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Abstract

Every convex set in the plane gives rise to certain geometric functionals such as the
area, perimeter, diameter, width, inradius and circumradius. When the convex
set is constrained by lattice points (points having integer coordinates), certain
inequalities occur amongst these functionals. In this thesis, we are primarily
concerned with obtaining new inequalities for a planar, convex set containing
exactly 0, 1 or 2 lattice points in its interior.

This thesis consists of two parts. The first part comprising Chapters 3, 4 and
5 deals with problems concerning single geometric functionals. We obtain results
concerning the maximal area, circumradius and width respectively.

The second part of the thesis comprising Chapters 6 to 12 deals with a larger
class of problems concerning relationships between pairs of the above-mentioned
functionals for lattice constrained sets. In a number of the problems concerning 1
or 2 interior lattice points, the solution is readily obtained by reducing the prob-
lem to one concerning a set with interior containing no point of the rectangular
lattice.

Chapters 1 and 2 contain basic ideas and results which are used throughout
the thesis. In the concluding chapter, we comment on the scope for future research

in the area. It will be seen that there remain many new and interesting problems.
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Chapter 1

Preliminaries

1.1 Introduction

The first ideas of convex sets date as far back as Archimedes but it was not until
the end of the last century that a systematic study was made which gave rise
to the subject as an independent branch of mathematics. At the turn of the
century, Minkowski (1911) published his famous Convex Body Theorem which is
the basis for the Geometry of Numbers. The idea is to interpret integer solutions
of equations or inequalities as points with integer coordinates (lattice points).
Minkowski’s work provides the link between the general theory of convex sets
and the geometry of numbers (concerning lattice points), giving rise to the study
of convex sets with lattice point constraints.

To appreciate the sorts of questions which our research area is concerned with,

we state a simple form of Minkowski’s Convex Body Theorem in the plane.

Theorem 1.1 (Minkowski) Let K be a conver set in the plane. Suppose that
K 1is symmetric about the origin O and the interior of K contains no non-zero
point whose coordinates are both integers (called a lattice point). Then its area is

not greater than 4 (Figure 1.1).

From the point of view of our research, Minkowski’s Theorem is an example
of a geometric extremal problem, that is, a problem concerning an inequality

stated in terms of geometrical concepts. His work suggests a more general class

1



1.2. Notation and Definitions 2

Figure 1.1: Minkowski’s Convex Body Theorem

of geometric extremal problems concerning sets with lattice point constraints.
Since Minkowski’s Theorem, many new inequalities have been obtained for lattice
constrained convex sets. An extensive bibliography is given by Croft, Falconer
and Guy (1991), Erdds, Gruber and Hammer (1989), Gritzmann and Wills (1993)
and Hammer (1977). This thesis is a collection of new inequalities for lattice
constrained convex sets in the plane. In order to describe our problems more

precisely, we now define some key terms.

1.2 Notation and Definitions

Let & denote the set of real numbers and let Z denote the set of integers. Let

R"™ denote the n-dimensional Euclidean space, the class of all ordered sets of n

real numbers, (z3,y,...,Z,), made into a metric space by defining the distance
between any two points x = (1,23, ...,%,) and y = (¥1,%2,- - -, ¥n) to be
1
n 2
=yl = (S0 - w?)
i=1

We will assume simple concepts in topology.
Let O denote the origin. Let ) denote the empty set and let K¢ denote the
complement of K. The boundary, interior and closure of set K are denoted

by 8K, K° and K respectively. The open ball with centre ¢ and radius r is
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denoted by B(c,7). Let A and B be any two points in R*. We will use AB
to mean either the line AB, or the line segment AB, or the length of the line
segment AB. It will be clear from the context which meaning is intended. In the
case where AB denotes a line segment, we use the additional notation (4, B) to
denote the line segment AB, excluding the points A and B. Similarly, we have
[A,B) = (A,B)U{A}, (A,B] = (A,B)U{B} and [4, B] = (4, B) U{A, B}.

The set AK, A € R is defined to be the set {\x; x € K}. The scalar ) is
called the enlargement factor of K. A set K is said to be centrally symmetric
or simply symmetric about a point x if K is its own reflection in the point x.
Algebraically, K is centrally symmetric about x if for each k € K, 2x — k € K.

A set K is said to be conver if for any two points in K, the closed line segment
Jjoining the two points is contained in K. Let K™ denote the set of all compact
(closed and bounded) convex sets in R™.

A support hyperplane of K is a hyperplane which intersects K in a point on
0K but does not intersect K°. In K2, we use the term support line.

We now define geometric functionals on the set X*. We use V(K) = V and
S(K) = S to denote the n-dimensional volume of K and the (n — 1)-dimensional
surface area of K respectively. In the case where K € K2, these quantities
are referred to as the area, denoted by A(K) = A, and the perimeter, denoted
by p(K) = p, respectively. The diameter of K, denoted by d(K) = d, is the
maximal distance between any two points of K. The width of K in a direction
perpendicular to a given direction u, denoted by wy(K) is the distance between
the two parallel support hyperplanes of K perpendicular to u. The minimal width,
w(K) = w, referred to simply as width is the minimum of wy(K) over all u. The
inradius of K, r(K) = r, is the radius of a largest sphere contained in K. Such a
sphere is called an insphere and the centre is called an incentre. The circumradius

of K, R(K) = R, is the radius of the smallest sphere containing K. Such a
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sphere is called the circumsphere and its centre is called the circumcentre. In R2,
the insphere and the circumsphere are called the incircle and the circumcircle
respectively. The circumcircle, when it exists, is unique (Yaglom and Boltyanskii
1961, p.59). The closed sets bounded by the incircle and the circumcircle are

called the indisk and the circumdisk respectively.

Let uy,uy,...,u, be n linearly independent vectors i& §R".2The set of points
(o} [ L e Cer
{1 ziwi; 2; € Z} is called the lattice generated by the vectors uy, u, ..., u,,

denoted by An(uy,...u,) = A,. In the case where {u;,us,...,u,} is the standard
basis, A, is the integral lattice and is denoted by I',. As all our problems will be
posed in R?, we will write A and T instead of Ay and I'; respectively. We will
also use the notation Ag(u,v) = Ag to denote the rectangular lattice generated
by the vectors u = (u,0) and v = (0, v).

Suppose that P is the set {37-; o4u;;0 < @ < 1}. Then the set {P + z?'fzée_An} \
is called a cell of A,. The determinant, det(A,) of A,, is given by det(A,) =
| det(uy,...,u,)|. Geometrically, this is the volume of a cell of A,. The lattice
point enumerator, G(K°, A,), is defined to be the number of points of A,, con-
tained in K°. In the case where G(K° A,) =1 and O € K°, we say that K is
An-admissible (this usage differs from the more conventional ‘A, is K-admissible’,
but is more convenient in this thesis where A, is fixed and K varies). Finally, a
sublattice is a subset of a lattice which is itself a lattice.

Other terms and definitions will be introduced in the text at the point re-

quired. We now describe the problems of the thesis.
1.3 The problems of the thesis

All our problems are posed in the Euclidean plane R2. Unless otherwise stated, we
shall henceforth assume that K € K?. In this thesis we are primarily concerned

with obtaining new inequalities concerning the geometric functionals A, p, d,
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w, v and R for a set K in K? having G(K°T') = g where ¢ = 0,1,2. The
natural starting point for our research is to investigate problems for a set K
having G(K°,T) = 0. What geometric inequalities occur for such sets ? Can
these results be extended to sets having G(K°,I') = 1 or G(K°,T') =2 ? We
discover that a number of such problems may be readily solved by reducing the
problem to one concerning a set containing no point of a special rectangular
lattice. Hence in a number of our problems, we consider the problem for a set
K having G(K°,Ag) = 0 and deduce the corresponding results for G(K°,T') =g
where g = 0,1, 2.

In Chapter 2, we describe methods and prove results which we will use
throughout the thesis. Thereafter, the thesis consists essentially of two parts.
Part 1 (Chapters 3, 4 and 5) deals with problems concerning single geomet-
ric parameters. The problems of Chapters 3 and 4 resulted from an attempt to
prove a conjecture by Scott (1982) concerning the maximal area of a I'-admissible
set having circumcentre O. We show that the conjecture is false and we revise
the conjecture. The efforts have led to the first two problems of the thesis. In
Chapter 3, we obtain a result on the maximal area of a A-admissible set in K2
The result gives a classification for A-admissible sets. In Chapter 4, we consider
I'-admissible sets having circumcentre O. Under certain conditions, we find the
maximal circumradius of such sets and we show that the extremal set is a triangle
with an edge containing two lattice points (Awyong and Scott 1995). In Chapter
5, we find the maximal width of a set K with G(K°, Ag) = 0 and deduce the
corresponding results for G(K°,T") = g where ¢ =0, 1, 2.

Part 2 (Chapters 6-12) deals with a larger class of problems concerning rela-
tionships between pairs of the geometric parameters A, p, d, w, r and R. Clearly,
from the six geometric parameters there are 15 (= °C,) possible combinations of

two such geometric parameters.
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In Chapters 6, 7, 8 and 9, we solve various problems for a set K with
G(K°,Agr) = 0 and deduce the corresponding results for G(K°,T') = g where
g9 =0,1,2. In Chapter 6 we obtain inequalities relating w and d (Awyong and
Scott 1996a). This problem is motivated by a width-diameter result by Scott
(1979b) for a set K having G(K°,T") = 0. In Chapter 7, we generalize inequalit-
ies by Scott (1980) concerning the pairs (A, w), (p,w) and (R, w) to rectangular
lattices. In Chapter 8 we find another inequality for the pair (A4, w). Here we
discover that the result for the case where G(K°,T') = 1 may not be deduced from
the case where G(K°, Ag) = 0 and a conjecture is made for this case. In Chapter
9, we first obtain an inequality relating R, d and w for a set in K2 without lattice
constraints. Using this result and the result from Chapter 5 concerning the max-
imal width of a set K having G(K°, Ag) = 0, we derive an inequality for the pair
(R,d) for a set K having G(K° Ag) = 0. As in Chapter 8, we discover that the
methods do not extend to the one lattice point problem and a conjecture is made
concerning the one lattice point case. We also obtain a dual inequality relating
the pair (w,r).

Chapter 10 gives results relating A and r for a set K having G(K°,T') = 0.
We obtain the corresponding inequalities for the case G(K°,T") = 1. We combine
these inequalities with known inequalities in elementary geometry to deduce in-
equalities for the pairs (p,r) and (d,r) for a set K with G(K°,T) = 0 (Awyong
and Scott 1996b).

The last two problems contained in Chapters 11 and 12 concern a set K
with G(K°,T') = 2 and having a special symmetry condition. In Chapter 11, we
establish inequalities for the pairs (4,d) and (A4, R) and in Chapter 12 we find
a result for the pair (A, p). We also conjecture the corresponding results for the
general class of convex sets containing two interior lattice points.

Finally, in Chapter 13, we summarize the results of the thesis and make some
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remarks on the scope for future research in the area. It will be seen that many

new and interesting problems remain in this area.



Chapter 2

Methods and results

2.1 Introduction

The theory of convex sets is one of few fields in mathematics that can be developed
without the use of ‘higher mathematics’. Many of the results are guided by
geometric intuition and their proofs are elementary and elegant. In this chapter
we describe methods and state results which we will use to prove the inequalities
in this thesis. The approach we have taken in the thesis is mainly geometric and
for this reason, many diagrams have been included. The numerical calculations
in this thesis are carried out using Maple V, Release 2 (Copyright (C) 1981-1993
by the University of Waterloo). Graphs are plotted with Gnuplot Unix Version
3.5 (Copyright (C) 1986-1993 by Thomas Williams and Colin Kelley).

A useful technique in solving geometrical problems is to simplify the problem
by applying an appropriate transformation. In §2.2 and §2.3, we describe two
transformations which are of importance in the theory of convex sets as these
transformations preserve the property of convexity. In §2.4, we state and prove
a result called the Triangle Rotation Lemma which we will use in Chapters 5, 6
and 7. In §2.5, we d‘escribe sublattices and their role in solving problems where
G(K°,I') =1or G(K°,T) = 2. Finally in §2.6, we state Blaschke’s Selection The-
orem, an important theorem concerning the existence of solutions to geometric

extremal problems.
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2.2 Affine transformation

An affine transformation is a linear transformation followed by a translation. We

may therefore represent an affine transformation T on R? as follows:
T(x) =Mx+Db,

where M is a 2 X 2 matrix and b is a translation vector. We say that T is non-
singular if det(M) # 0. We now state without proof some useful properties of

affine transformations.

Theorem 2.1 Let K € K? and let T(x) = Mx + b be a non-singular affine
transformation on K2. Then

(a) T(K) € K?

(b) If K is symmetric about x, then T(K) is symmetric about T(x)

(c) A(T(K)) = A(K).|det(M). |

Suppose now that T is the non-singular affine transformation 7T'(x) = Mx where
M = (uv). Then T transforms the integral lattice I' to the lattice A(u,v). By
Theorem 2.1(a) and (b), T transforms a set K € K? which is symmetric about O
to a set K, € K? which is symmetric about O. Moreover, it is easy to see that if
G(K°,T) =0, then G(KX°,A) = 0. Since det(T") = 1, Theorem 2.1(c) gives

A(K,) _ A(K)

@MF()zmm'

We say that the quantity A/det(A) is affine-invariant. Thus if a quantity is
known to be affine-invariant, an appropriate affine transformation may be used
to simplify the problem. In particular, we have the following generalization of

Minkowski’s Theorem for 2-dimensional lattices:

Theorem 2.2 (Generalized Minkowski) Let K be a A-admissible set in K2
which is symmetric about the origin O. Then A < 4det(A).
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An affine transformation which preserves distances between points of a set
is called an isometry (also called a rigid motion, namely reflection, rotation,
translation or glide reflection). If K; is obtained from K by an isometry, we say

that K is congruent to K. We write K; =2 K.

2.3 Steiner symmetrization

One of the difficulties that is encountered in working with convex sets is that
convex sets are rather general figures having few special properties. Hence in our
research, any method of transforming a set into another one having more special
properties is very useful. Steiner symmetrization is one such method. In Steiner
symmetrization, a convex set is transformed into a set with an axis of symmetry
in the following way:

Let K € K2 and let [ be a given line in the plane. Let P be a point on [ and let
I(P) be the line through P perpendicular to [. Since K is convex, [(P) intersects
K in a closed line segment, or in a point in K or in . Let I'(P) be the image
of I{(P) N K obtained in the following way: If I{(P) N K is a closed line segment
[X,Y], then I'(P) is the closed line segment obtained by translating [X, Y] along
the line XY until P is the midpoint of I'(P). If I(P) N K is a point X in 0K,
then I'(P) is the point P. If {(P)NK = @, then I'(P) = (. The symmetrized set,
K, called the Steiner symmetral with respect to [, is now defined to be

K= U(P).
Pel

We now state some useful properties of Steiner symmetrization.

Theorem 2.3 Let K € K? and let K; be the Steiner symmetral with respect to
l. Then

(a) K; € K2

(b) A(K:) = A(K)
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(¢) p(Ki) < p(K)
(d) d(Ki) < d(K)
(e) w(K) may increase, decrease or be unchanged

(£) r(K1) 2 r(K)

Proof. For a proof of (a), (b), (c), (d) and (e), we refer the reader to (Eggleston
1958, p.90). We now prove (f) and (g).ﬂv)W(;1 ﬁr;7 {silbcr)\v:;th;tulff riX'C Y, then
Xi: C Y. Let PQ be any chord of X perpendicular to {. Since X C Y, the line
P(Q intersects Y in a chord AB with PQ < AB. Now Steiner symmetrization
maps chord P@ to a chord P'Q’ on the line PQ, with the midpoint of chord P'Q’
on [. Similarly, the chord AB is mapped to the chord A'B’ on the line PQ, with
the midpoint of chord A'B’ on . Since PQ < AB, the chord P'Q’ is a subset of

the chord A’B’. Hence X; C Y] (Figure 2.1).

l

Figure 2.1: The effect of Steiner symmetrization on r(K) and R(K)

Now let I and C be the indisk and the circumdisk respectively of K. Since
I C K CC, it follows that [; C K; C C;. Hence 7(K;) > r(I}) and R(K;) <
R(C)). But I; 2 I and C; = C. Hence r(K;) > r(K) and R(K;) < R(K). O



2.4. The Triangle Rotation Lemma 12

2.4 The Triangle Rotation Lemma

In this section we state and prove an important result which we will use in
Chapters 5, 6 and 7. We say that a set circumscribes a rectangle if all the vertices
of the rectangle lie on the boundary of the set. We recall that Ag(u,v) = Ag
denotes the rectangular lattice generated by the vectors u = (u,0) and v = (0, v).
We shall denote lines with lower case letters: thus z is a line containing the lattice
point X of Ar. Let d(P,z) denote the perpendicular distance from the point P

to the line z.

Lemma 2.4 (Triangle Rotation Lemma) LetC = ABCD, labelled anticlock-
wise, be a closed cell of Ar and let X be a lattice point on the ray from A through
B. Let T be a closed triangular region (possibly an infinite triangular region)
defined by lines ¢, d and z, and having C, D and X interior to the edges of T,
with A and B not in T°. Then either T circumscribes C or there is a triangle

T, = XT, XA > 1, with T, circumscribing C.

Proof. By a suitable rotation of the plane we may position the points 4, B, C
and D as shown in Figure 2.2 with AB = u and BC = v. Let T = APQR where
d.x = P, z.c = () and c.d = R. We may suppose that T does not circumscribe
C. Let H; denote the closed half plane bounded by the line AD and containing
C. Here we distinguish the following two cases:

Case 1 : P € H, (Figure 2.2). We first suppose that v < v. If d(P,c) < v,
then by an isometry, T' may be transformed to a triangle T}, = AP,Q;R; so
that P; lies in C and Q1 R; lies on the line AB. Since P; lies in C, T} may be
enlarged to a triangle T, inscribing C. Hence T, = AT, A > 1. If, on the other
hand d(P,c) > v, we inscribe a rectangle Ry in T having an edge of length v
and another edge of length less than u as follows: Let ¢ be a line parallel to c,

distant v from ¢ and intersecting edges PR and PQ in the points M’ and N’
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respectively. Let M and N be the feet of the perpendiculars from M’ and N’
respectively to the line c and let Ry be the rectangle with vertices M’, N, N and
M. By construction MM' = NN’ = v. We now show that MN = M'N’ < v.

Figure 2.2: The case where P € H;

Let ¢ intersect the edges AD and AB in the points Z and Y respectively.
Clearly M'N' < ZY. Letting A be the origin, we may take the coordinates of C,

Z and Y to be (u,v), (0, 2) and (y, 0) respectively. Hence

Area of ACZY = %v.ZY _ %

]

1
1
1

< O
own @

that is,
1
7 = ;(uz +y(v — 2)).

Now since 0 < z < v and 0 < y < u, we have
1 1
ZY < ;(uz +u(v—2)) = ;(u’u) = u.

Hence MN = M'N' < ZY < u. We now rotate Rr so that [M, N] lies on
[A, B]. The same rotation transforms T to T3, say. Clearly G(T?,Ag) = 0 and
since M'N' < u, at least one of C' and D lies in the exterior of T}. Hence T} may
be enlarged to a triangle T, inscribing the cell C. As before T, = XT, A > 1.

We now suppose that u > v. If d(P,¢) < u, then by an isometry, T may be
transformed to a triangle T = AP,Q R, so that P; lies in C and Q;R; lies on
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the line BC. As before, T1 may be enlarged to a triangle T, inscribing C and we
have T, & AT, A > 1. If now d(P,c) > u, we inscribe a rectangle Ry in T as
described above, this time with the roles of u and v interchanged. In this case we
need to show that MN = M'N’' < v. As before, taking the coordinates of C, Z
and Y to be (u,v), (0,2) and (y, 0) respectively, we have

Area of ACZY = %—u.ZY _ %

o w <
—

@ O«

that is,
1
ZY = ;(uz +y(v — 2)).

Since 0 < z < v and 0 < y < u, we have
7 2 D T = =) =t
u T u o

Therefore a rectangle Rr with an edge of length u and another edge of length
less than v may be inscribed in T. Applying the rotation argument as before, we
can find a triangle T, = AT, A > 1, with T, circumscribing C.

Case 2: P ¢ H;. (Figures 2.3 and 2.4). Suppose first that /P < I (Fig-
ure 2.3). Let F be the foot of the perpendicular from C to the edge PQ and let

Figure 2.3: The case where P ¢ H; and /P < 5

H be the point on PR such that C'H is parallel to PQ. Suppose that /ZBCF = 6.
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Then CF < BCcosf < BC. Since /P < %, it follows that ZCHD > % and
hence CH < C'D = u. Hence by rotating T anticlockwise through an angle of 8
about C, we obtain a triangle T} = AP,Q1R; & T, with P,Q; parallel to the line
AB. We now enlarge T} to T, where T, circumscribes C. In this case T, & \T
where A > 1.

Ifnow LP > 7, we relabel the vertices of T' and C, interchanging @ with R and
B with D (Figure 2.4). We define F' and H as above and we let line C'D intersect

Figure 2.4: The case where P ¢ H, and /P > %

PR in the point D'. As before, we observe that CF < BC. Furthermore, since
LP > %, it follows that ZCHD' > 7. Hence CH < CD'. We now repeat the
rotation argument above to obtain a triangle Ty = AP1Q1R; = T (the vertices
of T1 are now labelled clockwise) with P;Q; parallel to AB. We then enlarge T}
to a triangle To = AP>Q2R, where edge P>Q); contains B, edge Q,R, contains
C and edge PR, contains D. Hence Tp = oT', where o > 1. Clearly, P, € H;
and by using the Case 1 argument, we obtain a triangle T, circumscribing C with

T.2 6T, 8>1. Hence T, 2 T, A > 1. m]
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2.5 Sublattices

By using appropriate sublattices, a number of our problems concerning one or

two lattice points may be solved readily. Let
G-Z% f (W’\u D (8 r nt \Pe Conan e f l\u\u)

I'={(z,9) :z+y=1(mod 2)}, 3 o

and let

I'"={(z,y) :z=n,y=2m+1,m,n € Z}.

------- foacben
Figure 2.6: The lattice I'”

Suppose that K is a set with G(K°,I') = 1. Without losing generality, we
may assume that O € K°. Then clearly G(K°,I") = 0. Hence by considering the
set K in the lattice I, the one lattice point problem in I' is reduced to a problem

concerning a set having no lattice point with respect to I".
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Suppose now that K is a set with G(K°,I') = 2. Without losing generality,
we may assume that the origin O is one of the lattice points. Let L denote the
other lattice point contained in K° and let the coordinates of L be (21, 27), where
without loss of generality, z; > 0,2, > 0. By a reflection about y = z if necessary,
it suffices to consider those cases for which z; > z,. Since K° contains no other
lattice points, (O, L) contains no lattice points. Hence we may assume that either
z1 =1 and 2z, = 0 or else 2; and 2, are relatively prime. We therefore have the
following two cases:

(i) If z; and 2z, are both odd, we consider the sublattice I' and note that
O¢I',L ¢TI and G(K°,I") =0.

(ii) If 2 is odd and 2. is even, we consider the sublattice I'V. Clearly O ¢ I'",
L ¢ T" and G(K°,I") = 0. In the case where 2, is even and 2, is odd, we
consider the lattice I'" = {(z,y) : £ =2m + 1,y = n,m,n € Z}. Here, we have
G(K°,IT") = 0. By an appropriate transformation, this is equivalent to the case
where 2; is odd and z; is even.

As we will be using the results of this section frequently we use the notation
SL1 and SL2 to refer to the sublattice arguments given above for the cases

G(K°T) =1 and G(K°T) = 2 respectively.
2.6 Blaschke’s Selection Theorem

We now turn our attention to an important theorem concerning the existence of
a solution to geometric extremal problems. The techniques used in this thesis
are a combination of both constructive and non-constructive methods. In the
latter case, a certain set is proved to be an extremal set by showing that any
other set can be ‘improved’. Such non-constructive methods are valid only if
it is known that the extremal set exists. It is therefore essential to settle the

question of existence before proceeding to use non-constructive methods. This
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is done by using Blaschke’s Selection Theorem. In order to understand how the
theorem answers the existence question, we first recall the following theorem from

elementary topology.

Theorem 2.5 Let f be a continuous real-valued function on a compact subset S

of a metric space X. Then f altains its mazimum and minimum on the set S.

In order to use Theorem 2.5 to establish the existence of an extremal set,
we first need to make K? a metric space. We do this by defining the following

distance function, D (also called the Hausdorff metric) on K:
D(X,Y)=inf{0: X CY;,Y C X;}.

where A5 = U,eca B(a,d). Now let S C K? and let f be a continuous real-valued
function on §. Then by Theorem 2.5, extremal sets are attained in S if S can
be shown to be compact (a set S is compact if every infinite sequence in S has
a subsequence which converges to a point in S). Blaschke’s Selection Theorem

gives a criterion for compactness in the metric space K2.

Theorem 2.6 (Blaschke’s Selection Theorem) Let {K;} be an infinite se-
quence of sets in K2 lying in a disk in ®2. Then there is a subsequence which

converges to a set in K2.

Hence if the members of S may be shown to be contained in a disk in ®2, then
by Blaschke’s Selection Theorem, every infinite sequence in S has a subsequence
which converges to a point in KX2. If, in addition, it can be shown that the limit
set is in fact in S, then S is a compact subset in K? and by Theorem 2.5, there

are sets Sy and Sy, in S such that for all K € S,

f(Sm) < f(K) < f(Sm)-

We call S,, a minimal set and S;s a mazimal set.



Chapter 3

A classification for planar convex sets containing
one lattice point

3.1 Introduction

Let K be a A,-admissible set in K" with volume V(K) =V (in K2, the volume
is referred to as the area, denoted by A(K) = A). Minkowski’s Convex Body
Theorem as stated in Theorem 1.1 gives a result for the maximal area of a T'-
admissible set in X which is symmetric about O. A large number of results
concerning the maximal volume of asymmetric sets in ™ containing no non-zero
lattice points appear in the literature. We mention some of these in §3.5. In

particular, Ehrhart (1964) conjectures the following result:

Conjecture 3.1 (Ehrhart) Let K be a A,-admissible set in K™ and let O be

the centre of gravity of K. Then

(n+1)"

V<
- n!

det(A,).
Egquality holds when and only when K is a simplez.

Ehrhart (1955a, 1955b) proves the above result for the cases where n = 2
and for the class of solids of revolution for n = 3 respectively. In the case where
n = 2, equality is attained when and only when K is the triangle having vertices
(—2,-1), (1,-1) and (1, 2) (Figure 3.1). We call this triangle Ehrhart’s triangle
and denote it by E.

19
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(1,2)

(-2-1) i : (1,-1)

Figure 3.1: Ehrhart’s triangle, F

In this chapter, we establish an easy test to determine the maximal area of
various classes of sets in K2 containing one interior lattice point. This test both
extends and generalizes Minkowski’s theorem. It also brings into clearer focus
the role of Ehrhart’s triangle. The test results in a classification of such sets into
three basic types:

Type I: Sets for which A < 4det(A). An example for A =T is the square S
having vertices (+1,+1).

Type II: Sets for which A < 41 det(A). An example for A = I is Ehrhart’s
triangle E.

Type III: Sets for which A is unbounded. An example for A = T is the set
bounded by y = —1, and the two near-collinear rays with common endpoint
(0,¢) (where ¢ is small and positive), and passing through (1,0) and (—1,0)
respectively.

Let A be generated by two vectors u and v, and let P be the parallelogram
having vertices (u, £v). Our test will involve the intercepts which set K makes
with the edges of P. Since the ratio A/det(A) is invariant under affine trans-
formation (see §2.2), it will be sufficient for us to state and prove our result for

the case where A =T and P is the square S.
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So as above, let S be the closed square with vertices (£1,41). We label the
eight lattice points (1, 1), (0,1), (-1, 1), (-1,0), (-1, -1), (0, -1), (1,-1), (1,0) on
S, L1, Ly, . .., Lg respectively. In §3.3, the lattice point (-2, —1) is of special in-
terest; we denote the point by Lo. The half edges, LyLy, LyLs,..., LgLy, of S
are labelled hy, hy, ..., hg respectively. We shall say that one set of half edges
is equivalent to another set of half edges if the second can be obtained from the
first under an isometry.

If K lies in S, then A < 4 and K will be a set of Type I. We may therefore
suppose that K extends beyond 0S. We say that K crosses an half edge h; of S
if h; contains a point in K°. Since by convexity K cannot cross two half edges
comprising an edge of S, K may cross at most four of the eight half edges of S.
For a given set K, we call the set of half edges of S which are crossed by K the
intercept set of K. We shall establish the following result.

Theorem 3.2 Let K be a set in K%, If the intercept set of K is O or equivalent
to {h1, hs, hs, hr}, then A < 4. If the intercept set is equivalent to {hy, hg, hr},
{h1, ha, hs, b}, {hi, hay hs, hs} or {h1, ha, he, he}, then A < 4L, Otherwise A is

unbounded.

We have included some helpful diagrams in Appendix A. These diagrams will

be referred to in the subsequent sections.
3.2 The unbounded cases

Let [;(6;) be a line containing the lattice point L; and making a directed angle of
0;, —5 < 6; < 7, with the positive z-axis.

In the one-intercept case, we may take the intercept set to be {h;}, as all in-
tercept sets {h;} are equivalent. We construct a convex polygonal set K bounded
by the lines = 1, y = —1 and the line [5(6,) with 6, = £ — ¢, where ¢ is small

and positive. Clearly, K is I'-admissible and A — co as € = 0.
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If K crosses exactly two half edges of S, using rotation about the origin and
reflection in a line through the origin, it suffices to consider the cases where the

intercept set of K is one of

(a) {h1,hs}  (b) {h1,ha} (c) {h1,hs} (d) {h1,he} (e) {h1,hs}.

In case (a), we construct a convex polygonal set K bounded by the lines z = 1,
I2(62) with 8, = € and l4(f,) with 6; = —e (where ¢ is small and positive). Again,
K is I-admissible and A — oo as € — 0. In a similar way, sets with arbitrarily
large areas may be constructed for the remaining two-intercept cases (Appendix
A, Figure A.1).

If K crosses exactly three half edges, using rotation about the origin and
reflection in a line through the origin, it suffices to consider the cases where the

intercept set of K is one of

(a) {hl, h3, h5} (b) {h]_, h3, hs} (C) {hl, h4, h7} (d) {hl, h4, hg}

In case (a), we construct the convex set K bounded by lines I;(6,), lz(6;) and
l4(04), with 6, = §+¢, 0 = T —c and 6, = —Z +¢' (where € and & are arbitrarily
small and positive). This set K is I'-admissible and A — oo as € — 0 and ¢/ — 0.
In a similar way, sets with arbitrarily large areas for cases (b) and (d) may be
constructed (Appendix A, Figure A.2). In §3.3, we deal with the outstanding
{h1, ha, b7} case above. In §3.4, we consider the cases where K intercepts four

half edges.
3.3 The {hy, h4, b7} case

Let I denote the lattice point index set {0,1,2,...,8}. Since K is I'-admissible,
L; ¢ K° for i € I. Therefore, since K is convex, for a suitable choice of 6; for
each ¢, [;(6;) does not intersect K°. Let m; denote the closed half plane containing
K and having boundary [;(6;). We will show that for each K having intercept set
{h1, ha, h7}, a set K* may be constructed with the following properties:
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(a) K C K*

(b) K* is I'-admissible

(c) K* has the same intercept set as K

(d) K* =yesms, JC L.

We first observe that since K is convex and crosses the half edges h; and
hr, K C mg with 63 € (=%, —%). We shall take mg with the associated range of
values for s as a defining half plane for K*. Further defining half planes 7; with
corresponding ranges for 6; will be selected in the same way. We now carefully
enumerate the possibilities for K* by considering the different ways in which K°
intersects the line y = z + 1. Since K is I'-admissible and K has intercept set
{h1, hs, b7}, K° intersects the line y = z + 1 in one of the following four ways

(Appendix A, Figure A.3):

1. in @ or between the points (1,2) and L,. Therefore K C 7, with 6, €
T,arctan 2). This gives rise to two subcases. The set K° intersects y = —1

in one of the following ways:
(i) in @ or between the points Ly and Ls. In this case K C w5 with
05 € [0, arctan £). Here we set K* = m, N5 N 7.
(ii) between the points Ly and (2,—1). In this case, K C m; with 6; €

(—arctan 3, 0). Here we set K* = 1, N 7 N 7;

2. between the points Ly and Ly. Therefore K C 7, Ny with 6 € (0, 7) and
64 € (§,%). The subcases here are as for (1) above. This gives rise to two
possibilities for K*, namely

(i) m Nmy N5 N7 With 65 € [0, arctan 1), or

(ii) m2 Nmy N7 N g with 6; € (— arctan 1, 0);
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3. between the points Ly and Lo. In this case K C 74 with 6, € (arctan %, )
Here we have three subcases. The set K intersects y = —1 in one of the

following ways:

(i) in @ or between the points (—3,—1) and Lo; in this case K C m, with

6o € [0, arctan 3). We set K* = m4 N mg N .

(ii) between the points Ly and Ls; in this case K C m N 75 with 65 €

(0,arctan ;) and 6p € (Z,Z)U (—Z,0). We set K* = w4 N 75 N7 N 7.

(iii) between the points L; and (2,—1); in this case K C m; with 8, €

(—arctan 3,0). We set K* = mq N 77 N 7g;

4. between the points Lo and (-3, —2). Here K C o with 6 € (arctan 2, T).
In this case, K intersects y = —1 between the points L, and Ls. Hence

K C w5 with 65 € (0,arctan ). We set K* = m5 N m5 N 7.

It may be easily verified in each case that K* satisfies properties (a), (b), (c)
and (d) listed earlier. Since K C K*, A(K) < A(K*). It is therefore sufficient to
prove Theorem 3.2 for K*. Henceforth we shall assume that K = K*.

In each of these cases, K extends beyond Ehrhart’s triangle E in a set
K\(K NE). We consider the decomposition of K\(K N E) into a finite num-
ber of triangles ‘cut off’ from K by the lines y = -1,z = land y = z + 1
bounding E. Let A denote the set of such triangles. Since the intercept set of
K is {hy, hy, h7}, each member of A lies in one of the closed triangular regions
J1, J2, ..., Jg shown in Figure 3.2. We denote by A; the member of A lying in
Ji. We will associate with each A; € A a triangle T, C F\(K N E) having
A(Li) < A(T;) and T;NT; =0 if i # j. This will show that A(K) < A(E). The
triangles T; and A; will have a common vertex, and vertically opposite angles at
that vertex. Thus given the vertex, the lines on which two edges of T} lie will be

automatically determined and T; will be completely specified by its third edge.
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N 27
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Figure 3.2: The regions Jy, Js, ..., Js for the {hy, hy, h7} case

For each A; € A, we choose the common vertex of A; and 7} and the line
on which the third edge of T; lies as given in Table 3.1 (see also Appendix A,
Figure A.3).

Triangles Common vertex Third edge of T; lies on

Al,Tl L2 z=-1
Az,Tz L2 z=1
D3, T3 Ly y=1
A4,T4 Lo z=1
As, T Ly y=1
AG,TG .L5 z=1
A7,T7 L7 r=-1
Ag,Ts Lg Yy = 1.

Table 3.1: Triangles A; and T; for the {hy, hy, b7} case

Hence, if for example, K = moNmsNmg with 6, € [Z, arctan 2), 65 € [0, arctan 3)
and 03 € (—3,—%), then K intercepts Ji, Js and Jz and A = {A;,i = 1,6,8}.
The triangles T;, i = 1,6, 8 are chosen as in Table 3.1. It may be easily checked
here that for each i, A(T;) > A(A;) and T, NT; = @ if i # j. We repeat the
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process for each of the remaining cases for K listed above, again finding that for
each (relevant) i, A(A;) < A(T;) and T, NT; = 0 if ¢ # 5. Since at least one of
the triangle area inequalities is strict, it follows that A(K) < A(E) = 41 for all
K having intercept set {hi, hq, h7}.

We now show that A(E) = 43 is in fact the least upper bound for A(K).
Consider the infinite sequence of triangles {K,} where K, = 7, N 75 N 75 with
02 = §, 05 = 0 and 6 = — arctan 2. Then as r — co, K, — E. Since A(K,) is a
continuous function of r, A(K,) — A(E) = 43. Hence the least upper bound for
A(K) is 43.

3.4 The four-intercept case

If K crosses exactly four half edges, using rotation about the origin and reflection
in a line through the origin, it suffices to consider the cases where the intercept

set of K is one of

(a) {h1, h3, hs, hz}  (b) {h1,hs, b5, he}  (c) {h1, b4, he, b7}

(d) {h’h h47 h’5, h8}

We will employ a similar method to that given in §3.3 to prove the results for
the four-intercept case. We will also use the notation employed in §3.3.

Suppose first that K has intercept set {hy, hs, hs, h7}. In this case, we observe
that K C w2 Ny N we N g with 62,06 € (0, ), 04,05 € (=%, —%)- Hence we set
K* = myNmyNmgNmg. Now replacing K by K* and recalling that S is the square
bounded by the lines z = £1 and y = +1, we observe that K extends beyond S
in a set K\(K N.S). We will show that A(S) = 4 is the least upper bound for
A(K).

We consider the decomposition of K\(K N S) into four triangles ‘cut off’
from K by the lines bounding S. We observe that each member of A lies in

one of the closed triangular regions Ji, J2, J3, J4 shown in Figure 3.3. Hence



3.4. The four-intercept case 27

A = {Ay, Dy, A3, Ay}. We now choose the common vertex of A; and T; and the
line on which the third edge of T; lies as given in Table 3.2.

(12

-2,1) | : 1

~ , J :
1 @2-1)

%

12

Figure 3.3: The regions Ji, J,,...J, for the {hq, h3, hs, 7} case

Triangles Common vertex Third edge of T; lies on

Al,Tl L2 r=-1
D2, Ty Ly y=-1
A3,T3 L6 z=1
AVIY M) Lg y=1

Table 3.2: Triangles A; and T; for the {hy, h, hs, hr} case

It is a simple matter to show that for each i, A(A;) < A(T;) and T; N T; =0
for i # j. Hence A(K) < A(S) = 4 for all K having intercept set {h, hs, hs, hr}.
We now show that A(S) = 4 is in fact the least upper bound for A(K). We
consider the infinite sequence of squares {K,} where K, = 7y N7y N7g N 75 with
62 = 0¢ = arctan2™" and 6, = 0y = —arctan2’. As r — oo, K, — S and

A(K;) = A(S) = 4. Hence the least upper bound for A(K) is 4.

Now suppose that K has intercept set {h;, k4, hs,h7}. Here we note that

K C msNmg Nmg with 5 € (—%,0), 66 € (0,%) and 65 € (=%, —%). We next

observe that K° may intersect the line y = z + 1 in one of the following ways

(Appendix A, Figure A.4):
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1. in @ or between the points (1,2) and L,. Hence K C 7, with 6, €

[%,arctan 2). We set K* = m, N 75 N g N m;

2. between the points L; and Ly. Hence K C m N1y with 6, € (0, 7) and

64 € (53): We set K* = m 0ma 1 ms g N

3. between the points Ly and Lo. Hence K C 7, with 8; € (arctan 3, ). We

set K* = my N7 N g N 7g.

We show that an upper bound for A(K) is A(E) = 41 and that this is in fact
the least upper bound. We consider the decomposition of K'\(K NE) into a finite
number of triangles ‘cut off’ from K by the lines bounding E. Taking note of the
intercept set of K, we observe that each member of A lies in one of the closed
triangular regions Ji, J2, Js, Js, J5 shown in Figure 3.4. We now construct the set
A for each of the edge sets above. For each A; € A, we choose the common
vertex of A; and T; and the line on which the third edge of 7T; lies as given in

Table 3.3 (see also Appendix A, Figure A.4).

Y gy

e

(-3,-1 8 d . ’s Q@1

(-1,-2)
Figure 3.4: The regions Jy, Jy, ..., J5 for the {hy, by, hs, h7} case
It may be easily checked that for each A; € A, A(A;) < A(T;) (with strict

inequality for at least one i), and T;NT; = @ for ¢ # j. Hence A(K) < A(E) = 43
for all K having intercept set {hy, ha, hs, hr}.
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Triangles Common vertex Third edge of T; lies on

Al,Tl L2 z=-1
A2,T2 L2 z=1
D3, T3 Ly y=1
A4,T4 LG z=1
A5, Ts Lg y=1

Table 3.3: Triangles A; and T; for the {h1, hq, hs, A7} case

To show that 4% is the least upper bound for A(K), we consider the infinite
sequence {K,} where K, = my N 75 N mg N wg with 6y = %, 05 = —arctan 27",
0 = arctan27" and 6 = —arctan2". As 7 — o0, K, — F and A(K,) — A(E).
Hence A(E) = 4% is the least upper bound for A(K).

If K has intercept set {hy, ha, hg, h7}, we have K C mg N w7 N w5 with 6 €
(=%0), 67 € (0,%) and 65 € (—%,—%). Noting that K° intercepts y = z + 1 as

in the {hy, h4, hs, h7} case, we have the following possibilities for K*, namely
1. m N me N7y N mg With 6, € [, arctan 2),
2. myNmg Nme N w7 N g with 6, € (0,%) and 6, € )

3. my N mg N7 N g with 04 € (arctan 1, 2).

We observe that the figure in this case is the same as Figure 3.4 with J,
reflected in the y-axis. The choice of common vertices for A; and T} and the line
on which the third edge of T; lies is therefore the same as for the {hy, Ay, hs, hz}
case for ¢ = 1,2, 3,5. For A4 and Ty, the common vertex is Lg and the third edge
of T} is chosen to lie on x = —1. It may then be argued in the same way as for
the {hi, hq, hs, hr} case that A(E) = 41 is an upper bound for A(K).

To show that A(F) = 41 is the least upper bound for A(K), we consider the

infinite sequence { K} where K, = myNngNm;N71g with 6 = T fg = — arctan 277,
1



3.4. The four-intercept case 30

07 = arctan 27" and 63 = —arctan2". Asr — 0o, K, — E. Therefore A(F) = 4%

is the least upper bound for A(K).

Finally in the {h, hy, hs, hg} case, we note that K C 7, N5 with 6; € (-%,0)
and 65 € (—%,0). We first observe that K° intercepts the line y = z+1 as in cases

(b) and (c) above. Hence we have the following cases (Appendix A, Figure A.5):

1. K C m with 6, € [§,arctan2). This gives rise to three subcases. The set

K° may intersect the line y = z — 1 in one of the following three ways:
(i) in @ or between the points (—1, —2) and Lg. In this case K C 7g with
fs € [§,arctan2). We set K* = m N mp N 75 N 7g;

(ii) between the points Lg and Lg. In this case K C mgNmg with 6 € (0, 3
and 05 € (§,%). We set K* =m Nmp N5 N me N g;
(iii) between the points Lg and (2,1). In this case K C 75 with 05 €
(arctan 3, %). We set K* = m N7 N5 N 7.
2. K C mpNmy with 6; € (0,%) and 0, € (§,%). The same subcases as in (1)
above arise, giving the following possibilities for K*.
(i) m NmNmyN7s N g with 6 € (%, arctan 2);

(11) TN Ny N7s N g N7y with 06 c (0, %) and 08 € (%, 12[),

(iii) 7 N7e Ny N5 N g With 05 € (arctan 3, T).

3. K C my with 64 € (arctan 3, Z). The same subcases as (1) arise, giving the

following three possibilities for K*.
(i) m N7y N 75 N g with G € [, arctan 2);
(11) T NTe N 75 N g M Tg with 96 € (0, %) and 08 S (%, %),

(iii) 7 N7y N s N g with 65 € (arctan 3, Z).
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Noting that the lattice points L1, Ls, L4, Ls, Lg, Lg and the half edges b,
hs, hs, hg are symmetrically placed about the origin, we observe that case 3(iii)
may be incorporated into case 1(i); case 1(iii) may be incorporated into case 3(i)
and cases 1(ii), 2(iii) and 3(ii) may be incorporated into case 2(i). Therefore we
need only consider the remaining four cases for K*, namely cases 1(i), 2(i), 2(ii)
and 3(i).

We now consider the decomposition of K\(K N E) into a finite number of
triangles cut off from K by the lines bounding E. Given the intercept set of X
in this case, we note that each member of A lies in one of the closed triangular
regions Ji, Js,...,Js shown in Figure 3.5. We choose the common vertex of A;
and T; and the line on which the third edge of T; lies as given in Table 3.4 (see
also Appendix A, Figure A.5).

Y

(‘3s'1) . ‘IS 1! 1; 4

Figure 3.5: The regions Ji, Js, ..., Js for the {h1, hy, hs, hg} case

It may be easily checked that by constructing the set A for each of the edge
sets for K listed above, A(4A;) < A(T;) for each ¢ (with strict inequality for at
least one ¢), and T;NT; = @ for i # j. Hence A(K) < A(E) = 41 for all K having
intercept set {hy, ha, hs, hs}.



3.5. Related results and conjectures 32

Triangles Common vertex Third edge of T; lies on

Al,T]_ Lz z=-1
Do, Ty Ly y=-1
A3, T; Ly y=1
A4,T4 Ls r=1
D5, Ts L y=z+1

Table 3.4: Triangles A; and T; for the {hy, hy, hs, hg} case

To show that A(E) = 43 is the least upper bound for A(K), we consider an
infinite sequence {K,} where K, = m; Nmy N w5 N me N7 With 6; = — arctan 2",
02 = 7, 05 = —arctan27", 0 = arctan2™" and 63 = arctan2”. As r — oo,
K, — E and A(K,) — A(E) = 4;. Hence A(E) = 41 is the least upper bound
for A(K).

This completes the proof, and Theorem 3.2 is established.

3.5 Related results and conjectures

Many interesting problems concerning the maximal volume of a set K in " arise
when conditions are imposed on the set K to keep the volume bounded. We have
already mentioned the results of Minkowski (1911) and Ehrhart (1955a, 1955b) as
examples. We state here other significant results concerning the maximal volume
of a A,-admissible set. The results given here are by no means exhaustive and we
refer the reader to the surveys by Erdos, Gruber and Hammer (1989), Gritzmann
and Wills (1993), Hammer (1977) and Scott (1988) for a more complete coverage.

Sawyer (1954) defines a functional A(K) for a A,-admissible set K in X" as
follows: Let POP’ be an arbitrary chord of K. Then A(K) = sup PO/OP’. It is
clear that A(K) > 1 and that equality holds when and only when K is symmetric
about O. This functional is in fact an example of a coefficient of asymmetry (see

for example (Griinbaum 1963)). In the same paper Sawyer proves
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Theorem 3.3 (Sawyer) Let K be a An-admissible set in K™ with coefficient of
asymmetry A(K) = X. Then

V < 6(X) det(Aq),

where

60 =+ 1 (1- =30,

We note that in the case where K is symmetric about O (A = 1), Minkowski’s
Convex Body Theorem for R” follows immediately from Sawyer’s inequality. If,
on the other hand, O is the centre of gravity, then A = 3/2. In this case, we
observe that Ehrhart’s conjecture (Conjecture 3.1) gives a much stronger result
than Sawyer’s theorem. Sawyer (1955a) obtains an exact formula for ¢()\) in
the case where n = 2 from which the result by Ehrhart (1955a) for n = 2 may
be deduced. Sawyer (1955b) also obtains estimates for ¢()) for sets which are
symmetric about a point apart from O.

Scott (1974b) obtains a result analogous to the result by Sawyer (1955a) by
replacing A with a certain boundedness condition. We say that a set K is kA,-
bounded if some translate of K is contained in a fundamental cell of kA, but no
translate of K is contained in any fundamental cell of (k — £)A, (¢ > 0). It is
expected that there is a function f(k) for which V' < f(k)det(A,). Scott finds
an exact formulation for f(k) for the case where n = 2.

Scott (1978a) also conjectures the following:

Conjecture 3.4 (Scott) Let K be a A,-admissible set in K™ and let O; denote
the ith orthant in R"™ cut off by the coordinate planes. Suppose that V(K N 0;) =
27"V (K). Then

V(K) < 2™det(A,).

Scott (1978a) proves the conjecture for the case n = 2.
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Another conjecture by Scott (1982) concerns the maximal area of a I'-admissible
set having circumcentre O. Using a computer run, we discover that the conjecture

is false. We revise the conjecture as follows:
Conjecture 3.5 Let K be a I'-admissible set in K? having circumcentre O. Then
A < a =~ 4.04569.

Equality holds when and only when K is congruent to the set shown in Figure 3.6

(Here R~ 1.593, a =~ 5.47°, 3 =~ 20.23°).

Figure 3.6: The set with maximal area having circumcentre O

Van der Corput (1935, 1936) considers a set K in K™ with K° containing more

than one point of A,,.

Theorem 3.6 (Van der Corput) Let K € K" and let K be symmetric about
O. Suppose that G(K°,A,) =2k + 1. Then

V < 27(2k + 1) det(A,).

Scott (1987) extends Van der Corput’s result to the class of non-symmetric
convex sets in K2. Ehrhart (1955c, 1955d) gives partial results relating A and
G(K°, A) for a set K € K? having centre of gravity at O.



Chapter 4

On the maximal circumradius of a planar
convex set containing one lattice point

4.1 Introduction

Let K be a set in K? with circumradius R(K) = R. A number of results concern-
ing the circumradius of a general convex set are known (Eggleston 1958, p.111;
Henk and Tsintsifas 1994; Scott 1978b, 1979a, 1981). However, there are relat-
ively few results on the circumradius of a convex set constrained by lattice points
(see for example (Scott 1980)). In this chapter we find the maximal circumradius,
under certain conditions, of a I'-admissible set K where O is the circumcentre of
K. Tt will be seen that the maximal set is a triangle with an edge containing two
lattice points.

As in Chapter 3, let S be the closed square with vertices (1, +1). The eight
lattice points (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,~1), (1,-1), (1,0) on 85
are labelled Ly, Ly, ..., Lg respectively and the half edges, L1 Ly, LoLs, ..., LsL,
of S are denoted by hi, hy, ..., hg respectively. Let O be the circumcentre of K
and let C be the corresponding circumcircle. We recall from Chapter 3 that K
crosses an half edge h; if h; contains a point in K°. Suppose that X crosses the
half edge h;. Then h; partitions K into two regions, one of which does not contain
O. Let K' denote this region. If K’ intercepts C, we say that K intercepts C
beyond the half edge h;. We prove here the following result concerning R (Awyong

35
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and Scott 1995).

Theorem 4.1 Let K be a I'-admissible set in K? with circumcentre O and cir-

cumcircle C' and let S denote the square with vertices (£1,£1). Then
R < a=1.685,

unless K intercepts C beyond ezactly two opposite half edges of S, in which case
no upper bound can be found for R. Equality holds when and only when K is the

triangle shown in Figure 4.1.

The exact value of a is @ = +/5y% + 4y + 1 where y is the positive root of
25y3 +20y? — 3 = 0.

Figure 4.1: A set K for which R = o ~ 1.685

4.2 Narrowing the search

If K =S, then R = v/2 < 0. Hence we may assume that R > +/2. It follows that
K extends beyond 8S. Convexity arguments show that the convex set K may
cross at most four of the eight half edges of S, with no two of the crossed half
edges comprising an edge of S. For a given set K, we call the set of half edges

beyond which K intercepts C the intercept set of K.
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It may be proved that either C contains two points of 8K which are the
ends of a diameter of C, or C contains three points of 8K which form an acute-
angled triangle containing O (Yaglom and Boltyanskii 1961, p.59). Henceforth
we shall refer to this property of C as the circumcircle property. Clearly, by the
circumcircle property, K must intercept C beyond at least two half edges of S.

If K intercepts C' beyond exactly two half edges of S, using rotations about
O and reflections in lines through O to discard equivalent cases, we need only

consider the cases where the intercept set of K is one of

(2) {h1, s} (b) {ha,ha} (c) {ha,hs} (d) {h1,he} (e) {h1,hs}.

In cases (a) (b), (d) and (e), since O € K®, all intercepts of K and C lie in the
half planes y > 0, y > z, £ > 0 and y > 0 respectively. By the circumcircle
property we can discard these cases.

In case (c) a '-admissible set K can be constructed having circumcentre O
and diameter making a very small angle with the y-axis. It is easily seen that
for such a set K, R may be made arbitrarily large. Therefore if K intercepts C
beyond exactly two opposite half edges, no upper bound may be found for R.

We may now assume that K intercepts C' beyond three or four half edges of
S. By the circumcircle property, C contains three points of 8K which form the
vertices of an acute-angled triangle T containing O. In the rest of the chapter,
we shall use ‘triangle’ to mean a I'-admissible closed set bounded by the edges
of a triangle with circumcentre O. As R(T) = R(K), it is sufficient to establish
Theorem 4.1 for the class of triangles. Since T crosses exactly three half edges
of S, using rotations and reflections as before, we find that it suffices to consider

the cases where the intercept set of T is one of

(a) {h1,h3, kst (b) {h1, ha,he}  (c) {P1,has bz} (d) {ha1, ha, hs}.

In case (b), since O € K, all intercepts of K and C lie in the half plane y > 0.

By the circumcircle property, this case may be eliminated.
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We now find an upper bound for R(T) in the cases where T is a triangle
having intercept set (a), (c) or (d). Let V; denote the vertex of T lying beyond
h; and let AXY Z denote the closed triangular region having vertices X, ¥ and

Z. We prove the following lemma:

Lemma 4.2 Let T' be a triangle having intercept set {hy, ks, hs}, {h1, hq, b7} or
{h1, ha, hs}. Then R(T) < 2.

Proof. Let C be the circumcircle of T and let arc(X,Y) denote the minor arc
XY of C, excluding the points X and Y. Let H; denote the closed half plane not
containing the origin and bounded by the line containing the half edge ;.

Suppose first that T has intercept set {h1, hs, hs} (Figure 4.2). Let A and B
be the points of intersection of C with the lines y = 1 and y = 0 respectively in
H;. Let X and Y be the points of intersection of C with the lines £ = —1 and
¢ = 0 respectively in Hs. Since T crosses hy, hs and hs, we have V3 € arc(A4, B)
and V5 € arc(X,Y). If R(T) = 2, then A = A*(—V/3,1) and Y = Y*(0,-2).
It is an easy exercise to check that L, lies on the same side of A*Y™* as O. If
R(T) > 2, the line segment AY lies along A*Y* or lies on the side of the line
A*Y™ not containing O. Since the edge V;V; lies on the side of AY not containing
0O, it follows that L, lies in the interior of AOV;Vs. Hence Ly € T°, contradicting
our assumption on 7. Hence R(T) < 2.

Suppose now that T has intercept set {hi, hs,h7} (Figure 4.3). Let A and
B be the points of intersection of C' with z = 0 and z = 1 respectively in H;.
Since T' crosses hy, hy and h7, we have V; € arc(4, B). Since Lg ¢ T° and the
edge V1 V7 intercepts hz, it follows that V; € arc(X,Y), where X and Y are the
points of intersection of C' with the lines ALg and BL; respectively in H;. If
R(T) =2, then A= A4*(0,2) and X = X*(§,-%). Since T crosses h;, hy and hy,
we also have V; € arc(P*, @*) where P* and Q* are the points with coordinates

(—=v/3,—1) and (—2,0) respectively. It is easily checked that L- lies on the line



4.2. Narrowing the search 39

Figure 4.2: The upper bound for R(T') for the {hy, h3, hs} case

segment X*Q)*. Since the edge V;V7 lies on the side of X*Q* not containing O, it
follows that L7 € T°, contradicting our assumption on 7. If R(T) > 2, the line
AX is oriented clockwise from the line A*X*. Since T crosses hi, hs and ks, we
have V; € arc(P,Q), where P and @ are the points of intersection of the lines
y = —1 and y = 0 respectively in Hy. It follows that the line segment X Q lies on
the side of X*@Q* not containing O. Since the edge V;V7 lies on the side of XQ
not containing O, it follows that L; € T°, contradicting our assumption on 7.

Hence R(T) < 2.

Figure 4.3: The upper bound for R(T') for the {hy, hq, h7} case
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Finally suppose that 7" has intercept set {hy, hs, hg} (Figure 4.4). Let A and
B be the points of intersection of C' with the linesz = 0 and z = 1 in H;. Let
X and Y be the points of intersection of C' with the lines y = 1 and y = 0
respectively in Hg. Since T crosses h;, hy and hg, we have V; € arc(4, B) and
Vs € arc(X,Y). If R(T) =2, A = A*(0,2) and Y = Y*(2,0). Clearly, L, lies
on the line segment A*Y™. If R(T) > 2, the line segment AY lies along A*Y™* or
lies on the side of A*Y™ not containing O. Since the edge V;V; lies on the side
of AY not containing O, it follows that L, lies in the interior of AOV;V;. Hence

L, € T°, contradicting our assumption on 7'. It follows that R(T) < 2.

Figure 4.4: The upper bound for R(T') for the {h;, hy, hg} case

Hence if T has intercept set {hi,hs,hs}, {h1,hs, b7} or {hi,hy,hs}, then
R(T') < 2 and the lemma is proved. O

We now let F' denote the family of triangles having given intercept set {h,, hs, hs},
{h1, ha, bz} or {hy, hy, hs}. By Lemma 4.2, the members of F are contained in
a disk of radius 2. By Blaschke’s Selection Theorem, F is a compact subset of
K? in each of these cases, and by Theorem 2.5, a maximal set occurs in each
case. Let 7 denote a maximal set in F. For a given intercept set, a set K with

R(K) = R(T) is referred to as a magzimal set; in particular, a triangle 7' with
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R(T) = R(T) is referred to as a mazimal triangle.

In §4.3 we establish some properties of a maximal triangle. In §4.4, we prove
two lemmas which will further narrow our search for a maximal set. In §4.5, §4.6
and §4.7, we find the maximal set for the class of triangles having given intercept
sets {hi, hs, hs}, {h1, ha, bz} and {hy, hy, hg} Tespectively. For each case we also
establish the uniqueness of the maximal triangle by employing the results in §4.4
to eliminate all other triangles as possible solutions.

Unless otherwise specified, the vertices of a triangle will be described in an

anticlockwise order.
4.3 Properties of a maximal set

The following lemmas establish some properties of a maximal triangle and a
maximal set for intercept sets {hy, hs, hs}, {hi,hs, hr} or {hy, hy, hg}. Let L
denote the set of non-zero lattice points contained in the circumdisk of 7. By
Lemma 4.2, we have R(T) < 2. We also recall that R(T) > /2. Hence £ =
{Li,i=1,...,8}.

Lemma 4.3 IfT is a mazimal triangle, then each edge of T must contain a point

of L in its interior.

Proof. Let T'= AXY Z be a maximal triangle with edges z, y and z lying
opposite the vertices X, Y and Z respectively, and let C denote the circumcircle
of T. By Lemma 4.2, we may assume that R(T) < 2. We suppose that there
is at least one edge of T' which does not contain a point of £ in its interior. If
edge z (say) contains no point of £ in its interior, we enlarge T about X until z
first contains a point of £. Denote this enlarged triangle T} with corresponding
vertices X1, Y1, Z1 and edges 1, y1, 21. Let K; be the set bounded by C and the
edges of T;. Clearly, K, is I-admissible and R(K;) = R(T). By construction,

K is bounded by two arcs of C' and three straight edges. If now y; contains no
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point of £ its interior, a similar enlargement of T} about Y; results in a triangle
T,. Let K, be the set bounded by C and the edges of Th. By construction, K,
is [-admissible and has three arc boundaries. Since R(T) < 2, C contains no
lattice points. We now enlarge C about O by a sufficiently small factor to obtain
the set C containing no lattice points. Let K* be the set bounded by the lines
containing the straight edges of T, and arcs of C;. Clearly, K* is I'-admissible and
R(K*) > R(K>) = R(T). This contradicts our assumption that T is a maximal
triangle. If now y; contains a point of £ in its interior, a small clockwise rotation
about the lattice point (choose the lattice point in £ closest to X if there is
more than one point of £ in the interior of y;) also results in a set with three
arc boundaries. By the same argument as before, T is not a maximal triangle,

contradicting our assumption. a
Lemma 4.4 If K is a mazimal set, then K is a triangle.

Proof. We suppose that K is a maximal set which is not a triangle. Then by
the circumcircle property, K intercepts C in three points which form an acute-
angled triangle T containing O. Since K is a maximal set, T is a maximal triangle.
As K # T, there is an edge e of T whose interior lies in K°. Hence e contains no
point of £ in its interior. By Lemma 4.3, T is not a maximal triangle. Hence K

is a triangle. O

If each edge of a triangle contains exactly one point of £ in its interior, we

call the join of a vertex to the opposite lattice point a V L-line.

Lemma 4.5 If T is a mazimal triangle then either
(i) its V L-lines are concurrent or

(ii) at least one of the edges of T contains two points of L in its interior.

Proof. Let T = AXYZ be a maximal triangle. By Lemma 4.3, each edge

of T contains at least one point of £ in its interior. Suppose that each edge of
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T’ contains exactly one point of £ in its interior. We let these points be L;, L,
and L, lying in the interior of each of the edges z, y and 2 respectively. Suppose
also that the V L-lines, XL,, YL, and ZL, are not concurrent. We transform the
edges of the triangle T by first rotating the edge XY (sliding the endpoints on C)
about L, through a small angle 6 to X'Y’. This is followed by a rotation in the
same direction of the edge Y'Z about L, to the edge Y'Z'. Finally ZX is rotated
in the same direction about L, to Z'X”. We denote the described transformation
on the edges of T by f.(T, ) if the edges of T are rotated in a clockwise manner,
and by f,(T,0), if the edges of T are rotated in an anticlockwise direction. We
note that /Y XX'= /X'Y'Y since these two angles are in the same segment of
C subtended by chord X'Y. Similarly, /Y'Y X = /Y'X'X. We therefore deduce
that AYL,Y’ and AX'L,X are similar. Hence

XX _ X'L

YY" L)Y’
Since X, Y and Z are oriented anticlockwise and 6 is small and AXY Z contains

O in its interior, fo(T,0) gives X'L, = XL, — e. where ¢ is small and positive.

Therefore
XX _XL,—¢ < XL,
YY' T LY LY’
Similarly,
YY’' < YL,
Z27'  L.Z
and
Z7Z' < ZL,
XX" L,X )

Multiplying all three inequalities, we obtain

XX' XL YL, ZL, _
XX" S LY L,ZL,x PV

where X X'/X X" differs from p by a small amount ¢,. Similarly, if f.(T,6) is

say,

applied,
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where X X'/ X X" differs from p by a small amount g, We note that by Ceva’s
theorem (Maxwell 1949, p.90), p = 1 if and only if the V L-lines X L, YL, and
ZL, are concurrent. By assumption, p # 1.

It p > 1, fo(T,0) yields XX'/XX" = p —¢,. We choose 6 so that €p is
sufficiently small to give XX'/X X" > 1. Since now X X' > X X", the transform-
ation results in a set K bounded by edges X'Y’, Y'Z', Z'X" and the arc X"X'
(Figure 4.5). By Lemma 4.4, K is not a maximal set. Since R(K) = R(T), it

follows that T is not a maximal triangle, contradicting our assumption.

X/ X/I X

Le z
Figure 4.5: The effect of f,(T,6) on T forp > 1

Ifp<1, f(T,0) yields XX'/XX" = p+ g,- We choose 6 so that g, is suffi-
ciently small to give X X'/ X X" < 1. Since now XX’ < X X", the transformation
results in a set K with an arc boundary. Arguing as before, T" is not a maximal
triangle.

Therefore, the maximal triangle is such that either its V L-lines are concur-

rent, or it has at least one edge containing two points of £ in its interior. |

For future easy reference, we summarize our findings thus far in the following

lemma.

Lemma 4.6 A mazimal set K is a triangle having a point of £ interior to each

of its edges and such that either
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(i) its V L-lines are concurrent or

(i) at least one of its edges contains two points of L in its interior.

Proof. By Lemma 4.4, a maximal set K is a triangle. By Lemma 4.3, a
maximal triangle T has a point of £ interior to each of its edges and by Lemma 4.5
a maximal triangle T" has concurrent V L-lines or has at least one edge containing

two points of L. |
4.4 Narrowing the search further

By Lemma 4.6, we may restrict the members of F' to those triangles with a given
intercept set, and with edges each containing a point of L.

Suppose first that F' is the family of triangles having intercept set {hy, hs, hs}.
Let T € F. Since the edges of T each contains a point of £, the edges V1V; and
V3Vs must contain the points L, and L, respectively, and the edge V5V contains
Ly or Lg or both L; and Lg (Figure 4.6). Table 4.1 gives a list of the possible
points of £ contained in the edges V1 V3, V3V5 and Vi514.

Figure 4.6: Lattice points on the edges of AV} V3V

Suppose now that F is the family of triangles having intercept set {h1, hg, hr}.
Let T' € F. We first observe that, given the intercept set of T the edge V;\;
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AR ATRAY
(a) Ly L4 Le 1
(b) Ly L4 Ly %
(C) L2 L4 Lﬁ, L1 *

Table 4.1: Lattice point listings for the {hy, h3, hs} case

contains the point Lg. If m(V1Vy) > 1, then V;Vj contains the lattice point L,
and V4V7 contains Ls, L7 or both Ls and Ly (Figure 4.7a, cases (a), (b) and (c)
respectively of Table 4.2). If on the other hand, m(V;V}) < 1, then V;V; contains
the lattice point Ly or both L, and Ly and V,V; contains the lattice point L,
(Figure 4.7b, cases (d) and (e) of Table 4.2).

(a) m(ViVa) > 1 (b) m(ViVy) < 1
Figure 4.7: Lattice points. on the edges of AV V, V5

Finally, let F' be the family of triangles having intercept set {h;, hq, hg}. Let
T € F. For this intercept set, the edge V3Vi contains the lattice point L;. If
m(V1V4) > 1, then V1V contains the point L, and V4 V3 contains the points Ly or
Lg or both Ls and Lg (Figure 4.8a, cases (a), (b) and (c) respectively of Table 4.3).
If, on the other hand, m(V;Vy) < 1, then V;V} contains L, or both Loy and Ly,
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Vivi VW, ViV

(a) Lg L, Ls 1
(b) Ls L, L 1
(C) Lg L2 L5, L7 *
(d) Ls Ly L; %
(e) Ls Lz, L4 L7 *

Table 4.2: Lattice point listings for the {hy, hq, b7} case

and V;V3 contains the point Lg (Figure 4.8b, cases (d) and (e) of Table 4.3).

(a) m(ViVa) > 1 (b) m(11Vy) < 1

Figure 4.8: Lattice points on the edges of AV;V,V4

VsVi WiVe  Vilg
a) L1 L2 L5
b) Ly L, I
C) Ll L2 L5, Lg
d) L, Ly L
() L1 LyLy Lg

b S e e e

Table 4.3: Lattice point listings for the {hy, hy, hg} case

Now to each T' = AXY Z in the cases from Tables 4.1, 4.2 and 4.3, we associate
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the ordered set (£1, £z, £3) called the lattice-point set where £;, i =1,2,3 a listing
of the points of £ in the interior of the edges YZ, ZX and XY respectively. If T'
has an edge containing two points of £ in its interior, we label that edge XY and
assign the lattice-point set (L, Ly, L,L!) where L, and L, appear in the order
X,L,, LY.

We will now prove two lemmas to help us narrow down the possibilities
for a maximal triangle. Lemma 4.7 establishes the uniqueness of a triangle
T* = AX*Y"Z* with a given lattice-point set (L;, Ly, L,L.). Therefore, from
Tables 4.1, 4.2 and 4.3, it may be seen that there are at most five such triangles

(marked x in the tables) satisfying condition (ii) of Lemma 4.6.

Lemma 4.7 Let T = AXYZ andT' = AX'Y'Z' be two triangles with the same
intercept set and lattice-point set (L, Ly, L,L). Then T =T".

Proof. Suppose that T # T". Then since T and T" have the same lattice point
set, we may assume that R(T) # R(T"). We first suppose that R(T") > R(T).
Then X € (X', Y)andY € (X,Y’). The edge X'Z’ is therefore oriented clockwise
about L, from XZ and the edge Y'Z’ is oriented anticlockwise about L, from
YZ. Therefore Z' € T° and OZ' < R(T) < R(T"). Hence O is not the circum-
centre of T", contradicting our assumption on 7". It follows that R(T") ¥ R(T).
A similar argument shows that R(T") £ R(T'). Therefore R(T") = R(T). Hence

T’ =T and the lemma is proved. O

The next lemma helps us to eliminate those cases marked t in the tables.
We will show that these triangles have V L-lines which are not concurrent and
since these triangles have edges each containing exactly one lattice point, by
Lemma 4.6, they are not maximal. We shall be comparing a triangle T* =
AX*Y*Z* along with its given lattice-point set (L, L, L,L.) with a related
triangle T' = AXY Z having the same intercept set as T™.
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Lemma 4.8 Let T* = AX*Y*Z* denote the unique triangle with a given lattice-
point set (Lg, Ly, L,L.). We define P* to be the intersection of lines X*L, and
Y*Ly, and Q* to be the intersection of lines Z*P* and X*Y*. If L, € (Q*, X",
then any triangle with lattice-point set (L, Ly, L,) is not mazimal. If L e

(@, Y*), then any triangle with lattice-point set (L, Ly, L) is not mazimal.

Proof. Let T = AXY Z be a triangle with the lattice-point set (Lgy Ly, L,).
We define P to be the intersection lines of XL, and YL,, and Q to be the
intersection of line ZP with XY. We show that line ZL, cannot pass through P.
It will then follow that the V L-lines of T are not concurrent and by Lemma 4.5,
T is not a maximal triangle. Let h, and h, be the open half planes bounded by
the line Q*Z* containing X* and Y* respectively.

Figure 4.9 shows the five possible triangles 7%, and how the intercept set
constrains the edge XY of any triangle T = AXYZ with lattice-point set
(Lgy Ly, L;). Since T is '-admissible, T' cannot contain L’, in its interior. Thus
in each case, since X*, L,, L), and Y* are in the given order, the edge XY of T
is oriented anticlockwise about L, from the edge X*Y* of T*.

We first suppose that T is a maximal triangle. Therefore R(T) > R(T*)
which implies that the vertices of T' are exterior to T*. Since the edge XY of T is
oriented anticlockwise about L, from the edge X*Y™* of T*, and since the vertices
of T are exterior to T*, the edges Y Z and ZX of T are also oriented anticlockwise
about L, and Ly respectively from the corresponding edges of T* (Figure 4.10).
Therefore the V L-lines, XL, and YL, of T are oriented anticlockwise about L,
and Ly from X*L, and Y*L, respectively, placing the point P in the interior of
AY*P*L,. It follows that P lies in h,. Since L, € (Q*, X*), the lattice point
L, lies in hy;. Also, since the edges YZ and ZX are oriented anticlockwise about
L, and L, respectively from Y*Z* and Z*X*, the point Z necessarily lies in
hs. Hence [Z, L,] is contained in h,. Therefore [Z, L,] and the point P are on
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opposite sides of the line Q*Z* and hence the V L-lines of T' are not concurrent.

Therefore T is not a maximal triangle.

X i o

(b) (Ls, Ly, LsL7) (c) (L7, Ls, LyLy)

(e) (Ls, L1, Lo Ly)

Figure 4.9: Triangles with edges containing two lattice points

We now let T = AXY Z be a triangle with the lattice-point set (L, Ly, L').

Arguing in a similar way as above, the edge XY of T is now oriented clockwise
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Figure 4.10: The case where R(T) > R(T*)

about L, from X*Y™. Defining P and Q above and using a similar argument,
it may be shown that [Z, L,] and the point P again lie on opposite sides of the
line Q*Z*. Hence the V L-lines of T are not concurrent and 7T is not a maximal

triangle. !

In the subsequent sections, we will employ Lemma 4.8 to show that the cases
marked } are not maximal. Hence we need only consider those cases marked  in
the tables. In other words, a maximal triangle has an edge containing two points
of £ in its interior. We will employ the notation used in Lemma 4.8 in the rest

of this chapter.

4.5 The {hy, hs, h5} case

We first consider case (c) of Table 4.1. Let T* = AV;V1Vs = AX*Y*Z* be the
unique triangle with lattice-point set (L,, Ly, LgL;) (Figure 4.9a).

We assign the coordinates (z,2z—1) and (y, 2y—1) to X* and Y* respectively.
Since X* and Y* also lie on C,

2+ (22 - 1) =y 4+ (2y — 1)

which gives £+y = £. We let Z* have coordinates (21, 2;). Since Y*Z* and Z*X*
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contain the lattice points L,(0,1) and Ls(—1,0) respectively,
22-1H2y—2 -0 2z-1

2—-0 y | m+l z+1
Eliminating = and solving for z; and 2z, we obtain

_ —y(6+5y) z___—%y+m¢+ﬁ

T 25y—18 1 T 2%y —18

As Z* also lies on the circumcircle,
7422 =y + (2y—1)%
Simplifying and factorising, we have
(5y — 2)(25y° — 45y% + 25y — 6) = 0.

Since y > 1, we solve 25y — 45y? + 25y — 6 = 0 to obtain y =~ 1.080 and
R(T*) =~ 1.584 < a.

We now show that any triangle with lattice-point set (L, L4, Lg) or (Lg, Ly, L1)
(case (a) or case (b) of Table 4.1) is not maximal. We consider the quadrangle
X*Y*LyLy. Let K be the point of intersection of the lines X*Y* and L, Ly, that is
the point (2,3). By the harmonic property of the quadrangle, the points X*, Y*
separate Q* and K harmonically. Therefore the cross-ratio (X*,Y*;Q* K) = —1.
We now orthogonally project the four points X*, Y*, Q* and K on the z-axis

to obtain the points X?, Y, Q% and K, respectively. Since the cross-ratio is

unaltered under projection, we have (X}, Y*; Q% K,) = —1. Letting the z-
coordinate of Q* be g, we have

g—z  2-z

y—q¢ y—2

which gives g ~ 0.689. Therefore Lg € (Q*,X*) and L; € (Q*,Y*). By Lemma
4.8, any triangle with lattice-point set (Lo, L4, Lg) or (Lg, Ly, L;) is not maximal.
Hence cases (a) and (b) of Table 4.1 may be eliminated.

Hence 7 is the triangle with lattice-point set (Ly, L4, L¢L;) and R(7T) =~
1.584 < a.
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4.6 The {hy, hy, h7} case

We first consider case (c) of Table 4.2. Let T* = AV V;V; = AX*Y*Z* be the
triangle with lattice-point set (Ls, Lo, LsL7) (Figure 4.9b).

We assign the coordinates (1+y, —1) to Y*, 0 < y < 1. Since X* Y* also lie on
C, by symmetry, X* has coordinates (—1 — y, —1). We let Z* have coordinates
(21,22). Since Y*Z* and Z*X* contain the lattice points Lg(1,0) and L,(0,1)
respectively,

ZZ—O 1 2’2—1_ 2

zl—l=—y’ z71—0 14y

Solving for 2; and z,, we obtain

-y’ -1) 3+y
n=—0, g = —m,
1+ 3y 1+ 3y

As Z* also lies on C,
A+z2=>01+y?+1.

Simplifying and factorising, we obtain
(1+y)(¥*+2y° +2y — 1) = 0.

Since 0 < y < 1, we solve (y + 2y2 + 2y — 1) = 0 for y to obtain y ~ 0.353 and
R(T*) ~1.683 < a.

We now show that any trianéle T’ with lattice-point set (Lg, Ly, Ls) or (Lg, L2, L7)
(case (a) or case (b) of Table 4.2) is not maximal. We consider the quadrangle
X*Y*LgL,. Letting the z-coordinate of Q* be ¢ and using cross-ratios as in §4.5,
we find that g ~ 0.915. Therefore Ls € (Q*, X*) and L; € (Q*,Y*). By Lemma
4.8, any triangle with lattice-point set (Lg, Lo, Ls) is (Ls, Lo, L7) is not maximal.
Hence cases (a) and (b) of Table 4.2 may be eliminated.

We now consider case (e) of Table 4.2. Let T* = AV;V,V; = AX*Y*Z* be
the triangle with lattice-point set (L7, Ls, LoL4) (Figure 4.9c).
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We assign the coordinates (z,z + 1) to X*, 0 < z < 1. Since X* and Y* lie
on C, by symmetry Y* has coordinates (~z —1, —z). We let Z* have coordinates
(21,22). Since Z*X* and Y*Z* contain the lattice points Lg(1, 0) and L,(1,-1)

respectively,
22—0 z+1 z+1 -—z+1
z1—1 z2-1 z7-1 -—-z-2

Solving for z; and z,, we obtain

o 2 —4z -3 Y 22432+ 2
e 5c+1 ? e 5z 41

As Z* also lies on C,
2+ =2+ (z+1)%

Simplifying and factorising, we obtain
(22 +1)(22% + 22° — 1) = 0.

Since 0 < z < 1, we solve 22° 4+ 222 — 1 = 0 to obtain z ~ 0.565 and R(T*) ~
1.664 < c.

We now show that any triangle T with lattice-point set (Ly, Lg, L4) (case (d)
of Table 4.2) is not maximal. We consider the quadrangle X*Y*LgL;. Letting the
z-coordinate of @* be g and considering cross-ratios as in §4.5, we find that ¢ =
0.256. Therefore Ly € (Q*,Y™*). By Lemma 4.8, any triangle with lattice-point

set (L7, Lg, L4) is not maximal. Hence case (d) of Table 4.2 may be eliminated.

4.7 The {hl, h4, hg} case

We first consider case (c) of Table 4.3. Let T* = AV,VsV; = AX*Y*Z* be the
triangle with lattice-point set (Ly, L, LsLg) (Figure 4.9d).
We assign the coordinates (2241, x) and (2y+1,y) to X* and Y* respectively.

Since X* and Y™* also lie on C,

2z +10°+2% = 2y +1)° +¢°
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which gives z + y = —%. We let Z* have coordinates (21,22). Since Y*Z* and

Z*X* contain the lattice points L;(1,1) and L, (0, 1) respectively,

z2—1 y-—1 Z—1 z-1
z—-1 2y’ ;-0 2041

Eliminating z and solving for z; and z; in terms of y, we obtain

_ =3 Ty+ 10y
25y +3

—12 — 21y + 5y
25y + 3

) 22 =

z21 =

As Z* also lies on C,
2422 =(2u+1)2+¢2

Simplifying and factorising we obtain
(5y + 2)(25y° + 20y — 3) = 0

Since y > 0, we solve 25y° + 20y — 3 = 0 for y to obtain y = 0.326 and
R(T*) ~ 1.685 = a.

We now show that any triangle with lattice-point set (L1, Lo, Ls) and (Ly, Ly, Ls)
(case (a) or case (b) of Table 4.3) is not maximal. We consider the quadrangle
X*Y*LyL, and using cross-ratios as before, we show that the z-coordinate q of
@* is approximately 0.953. Therefore Ly € (Q*,X*) and Lg € (@*,Y*). By
Lemma 4.8, any triangle with lattice-point set (L;, Ly, Ls) and (L, Ly, Lg) is not
maximal. Hence cases (a) and (b) of Table 4.3 may be eliminated.

We now consider case (e) of Table 4.3. Let T* = AViV,Vz = AX*Y*Z* be
the triangle with lattice-point set (Lg, L1, LoL4) (Figure 4.9e).

We assign the coordinates (x,z+1) to X*. Since X* and Y'* also lie on C, by
symmetry, Y has coordinates (—z — 1, —z). We let Z* have coordinates (21, 2;).
Since Z*X* and Y*Z* contain the lattice points L;(1,1) and Lg(1, 0) respectively,

-1 =z 22—0__ -
ooy =1 —z-—-2

zn—1 z-1
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Solving for z; and 2z, we obtain

—z2 4+ 22+ 2 —z+1
=, 2= 3

3z

As Z* also lies on C,
#n+za=2+(x+1)%

Simplifying and factorising, we obtain
(2 +1)(22° + 22> — 1) = 0.

Since 0 < z < 1, we solve 223 + 222 — 1 = 0 for z to obtain z ~ 0.565 and
R(T*) =~ 1.664 < a.

We now show that any triangle with lattice-point set (Lg, Ly, L4) (case (d)
of Table 4.3) is not maximal. We consider the quadrangle X*Y*LgL,. Using
the cross-ratio argument, we find that the z-coordinate g of Q* is approximately
0.256 and therefore Ly € (Q*,Y*). By Lemma 4.8, any triangle with lattice-point

set (Lg, L1, Ly) is not maximal. Hence case (d) of Table 4.3 may be eliminated.

Comparing the results in §4.5,8§4.6 and §4.7. we conclude that the maximal
set K is the triangle with lattice-point set (Ly, Ly, LsLs) (case (c) of Table 4.3)
with R(K) ~ 1.685. Theorem 4.1 is therefore proved.

4.8 Comment

It is interesting to observe that the triangles with lattice-point sets (L7, Lg, Ly Ly)
in §4.6 and (Ls, L1, LyL,) in §4.7 have the same circumradius. There does not
appear to be any obvious algebraic connection, and we have been unable to find

a simple geometrical proof.



Chapter 5

On the width of a planar convex set containing
zero, one or two lattice points

5.1 Introduction
Let K be a set in K* with width w(K) = w. Scott (1973) shows that if
G(K°,T') =0, then
1
ws 52+ V3), (5.1)

with equality when and only when K 22 &), where & is the equilateral triangle

of Figure 5.1.

L/ B—
e

1
B

Figure 5.1: The equilateral triangle &,

—

Elkington and Hammer (1976) make use of the value \ = 2(2+/3) to obtain
the result that if w > r) for r € Z, then G(K °,T') > r2. It may therefore be
deduced that if G(K°,T') < 22, then w < 2\ = 2+ /3. Scott (1985a) sharpens
this inequality for a set K with G(K°,T) = 1. In this case,

w<1+V2, (5.2)

57
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with equality when and only when K is congruent to the isosceles triangle shown

in Figure 5.2.

Figure 5.2: The set with maximal width for G(K°,T) =1

In this chapter we find a best upper bound for w in the case where G(K°,T) = 2.
We will see that the result follows easily by generalizing (5.1) to the rectangu-
lar lattice. Let Agr(u,v) denote the rectangular lattice generated by the vectors

u = (4,0) and v = (0,v) where u < v. We prove
Theorem 5.1 Let K be a set in K* with G(K°, Ag) =0. Then
1
w < 5(\/?_>u + 2v), (5.3)

with equality when and only when K = Eg, where Eg is the equilateral triangle of

Figure 5.3.

Figure 5.3: The equilateral triangle £g

Theorem 5.1 has in fact been proved in the special case where v < v/3u (Scott

1993). We also note that Theorem 5.1 follows from a recent generalization of
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(5.1) to arbitrary lattices by Vassallo (1992). As Vassallo’s proof is quite long
and involved, we give here a short proof for Theorem 5.1 by adapting the methods
by Scott (1973, 1993). We will then use Theorem 5.1 to find a best upper bound
for w(K) in the case where G(K°,T) = 2. We prove the following result:

Theorem 5.2 Let K be a set in K? with G(K°,T') = 2. Then

w <

(4+V3). (5.4)

N =

Equality occurs when and only when K = &, where £ is the equilateral triangle

of Figure 5.4.

Figure 5.4: The equilateral triangle &,
5.2 Two useful results
We first establish two useful results.

Lemma 5.3 Let K be a set in K? contained in a triangle T satisfying the condi-
tions of the Triangle Rotation Lemma. Then there is a triangle /\ circumscribing

a cell of Ag with w(K) < w(A). Equality holds when and only when K = A.

Proof. Since K C T, we have w(K) < w(T). By the Triangle Rotation
Lemma, either T circumscribes a cell of Ay or there is a triangle T, = AT,

A > 1, with T, circumscribing a cell of Ag. In either case, there is a triangle A
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circumscribing a cell of Ar with w(T) < w(A). It follows that w(K) < w(A)
with equality when and only when K = A. a

Lemma 5.4 Let K be a set in K? with G(K°, Ag) = 0. Suppose that w > v
and r > %u Then K CT where T is a triangle satisfying the Triangle Rotation
Lemma or K C Q where Q is a proper convez quadrilateral circumscribing a cell

of Ar with edges each containing in its interior a verter of the cell.

Proof. We will use the notation employed in the Triangle Rotation Lemma.
Thus z is a line containing the lattice point X and d(P, z) denotes the distance
from a point P to the line z. In addition we let m, denote the slope of the line
z and we write T(c,d, ) to denote a triangle determined by the lines ¢, d and
z satisfying the conditions of the Triangle Rotation Lemma. Let D denote an
indisk of K. We first translate K through a suitable lattice vector so that the
centre of D lies in 0 < y < v. For later reference, we list the above properties of
D as follows:

Pl 7> fu.

P2. The centre of D lies in 0 < y < v.

Now since w > v, K must extend beyond at least one of the lines y = 0 and
y = v. Without loss of generality, suppose that K extends beyond the line Yy =v.
Then since G(K°,Agr) = 0, K“’ intercepts y = v between two adjacent lattice
points on y = v. By translating K through a suitable lattice vector we may take
these points to be G(u,v) and H(0,v). Hence K is bounded by lines g and h,
with my # 0 and my # 0. By P1 and P2, g and h intersect in the halfplane
y > .

Let E and F' be the points (0,0) and (u,0) respectively and let C denote the
closed cell EFGH. From P1 and P2, we deduce that K° intercepts at least one

of the edges FG and EH of C. Without losing generality, we may assume that
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K?° intercepts the edge F'G of C. Therefore K lies below a line g with mg < 0.
We now consider the following two cases:

Case 1: K is bounded by y = 0 or K crosses y = 0 between the points E and
F. Here we note that my > 0. We have the following possibilities:

(a) my = 0 and my, # 0. Hence K C T(g, h, ) where z is a line containing
the lattice point X on the edge of T lying on y = 0 (Figure 5.5a).

(b) ms > 0 and (my < O (possibly infinite) or m, > 0). Hence K C T(g, f, h)
or K CT(f,g,e) (Figure 5.5b).

(c) ms > 0 and (my > 0 and m, < 0). Hence K C Q where Q is a proper
convex quadrilateral with edges each containing in its interior a vertex of C (Fig-

ure 5.5¢).
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Figure 5.5: Case 1 of Lemma 5.4

Case 2: K crosses the line y = 0 between adjacent lattice points X (ku, 0) and

Y((k + 1)u,0) for some non-zero integer k. By a reflection of the set K in the
mediator of the line segment EF', we may assume that k > 0. Here K is bounded
by lines z and y with m; < 0. By P1 and P2, the lines = and y intersect in y < 0.
Furthermore, by P1 and P2, K intercepts at least one of the edges HX and Y G
of the parallelogram XY GH. Without loss of generality, let K° intercept the

edge YG having slope m. Hence my, > m and m, < m. We have the following

possibilities:
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(a) mz < m or my, > m (Figure 5.6a). If m; < m, then we have K C
T(z,y,9). If mj > m, then K C T(xs,y,g) where zy, is a line containing the
point X and parallel to the line h.

(b) mn < m and m; > m (Figure 5.6b). If m, > m,, then we have K C
T(z,y,9). If my < m, (an infinite triangle in the case where mg = M), then we

have K C T(g, h, z).

@

®)

Figure 5.6: Case 2 of Lemma 5.4

From the cases enumerated above, it follows that either K C T where T is
a triangle satisfying the conditions of the Triangle Rotation Lemma or K C Q
where @ is a proper convex quadrilateral with edges each containing in its interior

a vertex of a cell of Ag. O

5.3 Proof of Theorem 5.1

Let K now be a set in K? with G(K°, Ag) = 0 and for which w is as large as
possible. From the equilateral triangle £x (Figure 5.3) we may assume that w >

+(V3u + 2v) > v. By a well known result of Blaschke (Yaglom and Boltyanskii
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1961, p.18), K contains a disk D of radius r = .1(v/3u + 20). Since v > u, we

have

(V3+2)u > g

r=—.=(V3u+2v)> . 5

Wl
DO =
W
N =

Since w > vand r > ju, by Lemma 5.4, K C T where T'is a triangle satisfying
the conditions of the Triangle Rotation Lemma or K C Q where Q is a proper,
convex quadrilateral as described in Lemma 5.4. If K C T, by Lemma 5.3, K
is a triangle circumscribing a cell of Ag. It follows that K is a closed convex
quadrilateral (possibly degenerate) circumscribing a cell of Ap.

Since the constraint v < v/3u is used by Scott (1993) only to show the ex-
istence of the quadrilateral, we can use the remainder of the proof given there
to obtain (5.3) with equality when and only when K & £, where £ is the

equilateral triangle of Figure 5.3. Hence Theorem 5.1 is proved.

5.4 Proof of Theorem 5.2

Let K now be a set in K2 with G(K°,T') = 2. By SL2 (see §2.5), we have the
following two cases:
(i) If z; and 2, are both odd, we consider the sublattice [V and observe that

G(K°,T") = 0. In this case u = v = /2 and by Theorem 5.1, we have
1 3
w < 5(\/3\/§+2\/§) <2+\/7_.

(ii) If say 21 is odd and z; is even, we consider the sublattice I and observe

that G(K°,I"") = 0. Here u =1, v = 2 and by Theorem 5.1, we have

1
w < 5(\/5.1+2.2) =2+ ?

Equality occurs when and only when K 2 &, (Figure 5.4). This completes the
proof of Theorem 5.2.
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5.5 Other related results

We note that (5.1) may be deduced directly from the following result by Eggleston
(1959):

Theorem 5.5 (Eggleston) Let K be a set in K? and let S be a square of side

length s inscribed in K. Then

w <

(2 + V3)s.

N =

Equality holds when and only when K is an equilateral triangle.
McMullen and Wills (1981) generalize (5.1) to R" as follows:
Theorem 5.6 (McMullen and Wills) Let
A, =max{w(K): K € K",G(K°,T,) = 0}.

Then

n, n odd,

(V2+1D)(/(n+1)=B) < An <

(n+1)y/n(n+2)-1, n even,

ﬁ=3\/§—4+7\/§—4\/§z1.018.

By using the idea of a Minkowski-reduced basis, Vassallo (1992) extends (5.1)

where

to the general lattice A. A basis {a, b} is a Minkowski-reduced basis for a lattice
A if

(a) a € {u € A\{O}; |u] is minimal}

(b) b € {v € A\{O}; {a,b} is a basis for A and |v| is minimal}

(c) a.b > 0.

Vassallo (1992) proves
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Theorem 5.7 (Vassallo) Let {a,b} be a Minkowski-reduced basis for the lattice
A in R? and let O be the angle between a and b. Let K be a set in K2 with
G(K° A) =0 Then

w < —2\/§|a| + |b| sin 6.

Equality is attained when and only when K is congruent to the equilateral triangle

shown in Figure 5.7.

Figure 5.7: The set with maximal width for the case G(K°,A) =0

The next two results concern the equilateral triangle lattice. Let At denote
the equilateral triangle lattice generated by the vectors (1,0) and (3, 1+/3). Scott
(1978c) proves

Theorem 5.8 (Scott) Let K € K? and let G(K° Ar) = 0. Then
w< \/§

Equality holds when and only when K is congruent to the equilateral triangle of

side length 2 (Figure 5.8).

Scott’s result above in fact follows immediately from Theorem 5.7 by taking
a = (1,0) and b = (},1+/3). Wetwitschka (1991) extends Scott’s result above to
sets K having G(K° Ar) = 1.

Theorem 5.9 (Wetwitschka) Let K € K? and let G(K°, Ar) = 1. Then

wsg\/g,
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Figure 5.8: The set with maximal width for the case G(K°, Ar) = 0

with equality when and only when K is congruent to the equilateral triangle shown

in Figure 5.9.

Figure 5.9: The set with maximal width for the case G(K°,Ar) =1

A number of results concerning the width of sets in X? with special properties
have been obtained. Sallee (1969) obtains the following result concerning the

maximal width of a set of constant width.

Theorem 5.10 (Sallee) Let K be a set of constant width in K2 and let G(K°,T) = 0.
Then

w< a~1.545,
where a is the root of
22 + 2°(2v3 — 1) + 2%(—2 — V3) + z(-1-3v3) — 2 = 0.

Equality is attained when and only when K is the Reuleauz triangle shown in

Figure 5.10.
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Figure 5.10: The Reuleaux triangle
Scott (1982) conjectures the following result:

Conjecture 5.11 (Scott) Let K be a I'-admissible set in K2 and let O be the
centre of gravity of K. Then

w< g\/ﬁ
Equality holds when and only when K is congruent to Ehrhart’s triangle (Fig-
ure 3.1).



Chapter 6

Width-diameter relations for convex sets with
lattice point constraints in the plane

6.1 Introduction

Let K be a set in K? with width w(K) = w and diameter d(K) = d. Scott
(1979b) proves that if G(K°,T) = 0, then

(w-1)(d-1)< 1, (6.1)

with equality when and only when K = 75, where 7; is the triangle of Figure 6.1.

Figure 6.1: The triangle 7y

This result is extended to the case G(K°,T') =1 (Scott 1985a) where we have
(w—~Vv2)(d-V2) <2, (6.2)

with equality when and only when K = 77, where 7; is the triangle of Figure 6.2.

68
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Figure 6.2: The triangle 73

In this chapter, we generalize (6.1) to rectangular lattices (Awyong and Scott
1996a). Let Agr(u,v) denote the rectangular lattice generated by the vectors

u = (u,0) and v = (0,v) where u < v. We prove
Theorem 6.1 Let K be a set in K? with G(K°,Ap) = 0. Then
(w—v)(d—u) < uv, (6.3)

with equality when and only when K 2= Tg, where Ty, is the triangle of Figure 6.3.

Figure 6.3: The triangle 7z

We then use this result to obtain a corresponding inequality for the case

G(K°,T") = 2. We prove
Theorem 6.2 Let K be a set in K? with G(K°,T') = 2. Then

(w—-2)(d-1) <2, (6.4)
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with equality when and only when K = T, where T, is the triangle of Figure 6.4.

Figure 6.4: The triangle 75

6.2 Three useful lemmas

Suppose that K € K? and G(K°, Ag) = 0. Let
FK) = (w(K) —v)(d(K) ~u) = (w — v)(d - u).

Clearly we may assume that d > w > v > u. We aim to find the maximal value of
f(K). We first establish three lemmas which will help us narrow the possibilities
for a maximal set.

In Lemma 6.3, we establish the maximal value of f(K) for the class of triangles
circumscribing a cell of Ag. Lemmas 6.4 and 6.5 will help us eliminate those sets

which are not maximal.

Lemma 6.3 Let K be a triangle circumscribing a cell of Ag. Then
FK) = (w—v)(d-u) < uv,

with equality when and only when the edge of K with length d lies on the side of
the cell having length wu.

Proof. Let the vertices of K be X, Y and Z and let C denote the cell inscribed
in K. Without loss of generality, let XY be the side of K containing two vertices
of C. Let XY have length b and let the altitude from Z to XY be h.
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We first let the edge XY lie on the edge of C with length u. Then A = %bh(=
%wd). The edges of C partition K into four regions. The area of K may therefore
be calculated as the sum of the areas of the four component parts (Figure 6.5).

z

X
b =) ¢

Figure 6.5: A triangle circumscribing a cell of Ag
Hence

1 1 il
—wd-—ibh = §(b—u)v+§(h—v)u+uv

L)

that is,
wd = bh = bv + hu.

We first note that
(bv + hu)® = (bv — hu)? + 4(bv) (hu).

Since wd = bh, we have (bv)(hu) = (dv)(wu). Furthermore, since 0 < (bv—hu) <
(dv — wu), it follows that

(bv + hu)? < (dv — wu)? + 4(dv)(wu) = (dv + wu)?.

Hence

bv + hu < dv + wu.

We thus have

wd < dv + wu.
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Adding uv to both sides of the inequality gives
FIK) = (w—v)(d-u) < uv.

Equality is attained here when XY =b=d and h = w.
If, on the other hand, XY lies on the edge of C of length v (here we may assume
that u # v, otherwise we have the above case), then we obtain (w—u)(d—v) < uw.

In this case we write
FK) = (w—v)(d—u) = (w—u)(d~v)+ (w—d)(v—u) (6.5)
Since w < d for triangles, and u < v, we have
(w—v)(d—u) < (w—u)(d-v) < uv.

Hence f(K) < uv with equality when and only when the edge of K with
length d lies on the side of the inscribed cell of length w. a

Lemma 6.4 Let K be a set in K? contained in a triangle T satisfying the condi-
tions of the Triangle Rotation Lemma. Then there is a triangle /A circumscribing

a cell of Ap with f(K) < f(A). Equality holds when and only when K = A.

Proof. Since K C T, f(K) < f(T). By the Triangle Rotation Lemma, either
T’ circumscribes a cell of Ag or there is a triangle T, = AT, \ > 1, with T,
circumscribing a cell of Ag. In either case, there is a triangle A circumscribing
a cell of Ag with f(T') < f(A). It follows that f(K) < f(A) with equality when
and only when K & A. O

Lemma 6.5 Let Q be a proper convez quadrilateral circumscribing a cell of Ag
and having edges each containing in its interior a vertex of the cell. If K is

contained in Q, then f(K) < uv.
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Proof. We shall denote lines with lower case letters. Thus z is a line containing
the point X. Let d(X,y) denote the distance of point X from line y. Let the
vertices of the circumscribed cell of Ag be 4, B, C and D labelled anticlockwise
and let @ = XY ZW where a.b =X, bc=Y, c.d = Z and d.a = W (Figure 6.6).
Since K C Q, we have f(K) < f(Q). It therefore suffices to show that f(Q) < uv.

Figure 6.6: The quadrilateral @ with diameter XY

We first note that the diameter of a polygonal set is the maxima)l distance
between a pair of vertices of the polygon. Suppose first that d(Q) is the length
of an edge, XY say, of Q. Without loss of generality, suppose that W is the
vertex of () furthest from b. Then w(Q) < d(W,b). Let T be the triangle XYW.
Clearly d(T) = XY and so w(T) = d(W,b). It follows that w(Q) < w(T). But
since T C @, we have w(T) < w(Q). Hence w(Q) = w(T) = d(W,b). Since T
and @ have the same width and diameter, it suffices to show that f (T) < uv.
Noting that the edge WY contains no lattice points, T may be enlarged about
the point X to T} = AW1XY; where W,Y] contains the point C or D, and
C and D are both not in 7¢. Now T satisfies the conditions of the Triangle
Rotation Lemma. By Lemma 6.4 there is a triangle A circumscribing a cell of

Ag with f(T1) < f(A). Furthermore, by Lemma 6.3, f(A) < uv. It follows that
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F(K) £ f(Q) = f(T) < f(T1) £ f(A) < wv.

We now suppose that d(Q) is the length of a diagonal of Q, WY say. Let ¢
be the width of @ in a direction perpendicular to WY (Figure 6.7). Since the
(minimal) width of @ occurs in a direction perpendicular to an edge of @, we
have w(Q) < t. Let WY make an acute angle § with CD and let X Z intersect
WY in the point O. Now A(Q) = 5td(Q). This area is also obtained by adding
the areas of the quadrilaterals ODW A, OBYC to OCZD, OAXB.

)
W

Figure 6.7: The quadrilateral Q with diameter WY

Suppose first that AB = v and BC = v. Then we have
1 1 1
itd(Q) = Evd(Q) cosf + §ut cos f.

Hence

td(Q) = (tu + d(Q)v) cosf < tu + d(Q)v.

Adding uv to both sides of the inequality and factorising, we have

(t —v)(d(Q) — u) < uv.
Since w(@) < t, we have

f(Q) = (w(Q) — v)(d(Q) — u) < (¢t — v)(d(Q) — v) < uv.
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Now suppose that AB = v and BC = u. Repeating the above argument, we

obtain the corresponding inequality
(w(Q) — v)(d(Q) — v) < uv.
By (6.5), f(Q) = (w(Q) — v)(d(Q) — u) < wv. m

6.3 Proof of Theorem 6.1

We now assume that K is a maximal set. By Lemma 6.3, f(K) > uv. Further-
more, for any convex set K, (w — 2r)d < 2v/3r% (Scott 1979a).

il 1
We first suppose that r < su < 5v. Then

(w—v)({d—u) < (w—v)d < (w—-2r)d < 2v/3r2 < 2\/5—3%% = \/7?_,1“) < uv.

Hence K is not maximal. We may therefore assume that r > %u Since we also
have w > v, Lemma 5.4 applies and it follows that either K C T where T is
a triangle satisfying the conditions of the Triangle Rotation Lemma or K C Q
where @ is a proper convex quadrilateral circumscribing a cell of Ag with edges
each containing in its interior a vertex of the cell. If K C Q, then f(K) < f Q).
By Lemma 6.5, f(K) < uv and so K is not maximal. Hence K C T. By
Lemma 6.4, f(K) < f(A). Since K is maximal, it may be deduced that K & A
where A is a triangle circumscribing a cell of Ag. By Lemma 6.3, f (K) < ww
with equality when and only when K = 7y (Figure 6.3). This completes the
proof of Theorem 6.1.

6.4 Proof of Theorem 6.2

Let K now be a set with G(K°,T") = 2. By SL2, we have the following two cases:
(i) If z, and 2, are both odd, we consider the sublattice I" and observe that

G(K°,I") = 0. In this case v = v = v/2 and by Theorem 6.1, we have

(w—v2)(d - V?) < 2.
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However,

(w=2)(d-1) = (w-Vv2)(d—v2) = w(v2-1)+d(2-2)
< dV2-1)+d+2-2)
= d(2v2-3) <0.

It follows that (w —2)(d—1) < (w—+/2)(d —+/2) < 2. Hence K is not maximal.
(ii) If say 2; is odd and 2, is even, we consider the sublattice I and observe

that G(K°,T") = 0. Here u = 1, v = 2 and by Theorem 6.1, we have
(w-2)(d-1)< 2.

Equality occurs when and only when K = 7, (Figure 6.4).

6.5 Two corollaries

Corollary 6.6 Let K be a set in K* with G(K°,Ar) = 0. Then

(w = v)d < 5 (V3u + 20).

Equality is attained when and only when K = £x (Figure 5.3).

Corollary 6.7 Let K be a set in K? with G(K°,T') = 2. Then
(w-2)d<2+ \/75

Equality is attained when and only when K = &, (Figure 5.4).

To prove Corollary 6.6, we rearrange (6.3) to obtain

(w—v)d < uw, (6.6)

with equality when and only when K = T (Figure 6.3). Combining this with
(5.3), we have
(w=—v)d <uw< g(\/gu + 2v),
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with equality when and only when K 2 &g (Figure 5.3). Corollary 6.7 may
be deduced in the same way by rearranging (6.4) to obtain (w—-2)d < w and

combining this inequality with (5.4).
6.6 Related results

We observe that (6.1) may be rewritten as

1 1
—+-=2>1 .
w+d_1 (6.7)

McMullen and Wills (1981) give a generalization of (6.7) for sets in X™. The
extensions are quite complicated and involve the use of functionals w;(K) = w;
and 6;(K) = §; defined as follows: Let w;(K) = w; denote the width of K in a
direction parallel to the ith basis vector (see Figure 6.8 for w; and w, in R2).
The functionals w; are also called the outer 1-quermasses of K in the direction
of the z;-axis. Let H; be a plane perpendicular to the ith basis vector. Then
0;(K) = 0; is defined to be maxw(K N H;). We also recall the definition of A,
in Theorem 5.6. Then

Theorem 6.8 (McMullen and Wills) Let K € K" and let G(K°,T,) = 0.
Then

Dpoy 1
li = > 1, i=1,....n,
51; W;
Al 1
V2= 4 s > 1L
w d

In the same paper, the following stronger result is conjectured:

Conjecture 6.9 (McMullen and Wills) Let K € K* and let G(K°,T,) = 0.
Then

A,
"1+12L
w d
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We note that in the case n = 2, we have (6.7).

Scott (1985b) and Wills (1990) give simpler generalizations of (6.7) by using
the idea of an azial diameter. Let d;(K) = d; denote the length of a maximal
segment of K parallel to the ith basis vector (see Figure 6.8 for d; and d, in R2).
The functionals d; are also called the inner 1-quermasses of K in the direction of
the z;-axis. In fact, in the case n = 2, we have d; = §;. Scott (1985b) proves the
following analogue to (6.7):

Theorem 6.10 (Scott) Let K € K™ and let G(K°,T,,) =0. Then
i‘j L5
=
Equality holds when and only when K is a certain crosspolytope.
Wills (1990) improves Scott’s result above by using the functionals w;.

Theorem 6.11 (Wills) Let K € K* and let G(K°,T,) =0. Then

X3

o =

wy xl

Figure 6.8: The functionals w; and d; for R2
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Recently, Vassallo and Wills (1996) generalized (6.7) to arbitrary lattices.
Let A; denote the length of the shortest non-zero vector of A and let 247 be the
maximal distance between two adjacent lattice lines (we note here that \; = |a]
and 21 = |b|sin @, where {a, b} is a Minkowski-reduced basis (p.64)). Then we

have the following generalization of (6.7):

Theorem 6.12 (Vassallo and Wills) Let K € K2 and let G(K°,A) = 0. Then

Equality holds when and only when K is congruent to the triangle shown in Fig-

ure 6.9.

This result is further extended in the same paper to the case where K° contains

an arbitrary number of lattice points.

Theorem 6.13 (Vassallo and Wills) Let K € K? and let G(K°, A) < k2.

Then
2;1,1 )\1 1
o>
w T4k

By applying Theorem 6.12 to the rectangular lattice and rearranging the terms

of the inequality, Theorem 6.1 follows immediately.

Figure 6.9: Vassallo’s generalization of Scott’s width-diameter inequality



Chapter 7

Further width inequalities for planar convex sets
with lattice point constraints

7.1 Introduction

Let K be a set in K? with area A(K) = A, perimeter p(K) = p, diameter
d(K) = d and circumradius R(K) = R. Scott (1980) proves that if G(K°,T) = 0,
then

(w-1)A < %wi’, (7.1)
(w—1)p < 3w, (7.2)
1

Equality is attained in (7.1) when and only when K = 7; (Figure 6.1) and equality
is attained in (7.2) and (7.3) when and only when K 2 & (Figure 5.1).

In this chapter we generalize the above inequalities to rectangular lattices.
We then use these results to obtain the analogue of (7.1) in the case where
G(K°,I') = 1. We also obtain the analogues of (7.1), (7.2) and (7.3) in the
case where G(K°,T') = 2. Let Ag denote the rectangular lattice generated by the

vectors u = (u,0) and v = (0,v) where u < v. We prove
Theorem 7.1 Let K be a set in K? with G(K° Ag) =0. Then

1 2
(w—v)A < uw’, (7.4)

80
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(w—v)p < 3uw, (7.5)
(w=v)R < %uw. (7.6)

Equality is attained in (7.4) when and only when K = T (Figure 6.3), and
equality is attained in (7.5) and (7.6) when and only when K = £p (Figure 5.3).

The next two results will quickly follow from Theorem 7.1.
Theorem 7.2 Let K be a set in K? with G(K°,T') = 1. Then
w—-vV2)A < —ut 7.7
(w-vDA < v (7.7)

Equality is attained when and only when K = T; (Figure 6.2).

Theorem 7.3 Let K be a set in K? with G(K°,T) =2. Then

(w—-2)4 < %w“’, (7.8)
(w=2)p < 3w, (7.9)
(w-2)R < %w. (7.10)

Equality is attained in (7.8) when and only when K = T, (Figure 6.4), and equality
is attained in (7.9) and (7.10) when and only when K = £, (Figure 5.4).

7.2 Proofs of (7.5) and (7.6) of Theorem 7.1

Suppose that G(K°, Ag) = 0. To prove {7.5) and (7.6) of Theorem 7.1, we adapt
the method by Scott (1980). Hence to prove (7.6), we recall Jung’s theorem which
states that for a set K € K2, R < d/+/3, with equality when and only when K is
an equilateral triangle (Yaglom and Boltyanskii 1961, p.17). By Jung’s theorem

and (6.6), we have
1

(w—-v)R < (w—v) %uw.

<

Sl =

For equality, we require K & £p.
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We now prove (7.5). Let r be the inradius of . We note first that if K is a
convex polygon, K may be partitioned into triangles by joining each vertex of K

to an in-centre of K. Summing the areas of these triangles gives

A> =pr, (7.11)

with equality when and only when every edge of K touches the unique incircle.
Since any set in K2 may be approximated by a convex polygon, this inequality is
valid for all sets in K?. By using (7.11) and assuming (7.4) for the moment, we
have

2 uw?

(w—v)p< ;(w—'v)A < —

By Blaschke’s Theorem (Yaglom and Boltyanskii 1961, p.18), we have w < 3r,

with equality when and only when K is an equilateral triangle. Hence
(w —v)p < uw,
with equality when and only when K & &j.

7.3 Proof of (7.4) of Theorem 7.1

We adapt the method by Scott (1980) to prove (7.4). We first observe that (7.4)

may be written
U  w-—v

=—-—">0.
2A w2 T

The problem therefore becomes one of finding the minimal value of ¢(K). Now

¢(K)

0p u

4 = " <0

8_¢ B _(Qv—w)
Sw wd )

Recalling Theorem 5.1 and noting that u < v, we have w < v + %\/gu < 2v. It

follows that 0¢/0w < 0 and hence ¢ is a decreasing function of A and w. Now
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let K be a set for which ¢(K) is minimal. Since ¢ is a decreasing function of A

and w, we choose K so that A and w are as large as possible.

We first note that (w —2r)A < w?r/v/3 (Scott 1979a). Hence if r < <zu< iy,
we have
2 2 U 1 2
- < —_— <<
(w—v)A < (w—-2r)A <7 5 < U

We may therefore assume that r > §'u,. Furthermore, since w > v, it follows from
Lemma 5.4 that either K C T, where T is a triangle satisfying the conditions of
the Triangle Rotation Lemma or K C @ where Q is a proper convex quadrilateral
circumscribing a cell of Ap, with edges each containing in its interior a vertex of
the cell.

Suppose first that K C Q. Clearly, ¢(K) > #(Q). Since G(Q° Ar) = 0, we
may take K = ). We now recall the following lemma by Scott (1993):

Lemma 7.4 (Scott) The quadrilateral Q can be transformed into a kite Q' hav-
ing the following properties:

() w(@) > (@),

(b) Q' contains no lattice point in its interior,

(c) the sides of Q' pass through the points (0,0), (u,0), (u,v) and (0,v),

(d) @ has its azis along z = Lu,

(e) AQ) = A(Q).

Property (e) is not explicitly stated in (Scott 1993) but follows from the fact
that @' is obtained from @ by Steiner symmetrization (which preserves areas) and
an enlargement with scale factor s > 1. From Lemma 7.4 (a) and (e), it follows
that ¢(Q') < ¢(Q). We may therefore take K to be the kite Q' = XYZW
(Figure 7.1). We now show that (w ~ v)A < Juw?

Let XZ =z and YW = y. Then A = %xy. Also, computing the area of Q'
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—

Figure 7.1: The kite Q'
in terms of the areas of the cell and the remaining triangles gives

1
A=uv+ —2-v(a:—u) + %u(y—v).

Hence zy = vz + uy.
Suppose first that £ > 2u. Then y < 2v. From zy = vz + uy, we have

z = uy/(y — v) and hence
1 uy?
2(y—v)
We note that for the given range of y, 42/(y — v) is a decreasing function of y.

Therefore since w < y, we have

1 wy? <1 uw?
S 2(y-v) " 2(w-v)

that is,
1
(w—v)A< Euwz.

Suppose now that £ < 2u. Then rearranging zy = vz + uy, we have y =

vz/(z — u) and
1 wz?

T2z —w)
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For the given range of z, ?/(z — u) is a decreasing function. Since w < z, we

have

2 2

1 g <1 W
T 2(z-u)  2w-u)

Again, from Theorem 5.1, we have w < v + %\/?_)u It follows that w < u + v.

Hence (v — u)w < (v® — v?) or equivalently v/(w — u) < u/(w — v). Hence

and we have

(w—v)A < %uw"’.

We now complete the proof by showing that if K C T, then K = Tr (Fig-
ure 6.3). Since K C T, we have ¢(K) > ¢(T). By the Triangle Rotation Lemma,
either T' circumscribes a cell of Ag or there is a triangle T, & AT, A > 1, with T,
circumscribing a cell of Ag. In either case, there is a triangle A circumscribing Ap
with A(A) > A(T) and w(A) > w(T). Since ¢ is a decreasing function of A and
w, we have ¢(A) < ¢(T) < ¢(K). Since G(A% Ag) = 0, we may take K = A,
In this case, by Lemma 6.3, we have (w — v)(d — u) < uw, with equality when
and only when K = Ty (Figure 6.3). Rearranging the terms in the inequality, we
have d < uw/(w — v). Hence

1 ww?

1
A=Zwd< -2
2% S 3w o)

that is,

1
(w-v)A< §uw2,

with equality when and only when K 2 Ty (Figure 6.3).
This completes the proof of (7.4) of Theorem 7.1
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7.4 Proofs of Theorems 7.2 and 7.3

Let K now be a set with G(K°,I') = 1. By SL1, we consider the sublattice I"
and note that G(K°,I') = 0. In this case u = v = v/2 and by (7.4), we have

1 2

with equality when and only when K 22 7; (Figure 6.2). Hence Theorem 7.2 is
proved.

Now let G(K°,T') = 2. By SL2, we have the following two cases:

(i) If 21 and 2z; are both odd, we have G(K°,T") = 0. Here again u = v = v/2

and by Theorem 7.1, we have

2
(’U) - \/§)A < Twza
V2
w—vV2)R < “Zuw.
( JR < ek
We also recall from Theorem 5.2 that w < 2 + %\/ﬁ Therefore
w<24+/2= v2 =2\/§—\/§.
VvV2-1 VvV2-1

Rearranging terms, we have v/2(w — 2) < (w — v/2). Hence

(w—-2)A < %wz,
(w—2)p < 3w,

(w—2)R < —w.

(ii) If say z; is odd and 2z, is even, we consider the sublattice I and observe
that G(K°,I') = 0. In this case ¥ = 1 and v = 2 and we have Theorem 7.3.
Equality is attained in (7.8) when and only when K & 7, (Figure 6.4) and equality
is attained in (7.9) and (7.10) when and only when K = &, (Figure 5.4).
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7.5 Related results

We note that (7.4) has in fact been generalized to arbitrary lattices by Vassallo
(1995). Vassallo makes use of the quantities \; and 24, defined in §6.6. He proves

Theorem 7.5 (Vassallo) Let K € K? and let G(K° A) = 0. Then
1, o

Equality holds when and only when K is congruent to the triangle shown in Fig-

ure 6.9.

Although (7.4) follows immediately from Vassallo’s result, the proof of (7.4) in
§7.3 differs from Vassallo’s proof in the use of the Triangle Rotation Lemma and

Lemma 7.4 (Scott 1993), the proof of which depends on Steiner symmetrization.

Scott (1985c) gives a result relating V and the outer 1-quermasses, w; (p.77)
for sets in X" having G(K°,T,,) = 0.

Theorem 7.6 (Scott) Let K be a set in K™ having G(K°,T,,) = 0. Then
(a) 1% < Hw,-
i=1
n_n n

n
n
(b) V < ng — i=1(wi —1), for1<w; < P
In the case where n = 2, wy > 2 and wy > 1, we have
1
() V< wywy — —iwf(wz -1).

The bounds are best possible.



Chapter 8

Area-width relations for convex sets with lattice
point constraints

8.1 Introduction

Let K be a non-empty set in K? having area A(K) = A4 and width w(K) = w. Let
Ar be the rectangular lattice generated by the vectors u = (u,0) and v = (0, ),
u < v. In Chapter 7, we obtained area-width inequalities for a set K having
G(K°,Ag) = 0. In this chapter we obtain a new area-width inequality for such
a set. We then use this result to obtain the corresponding inequality for a set
K having G(K°,T) = g, where g = 0,2. We also make a conjecture for the
corresponding inequality for a set K having G(K°,T) = 1.

Theorem 8.1 Let K be a non-empty set in K* with G(K°, Ag) = 0. Then

wd V3 2

with equality when and only when K = Ep (Figure 5.3).

u)™, (8.1)

Corollary 8.2 Let K be a non-empty set in K? with G(K°,T') = 0. Then

A 1 V3.,
— > =1+t 2
= \/g( +=5-) 7! & 0.309, (8.2)

with equality when and only when K = &, (Figure 5.1).

Corollary 8.3 Let K be a non-empty set in K? with G(K°,T") = 2. Then

A>1 V3

i —(24+ —)"1~0.201 8.
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with equality when and only when K = £, (Figure 5.4).
8.2 Proof of Theorem 8.1

The proof follows easily by combining two known results. The first is that of all
sets in ? with a given width, the equilateral triangle has the least area (Yaglom
and Boltyanskii 1961, p.68). Hence A > (1/v/3)w?. Combining this with (5.3),
we have

A AT 1 V3

+ —=u

wd = (w2)E - %(U 9 )~
Equality holds when and only when K 2 £ (Figure 5.3).
Corollary 8.2 follows easily by letting v = v = 1 in Theorem 8.1. Equality
holds when and only when K = &, (Figure 5.1).
To prove Corollary 8.3, we use SL2 to obtain the following two cases:
(i) If 2; and 2, are both odd, we consider the sublattice I" and observe that

G(K°,I") = 0. Here u = v = v/2 and by Theorem 8.1 we have

A 1 V3 1 V3
= > —V2+ —=V2)t'x02 —(2+ )"t~ 0.201.
wa_\/g(\/_-’rz\/_) 019>\/§(+2) 0.201

(i) If say, z; is odd and z, is even, we consider the sublattice I and observe

that G(K°,I"") = 0. Here u =1 and v = 2 and by Theorem 8.1, we have

A 1 V3.,
— 2> —= — )" ~ 0.201.
w3_\/§(2+ 2) 0.201

Equality is attained when and only when K & £, (Figure 5.4).

Hence Corollary 8.3 is proved.

8.3 A conjecture

We might now ask for a corresponding inequality for G(K°,T) = 1. We make the

following conjecture:
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Conjecture 8.4 Let K be a non-empty set in K? with G(K°,T") = 1. Then
A 1 4
— 2> —= | —=———=| ~0.243,
TVE] (\/5(5+\/§))
with equality when and only when K = &, where &, is the equilateral triangle of

Figure 8.1.

Figure 8.1: The equilateral triangle &;

The problem which occurs here is that for convex sets containing just one
interior lattice point, w < 1+ /2 &~ 2.414 with equality when and only when K
is congruent to the isosceles triangle shown in Figure 5.2 (Scott 1985a). Since this
set of largest width is not an equilateral triangle, the previous method cannot be
applied.

A simple calculation shows that the width of & is 1v2(5 + v/3) ~ 2.38.
Hence if 0 < w < 1v/2(5 + v/3), an equilateral triangle with interior containing
one lattice point may be constructed. Since A > (1/+/3)w? with equality when
and only when K is an equilateral triangle, for this range of w we have

AsEyis L 4 oo
w

a2 B G+ VA)
Equality occurs when and only when K = &,.

This leaves unresolved those cases for which 1v/2(5 +/3) < w < 1 + /2.
We believe that the set for which A/w? is minimal is congruent to the equilateral

triangle &; of Figure 8.1.



Chapter 9

Circumradius-diameter and width-inradius
inequalities for convex sets with and without
lattice point constraints

9.1 Introduction

Let K be a set in X? having diameter d(K) = d, width w(K) = w, circumradius
R(K) = R and inradius 7(K) = r. Let Ag be the rectangular lattice generated
by the vectors u = (u,0) and v = (0,v), u < v. In this chapter, we establish
an inequality relating R, d and w for a convex set without any lattice constraint.
We then use this result to obtain an inequality relating d and R for a set K
having G(K° Ag) = 0. By considering special rectangular lattices, we deduce
the corresponding results for a set K having G(K°,T) = 0 and G(K°,T) = 2.
We also obtain dual inequalities relating w and r for the lattice constrained sets.

Finally we conjecture the corresponding results for the case where G(K°,T')=1.
Theorem 9.1 Let K be a set in K2. Then

2R—d < %(2 —V3)w, (9.1)
with equality when and only when K is an equilateral triangle.

Theorem 9.2 Let K be a set in K? with G(K°,Ag) =0. Then

2R—d < %(2—x/§)(v+‘/7§u), (9.2)
w—2r < %(v+?u), (9.3)
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with equality when and only when K = Eg (Figure 5.3).
Corollary 9.3 Let K be a set in K? with G(K°,T) =0. Then

2R-d <

]

w—2r < ?

1+ X2) ~ 0.622,

Wl Wl

with equality when and only when K = &, (Figure 5.1).

Corollary 9.4 Let K be a set in K? with G(K°,T) = 2. Then

1

2R—d < 5(5—2\@)%0.512,
1

w—2r < §(2+l/-2—§)z0.955,

with equality when and only when K = &, (Figure 5.4).

9.2 Proof of Theorem 9.1

We may assume that K° # 0, for if K° = 0, then either K = 0 or K is a line
segment. If K = (), then Theorem 9.1 is trivially true. If K is a line segment
then d = 2R, w = 0 and Theorem 9.1 is trivially true. Hence we may assume
that K # 0. It follows that w # 0. We now define the functional

-
- w(K)

We seek to maximize the functional f(K). Clearly, since d < 2R, f(K) > 0.

F(E) (R(K) - d(K)) = = (2R~ d)

We first recall that the circumcircle of a set K either contains two diametrically
opposite points of K or else it contains three points of 8K which form the vertices
of an acute-angled triangle (Yaglom and Boltyanskii 1961, p.59). In the first case,
2R = d and f(K) = 0, so K is not maximal. Hence we may assume that K
contains an acute-angled triangle T with R(T) = R(K). Furthermore since T is
contained in K, d(T) < d(K) and w(T) < w(K). It follows that f(K) < F(T).

Hence it suffices to maximize f(K) for acute-angled triangles T
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Let T'= AXYZ be an acute-angled triangle with /Y < /X < /Z as shown
in Figure 9.1. Since /Z is the largest angle, it follows that XY = d. We first
apply to T a shear parallel to XY to obtain the triangle 7' = XY Z' with Y Z' =
XY =d. Let P and P' be the circumcentres of T' and T" respectively. Since
P and P’ both lie on the perpendicular bisector of the line segment XY, and
PZ'> PZ = R(T), it follows that P’ is further away from XY than the point P.
Hence R(T") > R(T). Furthermore d(T") = d(T) and w(T") = w(T). It follows
that f(T') > f(T). Hence we need only consider those cases for which 7T is an
isosceles triangle with vertex angle at Y. In this case /X = /Z = a > 3 We

note that w = dsin 2o and that from the sine rule, 2R = d/ sin . Hence we have

f(K) = i(siia_l)d
- (siia - 1)(sin12a)'

Figure 9.1: Shear applied to the triangle T

By letting ¢ = tan «, we have

fE) = (\/1t+t2_1) (1-;2)
_ —;—(\/H-_ﬁ—t) (1;’52)
= %(m—t)(t%+1)

1
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We note that

i
H=V1+82—-t>0, ¢t = -1<0.
2

—t—3<0.

1
h(e)=+1>0, K()

Since f(K) is a product of positive, decreasing functions of t, it is itself a
positive, decreasing function of ¢. Since oo > 3> we have t > v/3. Hence the
maximal value of f(K) is attained when ¢ = /3, that is when T is an equilateral

triangle. In this case

f(K) = (2R~ d) < 22— V3),

[ N

that is,
2
2R—d< (2~ V3)w,

with equality when and only when K is an equilateral triangle.

9.3 Proofs of Theorem 9.2 and corollaries

To prove Theorem 9.2, we combine (5.3) with (9.1) to obtain (9.2). Equality is
attained when and only when K = &g (Figure 5.3).

To prove (9.3), we recall the result of Blaschke, that for any set in K2, w < 3r
with equality when and only when K is an equilateral triangle (Yaglom and
Boltyanskii 1961, p.18). This inequality may be rewritten as

w

with equality when and only when K is an equilateral triangle. Combining this
with (5.3), we obtain the required inequality.

Corollary 9.3 follows easily from Theorem 9.2 by letting u = v = 1.

We now let K be a set with G(K°,T') = 2. By SL2 we have the following two

cases:
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(i) If 21 and 2, are both odd, then G(K°,I") = 0. Here we have u = v = /2
and by Theorem 9.2,

2R—d < %\/5 ~ 0.4714 < %(5 — 2v/3) = 0.512,

5
w—2 < %(1+§)x0.879<%(2+§)%0.955.

(ii) If say, 21 is odd and 2; is even, we consider the sublattice I and observe

that G(K°,I'") = 0. In this case u = 1 and v = 2 and by Theorem 9.2, we have

2R—d < 1(5 — 2v/3) ~ 0.512,

3
1
w—2r < 5(2 + \/75) ~ 0.955.

Equality is attained when and only when K 2 &, (Figure 5.4).

Hence Corollary 9.4 is proved.
9.4 A conjecture and related results

As in §8.3, we now make a conjecture for the corresponding inequalities for a set

K having G(K°,T') = 1.

Conjecture 9.5 Let K be a set in K? having G(K° ') =1. Then

2R—d < \/5(% ~ ?) ~ 0.425,
w—2r < */5(5 +v/3) ~ 0.793,

= 12

with equality when and only when K = &, (Figure 8.1).

As in §8.3, the difficulty which occurs here is that for convex sets containing
just one interior lattice point, w < 1+ /2 with equality when and only when K
is congruent to the isosceles triangle shown in Figure 5.2 (Scott 1985a). As this
set of largest width is not an equilateral triangle, Theorem 9.1 does not give a

sharp inequality.
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Using the same arguments given in §8.3, we first consider the case where
0<w< ;11-\/5(5+\/§). In this case, an equilateral triangle with interior containing
one lattice point may be constructed. It follows from (9.1) and (9.4) that for this

given range of w,

2R—d < \/i(g - \/75) ~ 0.425,

5
w—2 < ‘1/—2_(5+\/§)z0.793,

with equality when and only when K = &; (Figure 8.1).

As in §8.3, this leaves unresolved those cases for which 1v/2(5 + /3) < w <
1+ /2. We believe that the set for which (2R — d) and (w — 2r) are maximal is
congruent to the equilateral triangle & (Figure 8.1).

Scott (1978b, 1979a, 1981) has obtained a number of inequalities involving
the quantities (w — 2r) and (2R — d) for sets without lattice constraints in AC2.
We summarize the results concerning (w — 2r) and (2R ~ d) in Theorem 9.6 and

Theorem 9.7 respectively. The set given in brackets is the best possible set.

Theorem 9.6 (Scott) Let K be a set in K2. Then
(i) (w — 2r)d < 2v/3r? (Equilateral triangle)
(i) (w — 2r)d < w?/2 (Infinite isosceles triangle)
(iil) (w — 2r)d < 2wr//3 (Equilateral triangle)
(iv) (w - 2r)R < w?/4 (Infinite isosceles triangle)
(v) (w—2r)R < 2r? (Equilateral triangle)
(vi) (w — 2r)R < 2wr/3 (Equilateral triangle)
(vii) (w — 2r)p < 2w?/\/3 (Equilateral triangle)
(viii) (w — 2r)p < 2¢/3wr < 6v/3r? (Equilateral triangle)
(ix) (w — 2r)A < w?/4 (Infinite isosceles triangle)
(x) (w — 2r)A < w?r/v/3 (Equilateral triangle)
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(xi) (w—2r)A < v3Bwr? < 3v/3r® (Equilateral triangle).

Theorem 9.7 (Scott) Let K be a set in K™. Then

(i) Forn =2, (2R — d)A < 7(3v/3 — 5)R® (not best possible)

(ii) Forn=2, (2R —d)p < (23 — 3)wR? (Sets of constant width)

(ili) (2R — d)d < (2v/n +1/n)(vV2n — v/ + 1) R? (Regular simplex)

(iv) @R - d)w < 2vn+1/n)(vV2n — /n+1)R? (Sets of constant width
containing a regular simplez of width w)

(v) CR—d)r < (V2/n) (3\/n(n—+1)— V2(2n+1))R? (Sets of constant width

containing a regular simplez of width w).



Chapter 10

New inequalities concerning the inradius of a
lattice constrained convex set

10.1 Introduction

Let K be a set in K? with area A(K) = A, perimeter p(K) = p, diameter
d(K) = d and inradius r(K) = r. In this chapter we obtain new inequalities for
the pairs (4,7), (p,7) and (d,r) for a set K having G(K°,T) = 0 (Awyong and
Scott 1996b). By considering a special sublattice of the integral lattice, we also
obtain an inequality concerning A and r for a set K having G(K°,T) =1. We

prove
Theorem 10.1 Let K be a set in K? with G(K°,T') = 0. Then
(2r —1)A < 2(vV2 - 1) ~ 0.828, (10.1)

with equality when and only when K = &, (Figure 10.1).

L o‘L\’CW&‘- C 25 cel Ve “’“‘lecﬂ’\}g
Qersak ‘.)

Figure 10.1: The diagonal square S,
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Corollary 10.2 Let K be a set in K? with G(K°,T) = 1. Then
(2r — v2)A < 4(2 — V2) ~ 2.343, (10.2)

with equality when and only when K = &, (Figure 10.2).

Figure 10.2: The square S;

Theorem 10.3 Let K be a set in K? with G(K°,T') = 0. Then

1

(r-DlA-1] <3, (10.3)
(2r-1)p—4/ <2, (10.4)
(2r—1)(d—1) < 1. (10.5)

The limiting infinite strip Py (Figure 10.3) shows that the stated bounds are best

posstble.

—® @ & @

Figure 10.3: The infinite strip P,

10.2 Proofs of Theorem 10.1 and Corollary 10.2

We first prove a useful lemma.
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Lemma 10.4 Let K be a set in K* with G(K°,T') = 0. Then there is a set K,
in KC* with G(K?2,T) = 0 satisfying the following conditions:
(a) A(K.) = A(K), r(K.) > r(K)

(b) K. is symmetric about the lines x = %, y = 1.

Proof. We use Steiner symmetrization to obtain the set K,. We first symmet-
rize K with respect to the line z = % to obtain the set K. From Theorem 2.3,
we know that K; € K?, A(K;) = A(K) and r(K;) > r(K).

We now show that G(K?,I') = 0. Since G(K°,T) = 0, K° intersects the line
Y = k, where k is an integer, either in the empty set or in a line segment of length
at most 1. Hence the symmetric set K¢ intersects the line y = k either in the
empty set or between the points (0, k) and (1, k). Clearly, G(K?,T) = 0.

We now symmetrize K; with respect to the line y = % to obtain K,. By
Theorem 2.3 again, we have A(K,) = A(K;), r(K,) > r(K;). It may also be
deduced as above that G(K?,I") = 0. Hence A(K,) = A(K) and r(K,) > r(K).
By construction, K, is symmetric about the lines z = 1 and y = 1 and the lemma,

is proved. a

Let f(K) = (2r(K) — 1)A(K) = (2r — 1)A. By Lemma 10.4 we have f(K) <
f(K.). It therefore suffices to prove Theorem 10.1 for sets K which are symmetric

: _ — 1
about the lines z = 5 and y = 2.

To fully utilize the symmetry of K about the lines z = % and y = %, we

move the origin to the point (3,1). If r < 1, (10.1) is trivially true. Hence

we may assume that r > 1. Since K° does not contain the points Py(

Py(=3%,3), Pa(—3,—1) and Py(3,-1), it follows by the convexity of K that for

)
each ¢ = 1,...,4, K is bounded by a line {; through the point P,, with I, and l3

having negative slope and I, and /4 having positive slope. Furthermore since X is

symmetric about the coordinate axes, K is contained in a rhombus Q determined
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by the lines [;, 1 = 1,...,4. Since K C @, A(K) < A(Q), r(K) < r(Q) and we
have f(K) < f(@Q). It is therefore sufficient to maximize f(K) over the set of all
rhombi, K = @, determined by the lines I;, i = 1,...,4 (Figure 10.4).

ly

Figure 10.4: The rhombus Q

Let the line /; make an acute angle of o with the z-axis and let it intercept
the z and y axes in the points X (z,0) and Y(0,y) respectively. Since l; passes

through (3, 3), similar triangles give

V_ _3

z z—3
that is,

Iy il

LY

r y

Multiplying both sides of the equation by r, we get
r T .
2r = —+ — =sino + cosa.
Ty
Now

A = 4.A(AOXY)

= 2y
272
sin & cos &
4r?
(sina+cosa)? — 1
4r?
4r2 — 1

= 1+ 2
- 4r2 — 1°
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Hence

1

f(K) = (21’—1)A=2r—1+2r+1

= g(r). (10.6)

Now 3¢'(r) = 1 —1/(2r + 1)> > 0. Hence g is an increasing function of
r. Noting that ; < r < 14/2, the maximal value of g is therefore attained at

r = 14/2, that is, when and only when K 2 &,. In this case, Y
S O PR R A

FK)<2(vV2-1)~ 0828 W ~cusr =

Qs \MSM@ -

\.
We next use Theorem 10.1 to prove Corollary 10.2. Let K now be a convex
set with G(K°,I') = 1. By SL1, we consider the sublattice I' and note that

G(K°,I'") = 0. Hence letting A’ and 7’ be the area and the inradius respectively
of K measured in the scale of I, and applying (10.1) to K with respect to I, we
have \ 7?

2r' —1)A <2(vV2-1), )

with equality when and only when K = S;. Since [V is a rotation of I scaled by

a factor of v/2,

where A and r are the area and the inradius respectively of K measured in the

scale of the integral lattice I". Hence

1 A
—=r-1)=< —1).
(2 7" N5 < 2(vV2-1)
Simplifying, we get

(2r — V2)A < 4(2 — V2) ~ 2.343,

with equality when and only when K = S;.



10.3. Proof of Theorem 10.3 103

10.3 Proof of Theorem 10.3

We first note that if r < %, inequalities (10.3) and (10.4) are trivially true. Hence
we need only consider those cases for which 1 < r < 1v/2.

To prove (10.3), we first consider A < 1. Since r > 1, we have A > L7 and so

r-DlA-1]=@r-10-4) < (/2-1)1- 1) < %

Hence we may assume that A > 1. Using the same arguments as those given in
§10.2, it suffices to consider a set K where K is a rhombus of the type described
in Figure 10.4. Let Q(r) denote such a rhombus with inradius r. From (10.6) we

have
1 1

< -
2r+1 2
Taking the infinite strip to be the limit of Q(r) as r tends to %, it is seen that

@r—1)JA-1=@r-1)(A-1)=(2r - )4~ 2r—1) =

the stated bound is best possible.

To prove (10.4), we first consider p < 4. Since r > %, we have p > 7 and so

@r—1)p—4l=2r-1)(4d-p) < (V2-1)(d—m) < 2.

Hence we may assume that p > 4. We recall that A > 1pr (see inequality (7.11)).

Combining this inequality with (10.3) and noting that r > 3, we have

2r—1)lp—4|=(2r-1)(p-4) < (2r—1)(%—4) <4(2r-1)(A-1) < 4.% =2

obtaining (10.4). As before, taking the infinite strip to be the limit of Q(r) as r
tends to 3, the stated bound is best possible.
Finally, to prove (10.5), we note from (6.1) that (w — 1)(d — 1) < 1 with

equality when and only when K 2 T;, (Figure 6.1). Since w > 2r, we have
(2r-1)d-1)<(w-1)(d-1)< 1.
Taking the infinite strip to be the limit of a sequence of triangles of the type Tp

shown in Figure 6.1 as w tends to 2r, it can be seen that the stated bound is best

possible.
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10.4 Comment

Inequality (10.5) may be generalized to rectangular lattices by noting from (6.3)
that (w—v)(d—u) < uv, with equality when and only when K 2 75 (Figure 6.3).

Since w > 2r, we have
(2r —v)(d—u) < (w—v)(d—u) < uv.

Taking the infinite strip to be the limit of a sequence of triangles of the type Tr

shown in Figure 6.3 as w tends to 2r, it follows that

(2r —v)(d - u) < uv.



Chapter 11

Area-diameter relations for convex sets
containing one or two lattice points

11.1 Introduction

Let K be a non-empty set in K? with area A(K) = A, diameter d(K) = d and
circumradius R(K) = R. Scott (1974a) proves

Theorem 11.1 (Scott) Let K be a non-empty set in K* with G(K°,T') = 0.
Then

o b

< A a 1144, (11.1)

where A\ = 2/2 sinig, ¢ being the unique solution of the equation sin @ = A—=0
(¢ ~ 0.832 = 47.7°). The result is best possible with equality when and only when
K = H, (Figure 11.1).

Figure 11.1: The truncated diagonal square Ho, ¢ = 47.7°

105
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Using d < 2R and (11.1), it may be easily deduced that

A
7 S 2Am2288 (11.2)

with equality when and only when K = H,,.
Hammer (1979) proves

Theorem 11.2 (Hammer) Let K be a non-empty set in K? and suppose that
A/d >r). Then G(K°,T) > r2.

From Theorem 11.2 it may be deduced that if G(K°,T') < 22 = 4, then A/d <
2) ~ 2.288. In this chapter we establish sharp inequalities for A/d and A/R for
a set K having G(K°,T') = 1. We prove the following:

Theorem 11.3 Let K be a non-empty set in K? having G(K°,T') =1. Then

< V2) =~ 1.616, (11.3)

< 2v2) ~ 3.232, (11.4)

s |

where \ = 2v/2 sing, ¢ being the unique solution of the equation sinf = 5—0

(¢ ~ 0.832 = 47.7°). Equality holds when and only when K = H, (Figure 11.2).

Figure 11.2: The truncated square #;, ¢ ~ 47.7°

Let 44 = v/2\. We give an analogue of Theorem 11.2.
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Corollary 11.4 Let K be a non-empty set in K? and suppose that Ald > rp.
Then G(K°,T') > 2r2.

We also obtain the corresponding inequalities for a special class of sets K

having G(K°,T) = 2.

Theorem 11.5 Let K be a symmetric, non-empty set in K2 containing two in-

terior lattice points symmetrically placed about the centre of K. Then

< a=x~1.841 (11.5)

s e s

< 207 3.682. (11.6)

Equality holds when and only when K = H, (Figure 11.3).

Figure 11.3: The truncated rectangle H,, ¢ = 48.5°

In §11.2 and §11.3, we prove Theorem 11.3 and Corollary 11.4 respectively. In
§11.4, we simplify the two lattice point problem for a special class of sets satisfying
the conditions of Theorem 11.5. In §11.5 we prove Theorem 11.5 for this special
class of sets. In §11.6, we complete the proof of Theorem 11.5. Finally, in §11.7

we conjecture a stronger form of Theorem 11.5.

11.2 Proof of Theorem 11.3

Suppose that G(K°,T") = 1. By SL1, we consider the sublattice I and note that
G(K°I') = 0. Let A’ and d’ denote the area and the diameter respectively of K
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measured in the scale of I'. Observing that I is essentially a rotated version of

I" scaled by a factor of v/2, we have

! 1 ! 1

Furthermore from (11.1), we have A’/d’ < . It follows that

A A
— = — < ~ 1. "
- =V25 <V2h~ 1616

Equality holds when and only when K 2 #,; (Figure 11.2).
Since d < 2R, we have

< 2V2),

=e]IhN

<2

R ks

with equality when and only when K = #;.

11.3 Proof of Corollary 11.4

We reproduce Hammer’s proof with minor modifications. Let K be a non-empty
set in K? satisfying A/d > rp where p = v2)\. Ifr = 0, the result of Co-
rollary 11.4 is obvious. If r = 1, by Theorem 11.3, G(K°T') > 2. Hence we
may assume that r > 2. Following Hammer (1979), we consider the similarity
transformation

K—>K1=%K={%k:keK}.

Therefore A(K:) = A(K)/r? and d(K;) = d(K)/r. Let
L={(ab)el;0<ab<sr—1}.

For a particular choice of L € £, we consider the translation

K]_ —)K2=K1—%L={k1—%L:k1€K1}.

Since areas and diameters are unaltered by translations, we have

AKy) _ A(K:) _ 1A(K)

dKy) ~ d(Ky)  rdE) M
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From Theorem 11.3 we know that K3 contains at least two distinct lattice points
Gy and Gp. Therefore K7 contains the two distinct points G1 + (1/r)L and
G2+(1/r)L. This implies that K° contains the two distinct lattice points rG1+L
and rGz + L. Let X; = {rGi + L;L € £} and X, = {rGo + L;L € L}. Now
X1U Xy C K°. We use the notation [X| to denote the number of elements in 2
finite set X. Since L may be chosen in r? ways, |X;| = |Xo| = r2. Furthermore
X1N Xa = 0, since if rG1 + (a,b) = rG2 + (¢, d) where 0 < g, b,c,d < r—1, then
7(G1 — G2) = (¢ — a,d — b). Since r does not divide ¢ — ¢ and d — b, we have

G1 = G,. Hence |X; U X;| = 2r? and K° contains at least 2r2 lattice points.

We will now give a condition under which Corollary 11.4 improves The-
orem 11.2. Let K be a set in K? for which A/d > z and let [a] denote the

greatest integer less than or equal to a. Then

A
Z>z=

z z
d A

A2 31

By Theorem 11.2, G(K°,T') > [z/)]2. We also have

A z Z,
—>$=—.;L2—,u,
g p [u]

where 4 = v/2). By Corollary 11.4, G(K°, I') > 2[z/u]?. We will now show that
if = satisfies kv/2)\ < = < ([k\/§] + 1)A for some k € Z, then 2[z/u]?* > [z/)]%.
In other words, Corollary 11.4 improves Theorem 11.2. Since [kv2]\ < kv/2),
we have [kv2])A < z < ([kv2] + 1)X. Hence [kv/2] < z/A < ([kv/32] + 1), which
implies that [x/A] = [kv/2]. By Theorem 11.2, G(K°,T) > [£+/2]2. On the other
hand, we also have ([kv'2] +1)A < (k+1)v/2), so that kv/2) < z < (k +1)v/2)\.
Thus ku < z < (k + 1)p. This implies that k¥ < z/p < k + 1. Hence [z/u] = k.
By Corollary 11.4, G(K°,T') > 2k*. Clearly 2k? > [kv/2]? and so Corollary 11.4
improves Theorem 11.2 if kv/2) < z < ([kv/2] + 1) for some k € Z.
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11.4 Some preliminaries

Let K now be a non-empty set in K? having G(K°T) = 2. Without losing
generality, we may assume that the origin O is one of the lattice points. Let L
denote the other lattice point contained in K° and let the coordinates of L be
(21,22). From §2.5, we may assume that z; > 2, and z1 and 2z, are relatively
prime. We will consider the following cases for L:

(i) L(1,0) (i) L(1,1) (iii) L(21, 22), 22 > 1.

In the rest of this section and in §11.5, we will consider case (i). Cases (ii)
and (iii) are dealt with in §11.6.

Let L be the point with coordinates (1,0). Hence, the centre, M, of K is the
point M(%,0). We now employ Steiner symmetrization to transform the set K
into a set K, which is symmetric about the lines z = % and y = 0. We recall from
Theorem 2.3 that Steiner symmetrization preserves convexity and areas and does

not increase diameters. Hence
A(K) _ A(K.)
d(K) d(K.)

To obtain K,, we symmetrize K with respect to the line z = % to obtain

<

a closed convex set K,. Since K is symmetric about M, K, is also symmetric
about ¥y = 0. Furthermore since K° does not contain any lattice points on the
lines y = =1, it intersects these lines in open segments of length at most 1. Hence
K intersects the lines y = +1 in the empty set or in line segments of lengths at
most one unit. It follows that K does not contain the points (1, £1) and (0, +1).
We now note that since (2,0) ¢ K° and since K is convex, K is bounded by a
line /; containing the point (2,0). Since K is symmetric about M (3,0), K is also
bounded by a line l; containing the point (—1,0) and parallel to l;. Therefore
K lies in a strip bounded by parallel lines I; and I, containing the points (2,0)
and (—1,0) respectively. Hence K, is bounded by the lines z = 2 and z = —1
(Figure 11.4).
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x=-1 x=1/2 x=2

Figure 11.4: The case L(1,0)

To fully utilize the symmetry of K,, we will translate the origin to the point
M(3,0). The set K, is now symmetric about the coordinate axes and is bounded
by the lines z = +2. Furthermore K, does not contain the points (+1,+£1). In
particular, K, does not contain the point P(%,1). Hence K, is bounded by a line
! containing the point P and having a non-positive slope m.

Henceforth we shall use 4 and d to denote A(K,) and d(K,) respectively.
Since K, is symmetric about the coordinate axes, it is contained in the closed
disk D centred at O and having radius g. Let Qk, and @p denote the intersection
of K, and D respectively with the quadrant z > 0, ¥y > 0. Let the arc of 0Qp
intercept the z and the y-axes at the points M and N respectively. Let arc[M, N|
denote the closed arc MN of dQp. Hence dQp = [0, M) U arc[M, N] U (N, 0).
Since K, and D have a diameter in common and since K, is symmetric about the
coordinate axes, it follows that Q, contains a point on arc[M, N|. We summarize
the properties of Q. as follows:

(P1) Qk, is bounded by a line I through P(1,1) having slope m, m < 0.

(P2) Qk. is bounded by the lines £ = 0 and z =

(P3) Qk. € Qp.

(P4) Qk. contains a point on arc[M, N].

3
5

Two cases may now be distinguished. Either P ¢ QporPeQy. IfPEQY,
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Wehave0<g§

112
(3)2+12 = L/5. In this case we use the area of the disk
D to give an upper bound for A. Thus A < 7(

d
0 < £ < 1/5, we have

5)? and so A/d < Zd. Since

SH S

< ”T‘/g ~ 1.756 < .

3
551

(11.7)
If P € Qp, we have ¢ > 11/5. Let R, be the region {(z,9);0<z <Ll y>1}
and let R, be the region {(z,y);2 <z 0 <y <1}. By (P1),(P2) and (P4),
! intersects arc[M, N] in R, or R,.
We first observe that if ¢ > 4/(3)2 + 12 = 1/13, then arc[M, N] does not

intersect R,. Hence ! must intercept arc[M, N] in R; (Figure 11.5). In this case

1 32 M x

Figure 11.5: The case where £ > 1/13

m < —($-1)/1 = —(d—2) and Q. is contained in the trapezium bounded by the
coordinate axes and the lines [ and y = g. Since [ has equation y —1 = m(z
we have

_%)7

A<4@e) < 4 (Zw-+D)ay
_ dg

Z(2-2)+d
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Therefore

% <1@_941 (11.8)

m- 2
Now if ¢ > 2, then since m < 0, we have A/d < 1 < a. If 5V13 < £ < 2, then
IV13-2< £_2<0. Since —0o < m < —(d—2) < —1, we have —1 < 1/m < 0.
Therefore A/d <3-1/13~1.2 < a.

11.5 Proof of Theorem 11.5 for the case L(1,0)

From §11.4 we may assume that 3v/5 < ¢ < 1/13. For a fixed d, let a(6) denote
the area of the region S in Qp containing the origin O and bounded by the lines
z = £ and [ making an angle 6, 6 € [0, ) with the z-axis. Since Qx. C S, we
have A(Qk.) < A(S). We aim to maximize a(6).

Let X; and X, denote the endpoints of the intersection of [ with 85 in the
regions R; and R; respectively. We use the notation 1(6), X;(6), X, (0) to denote
the dependence on 6 of I/, X; and X, respectively. Since a(6) is continuous in
[0, 5], the maximal value of a(f) is attained in [0, 21

Let s(f) = s denote the difference X;()P — PX,(0) = X1 P — PX,. Let 66
denote a small change in 6 and da the corresponding change in a(). Since 56 is
small,

ot % ((x:P)?2 = (PX:)?) 60.

As 06 — 0, 6a/66 — a'(6). Hence
1
a’(e) = §(X1P—PX2)(X1P+PX2)

N %s(@)(XlP + PX)).

Clearly a(6) is differentiable in (0,Z). Therefore the maximal value of a(f) is

attained either at § = 0, or 6 = 7, or at a point 6 = 6* where o/(6*) = 0. Since
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X1P + PX5 > 0, o/(f) = 0 only if s(f) = 0, that is, when P is the midpoint of
(X1, X2).

We now consider the possible positions of X; and X, and investigate the
conditions for which P is the midpoint of (X;, X5). First we note that since X;
lies in Ry, the z-coordinate of X, lies in the interval [0, 1). If P is the midpoint
of (X1, X2) then X, must have z-coordinate in the interval (3,1]. Recalling also
that at least one of X; and X, must lie on arc[M, N], we have the following
possible positions for X; and X,:

(i) X1 € arc[M,N], X, € [0, M). Here the y-coordinate of X, is 0. For
P(%, 1) to be the midpoint of (X}, Xs), the y-coordinate of X; must be 2. This
occurs only when g > 2 which lies outside the given range for g. Hence we may
disregard this case.

(ii) X1 € arc[M,N], X, € arc[M,N]. Here (Xi,X) is a chord of D. For
P(3,1) to be the midpoint of (X;, X3), OP must be perpendicular to (Xj, X5).
Hence the equation of the line X;X; is y = —3z + 2. This case arises only when
WE<dst

(iii) X; € (N,0), Xo € arc[M, N]. Here the z-coordinate of X, is 0. For
P(%, 1) to be the midpoint of (X;, X5), the z-coordinate of X, must be 1. This
case arises when and only when 2 < £ < /2.

It follows from the cases above that if /2 < ¢ < 1,/13, then P is not the
midpoint of (X;, X3). The ranges of g as given by the cases above are shown in
Figure 11.6.

We now use these results to help us determine the set for which a(6) is maximal

for 2/5 < ¢ < 1/13. We prove

Lemma 11.6 If 3v/5 < £ < 2, then a(6) is mazimal when [ is perpendicular to
the line OP. If 2 < g < V2, then a(6) is mazimal when | intersects 0Qp on
the linesz =0andz =1. If\/2 < % < %\/ﬁ, then a(6) is mazimal when [ is
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Figure 11.6: The ranges of g

parallel to the z-axis.

Proof. We first consider the case where 3v/5 < £ < 2 (Figure 11.7). In this

case s(0) > 0 and s(%) < 0, that is, ¢/(0) > 0 and a'(%) < 0. Hence a(f) is

maximal at a point 6* € (0, %), that is s(§*) = 0. This is the value of 8 for which
P is the midpoint of (X1, X5), that is when [ is perpendicular to OP.

(1,3/4)

o 12 1 M x

Figure 11.7: The case where /5 <

[-11=9

<

wlon

Next we consider the case where -Z— < % <42 (Figure 11.8). We observe that
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$(0) > 0 and s(%) < 0, that is, a/(0) > 0 and a/(3) < 0. Hence a(f) is maximal

at a point 6* € [0, %), that is s(8*) = 0, or equivalently, when P is the midpoint
of (X1, X2). In this case [ intersects Qp on the lines z = 0 and z = 1.

o

12

Figure 11.8: The case where 2 < £ < /2

Finally suppose that /2 < £ < 11/13 (Figure 11.9). In this case P is not the

midpoint of (X;, X5) for all positions of X; and X, that is s(0) # 0 and hence
a'(6) # 0 for 6 € (0,%). It follows that a(6) is maximal at § = 0 or =

s

ob But

Figure 11.9: The case where /2 <

NI,
IA
N
5
(¥4
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s(0) < 0 and s(%) < 0; hence a’(0) < 0 and a'(5) < 0. Since a'(f) # 0 for
6 € (0,%), it follows that a(0) > a(%) and the maximal value of a(6) is attained

when @ = 0, that is, when [ is parallel to the z-axis. O

We now use Lemma 11.6 to determine the maximal value of A/d for each of
the given ranges of £. By Lemma 11.6, if 1/5 < ¢ < 2, the maximal value of a(6)
occurs when [ is perpendicular to the line OP (Figure 11.7). Let /X;0X, = ¢
where 0 < ¢ < arcsin %. Calculating the areas of AX;0X, and the two sectors

making up S, we have
1.d 1.d., =«
= < =(=)%si ~(2)?*(= —
A=44A(Qk.) < 4(2(2) sing + 2 (5)°(5 <P))

E(sincp + g - ).

Noting that ¢ = (1/5)sec £, we have
A_ V5
d— 2

sec%(singo+ % — ) = f(p).

Differentiating f(y), we get

1 %, . p 1 T )
’ _— - — — — — — — —
f(cp)—zx/gtan2< s1n2+2sec2(2 )) -

Solving f'(¢) = 0 we have ¢ = 0 or sinp = 5 — p, that is ¢ = ¢* = 0.832. A
quick calculation shows that the maximal value of f(i) is attained when ¢ = ¢*.

Hence we have

SHIRS

< f(¢*) = 2V/5sin % ~ 1.807 < a. (11.9)

By Lemma 11.6, if 2 < £ < /2, then the maximal value of a(f) occurs when
! intersects dQp on the lines £ = 0 and z = 1 (Figure 11.8). Let £X;0X, = ¢
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Therefore, calculating the areas of AX;0X; and the sector of angle =0

A=4AQk,) < 4 (%(;—1)2% -p)+1- —;—.gcos go)

d 4
= d<2(2 (p)+——cos<p)

Noting that ¢ = cosec ¢, we have

A s .
5 < cosec ga(E — @) +2sinp — cosp = g(p).
Since § < < /2, we have I < ¢ < arcsin 2. Differentiating g(y) we obtain
Cos vis 1.
g (p)= R (——2- +9o+1—cos2p— §s1n2<p) =0.

By solving ¢'(¢) = 0 for the given range of ¢ we obtain ¢ = ¢* where ¢* is the

solution of the equation

1
Emm¢+mw¢=—g+¢+L

This gives ¢* ~ 0.878. A quick calculation of g(%), g(¢*) and g(arcsin £) shows

that the maximal value of g(y) is attained when ¢ = %+ Hence

A_
=& ()~1&8<a (11.10)

By Lemma 11.6, if v/2 < ¢ ¢ < 1,/13, then the maximal value of a(6) occurs
when [ is parallel to the z-axis. Since Qg, is bounded by z = 3 the following

two cases may be distinguished:
Hv2<g<$
(i) 2 < £ < iV13.
We first consider (i) (Figure 11.9). Let /X;0X; = ¢. Then
1.d 1d
— < I —. Zgi
A=44@r) < 4(5GFG -0+ gsing)

- o[-0 +ine)
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Noting that % = sec ¢, we have

% < sec w(g — @) +sinp = h(p).

Since v2 < ¢ < 2, we have Z < ¢ < arccos 2. By differentiating h(yp), we get
B(p) =tangp (sec go(g — ) — sin go) :
Solving A'(p) = 0 gives ¢ = 0 or sin 2p = 7 — 2¢ which gives ¢ = %. Both critical
values are outside the given range of . Hence #'(¢) # 0 for the given range for
¢. It may be easily checked that A(%) < h(arccos 2). Hence
A _3/m ANRVE
<o S+ a1 . :
755 (2 arccos 3) + 3 1.8399 < (11.11)
Next we consider (ii) (Figure 11.10). Let z = 3 intersect arc[M, N] in the
point W. Let /X;0X; = ¢ and let OW make an angle of 8 with the z-axis.

Then

o 12 1 32 M

A=44@x) < 4 (507G -v-9+ 1

d,m . 3 .
= d(§(§—¢—ﬂ)+sm<p+§sm ;
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Noting that ¢ = sec ¢, we have

A ) 3
< < secgo(g —@— () +sinp+ isinﬁ.
Furthermore, since § = 3sec8, we have 3cosp = 2cos which gives § =

arccos(3 cos ). We also note that arccos 2 < ¢ < arccos(2/v/13). Substitut-

ing B = arccos(2 cos ¢), we obtain the upper bound for Ald,

3 3
k(p) =secy (g —p— arccos(§ cos <p)) +sinp + 3 1- 20032 ®.

The graph of k(y) for the given range of ¢ is shown in Figure 11.11. A
numerical calculation shows that a critical point for k in the given range of ¢

occurs at ¢ = ¢* ~ 0.847 (Figure 11.12). Hence
A<k(e*) = a~ 1841, (11.12)

with equality when and only when K = H,.

1.86 — T T T T I T T
1.84 |—
1.82
1.8
1.78
k(p) 1.76
1.74
1.72
1.7
1.68
1.66

‘ot~ 0.847
: | ] ] 1 1 1 1

0.86 0.88 0.9 0.92 0.94 0.96 0.98
®

Figure 11.11: The graph of k()
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1.84072

1.8407
1.84068
1.84066
1.84064

k()
1.84062

1.8406
1.84058

1.84056

;(p* ~ 0.847

0.845 0.846 0.847 0.848 0.849 0.85
¥

1.84054 L

Figure 11.12: The maximal value of k(¢) for the case L(1,0)
11.6 The cases L(1,1) and L(z1, 23),21 > 2

We now complete the proof of Theorem 11.5 by considering the cases L(1,1) and
L(z1,2), 21 > 2. Here we may remove the symmetry condition on K to establish

the following result:

Lemma 11.7 Let K be a set in K? with G(K°,T) = 2. If A/d is mazimal, then

the lattice points in K° are unit distance apart.

Proof. We will employ Steiner symmetrization as in the proof of Theorem 11.1
to transform K into a set K, which is symmetric about the lines of symmetriza-
tion. We will employ the same notation used in §11.4 and §11.5. We investigate
the two cases for L separately:

Case 1: L(1,1). We first symmetrize K with respect to the line y=1-—2zto
obtain the closed convex set K;. Since K° does not contain any lattice points on
the lines y = +1 + z it follows that K° intersects each of the lines y==21+42
in the empty set or in line segments of lengths at most /2 units. It follows

that K7 does not contain the points (3, %), (-1, 1), (1,—1) and (3,3). We now
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symmetrize K; with respect to the line y = z to obtain the closed convex set K,.
Since K7 does not contain the points (3, 3) and (£, 1), K? does not contain these
points either. It may be similarly argued that K? does not contain the points

(3,—%) and (-1, 5) (Figure 11.13).

Figure 11.13: The lattice Iy

We now rotate the coordinate axes through an angle of 7 in an anticlock-
wise direction and then translate the origin to the point M(},1). Clearly K, is
symmetric about the new coordinate axes. We will use (z,¥)’ to denote a point
with coordinates given with respect to the new coordinate axes, ', . Since
K? does not contain the points (3,3), (3,—3), (—1,3) and (£, ), it follows that
K? does not contain the points (£1+/2,+1+/2)". In particular, K° does not con-
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tain the point P(3+/2, 3v/2)'. Furthermore, since K, is convex, it is bounded by
a line ! containing the point P(%\/i,% 2)', and having a non-positive slope m
with respect to 2’ and y'. By considering the lattice Iy, having fundamental cell
(£3v2,£3V2), we see that G(K?, ;) = 0 (I'z is a translation of I'). We may
now use (11.1) to obtain A’/d’ < ), where A’ and d' are the area and diameter
respectively of K, measured in the scale of I';. Noting that I', is essentially an
enlargement of I' with scale factor v/2, we have A’ = (1/v/2)?4 and d' = (1/+/2)d.

Hence

g < V2\ =~ 1.616 < .

Case 2 : L(z,2) where z, > 2 (see for example Figure 11.14). We first
symmetrize K with respect to the z-axis to obtain K;. Since K° contains only O
and L, the set K7 intercepts the lines z = k, k € Z between the points (k, +1) for
k = 0and k = 2, and between the points (k, +31), otherwise. Hence K? intercepts
the lines y = :l:% in line segments of lengths at most 2 and the line y = +1 in line
segments of lengths at most 1. We now symmetrize K; with respect to the y-axis
to obtain K,. Clearly K7 does not contain the points (£3,=£1) and (£1,=1).
In particular K does not contain the points P(3,1) and P'(1,1). Since K, is
convex, it is bounded by lines [ and !’ containing the points P and P’ respectively

with non-positive slopes m and m’ respectively. We now have the following two

Figure 11.14: The case L(z1, 22), 21 > 2
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cases:
Case a. Suppose that % < % Then since K, is bounded by [, the inequalities
(11.7), (11.9), (11.10) and (11.11) apply. Hence A/d < 1.8399 < o.

Case b. Suppose that £ > 2. Then either

(i) Qx. is bounded by line ! having slope m < —1, or

(ii) @k, is bounded by line I’ having slope m' > —1.

By a reflection about the line y = «, it suffices to consider case (i). Here Q.
is contained in a trapezium bounded by the coordinate axes and the lines ! and

y = £. Using (11.8), we have

<

(

—-2)+1.

ol
N Ay

1
m
If £ > 2, then since m < —1 we have 4/d < 1. Iff<f<2have-}<4-2<0.

Since also m < —1, it follows that A/d < 1.5 < a. O

By comparing the results of §11.4 and §11.5 and §11.6, we have

A

—<a=1.841,
7 L<a

with equality when and only when K = #, (Figure 11.3).

Furthermore since d < 2R, we have

% < 2a =~ 3.682,

with equality when and only when K = %, (Figure 11.3).

Hence Theorem 11.5 is proved.

11.7 Related results and a conjecture

In view of Lemma 11.7, we conjecture a stronger form of Theorem 11.5 by re-

moving the symmetry condition on K.
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Conjecture 11.8 Let K be a non-empty set in K? having G(K°, ') =2. Then

% <a=1.841,

with equality when and only when K = H, (Figure 11.3).

We end by noting that Theorem 11.1 and Theorem 11.2 have been generalized
to arbitrary lattices by Vassallo (1995). Defining A, and 2y, as in §6.6, we have

Theorem 11.9 (Vassallo) Let K € K? and let G(K°,A) = 0. Then

A .
3 < a = max{2y,, 2sin gw)\% + (2111)%},

where ¢ is the solution of the equation sinf = 5—0 (¢~ 0.832 ~ 47.7°). The

bound is best possible.

Corollary 11.10 (Vassallo) Let K be a non-empty set in K2 and let Ald > ra.
Then G(K°,A) > r2.



Chapter 12

An area-perimeter inequality for convex sets
containing two lattice points

12.1 Introduction

Let K be a set in K? with area A(K) = A and perimeter p(K) = p. Nosarzewska,
(1948) proves

Theorem 12.1 (Nosarzewska) Let K be a set in K2. Then
i
A- 3P < G(K°, D). (12.1)
The inequality is asymptotically tight.

Nosarzewska’s result has been generalized to the case n = 3 by Bokowski and
Wills (1974) and Schmidt (1972). The result also holds in n dimensions as proved
by Bokowski, Hadwiger and Wills (1972).

Bender (1962) proves a special case of Nosarzewska’s inequality by letting

G(K°,T') = 0. He proves

Theorem 12.2 (Bender) Let K € K2 and let G(K°,T) =0. Then o~ = °

= (12.2)

S
| =

The limiting infinite strip Py (Figure 10.3) shows that the bound is best possible.

126
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Since Bender, many new inequalities have been obtained for the functional
V/S (Bokowski and Odlyzko 1973; Hadwiger 1970; Hammer 1964, 1966, 1971;
Wills 1968, 1970, 1971). Bokowski and Odlyzko (1973) generalize Theorem 12.2

to n dimensions as follows:

Theorem 12.3 (Bokowksi and Odlyzko) Let K € K" and let w,, denote the
volume of the n-dimensional unit sphere. Suppose that G(K°T) < g. Then

1.9 1/n V 1g4g-1 in 1
(W< = < Z(Z— - .
n(wn) S n( W, ) +2’ (123)

where w, = (y/7)*/T(1+ 2).

Clearly, when n = 2 and g = 1, the right hand inequality gives Bender’s result.
We note also that the above inequality improves results by Hammer (1964, 1966,
1971). Wills (1968, 1970) established the upper bound of (12.3) for the special
cases n = 3 and n = 4 for sets having G(K*°,T';) = 0 (equivalently g = 1). The
result by Hadwiger (1970) follows immediately by letting g = 1.

Suppose now that G(K°,I') = 1. Then by Theorem 12.3 we have

A 1 /I\Y? 1

Scott (1974c) conjectured a tight result for the maximal value of A/p for the class
of I'-admissible sets in K2 which are symmetric about the origin. The conjecture

is proved by Arkinstall and Scott (1979).

Theorem 12.4 (Arkinstall and Scott) Let K be a I'-admissible set in K2 and

suppose that K is symmetric about O. Then

A

= < 2(2+ /7)™t~ 0.530,

with equality when and only when K is congruent to the rounded square Uy shown

wn Figure 12.1.
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Figure 12.1: The rounded square i;, r =~ 0.530

This result was obtained independently by Croft (1979) who solved the more
general problem of maximising (A/p)* where s is a parameter between 0 and 2.
In this chapter we prove a result analogous to Theorem 12.4 for a special class

of sets in K? containing two interior lattice points. We prove

Theorem 12.5 Let K be a set in K?. Suppose that G(K°,T) = 2 and K is
symmetric about the midpoint of the line segment joining the two interior lattice
points. Then

A

— < A= 0.636.

P

Equality holds when and only when K is congruent to the rounded hezagon U,

shown in Figure 12.2.

Figure 12.2: The rounded hexagon U, o ~ 0.107 = 6.13°, r =~ 0.636

In §12.2 we describe a general method for finding the maximal value of Alp

for sets lying within a given set in X2. This method is due to Singmaster and
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Souppouris (1978). In §12.3, we show how Singmaster’s and Souppouris’ method
helps us solve our lattice point problem. The numerical analysis is carried out in
detail in §12.4 and §12.5. In the final section, we conjecture a stronger form of

Theorem 12.5 by removing the symmetry condition on K.

12.2 Singmaster’s and Souppouris’ method

We briefly describe the method employed by Singmaster and Souppouris to de-
termine the maximal value of A/p for sets lying within a bounded, convex, poly-
gonal set, S (this method may be extended to the general convex set by taking
the convex set as the limit of inscribed polygons). We will employ the same
notation as Singmaster and Souppouris (1978). Hence let r, denote the inradius
of § and let S, denote the union of all closed disks of radius r < r, contained in
S (in other words, S, is the set S ‘rounded off’ by circular arcs of radius r which
touch the boundary of S). Let S] denote the polygon that is formed by the sides
of S which S, touches, produced if necessary. We call S! the contact polygon of
Sr. Let 2¢; denote the angle of the sth arc of S, (Figure 12.3).

Figure 12.3: The angle of the i-th arc of S,

Then Singmaster and Souppouris show the following:
(1) 2¢; < , or equivalently, S! is a bounded, convex, polygonal set.

(2) The maximal value of A/p for all sets contained in S is attained for a set
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S, where 0 < r < r, satisfies the condition

A(Sr) _
(3) The area and the perimeter of S, are given by the formulae:
A(S,) = A(S)) — kr?, (12.5)
p(S:) = p(S;) — 2kr, (12.6)

where k=3 ,tan¢; ~ 7

Substituting (12.5) and (12.6) into (12.4), we have
. A(Sl)y - r%k
~ p(St)—2rk’

This simplifies to give the following quadratic equation in r:
kr® —rp(S.) + A(S) = 0.

Since p(S:) = p(S;) — 2rk > 0, we have r < p(S!)/(2k). Hence solving the

quadratic equation for r, we have

r=1"= 5 (b8 — @B - #AS)) (127)

Since S is a bounded, convex polygon, there is a finite number of possible

contact polygons. As described by Singmaster and Souppouris, we begin with
7 = & where ¢ is a small positive number and we consider the corresponding
contact polygon S;. The value of 7* may then be evaluated using (12.7). If this
value of 7* gives a set S,» for which the contact polygon is the contact polygon of
Sy, then we are done. Otherwise we proceed to the next possible contact polygon.

We repeat the process until we arrive at a value for r for which S/, = S'.
12.3 Some preliminaries to the lattice point problem

Let K now be a set in K? having G(K°,T') = 2. Let O and L(z,, 22) be the lattice
points contained in K°. Let M denote the midpoint of OL. As in §11.4, we will

consider the following cases for L:
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(i) L(1,0) (i) L(1,1) (iii) L(21, 22), 21 > 2

We examine each case separately in the next three sections and show that case
(i) gives the maximal result. In cases (i) and (ii), we employ Steiner symmetriza-
tion on K about a given line [ through M, to transform the set K into convex set
K,. We recall from Theorem 2.3 that Steiner symmetrization preserves convexity
and areas and does not increase perimeters. Hence A(K)/p(K) < A(K,)/p(K.).
We note that the set K, may contain more than two interior lattice points. Nev-
ertheless, it will be sufficient for us to prove Theorem 12.5 for the set K,. For a
simpler notation, we let A(K,) = A and p(K,) = p.

Since K is symmetric about M, K, is also symmetric about the line I through
M perpendicular to I. By taking I’ and [ to be the new z and y-axes respectively,
it will be shown that K, satisfies the following properties:

(P1) K, is convex and symmetric about the new coordinate axes.

(P2) K, is bounded by the lines z = +z,, where z, is a number to be specified.

(P3) K, is contained in a rhombus with edges each containing a fixed point
(not necessarily a lattice point). We shall see that these fixed points are symmet-
rically placed about the coordinate axes and arise because of the lattice constraint
on K. Let P, P, P3 and Py denote these fixed points. We will specify the point
P, with coordinates (z,y) with respect to the new coordinate axes.

Now let p;, p2, p3 and ps be the edges of the rhombus containing the fixed
points P, P, P; and P, respectively, with each edge making an acute angle
of o with the z-axis. Let R(c) denote the rhombus determined by the lines
D, 1 = 1,...,4 and let H(«) denote the hexagon determined by the lines p;,
t=1,...,4and z = *x,. If p; intersects the line z = z, in y < 0, then K, is
contained in R(a) (Figure 12.4a). Otherwise, by (P2), K, is contained in H(c)
(Figure 12.4D).
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=
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(a) S = R(a) (b) § = H(e)
Figure 12.4: Bounding sets for K, for the lattice point problem

The problem then becomes one of maximizing A/p over all sets contained in
S where S is R(a) or H(a). We now use Singmaster’s and Souppouris’ method
to formulate our problem.

If S = R(a), then clearly S, = R(a) (Figure 12.4a). If, on the other hand,
S = H(a), the following lemma shows that S! is either R(a) or H(c).

Lemma 12.6 Let S = H(a) be the hezagon A;AyAsAyAsAs, with LA, = (A,
and LAy = LA3 = [As = [Ag. Let by and by denote the angle bisectors of LA,
and LAj respectively and let T' be the point of intersection of by and bs. Let t
denote the distance of T from the line AyA;. Ifr <t, then S' =8 = H(a). If
r > t, then S. = R(a).

Proof. Due to the symmetry of S, the incentre of S is at the point O, having
distance z, from the line A, A3. Suppose first that ¢t > z, (Figure 12.5). Clearly,
To = To < t. Hence any disk having radius r < r, < ¢t may be positioned on b, to

touch the sides A;A; and A;A;. By symmetry, it follows that S, =8 =H(a).
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Figure 12.5: The case where t > z,

Now suppose that ¢ < z,. Clearly then, r, > ¢. If r < ¢ < r,, then as before,
any disk having radius 7 < ¢ < r, may be positioned on b, to touch the sides

A1Az and AyA;. By symmetry, it follows that S. = S = H(a) (Figure 12.6).

Figure 12.6: The case where t < 7, and r < ¢

If, on the other hand, ¢ < r < r,, then any disk in S having radius r does not

touch the edge A2A43. By symmetry, it is clear that S! = R(a) (Figure 12.7).
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Figure 12.7: The case where t <z, and r > ¢

Hence, if r < ¢, then 5] = S = H(a). If r > ¢, then S! = R(). O
We now formulate the two cases for S! separately.
Case 1. S, = R(«) (Figures 12.4a and 12.7). Let p; intersect the z and y-axes

in the points X and Y respectively. Then OX =z + y/tana, OY = y + ztan o
and XY = y/sino + z/cosa. Since A(S]) = 4A(AOXY) and p(S!) = 4.XY,

we have
A(S]) = 4zy+2z%tano+ 2’
" y . tan o’
S) = 4 (-—— ) , 12.8
p(S7) sin o - COS ¢ (12.8)
k = 2tana+ ———.
tan o

Using (12.7), we have r* = r}(a).

Case 2. S; = H(c) (Figures 12.5 and 12.6). Here we have 4; A4, = 2,/ cos o
and AyA3 = 2y — 2(z, — z) tan a. By taking A(S!) to be the sum of the areas of
the rectangle A3 A3 AsAg and the triangles A; Ay Ag and A3 A4 A5, and p(S}) to be
2.A3A3 + 4.4, Ay, we have
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A(S]) = 4zo(y — (zo, — ) tane) + 222 tana,
4
p(S) = 4y~ (@ —2)tana) + —2,
cos o
T «
k = 2tana+4tan(z—§)—7r

e —2tana — .
cos o )

Using (12.7), we obtain 7* = r}(e). By Lemma 12.6, Case 2 applies only when

> (12.9)

ri(a) <t =t(a), where

t=t(a) = (y - (z, — z) tana) tan(% + %) (12.10)

Otherwise, we have Case 1 and r* = r}(a).

We now define the function f(a) = f as follows:

- {FD TEESO

We seek to find the maximal value of f(c) for 0 < oo < Z. We will use the

notation and results in this section in §12.4 and §12.5.

12.4 The case L(1,0)

In this case, the centre of K is the point M(3,0). We first symmetrize K with
respect to [ where [ is the line z = % to obtain the set K,. As already described
in §11.4, the set K, has properties (P1), (P2) and (P3), where z, = 3 and P, is
the point with coordinates (3,1) (Figure 12.8). By substituting z = 1, y = 1 and
T, = 3 into (12.8) and (12.9), we have

Case 1. S; = R(a).

1
—tan o
tana+2 ’

4 2
S l= )
sina  cosa

A(S7)

p(S;) =

k = 2tana+

tan o

Using (12.7), we have r* = ri(a).
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Ranj)

33—

Figure 12.8: Bounding sets for K, for the case L(1,0)
Case 2. S} = H(a).

A(S)) = G—Stana,

6
S = — 41 4
p(S;) sy ana + 4,
k = —2tana — 7.
cos

Using (12.7), we obtain r* = r}(a).

Now from (12.10), we have
t=1t(a) = (1 —tano) tan(% + %)
Solving rj (@) < t(a), we have a < o* ~ 0.601. Hence for a < o*, S! = H(a),

otherwise S] = R(a). From (12.11), we therefore have

fla) = { ry(a), a <o ~0.601, (12.12)

rh(a), a>a* ~0.601,

The graphs of ri(a) and r3(e) are shown in Figure 12.9. The value o =
o =~ 0.601 indicates a transition from the contact polygon H(a) to the contact

polygon R(c). The graph of f is therefore obtained by taking the relevant parts
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of the graphs of r3() and 7} () as defined in (12.12). A numerical calculation

shows that the maximal value of f occurs where o = o™ 2 0.107 and f(a**) =

<‘_‘ Otckwlwz.?(..( o n.—.;..& 2.%

A = 0.636 (Figure 12.10).

1 = i i
0.8 |-,

0.6

.......... (o
0.4 N S il
Lo & 0.107
02 (@) A
o ~ 0.601
0 1 | [ 1 | |
0.2 0.4 0.6 0.8 1 1.2 14
a
Figure 12.9: The graph of f(a) for the case L(1,0)
0.636
0.6358 -
0.6356 -
f(a) 0.6354
0.6352
0.635 |- :
s o™~ 0.107
0.6348 ‘ t— .
0.05 0.1 0.15 0.2
a

Figure 12.10: The maximal value of f(«) for the case

L(1,0)
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12.5 The case L(1,1)

Since K is symmetric about M (%, %), K is bounded by the parallel lines z; and
T2 containing the points X;(0,1) and X,(1,0) respectively, having positive slope
m. By a reflection about the line y = z, it suffices to consider those cases for
which m > 1. We now consider the following two cases for m.

Case a. m > 2 (Figure 12.11). Here we symmetrize K with respect to [ where
[ is the line z = % Since m > 2, the distance between z; and z, in a direction
parallel to the z-axis is at most % Hence the symmetrized set K, lies in the
parallel strip bounded by the lines z = —; and z = 2. Furthermore, since K°
contains no point of I' on the lines y = 2 and y = —1, K° intersects these lines
in line segments of lengths at most one. Clearly then K° does not contain the

points with coordinates (1,2), (0,2), (0,—1) and (1, -1).

!

Figure 12.11: The case where m > 2
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It may be easily checked that K, satisfies properties (P1), (P2) and (P3),

where z, = 3 and P, is the point with coordinates (3,2) (Figure 12.12).

4

P\(1/2,312) :

ft— 3/ —

Figure 12.12: Bounding sets for K, for the case m > 2

By substituting 2 = 3, y = 3 and z, = 3 into (12.8) and (12.9), we have
Case 1. S] = R(a).

1 9
/ -— —_
A(S) = 3+2tana+2tana’
6 2
!
p(5:) sina  cosa’
k = 2tana+ =
tan o
Using (12.7), r = r(a) may be found.
Case 2. S! = H(a).
9 3
/ = — —_
A(S) = 5+ 3 tan o,
4 — —
p(S,) = 6+ — tan a,
k = —2tana — 7.
cosa

Using (12.7), r* = r} (@) may be found.



12.5. The case L(1,1) 140

Now from (12.10), we have

(0

t=t(a)= (§ - lt.':moz) tan(g + 2).

2 4

Solving r(a) < t(@), we have a < o* ~ 1.401. Hence for @ < o*, S! = H(a),

otherwise S] = R(c). From (12.11), we therefore have

_ [ rule), a<or~ 1401,
fle)= { rr(®), o> a* ~ 1401, (12.13)

The graphs of r;(a) and r§(a) are shown in Figure 12.13. The value a =
a* = 1.401 indicates a transition from the contact polygon H(c) to the contact
polygon R(c). The graph of f is therefore obtained by taking the relevant parts
of the graphs of r;(c) and r}; () as defined in (12.13). From the graph it is seen
that f(a) < A = 0.636. ?

14 i T T T T T ]

1.2 —'.' .: 4

r@) osf §~

0.6 F BT R

04 -

02 | 1 1 1 1

Figure 12.13: The graph of f(c) for the case L(1,1), m > 2

Case b. 1 < m < 2 (Figure 12.14). We first show that if K is a maximal
set, it lies in the parallel strip bounded by the lines y = 3 + z. Suppose that
K extends beyond the line y = —3 + z. Then there is a point X € K which

liesin y < =3+ z. Since m < 2, X also lies in y > —2 + 2z. Now clearly
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XM > 1/(9/2)2 + (3/2)2 > 9/2. Hence p(K) > 18. By (12.1), we have

A 2 1 2 1
;<I—)+§<E+§~O.611<)\.

Hence K is not maximal. We may therefore assume that K is bounded by the
lines y = +3 + x.

We now symmetrize K with respect to the line I where [ is the liney = 1 — z.
Since K is symmetric about M (%, %), K is bounded by parallel lines containing
the points with coordinates (—1,—1) and (2,2). Hence K, is bounded by the
lines y = 4 — z and y = —2 — z. Furthermore since K° does not contain any
point of I' on the lines y =1+ z and y = —1 + z, it intersects these lines in line
segments of lengths at most /2. It follows that K intersects these lines in line
segments of lengths at most v/2. Clearly then, K° does not contain the points
with coordinates (3, %), (—3,3), (3,—3), and (3,1). It may be easily checked
that K, satisfies properties (P1), (P2) and (P3), where z, = £v/2 and P, is the
point with coordinates (1v/2, 2v/2) (Figure 12.15).

Since K, is also bounded by the lines y = :i:%\/i, we need only consider the
case where 0 < @ < §. By substituting z = 1v/2, y = 1v/2 and 2, = 22 into
(12.8) and (12.9), we have

Case 1. S| = R(a).

A(S)) = 2+

+ tana
tan o ’

1 1
! — 2
p(S7) \/z_(cos oy i sin a)’

k = 2tana+
tan o

Using (12.7), r = r}(a) may be found.
Case 2. S] = H(a).

A(S]) = 6-3tana,
p(S)) = (L —4tana + 2) V2,

CoOS &
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— 2tana — 7.
cos «

Using (12.7), r = r}(a) may be found.

y=3+x

i’
SY=2 +2x

Figure 12.14: The case where 1 < m < 2

y=1x
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Figure 12.15: Bounding sets for K, for the case 1 < m < 2

Now from (12.10), we have

t=t(a) = (%ﬁ ~ \/ﬁtana) tan(% + %)

Solving r3(a) < t(a), we have a < o* = 0.180. Hence for a < o*, S’ = H(a),

otherwise S| = R(c). From (12.11), we therefore have

fla) = { rh(e), a<a*=~0.180, (12.14)

rr(@), a>a*~0.180,

The graphs of r;(«) and rj(a) are shown in Figure 12.16. The value a =

a* ~ 0.180 indicates a transition from the contact polygon H(c) to the contact
polygon R(c). The graph of f is therefore obtained by taking the relevant parts

of the graphs of r; (o) and r};(a) as defined in (12.14). From the graph it is seen
that f(a) < A = 0.636.
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0.65 T : T T T T

0.6 |- : 2
0.55 — '

0.5

™(a) 0.45
0.4

0.35

03 | - a* ~ 0,180 -

0.25 | : | 1 1 L 1 1
0.1 0.2 0.3 04 0.5 0.6 0.7
(07

Figure 12.16: The graph of f(c) for the case L(1,1),1 < m < 2
12.6 The case L(z,22), 21 > 2

From §2.5, we need only consider those cases for which z; > 2z, and z; and 2, are
relatively prime. We consider the following three cases:

(i) z1 odd and 2z, odd. Let X and Y be the points with coordinates
(3(21 = 1), 3(z2 — 1)) and (3(21 + 1), (22 + 1)) respectively.

(ii) 2, odd and z; even. Let X and Y be the points with coordinates
(3(21 = 1),22) and (3(z1 + 1), z3) Tespectively.

(iii) z, even and 2z, odd. Let X and Y be the points with coordinates
(21,3(22 — 1)) and (21, (22 + 1)) respectively.

In all three cases, since K is symmetric about M (32, 322), K is contained in
a parallel strip bounded by the lines z and y having the same positive slope and

having width at most 1 (Figure 12.17). By Theorem 12.2, we have

é<1<)\.
p 2
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® (ii) (ii1)

Figure 12.17: The case L(zy, ), 21 > 2

In summary, by comparing the results from §12.4, §12.5 and §12.6, we see that
A
— < A= 0.636,
p

with equality when and only K is congruent to the rounded hexagon U, of Fig-

ure 12.2.
12.7 A conjecture

We now conjecture a stronger form of Theorem 12.5 by removing the symmetry

condition on K.

Conjecture 12.7 Let K be a set in K? and let G(K°,T) = 2. Then
A
— < A= 0.636.
p

Equality holds when and only when K is congruent to the rounded hezagon Us

(Figure 12.2).



Chapter 13

Conclusion

In this chapter we outline the scope for further research in the area. Appendix B
contains a summary of the results of this thesis. From Tables B.2-B.5 of Appendix
B, it may be seen that many new problems remain in the area (indicated with %

in the tables). We now describe possible future directions for the research.
13.1 Problems concerning non-rectangular lattices

In our work, we have been primarily concerned with the rectangular lattice Ag,
in particular, the integral lattice I. New problems arise by considering non-
rectangular lattices. For example, Minkowski’s Convex Body Theorem as stated
in Theorem 1.1 is generalized to the general lattice A in Theorem 2.2 by using
an affine transformation and observing that A(K)/det(A) is an affine-invariant
quantity. Wetwitschka (1987) gives an analogue of Minkowski’s Convex Body
Theorem for the equilateral triangular lattice Ar generated by the vectors (1,0)
and (3, 2v/3). Scott (1978¢c) and Wetwitschka (1991) find the maximal width of a
set K in K? having G(K°, Ar) = 0 and G(K°, Ar) = 1 respectively. The results
here are simple as the lattice is based on the equilateral triangle which turns out
to be the extremal figure in these problems. Vassallo (1992) finds the maximal
width of a set K in K? with G(K°, A) = 0. Vassallo (1995) also generalizes
the area-width result of Chapter 7 and the area-diameter result of Chapter 11

to the general lattice A. However, in contrast with Wetwitschka’s and Scott’s
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inequalities for Az, Vassallo’s results are quite complicated. Vassallo and Wills
(1996) also generalize the width-diameter inequality by Scott (1979b) to arbitrary
lattices. The area-perimeter inequality obtained by Bender (1962) as stated in
Theorem 12.2 is in fact true for the general lattice A. Wills (1971) obtains a
result for V/S for arbitrary lattices.

Two ideas are useful in generalizing to the lattice A. If the quantity under con-
sideration is an affine-invariant quantity, the generalization is a straightforward
exercise. The other method is to employ Steiner symmetrization to transform the
problem into one concerning rectangular lattices (see for example (Bender 1962;

Vassallo 1995)).

13.2 Problems in &

All our problems are posed in the Euclidean plane ®2. The question arises as
to whether these results hold in higher dimensions. As an example, Minkowski’s
Convex Body Theorem as stated in Theorem 2.2 in fact holds for sets in KC*
(the corresponding result is obtained by replacing the number 4 in Theorem 2.2
by 2"). Ehrhart (1964) conjectures a result for the maximal volume of a A,-
admissible set having O as the centre of gravity. The conjecture has been proved
for n = 2 (Ehrhart 1955a) and for n = 3 for a special class of solids (Ehrhart
1955b). McMullen and Wills (1981) generalize a result by Scott (1973) concerning
the maximal width of a set K in K? having G(K°,T') = 0 to sets in K". In the
same paper an analogue of the width-diameter result in Chapter 6 is given for
sets in . Bokowski and Wills (1974) and Schmidt (1972) independently extend
the area-perimeter result by Nosarzewska (1948) to the case n = 3. In fact, this
result holds for all n as proved by Bokowski, Hadwiger and Wills (1972). The
area-perimeter inequality obtained by Bender (1962) for sets K in K2 having
G(K°,T') = 0 has been extended to n = 3 and n = 4 by Wills (1968, 1970
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respectively). The generalization to R" is proved by Hadwiger (1970). From
the literature, it is observed that the greatest difficulty in generalizing to R" is
encountered in extending the result to ®?. If this can be done, the generalization

to R™ is usually a simple induction exercise.

13.3 Problems concerning an arbitrary number of lattice
points

In all our problems, we have considered those cases for which G(K°T) < 3.
What are the corresponding results when K° contains an arbitrary number of
lattice points ? Van der Corput (1935, 1936) gives a relationship between V
and G(K° A,) for an O-symmetric set. Scott (1987) relates A with G(K°, A)
for the general class of convex sets. Ehrhart (1955¢, 1955d) gives partial results
relating A and G(K°, A) for sets having centre of gravity at O. Nosarzewska
(1948) gives an inequality relating A, p and G(K°,T). Inequalities concerning w
and G(K°,T) have been obtained by Elkington and Hammer (1976). Hammer
(1964, 1966, 1971, 1979) also obtains inequalities relating A/p, V/S and A/d
with G(K°,T';). Reich (1970) obtains a result relating A, p and d with G(K°,T).
Vassallo (1995) gives a relationship between A/d and G(K°, A), while Vassallo
and Wills (1996) relate w and d with G(K°,A).

13.4 Problems concerning special sets

By taking K to be a set with special properties, we have new and interesting
problems. Minkowski’s Convex Body Theorem is an example of such a problem,
for if the symmetry condition were removed, A will be unbounded. Arkinstall
and Scott (1979) find the maximal value of A/p for a I'-admissible set where O
is the centre of symmetry. In an earlier paper, Scott (1978a) conjectures a result
for the maximal area of a A,-admissible set in K™ having its volume equally

distributed in the 2" orthants. The conjecture is confirmed for n = 2 in the same
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paper. Ehrhart (1955a) takes O to be the centre of gravity of a I-admissible
set and finds the maximal area of the set. Scott (1982) conjectures a result for
the maximal width of such a set. In the same paper, Scott also conjectures a
result for the maximal area of a I'-admissible set in X2 with circumcentre Q. We
discover that the conjecture is false and have revised the conjecture in §3.5. We
also find the maximal circumradius of such a set in Chapter 4. Sallee (1969) finds
the maximal width of a set of constant width K in K? having G(K°,T) = 0.
Sawyer (1955b) finds V/ det(A,) for a set which is symmetric about a point apart
from O. In the problems of Chapters 11 and 12, K is taken to be a set containing

two interior lattice points symmetrically placed about the centre of the set.

13.5 Problems concerning other geometric functionals

In this thesis we have dealt with the geometric functionals A4, p, d, w, r and
R on the space X%. By defining new functionals, many new problems may be
investigated. A number of results have been obtained for the inner 1-quermasses,
d; and the outer 1-quermasses, w;, defined in §6.6. For example, Scott (1985c¢)
obtains an inequality relating V' with wi,w,, ..., w,. Scott (1985b, 1989) also
obtains inequalities for d;. Wills (1990) obtains an inequality relating w; and d;
for a set in K™, analogous to the width-diameter inequality in Chapter 6. Another
analogue of the width-diameter inequality in Chapter 6 is given by McMullen and
Wills (1981) who relate w; with the functional 6; defined to be max{w(K N H;)}
where H; is a hyperplane perpendicular to the i-th basis vector. Sawyer (1954)

introduces a new functional for a A,-admissible set K as follows. Let

AMK)= A =supg—1?,,

where POP' is a chord of K (A(K) is an example of a coefficient of asymmetry for

a set K). Many other similar functionals may be defined (Griinbaum 1963). Saw-
yer (1954) establishes a relationship between V/ det(A,,) and ) for A,-admissible
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sets. He obtains an exact formulation for A/ det(A) for A-admissible sets (Sawyer
1995a). Scott (1974b) defines a functional, A on K as follows. Let A(K) = k if the
set K is kA,-bounded (A set is kA,-bounded if some translate of K is contained
in a fundamental cell of kA, but no translate is contained in any fundamental
cell of (k — €)A, where € > 0). As expected, there is a relationship between V
and A. Scott finds an exact relationship between A and A for A-admissible sets

in X2
13.6 Problems involving three parameters

In our work, we have concentrated on inequalities concerning one or two of the
geometric parameters A, p, d, w, r and R. What inequalities exist among three
of these parameters ? As an example, Reich (1970) proves that if K is a set in
K? and G(K°,T) = 1, then A < ip+d. As far as we know, this is the only
inequality relating three parameters for lattice constrained sets. Perhaps, as with
the one and two parameter problems, the inequalities for unconstrained sets can
give some ideas for the corresponding inequalities for lattice constrained sets. We
have compiled a list of inequalities relating three parameters for sets with no

lattice constraint. This may be found in Appendix C.

It may be seen from the preceding discussion that problems abound in the
area. It is hoped that this work will motivate further research in this very fertile

area.



Appendix A

Supplementary diagrams for Chapter 3

Figure A.1: The unbounded sets for the two intercept case
Figure A.2: The unbounded sets for the three intercept case
Figure A.3: Triangles A; and T; for the {hy, by, hr} case
Figure A.4: Triangles A; and T; for the {hy, hy, hs, b7} case

Figure A.5: Triangles A; and T; for the {hy, hy, hs, hg} case
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() {h1, he}

(€) {hushe}

Figure A.1: The unbounded sets for the two intercept case
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(a) {h1, h3, hs} (b) {h1, b3, hs}

(d) {ha1, hs, he}

Figure A.2: The unbounded sets for the three intercept case
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Ii.
2i. 2ii.
3i. , . ! s

3iii.

o - L]

Figure A.3: Triangles A; and T; for the {hy, hy, b7} case
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N A 7

Figure A.4: Triangles A; and T; for the {hy, hy, hs, h7} case
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Appendix A

= 3(ij

1(iii)

= 2(i)

1(ii)

2(i)

2(ii)

2(ii)

1(i)

3(iii)

Figure A.5: Triangles A; and T; for the {hy, h4, hs, hg} case



Appendix B

Summary of results

This appendix contains a summary of the results of this thesis.

List of Tables
Table B.1: Inequalities for sets with no lattice constraint
Table B.2: Inequalities for G(K°, Ag) =0

Table B.3: Inequalities for G(K° T') =0

Table B.4: Inequalities for G(K°,T")

Table B.5: Inequalities for G(K?°,T')

1
2

We have indicated with x those sets of parameters for which the inequalities are

not known.

List of Figures

Figure B.1: Extremal sets for the case G(K° Ag) =0
Figure B.2: Extremal sets for the case G(K°,T) =0
Figure B.3: Extremal sets for the case G(K°,T") =1
Figure B.4: Extremal sets for the case G(K°,T) = 2
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Parameters | Inequality Extremal | Reference

Sets (see note 2)
A,p 0 < A< p*/(4n) I,C p.207, ex.5.8
Ad 0< A< (nd?)/4 I,C | p.239, ex.6.10a
A, w w?/V3<A<oo| E,P |p221,ex6.4

AR 0<A<7R? I1,C t
A mr < A< oo C,P |1t
p,d 2d<p<md LW p.257, ex.7.17a,
P, W Tw<<p< oo W, P p-258, ex.7.18a
p, R 4R<p<27mR LW T
D, T 2rr < p< o C,P T
d,w w<d<oo W, P T

d,R V3R<d<2R E,C | p.213, ex.6.1
(see note 4)

d,r 2r<d< oo C,P T

w, R 0<w<2R I,C t

w,T 2r <w < 3r C,E p-215, ex.6.2
(see note 5)

R,r r<R< oo C,P }

Table B.1: Inequalities for sets with no lattice constraint

Notes on Table B.1:

1. Notation:
I  line segment
C circle

FE  equilateral triangle

W orbiforms (sets of constant width)

P parallel strip
2. The proofs of the results in the table may be found in the indicated pages of
the book by Yaglom and Boltyanskii (1961). Results indicated with t are trivial
and their proofs have been omitted.
3. The left hand and right hand extremal sets correspond to the left hand and
right hand inequalities respectively.
4. The left hand inequality for the pair (d, R) is referred to as Jung’s Theorem.
5. The right hand inequality for the pair (w,r) is referred to as Blaschke’s The-
orem.
6. Where an inequality is strict, the extremal set shows the bound to be best
possible.
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Parameters | Inequality Extremal Reference
Sets
A unbounded
P unbounded
d unbounded
w w < 1(2v + v/3u) Er (Scott 1993),
(Vassallo 1992),
Chapter 5
R unbounded
r r < 2y/u? + v? Cr (see note 2)
A,p Alp < v Pr (Bender 1962)
A,d Ald < ) Pror Hg | (Vassallo 1995)
A = max{v, 2sin(¢/2)v/u? + v?}, | (see note 3)
¢ =~ 0.832 ~ 47.7°
Aw 1. (w—v)A < quw? Tr Chapter 7
2. 4 < %(v + ‘/Tgu)‘1 Er Chapter 8
AR A/R <2\ Pror Hr (see note 3)
Ar *
p,d *
D, w (w—v)p < 3uw Er Chapter 7
p, R *
p,T *
d,w (w—v)(d—u) <uv Tr Chapter 6
4R |2R—d<2(2—3)(v+ Lu) Er Chapter 9
d,r (2r —v)(d-u) < wv Pr Chapter 10
w, R (w—v)R < %uw Er Chapter 7
w,r w—2r < z(v+ %u) Er Chapter 9
R,r *

Table B.2: Inequalities for G(K°, Ag) =0

Notes on Table B.2:

1. The lattice Ag is generated by u = (u,0) and v = (0,v), where u < v.

2. The result for r has not been proved in the thesis. However it follows easily
by symmetrizing K about the lines z = u/2 and y = v/2 and noting from The-
orem 2.3 that symmetrization does not decrease the inradius.
3. For the pairs (4, C? and (A, R), the extremal set is Pg if A = v and Hg other-

wise. The result for (4, R

) follows easily from d < 2R and the (A, d) inequality.

4. Where an inequality is strict, the extremal set shows the bound to be best

possible.
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The circle Cr The equilateral triangle £x

The parallel strip Pg The triangle 7Tz

Figure B.1: Extremal sets for the case G(K° Ag) =0
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Parameters | Inequality Extremal Reference
Sets
A unbounded
P unbounded
d unbounded
w w < 1(2+/3) ~ 1.866 Eo (Scott 1973)
R unbounded
T r<1/v2 Co (see note 1)
A p A<sp Po (Bender 1962)
Ad Ald <A\ =~1.144 Ho (Scott 1974a)
Aw L (w-1)A < juw* To (Scott 1980)
2. &> (1+ %) ~0.309 & Chapter 8
AR A/R<2)\ A= 1.144 Ho Chapter 11
A 1. (2r-1)A<2(v2-1)~0.828 So Chapter 10
2. 2r-1)JA-1/<1/2 Py Chapter 10
p,d *
D, W (w—-1)p<3w &o (Scott 1980)
»nR *
D, T L (2r—1)p<i(vV2-1) So Chapter 10
2. 2r—1)lp—4[<2 Py Chapter 10
d, w (w-1)d-1)<1 To (Scott 1978b)
dR 2R—d <z & Chapter 9
d,r 2r—-1)(d-1)<1 Py Chapter 10
w, R (w—1)R< Zsw &o (Scott 1980)
w,T w—2r<i+4 é\/g ~ 0.622 Eo Chapter 9
R, 7 *

Table B.3: Inequalities for G(K°,T') = 0

Notes on Table B.3:

1. The result for r follows easily from the corresponding result in Table B.2
by letting u = v = 1. In fact, all the above inequalities with the exception of the
(A,7) and (p, r) inequalities follow immediately by letting v = v = 1.

2. The methods used to prove the (A,r) and (p, rS' inequalities may be extended
to obtain the corresponding inequalities for the rectangular lattice. However the
results are complicated and have been omitted in Table B.2.

3. Where an inequality is strict, the extremal set shows the bound to be best
possible.
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° ° ° °
° ° ° ® ® °
The circle Cy The equilateral triangle &,

—® @ —& &—

The parallel strip Py

N ud &
° °
The diagonal square Sy The triangle 7y

Figure B.2: Extremal sets for the case G(K°,T") =0
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Parameters | Inequality Extremal Reference
Sets
A 1. A <4if O is centre of K e.g. S (Minkowski 1911)
2. A< 45if O is the C.G. Ehrhart’s A | (Ehrhart 1955a)
3. A < 4.5 or A unbounded Ehrhart’s A Chapter 3
4. Congecture: If O is the circumcentre
then A < a = 4.04569 (o Chapter 3
P unbounded
d unbounded
w L w<1+v2~2414 T (Scott 1985a)
2. Conjecture: If O is the C.G. then
w < 3v/2/2 Ehrhart’s A (Scott 1982)
R < a =~ 1.685 or R unbounded T Chapter 4
T r<l1 C, (see note 1)
Ap Alp <22+ /7))t = 0.53 U (Arkinstall
(O is centre of K) and Scott 1979)
Ad Ald < V/2Md, )~ 1.144 Hi Chapter 11
Aw 1. A(w—+2) < %wz T Chapter 7
2. Conjecture:
> -‘%m ~ 0.243 & Chapter 8
AR A/R < 2v2)R Hy Chapter 11
Ar A(2r —v2) <4(2—-2) ~ 2.343 S Chapter 10
p,d *
pw *
»R *
D,T p(2r — v2) < 8(2-+/2) S Chapter 10
d, w (w—2)(d—Vv2) <2 T (Scott 1985a)
d,R Congjecture:
2R —d < Y2.(7—3v/3) ~ 0.425 & Chapter 9
d,r *
w, R *
w,T Congjecture:
w ~ 2r < Y2(5 4 /3) ~ 0.793 & Chapter 9
R, *

Table B.4: Inequalities for G(K°,T) =1

Notes on Table B.4;

1. The result for r follows easily from the corresponding result in Table B.2 by
using the sublattice argument SL1. In fact the inequalities for the pairs (4, d),
(4,w), (A,R), (p,r) and (w,d) are obtained using the same argument.
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[ ]
The circle C; The equilateral triangle &; Ehrhart’s A
.\\{. . .
\\\¢l,t
L ]
d >
The truncated square H;, ¢ ~ 47.7° The isosceles triangle Z;

The truncatéa"aﬁé,c.lrilateral o1, The square &;

R~ 1.593, a =~ 5.47°, 3 ~ 20.23°

’

Ay

N

. The triangle 7, The rounded square U,
The triangle 7, R~ 1.685 r & 0.530

Figure B.3: Extremal sets for the case G(K°,T) =1
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Parameters | Inequality Extremal | Reference
Sets
A unbounded
) unbounded
d unbounded
w w < 3(4+ V/3) ~ 2.866 & Chapter 5
R unbounded
r r<1iy5 @ (see note 1)
Ap 1. A/p < A= 0.636 Uy Chapter 12
(special conditions apply, see note 2)
2. Conjecture: A/p < A= 0.636 Uy Chapter 12
A,d 1. A/d < o=~ 1.841 Ho Chapter 11
(special conditions apply, see note 2)
2. Conjecture: Afd < a=~1.841 Ho Chapter 11
A w 1. (w—2)A < ju? Tz Chapter 7
2. &> (24 %)~ 0201 & Chapter 8
AR 1. A/R < 2a = 3.682 Ho Chapter 11
(special conditions apply, see note 2)
2. Conjecture:A/R < 2a ~ 3.682 Ho Chapter 11
AT *
D, d *
p,w (w—3)p < 3w & Chapter 7
p, R *
DT *
d,w (w=2)(d—-1) <2 T2 Chapter 6
d,R 2R —d < 1(5— 2v/3) = 0.512 & Chapter 9
d,r *
w,R (w—2)R< —%w Es Chapter 7
w,T w—2r < 1(2 + £/3) ~ 0.955 &y Chapter 9
R,r *

Table B.5: Inequalities for G(K°,T') = 2
Notes on Table B.5:

1. The result for r follows easily from the corresponding result in Table B.2
by using the sublattice argument SL2. In fact all the above inequalities except
those for the pairs (A,p) and (A4,d) and (A, R) are obtained by the same argu-
ment.

2. The results concerning the pairs (A4,p), (4,d) and (A4, R) apply to the class
of symmetric sets in 2, having the interior lattice points symmetrically placed
about the centre of the set. The conjectures apply to the general convex set
containing two interior lattice points.
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° °
° °
° °

The circle C, The equilateral triangle &,

The truncated rectangle #H,, ¢ ~ 48.5° The triangle 75

i Fs e st

The rounded hexagon Us,
a~6.13°% r =~ 0.636

Figure B.4: Extremal sets for the case G(K°,T") = 2
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Three parameter relationships for sets with no
lattice constraint

Let K be a non-empty set in X2. We compile a list of inequalities relating any
three of the geometric functionals A, p, d, w, 7 and R. We list the details in
the following order: the inequality; a set for which the inequality is best (where
the inequality is strict, the indicated set shows that the bound is best possible)
references for a proof of the inequality.

1. Parameters: A, p,d.

(i) 8¢A < p(p — 2dcos @) where 2¢d = psin ¢; the intersection of two disks of
equal ra;iius (Figure 13.5a); (Kubota 1923; Yaglom and Boltyanskii 1961, p.240,
ex.6.11a).

(i) 3d(p—2d) < A< ipd; the right hand inequality is best for a circle; (Hayashi
1923).

(iii) A > 2d(p — 2d); infinite isosceles triangle; (Favard 1929).

(iv) If 2d < p < 3d, then A > 1(p — 2d)(4pd — p?)'/?; isosceles triangle; (Kubota
1923, 1924; Yaglom and Boltyanskii 1961, p.229, ex.6.8a).

(v) If 3d < p < md, then A > 1+/3d(p — 2d); Not best possible unless p = 3d in
which case we have the equilateral triangle; (Kubota 1924).

2. Parameters: A, p,w.

(i) A < Jw(p — iww); convex hull of two disks of equal radius (Figure 13.5d);
(Kubota 1923; Yaglom and Boltyanskii 1961, p.241, ex.6.11b).

(ii) If 0 < 2v/3w < p, then A > A} where A7 is the middle root of the equation
128pz® — 16w(5p% + w?)z? + 16w?p®z — wip* = 0; isosceles triangle; (Yamanouti
1932; Yaglom and Boltyanskii 1961, p.231, ex.6.8b).

(iii) If 0 < mw < p < 2v/3w, then A > tw(p — V3wsec?v) where tany — v =
& (p — mw) /w; equilateral Yamanouti triarc (Figure 13.5b); (Kubota and Hemmi
1953; Sholander 1952).

(iv) If 0 < 7w = p, then A > (7 — v/3)w?; Reuleaux triangle (Figure 13.5c);
(Lebesgue 1914, 1921; Yaglom and Boltyanskii 1961, p.260, ex.7.20).

(v) A > $(4v/3w? — pw); equilateral triangle; (Sholander 1952).

(vi) A > (pw — Zw?); equilateral triangle; (Kawai 1932).
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(vii) A > $pw; equilateral triangle; (Sholander 1952).
3. Parameters: A,p,r.

(i) A < r(p — 7r); circle; (Bonnesen 1929).
(ii) A > Zpr; triangle; (Bonnesen and Fenchel 1934).

4. Parameters: A,p, R.

i) A < R(p — wR); circle; (Bonnesen 1929).
ii) A < 2R(p — 2R); not best possible; (Henk and Tsintsifas 1994).
ili) A > R(p — 4R); infinite isosceles triangle; (Favard 1929).

5. Parameters: A,d,w.

(i) A < wd; rectangle with width tending towards 0; (Kubota 1923).

(i) A < lw(&® - w2 + &?sin™'(w/d); a set formed by removing from a disk
points outside two symmetrically placed chords (Figure 13.5¢); (Kubota 1923;
Yaglom and Boltyanskii 1961, p.240, 6.10b).

(iii) If 0 < w < (v/3/2)d, then A > twd; triangle; (Kubota 1923; Yaglom and
Boltyanskii 1961, p.227, ex.6.7).
(iv) If vV3/2 < w < d, then A > 1(rw? — v/3d?) + 3w?(tan 6 — &), where § =

cos™}(w/d); equilateral Yamanouti triarc (Figure 13.5b); (Kubota and Hemmi
1953; Sholander 1952).

(v) If w = d, then A > (7 — v/3)d?; Reuleaux triangle (Figure 13.5¢); (Lebesgue
1914, 1921; Yaglom and Boltyanskii 1961, p.260, ex.7.20).

(vi) A > L1(3dw — v/3d?); equilateral triangle; (Sholander 1952).

(vii) A > 1(mw? — v/3d?); Reuleaux triangle (Figure 13.5¢c); (Sholander 1952).

6. Parameters: A,d,r.
(i) A < 2dr; parallel strip; (Henk and Tsintsifas 1994).
7. Parameters: A,d, R.

(i) (2R — d)A < 7(3v/3 — 5) R3; not best possible; (Scott 1981).
(ii) Conjecture: (2R—d)A < 3(2 — v/3)(m — v/3) R?, with equality for a Reuleaux
triangle (Figure 13.5¢c); (Scott 1981).

8. Parameters: A, w,r.

(i) (w — 2r)A < fw?; an infinite isosceles triangle; (Scott 1979a).
ii) (w — 2r)A < Lw?r; equilateral triangle; (Scott 1979a).
V3
(iif) (w — 2r)A4 < V3wr? < 3v/3r3; equilateral triangle; (Scott 1979a).

9. Parameters: A, w, R.

(i) A < 2wR; rectangle with width tending towards 0, (Henk and Tsintsifas 1994).



Appendix C 169

(ii) A > 325wR; equilateral triangle; (Henk 1991).
10. Parameters: A,r, R.

i) A < 4Rr; parallel strip; (Henk and Tsintsifas 1994).
i) A > 2Rr; a triangle with width tending towards 0; (Henk and Tsintsifas 1994).

11. Parameters: p,d, w.
(i) p < 2(d? —w?)/2+2dsin"!(w/d); a set formed by removing from a disk points

outside two symmetrically placed chords (Figure 13.5¢); (Kubota 1923; Yaglom
and Boltyanskii 1961, p.257, ex.7.17b).

(ii) p > 2(d? — w?)'/? + 2wsin™(w/d); the convex hull of a disk and two sym-
metrically placed points (Figure 13.5f); (Kubota 1923; Yaglom and Boltyanskii
1961, p.258, ex.7.18b).
12. Parameters: p,d,r.

(i) p < 2d + 4r; a rectangle with width tending towards 0; (Henk and Tsintsifas
1994).

13. Parameters: p,d, R.
(i) (2R — d)p < (2v/3 — 3)7R?; sets of constant width; (Scott 1981).
14. Parameters: p,w,r.

(D)(w—-2r)p < %wz; equilateral triangle; (Scott 1979a).
(ii) (w — 2r)p < 24/3wr < 64/3r?; equilateral triangle; (Scott 1979a).

15. Parameters: p,w, R.
We have not been able to find any result relating these parameters.
16. Parameters: p,r, R.
We have not been able to find any result relating these parameters.
17. Parameters: d,w,r.

(i) (w — 2r)d < 2v/3r2, equilateral triangle; (Scott 1978b, 1979a).
(i) (w — 2r)d < 3w?; the infinite isosceles triangle; (Scott 1979a).
(i) (w —2r)d < \%’-wr; equilateral triangle; (Scott 1979a).

18. Parameters: d,w, R.

(i) (2R — d)w < v/3(2 — V3)R?; Reuleaux triangle (Figure 13.5¢); (Scott 1981).
(ii) (2R — d) < 2(2 — V/3)w; equilateral triangle; Chapter 9 of this thesis.
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19. Parameters: d,r, R.
(i) (2R - d)r < (3v/3 — 5)R?; Reuleaux triangle (Figure 13.5¢); (Scott 1981).
20. Parameters: w,r, R.

(i) (w — 2r)R < 1w?; infinite isosceles triangle; (Scott 1979a).
(ii) (w — 2r)R < 2wr; equilateral triangle; (Scott 1979a).
(iii) (w — 27)R < 2r?%; equilateral triangle; (Scott 1979a).
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(a) Intersection of two circles

(b) Equilateral Yamanouti triarc (c) Reuleaux triangle

d
(d) Convex hull of two circles

(e) Truncated circle (f) Convex hull of circle and two points

Figure C.1: Extremal sets for three parameter problems
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