown, and since the latter in all these cases has been
reconstructed from the former, the sample can only differ from the
population in one degree of freedom. No assumption as to what we
know or do not know can alter the consequences of our procedure
in calculating x2, and this procedure is the same in all these cases. *

3—x® 4s Funcrion oF FREQUENCIES.

That the distribution of y* from random samples is determined
solely by the procedure by which it is calculated may be emphasized
by returning to first principles. In a fourfold table let the proba-
bilities that an event shall fall into each of the four compartments
be py, ps, Ps, P Then

Dttt pa=1,

and if the variates are independent

3 Pl 1’4 == Pn Pa,
so that we may write
Dr= PP, pa= qP', ps = P9, b0 = qq*

If now a sample of # be taken, the chance that the number of
observations in the four compartments are 4, b, ¢, d will be the term
of the multinomial expansion

n!
A Bl et al & P P P

Since the simultaneous distribution of 4, b, ¢, d is thus determinate
in terms of p;, P, Ps Do, and n, the distribution of any function of
a, b, ¢, and d, is also determinate. Two such functions may be
considered ; in the first place let

e gt b? c? az (@ —prn)?Y
2 — ‘ —n =S {200
X = B - pan T pn t pan P | (4)

‘this is the value of x2 used when p,, s, ps, P4, are known by hypo-

thesis and we desire to test if the observation a, 8, ¢, d is in accord-
ance with that hypothesis. It is agreed that this function tends to
be distributed as # is increased, in a manner independent of p,, p,,
ps, pe and #, in the distribution given in Elderton’s Table under
#E = 4.

When, however, py, pa, ps, Ps are not known, and it is required to
test, not any particular hypothesis of their values, but whether the
two variates are or are not distributed independently, then we
make the substitution

PCEDICE L

and so arrive at the formula
. (ad — bc)tn
R N ) R O R ) (B)

See Note on page 146 - R.A.F.
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This is a different function of 4, b, ¢, d from that previously used,
and the error of using the formula #! = 4, in testing independence,
consists in assuming, when &, b, ¢, d take all their possible values
with frequencies given by the multinomial formula, that this new
function is distributed in the same manner as the function previously
used. .
1t will scarcely be disputed, after what has been already said, that
if y is calculated by equation B, then it will be distributed in random
samples in a normal curve with standard deviation unity. If neces-
sary a formal and complete proof of this fact can be given. 1t is
sufficient here to point out the difference between the functions
A and B, and to emphasize the fact that the distribution found by
Pearson for function 4 cannot be assumed to be correct if B is the
function actually employed.

The differences between the two functions A and B are, in fact,
very great. A is a function of the probabilities p,, ps, £, pe, and
can only be used if these are provided by the hypothesis to be
tested ; it is distributed in accordance with the formula #n! = 4,
and its mean value is 3. On the other hand, B is a function of the
observed frequencies only, and is used to test independence, that is,
when our hypothesis tells us no more than that p,p, = pyps; it is
distributed in accordance with the formula #! = 2, and its mean
value is 1. To enter Elderton’s Table under n! = 4, with a value
of y?calculated by equation B, is not to make a test of independence,
for such a value of x?is not in fact distributed in the distribution for
which the table #* = 4 was calculated. The effect of this error is
greatly to over-estimate the agreement of the observed sample
with expectation, and correspondingly to under-estimate the sig-
nificance of discrepancies from expectation based on the hypothesis
of independent variates. Thus for y? calculated by equation B the
value obtained from random samples with independent variates
will exceed 4 in only 4-55 times to 100 trials. ‘An observed value

x* = 4, therefore, strongly suggests that the variates are not

independent. But if x* be obtained from equation A4, its value .

from random samples with independent variates will exceed 4 as
many as 2615 times to 100 trials; no significant departure from
expectation could be inferred from such a value ; this shows how
misleading it may be to calculate y* by equation B, and at the same
time to assume the distribution to be that cf the function given in
equation A4.

4—YULE'S EXPERIMENTS.

It is the more surprising that Bowley should have reverted to
the Pearsonian mode of testing fourfold tables since the actual
distribution of x? in this case has been determined experimentally
by Vule. Yule's experiment was designed to settle the question of
the distribution of y* in the fourfold table in Case C, where the
population is reconstructed from the sample. He also calculated
x* from the known population and verified that in this case the
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Pearsonian formula #! = 4 was correct. No less than 350 observa-
tions were made. The distributions of the values of y* calculated
from the reconstructed populations were as follows (7, p. 100) :

Number Expected Number Number Expected

nl = 2, Observed. n! = 4.

0— -25 13402 4 122 10-80 —
25— *50 48-15 — 54 17-58 —
50— 75 32-56 — 41 20°13 —
*75 — 100 24+21 4+ 24 21°05 —
I—-2 56-00 — 62 8010 +
2—3 25:01 4- 18 - 6327 +
3—4 1 1322+ 13 4556 +
4—-5 7:05 + 6 31-38 +
5—6 3-86 — 5 21-07 +
6— 501 + 5 3906 +

34999 350 35000

There can be no question that the expectation n! = 4 completely
fails, while #! = 2 fits the observations well ; calculating P from
the 10 classes, the distribution being known 4 priori, n* = 10,

. x*=7-53, P = -583, according to Yule, for n* = 2. For n'=4

the fit is so bad that it is not worth while to calculate the exact
value of x2. By no possibility could it be considered as fitting the
observations; and it is to be emphasized that in this series the pro-
cedure of calculating x® was to take a random sample, without
limitation of its marginal frequencies, and compare it with a recon-
structed population having the same marginal frequencies. That
is to say, the procedure was that of Case C, which is the most
important case in view of the frequency of its occurrence.

Yule’s data thus affords a conclusive confirmation of my theo-
retical conclusions for the case of the fourfold table. Its generality
for contingency tables will be readily conceded by those who will
follow the reasoning of my paper of January, 1922. The application
to the goodness of fit of curves fitted by moments or otherwise was
only touched upon in that paper. For the present it will be sufficient
to say that the correction is needed, whenever the population is
reconstructed from the sample ; and is exact whenever the Type III
distribution of Elderton’s Table is exact. In the original paper one
cause of inexactitude was mentioned; others may beadded, but for
the practical application of tests of Goodness of Fit, it is sufficient
that the method of fitting should be such that x* does not depart
far from its minimum value. In fitting the normal curve by
moments it is easy to verify that Elderton’s Table with corrected
n* gives the exact distribution of 2
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Note.—Professor Pearson has since admitted (Biometrika, XIV, p.
418) that Greenwood and Yule’s tables (Inoculated—Not inoculated,
Attacked—Not attacked) for Typhoid and Cholera are correctly
treated by taking n'=2. Presumably the same rule may now be
allowed for other diseases. Professor Pearson has, however, opened
a new and unexpected line of defence by claiming that these tables
are not fourfold tables at all. It is difficult to be certain what dis-
tinction is in view ; the only distinction mentioned is that * they ”
(Greenwood and Yule) “ have arbitrarily fixed by the size of their
inoculated and uninoculated groups two of the marginal totals.” To
avoid confusion of thought three points may be noted : (i) Green-
wood and Yule did not in any sense fix the numbers inoculated and
uninoculated, but accepted all suitable data reported ; (ii) if the
data had referred to experimental conditions in which the pro-
portion of inoculated to uninoculated could be assigned at will, this
circumstance would have made no difference to the distribution of
x% since the marginal proportion in the population with which the
sample is compared is, in any case, identified with that of the sample ;
(iii) the proportion of inoculated to uninoculated involves only one
degree of freedom ; in order to diminish the degrees of freedom from
3 to 1 it would be necessary, on Professor’s Pearson’s argument, for
Greenwood and Yule to fix, equally arbitrarily, the numbers attacked
and not attacked by the epidemics. R.A.F.

[In regard to Mr. Fisher’s Cases A and B no doubt has arisen.
“ A" is Prof. Pearson’s original problem, and Case I in the article
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in the last issue of EcoNnoMicA. “ B,” where the marginal totals
(or the moments) are fixed and the same for all samples, is that
treated by Mr. Fisher generally in the Statistical Journal, 1922,
PP. 87-94, in the Elements of Statistics, pp. 371-2, and in Case III,
EcoNoOMICA.

The whole difficulty lies in Case C, which corresponds to Cases
IIand IV. In Mr. Yule's experiment and in Mr. Fisher’s treatment,
the marginal totals are not kept constant (as they are in Elements,
pp. 371-2), and the reconstructed population is adjusted for each
sample (which is not done in Case IV); for in each of Mr. Yule's
350 samples the numbers occurring were compared with a popula-
tion with the same marginal totals as in that sample. Mr. Fisher
indicates, but does not give explicitly, a proof that the theoretical
distribution of ¥? in such a reckoning is very close to that found by
Mr. Yule ; perhaps he should have emphasized that this is not merely
a corollary to his important proof of the right treatment of Case B.

The problem is, to find the chance that so great a divergence
from proportionality as is observed would be found in a random
selection from an uncorrelated population. The solution given in
EcoNomicA was that, if the proportions in the population were
D1, Ps» D3 De, the result is that given above in connection with Mr.
Fisher’s formula (4). It was shown that the chance is greatest
when p, = (& + b) (@ + c)/n2, etc., but it was not supposed that
P1, ps . . . varied from experiment to experiment as in connection
with formula (B); the supposition was that many samples were
taken from the unchanged selected population.

The dispute is not about the mathematics ;- the doubt is whether -
the variation of samples supposed in EcoNomica, or that supposed
by Mr. Fisher and Mr. Yule, is appropriate to the problem. Prof.
Pearson (Biometrika, X1V, p. 18¢) may be cited in favour of the
EconomicA supposilion.—A. L. BowLEY.]
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