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THE ANALYSIS OF VARIANCE WITH VARIOUS BINOMIAL
TRANSFORMATIONS

Proressor Sir RonaLp Fisuer
Department of Genetics, Cambridge

1. Introductory.

Much experimental data are in the form, sometimes termed quantal,
in which out of n independent trials a particular response, e.g. the
death of an experimental animal, or the growth of a microbial culture,
is observed a times, and in which such pairs of values n and a have
been obtained under a variety of conditions, the variation being perhaps
to some extent deliberately imposed, as by a variation of dosage, and
to some extent out of experimental control, as is the variation in response
of different batches of material.

In such cases it is usually desirable to interpret each pair of values
as supplying information about a variate functionally connected with
the probability of which a/n is an empirical estimate, and such that it
is, so far as possible, additive in respect of the effects of varying condi-
tions, and linear in deliberately imposed measures such as dosage,
when these are given an appropriate metric.

Examples of such transformations of the probability, which have
been widely used are

e ™ du (1)

Z 1
p= ‘/; V 2
where z, or, for computational convenience sometimes z -+ 5, is termed
the Probit;
p=sin’p ¢q=cosy )

where ¢ runs from 0 to 90°,
or, sometimes using the double angle,

2p =1 — cos @ 2¢ =14 cos @

where ¢, or 6 is spoken of as an Angular transformation; the logistic
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transformation

2= 3 log (/9 (3)

where 2z, or sometimes 2z, has been termed the Logit; the log log trans-
ormation,

x = log log (1/p), @

and a variety of others appropriate to special situations, such as that
devised for the interpretation of gene ratios in a situation involving
diffusion and selection in equilibrium, defined by the differential equation

d2
a—ﬁ% = 4pqx (5)

with the “boundary” conditions

p—0 as T— o,

defining a function = of p which I have termed a Legit (7).

No doubt many other such transformations will be developed for
special purposes. The five mentioned have, however, all been the sub-
ject of mathematical investigation, and the necessary numerical tables
have been supplied for their convenient use.

2. The maximum likelihood procedure.

The practical procedure of fitting by Maximum Likelihood as a
means of obtaining a correct analysis of variance is an application of
the general method of efficient scores. The probability of what has
been observed in any set of # trials is

n! . ne

alin - a)!p ¢

and the log likelihood, so far as concerns the unknown p, is
alogp + (n — a) log ¢;

then its rate of change for variation of the transformed variate, say z, is

(‘_‘_”_‘“9)@2
D g /dv

which is the efficient score with respect to z for this set of n observations.
We notice that the n trials may be scored individually, with scoring
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coefficients

1dp
p dx

for the events with expected frequency p, called ‘“‘successes”, and

1dp

q dx

for the alternative events, or “failures’”. The mean of such scores is

zero, for
.1.@2) _ <ld_P) -
p(p dx Ngdo) = 0

and their mean square, the Amount of Information is

1dp\) | (1dp\’
)+ GE)

p dx q dx
)
-5
1=
pg \dz

This is the amount of information about z for a single trial; for the set
of n trials it comes naturally to a value n times as great.

Corresponding with any set of observations we may now construct
a variate

by dividing the score by the amount of information on which it is
based, which gives the linear adjustment required by the observations
to any proposed value x. The variance of this variate will be exactly
1/n%, when a takes the binomial distribution

@+ 97

so in further analysis the variate will be given the weight ni. Parameters
such as regression coefficients, class differences, etc., fitted by using
such variates with their proper weights will necessarily satisfy the
conditions of maximal likelihood. For example, if the transformed
values, z, are believed to be linearly related to some observable, ¢,
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with an equation

r= A + Bt
in which A4, B are to be adjusted to suit the data, we may note that
dx o
A= b BT

so that A, B will take the pair of values of maximal likelihood, when
the sum of the scores, and the sum of the products of each score by the
corresponding ¢, are both zero. In other words, when

2wy =0, D uwyt=0

where y is the working deviation from the expected value .

Using as weights the reciprocals of the exact variances of the variate
in each set, all residual sums of squares are x* values of the appropriate
degrees of freedom, and as such are available to test any questionable
aspect of the hypothetical formulation on which the analysis is based.

3. Practical apparatus.

For each type of transformation used, we need only tabulate against
x’
the maximum working value

-
m+ipdx~x+q dz/’

the minimum working value

_ldp_ /(éﬂ)
T qds ~ T TP/ \Gw)

the weighting coefficient
2
io L (&
pg \dz
So for probits, if z stands for dp/dz,

|
Pt

Vor

the.maximum and minimum working probits are

Z =

q 2
x+z, z ol
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the range is

ISR

and the amount of information is

22

v
Again, if instead of p being given explicitly in terms of z, z is given
in terms of p, as for example,

—x = IOg (-log p))

then
dr  —1
dp plogp’
and so,
dp _ _
9 = ~Plogp,
. Y4 2
1 =%(lo ,
q( g D)

and the maximum and minimum working variates are

9 1
T plogp’ x+logp’

remembering that log p is always negative.
Tabular apparatus for (1) Probits and (2) angular values have been

published in Stutistical Tables, (8) where are also given the formulae,
which need no special tabulation, for (3) Logits. For (5) Legits, tables
in similar form have been published more recently (7) in Biometrics.
I do not know that the values for (4) given by the formulae above
have been tabulated, but in any case they are not difficult to calculate
using only a table of natural logarithms. If w is log dose taken to the
base e, of a living infective agent, and if each living particle is supposed
to have an equal and independent chance of establishing an infection,
then the regression of  on w will be linear with regression coefficient
equal to unity. The experimental verification of this equality is pro
tanto confirmation of the theory that this probability is independent
of the subject, as in another way is the x* value of the sum of squares of
deviations from the fitted line.
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4. “Corrections” to angular and square root transformations.

Just as in the limit for large sample size and small probability the
binomial distribution,

(¢ + )",

tends to the Poisson limit with

m = pnm,
so the angular transformation
p =sin’ o
becomes
va\/m

where z from different populations is proportional to the original
angular measure ¢. The working variate is then

a—m=a+m
ﬁ+2\/% 2v'm’

where a is the observed and m the expected frequency; the weighting
coefficient is a constant, 4.

It should be emphasized that if an analysis of variance is in view
the choice of what transformation to use should be governed by the
prospective additiveness of the transformed variate when various con-
trollable, or uncontrollable factors, the effects of which are to be analysed,
are varied. In the author’s view, conformity with this and other
presuppositions of the method chosen, after accurate fitting, can be
satisfactorily confirmed by a series of x* tests. Significant heterogeneity
appearing at this stage in spite of exact analysis gives serious grounds
for doubting the appropriateness either of the transformation, or of
the adequacy of control of the experimental material.

In the use of the angular and square root transformations the near
constancy of the variances due to purely sampling error of the trans-
formed variates has exercised a certain fascination, and has sometimes
seemed to be the reason for choosing this type of transformation.

The fact is that the amount of information about ¢,

-




136
reduces, when p is equated to sin® ¢, to

1 . 2
" (2sin ¢ cos @)” = 4,
and is exactly constant for all values of ¢. The variance of the working
angle is therefore absolutely constant.

Similarly, the amount of information about '\ﬁﬁ, where m is the
parameter of the Poisson series is

1
E (2 ‘\/%)2 = 4,
and the variance of the working value

a—m___a—{—m
Vit e = Ve

is exactly 1/4, for all values of m.

For a normal distribution the amount of information is the inverse
of the variance; for other distributions this reciprocal equivalence does
not hold, and the constancy of the amount of information supplied
about V/m does not imply that the variance of the distribution of Va ,
where a is a Poisson variate will be constant. Such a connection is
only to be looked for in large samples where the Poisson distribution
approaches the normal.

In spite of the exact constancy of the amount of information which
should, I think, have served as a warning, certain authors (a) thinking
that the approximate constancy of the variance of v a was the object
of the transformation, and (b) observing that such constancy is im-
perfect, have suggested various troublesome modifications, which have
now been available for some time. Thus in 1936 Professor M. S.
Bartlett (2) in a paper entitled The square root transformation and the
analysis of variance, proposed the use of Va + 1/2, when « is an
observed variate, and therefore a sufficient estimate of the parameter
m of a Poisson Series, and pointed out that its sampling variance was
somewhat more constant than that of Va. Twelve years later, F. J.
Anscombe in Biometrika (6) indicated that Va 4 3/8 was aven
better, at least when m is large, a result he ascribed to A. H. L. Johnson.
Neither author seemed to realise that in the correct process of using
these transformations, as set out above, the variance of each working
value is exactly equal to 1/7, and needs no adjustment.

It is difficult to judge just what influenced Bartlett in putting forward
his proposal for adjusting the Poisson variate. In his 1936 paper he
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compares the addition of 1/2 to the variate before taking the square
root, to Yates’s correction for continuity, which Yates had introduced
for tests of significance with x* having one degree of freedom, but the
comparison is very tenuous. Yates had the exact test of significance
at the time, and could demonstrate empirically that his adjustment,
(a) was easy to apply, and (b) did in fact improve the test of significance.
Bartlett does not attempt to show that an improved analysis of variance
results from his adjustment. In the more general case of the angular
transformation he suggests

sin”'V(a + D /n

the signs being determined by whether a is less or greater than n/2.
This awkward form was replaced by Anscombe (1948), by the more
rational proposal to use

sin™ Ve + P/ + D,

which is at least consistent over the whole range of observations.

In seeking a transformation having constant variance, Bartlett
may also have been influenced by the transformation of the correlation
coefficient,

r = tanh ¢,

which I had shown in 1921 (1) to give distributions for z sufficiently
nearly normal for the use of the Gaussian distribution in tests of sig-
nificance and sufficiently constant in variance for the (unknown) true
correlation to be an unimportant factor in such tests. These advantages
are such that for practical purposes, tabulation of the exact distribution
has been entirely unnecessary, but to suppose that there are correspond-
ing advantages in attempting to make the variance of some function
of a Poisson variate as constant as possible, suggests that the non-
normal character of this discontinuous distribution has been ignored,
and even that it was proposed to use the empirical transforms as variates
in the final analysis.

The unsuitability of using empirical transforms was early made
clear in the case of Probits, where experiments in which all of the tests
react alike would empirically be given infinite variates with zero weights.
The exact treatment was given in 1935 in an Appendix to C. I. Bliss (9).
The full table for obtaining the correct working values was given by
Bliss (3) in 1938 The determination of the dosage mortality curve from
small numbers. In the same year Fisher and Yates (8) Tables for
Statisticians, gave corresponding tables both for the Probit, and for
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the angular transformation, in which the need for the use of a correct
working variate had not been forced on the notice of statisticians by
the appearance of infinite values.

In 1940 W. G. Cochran (4) considered Bartlett’s adjustment in a
paper in the Annals of Mathematical Statistics. He refers to the
method exhibited in the preface of Tables for Statisticians, and for which
provision had been made in tables XII and XIV, and evidently recog-
nises this as more correct than the use of empirical angles. Yet he
seems to assume that the latter may be used without inaccuracy save
in special and particularly in terminal cases, for which however he
mentions and does not totally disavow the proposal (11) to substitute
1/4 for 0 and n — 1/4 for n. It is a great pity that Cochran in this
paper does not clearly point out that such adjustments have no useful
function, at least finally, if it is intended to perform a correct analysis.
The subseguent papers (5, 6) by Bartlett (1947) and Anscombe (1948),
show no such consciousness of the situation as they would have obtained
had Cochran expressed himself more definitely.

Arising from the idea that the empirical transforms can be used in
the final analysis, instead of being always of a tentative and provisional
character, is the emphatically advocated notion that great differences in
computational effort are required in the use of different transformations.
In particular the logistic transformation has been advocated by J.
Berkson, as though this were a major consideration, and in a recent
review of Finney’s Probit Analysis (J.A.S.A. 47, 687), K. A. Brown-
lee (10) repeats Berkson’s extraordinary claim that the logistic curve
can be fitted thirty times as rapidly as the normal. I have fitted many
cases of both over the last fifteen years, and there is little to choose
between the two procedures, in cases that require careful fitting, i.e.
when the different test batches are broken up in small groups, as must
often happen when many factors are brought into the analysis. It is
true that the working Logits, and their precision are given by simple
formulae which need no special tabulation beyond the use of a readily
available table of hyperbolic tangents, but the work of calculating each
value is not less or appreciably different from that of looking up the
values appropriate to other transformations, in the tables already
available. In no case are the computations unduly onerous, and they
are as likely to be lengthy with logits as with the other transforms, if the
number of classes is large. To choose one transformation rather than
another on the supposition that the labour will be less, without regard
to its conformity with theoretical considerations, seems to be a very
mistaken policy, seeing that the estimates, which are always an intrinsic
part of the analysis of variance, are in such cases estimates only of
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mathematical artifacts. The appropriateness of our choice is, however,
open to confirmation by the x* test, and where this test shows the
angular transformation to have been usually successful in like material,
we may gain some real computational advantage by assigning in advance

equal or proportional weights to the different entries in a two-way or

three-way analysis.
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