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Abstract

Every convex set in the plane gives rise to certain geometric functionals such as the

area, perimeter, diameter, width, inradius and circumradius. When the convex

set is constrained by lattice points (points having integer coordinates), certain

inequalities occur amongst these functionals. In this thesis, we are primarily

concerned with obtaining new inequalities for a planar, convex set containing

exactly 0, 1 or 2 lattice points in its interior.

This thesis consists of two parts. The first part comprising Chapters 3, 4 and

5 deals with problems concerning single geometric functionals. We obtain results

concerning the maximal area, circumradius and width respectively.

The second part of the thesis comprising Chapters 6 to 12 deals with a larger

class of problems concerning relationships between pairs of the above-mentioned

functionals for lattice constrained sets. In a number of the problems concerning 1

or 2 interior lattice points, the solution is readily obtained by reducing the prob-

lem to one concerning a set with interior containing no point of the rectangular

lattice.

Chapters 1 and 2 contain basic ideas and results which are used throughout

the thesis. In the concluding chapter, we comment on the scope for future research

in the area. It will be seen that there remain many new and interesting problems.

v
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Chapter 1

Preliminaries

1.1- Introduction

The first ideas of convex sets date as far back as Archimedes but it was not until

the end of the last century that a systematic study was made which gave rise

to the subject as an independent branch of mathematics. At the turn of the

centur¡ Minkowski (1911) published his famous Convex Body Theorem which is

the basis for the Geometry of Numbers. The idea is to interpret integer solutions

of equations or inequalities as points with integer coordinates (lattice points).

Minkowski's work provides the link between the general theory of convex sets

and the geometry of numbers (concerning lattice points), giving rise to the study

of convex sets with lattice point constraints.

Tìo appreciate the sorts of questions which our research area is concerned with,

we state a simple form of Minkowski's Convex Body Theorem in the plane.

Theorem 1.1 (Minkowski) Let K be a conuer set in the pløne. Suppose that

K is symmetric about the origin O and the i,nterior of K conto,ins no non-zero

poi,nt whose coord'inates are both integers (cøIled alattice point). Then its area is

not greater than 4 (Figure 1.1).

From the point of view of our research, Minkowski's Theorem is an example

of a geometric extremal problem, that is, a problem concerning an inequality

stated in terms of geometrical concepts. His work suggests a more general class

1
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1.2. Notation and Defrnitions

o

Figure 1.1: Minkowski's Convex Body Theorem

of geometric extremal problems concerning sets with lattice point constraints.

Since Minkowski's Theorem, many new inequalities have been obtained for lattice

constrained convex sets. An extensive bibliography is given by Croft, Falconer

and Guy (1991), Erdös, Gruber and Hammer (1989), Gritzmann and Wills (1993)

and Hammer (1977). This thesis is a collection of new inequalities for lattice

constrained convex sets in the plane. In order to describe our problems more

precisely, rffe no\ry define some key terms.

L.2 Notation and Definitions

Let ft denote the set of real numbers and let Z denote the set of integers. Let

W' denote the n-dimensional Euclidean space, the class of all ordered sets of n

real numbers, (ø1, t2¡...,r,r), made into a metric space by defining the distance

between any two points x : (ør, 12¡. . ., ø,") and y : (UuUz,,. . ., gr,") to be

/ n -\+
l*-vl : (I{"u -,ù')

We will assume simple concepts in topology.

Let O denote the origin. Let Ø denote the empty set and let K" denote the

complement of K. The boundary, interior and closure of set K are denoted

by 0K, Ko and, K respectively. The open ball with centre c and radius r is

2

ooo

o

Ooo



1.2. Notation and Defrnitions

denoted by B(c,r). LeI A and B be any two points in ft". We will use AB

to mean either the line AB, or the line segment AB, or the length of the line

segment AB. It will be clear from the context which meaning is intended. In the

case where AB denotes a line segment, rve use the additional notation (A,B) to

denote the line segment ,4.8, excluding the points A anð. B. Similarly, we have

lA, B) : (A, B) ¿ {A}, (A, B) : (A,B) u {B} and [.4, B] : (A, B) u {A, B).

The set 
^K, ^ 

€ ft is defined to be the set {Àx; x e K}. The scalar À is

called the enlargement factor of K. A set K is said to be centrally symmetri,c

or simply symrnetric about a point x if K is its own reflection in the point x.

Algebraically, K is centrally symmetric about x if for each k € K,2x-ke K.

A set K is said to be conaer if for any two points in K , the closed line segment

joining the two points is contained in /1. Let K denote the set of all compact

(closed and bounded) convex sets in ft".

A support hyperplane of K is a hyperplane which intersects K in a point on

0K but does not intersect Ko. In K2, we use the lerm support line.

We now define geometric functionals on the set K". We use V(K): V and

S(¡f) : 
^9 

to denote the n-dimensional uolume of K and the (n - l)-dimensional

surface area of. K respectively. In the case where K e K2, these quantities

are referred to as the area, denoted by A(K) : A, and tbe peri,meúer, denoted

bV p6) : p, respectively. The di,ameter of K, denoted by d(/f) : d, is the

maximal distance between any two points of K. The width of K in a direction

perpendicular to a given direction u, denoted by r'¡(K) is the distance between

the two parallel support hyperplanes of K perpendicular to u. The minitnal width,

w(K): u, referred to simply as width is the minimum of u.'¡(K) over all u. The

inradi,us of. K, r(K) : r, is the radius of a largest sphere contained in K. Such a

sphere is called an insphere and the centre is called an incentre. The circumrad,i,us

of K, R(K) - R, is the radius of the smallest sphere containing K. Such a

3



1.3. The problems of the úhesis

sphere is called the circumsphere and its centre is called the ci,rcumcentre. In ft2,

the insphere and the circumsphere are called the i,ncircle and lhe circumci,rcle

respectively. The circumcircle, when it exists, is unique (Yaglom and Boltyanskii

1961, p.59). The closed sets bounded by the incircle and the circumcircle are

called the i,ndi,sk and the ci,rcumd,islc respectively.

Let u1, ru2¡..., u,, be n linearly independe* rf?,îr..tiì.Y.gthe set of points

{Dl=t z¿u¿)z¿ e Z} is called lhe lattice generated by the vectors ul,n2,...,ün,

denotedbyr\.r,(u1,...ur,) - 
^,r. 

Inthecasewhere {rr,rr,...,ur}isthestandard
basis, Â,, is the integral lattice and is denoted by f",. As all our problems will be

posed in W2, we will write Á, and f instead of .4.2 and f2 respectively. We will

also use the notation .A,¿(u,v) : Ân to denote the rectangular lattice generated

by the vectors ,t : (r,0) and y : (0, u).
l¿- \

SupposethatPistheset{l[,o¿u¿f 0 ( o ( 1]. Thentheset {P+ zl,z e lt,-}

is called a cell of Ârr. The determinant, det(.ll,") of Â,r, is given by det(,ô,r) :

ldet(u1,...,u,,)1. Geometrically, this is the volume of a cell of r\,,r. The lattice

point enumerator, G(Ko,À,r), is defined to be the number of points of Â,, con-

tained in Ko. In the case where G(Ko,Ar,) : 1 and O e Ko, we say that K is

rL,,-admissible (this usage differs from the more conventional'Âr, is K-admissible',

but is more convenient in this thesis where Â,, is fixed and K varies). Finally a

sublatti,ce is a subset of a lattice which is itself a lattice.

Other terms and definitions will be introduced in the text at the point re-

quired. We now describe the problems of the thesis.

1.3 The problems of the thesis

All our problems are posed in the Euclidean plane W2. Unless otherwise stated, we

shall henceforth assume that K e rc2. In this thesis we are primarily concerned

with obtaining new inequalities concerning the geometric functionals A, p, d,,

4



1.3. The problems of the thesis

w, r and R for a set K in K2 having G(Ko,f) : g where g : 0,7,2. The

natural starting point for our research is to investigate problems for a set K
having G(Ko,f) : 0. What geometric inequalities occur for such sets ? Can

these results be extended to sets having G(Ko,l) : t or G(Ko,f) : Z ? We

discover that a number of such problems may be readily solved by reducing the

problem to one concerning a set containing no point of a special rectangular

lattice. Hence in a number of our problems, we consider the problem for a set

K having G(Ko,Ân) :0 and deduce the corresponding results for G(Ko,f) : g

where g :0,I,2.
In Chapter 2, we describe methods and prove results which we will use

throughout the thesis. Thereafter, the thesis consists essentially of two parts.

Part 1 (Chapters 3, 4 and 5) deals with problems concerning single geomet-

ric parameters. The problems of Chapters 3 and 4 resulted from an attempt to

prove a conjecture by Scott (1982) concerning the maximal area of a l-admissible

set having circumcentre O. \Me show that the conjecture is false and we revise

the conjecture. The efforts have led to the first two problems of the thesis. In

Chapter 3, we obtain a result on the maximal area of a rl,-admissible set in K2.

The result gives a classification for Â-admissible sets. In Chapter 4, we consider

f-admissible sets having circumcentre O. Under certain conditions, we find the

maximal circumradius of such sets and we show that the extremal set is a triangle

with an edge containing two lattice points (Awyong and Scott 1995). In Chapter

5, we find the maximal width of a set K with G(Ko,Aa) : 0 and deduce the

corresponding results for G(Ko,l) : g where g:0,1,2.

Part 2 (Chapters 6-12) deals with a larger class of problems concerning rela-

tionships between pairs of the geometric parameters A, p, d, u, r and r?. Clearly

from the six geometric parameters there are 15 (: uCr) possible combinations of

two such geometric parameters.

5



1.3. The problems of the thesis

In Chapters 6, 7, 8 and 9, we solve various problems for a set K with

G(K',^n) : 0 and deduce the corresponding results for G(Ko,l) : g where

g : 0,I,2. In Chapter 6 we obtain inequalities relating u.' and d (Awyong and

Scott 1996a). This problem is motivated by a width-diameter result by Scott

(1979b) for a set K having G(Ko,f) : O. In Chapter 7, we generalize inequalit-

ies by Scott (1980) concerning the pairs (A,w), (p,r) and (.R, t¿) to rectangular

Iattices. In Chapter 8 we find another inequality for the pair (A,r). Here we

discover that the result for the case where G(Ko,l) : t may not be deduced from

the case where G(K',Âa) : 0 and a conjecture is made for this case. In Chapter

9, we first obtain an inequality relating.R, d and t¿r for a set in K2 without lattice

constraints. Using this result and the result from Chapter 5 concerning the max-

imal width of a set K having G(Ko,Àn) : 0, we derive an inequality for the pair

(R,d,) for a set 1l having G(Ko,^.n) :0. As in Chapter 8, we discover that the

methods do not extend to the one lattice point problem and a conjecture is made

concerning the one lattice point case. We also obtain a dual inequality relating

the pair (r,r).
Chapter 10 gives results relating A and r for a set K having G(Ko,f) : 0.

We obtain the corresponding inequalities for the case G(Ko, f) : 1. We combine

these inequalities with known inequalities in elementary geometry to deduce in-

equalities for the pairs (p, r) and (d,r) for a set K with G(K,, f) : 0 (Awyong

and Scott 1996b).

The last two problems contained in Chapters 11 and 12 concern a set K
with G(Ilo, f) : 2 and having a special symmetry condition. In Chapter 11, we

establish inequalities for the pairs (,4, d) and (A, R) and in Chapter 12 we find

a result for the pair (A,p). We also conjecture the corresponding results for the

general class of convex sets containing two interior lattice points.

Finally, in Chapter 13, we summarize the results of the thesis and make some

6



1.3. The problems of the úhesis

remarks on the scope for future research in the area. It will be seen that many

new and interesting problems remain in this area.

7



Chapter 2

Methods and results

2.L Introduction

The theory of convex sets is one of few fields in mathematics that can be developed

without the use of 'higher mathematics'. Many of the results are guided by

geometric intuition and their proofs are elementary and elegant. In this chapter

we describe methods and state results which we will use to prove the inequalities

in this thesis. The approach we have taken in the thesis is mainly geometric and

for this reason, many diagrams have been included. The numerical calculations

in this thesis are carried out using Maple V, Release 2 (Copyright (C) 1981-1993

by the University of Waterloo). Graphs are plotted with Gnuplot Unix Version

3.5 (Copyright (C) 1986-1993 by Thomas Williams and Colin Kelley).

A useful technique in solving geometrical problems is to simplify the problem

by applying an appropriate transformation. In $2.2 and $2.3, we describe two

transformations which are of importance in the theory of convex sets as these

transformations preserve the property of convexity. In $2.4, we state and prove

a result called the T[iangle Rotation Lemma which we will use in Chapters 5, 6

and 7. In $2.5, we describe sublattices and their role in solving problems where

G(Ko,f) : t or G(Ko,f) : z. Finally in $2.6, we state Blaschke's Selection The-

orem, an important theorem concerning the existence of solutions to geometric

extremal problems.
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2.2. Affine transformation

2.2 Affine transformation

An ffine transformat'ionis a linear transformation followed by a translation. We

may therefore represent an affine transformation ? on ft2 as follows:

?(x) -Mx*b,

where M is a 2x2 matrix and b is atranslation vector. We say that ? is non-

singular if det(M) I 0. We now state without proof some useful properties of

affine transformations.

Theorem 2.L Let K e K2 and let ?(x) : Mx * b be a non-si,ngular ffine
transformation on K2. Then

(a) T(K) e K2

(b) 1/ K i,s symmetric about x, then T(K) is symmetric about T(x)

(c) A(r(K)): A(K).ldet(M).1 I

Suppose now that ? is the non-singular affine transformation ?(x) : Mx where

M : (u v). Then ? transforms the integral lattice f to the lattice Â(u,v). By

Theorem 2.1(a) and (b), 7 transforms a set K e K2 which is symmetric about O

to a set K* e K2 which is symmetric about O. Moreover, it is easy to see that if

G(Ko,l) : 0, then G(Ko, Â) : 0. Since det(f) : 1, Theorem 2.1(c) gives

A(K-) 
- A( K\ : A(x)

dtt(Â¡ - r1\r\i - det''

We say that the quantity A/ det(À) is ffine-i,nuari,ant. Thus if a quantity is

known to be affine-invariant, an appropriate affine transformation may be used

to simplify the problem. In particular, we have the following generalization of

Minkowski's Theorem for 2-dimensional lattices:

Theorem 2.2 (Generalized Minkowski) Let K be a It -admi,ssible set i,n K2

whi,ch i,s sgmmetríc about the ori,gi,n O. Then A <  det(Â).

I



2.3. Steiner symmetrization 10

An afÊne transformation which preserves distances between points of a set

is called an 'i,sometry (also called a rigid motion, namely reflection, rotation,

translation or glide reflection). If K¿ is obtained from K by an isometry, we say

that K¿ is congruent to K. We write K¿ = K.

2.3 Steiner symmetrization

One of the difficulties that is encountered in working with convex sets is that

convex sets are rather general figures having few special properties. Hence in our

research, any method of transforming a set into another one having more special

properties is very useful. Stei,ner symmetrizøti,on is one such method. In Steiner

symmetrization, a convex set is transformed into a set with an axis of symmetry

in the following way:

Let K eK2 andlet i beagivenlineintheplane. LeI P beapointon I andlet

/(P) be the line through P perpendicular to l. Since K is convex, l(P) intersects

K in a closed line segment, or in a point in 0K or in Ø. Let /'(P) be the image

of /(P) ñ K obtained in the following way: If ¿(P) îtK is a closed line segment

lX,Yl, then l'(P) is the closed line segment obtained by translating lX,Yl along

the line XY until P is the midpoint of l'(P). If ¿(P) ñ K is a point X in 0K,

then /'(P) is the point P. If ¿(P) n K : Ø, then /'(P) : Ø. The symmetrized set,

1l¿, called the Steiner symmetral with respect to l, is now defined to be

K, : U t'(p).
Pel

We now state some useful properties of Steiner symmetrization.

Theorem 2.3 Let K e K2 and, let K¡ be the Stei,ner symmetral with respect to

I. Then

(a) K¿ e K2

(b) ,4(K,) : A(K)
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(") p(K,) 3 p@)

(d) d(K,) < d(K)

(e) 'u,'(If) may increase, decrease or be unchanged,

(r) 
"(¡r¿) 

> r(K)

(s) n(K¿) s R(K).

Proof. For a prooror (a), (b), (.), (d) 
T,o 

(?:.y:t|:11..:?:.::t9 (Eggreston

1958, p.90). We now prove (f) and (g). We first show that if X ç Y, then

Xt Ç Y. Lef PQ be any chord of X perpendicular to l. Since X ç Y, the line

PQ intersects Y in a chord .4.B with PQ < AB. Now Steiner symmetrization

maps chord PQ to a chord P'Q' on the line PQ, with the midpoint of chord P'Q'

on /. Similarly, the chord AB is mapped to the chord A'B' on the line PQ, with

the midpoint of chord A'B' on L Since PQ S AB, the chord P'Q' is a subset of

the chord A'B' . Hence Xt Ç Yt (Figure 2.1).

A B Al

Figure 2.1: The effect of Steiner symmetrization on r(K) and ,R(K)

Now let 1 and C be the indisk and the circumdisk respectively of K. Since

I çK çC,it followsthat/¿ ÇKÇCr Hence r(K¿)2r(Iù andÊ(K¿) <

R(C¿). But /¿ ry -I and Q = C. Hence ,(Kt) > r(K) and R(Ir¿) < R(K). ¡

/B/
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2.4 The Tliangle Rotation Lemma

In this section we state and prove an important result which we will use in

Chapters 5, 6 and 7. We say that a set circumscribes a rectangle if all the vertices

of the rectangle lie on the boundary of the set. We recall that Á.¡(u,v) : Âa

denotes the rectangular lattice generated by the vectors r : (r,0) and ¡¡ : (0, u).

We shall denote lines with lower case letters: thus ø is a line containing the lattice

point x of..A,¿. Let d,(P,r) denote the perpendicular distance from the point P

to the line ø.

Lemma 2.4 (Tbiangle Rotation Lemma) LetC : ABCD,Iabelled anti,cloclc-

wi,se, be a closed, cell of Lp and let X be a lattice point on the rag from A through

B. Let T be a closed, tri,angular region (possi,bly an i,nf,nite triangular regi,on)

defi,ned bg lines c, d and x, and, hauing C, D and X interi,or to the edges of T,

with A and B not i,n To. Then either T circumscribes C or there is a triangle

T* = ^7, 
) ) 1, with T* circumscribing C.

Proof. By a suitable rotation of the plane vre may position the points A, B, C

and D as shown in Figure 2.2 with AB : z and BC : u. Let T : LPQ.R where

d.x: P, n.c: Q and c.d: R. We may suppose that ? does not circumscribe

C. Let f/r denote the closed half plane bounded by the line AD and containing

C. Here we distinguish the following two cases:

Case 1 : P e ffi (Figure2.2). We first suppose that u ( u. If d(P,c) < u,

then by an isometry, T may be transformed to a triangle Tr : AP1Q1.R1 so

that Pr lies in C and QtRt lies on the line AB. Since Pr lies in C,, Tl may be

enlarged to a triangle 7i inscribing C. Hence T* = ^7, 
) > 1. If, on the other

hand d(P,c) > u, \Me inscribe a rectangle.RT in ? having an edge of length u

and another edge of length less than u as follows: Let c' be a line parallel to c,

distant u from c and intersecting edges P.R and PQ in the points M' and N'
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respectively. Let M and l/ be the feet of the perpendiculars from M' and ly''

respectively to the line c and let Rr be the rectangle with vertices M', N,, N and

M.By construction MM':.ðy'.|ú':,u. We now show that MN: M,N,<u.
R

tc

c/ c

A Y Xt a

Figure 2.2: The case where P e H1

Let c' intersect the edges AD and AB in the points Z and Y respectively.

Clearly M'Nt < ZY. Letting A be the origin, we may take the coordinates of. C,

Z and Y to be (u,o), (0,a) and (y,0) respectively. Hence

B

Hr

Area of LCZY :lu.ZY :I22
uuI
0 z 1

a01
that is,

Zy:!6"+a@-z)).
?.¡ '

Now since 0 < z < u and 0 <y < ø, we have

11
ZY < ;(u, + u(u - z)) : j(uu) : u.

Hence MN : M'N' < ZY < u. We now rotate -R7 so that lM,l/] lies on

lA,Bl.The same rotation transforms T toT1, say. Clearly G(Tf ,Âa):0 and

since M'N' 1 u, at least one of C and D lies in the exterior of T1. Hence ?r may

be enlarged to a triangle ?i inscribing the cell C. As before T* 4 
^T,l 

> 1.

\Me now suppose that u > o. If d(P,c) ( u, then by an isometry ? may be

transformed to a triangle Tt : LPIQ1.R1 so that Pr lies in C and QtRt lies on



the line BC. As before, ?r may be enlarged to a triangle 7i inscribing C and we

have 7i = ÀT, 
^ 

> 1. If now d,(P,c) > u, we inscribe a rectangle R7 in ? as

described above, this time with the roles of u and u interchanged. In this case we

need to show that M N : Mt N' < o. As before, taking the coordinates of. C, z
and Y to be (u,r), (0, z) and (g,0) respectively, we have

Area of LC Zy : |".2V 
: !,

that is,

Zy:lpz+y(u-z)).
u

Since 0 < z < u and 0 < y ( u, we h

11
zY < ;(uz + u(a - z)) : 

|(ua) 
: o.

Therefore a rectangle R7 with an edge of length u and another edge of length

less than u may be inscribed in 7. Applying the rotation argument as before, we

can find a triangle T* = ^7, 
) > 1, with 7i circumscribing C.

Case 2: P 4 Hr (Figures 2.3 and 2.4). Suppose first that tP < ä (Fie-

ure 2.3). Let F be the foot of the perpendicular from C to the edge PQ and let

2.4. The l\iangle Rotation Lemma T4

R

OD

P

F
x oA B

H1

Figure 2.3: The case where P I H, and lP 1L,

uu1
0 z 1

a 01

H
C o

a

f/ be the point on P.R such that CH is parallel to PQ. Suppose that IBCF : 0
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Then CF < BCcosî < BC. Since lP < fr, it follows that \CHD > f and

hence CH < CD: z. Hence by rotating ? anticlockwise through an angle of á

about C, we obtain a triangle Tt : LPrQrRr È 7, with PlQy parallel to the line

AB. We now enlarge ?r to ?i where fi circumscribes C. In this case T.= 
^T

where ) > 1.

If now /P > T, *u relabel the vertices of ? and C, interchanging Q with .R and

B with D (Figure 2.4). We define F and ff as above and we let line CD intersect

o

O o

X
R

c
F

B

D
H

P

Aa

H

Figure 2.4: The case where P / Ht and lP > [

PRin the point D'. As before, we observe thatCF < BC. Furthermore, since

lP > f, it follows that ICHD'> i. Hence CH < CD'. \Me now repeat the

rotation argument above to obtain a triangle Tt : LPtQtRt ry 7 (the vertices

of fi are now labelled clockwise) with PlQy parallel to AB. We then enlar ge Tt

to a triangle T2 : LPzQzRz where edge P2Q2 contains B, edge QzRz contains

C and edge P2R2 contains D. Hence Tz? aT, where o > 1. Clearly, Pz € Ht

and by using the Case 1 argument, we obtain a triangle ?l circumscribing C with

T*= pT2, p > I. Hence T*= 
^7, 

À > 1. ¡
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2.6 Sublattices

By using appropriate sublattices, a number of our problems concerning one or

two lattice points may be solved readily. Let
eè l^ 

(*' ø"'ç" c'" t-9"' tw"cQ t** )

f' : {(ø, A) : rty=l(mod 2)}, $ o

and let

f" : {(ø, A) : r : Tù¡U :2m 17,ffi,n e Z}

r

f

Figure 2.5: The lattice f'

?

?

?

o

Figure 2.6: The lattice f"

r

-------?-------? +?f

Suppose that K is a set with G(Ko,l) : 1. Without losing generality, we

may assume that O €. Ko. Then clearly G(Ko,f') : 0. Hence by considering the

set If in the lattice l', the one lattice point problem in f is reduced to a problem

concerning a set having no lattice point with respect to f'.

o
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Suppose now that K is a set with G(Ko,f) : Z. Without losing generality,

\üe may assume that the origin O is one of the lattice points. Let L denote the

other lattice point contained in Ko and let the coordinates of L be (21, z2), wherc

without loss of generality, 4) 0,22) 0. Byareflection about a:r if necessary

it suffices to consider those cases for which 21) 22. Since Ko contains no other

Iattice points, (O, L) contains no lattice points. Hence we may assume that either

zt : 1 and z2: 0 or else z1 and z2 are relatively prime. We therefore have the

following two cases:

(i) If. z1 and z2 are both odd, we consider the sublattice f' and note that

O øl', L øl' and G(K', f') : 0.

(ii) If z1 is odd and z2 is even, we consider the sublattice f". Clearly O 41",
L ø l" and G(Ko, f") : 0. In the case where z1 is even and z2 is odd, we

consider the lattice f.t't - {(r,U) : r :2nt,I I,U : n,rn)n e Z}. Here, we have

G(Ko,f"') : 0. By an appropriate transformation, this is equivalent to the case

where z1 is odd and z2 is even.

As we will be using the results of this section frequently we use the notation

,S.Ll and SL2 to refer to the sublattice arguments given above for the cases

G(K',f) : t and G(Ko, f) : 2 respectively.

2.6 Blaschke's Selection Theorem

We now turn our attention to an important theorem concerning the existence of

a solution to geometric extremal problems. The techniques used in this thesis

are a combination of both constructive and non-constructive methods. In the

latter case, a certain set is proved to be an extremal set by showing that any

other set can be 'improved'. Such non-constructive methods are valid only if
it is known that the extremal set exists. It is therefore essential to settle the

question of existence before proceeding to use non-constructive methods. This
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is done by using Blaschke's Selection Theorem. In order to understand how the

theorem answers the existence question, we first recall the following theorem from

elementary topology.

Theorem 2.5 Let f be a continuous real-ualued function on a cornpact subset S

of a metric space X. Then f attains its mari,mum and mi,nimum on the set S.

In order to use Theorem 2.5 to establish the existence of an extremal set,

we first need to make K2 a metric space. We do this by defining the following

distance function, D (also called the Hausdorff metric) on K:

D(X,Y) :inf{ô 2 X çY¡,Y Ç X¿}.

where A¡ : l)oe.rB(a,õ). Now let S ç lC2 and let / be a continuous real-valued

function on ^9. Then by Theorem 2.5, extremal sets are attained in 
^9 

if 
^9 can

be shown to be compact (a set ,S is compact if every infinite sequence in S has

a subsequence which converges to a point in S). Blaschke's Selection Theorem

gives a criterion for compactness in the metric space K2.

Theorem 2.6 (Blaschke's Selection Theorem) Let {K¡} be an i,nfi,ni,te se-

quence of sets i,n K2 lyi,ng in ø di,sk i,n ft2. Then there i,s a subsequence which

conaerges to a set in K2.

Hence if the members of ,S may be shown to be contained in a disk in ft2, then

by Blaschke's Selection Theorem, every infinite sequence in ,S has a subsequence

which converges to a point in K2. If, in addition, it can be shown that the limit

set is in fact in ,S, then 
^9 

is a compact subset in K2 and by Theorem 2.5, there

are sets ,S¡¿ and ,9- in ,S such that for all K e S,

f6à<f6)r/(s¡¿).

We call S^ a mi,ni,mal set and ,S¡y a marimal set



Chapter 3

A classification for planar convex sets containing
one lattice point

3.1 Introduction

Let K be a Â,,-admissible set in K" with volume V(K) : V (in K2, the volume

is referred to as the area, denoted by A(K) - A). Minkowski's Convex Body

Theorem as stated in Theorem 1.1 gives a result for the maximal area of a l-
admissible set in K2 which is symmetric about O. A large number of results

concerning the ma>rimal volume of asymmetric sets in K containing no non-zero

lattice points appear in the literature. We mention some of these in $3.5. In

particular, Ehrhart (1964) conjectures the following result:

Conjecture 3.1 (Ehrhart) Let K be a ltn-admi,ssi,ble set i,n K and let O be

the centre of grauity oÍ K. Then

,=rydet(.,\,).

Equality holds when and only when K is a simpler.

Ehrhart (1955a, 1955b) proves the above result for the cases where n:2
and for the class of solids of revolution for n :3 respectively. In the case where

n:2,, equality is attained when and only when K is the triangle having vertices

(-2,-I), (1, -1) and (1,2) (Figure 3.1). We call this triangle Ehrhart's triangle

and denote it by E.

19
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(1,2)

(-2,-t)

Figure 3.1: Ehrhart's triangle, -E

In this chapter, we establish an easy test to determine the maximal area of

various classes of sets in K2 containing one interior lattice point. This test both

extends and generalizes Minkowski's theorem. It also brings into clearer focus

the role of Ehrhart's triangle. The test results in a classification of such sets into

three basic types:

Type I: Sets for which A <  det(A). An example for A : I is the square 
^9

having vertices (+1, +1).

Type II: Sets for which A < 4+det(,4.). An example for r\, : f is Ehrhart's

triangle .8.

Type III: Sets for which A is unbounded. An example for Â : I is the set

bounded by y : -1, and the two near-collinear rays with common endpoint

(0,e) (where e is small and positive), and passing through (1,0) and (-1,0)

respectively.

Let Á, be generated by two vectors u and v, and let P be the parallelogram

having vertices (*u, *v). Our test will involve the intercepts which set K makes

with the edges of P. Since the ratio A/ det(Â) is invariant under affine trans-

formation (see $2.2), it will be sufficient for us to state and prove our result for

the case where 11, : f and P is the square 
^9.
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So as above, let 
^9 be the closed square with vertices (+1, +1). We label the

eight lattice points (1,1), (0,1), (-1, 1), (-1,0), (-1, -1), (0, -1), (1, -1), (1,0) on

S,Lt,Lz,...,.Lsr€sp€ctively. In$3.S,thelatticepoint(-2,-1) isofspecialin-

terest; we denote the point by Lo. The half edges, LtLz, LzLz, . . . , LsL1, of S

are labelled h1, h2, ... ,ha respectively. We shall say that one set of half edges

is equiualenú to another set of half edges if the second can be obtained from the

first under an isometry.

If K lies in 
^9, 

then A < 4 and K will be a set of rype I. we may therefore

suppose that K extends beyond âS. We say that K crosses an half edge ä¿ of S

if h¿ contains a point in Ko. Since by convexify K cannot cross two half edges

comprising an edge of. S, K may cross at most four of the eight half edges of ,S.

For a given set K, we call the set of half edges of S which are crossed by K the

intercept set of. K. We shall establish the following result.

Theorem 3.2 Let K be a set in K'. If the i,ntercept set of K is Ø or equiualent

to {h1,hz,,hs,h7}, then A < 4. If the intercept set is equi,ualent to {fu,ha.hz},

{hr,hn,hs,hz}, {hr,hn,hs,he} or {h1,hE,ha,h7}, then A < 4+. Otherwise A is

unbounded.

We have included some helpful diagrams in Appendix A. These diagrams will

be referred to in the subsequent sections.

3.2 The unbounded cases

Let l¿(0¿) be a line containing the lattice point L¿ aîd making a directed angle of

0n, -T 10¿ 1f , with the positive ¿-axis.

In the one-intercept case, \¡¡e may take the intercept set to be {h1}, as all in-

tercept sets {å¿} are equivalent. We construct a convex polygonal set K bounded

by the lines ø:L,A - -1 and the line12(02) with d2 :i- e, where e is small

and positive. Clearly, K is l-admissible and .4 -+ oo as 6 -> 0.
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If K crosses exactly two half edges of ,S, using rotation about the origin and

reflection in a line through the origin, it suffices to consider the cases where the

intercept set of K is one of

(a) {h1, ä3} (b) {/¿1, h4} (c) {/r,1, h5} (d) {h1, h6} (e) {h1, hs}.

In case (a), we construct a convex polygonal set K bounded by the lines ø: 1,

I"(02) with 0z: e and t¿,(0+) with 9a - -e (where e is small and positive). Again,

K is f-admissible and A -+ oo as s -+ 0. In a similar way, sets with arbitrarily

large areas may be constructed for the remaining two-intercept cases (Appendix

A, Figure 4.1).

If K crosses exactly three half edges, using rotation about the origin and

reflection in a line through the origin, it suffices to consider the cases where the

intercept set of K is one of

(") {/,t, fu,hsÌr (b) {lrt, hz,ha]¡ (.) {är, ht,hz} (d) {hr, h+,ha}.

In case (a), we construct the convex set K bounded by lines lr(0ù, t2(02) and

ln(În), with d1 : T]-e,0z: L¿-a and 0+: -T*e, (where e and e, are arbitrarily

small and positive). This set K is f-admissible and A + oo as e -) 0 and a, -+ 0.

In a similar way, sets with arbitrarily large areas for cases (b) and (d) may be

constructed (Appendix A, Figure 4.2). In $3.3, we deal with the outstanding

{hr,hn,h7} case above. In $3.4, we consider the cases where K intercepts four

half edges.

3.3 The {hr,h+,h7} case

Let .I denote the lattice point index set {0, L,2,. .. ,8}. Since K is f-admissible,

L¿ / Ko foli e .L Therefore, since K is convex, for a suitable choice of. g¡ for

each i, l¿(9¿) does not intersect Ko. Let r¿ denote the closed half plane containing

I( and having boundary I¿(0¿). We will show that for each K having intercept set

{hr,hn,hz}, a set K* may be constructed with the following properties:



3.3. The {fu,ha,h7} case 23

(a)KcK*
(b) /f. is f-admissible

(") K. has the same intercept set as K
(d) /f.:Ãjrrr¡,JÇ1.
We first observe that since K is convex and crosses the half edges ä1 and

hz, K Ç zs with 0e e (-i,-ä). w. shall take zrs with the associated range of

values for 0s as a defining half plane for K*. Further defining half planes zr¿ with

corresponding ranges for 0¡ will be selected in the same way. We now carefully

enumerate the possibilities for K* by considering the difierent ways in which Ko

intersects the line A : r * l. Since K is l-admissible and K has intercept set

{hr,hn,hz}, Ko intersects the line A: r * 1 in one of the following four ways

(Appendix A, Figure 4.3):

f . in Ø or between the points (7,2) and L2. Therefore K Ç rz with 0z e

lf,,arctan2). This gives rise to two subcases. The set Ko intersects g - -1
in one of the following ways:

(i) in Ø or between the points Ls and Ls. In this case K Ç zrs with

á5 e [0, arctan ]). Here we set K* : r2f)z.5(1z,s.

(ii) between the points L7 and (2, -1). In this case, K Ç 17 with 07 €

(- arctan |, 0). Here we set K* : 12 f\ 17 À 16;

2. between the points L2 and.La. Therefore K Ç r2À7r4 with 92 € (0, f) and

0+ e (i, f). The subcases here are as for (1) above. This gives rise to two

possibilities for K*, namely

(i) "rt14ñrsrrrs with 95 € [0, arctan ]), or

(ä) 12l 14tlz.7 tl rs with 07 € (- arctar å, O);
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3. between the points Laand.Ls. In this case K Ç¡rs, ï/ith d4 e (arctan|,f).

Here we have three subcases. The set Ko intersects 3y - -1 in one of the

following ways:

(i) in Ø or between the points (-3, -l) and .Ls; in this case -[l Ç rs with

ds e [0, arctan å). W. set K* : ,rq Í) Ts (i r,s.

(ii) between the points.L¡ and.L5; in this case K Ç ¡ro tìzrs with 05 e

(0,arctan|) and 0o e (i,ÐU(-i,0). We set K* :.rr4ñr'sÀrsnrs.

(iii) between the points L7 and (2, -f); in this case K Ç n7 with 07 €

(- arctan |, O) . We set K* : 7t4 f) 7r7 I rs;

4. between the points ,Ls and (-3, -2). Here K Ç ne with ás e (arcta"?,i).

In this case, Ko intersects U : -I between the points .Ls and .L5. Hence

K Ç rs with ds e (0, arctan ]). We set K* : 7r5 fì r,st)rs.

It may be easily verified in each case that K* satisfies properties (a), (b), (.)

and (d) listed earlier. Since K c K*, A(K) < A(K.).It is therefore sufficient to

prove Theorem 3.2 for K*. Henceforth we shall assume that K : K".

In each of these cases, K extends beyond Ehrhart's triangle .Ð in a set

K\(K n E). we consider the decomposition of K\(rf n E) into a finite num-

ber of triangles'cut off'from K by the lines gr - -1, x: ! and y : rlI
bounding E. Let A denote the set of such triangles. Since the intercept set of

K îs {h1,h+,hz}, each member of A lies in one of the closed triangular regions

Jt, J2,..., Ja shown in Figure 3.2. We denote by A¿ the member of A lying in

J¡. We will associate with each A¿ € A a triangte 4 C E\(I( n .E) having

A(A¿) S Ag) and T¿nTj - Ø if i +j. This will show that A(/f) < A(E). The

triangles T¿ and A¿ will have a common vertex, and vertically opposite angles at

that vertex. Thus given the vertex, the lines on which two edges of 4 lie will be

automatically determined and 4 will be completely specified by its third edge.
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(1,3)

(-s,-2)

G5,-3)

Figure 3.2: The regions Jt,Jz,...,Js for the {hr,h+,/r.7} case

For each A¿ € A, we choose the common vertex of A¿ and fr and the line

on which the third edge of I lies as given in Table 3.1 (see also Appendix A,

Figure 4.3).

v

x

T[iangles Common vertex Third edge of fr lies on
AtrTt L2 r: -l
Lz,Tz
Aa,7s
Lq,T¿
As, ?s
Ao, ?o

Lz,Tz
Aa, ?8

Lz
La
Ls
Ls
L5
L7
Le

f:I
A:I
r:t
U:T
X:t
u---l
A:I.

Table 3.1: T[iangles A¿ and fr for the {hr,hn,ä7} case

Hence, if for example, K : rzt)rsf¡rs with 0z e li,arctan 2),0s e [0, arctan ])
and ds € (-i,-f), then Il intercepts,Ir, ,16 and "Is and A: {A¿,,i:1,6,8}.
The triangles fr, i : 1,6,8 are chosen as in Table 3.1. It may be easily checked

here that for each i, A(Tà) > A(Au) andT¿tlT¡ : Ø if i + j. We repeat the

J, t
o

JE
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process for each of the remaining cases for K listed above, again finding that for

each (relevant) z, Á(An) S A@) and T¿ñT¡ : Ø tt,;, ¡j. Since at least one of

the triangle area inequalities is strict, it follows that A(K) < A(E): 4å for all

K having intercept set {h1, h¿,hz}.

We now show that A(E) : 4å is in fact the least upper bound for A(K).

Consider the infinite sequence of triangles {Kr} where K,: 12flrsfìzrs with

0z : T, 0s :0 and 9s = - arctan 2". Then as r -) æ, K, + E. Since A(Kr) is a

continuous function of r, A(K,) -+ A(E) - 4+. Hence the least upper bound for

A(K) is al.

3.4 The four-intercept case

If K crosses exactly four halfedges, using rotation about the origin and reflection

in a line through the origin, it suffices to consider the cases where the intercept

set of K is one of

(u) {1,t, h3,h5,h7} (b) {ät, ha,hs,h7} (.) {är, ha,h6,h7l¡

(d) {/rt, ha,h5,hs}.

We will employ a similar method to that given in $3.3 to prove the results for

the four-intercept case. We will also use the notation employed in $8.3.

Suppose first that K has intercept set {ä1, hz,hs,h7l,. rnthis case, we observe

that .Il Ç rztr14l)16ll zrs with 02,06 € (0, i), 0a,0s € (-i,-Ð. Hence we set

K* : 7t2f)r4ñ 116 l-ì z-s. Now replacing K by K* and recalling that .9 is the square

bounded by the lines ø : tl and y - t1, we observe that K extends beyond ,g

in a set lf\(lf n ,S). We will show that A(S) : 4 is the least upper bound for

A(K).

we consider the decomposition of ¡f\(K n ,S) into four triangles 'cut off'

from K by the lines bounding ^9. We observe that each member of A lies in

one of the closed triangular regions Jt, Jz, Js, J+ shown in Figure 8.3. Hence
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A : {Ar, Az, Ae, Aa}. \Me now choose the common vertex of A¿ and, T¿ and the

line on which the third edge of fr lies as given in Tabte 3.2.

(-2,r)

(2,-r)

(-r,-2)

Figure 3.3: The regions Jt, Jz, . . . Ja for the {ä1, hs, hs,ä7} case

Common vertex Third of fr lies on
f:-l
U: -L
r:7
a:I

Table 3.2: tiangles A¿ andT¿ for the {hr,hr,hs,h7} case

It is a simple matter to show that for each z', A(l^n) < A(7,) and fr nTj : Ø

for i,I j. Hence A(K) < A(S) : 4 for all K having intercept set {ä1, hs,hs,h7}.

We now show that A(,S) : 4 is in fact the least upper bound for ,4(K). We

consider the infinite sequence of squares {K"} *t..ê K, : 12À,r4ñ z16 lì zrs with

0z : 0a: arctan2-' and 0¿ : 0e: -arctan2'. As r + æ, K, + ^g and

A(K,) -+ ,a(S) : 4. Hence the least upper bound for ,4(K) is 4.

Now suppose that K has intercept set {å,1, ha,hs,h7l. Here we note that

K Ç rs ñz16 f^tr6 with 0s e (-i,0), do € (0,i) and ds e (-î,-î).We next

observe that Ko may intersect the line g : r 11 in one of the following ways

(Appendix A, Figure 4.4):

v

x

L2
La
L6
L6

Tt
T2

T3

Ta

1

A2
A3
Aa
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f . in Ø or between the points (7,2) and L2. Hence -K Ç rz with 02 €

[f,, arctan 2). We set K* : 'r2 I 15 ) T6 ñ r.s;

2. between the points L2 and La. Hence K Ç rz t^t na with 02 e (0,f) and

0¿ e (i, ä). W. set K* :,r2À1411ltstr.6trs;

3. between the points Laand.L6. Hence K Çr+ with á4 € (arctanå,ä). w.
set K* : ir+ Í1rs f) T6 À Ts

\Me show that an upper bound for A(K) is ,a(E) : 4l and that this is in fact

the least upper bound. We consider the decomposition of I{\(If nE) into a finite

number of triangles 'cut off' from K by the lines bounding .8. Taking note of the

intercept set of K, we observe that each member of A lies in one of the closed

triangular regions Jt, Jz, Js, J$..I5 shown in Figure 3.4. We now construct the set

A for each of the edge sets above. For each A¿ € A, we choose the common

vertex of A¿ and T¿ and the line on which the third edge of fr ties as given in

Table 3.3 (see also Appendix A, Figure 4.4).

v
,3)

G3,-l)

.Ì

(2,-r)

(-t,-2)

Figure 3.4: The regions Jt, Jz, . . . , Js for the {hr, hn, hs, h7} case

It may be easily checked that for each a¿ € a, A(a n) < A(7,) (with strict

inequality for at least one z), and T¿aT¡ : Ø for i, + j. Hence A(K) < A(E) : +;

for all K having intercept set {h1, h4,h5,hr}.
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Tbiangles Common vertex Third edge of fr lies on

Lz,Tz L2 r:I
Ae,lr Lt U:I
A¿,Tt L6 r :7
As,?s Ls U:L

Table 3.3: Tbiangles A¿ andT¿ for the {hr,hn,hs,h7} case

To show that 4f, is the least upper bound for A(K),, we consider the infinite

sequence {K"} where Kr:,rTzîl151116ñzrs with 02: T4,0s: -arctan}-r,
0ø: arctan2-" and 0a: - arctan2". As r -> oo, K, è E and A(Kr) -+ A(E).

Hence A(E): 4å is the least upper bound for A(K).

If K has intercept set {å,1,h$ha,h7},we have K Ç zrofl 7T7Ors with 06 e

(-ä,0), 07 e (0,f) and 0e e (-i,-ä). ¡loting that Ko intercepts y: u * 1as

in the {lrt,ho,hs,hz} case, trye have the following possibilities for K*, namely

7. 12 ñ r.61l7t7lì n's with 0z e li,arctan 2),

2. 12ñ7r4n16t)rT lrzis with 02 €. (0, f) and 0n e (i,i),

3. ra.lTt6l)'r7 f^ìzrs with 0a €. (arcta"l,i)

We observe that the figure in this case is the same as Figure 3.4 with 
"Ia

reflected in the y-axis. The choice of common vertices for A¿ and T¿ and the line

on which the third edge of 4 lies is therefore the same as for the {h1, ha,hs,h7}

case for i :1,2,3,5. For Aa andTa, the common vertex is .L6 and the third edge

of ?a is chosen to lie on iD : -1. It may then be argued in the same way as for

the {ä1, lt+,hs,h,7} case that A(E):4Tis an upper bound for A(K).

To show that A(E) :41is the least upper bound for A(K), we consider the

infinite sequence {K"} where K, : r2l1r6ln7 flzrs with 02: L4,0a : - arctan2-r,
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0z : arctan 2-r and 0a: - arctan 2'. As r -+ oo, K, ) E. Therefore A(E) : +l
is the least upper bound for A(K).

Finally in the {hr,hn,hu,ha} case, we note that K Ç rtñn5 with il e (-î,0)
and d5 € (-i,0). We first observe that Ko intercepts the line U : r+! as in cases

(b) and (c) above. Hence we have the following cases (Appendix A, Figure A.b):

I. K ç zr2 with 0z € li,arctan2). This gives rise to three subcases. The set

Ko may intersect the line U : fr - I in one of the following three v¡ays:

(i) in Ø or between the points (-L,-2) and .L6. In this case .Il Ç z-6 with

0a e li,arctan 2). We set K* : 7rr ñ 12fi15ttr6;

(ii) between the points .L6 and Zs. In this case K Ç 16ì16 with do e (0, i)
and 0s e (i, ä). W. set K* : zr1 O 7T2f)7r5 ñ n6 tl zr's;

(iii) between the points .Ls and (2,1). In this case K Ç z-s with ás €

(arctan L,Ð. We set K* : r1(\ 12 ñ zr'5 tì z's.

2. K ç T2t)lta with dz € (0, i) and 0a e (i,Ð. The same subcases as in (1)

above arise, giving the following possibilities for K*.

(i) rt À12ñ7t4Àrs fì z16 with 0a €li,arctan2);

(ii) zr1 f\12ñraî.Tts Íì z16 f-ìz-s with á6 e (0, ä) an¿ 0z e (i,i);

(iii) zr1 -r12î)'ralTts fì zrs with ás € (arcta"r,i).

3. K Ç n¿ with 0a € (arctal,i).The same subcases as (1) arise, giving the

following three possibilities for K*.

(i) rt O ra ñ rs À Tt6 with A6 € [fr, arctan 2);

(ii) zr1 traì,rsÀ:r.6 t^ìzrs with 06 e (0, f) and 0a e (i,i);

(iii) z1 n14t)rslrs with ds e (arctan |, f).
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Noting that the lattice points Lt, Lz, La, Ls, La, La and the half edges å1,

h+, hs, hs are symmetrically placed about the origin, we observe that case 3(iii)

may be incorporated into case 1(i); case 1(iii) may be incorporated into case 3(i)

and cases l(ii), 2(iii) and 3(ii) may be incorporated into case 2(i). Therefore we

need only consider the remaining four cases for K*, namely cases 1(i), 2(i), 2(ii)

and 3(i).

We now consider the decomposition of /f\(/f n E) into a finite number of

triangles cut off from K by the lines bounding .8. Given the intercept set of K
in this case, \rye note that each member of A lies in one of the closed triangular

regions Jt, Jz,. . ., Js shown in Figure 3.5. We choose the common vertex of A¿

and I and the line on which the third edge of fr lies as given in Table 3.4 (see

also Appendix A, Figure 4.5).

(1,3)

x

G3,-l)

Figure 3.5: The regions Jt, Jz,. .., Js for the {hr,h+,/r.5, å,s} case

It may be easily checked that by constructing the set A for each of the edge

sets for K listed above, Á(Au) < Ag) for each z (with strict inequality for at

least one z), and TiaTj: Ø for i,+ j.Hence A(K) < A(E):4Tfor all K having

intercept set {h1, ha,hs,hs}.

v
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At,Tt
Az,Tz
Lz,Te
A+,Td
As, ?s

Common vertex Third edge of fr lies on
r:-t
U: -I
U:l
r:7
U:T*I

32

La
La
La

L1

Table 3.4: T[iangles A¿ and fr for the {hr,hn,/r,5, å,s} case

To show that A(^Ð) :4å is the least upper bound for A(K), we consider an

infinite sequence {Ilr} wherê K, : T1 f) 7r2 ñ zr5 ll 7'61\ Ts with á1 : - arct¿n2r ,

0z: I,0s: -arctan2-'r 0a: arctan2-' and 0e: arctan2r. As r -) oo,

K, ) E and A(K,) -+ A(E) - 4+. Hence A(E): 4å is the least upper bound

for A(K).

This completes the proof, and Theorem 3.2 is established.

3.5 Related results and conjectures

Many interesting problems concerning the maximal volume of a set K in K" arise

when conditions are imposed on the set K to keep the volume bounded. We have

already mentioned the results of Minkowski (1911) and Ehrhart (1g55a, 1gb5b) as

examples. We state here other significant results concerning the maximal volume

of a Â,r-admissible set. The results given here are by no means exhaustive and we

refer the reader to the surveys by Erdös, Gruber and Hammer (1989), Gritzmann

and Wills (1993), Hammer (L977) and Scott (1988) for a more complete coverage.

sawyer (1954) defines a functional À(.rf) for a Â.,,-admissible set K in K" as

follows: Let POP' be an arbitrary chord of K. Then )(K) : stap PO lOP,. It is

clear that )(¡f) ) 1 and that equality holds when and only when .K is symmetric

about O. This functional is in fact an example of a coefficient of asymmetry (see

for example (Grünbaum 1963)). In the same paper Sawyer proves
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Theorem 3.3 (Sawyer) Let K be a Ìtn-admi,ssible set in K wi,th coffici,ent of

asymmetry l(K) - À. Then

v S ó(^) det(Â,),

where

d(À) : (À + r)" (t - rr - ï,")
we note that in the case where K is symmetric about o (À : 1), Minkowski,s

Convex Body Theorem for ft" follows immediately from Sawyer's inequality. If,

on the other hand, O is the centre of gravit¡ then ) : Bl2. In this case, rrye

observe that Ehrhart's conjecture (Conjecture 3.1) gives a much stronger result

than Sawyer's theorem. Sawyer (1955a) obtains an exact formula for /()) in

the case where n : 2 from which the result by Ehrhart (1g55a) for n : 2 may

be deduced. Sawyer (1955b) also obtains estimates for /(À) for sets which are

symmetric about a point apart from O.

Scott (1974b) obtains a result analogous to the result by Sawyer (1g55a) by

replacing À with a certain boundedness condition. We say that a set K is kÂr,-

bounded if some translate of K is contained in a fundamental cell of kÂ," but no

translate of K is contained in any fundamental cell of (k - e).4,, (e > 0). It is

expected that there is a function /(k) for which v S l&)der(Â"). Scott finds

an exact formulation for /(k) for the case where n:2.
Scott (197Sa) also conjectures the following:

Conjecture 3.4 (Scott) Let K be a Ìrn-admissible set in K and, Iet O¿ d,enote

the i'th orthant ínft cut off by the coordinate planes. Suppose thatV(K noò) :
2-"V(K). Then

V(K) < 2" det(Â,).

Scott (1978a) proves the conjecture for the case n:2



3.5. Related resu/ús and conjectures 34

Another conjecture by Scott (1982) concerns the maximal area of a f-admissible

set having circumcentre O. Using a computer run, we discover that the conjecture

is false. We revise the conjecture as follows:

Conjecture 3.5 Let K be al -admi,ssible set in K2 hauing circumcentre O. Then

41ax4.04569

Equali'ty holds when and, only when K i,s congruent to the set shown zn Figure 3.6

(Here ^R = 1.593, d N 5.47o, B x 20.23").

:\

Figure 3.6: The set with maximal area having circumcentre O

van der Corput (1935, 1936) considers aset K in Kn with K, containing more

than one point of Ârr.

Theorem 3.6 (Van der Corput) Let K e K and let K be symmetric about

O. Suppose that G(K',r\,,) : 2le * I. Then

V <2"(2k+1)det(Â")

Scott (1987) extends Van der Corput's result to the class of non-symmetric

convex sets in K2. Ehrhart (1955c, 1955d) gives partial results relating A and

G(Ko,,l\.) for a set .K € K2 having centre of gravity at O.

.. i..,...

O.R¡
9



Chapt er 4

On the maximal circumradius of a planar
convex set containing one lattice point

4.L Introduction

Let K be a set in K2 with circumradius R(K): R. A number of results concern-

ing the circumradius of a general convex set are known (Eggleston 19b8, p.111;

Henk and Tsintsifas 1994; Scott 1978b, 1979a, 1981). However, there are relat-

ively few results on the circumradius of a convex set constrained by lattice points

(see for example (Scott 1930)). In this chapter we find the ma>rimal circumradius,

under certain conditions, of a f-admissible set K where O is the circumcentre of

K. It will be seen that the maximal set is a triangle with an edge containing two

lattice points.

As in chapter 3, let 
^9 

be the closed square with vertices (t1, f 1). The eight

lattice points (1, 1), (0,1), (-1,1), (-1,0), (-1, -1), (0, -1), (1, -1), (1,0) on â^g

are labelled Lu L2,.. .,.Ls respectively and the half edges, LtLz, LzLz,. . . ,, LaLt

of 
^9 are denoted by ht, hz, ..., äs r€sp€ctively. Let O be the circumcentre of K

and let C be the corresponding circumcircle. We recall from Chapter 3 that K
crosses an half edge h¿ if h¿ contains a point in Ko. Suppose that K crosses the

half edge /r.¿. Then /r,¿ partitions K into two regions, one of which does not contain

o. Let K' denote this region. rf K'intercepts c, we say that K intercepts c
beyond the half ed Ee h¿. We prove here the following result concerning .R (Awyong

35
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and Scott 1995)

Theorem 4.1 Let K be al-admissí,ble setinK2 wi,th circumcentreO and, cir-

cumcircle C and let S denote the squl,re with aertices (+1, *'I). Then

R1aæ1.685,

unless K intercepts C beyond eractly two opposite half edges of S, in which case

no upper bound can be found, for R. Equality holds when and only when K is the

triangle shown in Figure 4.1.

Theexactvalueofaisa__,ftffiwheregisthepositiverootof
25y3 *20a'- 3:0.

x

Figure 4.1: A set K for which R: a = 1.685

4.2 Narrowing the search

rf. K :,s, then R: rt ( c. Hence we may assume that -R > ,Æ.It foilows that

K extends beyond âS. Convexity arguments show that the convex set K may

cross at most four of the eight half edges of ^9, with no two of the crossed half

edges comprising an edge of S. For a given set K, we call the set of half edges

beyond which K intercepts C the i,ntercept set of. K.

v
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It may be proved that either C contains two points of ðK which are the

ends of a diameter of. C, or C contains three points of ôK which form an acute-

angled triangle containing O (Yaglom and Boltyanskii 1961, p.5g). Henceforth

we shall refer to this property of C as the circumci,rcle property. Clearly, by the

circumcircle propert¡ K must intercept C beyond at least two half edges of 
^9.

If K intercepts C beyond exactly two half edges of ^9, using rotations about

O and reflections in lines through O to discard equivalent cases, we need only

consider the cases where the intercept set of K is one of

(a) {ä1, ä3} (b) {ä1, /¿4} (c) {ä1, h5} (d) {¡¿1, /¿6} (e) {ft,1, hs}.

In cases (") (b), (d) and (e), since o e Ko, all intercepts of K and c lie in the

half planesgr > 0,u ) n,r ) 0and y >0 respectively. Bythecircumcircle

property we can discard these cases.

In case (c) a f-admissible set K can be constructed having circumcentre O

and diameter making a very small angle with the g-axis. It is easily seen that

for such a set K, -R may be made arbitrarily large. Therefore if K intercepts C

beyond exactly two opposite half edges, no upper bound may be found for .R.

We may no\4/ assume that K intercepts C beyond three or four half edges of

S. By the circumcircle property, C contains three points of 0K which form the

vertices of an acute-angled triangle ? containing O. In the rest of the chapter,

we shall :use 'tri,angle' to mean a l-admissible closed set bounded by the edges

of a triangle with circumcentre O. As R(T): R(K), it is sufficient to establish

Theorem 4.1 for the class of triangles. Since ? crosses exactly three half edges

of 
^S, using rotations and reflections as before, we find that it suffices to consider

the cases where the intercept set of ? is one of

(a) {hr, fu,hs} (b) {är, hs,ha]¡ (.) {är, hE,hz} (d) {hr, h¿,hs}.

In case (b), since o e Ko, all intercepts of K and C lie in the half plane y > 0.

By the circumcircle property, this case may be eliminated.
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we now find an upper bound for A(7) in the cases where ? is a triangle

having intercept set (a), (c) or (d). Let % denote the vertex of ? tying beyond

h¿ and let LXY Z denote the closed triangular region having vertices X, Y and,

Z. We prove the following lemma:

Lemma 4.2 Let T be a tri,angle hauing i,ntercept set {h1, hz, hs} , {hr, hn, h7} or

{ht,hn,hs}. Then R(T) < 2.

Proof. Let C be the circumcircle of 7 and let arc(X,Y) denote the minor arc

XY of C, excluding the points X and Y . Let Il¿ denote the closed half plane not

containing the origin and bounded by the line containing the half edge ñ,¿.

Suppose first that T has intercept set {å1, hz,hs} (Figure 4.2). Lef A and B

be the points of intersection of C with the lines U :1 and y: 0 respectiyely in

I/3. Let X and Y be the points of intersection of C with the lines ø : -1 and

r : 0 respectively in I/s. Since 7 crosses ht, hz and ä5, we have V3 e arc(A, B)

and V5 e arc(X,Y). If n(") :2, then A - A*(-tß,t) and Y :Y.(0,-2).
It is an easy exercise to check that La lies on the same side of A*Y* as O. If
R(T) ) 2, the line segment AY lies along A*Y* or lies on the side of the line

A*Y" not containing O. Since the edge V3V5 lies on the side of AY not containing

O, it follows that .L¿ lies in the interior of LOVsVs. Hence La € To, contradicting

our assumption on ?. Hence Rg) < 2.

Suppose now that 7 has intercept set {ä1, h¿,,h2} (Figure 4.3). Let ,4 and

B be the points of intersection of C with r : 0 and ø : 1 respectively in fIr.

Since 7 crosses ht, h+andh7, we have V1 € arc(A,B). Since Le /7" and the

edge v1v7 intercepts h7, it follows that V € arc(x, Y), where x and Y are the

points of intersection of C with the lines ALs and BL7 respectively in H7. If
RQ): 2, then A: A*(0,2) and X : X-(å,-3). Since ? crosses ht, h+ and h7,

we also haveVa € arc(P*,Q*) where P* and Q* are the points with coordinates

(-tß,-1) and (-2,0) respectively. It is easily checked that LT lies on the line
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Y

Figure 4.2: The upper bound for R(7) for the {hr,hr,h5} case

segment X*Q". Since the edge VaVT lies on the side of X*Q not containing O, it
follows that L7 € To, contradicting our assumption on ?. rf Rg) > 2, the line

AX is oriented clockwise from the line A*X*. Since ? crosses ht, h+ and lz7, we

haveVa € arc(P,Q), where P and Q are the points of intersection of the lines

A : -I and y : 0 respectively in Ha. It follows that the line segment XQ lies on

the side of x*Q* not containing O. Since the edge VaVTlies on the side of Xe
not containing O, it follows that L7 € To, contradicting our assumption on ?.

Hence R(T) < 2.

L8

vs

o

L7

X

Y

39

Figure 4.3: The upper bound for Ã(") for the {hr,hn,ä7} case
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Finally suppose that ? has intercept set {hr,hn,fr,s} (Figure 4.4). Let A and

B be thepoints of intersection of C withthe linesø:0 and u:1in H1. Let

X and Y be the points of intersection of C with the lines U : I and gr - 0

respectively in f/e. Since ? crosses ht, ha and äs, we have V1 € arc(A, B) and

Vs e arc(X,Y). If B(") :2, A: A*(0,2) and Y :Y.(2,0).Clearl¡,L1 lies

on the line segment A*Y*. If B(") ) 2, the line segment AY lies along A*y* or

lies on the side of. A*Y* not containing O. Since the edge V176 lies on the side

of. AY not containing O, it follows that Ll lies in the interior of LOVlVs. Hence

L1 € To, contradicting our assumption on ?. It follows that R(T) < 2.

vl

A

I

I

L---

v8

v

Figure 4.4: The upper bound for r?(") for the {hr,h¿,,ås} case

Hence if ? has intercept set {h1, lts,hs}, {hr,h¿,h7} or {hr,hn,äs}, then

n(?) < 2 and the lemma is proved. tr

We now let F denote the family of triangles having given intercept set {h1, he,hs),

{hr,h+,h7} or {h,h¡,hl]r. By Lemma 4.2, the members of F are contained in

a disk of radius 2. By Blaschke's Selection Theorem, .F' is a compact subset of

K2 in each of these cases, and by Theorem 2.5, a maximal set occurs in each

case. Let 7 denote a maximal set in F. For a given intercept set, a set K with

R(K) : R(T) is referred to as a marimal set; in particular, a triangle ? with
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Rg) - R(n is referred to as a marimal triangle.

In $4.3 we establish some properties of a maximal triangle. In $4.4, \4¡e prove

two lemmas which will further narro\ry our search for a maximal set. In $4.b, $4.6

and $4.7, we find the maximal set for the class of triangles having given intercept

sets {ä1, ht,hs}, {hr,hn,h7} and {hr,h¿,hs} respectively. For each case we also

establish the uniqueness of the ma>rimal triangle by employing the results in $4.4

to eliminate all other triangles as possible solutions.

Unless otherwise specified, the vertices of a triangle will be described in an

anticlockwise order.

4.3 Properties of a maximal set

The following lemmas establish some properties of a maximal triangle and a

maximal set for intercept sets {ä1, he,hs}, {hr,hn,h7} or {hr,h¡,h¡}. Let L

denote the set of non-zero lattice points contained in the circumdisk of 7. By

Lemma 4.2, we have R(T) < 2. We also recall that R(") > ,Æ. Hence f :
{Lo,i, - 1,.. .,8}.

Lemma 4.3 IÍT is a marimal triangle, then each edge of T must contai,n a poi,nt

of L i,n i,ts i,nterior.

Proof. Let T : axY z be a ma:cimal triangle with edges r, y and. z Lying

opposite the vertices X,Y and Z respectively and let C denote the circumcircle

of r. By Lemma 4.2,, \'ve may assume that .R(7) < 2. we suppose that there

is at least one edge of ? which does not contain a point of ,C in its interior. If
edge ø (say) contains no point of. L in its interior, we enlarge ? about X until r
first contains a point of ,C. Denote this enlarged triangle ?r with corresponding

vertices xy Yt, 21 and edges î1, uL,, 21. Let K1 be the set bounded by C and the

edges of.7.1. Clearly, rl1 is f-admissible and R(Kr) - R(T). By construction,

/{r is bounded by two arcs of C and three straight edges. If now gh contains no
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point of ^C its interior, a similar enlargement of fi about Y1 results in a triangle

T2. Let K2 be the set bounded by C and the edges of. T2. By constru clion, K2

is l-admissible and has three arc boundaries. Since ,R(?) < 2, C contains no

Iattice points. We now enlarge C about O by a sufficiently small factor to obtain

the set Cr containing no lattice points. Let K* be the set bounded by the lines

containing the straight edges of.T2 and arcs of C1. Clearly, K* is l-admissible and

R(K.) > R(Kr): R("). This contradicts our assumption that T is a maximal

triangle. If now g/t contains a point of L in its interior, a small clockwise rotation

about the lattice point (choose the lattice point in .C closest to X1 if there is

more than one point of L in the interior of gr1) also results in a set with three

arc boundaries. By the same argument as before, ? is not a maximal triangle,

contradicting our assumption. tr

Lemma 4.4 IÍ K i,s a marimal set, then K i,s a triangle.

Proof. We suppose that K is a ma:<imal set which is not a triangle. Then by

the circumcircle property, /f intercepts C in three points which form an acute-

angled triangle ? containing O. Since.tf is a maximal set, 7 is a maximal triangle.

As K f T, there is an edge e of. T whose interior lies in Ko. Hence e contains no

point of .C in its interior. By Lemma 4.3, ? is not a ma><imal triangle. Hence K
is a triangle. n

If each edge of a triangle contains exactly one point of ^C in its interior, we

call the join of a vertex to the opposite lattice point a V L-li,ne.

Lemma 4.5 IÍ T is a mari,mal triangle then either

(i) iús V L-li,nes a,re concurrent or

(ii) oú least one of the edges of T contøins two points of L i,n its interi,or.

Proof. LetT : axYZ be a maximal triangle. By Lemma 4.8,, each edge

of ? contains at least one point of. L in its interior. Suppose that each edge of
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? contains exactly one point of ,C in its interior. We let these points be L,, Ln

and L" lying in the interior of each of the edges x, y and. z respectively. Suppose

also that the V.[-lines, XLr,YLu and ZL, arenot concurrent. We transform the

edges of the triangle 7 by first rotating the edge XY (sliding the endpoints on C)

about ,L, through a small angle 0 lo XtYt. This is followed by a rotation in the

same direction of the edge Y Z aboú L, to the edge y'Z'. Finally ZX is rotated

in the same direction about Ln to Z'X" . We denote the described transformation

on the edges of T by Í"(7,0) if the edges of ? are rotated in a clockwise manner,

and by f"(7,0),if the edges of 7 are rotated in an anticlockwise direction. We

note that IYXX.: lX'YtY since these two angles are in the same segment of

C subtended by chord x'Y. Similarly, lY'YX : lY'x'x. we therefore deduce

that AYL,Y' and AX'LrX are similar. Hence

XX' X'L,
YY, L,Y

Since X, Y and Z are oriented anticlockwise and á is small and LXY Z contains

O in its interior, Í"(7,0) gives XtL, - XL" - e. where e is small and positive.

Therefore
XX'_XL"-e -XL,YY- L"Y " L"Y'

Similarly,
YY' YL-
zzt W

and
ZZ' ZL.,
xx,'tñ'

Multiplying all three inequalities, we obtain

xx, - xL" YL, ZLs
XX,, t L"y'W'fi: n, sâY'

where xx'lxx" differs fromp by a small amount er. similarry, if /"(T,g) is
applied,

XX'
xy,, > n,
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where xx'lxx" differs from p by a small amount e'r. we note that by ceva,s

theorem (Maxwell 1949, p.90) , p : I if and only if the V,L-lin es X L,,, y Lo and,

ZL, are concurrent. By assumption, p + L.

If p > 7, Ío(T,d) yields XX'f XX" : p - €p. We choose d so that eo is

sufficiently small to give xx'f xx" > 1. since now xx' ) xx,,, the transform-

ation results in a set K bounded by edges X,Y, , y'2, , ZI X,t and the arc X,,X,

(Figure a.5). By Lemma 4.4, K is not a marcimal set. Since R(K) : R(T), it
follows that 7 is not a maximal triangle, contradicting our assumption.

X, X

Z,
Y z

Y,

Figure 4.5: The effect of fo(T,d) on 7 for p > I

If p <I, Í"(T,d) yields XX'f XX" :ple,o. We choose g so that e! is suffi_

ciently small to give xx' f xx" < L. since now xx' 1 xx,,, the transformation

results in a set K with an arc boundary. Arguing as before, ? is not a maximal

triangle.

Therefore, the maximal triangle is such that either its V,L-lines are concur-

rent, or it has at least one edge containing two points of Lin its interior. ¡

For future easy reference, \rye summarize our findings thus far in the following

lemma.

Lemma 4.6 A maximal set K i,s ø triangle haui,ng a point of L interi,or to each

of i,ts edges and such that ei,ther

X
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V

L
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(i) zts V L-lines are concurrent or

(ii) øt least one of i,ts edges contains two points of L i,n its interi,or

Proof- By Lemma 4.4, a mæcimal set K is a triangle. By Lemma 4.8, a

maximal triangle ? has a point of .4 interior to each of its edges and by Lemma 4.5

a maximal triangle ? has concurrent V.L-lines or has at least one edge containing

two points of .C. !

4.4 Narrowing the search further

By Lemma 4.6, we may restrict the members of F to those triangles with a given

intercept set, and with edges each containing a point of ,C.

Suppose first that F is the family of triangles having intercept set {h1, fu, hs}.

Let T € .F. Since the edges of ? each contains a point of ,c, the edges v1v3 and,

V3Il5 must contain the points L2 and.La respectivel¡ and the edgeVsVy contains

Ll or L6 or both .L1 and .L6 (Figure 4.6). Table 4.1 gives a list of the possible

points of .4 contained in the edges V1Vs, V3Vs and VsV1.

vl

..t...

Figure 4.6: Lattice points on the edges of LVlVsV5

Suppose now that F is the family of triangles having intercept set {h1, h¿,hz).

Let T e F. We first observe that, given the intercept set of ?, the edge v7V1
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L8

--ì-
L
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VtVs VzVs VsVt
(r) Lz La L6 f
(b) L2 La L1 Í
(.) Lz La La, Lt *

Table 4.1: Lattice point listings for the {hr,hz,å5} case

contains the point LB. If m(V1Va) ) 1, then VlVa contains the lattice point .L2

and VaVT contains Ls, Lz or both .Ls and .L7 (Figure 4.7a, cases (u), (b) and (c)

respectively of Table 4.2). If on the other hand, m(W¿) ( 1, then %V¿ contains

the lattice point La ü bolh L2 and La and WVz contains the lattice point -L7

(Figure 4.7b, cases (d) and (e) of Table 4.2).

L2

/ t'.

/:-

(a) m(V1Va) > t (b) m(fiva) ! 1

Figure 4.7: Lattice points on the edges of AVtV+Vz

Finall¡ let F be the family of triangles having intercept set {h1, ha,h6}. Let

T e F. For this intercept set, the edge Vslzl contains the lattice point.L1. If
m(v{a) > 1, then vlva contains the point L2 and,vavs conrains the points Ls or

.Ls or both,Ls and.Ls (Figure 4.8a, cases ("), (b) and (c) respectively of Table 4.3).

If, on the other hand, m(VVò ( 1, then VlVa contains Za or both L2 and. La,
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(a)
(b)
(.)
(d)
(")

VzV VtVq, Vs,V

47

Lg
L7

Ls, Lz
L7
L7

Le
Ls
Ls
Ls
Ls

L2
L2
L2
L¿

Lz, L¿

+

r
*
r
*

Table 4.2: Lattice point listings for the {hr,hn,h7} case

and VaVs contains the point ,Ls (Figure 4.8b, cases (d) and (e) of Table 4.3)

,:
L4 o

(a) m(VyVa) > I (b) m(fiv) ! t

Figure 4.8: Lattice points on the edges of LVlVaVs

vavt vtv¿, v¿va
LL L2
Lr L2
LL Lz
Lt La
LL Lz,L+

Table 4.3: Lattice point listings for the {hr,hn,ft,s} case

(u)
(b)
(.)
(d)
(.)

Lg
L8

Ls, La
Ls
Ls

+

f
*
ï
*

Now to eachr : axY z in the cases from Tables 4.1, 4.2 and 4.3, we associate
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the ordered set (/1, tz,ls) called the lattice-point seú where l.¿,'i: L,2,J a listing

of the points or L in the interior of the edges Y Z , Z X and Xy respectively. If T
has an edge containing two points of ,C in its interior, we label that edge Xy and,

assign the lattice-point set (.Lr, Ly, L"L',) where L" and Lt, appear in the order

x, L", L,"rY.

We will now prove two lemmas to help us narrow down the possibilities

for a maximal triangle. Lemma 4.7 establishes the uniqueness of a triangle

T* : A.X*Y*z* with a given lattice-point set (-Lr, Ls,L"L'r). Therefore, from

Tables 4.7, 4.2 and 4.3, it may be seen that there are at most five such triangles

(marked * in the tables) satisfying condition (ii) of Lemma 4.6.

Lemma 4.7 LetT : LXYZ and,Tt : ax'YtZ' be two tri,angles with the same

i,ntercept set and latti,ce-poi,nt set (Lr, Ly, LrL,"). Then T : T' .

Proof- Suppose that 7 I Tt. Then since ? andT' have the same lattice point

set, we may assume that R(T) + R(T'). We first suppose that rR(?,) > Rg).
Then x e (x',Y) and Y e (x,Y'). The edge x'z'is therefore oriented clockwise

about Ln from X Z and the edge YtZt ís oriented anticlockwise about -L, from

YZ. Therefore z' €.To andoz'< R(T) < R(T').Hence o is not the circum-

centre of T', contradicting our assumption on Tt. It follows that Ä(7,) / Rg).
A similar argument shows that .R(?') / R(T).Therefore R(7,) : R(T).Hence

T' : T and the lemma is proved. tr

The next lemma helps us to eliminate those cases marked f in the tables.

We will show that these triangles have V^L-lines which are not concurrent and

since these triangles have edges each containing exactly one lattice point, by

Lemma 4.6, they are not maximal. we shall be comparing a triangle T* :
LX"Y* z* along with its given lattice-point set (.L", Ls, L"L,,) with a related

triangle T : LXY Z having the same intercept set as ?*.
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Lemma 4-8 Let T* : AX*Y* Z" denote the uni,que tri,angle with a giuen lattice-

point set (Lr,Ls,L"L'"). we define P* to be the i,ntersecti,on of li,nes x*L, and,

Y*Ls, and Q* to be the i,ntersecti,on of li,nes Z*p* and X*y*. If L, e (e*,X*),

then any triangle wi,th lattice-poi,nt set (Lr, Ls, L,) i,s not marimal. If L,, e
(Q*,Y*), then any triangle wi,th lattice-poi,nt set (L,,Ln,LL) is not marimal.

Proof. LetT - axYZ be a triangle with the lattice-point set (.L", L,y,L,).

we define P to be the intersection lines of xL, andyLr, and. e to be the

intersection of line ZP with XY. We show that line ZL" cannot pass through P.

It will then follow that the V.L-lines of.T are not concurrent and by Lemma 4.b,

? is not a maximal triangle. Lel h, and ä, be the open half planes bounded by

the line Q* Z* containing X* and Y* respectively.

Figure 4.9 shows the five possible triangles ?*, and how the intercept set

constrains the edge XY of any triangle T : LXY Z with lattice-point set

(Lr,Ls,.Lr). Since T is f-admissible, T cannot contain L'"in its interior. Thus

in each case, since x*, L, L'" and Y* are in the given order, the edge xy of r
is oriented anticlockwise about L, from the edge X*y* of T*.

we first suppose that 7 is a maximal triangle. Therefore rR(") > ,B(?.)

which implies that the vertices of 7 are exterior to ?*. Since the edge XY of ? is
oriented anticlockwise about L" from the edge X*Y* of 7", and since the vertices

of 7 are exterior toT", the edges YZ and ZX of T arealso oriented anticlockwise

about .L, and .Ln respectively from the corresponding edges of. T* (Figure 4.10).

Therefore the V,LJines, XL, andYL, of 7 are oriented anticlockwise about.L,

and Ln ftom X* L- and Y" L, respectively, placing the point P in the interior of

LY*P*L,. It follows that P lies in å,r. Since L" € (Q",x*), the lattice point

L" lies in h". AIso, since the edges Y Z and ZX arc oriented anticlockwise about

L, and .L, respectively from Y* Z* and Z* X*, the point Z necessarily lies in

ä". Hence lZ,L"l is contained in h,". Therefore [2,L"] and the point p are on
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opposite sides of the line Q*Z* and hence theVL-lines of ? are not concurrent.

Therefore ? is not a ma>cimal triangle.

Y
L2

x* X

(^) (Lr, L4, L6Lt)
z* X X*,

Yx*
X

Y>i
Ls

(b) (¿r, L2,L5L7)

24<

(") (L.,, LB, L2L4)

L1

L1 z*

x*X

Y*
z>r

X

(d) (¿r, L2,, L5L8) (.) (&, h, L2L4)

Figure 4.9: Triangles with edges containing two lattice points

We now let ?: AXYZ be a triangle with the lattice-point set (.L,, Ls,L',).

Arguing in a similar way as above, the edge XY of ? is now oriented clockwise

Y
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Xx

h,
Lz

h
v

v

L z

z
Y* z

L,

Figure 4.10: The case where R(T) > l?("-)

about Lt, from x*Y*. Defining P and Q above and using a similar argument,

it may be shown thatlZ,L,] and the point P again lie on opposite sides of the

Iine Q* 2". Hence the V.D-lines of ? are not concurrent and 7 is not a ma:cimal

triangle. ¡

In the subsequent sections, we will employ Lemma 4.8 to show that the cases

marked f are not maximal. Hence we need only consider those cases marked * in

the tables. In other words, a maximal triangle has an edge containing two points

of L in its interior. We wiII employ the notation used in Lemma 4.8 in the rest

of this chapter.

4.6 The {hr,hs,/r,5} case

We first consider case (c) of Table 4.L. Let T* : LVsVrVs : LX*Y* Z* be the

unique triangle with lattice-point set (-L2, L4,L6LL) (Figure 4.9a).

we assign the coordinates (ø, 2r -l) and (y, 2a -r) to x* and Y* respectively.

Since X* and Y* also lie on C,

12+(2r-1)':y2+Qa-7)'

which gives ø * g : f . we let z* have coordinates (zt, zz). since Y* z" and z* x*
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contain the lattice points Lz(0,1) and Lç(-I,O) respectivelg

zz-l 2a-2 zz-0 2r-l
' "r+1- rl7'

Eliminating ø and solving for zy and 22, we obtain

-a 6+5y)

52

zt-j a

.7-
25y -78 

1

As Z* also lies on the circumcircle,

zl + zl: y2 + Qy - t)'.

Simplifying and factorising, we have

(5a -2)(25s3 - 45y'*25s - 6) :0.

since a ) L, we solve 25a3 - 45y2 + 25a - 6 : 0 to obtain g æ 1.0g0 and

R(7.)=1.584<o.

We now show that any triangle with lattice-point set (Lr, Ln,^L6) or (L2, L4, LL)

(case (a) or case (b) of Table 4.1) is not maximal. We consider the quadrangle

X*Y*L2La. Let K be the point of intersection of the lines X*Y* and L2La, that is

the point (2,3). By the harmonic property of the quadrangle, the points x",y*
separate Q* and K harmonically. Therefore the cross-ratio (X*, y*;e", K) : -t.
We now orthogonally project the four points x*,Y*, Q* and K on the ø-axis

to obtain the points Xi, YJ, Q| and K" respectively. Since the cross-ratio is

unaltered under projection, we have (Xi,,yi;eI,K,) - -1. Letting the ø_

coordinate of Q* be g, we have

q-r 2-r
a-q y-2

which gives g = 0.689. Therefore La € (Q.,X.) and Lt € (e.,y.). By Lemma

4.8, any triangle with lattice-point set (L2, L¿,, Le) or (L2, L¿, Lr) is not maximal.

Hence cases (a) and (b) of Table 4.1 may be eliminated.

Hence 7 is the triangle with lattice-point set (-L2, L4, L6Lr) and rR(Z) =
1.584 < o.
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4.6 The {ht,,hn,h7} case

We first consider case (c) of Table 4.2. Let T* : LU WVT : AX*y* Z* be lhe

triangle with lattice-point set (.Ls, L2,L5L7) (Figure 4.gb).

we assign the coordinates (1*y, -1) to Y* ,0 < y < 1. since x* y* also lie on

C,by symmetr¡ x* has coordinates (-1 - a,-r).we let z* have coordinates

(rt,"r). Since Y*Z* and Z*X* contain the lattice points ¿s(1,0) and.L2(0,1)

respectively,

zz-0 I z2-I 2

h-I
Solving for zy and 22, we obtain

-v zt-0 I*y

-(a'-t\ 3+azt: 
@¡ 22: 

1 + 39.

As Z* also lies on C,

,?+r3:(1 +y)'+L.

Simplifying and factorising, we obtain

(1 + s)(st +2y2 *2a - 1) :0.

Since 0 < g ( 1, we solve (y3 +2A2 *2U - 1) :0 for y to obtain y = 0.3b3 and

R(7.) = 1.683 < o.

we now show that any triangle 7 with lattice-point set (La, Lz,.L5) or (LB, L2, Lz)

(case (a) or case (b) of Table 4.2) is not maximal. We consider the quadrangle

X*Y* LsL2. Letting the ø-coordinate of Q* be q and using cross-ratios as in $4.5,

we find that q = 0.915. Therefore Ls e (Q*,X.) and Lz € (Q*,y.). By Lemma

4.8, any triangle with lattice-point set (.Ls, Lz, Ls) is (.L6, Lr, Lz) is not ma>rimal.

Hence cases (a) and (b) of Table 4.2 may be eliminated.

We now consider case (e) of Table 4.2. Let T* : LVLU W : LX*Y* Z* be

the triangle with lattice-point set (Lr,Le,LzLò (Figure 4.gc).
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we assign the coordinates (r,r4- 1) to x*,0 < ø < 1. since X* and y* lie
on C, by symmetryY* has coordinates (-r-7,-r).We let z* have coordinates

(zt,zz).Since Z*X* andY*Z* contain the lattice points ¿8(1,0) and.D7(1,-1)

respectively,
zz-0 r*l zziL -r*\
zt-I r-1'

Solving for z1 and 22, we obtain

12-4r-g

zt-I -r-2

5ø*1

As Z* also lies on C,,

zl + zl: 12 r (r +1)2.

Simplifying and factorising, we obtain

(2r+t)(2r3t2x2-1) :0.

Since 0 < ø ( 1, we solve 2ø3 l2x2 - 1- 0 to obtain r = 0.b6b and R(?-) =
L.664 < a.

we now show that any triangle 7 with lattice-point set (Lr,Lr,ra) (case (d)

of Table 4.2) is not maximal. We consider the quadrangle X*Y* LaLz. Letting the

ø-coordinate of Q* be g and considering cross-ratios as in $4.b, we find that q =
0.256. Therefore LE € (Q..,Y.). By Lemma 4.8, any triangle with lattice-point

set, (L7, La, L+) is not maximal. Hence case (d) of rable 4.2 may be eliminated.

4.7 The {ht, hq, h,s} case

We first consider case (c) of Table 4.3. Let T* : LV VBV : LX*Y* Z* be the

triangle with lattice-point set (.L1, L2,L6LB) (Figure 4.gd).

we assign the coordinates (2r*7,ø) and (2y*r,g) to x* and y* respectively.

Since X* and Y* also lie on C,

.2--pl 
-

(2x + t)' + r' : (2a + t)2 + a2
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which gives r *y: -å. w. lel z* have coordinates (rr,"r).since y*Z* and.

Z*X* contain the lattice points ä(1,1) and -L2(0,1) respectively,

zz-L y-l zz-L r-I
zt-0 2rtI

Eliminating ø and solving for z1 and z2 in terms of y, we obtain

-72-2IyI5y2
25y +3

As Z* also lies on C,

zl + zl: (2y + r)2 + a2

Simplifying and factorising we obtain

(sa +2)(25y3 *20y2 - 3) : o

since u ) 0, we solve 25y3 + 20a' - 3 - 0 for y to obtain y = 0.826 and,

R(7.)=1.685:o.

we now show that any triangle with lattice-point set (Lr, Lz,zs) and (h, L2, LB)

(case (a) or case (b) of Table 4.3) is not maximal. We consider the quadrangle

X*Y* L1L2 and using cross-ratios as before, we show that the ø-coordinate q of

8* is approximately 0.953. Therefore Ls e (Q.,X.) and Zs e (e",y*). By

Lemma 4.8, any triangle with lattice-point set (.L1, Lz, Ls) and (.L1, Lz, Le) is not

ma>rimal. Hence cases (a) and (b) of Table 4.3 may be eliminated.

We now consider case (e) of Table 4.3. Let T* : AWAVB: AX*y* Z* be

the triangle with lattice-point set (La, Lr, LzLù (Figure a.ge).

we assign the coordinates (ø,ø+1) to x*. since x* and y* also lie on c,by
symmetry, Y* has coordinates (-ø - L, -r). we let z* have coordinates (21, z2).

Since z*X* andY*Z* contain the lattice points ¿1(1,1) and.L6(1,0) respectivelg

zz-I r zz-0 -r

-3 -7y+I0y2
-' : --r -z: -- 25a i3

4-7 2y '

4-I r-L' h-7 -r-2
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Solving for z1 and 22, we obtain

-x2+2at2þl-
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-r*lzz: 
-g-.3r

As Z* also lies on C,

z2t+zl:12*(r+7)2

Simplifying and factorising, we obtain

(2r+L)(2r3l-2r2-1):0.

since 0 < ø ( 1, we solve 2ø3 *2x2 - 1 - 0 for ø to obtain ø = 0.b6b and

R(7.) = 1.664 < o.

we now show that any triangle with lattice-point set (Lr, Lr,ra) (case (d)

of Table 4.3) is not marcimal. We consider the quadrangle X*y* LsL1. Using

the cross-ratio argument, we find that the ø-coordinate q of Q* is approximately

0.256 and therefore La € (Q.,Y"). By Lemma 4.8, any triangle \4,ith lattice-point

set (.Ls, Lt, L+) is not maximal. Hence case (d) of Table 4.8 may be eliminated.

Comparing the results in $4.5, $4.6 and $4.7. we conclude that the maximal

set ,K is the triangle with lattice-point set (-L1, L2,LsLs) (case (c) of Table 4.3)

with Ã(.[l) r 1.685. Theorem 4.1 is therefore proved.

4.8 Comment

It is interesting to observe that the triangles with lattice-point sets (.L7, Ls, L2La)

in $4.6 and (.Ls, Lr, L2L4) in $4.7 have the same circumradius. There does not

appear to be any obvious algebraic connection, and we have been unable to find

a simple geometrical proof.



Chapter 5

on the width of a planar convex set containing
zero) one or two lattice points

5.1 Introduction

Let K be a set in K2 with width u(K) - w. Scott (1923) shows that if
G(Ko,l) : 0, then

, sr.(z + rft¡, (5.1)-2\
with equality when and only when K = to, where t¡ is the equilateral triangle

of Figure 5.1.

o

a o+- d+

Figure 5.1: The equilateral triangle ás

Elkington and Hammer (1976) make use of the value 
^ 

: +(2 + \,ß) to obtain

the result that if w > r) for r € z, then G(K',1) > ,r. It may therefore be

deduced that if G(K',1) < 2', then ,ru .-2À:2 + \ß. scott (1gg5a) sharpens

this inequality for a set K with G(K,, f) : 1. In this case,

w 1t + \Æ, (b.2)

57
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with equality when and only when K is congruent to the isosceles triangle shown

in Figure 5.2.

a o

u
O ---a

I

a
d

Figure 5.3: The equilateral triangle á¿

Theorem 5.1 has in fact been proved in the special case where u < tf\u (scott

1993). We also note that Theorem 5.1 follows from a recent generalization of

a

a

d

Figure 5.2: The set with marcimal width for G(Ko,f) : t

In this chapter we find a best upper bound for tr.' in the case where G(Ko,l) : z

We will see that the result follows easily by generalizing (5.1) to the rectangu-

lar lattice. Let Â,¿(u,v) denote the rectangular lattice generated by the vectors

u : (u,0) and r : (0, u) where u 1 u. We prove

Theorem 6.1 Let K be a set i,n K2 with G(K",^a) : 0. Then

, <*6[su r 2u), (b.3)

with equality when and only when 6 ? €n, where tn is the equilateral triangle oJ

Figure 5.3.
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(5'1) to arbitrary lattices by Vassallo (1992). As Vassallo's proof is quite long

and involved, we give here a short proof for Theorem 5.1 by adapting the methods

by Scott (1973,1993). we will then use Theorem b.l to find a best upper bound

for u(K) in the case where G(K',1) : Z. We prove the following result:

Theorem 5.2 Let K be a set in K2 with G(Ko,l) :2. Then

\/3)
1

w < ,(4+ (5.4)

Equali,ty occurs when and onlg when y 
= tz, where t2 i,s the equi,Iateral triangle

o/ Figure 5.4.

Figure 5.4: The equilateral triangle t2

5.2 Two useful results

We first establish two useful results

Lemma 5.3 Let K be a set in K2 contained in a triangle T sati,sfyi,ng the cond,i-

ti'ons of the Tri,angle Rotati'on Lemma. Then there is a triangle L ci,rcumscribing

a cell oÍ lvn with w(K) S ,(a) . Equalitg holds when ønd only when K = L.

Proof. since K c T, we have w(K) < w(T). By the T[iangle Rotation

Lemma, either ? circumscribes a cell of A¿ or there is a triangle fi ry )?,
À ) 1, with 7* circumscribing a cell of Â¿. In either case, there is a triangle A

o

a

a

a
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circumscribing a cell of Â¿ with wF) s ?r(a). It follows that tu(K) < ø(a)
with equality when and only when K = A. rt

Lemma 6.4 Let K be a set in K2 wi,th G(Ko,Àn) : 0. Suppose that w ) u

andr > lu. Then K ÇT whereT i,s atriangle sati,sfying the Tri,angle Rotation

Lemma or K Ç Q where Q is a proper conuer quad,ri,lateral circurnscribi,ng a cell

of lvn wíth edges each conta'i,ning i,n its interi,or a uerter of the cell.

Proof. We will use the notation employed in the tiangle Rotation Lemma.

Thus ø is a line containing the lattice point X and d(P,x) denotes the distance

from a point P to the line ø. In addition we let rn, denote the slope of the line

r and we write T(c,d,r) to denote a triangle determined by the lines c, d, and,

ø satisfying the conditions of the Thiangle Rotation Lemma. Let D denote an

indisk of K. We first translate K through a suitable lattice vector so that the

centre of 2 lies in 0 < A < u. For later reference, we list the above properties of

2 as follows:

PI. r > lu.
P2. The centre of 2 lies in 0 < y < u.

Now since w ) u, K must extend beyond at least one of the lines g:0 and

u : u. Without loss of generality, suppose that K extends beyond the line u : u.

Then since G(Ko, Àn) : 0, Ko intercepts U : u between two adjacent lattice

points on g : a. By translating K through a suitable lattice vector we may take

these points to be G(u,u) and rr(0,o). Hence K is bounded by lines g and ä,

with rn, I 0 and mn * 0. By Pl and P2, g and h intersect in the halfplane

a>u.
Let E and F be the points (0,0) and (u,0) respectively and let ú denote the

closed ceII EFGH. Flom Pl and P2, we deduce that Ko intercepts at least one

of the edges FG and EH of C. Without losing generality \4/e may assume that
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-Ilo intercepts the edge FG of C. Therefore K lies below a line g with mn 10.
We now consider the following two cases:

Case 1: K is bounded by U:0 or K cross€s g:0 between the points.Ð and

-t'. Here we note that m¡ ) 0. we have the following possibilities:

(^) *¡:0 and mn* 0. Hence K ÇT(g,h,,ø) where u is a line containing

the lattice point X on the edge of ? Iying ori g : 0 (Figure b.5a).

(b) *¡ > 0 and (^n <0 (possibly infinite) ot rne> 0). Hence K çTb, f,h)
or K CT(f ,9,e) (Figure 5.5b).

(")*¡ > 0and (*n> 0and ffi"10). Hence K çq whereeisaproper

convex quadrilateral with edges each containing in its interior a vertex of C (Fig-

ure 5.5c).

G H)

F E a F

(b) (c)

Figure 5.5: Case 1 of Lemma 5.4

Case 2: K crosses the line U : 0 between adjacent lattice points X (ku,O) and

v((k+ 1)u,0) for some non-zero integer k. By a reflection of the set K in the

mediator of the line segment EF, we may assume that fr ) 0. Here K is bounded

by lines ø and g with rfl" 10. By P1 and P2, the lines ø and gr intersect in y < 0.

Furthermore, by Pl and P2, Ko intercepts at least one of the edges HX and.yG

of the parallelogram XYGH. Without loss of generality, let Ko intercept the

edgeYG havingslopern. Hence ms) rnand ms1rn. Wehavethefollowing

possibilities:

Lft,, I

*oL;

GG

FE

(a)
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(u) *" 1 m or rnn ) rn (Figure b.6a). rf. m, < rn) then we have K Ç

T(r,a,g). rf m¡ ) rn, then K c T(r¡,gr,g) where ø¿ is a line containing the

point X and parallel to the line h.

(b) *n ( rn and ffix ) rn (Figure 5.6b). rf. mn ) rrLxt then we have K Ç

T(r,A,g). If ms S m, (an infinite triangle in the case where ffis: rnr), then we

have K ÇT(g,h,r).

G
o a

(a) xh

E. o
-¡
ia.-
.tLF

GH

XE

O O

(b)

a F. Y

Figure 5.6: Case 2 of Lemma 5.4

Flom the cases enumerated above, it follows that either K ç T where ? is
a triangle satisfying the conditions of the T[iangle Rotation Lemma or K Ç e
where Q is a proper convex quadrilateral with edges each containing in its interior

a vertex of a cell of Á.¿. tr

5.3 Proof of Theorem 5.1

Let K now be a set in K2 with G(Ko,Ân) : 0 and for which t¿ is as large as

possible. From the equilateral triangle á¿ (Figure b.3) we may assume that tu )
i(ß" + 2a) ) u. By a well known result of Blaschke (Yaglom and Boltyanskii
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1961, p.18), K contains a disk 2 of radius r : *.ifrn" +2a). since u ) u, we

have

since w > uand r > lu,by Lemma 5.4, K Ç ?where ? is atriangle satisfying

the conditions of the Tliangle Rotation Lemma or K Ç e where e is a proper,

convex quadrilateral as described in Lemma 5.4. If K çT, by Lemma 5.3, K
is a triangle circumscribing a cell of Á,¿. It follows that K is a closed convex

quadrilateral (possibly degenerate) circumscribing a cell of Â¿.

Since the constraint u 3 t/5u is used by Scott (1993) only to show the ex-

istence of the quadrilateral, we can use the remainder of the proof given there

to obtain (5.3) with equality when and only when 7ç / tn, where á¿ is the

equilateral triangle of Figure 5.3. Hence Theorem b.1 is proved.

5.4 Proof of Theorerin 6.2

Let K now be a set in K2 withG(Ko,f) : Z. By SL2 (see g2.b), we have the

following two cases:

(i) If z1 and z2 are both odd, we consider the sublattice f' and observe that

G(Ko,f') : 0. In this case ?¿ : 1) : t/2 and by Theorem 5.1, we have

63

Jiu11.r : -.-(3 2' +2u)- 
å å,* +z)u>|.

(ii) If sa! z7 is odd and z2 is even, we consider the sublattice l" and observe

that G(Il', l") : 0. Here ?..1 : l, u : 2 and by Theorem 5.1, we have

1w1--2

+1
1.w1-(-2\

(,/5'Æ + 2\/r) ., * +

'/i. 2.2) :'*+
Equality occurs when and only when * = tz (Figure b.4). This completes the

proof of Theorem 5.2.
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('/i + t¡ç (n+1)-p)<4",(

where

n, n odd,

(n+1) n(n + 2)-t, r¿ even,

64

5.5 Other related results

We note that (5.1) may be deduced directly from the following result by Eggleston

(1e5e):

Theorem 5.5 (Eggleston) Let K be a set in K2 and, Iet S be a squl,re of sid,e

length s inscribed in K. Then

Equality holds when and only when K i,s an equi,lateral tri,angle.

McMullen and Wills (1981) generalize (5.1) to ft" as follows

Theorem 5.6 (McMullen and 'Wills) Let

A,n: max{tr(K): K e rc",G(Ko,f") :0}

Then

\/3),sf,e+ s

þ :8,Æ - 4+ rr|, - nß =1.018.

By using the idea of a Minkowski-reduced basis, Vassallo (1992) extends (5.1)

to the general lattice.4,. A basis {", b} is a Minkowski-reduced basis for a lattice

^if
(a) a e {u e A\{O}; lul is minimal}

(b) b e {v e 
^\{Oh 

{",b} is a basis for.r1, and lvl is minimal}

(c) a.b > 0.

Vassallo (1992) proves
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Theorem 5.7 (Vassallo) Let {", b} be a Minkowski,-reduced basis for the lattice

/t' i,n ft2 and let 0 be the angle between a and b. Let K be a set in K2 wi,th

G(K,,A) : o Then

Equali'ty i,s attained' when and only when K is congruent to the equi,lateral triangle

shown in Figure 5.7.

b

e

Figure 5.7: The set with maximal width for the case G(Ko, À) : 0

The next two results concern the equilateral triangle lattice. Let .A.a denote

the equilateral triangle lattice generated by the vectors (1,0) and (t,+rß) Scott

(1978c) proves

Theorem 5.8 (Scott) Let K e K2 and let G(Ko,Âr) : 0. Then

, < t/3.

Equality holds when and only when K is congruent to the equilateral triangle of

side length 2 (Figure 5.8).

Scott's result above in fact follows immediately from Theorem 5.7 by taking

a : (1,0) and ¡ : (å, itø.wetwitschka (1991) extends scott's result above to

sets K having G(Ko,Âz) :1.

Theorem 5.9 (\Metwitschka) Let K e K2 andletG(K.,^r) : I. Then

rß
2

w 0slnb+a

3u1--2 ,/3,



5.5. Other related resu/ús 66

Figure 5.8: The set with ma:rimal width for the case G(Ko, Âr) : 0

with equali,ty when and, onlg when K is congruent to the equi,lateral tri,øngle shown

in Figure 5.9.

Figure 5.9: The set with maximal width for the case G(Ko, Âr) : 1

A number of results concerning the width of sets in K2 with special properties

have been obtained. Sallee (1969) obtains the following result concerning the

manimal width of a set of constant width.

Theorem 5.10 (Sallee) Let K be a set of constant width i,n K2 and,let G(Ko,f) : o.

Then

w 1a = 1.545,

where a is the root of

2ra + 13(zr/5- 1) + rr(-2 - rßl+ ø(-1 - B.',,fÐ - 2 : 0.

Equali,ty is attained when and only when K i,s the Reuleaur triangle shown i,n

Figure 5.10.
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Figure 5.10: The Reuleaux triangle

Scott (1982) conjectures the following result

Conjecture 5.11 (Scott) Let K be al-admissi,ble set i,n K2 and, Iet o be the

centre of graaity of K. Then

,t3^6>ru"'
Equality holds when ønd only when K is congruent to Ehrhart,'s tríangle (Fig-

ure 3.1).



Chapter 6

width-diameter relations for convex sets with
lattice point constraints in the plane

6.L Introduction

Let K be a set in K2 with width ,(K) : tu and diameter d,(K) - ¿. Scott

(1979b) proves that if G(Ko,f) : 0, then

(tl-t)(d-1)Sr, (6.1)

with equality when and only when K = 70, where ft is the triangle of Figure 6.1.

a a

Figure 6.1: The triangle fr

This result is extended to the case G(Ko, f) : 1 (Scott 1g85a) where we have

çw - tÆ¡ça - Õ) .2, (6.2)

with equality when and only when K = T;, where fr is the triangle of Figure 6.2.

a

d

68
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(6.3)

(6.4)

a

ad

Figure 6.2: The triangle fr

In this chapter, we generalize (6.1) to rectangular lattices (Awyong and Scott

1996a). Let Â¿(u,v) denote the rectangular lattice generated by the vectors

t, : (r,0) and v : (0, u) where u 1 u. We prove

Theorem 6.1 Let K be a set i,n K2 withG(Ko,Ân) : 0. Then

(w-u)(d-u)1uu,

wi,th equality when and only when ff I Tn, whereTn is the triangle o/Figure 6.3.

uo a
I

v

a
d

Figure 6.3: The triangle ft

We then use this result to obtain a corresponding inequality for the case

G(Ko,f) : z. We prove

Theorem 6.2 Let K be a set in K2 with G(Ko,l) : 2. Then

o

(w-z)(d-L)<2,
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wi'th equality when and only when K = 72, where Tz is the triangle o/ Figure 6.4

+d

Figure 6.4: The triangle T2

6.2 Three useful lemmas

Suppose that K € K2 and G(Ko,Ân) :0. Let

f 6) - (w(K) - u)@(x) - u) : (w - u)(d - u)

Clearly \Me may assume that d ) w ) u ) u. We aim to find the maximal value of

f 6). We first establish three lemmas which will help us narrow the possibilities

for a maximal set.

In Lemma 6.3, we establish the mærimal value of f (K) for the class of triangles

circumscribing a cell of Â¿. Lemmas 6.4 and 6.5 will help us eliminate those sets

which are not marcimal.

Lemma 6.3 Let K be a tri,øngle circumscribi,ng a cett of Ìtp. Then

f 6): (t¿ - u)(d - u) 1 uu,

with equølity when and only when the edge of K with length d lies on the si,d,e of

the cell hauing length u.

ProoJ. Let the vertices ofK be X,Y and Z and let C denote the cell inscribed

in Il. Without loss of generalit¡ let XY be the side of K containing two vertices

of C. Let XY have length ö and let the altitude from Z to Xy be h.

70

a

a

a

a
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we first let the edge xY lie on the edge of c with length u. Then A - ,bh(:
lrù. The edges of C partition K into four regions. The area of K may therefore

be calculated as the sum of the areas of the four component parts (Figure 6.b).

Z

Figure 6.5: A triangle circumscribing a cell of Â¿

Hence

h

YX

)

(bu * hu),

b

1
b + (h-u)u+uu

2

that is,

wd: bh: bu I hu.

We first note that

(bu + hu)2 : (b, - hu)2 + a(bu)(hu).

since wd : bh, we have (äu) ( hu) : (du)(wu). F\rrthermore, since 0 < (bu - hu) <

(d, - wu), it follows that

(bu + hu)' < (d, - wu)2 + a@,u)(wu) : (da * wu)2.

Hence

bu*hu1du*wu.

|'a: |un : (
1

2
1

2

uu

We thus have

wdldu*wu
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Adding uu to both sides of the inequality gives

Í(K):(w-u)(d-u)1uu.

Equality is attained here when XY : b: d, and /¿ : m.

If, on the other hand, xY lies on the edge of C of length u (here we may assume

that z f u, otherwise we have the above case), then we obtain (w-u)(d,-u) I uu.

In this case \rye write

Í(K) : (w - a)(d - u) : (w - u)(d,- u) + (w - d,)(u - u) (6.5)

Since w < d for triangles, and u 1u, we have

(w - u)(d- u) < (w - u)(d - u) l uu

Hence f 6) 1 uu with equality when and only when the edge of K with

length d lies on the side of the inscribed cell of length u. ¡

Lemrna 6.4 Let K be a set in K2 contained in a triangle T satisfying the cond,i-

tions of the Triangle Rotati,on Lemrna. Then there i,s a triangle L ci,rcumscribi,ng

a cell oÍ I\n with f (K) < /(A). Equality holds when and only when K ^r a.

Proof. since K çT, f 6) s /("). By the T[iangle Rotation Lemma, either

7 circumscribes a cell of Â¿ or there is a triangle ?i = ^7, ^ 
) 1, with ?i

circumscribing a cell of Â¿. In either case, there is a triangle A circumscribing

a cell of Â¿ with /(T) S /(A). It follows that /(rf) S /(A) wirh equatity when

and only when K = L. tr

Lemma 6.5 Let Q be a proper conaer quadrí,lateral ci,rcumscribi,ng ø cell of /\n

and, hauing edges each containi,ng in its i,nterior a aer-ter of the celt. If K is

contained in Q, then f (K) < ua.
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Proof. We shall denote lines with lower case letters. Thus ø is a line containing

the point x. Let d(x,gr) denote the distance of point x from line gr. Let the

vertices of the circumscribed cell of Â¿ be A, B, C and D labelled anticlockwise

and let Q: XYZIT where a.b: X,b.c:Y,c.d: Z andd,.a: I,Z (Figure 6.6).

since K ç Q, we have f (K) s f (A). It therefore suffices ro show that /(e) 1uu.

Q)

X

Figure 6.6: The quadrilatenl Q with diameter Xy

We first note that the diameter of a polygonal set is the ma:rimal distance

between a pair of vertices of the polygon. Suppose first that d(e) is the length

of an edge, xY say, of Q. without loss of generality, suppose that w is the

vertex of Q furthest from ö. Then w(q S d.(W,b). Let ? be the triangle xyw.
Clearly d(T) : XY and so u,'(?) : d,(W,ó). It follows that u(e) < ur(?). But

since ? Ç Q, we have tu(?) S w(Q). Hence w(q : w(T) : d,(W,b). Since ?
and Q have the same width and diameter, it suffices to show that /(") 1 uu.

Noting that the edge WY contains no lattice points, ? may be enlarged about

the point x to Tr : awrxYL where w{t contains the point C or D, and,

C and D are both not in Ti. Now fi satisfies the conditions of the T[iangle

Rotation Lemma. By Lemma 6.4 there is a triangle A circumscribing a cell of

z\.¿ with ÍQù s /(A). F\rrthermore, by Lemma 6.3, /(a) l uu.It foltows rhar

z

w

Y
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f@) s f@) : fQ) < Í(r,) < /(^) 1 uu,

we now suppose that d(Q) is the length of a diagonal of e, wy say. Let t
be the width of Q in a direction perpendicular to I4zY (Figure 6.7). Since the

(minimal) width of Q occurs in a direction perpendicular to an edge of. e, we

have u,'(Q) 1t. LetWY make an acute angle g with CD andlet XZ intersect

wY in the point o. Now A@) : Lt¿(q.This area is also obtained by adding

the areas of the quadrilateralsODWA,OBYC toOCZD,OAXB.

z
0

Y

A t

X

Figure 6.7: The quadrilatenl Q with diameter WY

Suppose first that AB: u and BC : u. Then we have

Trof}l =lrua@)coso + rrutcoso.

Hence

td\q : (tu + d(Q)u)cosd ( tu + d(Q)u.

Adding ua to both sides of the inequality and factorising, we have

(t - u)(d,@) - u) <. uu.

Since w(Q) ( ú, we have

f (Q): @@) - o)(d(q - Q < (t - e@@) - ") 1uu.
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Now suppose that AB : u and BC : z. Repeating the above argument, we

obtain the corresponding inequality

(*@)-u)(d,(Q)-u)<uu.

By (6.5), f @) : @@) - ,)(d,(q - u) < uu.

6.3 Proof of Theorem G.l_

We now assume that K is a ma¡rimal set. By Lemma 6.9, f (K) ) uu. F\rrther-

more, for any convex set K, (w -2r)d < ztf\r2 (Scott 197ga).

We first suppose that r S T" S |u. Then

,ß:Vua{uu

Hence K is not maximal. 'We may therefore assume that r > lu. Since we also

have ø ) u, Lemma 5.4 applies and it follows that either K ç ? where T is
a triangle satisfying the conditions of the Tliangle Rotation Lemma or K Ç e
where Q is a proper convex quadrilateral circumscribing a cell of .4,¡ with edges

each containing in its interior a vertex of the ce[. If K ç q, then /(K) < f @).
By Lemma 6.5, r@) < uu and so -[l is not ma>rimal. Hence K ç T. By

Lemma 6.4, Í(K) s /(A). since K is maximal, it may be deduced thar K ry a
where a is a triangle circumscribing a cell of Â¿. By Lemma 6.3, f (Ð 1 uu

with equality when and only when y = Tn (Figure 6.3). This completes the

proof of Theorem 6.1.

6.4 Proof of Theorem 6.2

Let K now be a set with G(Ko,f) : Z. By SL2, we have the following two cases:

(i) If z1 and z2 are both odd, we consider the sublattice f' and observe that

G(Ko,f') : 0. In this case ?¿ : ,t) : tÆ and, by Theorem 6.1, we have

(,-Ø)(a-$)sz.

(w -u)(d,-u) < (w -u)d,< (tr.'- 2r)d,<ztfvrz S2l5.yy'2'2



6.5. Two corollaries T6

However,

(w - 2)(d,- 1) - (, - Õ)(d, -,Æ) : r(,f2- 1) + d,(rt _ 2)

: d(2\Æ - g) < o.

It follows that (ur -2)(d,-1) < (w-yrz¡@-t[z) ( 2. Hence K is not maximal.

(ii) If sã,! zy is odd and z2 is even, we consider the sublattice f', and observe

that G(Ko,l") : 0. Here LL : l, u : 2 and by Theorem 6.1, we have

(r-2)(d-L)<2.

Equality occurs when and only when K = T2 (Figure 6.4).

6.5 Two corollaries

Corollary 6.6 Let K be o, set i,n K2 wi,th G(Ko,Aa) : 0. Then

(w-u)d,Sif'fz"+2u).

Equali,ty is atta,ined when and only when K = á¿ (Figure b.B).

Corollary 6.7 LetK beøsetinK2 withG(Ko,l):2. Then

'/5

Equality i,s attai,ned when and only when K ry á2 (Figure b.4)

To prove Corollary 6.6, we rearrange (6.3) to obtain

(6.6)

with equality when and only when y 
= Ta (Figure 6.3). Combining this with

(5.3), we have

< if'n" * 2u),

(w-2)d<2+

u11)(w-u)d<

2

(w-u)d< uu
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with equality when and only when * = tn (Figure b.3). Corollary 6.7 may

be deduced in the same way by rearranging (6.a) to obtain (w - 2)d, ( u and

combining this inequality with (5.4).

6.6 Related results

We observe that (6.1) may be rewritten as

11
-*-)1.w d- (6.7)

McMullen and Wills (19s1) give a generalization of (6.7) for sets in K'. The

extensions are quite complicated and involve the use of function a\s w¿(K) : wo

and ô¿(K) : ô¿ defined as follows: Let w¿(K): ?rr¿ denote the width of K in a

direction parallel to the ith basis vector (see Figure 6.8 for ur1 and tr.,2 in ft2).

The functionals u¿ ã,re also called the outer L-quermasses of K in the direction

of the ø¿-a>ris. Let H¿ be a plane perpendicular to the ith basis vector. Then

6n(K) - ô¿ is defined to be maxw(K n H,). we arso recall the definition of a,,

in Theorem 5.6. Then

Theorem 6.8 (McMullen and Wills) Let K e K and, Iet G(Ko,f,,.) : 0

Then

Arr-r
1 i: Ir...,fl,

,n
6¿

Arr-r
1

conjecture 6.9 (McMullen and wills) Let K € K and, ret G(Ko,f,,) : 0

1+-
U¿

-1t/n ,
d

+

In the same paper, the following stronger result is conjectured:

u

Then
4,,-r+1>f.

w d-
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We note that in the case n:2, we have (6.7).

Scott (1985b) and Wills (1990) give simpler generalizations of (6.7) by using

the idea of an ari,al d,iameter. Let d¿(K): d¿ denote the length of a maximal

segment of y'l parallel to the ith basis vector (see Figure 6.8 for d1 and d2 in ft2).

The functionals d,¿ are also called lhe inner !-quermas.ses of K in the direction of

the ø¿-axis. In fact, in the case n:2,we have d¿ - d'¿. scott (1gsbb) proves the

following analogue to (6.7):

Theorem 6.10 (Scott) Let K eK andletG(Ko,f,") :0. Then

Equality holds when and only when K i,s a cer-tain crosspolytope.

Wills (1990) improves Scott's result above by using the functionals tr.r¿.

Theorem 6.11 (Wills) ,teú K eK and,IetG(Ko,f,,) : 0. Then

i:L,...rn.

Equality holds when o,nd only when K i,s a certain crosspolytope

Ði"

*.Ðï"'

x2

1
w2

I

o wr Jt

Figure 6.8: The functionals ?r.r¿ and d¿ for ft2
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Recentl¡ Vassallo and Wills (1996) generalized (6.7) to arbitrary lattices.

Let )r denote the length of the shortest non-zero vector of .4, and let 2p4 be the

ma><imal distance between two adjacent lattice lines (we note here that )1 : lal

and2p4 - lblsind, where {a,b} is a Minkowski-reduced basis (p.o¿)). Then we

have the following generalization of (6.2):

Theorem 6.12 (Vassallo and Wills) LetK €K2 andletG(Ko,/\):0. Then

EquøIity holds when ønd onlg when K i,s congruent to the tri,angle shown in Fig-

ure 6.9.

This result is further extended in the same paper to the case where Ko contains

an arbitrary number of lattice points.

Theorem6.13 (VassalloandWills) Let K e lC2 and let G(K",L) < k2.

Then

By applying Theorem 6.12 to the rectangular lattice and rearranging the terms

of the inequality, Theorem 6.1 follows immediately.

b

0

2ttt

w

2ttt

w

)'+ _ >1
d-

À'1+ ->-'d-k

a

a
+Àl+

d

Figure 6.9: Vassallo's generalization of Scott's width-diameter inequality



Chapter 7

Further width inequalities for planar convex sets
with lattice point constraints

7.L Introduction

Let K be a set in K2 with area A(K) - A, perimeter p(x) - p, diameter

d(K) - d and circumradius ^R(/f) : .t?. Scott (1930) proves that if G(Ko,f) : 0,

then

T,,, (7.1)

(7.2)

(7.3)

(7.4)

3w,

1

-Ul.t/e

Equality is attained in (7.1) when and only when K = To (Figure 6.1) and equality

is attained in (7.2) and (7.3) when and only when * = to (Figure b.1).

In this chapter we generalize the above inequalities to rectangular lattices.

We then use these results to obtain the analogue of (7.1) in the case where

G(Ko,f) : t. we also obtain the analogues of (2.1), (7.2) and (7.3) in the

case where G(Ko,l) : Z. Let Â¿ denote the rectangular lattice generated by the

vectors u : (tr,0) and v : (0, u) where u 1 u. We prove

Theorem 7.1 Let K be a set i,n K2 wi,th G(Ko,^n) : 0. Then

uu
1

2
)Aa(w

80

t



7.2. Proofs of (7.5) and (7.6) of Theorem T.l

(r-o)p S 3uw,

81

(7.5)

(7.6)
1

( uw )
-UU\/3

R

Theorem 7.3 Let K be a set in K2 with G(Ko,l) : 2. Then

Equality is attained i,n (7.\ when and only when K e' Z¿ (Figure 6.J), and,

equality i,s atta,ined in (7.5) and, (7.6) when and onlg when y 
= tn (Figure b.3).

The next two results will quickly follow from Theorem 2.1

Theorem 7.2 Let K be a set in K2 with G(Ko,l) : I. Then

3w,

1...:
t/g

(7.7)

Equality i,s attained, when and only when K ry fr (Figure 6.2).

w

(7.8)

(7.e)

(7.10)

Equality i,s attai,ned, i,n (7.8) when and, onlg when K = T2 (Figure 6.4), and, equality

i,s attained i,n (7.9) and (7.L0) when and only when * = tz (Figure 5.4).

7.2 Proofs of (7.5) and (7.6) of Theorem Z.l-

Suppose ihat G(K", Aa) : 0. To prove (7.5) and (7.6) of Theorem 7.1, we adapt

the method by Scott (1980). Hence to prove (7.6), we recall Jung's theorem which

states that for a set rl € K2, R S d,l\ß, with equality when and only when K is

an equilateral triangle (Yaglom and Boltyanskii 1961, p.l7). By Jung's theorem

and (6.6), we have

(w-u)R<(,-r)

For equality, we require U = €n.

(w-2)A s T,,,
2)p <

)(

(

2

u

u R

1d...:
'/s

_:'IJ,U
t/S
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We now prove (7.5). Let r be the inradius of K. We note first that if K is a

convex polygon, K may be partitioned into triangles by joining each vertex of K
to an in-centre of K. Summing the areas of these triangles gives

A1> ,Prt (7.11)

with equality when and only when every edge of K touches the unique incircle.

Since any set in K2 may be approximated by a convex polygon, this inequality is

valid for all sets in K2. By using (7.11) and assuming (Z.a) for the moment, we

have

(, - o)p S2;f, - a)A S+
By Blaschke's Theorem (Yaglom and Boltyanskii 1961, p.18), we have w 1Jr,
with equality when and only when K is an equilateral triangle. Hence

(, - o)p 13uw,

with equality when and only when K = tn.

7.3 Proof of (7.4) of Theorem 7.1

We adapt the method by Scott (19s0) to prove (z.a). we first observe that (7.4)

may be written

ó(K): #_'*' ,0.

The problem therefore becomes one of finding the minimal value of /(K). Now

)

Recalling Theorem 5.1 and noting that u ( u, we have t¿.' ( o * T{2" < 2u. rt
follows thar 0þ/0w < 0 and hence / is a decreasing function of A and u. Now

aó
6A
aô
õw
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Iet K be a set for which ó(K) is minimal. Since / is a decreasing function of A

and to, we choose K so that,4 and u are as large as possible.

We first note that (w - 2r)A < ,,, I tß (Scott 1929a). Hence if r < Iu 3 lr,,
we have

(w - u)A< (u - 2r)A <* 
= 

4: -' 2

-'/Z-t/g2<'u'''
We may therefore assume that r > lu. Furthermore, since u ) a, it follows from

Lemma 5.4 that either K çT, where 7 is a triangle satisfying the conditions of

the T[iangle Rotation Lemma or K Ç Q where Q is a proper convex quadrilateral

circumscribing a cell of A¿, with edges each containing in its interior a vertex of

the cell.

Suppose first that K çQ.Clearly, ó(K) > ó@).Since G(e",Âa):0, we

may take K : Q. 
'We 

now recall the following lemma by Scott (1g93):

Lemma 7.4 (Scott) The quød,rilateral Q can be transformed, i.nto a ki,te e, høu-

ing the followi,ng properti,es:

@) ,(Q') > w(Q),

(b) 8' contains no latti,ce point i,n its i,nterior,

(c) the si.des of Q' pass through the points (0,0), (r,0), (u,u) and, (0, r),
(d) 8' has its ari,s along , : Ir,
(") A(Q') >_ A(q.

Property (e) is not explicitly stated in (Scott 1993) but follows from the fact

that Q'is obtained from Q by Steiner symmetrization (which preserves areas) and

an enlargement with scale factor s ) 1. From Lemma T.a @) and (e), it follows

rhat þ(Q') S ó@). We may therefore take K to be the kite e, : XYZW
(Figure 7.1). We now show that (r' - u)A.lurr.

Let xz: r ârd YW: gr. Then A:Txa.Also, computingthe area of e'
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w

G

F

Y
x

A
r ua'
2(a-o)

H

X z

E

v

Figure 7.1: The kite Q'

in terms of the areas of the cell and the remaining triangles gives

11A: ua + ,u(r - u) + i"(a - r).

Hence ïU : un * uA.

Suppose first that r ) 2u. Then y 1 2u. Fïom rA : urluU¡ we have

x - uAl(A - u) and hence

\Me note that for the given range of a, a2l(y - u) is a decreasing function of gr.

Therefore since tt ( gr, we have

^lua2 luu)2
^: rçunti6'

that is,

1a,(w - u)A tuu-.

Suppose now that r < 2u. Then rearrangingrA: ur*uy, we have gr :
uxl@ - u) and

n _I ur2^-i1"-"¡'
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For the given range of x, r2f (r - z) is a decreasing function. Since u) < r, we

have

ur2 I uwz

(r-u 2(w-u)
Again, from Theorem 5.1, we have w 1u+ltfzu. It follows that to 1u*u.
Hence (u - u)w < (o" - u2) or equivalently ul(w - u) < ul@ - u). Hence

,Luw2Iuw2
^tl1r-u¡tlçr-u¡,

and we have

(w - a)A.|ur'.

we now complete the proof by showing that if K ç ?, then K p Ta (Fig-

ure 6.3). Since K çT, we have ó(K) > óg).By the Thiangle Rotation Lemma,

either ? circumscribes a cell of Ä¿ or there is a triangle ?i ¡¿ 

^7, ^ 
> 1, with ?.

circumscribing a cell of Â¿. In either case, there is a triangle A circumscribing .{¿

with A(A) > A(T) and tr(A) > wg). Since / is a decreasing function of A and

rr, we have /(A) S óQ) S ó(K).Since G(Ao,An) :0, we may rake K = A.
In this case, by Lemma 6.3, we have (tu _ a)(d,-u) < uu,wilh equality when

and only when y 
= Ta (Figure 6.3). Rearranging the terms in the inequality, we

haved<uwl(w-o). Hence

.11uw2A: 
|wd, < ,@_ ù,

that is,

(w-u)A.ï,,',

with equality when and only when 7¡ =Tn (Figure 6.3).

This completes the proof of. (7.a) of Theorem 2.1

85

A_L
2
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7.4 Proofs of Theorems 7.2 and T.J

Let K now be a set with G(Ko,f) : t. By SLL, we consider the sublattice l,
and note that G(K",l') : 0. In this case u : ?) : ,Æ and,by Q.\, we have

(w - rfz¡,1,3,

with equality when and only when K = TL (Figure 6.2). Hence Theorem 7.2 is

proved.

Now let G(K',f) : Z. By SL2, we have the following two cases:

(i) If z1 and z2are both odd, we have G(Ilo, l,) : 0. Here again L!, : ?) :,r/z
and by Theorem 7.1, we have

rÆ

We also recall from Theorem b.2 that tr.r < 2 + ]r/3. Therefore

2
u2,

3wtÆ,

rt
,/S

w <2+fr:

Rearranging terms, we have tÆ(, - 2) < (, - ,Æ).Hence

(w-2)A <
2

(r -2)p <
(w-2)R <

t/S

(ii) If sã'y zl is odd and z2 is even, we consider the sublattice l" and observe

that G(Ko, f") : 0. In this case ?¿ : 1 and u : 2 and we have Theorem 2.3.

Equality is attained in (7.8) when and only when K = T2 (Figure 6.4) and equality

is attained in (7.9) and (7.10) when and only when * = €z (Figure b.4).
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7.5 Related results

We note that (7.4) has in fact been generalized to arbitrary lattices by Vassallo

(1995). Vassallo makes use of the quantities 11 and.2p"1defined in $6.6. He proves

Theorem 7.5 (Vassallo) Let K e K2 and let G(Ko,Ìy):0. Then

1
(w - 2p,)A Àtw2-2

Equality holds when and only when K i,s congruent to the triøngle shown in Fig-

ure 6.9

Although (7.4) follows immediately from Vassallo's result, the proof of (Z.a) in

$7.3 differs from Vassallo's proof in the use of the T[iangle Rotation Lemma and

Lemma 7.4 (Scott 1993), the proof of which depends on Steiner symmetrization.

Scott (19s5c) gives a result relating I/ and the outer l-quermassll,,rrJ¿ (p.TT)

for sets it K having G(Ko,f",) : 0.

Theorem 7.6 (Scott) Let K be a set in Kn haui,ng G(Ko,f,,) : 0. Then

(") v 3 TIru
n

ã:l

(b) Y 
=þ,,, -#1r,, - r), for ! 1 w¿ s #r

In the case where n : 2, wt 2 2 and w2 ) !, we høue
1(")Yl wtwz - i wl(w2 - r)

The bounds are best possible.



Chapter 8

Area-width relations for convex sets with lattice
point constraints

S. L Introduction

Let K be a non-empty set in K2 having area A(K): A and width u(K): to. Let

Â¿ be the rectangular lattice generated by the vectors ,, : (2,0) and v : (0, u),

u 1 u. In Chapter 7, we obtained area-width inequalities for a set y'l having

G(Ko,Âa) : 0. In this chapter we obtain a new area-width inequality for such

a set. We then use this result to obtain the corresponding inequality for a set

K having G(Ko,f) : g, where g : 0,2. We also make a conjecture for the

corresponding inequality for a set K having G(Ko,f) : t.

Theorem 8.1 Let K be a non-empty set in K2 with G(Ko,Aa) :0. Then

# , frø*f,r', (s1)

with equali,ty when and only when K ry á¿ (Figure b.3).

Corollary 8.2 Let K be a non-empty set i,n K2 with G(Ko,f) : 0. Then

A1
u)3 '- ,ß

(1 * *r' = o.3oe, (8.2)

with equality when ønd only when K = to (Figure b.1).

Corollary 8.3 Let K be a non-emptg set in K2 with G(Ko,,f) : Z. Then

* fr' x o.2oL,

88

A
,t

1
(2 (8.3)

,ß



8.2. Proof of Theorem 8.7 89

with equality when and only when K = áz (Figure b.4).

8.2 Proof of Theorem 8.1

The proof follows easily by combining two known results. The first is that of atl

sets in K2 with a given width, the equilateral triangle has the least area (Yaglom

and Boltyanskii 1961, p.6s). Hence A > Glr/5)u,'2. Combining this with (b.3),

we have

. r#tizA
,t rtø**,r'

Equality holds when and only when * = €n (Figure 5.3).

Corollary 8.2 follows easily by letting ?r: ,t): 1 in Theorem 8.1. Equality

holds when and only when * = to (Figure 5.1).

To prove corollary 8.3, we use ^9-L2 to obtain the following two cases:

(i) If z1 and z2 are both odd, we consider the sublattice f' and observe that

G(Ko,f') : 0. Here LL : 't) : ln and by Theorem 8.1 we have

#. #rn*f,nrl = 0.21e , rtrr**r,= 0.201.

(ii) If sã,!, zl is odd and z2 is even, we consider the sublattice f" and observe

that G(K', f") : 0. Here u: L and u :2 and by Theorem g.1, we have

A 1 ._ _ f.,_, ru rì Ðrì1,r>-æl'* z) ^Èu'zur'

Equality is attained when and only when * = €z (Figure b.4).

Hence Corollary 8.3 is proved.

8.3 A conjecture

We might now ask for a corresponding inequality for G(Ko,f) : t. We make the

following conjecture:



8.3. A conjecture

Conjecture 8.4 Let K be a non-empty set i,n K2 with G(K",l) : I. Then

90

A
-)u)ó -

1/ 4 \
/3 \vE(s + \ø )

x 0.243,

$ i,s the equilateral triangle oJwith equality when and only when K = tt, where

Figure 8.1.

a

4 x 0.243.

Equality occurs when and only when K = tt.
This leaves unresolved those cases for which irÆø + \Æ) 1 w 1 L + \f2.

We believe that the set for which A/rt is minimal is congruent to the equilateral

triangle û of Figure 8.1.

a

aa

Figure 8.1: The equilateral triangle á1

The problem which occurs here is that for convex sets containing just one

interior lattice point, w 1 L + \/, x 2.414 with equality when and only when K
is congruent to the isosceles triangle shown in Figure 5.2 (Scott 1985a). Since this

set of largest width is not an equilateral triangle, the previous method cannot be

applied.

A simple calculation shows that the width of t1 is ir/rfs + /g) x 2.Jg.

Hence if 0 < , < it/r(5 + /5), an equilateral triangle with interior containing

one lattice point may be constructed. Since A> íltß)u.'2 with equality when

and only when K is an equilateral triangle, for this range of to we have

A
,t

'ß' 'nþ + 
'/z)

)(
A
*'

11

u-



Chapter 9

Circumradius-diameter and width-inradius
inequalities for convex sets with and without
lattice point constraints

9. L Introduction

Let K be a set in K2 having diameter d(K) - d, width w(K): ?r, circumradius

R(K):.8 and inradius r(K): r. Let Ân be the rectangular lattice generated

by the vectors ,, : (r,0) and r: (0, u), u 1u. In this chapter, we establish

an inequality relating R, d and t¿ for a convex set without any lattice constraint.

We then use this result to obtain an inequality relating d and R for a set K
having G(Ko,Âa) - 0. By considering special rectangular lattices, we deduce

the corresponding results for a set K having G(Ko,l) : 0 and. G(Ko, f) : 2.

We also obtain dual inequalities relating to and r for the lattice constrained sets.

Finally we conjecture the corresponding results for the case where G(K",f) : t.

Theorem 9.L Let K be a set in K2. Then

2R- d - ß),, (e.1)

with equali,ty when and only when K i,s an equi,lateral tri,angle.

Theorem 9.2 Let K be a set i,n K2 wi,th G(Ko,^n) : 0. Then

(2 - \ß)@ **ù,

(u+

(e.2)2R-d <
3

w-2r <
3

\ß
)

91

2u (e.3)



9.2. Proof of Theorem 9.7

with equali,ty when and only when K ry t¡ (Figure 5.3).

Corollary 9.3 Let K be a set in K2 wi,thG(K",|):0. Then

wì.th equality when and onlg when K ry ás (Figure 5.1)

Corollary 9.4 Let K be a set in K2 wi,th G(Ko,l) :2. Then

92

) x 0.622,

-d
,ßT(1w-2r +

1

3

1

3

2R

2R- d

w-2r
å,t- ztß)x0.512,

]t, * f, =o eb5,

wi,th equali,ty when and onlg when K = á2 (Figure 5.4)

9.2 Proof of Theorem 9.1-

We may assume that Ko # Ø, for if Ko - Ø, then either K - Ø or K is a line

segment. If. K : Ø, then Theorem 9.1 is trivially true. If K is a line segment

then d - 2R, w :0 and Theorem 9.1 is trivially true. Hence we may assume

that K I Ø. lt follows that w I 0. We now define the functional

Í(K): ft'frlø) - d,(K)): !pa- a).

\Me seek to ma>rimize the functional f @). Clearly, since d < 2R, /(/() > 0.

We first recall that the circumcircle of a set K either contains two diametrically

opposite points of K or else it contains three points of ðK which form the vertices

of an acute-angled triangle (Yaglom and Boltyanskii 1961, p.59). In the first case,

2R : d and f 6) : 0, so 1l is not maximal. Hence we may assume that K
contains an acute-angled triangle ? with R(?) : R(K).Furthermore since ? is

contained in K, d(T) S d(K) and wg) S w(K). It foltows that /(If) S /(").
Hence it suffices to maximize f (K) for acute-angled triangles ?.
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Let T : LXY z be an acute-angled triangle with Ly < lx < lz as shown

in Figure 9.1. Since lZ is the largest angle, it follows that Xy : d,. We first

apply to ? a shear parallel to xY to obtain the triangleT' : xyzt withyZt :
xY - d,. Let P and P' be the circumcentres of ? and ?' respectively. since

P and P' both lie on the perpendicular bisector of the line segment xy, and

PZt > PZ - R(T), it follows that P'is further away from xy than the point p.

Hence R(T') > R(T). Furthermore d(T') : d(Ð and tr.'(?') : w(T). It follows

that /("') > f (T). Hence we need only consider those cases for which ? is an

isosceles triangle with vertex angle atY. In this case lX : lZ - a / ä. W.

note that tu : dsin 2a and that from the sine rule, 2-R : dl sino. Hence we have

11
f(K): ^(,- 

-1)dur'sln0: (#-1X+)
z/z

o C a

X A Y

Figure 9.1: Shear .oo1L¿ to the triangte ?

By letting f : tan o, we have

f(K): (ry-') (#)
r+*

a

s(t)h(t)

1

2

1

2
1

2

(@-t)

1)

t2

+
.7
\rz( r+t2 -t)

gí

.'c



g(t):\ffi-ú)0, g'(t)
t

: :-1 z(\
\/I + tz

2: - ^ (0.
tó

Since f @) is a product of positive, decreasing functions of ú, it is itself a

positive, decreasing function of ú. Since a ) [, we have t > \/5. Hence the

maximal value of /(/r) is attained when t: {5, that is when ? is an equilateral

triangle. In this case

Í (K) : |{r^ - d) < 
z^fz 

- ,/il,
that is,
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We note that

1
h(t) + 1 > 0, h'(t)

t2

22R-d< (z - tß)w,
3

with equality when and only when K is an equilateral triangle.

9.3 Proofs of Theorem 9.2 and corollaries

To prove Theorem 9.2, we combine (5.3) with (g.1) to obtain (9.2). Equality is

attained when and only when * = tn (Figure 5.8).

To prove (9.3), we recall the result of Blaschke, that for any set in K2, w 1 zr

with equality when and only when K is an equilateral triangle (Yaglom and

Boltyanskii 1961, p.lS). This inequality may be rewritten as

(e.4)w -2, <9-3
with equality when and only when K is an equilateral triangle. Combining this

with (5.3), we obtain the required inequality.

Corollary 9.3 follows easily from Theorem g.2 by letting u,: u : !.

We now Let K be a set with G(Ko,l) : 2. By SL2 we have the following two

CASCS:
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(i) If z1 andz2arebothodd,then G(Ko,l,) :0. Herewehave tt,:?):J,
and by Theorem 9.2,

2R- d <
3

(5-2\ß)x0.5L2,1

3

w-2r < ,Æ *, =o 8ze. ]t, +ft * 9550(1 +
3

(ii) If sã,f, zl is odd and z2 is even, we consider the sublattice 1,, and observe

that G(K", f") : 0. In this case u : 1 and u :2 and by Theorem g.2, we have

1

3

1

3

-d2R

w-2r

(5 - 2\fÐ a: 0.512,

çr*fl= o.e5b.

Equality is attained when and only when * = 8z (Figure b.4)

Hence Corollary 9.4 is proved.

9.4 A conjecture and related results

As in $8.3, we now make a conjecture for the corresponding inequalities for a set

K having G(Ko,f) : t.

Conjecture 9.5 Let K be a set in K2 hauing G(Ko,,l) : t. Then

2R-d s J-r(l-$=0.425,

w-2r <

with equality when and only when K ry á1 (Figure 8.1).

As in $8.3, the difficulty which occurs here is that for convex sets containing

just one interior lattice point, w 11+ \Æ with equality when and only when K
is congruent to the isosceles triangle shown in Figure 5.2 (Scott 1985a). As this

set of largest width is not an equilateral triangle, Theorem g.1 does not give a

sharp inequality.
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Using the same arguments given in $8.3, we first consider the case where

0 < t¡ S it/2(s+/3). In this case, an equilateral triangle with interior containing

one lattice point may be constructed. It follows from (9.1) and (g.a) that for this

given range of u.r,

2R úG-$x0425,
,Æ (s+r/5) =0.7e3,

with equality when and only when * = & (Figure 8.1).

As in $8.3, this leaves unresolved those cases for which itÆts + ,ß) 1 w 1

1 + \n. we believe that the set for which (2R - d) and (w - 2r) are maximal is

congruent to the equilateral triangle á1 (Figure 8.1).

Scott (1978b, Lg79a, 1931) has obtained a number of inequalities involving

the quantities (to -2r) and (2R- d) for sets without lattice constraints in K2.

We summarize the results concerning (w - zr) and (2R - d) in Theorem g.6 and

Theorem 9.7 respectively. The set given in brackets is the best possible set.

Theorem 9.6 (Scott) Let K be a set in K2. Then

(i) (, - zr)d < 2tßr2 (Equiløterat tri,angle)

(ii) (to - 2r)d, < u212 (Infi,nite í,sosceles triangte)

(iii) (,n' - zr)d < 2wr /1ß (Equi,taterat triangte)

(iv) (to - 2r)R < r,14 (Infinite i,sosceles tri,angle)

(") (, - 2r)R 12r2 (Equilateral tri,angte)

(vi) (tr - 2r)R < 2wr /3 (Equi,lateral triangle)

(vii) (tr - 2r)p < 2r'lrß (Equilateral triangle)

(viii) (ø - 2r)p < 2tßwr < 6tßr2 (Equilaterat triøngte)

(ix) (tr - 2r)A < w3 /4 (Infinite i,sosceles triangle)

(") (, - 2r)A < ,'r lrß (Equi,tateral tri,angle)

d

w-2r
L2
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(¡) (, - 2r)A < ,,fgwr2 < Jtfïrs (Equi,Iaterat triangte)

Theorem 9.7 (Scott) Let K be a set in K. Then

(i) For n:2, (2R - d)A < r@tß - 5)¿e (not best possi,ble)

(ii) For n:2, (2R - d)p S (2tß - B)rR2 (Sets of constant wid,th)

(iii) (2A - d)d S (2\ñ1")6ñ - rTã)R2 (Resutar si,mprer)

(iv) (z^R - d), ! (21-n+Lln)(1ñ - !æ1)R2 (sets of constant width

containing a regular simpler of width w)

(v) (zrR - d), S ('Æ1")@ n(n * | - rtQn+ 1)).R2 (Sets of constant wi,d,th

contøini,ng a regular simpler of width w).



Chapter 10

New inequalities concerning the inradius of a
lattice constrained convex set

10.1- Introduction

Let K be a set in K2 with area A(K) - A, perimeter p(K) : p, diameter

d(K): d and inradius r(K): r. In this chapter we obtain new inequalities for

the pairs (A,r), (p,r) and (d,r) for a set K having G(Ko,f):0 (Awyong and

Scott 1996b). By considering a special sublattice of the integral lattice, we also

obtain an inequality concerning A and r for a set K having G(K.,f) :1. We

prove

Theorem l0.t Let K be a set in K2 with G(Ko,l) : 0. Then

(2, - 1),4 s z(t/r- 1) = 0.828, (10.1)

with equality when and only when K È 56 (Figure 10.1).

1- o{:-2. t ¡ [.n.., l'* *-\ \v

a

a-:-t l-. .-^5

,'*"," l)

a

a o

Figure 10.1: The diagonal square .56
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10.2. Prcofs of Theorem 10.1 and Corollary 10.2

Corollary 1O.2 Let K be ø set in K2 wi,th G(Ko,l) : L. Then

(2, - Ø)l < 4e - {Ð x 2.848,

99

(10.2)

with equali,ty when and, only when K ¡¿ S, (Figure 10.2).

Figure 10.2: The square 81

Theorem 1O.3 Let K be a set in K2 with G(Ko,,l):0. Then

(2, -1)lA - 1l . ;, (10.3)

(2, - t)lp - 4l < 2, (10.4)

(2r - r)(d, - 1) < 1. (10.5)

The limi'ting i,nfini,te strip Ps (Figure 70.3) shows that the stated, bound,s are best

possible.

Figure 10.3: The infinite strip Ps

LO.z Proofs of Theorem 10.1 and Corollary LO.z

We first prove a useful lemma.
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Lemma 1.O.4 Let K be a set in K2 with G(Ko,f) : O. Then there i,s a set K*

in K2 with G(Ki, f) : 0 satisfyi,ng the fotlowing coniliti,ons:

(a) A(K.) : A(K), r(K.) > r(K)

(b) K- i,s symmetric about the lines r: l,y : +.

Proof. We use Steiner symmetrization to obtain the set K.. We first symmet_

rize K with respect to the line ø : lto obtain the set Kr. From Theorem 2.8,

we know that K1 € K2, A(Kr) : A(K) and r(K1) > r(K).
We now show that G(Ki,f) : O. Since G(K",f) :0, Ko intersects the line

U : k, where k is an integer, either in the empty set or in a line segment of length

at most 1. Hence the symmetric set Kf intersects the line g : fr either in the

empty set or between the points (0, k) and (1, k). Clearly, G(Ki,f) : O.

we now symmetrize K1 with respect to the line y : I to obtain K*. By

Theorem 2.3 again, we have A(K.) : A(Kr), r(K.) > r(Kr). It may also be

deduced as above that G(Ki, f) : 0. Hence A(K.) : A(K) and r(K.) > ,(K).
By construction, K. is symmetric about the lines r : + and y: I and the lemma

is proved. tr

Let f (K) : (2r(K) - t)A(K) : (2r - I)A. By Lemma 10.4 we have /(K) I
f 6.). It therefore suffices to prove Theorem 10.1 for sets K which are symmetric

about the lines r : t and y : Lr.

To fully utilize the symmetry of K about the lines r : t and g : |, we

move the origin to the point (i,Ð. If r < |, (to.t) is trivially true. Hence

\Me may assume that r > |. Since K' does not contain the points pr(T,T),

Pt(-L,Ð, pt?I,-å) 
"n¿ 

Pn(L,-å), it follows by the convexity of K that for

eachi - 1,. ..,4,, K is bounded by a line l¿ through the point B, with 11 and 13

having negative slope and 12 and la having positive slope. Furthermore since K is
symmetric about the coordinate a:<es, K is contained in a rhombus Q determined



10.2. Proofs of Theorem 70.7 and Corollary 70.2

by the lines /¿, 'i : L,...,4. Since K ç Q, A(K) < A(e), ,(K) < r(e) and we

have /(K) < f @). It is therefore sufficient to maximize f (K) over the set of all

rhombi, K:Q, determined by the lines l¿, i:I,...,4 (Figure 10.4).

ty

a

x

a a

Figure 10.4: The rhombus Q

Let the line 11 make an acute angle of o with the ø-axis and let it intercept

the ø and y axes in the points X(n,0) and Y(0,gr) respectively. Since ¿1 passes

through (+,+), similar triangles give

I o

1

that is,

Multiplying both sides of the equation by r, we get

2r:L+L:sina*cosafry
Now

A  .A(L2xY)

2ra

2r2

smocosa
4r2

(sino * cos a)2 - t
4r2

v_

r

11
-r--tra



10.2. Proofs of Theorem 10.1 and Corollary 10.2

Hence

Í(K) (2r-I)A-2r-r* (").
1

-:n

2r*7 r

702

(10.6)

Now |o'(r) : t - llQr + 1)2 > 0. Hence g is an increasing function of

r. Noting that | 1r l LrtÆ, tn" maximal value of g is therefore attained at

,: Lrfr, that is, when and only when t = So. In this case, r\
L (*-\''y*^\- ""'$ {- \l- * t*'"t''tl cc-->'e t

f @) S2(ú - 1) = 0.828. tn *Ck) 2,. '.

S\ ^** .r*\*
We next use Theorem 10.1 to prove Corollary 10.2. Let K now be a convex

set with G(Ko,l) : t. By SLL, we consider the sublattice l, and note that

G(Ko,f') : 0. Hence letting A' and r' be the area and the inradius respectively

of K measured in the scale of f', and applying (10.1) to K with respect to 1,, we

have il?
(2r'-I)A'<2(\f2-r),

with equality when and only when * = Et. Since l' is a rotation of I scaled by

a factor of tÆ,
1 1A,:( )"A, r',n

where A and r are the area and the inradius respectively of K measured in the

scale of the integral lattice f. Hence

Q.L,-rA't/z )232(\/2-r)'

Simplifying, we get

(2, - Jù.q S 4Q - \ø x 2.848,

with equality when and only when K = .S1
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1-0.3 Proof of Theorem 10.9

Wefirstnotethatif r( |,inequalities(10.3) and(10.a) aretriviallytrue. Hence

we need only consider those cases for which à a, < i{2.
To prove (10.3), we first consider A < l. since r > |, we have A, l" and so

(2, -1)lÁ - Ll : (2r- 1)(1 - A) < (\Æ -1)(1 - i¡ .i
Hence we may assume that á > 1. Using the same arguments as those given in

$10.2, it suffices to consider a set K where K is a rhombus of the type described

in Figure 10.4. Let Q(r) denote such a rhombus with inradius r. From (10.6) we

have

(2, - r)lA- rl : (2r- 1)(,4 - 1) : (2r - r)A - (2r- 1) : #.;
Taking the infinite strip to be the limit of. Q@) as r tends to |, it is seen that

the stated bound is best possible.

Tìoprove (10.4), we first consider p<4. since r>l,we have p> T andso

(2, - t)lp - 4l : (2r- 1)(4 - p) < (,n -1X4 - r) < 2.

Hence \Me may assume that p > 4. we recall that A Z |0, (see inequality (7.11)).

combining this inequality with (10.3) and noting that r ) |, we have

(2r-r)lp- 4l: (2r-r)þ-4) < (2r-r)(+-+) s4(2r-r)(A-t) < +.!:2,
obtaining (10.4). As before, taking the infinite strip to be the limit of e(r) as r
tends to |,-the stated bound is best possible

Finally, to prove (10.5), we note from (6.1) thar (,r.u - 1)(d - t) S 1 wirh

equality when and only when K = T0 (Figure 6.1). Since w ) 2r, we have

(2, - 1)(d- 1) I (tu - 1)(d- 1) S t.

Taking the infinite strip to be the limit of a sequence of triangles of the type ?s

shown in Figure 6.1 as t¿ tends to 2r, it can be seen that the stated bound is best

possible.
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LO.4 Comment

Inequality (10.5) may be generalized to rectangular lattices by noting from (6.3)

that (tu -u)(d-u) 1 u,ut with equality when and only when y 
= Tn (Figure 6.8).

Since w ) 2r, we have

(2, - a)(d,- u) S (w - u)(d - u) 1 ua

Taking the infinite strip to be the limit of a sequence of triangles of the type Tp

shown in Figure 6.3 as ur tends to 2r, it follows that

(2r-a)(d-u)<ua



Chapter 11

Area-diameter relations for convex sets
containing one or two lattice points

11-. 1 Introduction

Let K be a non-empty set in K2 with area A(K):,4, diamefer d,(K): d and

circumradius .R(K) : ,R. Scott (L97aQ proves

Theorem 11.1 (Scott) Let K be 0, non-ernpty set i,n K2 with G(K", f) : 0.

Then

4=^x1.144, (11.1)d-
where À:2tÆsrn$, ó being the unique solution of the equation sind: î - 0

(/ = 0.832 æ 47.7"). The result is best possible with equali,ty when and, only when

K = ?{o (Figure 11.1).

Figure 11.1: The truncated diagonal square ?lo, ó = 4T.To

a

a

a

a

105
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Using d < 2R and (11.1), it may be easily deduced that

2À æ 2.288, (11.2)

with equality when and only when K = ?lo.

Hammer (1979) proves

Theorem 11.2 (Hammer) Let K be a non-empty set in K2 and, suppose that

Ald, > r),. Then G(Ko,f) > 
"'.

From Theorem 71.2 it may be deduced that if G(Ko,l) < 2r: 4, then Ald,<
2À x 2.288. In this chapter we establish sharp inequalities for Ald, and, Af R for

a set K having G(Ko,l) : t. We prove the following:

Theorem LL.3 Let K be a non-empty set in K2 hauing G(Ko,l):1. Then

A
R

A
d,

A
R

'/ls = 1.616,

2\ñ,^ x 8.2J2,

(11.3)

(11.4)

where ),:2tÆsin$, ó bei,ng the unique soluti,on of the equøti,on siná : i - 0

(S x 0.832 x 47.7"). Equali,ty holds when and only when K = ?{t (Figure rL.2).

.o
\/

Jo

o fO

Figure 11.2: The truncated square 7h, ö æ 4T.To

Let ¡t : ,Æ^.We give an analogue of Theorem 11.2
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corollary ]-1-.4 Let K be a non-ernpty set in K2 ønd suppose that Ald, > rp,.

Then G(K",1) ) 2r2.

We also obtain the corresponding inequalities for a special class of sets K
having G(Ko,l) : Z.

Theorem ll.5 Let K be a syrnmetric, non-ernpty set in K2 containi,ng two ,in-

teri,or latti'ce points symmetrically placed about the centre of K. Then

(11.5)

(11.6)

Equali,ty holds when ønd only when K o ?{z (Figure 11.3)

I

......'t.......
t"..

A
d
A
E

a.

9,',
---H---

I

I

I

Figure 11.3: The truncated rectangle 7{2, p x 48.5o

In $11.2 and $11.3, we prove Theorem 11.3 and Corollary 11.4 respectively. In

$ 1 1 .4, we simplify the two lattice point problem for a special class of sets satisfying

the conditions of Theorem 11.5. In $11.5 we prove Theorem 11.5 for this special

class of sets. In $11.6, we complete the proof of Theorem 11.b. Finall¡ in $11.7

we conjecture a stronger form of Theorem 11.5.

LL.2 Proof of Theorem 11.3

Suppose lhat G(K", f) : 1. By ,S.Ll, we consider the sublattice l, and note that

G(Ko,f'):0. Let A'and d'denote the area and the diameter respectively of K

a

a
I

I

I

I
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KtlKz-Kr- L:{h- L:lq€¡flÌ.

108

measured in the scale of f'. Observing that f is essentially a rotated version of

I scaled by a factor of \Æ, we have

t' : (L)'A. ai : L¿.\ lt2/ --1 - \/r-'
Furthermore from (11.1), we have A,ldi < À. It follows that

Equality holds when and only when y 
= ?h (Figure 11.2)

Since d < 2R, we have

with equality when and only when y 
= 7h.

I-1.3 Proof of Corollary LL.4

We reproduce Hammer's proof with minor modifications. Let K be a non-empty

set in K2 satisfying Ald > rp, where p - \Æ^. If r : 0, the result of co-

rollary 11.4 is obvious. If. r :1, by Theorem IL.g, G(Ko,l) > 2. Hence we

may assume that r ) 2. Following Hammer (1979), we consider the similarity

transformation

K+K1:lx:(rr:keK\.
Therefore A(Kr): A(K)lr2 and d(Kr): d(K)/r. Let

L - {(a,ô) e f;0 ( ø, b 1 r- 1}.

For a particular choice of L e L, we consider the translation

#: *# s,Æ¡= 1.616.

ztñ,¡f:,js

1
T

I
r

Since areas and diameters are unaltered by translations, we have

A(K") : A(Kr) : lA(K) _, ,,d(Kr) d(Kr) r d(K) ' n'
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From Theorem 11.3 we know that Ki contains at least two distinct lattice points

G1 and G2. Therefore Kf contains the two distinct points Gt * (Ilr)L and,

Gz+(Ilr)-D' This implies that Ko contains the two distinct lattice points rGt*L
andrG2*L. Let X1 - {rGr*L;L e ,C} and Xz: {rGz+L;L e ^C}. Now

X1U X2 C Ko. We use the notation lXl to denote the number of elements in a

finite set X. Since L may be chosen in 12 ways, lXrl :lXzl: 12. Furthermore

x1lx2: Ø, since if rGr + (ø,b): rGz+ (c,d) where 01a,b,c,d,1r - 1, then

r(Gt - Gz) : ("- o,d-b)- since r does not divide c- a and d- ö, we have

Gt: G2. Hence lXr U Xzl:2r2 and Ko contains at least 2r2 lattice points.

\Me will now give a condition under which Corollary 11.4 improves The-

orem 11.2. Let K be a set in K2 for which A/d, > ø and let [ø] denote the

greatest integer less than or equal to ø. Then

A 
- 

f . - rØlrd, *: f .À I t;J.r.

By TheoremtL.2, G(Ko,f) ) [ø/À]2. We also have

AT
-)r':-o' l.t

where p - \Æ^- By corollary 1L.4, G(Ko,l) > 2ln/ ¡r]'. w. will now show that

if ø satisfies krtÀ ( ø ( (lk\f2]+1)) for some k eZ,rhen2lxlp,l, >lrlÀlr.
In other words, corollary 11.4 improves Theorem 11.2. since lk\[2]^ < kr/z^,
we have lk{zl^ < r < (kr/rl+ 1)À. Hence lk\f2l < rl^ < g{zl* 1), which

implies that [ø/)] : lkt/rl. By Theorem 11.2, G(Ko,t) > lk\f\l2. On the orher

hand, we also have ([k{2]+ 1)À < (fr + t)tÆ¡, so rhar krfZS 1 r 1 (tc +t)tÞ,^.
Thus kp' < r < (k + 7)tt. This implies that k < rl tt < k +1. Hence lrl rrl : tt.

By corollary 77.4, G(K',1) > 2k2. clearly 2tç2 > lk{21, and so corollary 11.4

improves Theorem LL.2 if ktÆ¡ 1 r 1 (lk\fz]+ 1)À for some k e Z.

Itt,n
p,> [
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LL.  Some preliminaries

Let K now be a non-empty set in K2 having G(Ko,f) : Z. Without losing

generality, rffe may assume that the origin O is one of the lattice points. Let L

denote the other lattice point contained in Ko and let the coordinates of .L be

("t,rr). Fbom $2.5, we may assume that zr ) zz and z1 and, z2 are relatively

prime. We will consider the following cases for .L:

(i) ¿(1,0) (ii) ¿(1, 1) (äi) L(21, z2), z2 ) I.

In the rest of this section and in $11.5, we will consider case (i). Cases (ii)

and (iii) are dealt with in 511.6.

Let L be the point with coordinates (1,0). Hence, the centre, M, of .Il is the

point M(1,0). We now employ Steiner symmetrization to transform the set K
into a set K* which is symmetric about the lines r : + and gr : 0. We recall from

Theorem 2.3 that Steiner symmetrization preserves convexity and areas and does

not increase diameters. Hence

A(K) . A(K.)
@ = d(KJ'

To obtain K*, we symmetrize K with respect to the line ø - | to obtain

a closed convex set K*. Since K is symmetric about M, K* is also symmetric

about U :0. Furthermore since Ko does not contain any lattice points on the

lines y : +1, it intersects these lines in open segments of length at most 1. Hence

y'( intersects the lines gr : tl in the empty set or in line segments of lengths at

most one unit. It follows rhar Ki does not contain the points (1, +1) and (0, t1).
We now note that since (2,0) I K" and since K is convex, .K is bounded by a

line 11 containing the point (2,0). Since K is symmetric about M(Lr,¡), K is also

bounded by a line 12 containing the point (-1,0) and parallel to 11. Therefore

K lies in a strip bounded by parallel lines /1 and 12 containing the points (2,0)

and (-1,0) respectively. Hence K* is bounded by the lines ø:2 and r: -L
(Figure 11.4).
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Y=1

c1,0) (2,0)

Y=-l
l2

x=-l x=ll2 x=2

Figure 11.4: The case ¿(1,0)

To fully utilize the symmetry of K*, we will translate the origin to the point

M(+,0). The set K. is now symmetric about the coordinate axes and is bounded

by the lines ø - +i. Furthermote K* does not contain the points (+å,+1). In
particular, K. does not contain the point p(l,r).Hence K- is bounded by a line

I containing the point P and having a non-positive slope rn.

Henceforth we shall use ,4. and d to denote A(K.) and d(rr-) respectively.

Since K. is symmetric about the coordinate axes, it is contained in the closed

disk D centred at O and having radius t. fet Q y^ and. Qp denote the intersection

of. K* and D respectively with the quadrant r ) 0, U ) 0. Let the arc of \en
intercept the ø and the g/-axes at the points M and I/ respectively. Let arcfM, Nl
denote the closed arc MN of )Qo. Hence \eo : [o, M) u arclM,¡ü] u (¡/, o).
Since K* and D have a diameter in common and since Il- is symmetric about the

coordinate axes, it follows that Qy, contains a point on arclM,,n/]. We summarize

the properties of Qx. as follows:

(Pt) Q*. is bounded by a line I through p(+,L) having slope m, m < 0.

(PZ) Q*. is bounded by the lines ø : 0 and r : *.
(Pg) 8t. Ç Qo.

(P+) Q*. contains a point on arc[M,.n/].

Two cases may no\¡/ be distinguished. Either p / e"o or p € e.o. rf p ø g"D,
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wehaveO.ts (Ð' + t, : lß. In this case \Me use the area of the disk

D to give an upper bound for A. Thus A s "(Ð, and so Ald, s îd,. since

0<g<Lrrß,wehave

+ =+ x t.756 < a. (11.2)

If Pe Qoo,we have f >i\ß. Let.R1 betheregion {(*,ù;0(ø Sl,U2I}
and let Rzbe the region {(r,a);l S, S å,0 < y 11}. Bv (p1),(p2) and (p4),

I intersects arclM,N] in R1 ot R2.

We first observe that if f > (Ð'+I2 : +\Æ, then arclM,N] does nor

intersect -R2. Hence I must intercept arclM,N] in ,R1 (Figure 11.b). In this case

N

o ID

1 - -,=Ü2

3t2 Mx

Figure 11.5: The case where t, +rft}

* < -(g-Ðlr: -(d,-2) and,Q¡ç. is contained in the trapezium bounded by the

coordinate axes and the lines I andy: f. Since I has equation gr-l: m(n-T),
we have

A <  A(QK) < n I,r (*(r- 1) + Ð*
d.d
;lZ- 2) + d.

ì
I
I
t
I
I
I
I
I
I
I
I

R)

P
I
I
I
I
I
I
I

I
ì
I
I

ì
I

R2
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Therefore

113

(11.s)

Nowif l>z,thensince *.-},wehave Ald,< 1<o. rf +.,/T5.g.2,then
LrrÆ-2 <t-2 <0. Since -oo ( rn< -(d,-2) < -I,wehave -1 < llm<0.
Therefore Ald, < 3 - LrrÆ x !.2 < a.

11-.5 Proof of Theorem 11.5 for the case ¿(1,0)

From 911.4 we may assume that lt/l < t S trÆ.For a fixed d, ret a(0) denote

the area of the region S in Qe containing the origin O and bounded by the lines

,:t andlmakinganangle 0,0e [0,f;) withtheø-æris. Since ex.C,S,we
have A(Qy.) < A(,S). We aim to maximize a(0).

Let X1 and X2 denote the endpoints of the intersection of / with â,9 in the

regions .R1 and .R2 respectively. We use the notation I(0), xr(O), X2(0) to denote

the dependence on 0 of I, Xy and X2 respectively. Since ø(d) is continuous in

[0, i], the maximal value of a(0) is attained in [0, f].
Let s(0) : s denote the difference Xt(0)P - pX2(0) : Xtp - pXz. Let õ0

denote a small change in d and dø the corresponding change in ø(0). Since ôd is

small,

õ" =;({x,e), - (pxr)r) õ0.

As ðd -+ 0, 6af 60 -+ at(0). Hence

'l

a'(0) : )6re - PX2)(X1P + pX2)

1: 
,s(0)(XP + PX2).

Clearly ø(d) is differentiable in (0, ä). Therefore the maximal value of o(g) is

attained either at 0:0, or d : I, or at a point 0:0* where a,(0.):0. Since

A1
drn
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xP + PXz > 0, a'(0): 0 only if s(á) : 0, that is, when p is the midpoint of

(Xr, X")-

We now consider the possible positions of X1 and X2 and investigate the

conditions for which P is the midpoint of (X1, X2). First we note that since X1

lies in R1, the r-coordinate of X1 lies in the intervat [0, å). If p is the midpoint

of (X1, X2) then X2 must have ø-coordinate in the interval (å, 1]. Recalling also

that at least one of. X1 and X2 must lie on arclM,l/], we have the following

possible positions for X1 and X2:

(i) xt € arclM,Nl, x, € lo,M). Here the y-coordinate of x2 is 0. For

P(+,L) to be the midpoint of (xt,xr), the g-coordinate of x1 must be 2. This

occurs only when ø, > z which lies outside the given range for !. Hence we may

disregard this case.

(ii) Xl € arcfM,Nl, X, € arc[M,N]. Here (X1,Xr) is a chord of D. For

P(+,L) to be the midpoint of (xr,xz), op must be perpendicular to (x1,x2).

Hence the equation of the line XtXz is g - -Lr, + f . This case arises only when

tJE.tsi
(iii) xl € (N,o), x, e arc[M,N]. Here the ø-coordinate of x1 is 0. For

P(r,l) to be the midpoint of (xt,xz), the u-coordinate of. x2 must be 1. This

case arises when and only when * a d, S rn.
It follows from the cases above that if \Æ < t S i/tl, then p is not the

midpoint of (X1,X2). The ranges of f as given by the cases above are shown in

Figure 11.6.

We now use these results to help us determine the set for which ø(d) is maximal

for l'/5 . g < |.Æ. We prove

Lemma L1^.6 If Lß . g < Z, then a(0) is marimal when I is perpend,icular to

the li'ne oP. If Z < g < ,n, then a(0) i,s mo,rimal when I intersects \ep on

thelinesr:0 andr:r. IÍtÆ <g<it/ß, thena(0) is mari,malwhenl i,s
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v

514

x
u2 t st¿ '/z ,lts

Figure 11.6: The ranges of f

parallel to the r-axis.

Proof. we first consider the case where Lß . t s i (Figure rr.T). In this

case s(0) ) 0 and r(ä) < 0, that is, ø'(0) ) 0 and o'(i) < o.Hence ø(á) is

maximal at a point á* e (0, f ), that is s(á.) - 0. This is the value of 0 for which

P is the midpoint of (x1, xz), that is when / is perpendicular to op.

v

5t4

il

(1,3t4)

lMx,

I
I
I
I
I

o v2

Figure 11.7: The case where iJí . g < i

Next we consider the case '¡¡here 1 . t s \/, (Figure 11.s). we observe that
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xl

u2

v

116

s(0) > 0 and r(ä) < 0, that is, ø'(0) ) 0 and a'(i) < 0. Hence ø(d) is ma>cimal

at a point d. € [0, f), that is s(á-) : 0, or equivalentl¡ when p is the midpoint

of (Xt,Xr). I" this case I intersects ôQo onthe lines ø : 0 and ø : 1.

v

lv
5t4

I

I
I
I

I

o xM

Figure 11.8: The case where i. t S rt

Finally suppose that tE < * S +rÆ (Figure 11.9). In this case p is nor rhe

midpoint of. (X1,X2) for all positions of X1 and. X2, that is s(0) + 0 and hence

"'(0) +0 for á € (0, ä). It follows that a(g) is maximal at 0: 0 or Q _ [. But

rV

x2

I
I
t
I
I
I

I

o u2 3t2 x

Figure 11.9: The case where ,n < t S +rre
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s(0) < 0 and s(ä) < 0; hence o,(0) < 0 and o'(i) < 0. Since a,(0) I 0 for

á e (0, i), it follows that ø(0) > o\Ð and the maximal value or a@) is attained

when 0 :0, that is, when / is parallel to the ø-a>ris. !

We now use Lemma 11.6 to determine the maximal value of A/d, for each of

the given ranges of f. By Lemma 11.6, if iß . t s 1, the ma:cimal value of a(0)

occurs when I is perpendicular to the line OP (Figure 11.7). Let lXtoXz : g

where 0 <g ( arcsin$. Calculatingthe areas of LX1OX2 and the two sectors

making up S, we have

¿ - aA(e x.) s 
^ 

(irqrl'sin,p * |rir r[-,))
: *r"t", *; - ò.

Noting thar t: (tß)secfi, we have

: = +,.. f,{,i" , *; - p) : Í(ç).

Differentiating /((p), we get

f'(ç) :|,/tt^t, ( si,-f, +ï*"lfî - d)

solving f'(ç):0 we have g:0 or sin g: i - g, that is g - 9. = 0.g82. A
quick calculation shows that the maximal value of f (ç) is attained when g : g* .

Hence we have 
! = 

rrr.l:2rÆsin + =1.807 < o. (11.9)

By Lemma 11.6, if i a t < ,n, then the maximal value of a(0) occurs when

I intersects ôQo on the lines ø : 0 and r : l (Figure 11.g). Let lxloxz: g.
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Therefore, calculating the areas of LXroxz and the sector of angle i - ç,

118

(11.10)

A : 4A(Q x_) < rirr[-,p)+r-+i.",r)

t[ - v) *:-.o, r)
^(+
, (!,

Noting that l: cosec tp, we have

47t
,: 

( cosec r(; - ç) + 2sinrp - cosg : g(p).

Since 1 . t < \n,,we have î S ç ( arcsin f. Difierentiating g(ç) *"obtain

g'(ç) :#ä çi. ç t r- cos r, - Tsinz.p) 
: o.

By solving g'(p) - 0 for the given range of. g weobtain g : g* where g* is the

solution of the equation

1T

'sin2V*cos2g: 
-;I9*I.

This gives g* x 0.878. A quick calculation of g(i), g(ç") and g(arcsin f) shows

that the maximal value of g(ç) is attained when g: i. Hence

A
a sg( )=1.818<o

7f

4

By Lemma 11.6, if \/, . t < +\Æ, then the maximal value of a(0) occurs

when I is parallel to the ø-axis. Since Qr. is bounded by n : |, the following

two cases may be distinguished:

(i)'/r.g<t,
(ii) t<g<+rß.
We first consider (i) (Figure 11.9). Let lXtOX2- 9. Then

A : 4A(Q x.) < ,(

,(

irirr[ - ,p) +il'*r)

*rî -.r) +.io,p)
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Noting that dr: secrp, we have

A .'rr- ( sec r(; - rp) + sin p : h(p).

Since \Æ < t <t, we have î < p ( arccosS. gV differentiatingh(ç),we get

h'(p) - tans (*" rti - e) -sir,,r) .

Solving h'(ç):0 gives g:0 orsin2g:n-29which gives rp: f . Bothcritical

values are outside the given range of rp. Hence h'(p) l0for the given range for

g. It may be easily checked that ä(f ) < å(arccos f). Hence

(1 1.1 1)

Next we consider (ii) (Figure 11.10). Let x: I intersect arclM,N] in the

point I,7. Let LxtOxz : g and Let ow make an angle of B with the ø-axis.

Then

A 3/
-<-td-2\

7t2
t - arccos 

5).f=1.83ee<a.

v

/V

w

M3t2o

,

u2

d 2

x

Figure 11.10: The case where i . t S iJTg

A: 4A(Qx.) < sinrp * ;ig.t"r)^(;
,(g

( (i -, - u).;4,

G-r-P)+sin<p*
3

xl

I

I
I
I
I

2
sin B
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Noting that f: sec p, we have

! = 
r"rG - e - p)* sin rp + | sinÉ.

Furthermore, since f : |secB, we have 3cosg : 2cosB which gtves B :
arccos(|cosg). We also note that arccos ? . p ( arccos(2 lrfts¡. Substitut-

ing þ: arccos(åcosrp), we obtain the upper bound for Af d,,

k(ç) : 
'""e (; - e -rr..or1| .or,n)) + sin e a I t -lcos2 e

The graph of. k(@ for the given range of g is shown in Figure 11.11. A

numerical calculation shows that a critical point for k in the given range of g

occurs at g - g* x 0.847 (Figure L7.I2). Hence

A<k(ç.):6¿N1.841, (11.12)

with equality when and only when K = Ttz.

1.86

1.84

L.82

1.8

1.78

tt(ç) t.z6

t.74

t.72

r.7

1.68

1.66
0.86 0.88 0.9 0.92 0.94 0.96 0.98

I

0 847g*

Figure 11.11: The graph of k(9)
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k(e)

L.84072

1.8407

1.84068

1.84066

1.84064

L.84062

1.8406

1.84058

1.84056

1.84054
0.845 0.846 0.847 0.848 0.849 0.85

I

Figure 17.L2: The ma:rimal value of k(Q for the case .D(1,0)

L1.6 The cases L(L,L) and L(zt, zz), z1 ) 2

We now complete the proof of Theorem 11.5 by considering the cases ^L(1, 1) and

L(21, z2), z1) 2. Here we may remove the symmetry condition on K to establish

the following result:

Lemma l1-.7 Let K be a set in K2 with G(Ko,f) : Z. Il Ald, is maúmal, then

the latti,ce poi,nts in Ko are unit d,i,stance apar-t.

Proof. We will employ Steiner symmetrization as in the proof of Theorem 11.1

to transform /f into a set K* which is symmetric about the lines of symmetriza-

tion. We will employ the same notation used in $11.4 and $11.5. We investigate

the two cases for L separately:

Case 1: ¿(1,1). We first symmetrize K with respect to the line y : 1 - ø to

obtain the closed convex set K1. Since Ko does not contain any lattice points on

the lines A : *I * r itfollows thal Ko intersects each of the lines A : L! + x
in the empty set or in line segments of lengths at most f units. It follows

rhat Ki does not contain the points (r,t), et,Ð, (r,-+) and (|, |). We now

0 847g*
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symmetrize K1 with respect to the line gr : c to obtain the closed convex set K-.

Since Kf does not contain the points (i,Ð and (|, ä), xi does not contain these

points either. It may be similarly argued that Ki does not contain the points

(i,-Ð and (-], |) (Figure 11.13).

\v\//'\/\

,

x/

!=l- x

=l+¡
v

O.

o

v x+

\ ,L

t. /\/\.\/\/
\

o/

\a

o

Figure 11.13: The lattice lf

We now rotate the coordinate æ<es through an angle of f in an anticlock-

wise direction and then translate the origin to the point M(t,|). Clearly K. is

symmetric about the new coordinate a>res. We will use (*,a)'to denote a point

with coordinates given with respect to the new coordinate a>res , r', a'. Since

Kf does not contain the points (+,t), (+,-+), ei,Ð and ($, |), it foilows rhat

Kf does not contain the points etØ,t rn)' . In particul ar, K! does not con-
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tain the point P(+rt,|[z)'. Furthermore, since K. is convex, it is bounded by

a line I containing the point P(+Jr,ttfz)', and having a non-positive slope rn

with respect to x' and y'. By considering the lattice ff having fundamental cell

errt,+l\,f2), we see that G(Ki,ff) :0 (fi is a translation of f,). We may

no\ry use (11.1) to obtain A',ld'( À, where A, and dt are the area and diameter

respectively of K* measured in the scale of lf . Noting that fi, is essentially an

enlargement of I with scale factor ,,þ,,wehave A, : (llrÆ)2A and dt : (ll\,O)d.

Hence

4 
= 

rn^:= 1.616 ( o.d,-

case 2 : L(21,22) where 21 ) 2 (see for example Figure rl.tl). we first

symmetrize K with respect to the ø-axis to obtain K1. Since Ko contains only O

and L, the set ,[( intercepts the lines ø : k, k € Z between the points (fr, t1) for

k:0 and k : zt ãîd between the points (k,+r), otherwise. Hence Kf intercepts

the lines a : ++ in line segments of lengths at most 2 and the line U : *l in line

segments of lengths at most 1. We now symmetrïze Kr with respect to the y-axis

to obtain K.. Clearly Kf does not contain the points (+å, +1) and (+1, +|).
In particular Ki does not contain the points p(l,r) and p'(1, |). since K- is
convex, it is bounded by lines I and l' containing the points P and P'respectively

with non-positive slopes rn and rn' respectively. We now have the following two

v

I
P

)=1
y=l12

y=_l12

y=-l

x
o

Figure 7I.L4: The case L(zy,z2), z1) 2
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cases:

724

Case a. Suppose that $ < $. Then since -If* is bounded by /, the inequalities

(11.7), (11.9), (11.10) and (11.11) apply. Hence Ald,< 1.8899 < o.

Case b. Suppose that | > f . ttren either

(i) Q*. is bounded by line I having slope m 1 -I, or

(ii) 8r. is bounded by line /'having slope m, > -L.
By a reflection about the line U: î, it suffices to consider case (i). Here e¡.

is contained in a trapezium bounded by the coordinate axes and the lines I and

y : g.Using (11.8), we have

rf;-z¡*r

lf g>2,thensincern< -1 wehave Ald,< 1. If å .g.2,have-].t-2.0.
Since also rn ( -1, it follows fhat Ald < l.b < o

By comparing the results of $11.4 and $11.b and $11.6, we have

A
dSo=1.841,

with equality when and only when K = 7{z (Figure 11.3).

F\rthermore since d < 2R, we have

A: 12a = 3.682.H_

with equality when and only when K = ?{z (Figure 11.3).

Hence Theorem 11.5 is proved.

tl.7 Related results and a conjecture

In view of Lemma 11.7, we conjecture a stronger form of Theorem 11.5 by re-

moving the symmetry condition on K.

A1
drn
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Conjecture 11.8 Let K be a non-empty set i,n K2 hauing G(Ko,l) : Z. Then

A
-(oæ1.841.d-

with equali,ty when and only when K = ?lz (Figure 11.8).

We end by noting that Theorem 11.1 and Theorem 11.2 have been generalized

to arbitrary lattices by Vassallo (199b). Defining )1 and 2p4 as in $6.6, we have

Theorem 11.9 (Vassallo) Let K e K2 and let G(Ko,l\) : 0. Then

* = ": 
max{2t-rt,2sin$ Àl+ (2¡t)2j,

where þ is the solution of the equøtion siná: i-0 (/ = 0.832 x 4T.T'). The

bound, is best possible.

corollary 11.10 (vassallo) Let K be a non-empty set i,n K2 anil tet Af d, > ra
Then G(Ko, L) > ,'.

r25



Chapter L2

An area-perimeter inequality for convex sets
containing two lattice points

L2.I Introduction

Let K be a set in K2 with area A(K): A and perimeter p(X) - p. Nosarzewska

(1948) proves

Theorem 12.1 (Nosarzewska) Let K be a set in K2. Then

1
A < G(K',, r) (12.1)-rn

The i,nequality is asymptoti,cally ti,ght.

Nosarzewska's result has been generalized to the case r¿ : 3 by Bokowski and

Wills (L974) and Schmidt (1972). The result also holds in n dimensions as proved

by Bokowski, Hadwiger and Wills (L972).

Bender (1962) proves a special case of Nosarzewska's inequality by letting

G(Ko,f) : 0. He proves

Theorem 12.2 (Ben der) Let K e K2 and, let G(Ko,l) : 0. Then ¡ -:r'*I't;":

(t2.2)

The limi'ti'ng infinite strip Ps (Figure L0.3) shows that the bound, is best possible.

A1
p2

726
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Since Bender, many new inequalities have been obtained for the functional

I//,9 (Bokowski and odlyzko 1g73; Hadwiger 1920; Hammer 1964, 1966, 1971;

Wills 1968, 7970,7977). Bokowski and Odlyzko (1973) generalize Theorem 12.2

to z¿ dimensions as follows:

Theorem 12.3 (Bokowksi and odlyzko) Let K € K and, Iet un d,enote the

uolume of the n-dimensional unit sphere. suppose that G(Ko,r) < g. Then

L¡9,¡¡n.Y.!¡s-rV'+l
,\*)'""< ^g ,' Lùn ' ,' (12'3)

where un: (1/tr)" ll! + Ð.

Clearly, when n:2 and g : 1, the right hand inequality gives Bender,s result.

We note also that the above inequality improves results by Hammer (1964, 1966,

1971). Wills (1968, 1970) established the upper bound of (12.3) for rhe special

cases n:3 andn:4 for sets havingG(Ko,f,r):0 (equivalentlyg:1). The

result by Hadwiger (1970) follows immediately by tetting 9 : 1.

Suppose now that G(Ko,f) : t. Then by Theorem 12.3 we have

A l/l\L/2 1

otz\;) +'=0'782'

Scott (I97ac) conjectured a tight result for the maximal value of Alp for the cla^ss

of l-admissible sets in K2 which are symmetric about the origin. The conjecture

is proved by Arkinstall and Scott (1g7g).

Theorem 12.4 (Arkinstall and Scott) Let K be al-admissi,ble set in K2 and,

suppose that K is sgmmetric øbout O. Then

! =rç,+,fr)-, = 0.530,p-

with equali,ty when and only when K is congruent to the rounded, squarel,ft shown

zn Figure 12.1.
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o o

oa

Figure 12.1: The rounded square U1,r N 0.b30

This result was obtained independently by Croft (1979) who solved the more

general problem of mæ<imising (Alù" where s is a parameter between 0 and 2.

In this chapter we prove a result analogous to Theorem l2.4for a special class

of sets in K2 containing two interior lattice points. We prove

Theorem 12.5 Let K be a set in K2. Suppose that G(K',l) : 2 and, K is

symmetric about the midpoi,nt of the li,ne segment joining the two interior løtti,ce

poi,nts. Then

4 . ¡= 0.636.
p

Equølity holds when and only when K i,s congruent to the rounded hexagon î,12

shown in Figure 12.2.

I

o

Figure 12.2: The rounded hexagon Ltz,, a ry 0.107 æ 6.13o, r = 0.636

In $12.2 we describe a general method for finding the maximal value of A/p
for sets lying within a given set in [2. This method is due to Singmaster and
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Souppouris (1978). In $12.3, we show how Singmaster's and Souppouris,method

helps us solve our lattice point problem. The numerical analysis is carried out in

detail in $12.4 and $12.5. In the final section, rve conjecture a stronger form of

Theorem I2.5 by removing the symmetry condition on K.

L2.2 Singmaster's and Souppouris' method

We briefly describe the method employed by Singmaster and Souppouris to de-

termine the maximal value of Alp for sets lying within a bounded, convex, poly-

gonal set, ,S (this method may be extended to the general convex set by taking

the convex set as the limit of inscribed polygons). We will employ the same

notation as Singmaster and Souppouris (1978). Hence let ro denote the inradius

of ,9 and let S" denote the union of all closed disks of radius r 1ro contained in

^9 (in other words, 
^9, is the set 

^9 'rounded off' by circular arcs of radius r which

touch the boundary of ,S). Let Sf denote the polygon that is formed by the sides

of S which ,S' touches, produced if necessary. We call Si the contact polygon of.

^9,. Let 2þ¿ denote the angle of the ith arc of ^9" (Figure 12.3).

Figure 12.3: The angle of the i-th arc of S,

Then Singmaster and Souppouris show the following:

(L) 2Ó¿ < ?r, or equivalently, S', is a bounded, convex, polygonal set.

(2) The ma>cimal value of. Alp for all sets contained in 
^9 

is attained for a set
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,S, where 0 < r ( ro satisfies the condition

A(5,)_ _ *p(s,i: "' (r2'4)

(3) The area and the perimeter of ^9, are given by the formulae:

A(S') : A(S',) - kr', (12.5)

p(5,) : p(S',) - 2ler, (12.6)

where Ic : D¿tanS¿ _ r
Substituting (rZ.S) and (12.6) into (12.4), we have

' - 
A(l'l') - r2k 

'p(S',) - 2rlç'

This simplifies to give the following quadratic equation in r:

lcr2 - rp(S',) + A(.9i) : g.

Since p(5,) : p(S',) - 2rle ) 0, we have r < e@i)lQþ. Hence solving the

quadratic equation for r, we have

r: r* : *þrsll - (p(Si.D' - 4kA(S|) (r2.7)

Since ,S is a bounded, convex polygon, there is a finite number of possible

contact polygons. As described by Singmaster and Souppouris, \üe begin with

r : € where e is a small positive number and we consider the corresponding

contact polygon Si. The value'of r* may then be evaluated using (L2.7). If this

value of r* gives a set ^9r- for which the contact polygon is the contact polygon of

^9', then we are done. Otherwise we proceed to the next possible contact polygon.

We repeat the process until we arrive at a value for r for which S,r, : S,r.

L2.3 Some preliminaries to the lattice point problem

Let K now be a set in K2 having G(Ko,l) : Z. Let O and L(21, z2) be the lattice

points contained in Ko. Let M denote the midpoint of OL. As in $11.4, we will

consider the following cases for L:
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(i) ¿(1,0) (ii) ¿(1,1) (iíi) L(21,22), z1) 2

We examine each case separately in the next three sections and show that case

(i) gives the maximal result. In cases (i) and (ii), we employ Steiner symmetriza-

tion on 1l about a given line I throagh M, to transform the set K into convex set

K-. We recall from Theorem 2.3 that Steiner symmetrization preserves convexity

and areas and does not increase perimeters. Hence A(X)le@) < A(K.)lp\).
We note that the set K* may contain more than two interior lattice points. Nev-

ertheless, it will be sufficient for us to prove Theorem 12.5 for the set K*. For a

simpler notation, we let A(K.): ,4. and p(K.) - p.

Since .[l is symmetric about M, K* is also symmetric about the line l' through

M perpendicular to L By taking l'and I to be the new ø and gr-¿rxes respectively,

it will be shown that K- satisfies the following properties:

(P1) ¡f- is convex and symmetric about the new coordinate axes.

(P2) K. is bounded by the lines ø : *.fro, where ro is a number to be specified.

(P3) /{. is contained in a rhombus with edges each containing a fixed point

(not necessarily a lattice point). We shall see that these fixed points are symmet-

rically placed about the coordinate arces and arise because of the lattice constraint

on K. Let P1,, Pz, Ps and Pa denote these fixed points. we will specify the point

Pr with coordinates (r,y) with respect to the new coordinate axes.

Now let pt, pz, p3 and p¿, be the edges of the rhombus containing the fixed

points Pt, Pz, P3 and Pa respectivel¡ with each edge making an acute angle

of o with the ø-axis. Let r?(a) denote the rhombus determined by the lines

pi, i : 1, . . . ,4 and let fl(o) denote the hexagon determined by the lines p¿,

'i: I,...,4 and ø - Lro. If p1 intersects the line r : roin g < 0, then K. is

contained in ^R(o) (Figure 12.4a). otherwise, by (Pz), K- is contained in f/(o)
(Figure L2.4b).
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Figure 12.4: Bounding sets for K* for the lattice point problem

The problem then becomes one of maximizing A/p over all sets contained in

^9 where ,S is R(o) or f/(a). we now use Singmaster's and Souppouris' method

to formulate our problem.

If ,S : Ã(o), then clearlv S', : Ã(o) (Figure 12.4a). If, on the other hand,

S : H(a), the following lemma shows that Si is either .R(o) or H(").

Lemma 12.6 Let 
^9 

: r/(o) be the heragon AlA2AsAaAsAa, wi,th lA1 - lA¿

and lA2 - lAs - lAs - lAa. Let bz and bs denote the angle bisectors oÍ lAz

and lAs respectiuely and let T be the point of intersecti,on of b2 and, fu. Let t
d,enote the di,stance of T from the line A2A3. IÍ, < t, then Sí :,9 : H (a). IÍ
r ) t, then S'r: l?(o).

Proof. Due to the symmetry of ,s, the incentre of ,s is at the point o, having

distance øo from the line AzAz.Suppose first that t) ro (Figure 12.b). Clearl¡

ro: to ( ú. Hence any disk having radius r 1ro ( ú may be positioned on ö2 to

touch the sides AtAz and A2A3. By symmetry, it follows that Si : ^g: H(a).
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v
Al

b2

A2

(x,v)

\(x,v)

A6

As

x

Figure 12.5: The case where t ) ro

Now suppose that t 1 ro. Clearly then, ro > ú. If r 1t ( ro, then as before,

any disk having radius r < t ( ro may be positioned on ó2 to touch the sides

AtAz and A2As. By symmetr¡ it follows that Si : ,9 : H(") (Figure LZ.6).

... Az
b3

A

+-f +

+ro

+ro A4

<''.............._ t+

v

b2

."A^
b-

J

Al

A4

A6

A5

x

Figure 12.6: The case where t 1 xo and r ( ú

If, on the other hand, t < r 1ro, then any disk in ,9 having radius r does not

touch the edge AzAt.By symmetr¡ it is clear that Si : R(a) (Figure l2.T).
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Figure 72.7: The case where t 1 xo and r ) ú

Hence, if r ( ú, then Sí: S: H(a).If r > ú, then S',: R(a). tr

We now formulate the two cases for ,Sf separately

Case 1. Sí : A(o) (Figures I2.4a and L2.7). Let pl intersect the r and gr-axes

in the points X and Y respectively. Then OX: n+Altano, OY: A +rtano
and XY : yf sina -l a/coso. Since A(S',) :  A(LOXY) and p(S',) - 4.Xy,

we have

A(S',) : 4ry t
p(s',) : 4 (

k : 2tana

Using (I2.7),, we have r* : rh(a).

Case 2. S',: H(a) (Figures 12.5 and 12.6). Here we have A1A2: ro/ cosa

and A2As - 2y - 2(r, - ø) tan a. By taking A(sí) to be the sum of the areas of

the rectangle A2A¡A5A6 and the triangles A1A2A6 and A3AaA5, ând p(5,,) to be

2.A2AB + 4.ArA2, we have
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A(S)
p(s',)

k

A(5,,)

p(s',)

k

4ro(a - (ro - ø) tan a) + Zxltano.,

a@ - (ro -ø) tan Q ¡ fu,
2tana+ttan(f,-þÏÏ

4
- 2tane - 7r.

cos a

135

(12.e)

using (12.7), we obtain r*:r*n(a). BvLemma 12.6, case 2 applies onlywhen

rh@) 1t: ú(o), where

t : t(a) : (a - (ro - ø) ran a¡ tan(Ln + |) (12.10)

Otherwise, we have Case 1 and r* : rä(o).

We now define the function /(a) :.f as follows

if r.r(a) < ú(o),
otherwise (12.11)

We seek to find the ma>rimal value of /(o) for 0 ( a < [. We will use the

notation and results in this section in $12.4 and $12.5.

L2.4 The case ¿(1, 0)

In this case, the centre of K is the point M(+,0). We first symmetrize K with

respect to / where I is the line ø : I to obtain the set K-. As already described

in $11.4, the set K. has properties (P1), (P2) and (P3), where no:1, and p1 is

the point with coordinates (|,1) (Figure 12.8). By substituting r : T,9 : 1 and

ro:l into (12.8) and (12.9), we have

Case 1. S'-: R(a\.

/(o): { ;fl,,;ì

_21: 2- 
-- i;tâno,tano 2

42
I

:- 1-lsrn0 cosa
,: 2tana* ' -r.tan a

Using (L2.7), we have r* : r*n(a)
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Case 2. S',: H(a).t\)

136

v

P2 Ptçn:D

P4

o

x

312+

Figure 12.8: Bounding sets for K* for the case ¿(1,0)

A(5,) :

p(s',) :
k:

4tana * 4,

atan^3b--
2

6

cos a
4

- 2tana - T
cos 0

Using (L2.7), we obtain r* - rh(o).

Now from (12.10), we have

t : t(a) : (1 - tan a) tan(Ln * i).
Solving ri@) < ú(o), we have a 1o* = 0.601. Hence for o ( o¿*, S,r: H(o),

otherwise ,Sl : A(o). Fbom (12.11), we therefore have

o* = 0.601,
o* = 0.601,

(12.12)

The graphs of rþ(o) and rir(o) are shown in Figure 12.9. The varue o :
a* = 0.601 indicates a transition from the contact polygon H(") to the contact

polygon ft("). The graph of / is therefore obtained by taking the relevant parts

a1
d,>r@):{ ;i,,;ì
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0.636

0.6358

0.6356

/(o) o.oara

L37

of the graphs of rþ(o) and rþ(a) as defined in (I2.I2). A numerical calculation

shows that the maximal value of / occurs where a : d** æ 0.107 and /(o**) :
À = 0.636 (Figure 12.10). 1- atc<pt\*"zta * "".,.1 11

0.6

r.(o)
0.4

0
0.2 0.4 0.6 0.8

a

1

0.8

0.2

I 1.2 7.4

Figure 12.9: The graph of /(o) for the case .L(1,0)

0.6352

0.635

0.6348
0.05 0.1

a,
0.15 0.2

a** N 0.107

o* p 0.601

0** È 0.107

Figure 12.10: The maximal value of /(o) for the case ,D(1,0)
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L2.6 The case ¿(1, 1)

Since K is symmetric about M(T,l), x is bounded by the parallel lines ø1 and

Í2 containing the points Xr(0,1) and Xz(7,0) respectively having positive slope

rn. By a reflection about the line A : fr, it suffices to consider those cases for

which m ) I. We now consider the following two cases for rn.

Case a. rn ) 2 (Figure l2.ll). Here we symmetrize K with respect to I where

I is the line ø: |. Since m) 2, the distance between ø1 and z.2in a direction

parallel to the ø-axis is at most |. Hence the symmetrized set K. lies in the

parallel strip bounded by the lines , : -ï and u : f . F\rrthermore, since Ko

contains no point of I on the lines U : 2 and gr - -1, Ko intersects these lines

in line segments of lengths at most one. Clearly then Kf does not contain the

points with coordinates (1,2), (0,2), (0, -1) and (1, -1).

!=x

!=2

/= -l

I

o

P3

xz

Figure t2.ll: The case where m ) 2
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It may be easily checked that K- satisfies properties (p1), (p2) and (p3),

where ro: Ï and P1 is the point with coordinates (i,Ð (Figure 12.L2).

v

Í

Figure I2.L2: Bounding sets for K* for the case m ) 2

By substituting r: l, u : t and xo - | into (12.8) and (12.9), we have

Case 1. Sí - ft(o).

A(5,,)

p(s',)

k

Using (L2.7), r - rh(a) may be found.

Case 2. S'-: H(a\.

A(5,,) :

p(s',) :
k:

19: 3+:tano*:-- ' 2 2tana'
62

I.TT-r
sma cosd

,
: 2tana* ' 

-,1r.tan o

a
6+ " -tano.cos o

4
- 2tane, - it.

cos 0

atan
93__r_
2'g

Using (72.7), r* : r!t(a) -uy be found
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Now from (12.10), we have

t : t(a): (; - | r"o o) ,u,'

Solving rh@) < ¿(o), we have d 1cr* = 1.401. Hence for o ( a*, 5,,: H(o),

otherwise S',: R(a). From (12.11), we therefore have

alot*=1.401,
e>.cr*=1.401, (12.13)

The graphs of rft(o) and rþ(o) are shown in Figure Lz.rJ. The value a :
o* s 1.401 indicates a transition from the contact polygon H(") to the contact

polygon Ã(a). The graph of / is therefore obtained by taking the relevant parts

of the graphs of rfi(o) and rit(a) as defined in (12.13). From the graph it is seen

that/(a)(Àæ0.636. Ì.

r-(o) 0.8

0.4

0.2

r[+]t

Í(o):{ ;i,,;ì;

7.4

L.2

1

0.6

0.2 0.4 0.6 0.8 t 1.2 t.4
a

Figure 72.L3: The graph of /(o) for the case .L(1, t), m) 2

caseb. L 1m < 2 (FigurcL2.r4). wefirstshowthat if Kisamaximal

set, it lies in the parallel strip bounded by the lines gr : tJ * r. Suppose that

1l extends beyond the line U : -3 * r. Then there is a point X e K which

lies in y < -3+r. since m <-2, x also lies in y > -2*2r. Now clearly

rh@) o* = 1.401:

r*:l
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XM> (9/2)'+ (312)2 > 912.Hence p(K) > 18. By (12.1), we have

*l=0.611 < ).

Hence K is not maximal. We may therefore assume that K is bounded by the

linesy:*3*r.
we now symmetrize K with respect to the line / where / is the line g :L-x.

Since K is symmetric aboul M(l,T), X is bounded by parallel lines containing

the points with coordinates (-1, -1) and (2,2). Hence K- is bounded by the

lines y - d - ø and U : -2 - x. F\rrthermore since Ko does not contain any

point of I on the lines U : | * ø and U : -I I r, it intersects these lines in line

segments of lengths at most ,Æ. lt follows that Ki intersects these lines in line

segments of lengths at most rt. Cl" rly then, ^If does not contain the points

with coordinates (r,Ð, (-+,Ð, G,-+), and (|, ]). It may be easily checked

that K- satisfies properties (P1), (P2) and (P3), where r" - |r,f2 and p1 is the

point with coordinates (Lrfr,ånÆ) (fieore 12.15).

Since K- is also bounded by the lines y - +!2\Æ, we need. only consider the

case where 0 ( o S i. Bv substitutingï:Lfr,y -lA and,ro -!rtÕ,into
(12.8) and (12.9), we have

Case 1. .91 :.Rlo).
,\t

1

A(S',) : 2+:-*tano,
tano

p(s',): 2r/2( L +l),'cos o sln 0'
k-2tana+2-n.

tan o

Using (I2.7), r : rh(a) may be found.

Case 2. St-: H(a\.

A2t2
ptp+t'rs

A(5,,) :
p(s',) :

6 - 3tano,

( 6 
- tana+z\tfz,\coso /
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Using (12.7), r : rT¡(a) may be found.

4
- 2tane - T.

cos o

y= 3+¡

r:\ \

k

v

if

G1,-l)

I,

{P'

P2

v=-3 +x

!= 4-x

x

y= 1-.r

/=-l +¡

'..t y= -2 +2x

tt,,
,,.i f-i,.tl

Figure 12.L4: Theca"sewhere 71m<2
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xv

P

\

4

P2

3'12
a

Figure L2.15: Bounding sets for K* for the case I 1 m < 2

Now from (12.10), we have

t:t(a): (+ - rt¡^n") ,*,î *î)
Solving ,h@) < t(a), we have e 1a* = 0.180. Hence for o S a*, 5,,: H(a),

otherwise S',: R(a). Fbom (12.11), we therefore have

Í(a) -
r.n@), a1o¿* =0.180,
rh@), d>o¿*=0.180, (72.t4)

The graphs of ri¡(o) and rþ(o) are shown in Figure 12.16. The value o :
c* s 0.180 indicates a transition from the contact polygon H(") to the contact

polygon Ã("). The graph of / is therefore obtained by taking the relevant parts

of the graphs of rþ(a) and rþ(o) as defined in (12.1a). From the graph it is seen

that/(o) <Àæ0.636.
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0.6

0.55

0.5

r*(o) o.+s

0.4

0.35

0.3

0.25
0.1 0.2 0.3 0.4

a
0.5 0.6 0.7

Figure 12.16: The graph of /(o) for the case .L(1, 1), 1 < m < 2

L2.6 The case L("t, z2), z1) 2

From $2.5, we need only consider those cases for which zt ) zz and z1 and. z2 are

relatively prime. We consider the following three cases:

(i) z1 odd and z2 odd. Let x and Y be the points with coordinates

(TQr-Ð',Iþr- 1)) and (lQ1+t),1(22+ 1)) respectively.

(ii) z1 odd and 22 everr. Let x and Y be the points with coordinates

(Lþ, - l), 
"r) 

and (|(a1 * 1), z2) respectively.

(iii) z1 even and z2 odd. Let X and Y be the points with coordinates

Qr,TQ" - 1)) and (rr,l/r* 1)) respectively.

In all three cases, since K is symmetric about M(lrr,Irù, x is contained in

a parallel strip bounded by the lines ø and gr having the same positive slope and

having width at most 1 (Figure l2.t7). By Theorem I2.2, we have

4.1.,1.p2
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v
,t Mt

x

(Ð (iÐ

Figure L2.L7: The case L(21,22), z1) 2

(iiÐ

In summary, by comparing the results from $12.4, $12.5 and $12.6, we see that

( ) = 0.636,

with equality when and only K is congruent to the rounded hexagon tt2 of Fig-

we I2.2.

L2.7 A conjecture

We now conjecture a stronger form of Theorem 12.b by removing the symmetry

condition on K

Conjecture L2.7 Let K be a set in K2 and let G(Ko,l) :2. Then

A

;S^=0.636.

Equality holds when and only when K is congruent to the rounded heragon 1,12

(Figure I2.2).

4
p



Chapter 13

Conclusion

In this chapter we outline the scope for further research in the area. Appendix B

contains a summary of the results of this thesis. From Tables 8.2-8.5 of Appendix

B, it may be seen that many new problems remain in the area (indicated with *
in the tables). We now describe possible future directions for the research.

1-3.1 Problems concerning non-r ctangular lattices

In our work, we have been primarily concerned with the rectangular lattice r\.¿,

in particular, the integral lattice f. New problems arise by considering non-

rectangular lattices. For example, Minkowski's Convex Body Theorem as stated

in Theorem 1.1 is generalized to the general lattice Á. in Theorem 2-2 by using

an affine transformation and observing that A(K)/ det(Â) is an affine-invariant

quantity. Wetwitschka (1987) gives an analogue of Minkowski's Convex Body

Theorem for the equilateral triangular lattice Á.7 generated by the vectors (1,0)

and (|, +tß). Scott (1978c) and Wetwitschka (1991) find the maximal width of a

set K in K2 having G(Ko,^r) : 0 and G(Ko,Âr) : 1 respectively. The results

here are simple as the lattice is based on the equilateral triangle which turns out

to be the extremal figure in these problems. Vassallo (1992) finds the maximal

width of a set K ín K2 with G(Ko, Â) : 0. Vassallo (1995) also generalizes

the area-width result of Chapter 7 and the area-diameter result of Chapter 11

to the general lattice A. However, in contrast with Wetwitschka's and Scott's

L46
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inequalities for Â7, Vassallo's results are quite complicated. Vassallo and Wills

(1996) also generalize the width-diameter inequality by Scott (1g7gb) to arbitrary

lattices. The area-perimeter inequality obtained by Bender (1902) as stated in

Theorem L2.2 is in fact true for the general lattice À. Wills (1921) obtains a

result for VIS for arbitrary lattices.

Two ideas are useful in generalizing to the lattice Â. If the quantity under con-

sideration is an affine-invariant quantity the generalization is a straightforward

exercise. The other method is to employ Steiner symmetrization to transform the

problem into one concerning rectangular lattices (see for example (Bender Ig62;

Vassallo 1995)).

L3.2 Problems in ft"

All our problems are posed in the Euclidean plane ffi2. The question arises as

to whether these results hold in higher dimensions. As an example, Minkowski's

Convex Body Theorem as stated in Theorem 2.2 in fact holds for sets in K
(the corresponding result is obtained by replacing the number 4 in Theorem 2.2

by 2"). Ehrhart (1964) conjectures a result for the maximal volume of a Â,,-

admissible set having O as the centre of gravity. The conjecture has been proved

for n: 2 (Ehrhart 1955a) and for n:3 for a special class of solids (Ehrhart

1955b). McMullen and Wills (1981) generalize a result by Scott (1973) concerning

themaximalwidthof aset KinK2 having G(Ko,f) :0tosets ínK..Inthe
same paper an analogue of the width-diameter result in Chapter 6 is given for

sets in K". Bokowski and Wills (1974) and Schmidt (1972) independently extend

the area-perimeter result by Nosarzewska (194s) to the case n : 3. In fact, this

result holds for all n as proved by Bokowski, Hadwiger and Wills (lg72). The

area-perimeter inequality obtained by Bender (1962) for sets K in K2 having

G(Ko,f) : 0 has been extended to n : Z and n : 4 by Wills (196g, 1970
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respectively). The generalization to ft" is proved by Hadwiger (1g70). Flom

the literature, it is observed that the greatest difficulty in generalizing to ft" is

encountered in extending the result to ft3. If this can be done, the generalization

to ffi" is usually a simple induction exercise.

13.3 Problems concerning an arbitrary number of lattice
points

In all our problems, \rye have considered those cases for which G(Ko,f) < B.

What are the corresponding results when -Ifo contains an arbitrary number of

lattice points ? Van der Corput (1935, 1936) gives a relationship between V

and G(K",Â,,) for an O-symmetric set. Scott (1987) relates A with G(K",L)

for the general class of convex sets. Ehrhart (1955c, 1955d) gives partial results

relating A and G(Ko,Â) for sets having centre of gravity at o. Nosarzewska

(1948) gives an inequality relating A, p and G(Ko,f). Inequalities concerning u.r

and G(K", f) have been obtained by Elkington and Hammer (1g76). Hammer

(1964, 1966, 1971, 1979) also obtains inequalities relating Alp, VIS and, Ald,

with G(Il', f,,). Reich (1970) obtains a result relating A, p and d with G(K", f).
vassallo (1995) gives a relationship between Ald and G(Ko,Â), while Vassallo

and Wills (1996) relate ru and d with G(K",L).

L3.4 Problems concerning special sets

By taking K to be a set with special properties, we have new and interesting

problems. Minkowski's Convex Body Theorem is an example of such a problem,

for if the symmetry condition were removed, A will be unbounded. Arkinstall

and Scott (1979) find the maximal value of A/p for a l-admissible set where O

is the centre of symmetry. In an earlier paper, Scott (197Sa) conjectures a result

for the ma>cimal area of a Âr,-admissible set in K" having its volume equally

distributed in the 2" orthants. The conjecture is confirmed for n : 2 in the same
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paper. Ehrhart (1955a) takes O to be the centre of gravity of a l-admissible

set and finds the maximal area of the set. Scott (1932) conjectures a result for

the ma><imal width of such a set. In the same paper, Scott also conjectures a

result for the maximal area of a l-admissible set in K2 with circumcentre O. We

discover that the conjecture is false and have revised the conjecture in $3.5. We

also find the maximal circumradius of such a set in Chapter 4. Sallee (1g69) finds

the maximal width of a set of constant width K in K2 having G(Ko,f) : 0.

Sawyer (1955b) frnds V/det(Â.") for a set which is symmetric about a point apart

from O. In the problems of Chapters 11 and L2, K is taken to be a set containing

two interior lattice points symmetrically placed about the centre of the set.

13.5 Problems concerning other geometric functionals

In this thesis we have dealt with the geometric functionals A, p, d, u, r and

R on the space K2. By defining new functionals, many new problems may be

investigated. A number of results have been obtained for the inner l-quermasses,

d,¿ and the outer l-quermassês, ?u¿, defined in $6.6. For example, scott (1gs5c)

obtains an inequality relating V with u)r¡'tr2,...,un. Scott (1985b, 1989) also

obtains inequalities for d¿. Wills (1990) obtains an inequality relating w¿ arñ, d,¿

for a set in Kn, analogous to the width-diameter inequality in Chapter 6. Another

analogue of the width-diameter inequality in Chapter 6 is given by McMullen and

\Mills (1981) who relate ø¿ with the functional ô¿ defined to be max{to(K n H,)}

where fI¿ is a hyperplane perpendicular to the i-th basis vector. Sawyer (1954)

introduces a new functional for a .4,,,-admissible set K as follows. Let

À(¡f) : ): "uP#,
where POP' is a chord of /f (À(If) is an example of a coefficient of asymmetry for

a set ff). Many other similar functionals may be defined (Grünbaum 1963). Saw-

yer (1954) establishes a relationship betweenv/ det(\t",) and À for Á,,,-admissible
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sets. He obtains an exact formulationfor Af det(A) for Â-admissible sets (Sawyer

1995a). Scott (1974b) defines a functional, À on K as follows. Let À(lf) : k if the

set If is ,k.4,,,-bounded (A set is k.A.r,-bounded if some translate of K is contained

in a fundamental cell of kÁ,,, but no translate is contained in any fundamental

cell of (k - e),4." where s > 0). As expected, there is a relationship between V

and À. Scott finds an exact relationship between A and À for .ô,-admissible sets

in K2.

13.6 Problems involving three parameters

In our work, we have concentrated on inequalities concerning one or two of the

geometric parameters A, p, d, u), r and R. What inequalities exist among three

of these parameters ? As an example, Reich (1970) proves that if ,[f is a set in

K2 and G(K',|) : 1, then A < lp + ¿. As far as we know, this is the only

inequality relating three parameters for lattice constrained sets. Perhaps, as with

the one and two parameter problems, the inequalities for unconstrained sets can

give some ideas for the corresponding inequalities for lattice constrained sets. We

have compiled a list of inequalities relating three parameters for sets with no

lattice constraint. This may be found in Appendix C.

It may be seen from the preceding discussion that problems abound in the

area. It is hoped that this work will motivate further research in this very fertile

area.
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Supplementary diagrams for Chapter B

Figure 4.1: The unbounded sets for the two intercept case

Figure 4.2: The unbounded sets for the three intercept case

Figure 4.3: T[iangles A¿ andT¿ for the {hr,hE,h7} case

Figure 4.4: Tbiangles A¿ andT¿ for the {hr,hn,hs,h7} case

Figure 4.5: tiangles A¿ andT¿ for the {hr,h+,h5,lzs} case

151
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h3

(a) {ä1, ä3} (b) {/¿r,l¿4}

hr hr

(c) {ä1, äs} (d) {hr, /¿6}

h8

(e) {121, fu}

Figure 4.1: The unbounded sets for the two intercept case

h6



Appendix A 153

h3

(") {1,t, hs,hu} (b) {/rr, hs,ha}

(d) {/rt, h¿,he}

Figure 4.2: The unbounded sets for the three intercept case

h8
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lii.li.
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2ti.

4 4 8
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3ii.3i.

5

3iii. 4

I
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Figure 4.3: Tbiangles A¿ and fr for the {hr,hn,ä7} case
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tl

1 2.

3

TT¡
Figure 4.4: tiangles A¿ and fr for the {hr,huh¡,h7} case
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4

al
tl

44

2 (ii)

1 (i) l(ii) : 211¡ l(iii) = 3(i)

3 lll

Â

2(iii) : 2(i)

1 (i)

2 (i)

3(

al

8

i) 3(ii¡ : 211¡ )(

A
I T.

,

Figure 4.5: tiangles A¿ and 4 for the {hr,hn,ä5, å,s} case
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Summary of results

This appendix contains a summary of the results of this thesis.

List of Tables

Table 8.1: Inequalities for sets with no lattice constraint

Table 8.2: Inequalities for G(Ko,Âa) :0
Table 8.3: Inequalities for G(Ko,l) :0
Table 8.4: Inequalities for G(Ko,f) : I
Table 8.5: Inequalities for G(Ko,f) : Z

We have indicated with * those sets of parameters for which the inequalities are

not known.

List of Figures

Figure 8.1: Extremal sets for the case G(Ko, Âa) : 0

Figure 8.2: Extremal sets for the case G(Ko, f) : 0

Figure 8.3: Extremal sets for the case G(Ko, f) : 1

Figure B.4: Extremal sets for the case G(K',l) : 2

t57



Appendix B 158

Parameters Inequality

Arw
A,R
Arr

Prw

P,T

p

Extremal
Sets

Reference
see note

p.207, ex.5.8
p.239, ex.6.10a

221, ex.6.4

t

p.257 ex.7.I7a
p.258, ex.7.18a

t

p.213, ex.6.1
see note 4

drw
drR

drr
w)
wrT

Rrr

t

t

p.215, ex.6.2
(see note 5

Table 8.1: Inequalities for sets with no lattice constraint

Notes on Table B.1:

1. Notation:
I line segment
C circle
E equilateral triangle
W orbiforms (sets of constant width)
P parallel strip

2. The he table may be found in the indicated pages of
the boo nskii (1961). Results indicated with t are trivial
and the ted.
3. The left hand and right hand extremal sets correspond to the left hand and
right hand inequalities respectively.
4. The left hand inequality for the pair (d, R) is referred to as Jung's Theorem.
5. The right hand inequality for the pair ('u, r) is referred to as Blaschke's The-
orem.
6. Where an inequality is strict, the extremal set shows the bound to be best
possible.

0<A< 4tr I,C
0 <.4 1þrd¿. 4 I,C
w'/\/3(A<oo E,P
0<A1rR2 I,C
mz1A<oo C,P
2d<plrd I,W
rw 1p < oo W,P
4R < p 12rR I,W
2rr1p<æ C,P
w1d<æ W,P

2R\/3R <d< E C)

211d,<æ C,P
0 < tr.r <2R I,C
211w13r C,E

r(.R<oo C,P
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Parameters Inequality

r

A,d

w

A,R
A,r

Prw
R

P,T
w

d,R

U,R
u,,T

159

p

w

R

Extremal
Sets

Reference

Scott 1993),
(Vassallo 1992),

Chapter 5

p
1995

I

Chapter 8

6

Chapter 9
10

Chapter 7

Chapter 9

7

r

Table 8.2: Inequalities for G(Ko,Aa) : 0

Notes on Table 8.2:

1. The lattice r\¿ is generated by u : (2,0) and v : (0, u), where u 1 u.
2. The result for r has not been proved in the thesis. However it follows easily
by symmetrizing K about the lines n : u/2 and gr : u/2 and noting from The-
orem 2.3 that symmetrization does not decrease the inradius.
3. For the pairs (A,d,) and (.4, R), the extremal set is Pnif. ): u and?la other-
wise. The result for (4, R) follows easily from d < 2R and the (A,d,) inequality.
4. Where an inequality is strict, the extremal set shows the bound to be best
possible.

unbounded
unbounded
unbounded
w<!(2u+r/Ju) cçR

unbounded

Ir + Ca see note 2

¡A Pa Bender 1962
Ald < 

^,) - max{u,2sin(Ql2)18+ u2},

þx0.832x47.70

Pp or ?lp
(see note 3)

L. (, - u)A 1 ïur'
2. #s*(,+fù-'

Tn

tn
R<2^ Pp or 7{2 see note 3

*
*
w-a 1 3uw 8a

*
*
(w - u)(d - u) 1uu Tn

2R-d<?(z-'/5)(u+#u) tn
,r 2r-u d-u <ua Pa

w-u R< tn
u* uw-211 ta

*
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a

160

oaa

a

The circle C¿

a

The equilateral triangle á¡

a

a \\-
Lþ"'

/ a

rv

oa

The truncated rectangle ?lp, þ x 47.7o

a a

a

The parallel strip P¿ The triangle ?r¿

Figure 8.1: Extremal sets for the case G(Ko,Ân) :0

\,r

a

v

u

v

u
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Parameters Inequality

Aru

Arr

P,U
R

P,T

d,w
drR
d,r
wrR
U,T

r

161

1

A
p
d
w
R

Extremal
Sets

Reference

see note 1

1980

Chapter 8

pter 11

Chapter 10

Chapter 10

Chapter 10

Chapter 10

Chapter 9

pter 10

Scott 1980

Chapter 9

r
p

Table 8.3: Inequalities for G(Ko,f) : O

Notes on Table B.3:

1. The result for r follows easily from the corresponding result in Table 8.2
by letting u,:'u the exception of the
(A,r) and (p, r) : u : L-.
2. The methods ies may be extended
to obtain the co lattice. However the
results are complicated and have been omitted in Table 8.2.
3. Where an inequality is strict, the extremal set shows the bound to be best
possible.

unbounded
unbounded
unbounded
w<+(2+/3)=1.866 cço

unbounded
r(1 Co

A< Po Bender 1962

, À x 1.744 ?{o Scott I974a
I. (w - 1)A 3 ïr'
2. # > *(1 + f)-' ¡v o.3oe

fo
cço

A/R<2^, 
^x1.L44

?to

t. (2r - I)A S 2(,[2 - 1) = 0.828
2. (2r - 1)lA - Ll < r/2

5s
Po

*
w -t p 13w cç0 Scott 1980

*
I. (2r - L)p S i6/z - t)
2. (2r - t)lp - 4l <2

Ss

Po
w-I d-1)<1 fo Scott 1978b

2R-d<+ eoo

2r -! d-1)<1 Po
(r-1) co0

w-2r I å+ *'/3*0.622 coo

*
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a

L62

a

a

a

a

oa

N

a

The circle Cs

The truncated diagonal square 7lo, ó x 47.7o

The parallel strip Ps

+- a

The equilateral triangle á¡

a

a a

a

o
/

a

o

a

a
+d

The diagonal square Es The triangle fr

Figure 8.2: Extremal sets for the case G(Ko,l) : 0
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Parameters Inequality

r
,P

A,d
A,w

A,R
Arr
Prd
P,U
P,R
P,,T

drw
d,, R

r
wrR
wrT

Rrr

Extremal
Sets

163

Reference

A 1911

d

w

(Ehrhart 1955a)

Chapter 3

Chapter 3

(Scott 1985a

(Scott 1982

Chapter 4

and Scott 1979

Chapter 11

Chapter 7

Chapter 8

Chapter 11

Chapter 10

Chapter 10

Scott 1985a)

Chapter 9

Chapter 9

Table 8.4: Inequalities for G(Ko,l) : t

Notes on Table 8.4:

1. The ily from the corresponding result in Table 8.2 byr¡sing.t 
^9^L1. In fact-the inequatiiies for the pairs (,4, d),(A,w), ) are obtained using the same argument.

I. A < 4 if. O is centre of K
2. A < 4.5 if O is the C.G.
3. A<4.SorAunbounded
4. Conjecture: If O is the circumcentre
then,4, 1ax 4.04569

e'g' 51

Ehrhart's A
Ehrhart's A

Qt
unbounded
unbounded
t. w <l+rt=2.474
2. Conjecture: If O is the C.G. then

w < 3rtlz Ehrhart's A

T1

R 1 a= 1.685 or R unbounded T
r(1 Ct see note 1

, rl¡instqlA/p < 2(2 + r/n)-'= 0.53
(O is centre of K)

Ut

Alds\/2^d,ÀxL.r44 ?tt
r. A(w - ,/2) 3 hr'
2. Conjecture:

,4_5 4
w3 L 'tÆts+,-.sjxo'243

fL

eol
AIR < 2\/t^R 7lt
A(2r - r/2) 3 4(2 - t/z) x 2.343 51
*
*
*
p(2r - Jz) S:Q - \/2) El
(w - t/z)(d- \/2) 32 fL
Conjecture:

2R-a<*.F-3l3) =0.425 tt
*
*
Conjecture:

w - 2r S #$ + .'.ß) r o.ze3 8L

*
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a a a

a

a

a

a

aao

The circle Cr The equilateral triangle t1 Ehrhart's A

o

o

a

The truncated squarê ?tt, þ æ 47.7o The isosceles triangle Z1

The truncated quadrilateral Q1,
R = 1.593, d N 5.47o, B æ 20.23o

The square .S1

a

a

?

J

l
..

a

The triangle fr The triangle 7,
.R = 1.685

The rounded square U1,

r = 0.530

Figure 8.3: Extremal sets for the case G(Ko, f) : 1
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Parameters Inequality

Ard

A,U

165

Extremal
Sets

Reference

A

d
u
R
r

Chapter 5

pter 12

Cha 72

Chapter 11

Chapter 11

pter 7
Chapter 8

Chapter 11

11

Chapter 7

Chapter 6

Chapter 9

Chapter 7

Chapter 9

p

R

r
P,d

u
P,R
Prr
d w
d,R
drr

w)

U,T
Rrr

Table 8.5: Inequalities for G(Ko,f) : Z

Notes on Table 8.5:

1. The result for r follows easily from the corresponding result in Table 8.2
by using tþe sublattice argument SL2. In fact all the abole inequalities except
those for the pairs (A,p) and (A,d) and (,4,.R) are obtained by lhe same argu-
ment.
2. The results concerning the pairs (A,p), (A,d,) and (A,R) apply to the class
of symmetric sets i\ lÇt, having the interior lattice points symmetrically placed
about the centre of the set. The conjectures apply to the general convèx set
containing two interior lattice points.

unbounded
unbounded
unbounded

æ 2.866w1 (4+ cç2
unbounded
, 3 *r/s Cz (see note 1

7. l/p ( I æ 0.636
(special conditions apply, see note 2)
2. Conjecture: Alp S) = 0.636

Uz

Uz
l.A/d(oæ1.841
(special conditions apply, see note 2)
2. Conjecture: Al d S o æ 1.841

?{z

7{z
L (r-2)A3àr'
2. #>hQ+*)-' =0.201

r,
cç2

l. A/R 1 2a x 3.682
(special conditions apply, see note 2)

2. Conjecture:Af R I 2q x 3.682

?{z

?{z
*
*
(t¿ - 3. lp<3w cç2
*
*
w-2 d-r) <2 T,

5-2 x 0.5122R -d< cç2
*

uw-2 R< co2

w-2r1 (2+ = 0.955 cç2
*
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a

166

a

a

a

a

a

a

a

a

The circle C2

a

a

The equilateral triangle á2

a

o

a

a

a

II
1

a

The truncated rectangle ?12, g x 48.5o

9.'
+ -a---

d

The triangle 72

o

The rounded hexagon U2,
op6.13o,r=0.636

Figure 8.4: Extremal sets for the case G(Ko,l) : 2
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Three parameter relationships for sets with no
lattice constraint

Let K be a non-empty set in K2, We compile a list of inequalities relating any
three of the geometric functionals A, p, d, u), r and B. We list the details in
the following order: the inequality; a set for which the inequality is best (where
the inequality is strict, the indicated set shows that the bound is best possible);
references for a proof of the inequality.

1. Parameters: A,p,d,.

(1) 8óA < p(p - 2dcosl) where 2ód : psing; the intersection of two disks of
equal radius (Figure 13.5a); (Kubota 1923; Yaglom and Boltyanskii 1961, p.240,
ex.6.11a).
(ii) f aþ -2d,) < A < f,nd; the right hand inequality is best for a circle; (Hayashi
1e23).
(iii) A , Td(p - 2d); infinite isosceles triangle; (Favard 1929).

(iv) If 2d < p 4 3d, then .4 > i@ - zd)@pd, - p,),1,; isosceles triangle; (Kubora
L923, 7924; Yaglom and Boltyanskii 196t, p.229, ex.6.8a).
(v) If 3d < p 1rd, then A >T{Sa1o-2d); Not best possible unless p:Jd,in
which case we have the equilateral triangle; (Kubota 1924).

2. Parameters: Arprw.

(i) A S Tr(p - L"r); convex hull of two disks of equal radius (Figure 13.bd);
(Kubota L923; Yaglom and Boltyanskii 1961, p.241, ex.6.11b).
(ii) If 0 < 2tßw ( p, then A > Aiwhere Ai is the middle root of the equation
t28pr3 l6w(5p2 ! r')r' * L6w2p3r - w3p4 : 0; isosceles triangle; (Yamanouti
L932; Yaglom and Boltyanskii 1961, p.231, ex.6.8b).
(iii) If 0 < rw < p < 2{3w, then ,4. 2lr{gn- r[Zrsec27) where tanT -.y :
ä(p - rw)f w; equilateral Yamanouti triarc (Figure 13.5b); (Kubota and Hemmi
1953; Sholander L952).
(iv) If 0 < rw - p, then O , +(" - tfZ¡r'; Reuleaux triangle (Figure 13.bc);
(Lebesgue 1914, 1921; Yaglom and Boltyanskii 1961, p.260, ex.7.20).
(") A >LuØt/gr' -pr); equilateral triangle; (Sholander 1952).
(vi) A 2 T(p, - #r'); equilateral triangle; (Kawai 1932).

167
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(vii) A > lnr; equilateral triangle; (Sholander 1952).

3. Parameters: Arprr.

(i) ,4 S ,(p - zrr); circle; (Bonnesen 1929).
(ii) A > ln ; triangle; (Bonnesen and Fenchel 1934).

4. Parameterc: A,p,R.

(i) A S R(p- r'.R); circle; (Bonnesen 1929).
(ii),4 <2R(p-2R); not best possible; (Henk and Tsintsifas 1994).
(iii) A > R(p - 4R); infinite isosceles triangle; (Favard 1929).

5. Parameters: A,d,w.

(i) A < wd; rectangle with width tending towards 0; (Kubota 1923).
(ii) A < Tr@ - u2)r/2 * dsin-l(wld); a set formed by removing from a disk
p_oin_ts outsi4: two symmetrically placed chords (Figure 13.5e); (Kubota L923;
Yaglom and Boltyanskii 1961, p.240,6.10b).
(iii) If 0 1 w S 6/312)d,, then A > lwd; triangle; (Kubota 1923; Yaglom and
Boltyanskii 1961, p.227, ex.6.7).
(iv) If \/512 <w < d, then A> l(trw'-t/3û)+3u2(tanô-ô), where ô:
cos-L(wf d); equilateral Yamanouti triarc (Figure 13.5b); (Kubota and Hemmi
1953; Sholander 1952).
(v) If u) : d, then A ,- l(" - tß)e; Reuleaux triangle (Figure 13.5c); (Lebesgue
1914, 1921; Yaglom and Boltyanskii 1961, p.260, ex.7.20).
(vi) ,a >_l@aw - Jtæ), equilateral triangle; (Sholander 1952).
(vii) A > T(n*'- ßa')t Reuleaux triangle (Figure 13.5c); (Sholander Ig52).

6. Parameters: A,d,r.

(i) Á < 2dr; parallel strip; (Henk and Tsintsifas 1994).

7. Parameterc: A,d,R.

(i) (2n - d,)A3r,ftß - 5)Rt; not best possible; (Scott 1931).
(ä) Conjecture: (2R- d)A S tQ - '/5)(" - ,ß)n3, with equality for a Reuleaux
triangle (Figure 13.5c); (Scott 1981).

8. Parameters: A,w,r.

(i) (, -2r)A < lr'; an infinite isosceles triangle; (Scott 1979a).
(ii) (tr - 2r)A . hr'r; equilateral triangle; (Scott 1979a).

(iii) (tr,' -2r)A< rf3wrz <3tßr3; equilateral triangle; (Scott 1979a).

9. Parameterc: Arw,R.

(i) ,4 < 2wR; rectangle with width tending towards 0, (Henk and Tsintsifas 1994).
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(ii) A , f.R; equilateral triangle; (Henk 1991).

10. Parameters: A,r,R.

(i) A < 4Rr; parallel strip; (Henk and Tsintsifas 1994).
(ii) A ) 2Rr; a triangle with width tending towards 0; (Henk and Tsintsifas 1994).

11. Parameters: p,d,u.

(i) p < 2(æ -w2)r/2 *2dsin-l(wld); a set formed by removing from a disk points
outside two symmetrically placed chords (Figure 13.5e); (Kubota 1923; Yaglom
and Boltyanskii 1961, p.257, ex.7.17b).
(ii) p > 2(d'-w2)t/2 *2wsin-L(wld); the convex hull of a disk and two sym-
metrically placed points (Figure 13.5f); (Kubota 1923; Yaglom and Boltyanskii
1961, p.258, ex.7.18b).

12. Parameters: p,d,r.

(i) p < 2d * 4r; a rectangle with width tending towards 0; (Henk and Tsintsifas
1ee4).

13. Parameters: p,d,R.

(i) (2R - d)p S Qß - 3)rR2; sets of constant width; (Scott 1981).

14. Parameters: p,u,r.

(i)(, - 2r)p < hr'; equilateral triangle; (Scott 1979a).

(ii) (ur - 2r)p < 2tf3wr < 6tf3r2; equilateral triangle; (Scott 1979a).

15. Parameters: p,u,R.

\Me have not been able to find any result relating these parameters.

16. Parameters: p,r,R.

We have not been able to find any result relating these parameters.

17. Parameters: d,u),r.

(i) (, - 2r)d < 21f3r2, equilateral triangle; (Scott 1978b, 1979a).
(ii) (tn - 2r)d < lr'; the infinite isosceles triangle; (Scott 1979a).
(iii) (tr - 2r)d,. hrrt equilateral triangle; (Scott 1979a).

18. Parameters: d,w,R.

(i) (2Ã - d), S '/3(2 - ,fÐn'; Reuleaux triangle (Figure 13.5c); (Scott 1981).
(ii) (2R - d) <?fz - t/3)r; equilateral triangle; Chapter 9 of this thesis.
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19. Parameters: d,r,R.

(i) (2ft - d), S (3/3 - 5)R'; Reuleaux triangle (Figure 13.5c); (Scott 1931).

20. Parameters: u),r, R.

(i) (, - 2r)R < lr'; infinite isosceles triangle; (Scott 1979a).
(ii) (u,' - 2r)R. ?rr; equilateral triangle; (Scott 1979a).
(iii) (to - 2r)R 1 2r2; equilateral triangle; (Scott 1979a).

770
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(a) Intersection of two circles

(b) Equilateral Yamanouti triarc (c) Reuleaux triangle

d

(d) Convex hull of two circles

(e) T[uncated circle (f) Convex hull of circle and two points

Figure C.1: Extremal sets for three parameter problems
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