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Abstract

Attention is essential to the analysis of visual scenes that consist of muitiple objects, especially

in cases where the objects are embedded in complex and cluttered backgrounds. Despite its

importance, few artificial neural network models of object and pattern recognition have incor-

porated attentional mechanisms. Recent advances in cognitive neuroscience have provided im-

portant information on the neural mechanisms of attention. Significantly, attentional processes

involve the modulation of neuronal signals, and are clearly influenced by memory related pro-

ces ses v ia feedforward-feedb ack interaction s.

This thesis proposes an architectural frameworkbased on neural networks for visual scene anal-

ysis with attentional mechanisms. The core of the framework is based on an adaptive resonance

theory architecture, which is a self-organising neural network for stable learning of recognition

codes. The proposed model exploits the computational role of attention in visual object recog-

nition by modelling the dynamics of attentional processes for perceptual grouping and selective

processing. As a result, the proposed model is capable of performing translation, rotation, and

distortion invariant 2D object recognition in the presence of background clutter and occlusion.

The model is shown to be flexible to extensions by incorporating an elementary motion detec-

tion architecture for recognising moving objects. Furthermore, the use of feedforward-feedback

modulation has enabled partial or incomplete familiar objects to be recognised in a variety of

visual conditions. Biologically, such feedforward-feedback interactions can be used to explain

the phenomenon of visual completion.

Simulation studies undertaken demonstrate the effectiveness of the proposed model in recog-

nising 2D objects in many non-ideal visual conditions. The practical feasibility of the neural

architecture is demonstrated through its application to real-world images. Despite difficult vi-

sual environments, including severe distortion, the simulation results indicate the model can

detect, locate and recognise the learned objects from the simulated images.

From the research presented in this thesis, it is concluded that the use of attentional mechanisms

can enhance artificial vision systems to cope with difficult visual conditions. It is shown that

feedforward-feedback interactions with synaptic modulation ate a versatile and powerful mech-
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anism for performing many useful functions such as transformations, filtering, gain control, and

selective processing in neural network based vision systems.
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Chapter L

Introduction

L.1 Background and Motivation

Visual attention is essential for analysing visual scenes consisting of many objects, especially

for scenes with complex and cluttered backgrounds. Attention is required to determine where

one should focus and what input stimulus features should be selected to form meaningful ob-

jects. Without attention, one would not be able to detect changes in one's immediate surround-

ings. FurtheflnoÍe, failures in the attentional system may result in seeing meaningless visual

patterns of elementary features instead of familiar objects.

Despite its importance in visual perception, the incorporation of attentional phenomena and

mechanisms in vision models is rare. This can be attributed to three main factors. The first

is our insufficient understanding of the underlying neural mechanisms that are responsible for

attentional processes. The second is that attentional phenomena are diverse, serving a great

number of computational purposes, thus difficult to unify by a single theory. Lastly, it is gener-

ally agreed that there is some intelligent force or agent that is conholling the attentional system;

such a higherJevel decision making unit cannot be defined or modelled easily [94].

Recent advances in cognitive neuroscience and neurophysiology have unearthed some of the

mysteries surrounding selective attention. Findings in these fields have provided information on

the timing and sequential order in specific anatomical locations that are affected by attentional

processes; the modulation of the responsiveness of neurons that encode colour, form, and spatial

information during attention [50, 54, 198]. Moreover, the use of event-related brain potential

has allowed us to gain insight into the levels of processing at which different kinds of visual

information are selected for further analysis ll20l. These findings have enabled us to postulate

theories and develop models and algorithms for attentional functions. In particular, studies
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Chapter 1. Intoduction

in electrophysiology have provided knowledge on the implementation of attentional processes

using neuronal circuits and neural systems.

Of special interest to modelling the computational properties and dynamics of attentional mech-

anisms is the feedforward-feedback interactions between bottom-up processes (stimulus driven)

and top-down processes (memory driven). It is known that attention may regulate access to

memory based on the fact that spatial attention limits the amount of information processed by

suppressing unattended stimuli, thereby denying them access to memory [131], The reverse

may also occur, in that memory guides attention [51]. In a visual search, top-down signals have

been found to bias cells that are related to the search, and activation of these cells is enhanced

when the right stimulus occurs. Often such a visual search is achieved by memory-guided at-

tention, in which the representation of a target in memory is used to guide the search of a visual

scene.

1.2 ResearchObjectives

The primary goal of this thesis is to acknowledge the importance of attention in visual per-

ception and to incorporate attentional processes into a model for visual scene analysis. The

objectives ofthis study are therefore:

o to explore the role of attention in visual perception, in particular, its relation to object

recognition and visual scene analysis;

o to review the cunent status of artificial vision systems in the context of object recognition;

o to model the computational properties and dynamics of attentional processes, namely

parallel-preattentive and serial-attentive processes, using feedforward-feedback interac-

tions and biological principles and mechanisms;

o to develop a neural architecture that utilises attentional mechanisms for analysing visual

scenes under a variety of operating conditions;

o to establish a general framework that allows additional visual functions to be incorporated

with ease; and

o to investigate the effectiveness of the proposed neural architecture through simulation

studies on synthetic and real-world complex and cluttered image scenes.

In visual scene analysis, we expect the proposed system to be able to detect, locate, and recog-

nise from a visual scene any familiar objects that may be shifted in position and orientation,
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Chapter 1. Innoduction

distorted in shape, and with minor changes in size, as well as in the presence of occlusion and

background clutter.

Figure 1.1 is intended to provide readers an overview of the scope covered in this thesis. It

shows the processes required for an input scene to be analysed. Basically visual scene analysis

as proposed in this thesis is a result of three major processes involving selective attention, object

recognition and memory. Figure 1.1 also shows that these three processes are built on a neural

architecture that learns and stores object representations from an input image.

Visual Scene Analysis

I
Attention Object Recognition Memory

Neural Networks
- Object Representation
- Learning

Neural Representation

Image Processing

Input

tr'igure 1.1: Scope of the thesis.

L.3 Research Methodology and Approach

The field of vision is vast and diverse. Scientists from disciplines such as psychology, neu-

rophysiology, and cognitive neuroscience are interested in discovering scientific facts about

various aspects of the visual system. On the other hand, engineers, computer scientists and

mathematicians are more concerned with formulating theories and developing models for vi-

sual functions. In order to unifies knowledge from the various disciplines of vision, a suitable

research approach must be devised.

V/e formulate our approach based on the so-called top-down modelling proposed by Marr ll22l
In top-down modelling, there are three levels of information processing:

õ
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Chapter 1. Intoduction

1. Comput¿tional theory - specifies a function to be computed, which matches the input-

output nature of neuropsychology. Examples are higher-level visual functions such as

visual search, object recognition, and attentional shift and capture.

2. Algorithm and representation - concerns the computational steps that are required in or-

der to transform an input representation to an output representation of that function. Neu-

rophysiology has provided us with insights into neural representations at various stages of
the visual pathway. Moreover, direct measurements of neural activity during visual tasks

in electrical and magnetic recordings have allowed computational relationships among

various neural substructures to be established. Top-down attentional modulation is an

example of an algorithmic step.

3. Implementation - determines the underlying mechanisms and structure that are respon-

sible for carrying out the computational steps. Neural network models are well suited for

implementation.

From these three processing levels, we derive a three-level approach to modelling our proposed

neural architecture, which we simply refer to as psychological, neurophysiological, and imple-

mentation levels. To begin modelling, we first attempt to develop a framework for our proposed

model from psychological theories and models using a "blackbox" strategy, where the details

are hidden and the emphasis is entirely on the input-output relationship of the system concerned.

Models and concepts of neurophysiological studies are used to devise neural representations,

as well as establishing computational relationships and connections among various neural sub-

structures within the framework. Finally, the framework is implemented using fundamental

building blocks such as chemical synapses, synaptic connections, and neural layers.

1.3.1 Shape-Based Representation

Having established the modelling approach for our proposed visual scene analysis system, we

need to consider the sources of information and its representation in the system. The central

issue here is how to represent an object. The retinal projections of real-world objects are rich in

information, containing many different object features and properties such as colour, shape, tex-

ture, depth, shading, surface curvature and reflectance, and motion. We may recognise an object

visually based on one or any combinations of these features. Nonetheless, one can generally

recognise an object according to its characteristic shape alone t1911.

In this thesis, we will be concerned primarily with shape-based recognition in our proposed sys-

tem, because for the recognition of many objects, non-geometric features play only a secondary

role [166]. Furthermore, the shape of an object tends to dominate over other visual cues [68].
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For example, a green dog, despite its unusual colour, can readily be recognised. The use of

shape information for object and pattern representation has been pursued by many authors, see

[110] for a review.

1.3.2 Self-Organising Neural Architectures

Besides object representation, we need a suitable choice of neural paradigm to form a basis for

the proposed system. Biological systems are known to be self-organising in nature, where use-

ful information is extracted from the input data without the need for a "teacher". An important

family of neural architectures that are capable of preserving existing knowledge at the same

time maintaining its plasticity ue Adaptíve Resonance Theory (ART) neural networks by Car-

penter and Grossbergl28,29,30l. ART is a self-organising network that embraces the cognitive

concepts of attention, vigilance, top-down priming and bidirectional learning. However, ART

alone is insufficient to address the problem of real-time learning and recognition in complex

and cluttered environment as pointed out by Lozo [113]. It led to the proposition of a neural

architecture called Selective Attention Adaptive Resonance Theory (SAARI) [113], which im-

plemented the concept of top-down selective attention via synaptic modulation. In this thesis

both ART and SAART will be used to model the proposed visual analysis system. Detailed

discussions on ART and SAART for pattern and object recognition are provided in Chapter 3.

1,4 Major Contributions of the Thesis

The principal contributions made in this thesis are as follows:

o A review of the development of neuropsychological and neurophysiological aspects of

vision, in particular the role of attention in visual perception and its relation to object

recognition.

o A critical review of the computational and neural approaches to the high-level visual

function of object recognition.

o An in-depth study of Adaptive Resonance Theory and Selective Attention Adaptive Res-

onance Theory for pattern recognition.

o The modelling of the computational properties and dynamics of attentional processes for

highJevel visual functions.
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o The development of a biologically inspired neural framework for invariant visual scene

analysis with selective attention.

o The investigation of the performance of the proposed neural system under a variety of
visual conditions in the presence of occlusion, noise, and background clutter.

o The development of a neural architecture for elementary motion detection with attentional

modulation mechanisms.

¡ The integration of the motion detection module allowing the framework to detect, locate,

and recognise both static and moving objects.

o The development of a self-organising neural architecture for parts recognition using com-

plementary feedforward-feedback modulatory pathway s.

L.5 Outline of the Thesis

In Chapter 2, abrief introduction of vision is provided. We define visual perception and examine

two of its critical components, namely visual selective attention and object recognition. We

explore the psychological and neurophysiological basis of visual perception, and consider the

neural mechanisms that constitute the visual system, in particular those responsible for visual

attention. The chapter summarises cognitive data on attentive vision, serving as background

information for modelling in later chapters.

Chapter 3 provides the mathematical and theoretical foundations for our research. The core of
this chapter is a literature review on the various approaches to object recognition. V/e highlight

the use of artificial neural networks for vision systems, and discuss some of the related issues

such as network architectures and learning paradigms. A detailed study of Adaptive Resonance

Theory and its extension Selective Attention Adaptive Resonance Theory is presented.

Chapter 4 presents a number of neural architectures for visual object recognition under a va-

riety of visual conditions. The visual functions considered in this chapter include translation

invariance, rotation invariance, distortion invariance, recognition in the presence of occlusion

and background clutter, and attentional shift and capture. W'e show how ART and SAART are

embedded and integrated into the overall architecture. Specifically, the concept of top-down

presynaptic facilitation is implemented to model the effects of memory-guided selective atten-

tion for the recognition of familiar objects in cluttered background. This chapter forms the main

body of the thesis. It is an attempt to combine cognitive data, theories and models together into

a neural framework for vision scene analysis.
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In Chapter 5, we present a computer simulation study for all the visual functions modelled

in Chapter 4. The simulations contain both synthetic and real-world imagery scenes. This

study demonstrates the practicability and effectiveness of the proposed framework in real-world

applications. Discussions on the design of system parameters and limitations are provided.

Chapter 6 provides a demonstration of the extendibility of the framework by including ele-

mentary motion as a bottom-up visual cue for capturing spatial attention. The chapter begins by

proposing a neural architecture for elementary motion detection, which is then incorporated into

the framework. An implementation of directional bias is presented. The chapter also contains

an analysis of the motion detection architecture under various operating conditions.

Chapter 7 presents some advanced features of the framework. An extension of ART and SAART

is proposed using feedforward-feedback modulatory pathways for bottom-up gain control of

top-down signals. The resultant neural architecture is capable of recognising incomplete and

occluded objects in cluttered images. Ways in which the robustness of the automatic attention

stage may be improved are discussed. A proposal for size invariance is also presented.

Chapter 8 provides the overall conclusions of the thesis and discusses possible avenues of future

research.
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Chapter 2

Vision

This chapter provides a brief overview of visual perception in terms of object recognition and

visual attention. In addition, we examine the mammalian visual pathway that underlies these

visual functions. The reader should note that this chapter serves to illustrate some of the findings

that are relevant to the modelling of our proposed visual scene analysis system. As such, a

complete review of the visual system is beyond the scope of this thesis.

2.1 Visual Perception

Visual perception is a process of reaching an understanding and awareness about objects and

events in our immediate surroundings visually. It involves the use of knowledge and memory,

and is guided by our attentional system 123,68, 146, 1641. One must be able to recognise all

important objects in the visual scene before such an understanding can be reached, therefore

visual scene analysis can be regarded as the first stage to visual perception.

Two essential components of visual scene analysis are object recognition and visual attention.

V/hile there are numerous models for object recognition, models equipped with selective at-

tention are less common. To illustrate the importance of attention, several ambiguous figures

are depicted in Figure 2.I. In each case, if one was told the figure's identity, then a top-down

expectation would be generated to match that description. For example, if told Figure 2.1(b)

was a duck, then most people would see it a duck. On the other hand, most would see a rab-

bit if so suggested. This simply shows the strong influence top-down attention has on object

recognition.

In the next section, we review the underlying nervous system that is responsible for visual

information processing. This is followed by discussions on higher perceptual functions of object
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(a) (b) (c)

Figure 2.1: Ambiguous figures. Can be seen as either (a) a man playing horn or a

woman silhouette; (b) a rabbit or a duck; and (c) aface or an Eskimo.

recognition and visual attention.

2.2 The Visual System

Vision begins with our eyes as sensors for light, but in terms of neural activity the visual system

begins processing at the retina, located at the back of the eye. The primary function of the retina

is to convert the image formed by the eye into neural activity that can be understood and pro-

cessed by our nervous system. The retina is formed by millions of lighrsensitive neurons. Each

neuron receives stimuli from only a fraction of the visual scene, and produces a response with
magnitude according to the light intensity of that fraction. In this way, the visual scene is trans-

formed by a photo-sensitive neural layer, and represented as discrete neural responses. These

responses are further processed by other neural layers (ganglion cells) in the retina, each hav-

ing its own distinct receptive field properties, to produce contrast signals of the input stimulus

before proceeding to the lateral geniculate nucleus (LGN). It is believed that the LGN is where

the segregation of visual streams begins, as the LGN consists of six layers and it projects to

several other areas of the cortex. However the great part of that projection arrives at the primary

visual cortex (area V1) which is the sta¡ting point of specialization because the receptive fields

of neurons in this aÍea ate qualitatively different from those that produce contrast responses in
the early stages. In particular the receptive field properties in area Vl define two categories of
cortical neurons, called simple cells and complex cells [87]; the former have oriented receptive

fields, and hence they respond to stimuli in some orientations better than others; the latter's

receptive fields are direction-selective, that is the cells respond only to stimuli moving in the

preferred direction of the receptive fields.

A simple illustration of the processing in the visual system is shown inFigure 2.2.
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Figure 2.22 Outline of the visual system.

2.2.L The Neuron

Neurons are the basic processing units of the brain. Each neuron can only perform an elemen-

tary computation. It receives information from other neurons that are connected to it, makes a

decision based on that information, and transmits the decision to some other neurons. A typ-

ical neuron has several major components, consisting of a cell body or sornd, a nucleus, two

types of tree-like structures: the axon and the dendrites, and the syrctpses at the axon terminals.

The dendrites of a neuron are its receivers. They receive signals from the synapses of nearby

neurons. These signals allow the cell body and its nucleus to generate a decision signal which

is passed along the axon for transmission to other neurons. The axon eventually branches into

strands and sub-strands called the axon terminals which are the transmitters of the neuron. At

the end of the terminals are the synapses, they act as connectors between the two tree-like struc-

tures. The axon and its branching terminals are said tobe presynaptic because they are located

before the synapses with respect to information flow, whereas the dendrites are postsynaptic. A

diagram of a biological neuron is given in Figure 2.3.

The cerebral cortex, the outer shell of the brain, contains approximately 1011 neurons, and each

neuron is connected to 103 and 104 other neurons, giving about 1014 to 1015 connections. These

massively parallel networks provides enormous processing power for the brain.
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Figure 2.32 A typical neuron.

2.3 Object Recognition

Studies invisual agnosi&have provided insights into human object recognition. Gazzaniga et al.

[68] gave a detailed account of a patient who had lost the ability to recognise everyday objects,

yet he was still able to perform all the fundamental visual functions such as identifying colour

and shape. It seems that he had diff,culties in linking features together to form a coherent object.

This example illustrates that seeing is meaningless unless object recognition can be achieved.

Object recognition is about retrieving identity information for a set of conjoint features from

our memory. The set of conjoint features to be identified depends on the circumstances. Object

recognition is often viewed as a computational problem due to Marr's influential theory of vision

lI22l. From computational point of view, object recognition is a process in which images are

compared to stored representations of objects for the purposes of identifying the objects that

give rise to the images.

Despite continual efforts, object recognition remains a challenging problem. Much of the diffl-
culty associated with object recognition arises from the fact that objects captured in images do

not always provide sufficient resemblance to their stored representations. One obvious reason is

real-world objects are 3D in nature, thus an object may give rise to a large number of different

2D projections. Furthefinore, real-world objects are often embedded in a scene that contains

many other objects. Those objects that are located close to, or occluding, the target object can

cause object recognition to fail. Ullman [191] suggests there are two more sources of variability

in object appearance, besides the two mentioned above. One is the result of varying illumina-
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tion conditions, which can drastically alter the performance of a recognition system, The other

is caused by changing shape in non-rigid objects, or objects with movable rigid sub-parts, such

as a pair of scissors.

Variability in sensory information is the fundamental reason why object recognition is difficult.

Therefore object recognition problems are usually formulated as object constancy problems -

the ability to recognise an object in countless situations. Central to object constancy is the

debate whether recognition occurs in an object-centred or viewer-centred frame of reference.

2.3.I Object-Centred versus Viewer-Centred Representations

Object-centred representation describes objects using view independent properties and has a

frame of reference (coordinate system) that is inherent to the object concerned. Recognition

with object-centred representation is usually achieved through invariant transformations [37,

1471 such that a single stored model is used to recognise the object from all possible views.

In viewer-centred representation objects are described according to their appearance as viewed

[13, 86, 162, 1651, and has a frame of reference defined in terms of the direction and distance

from the observer's viewpoint to the object. A viewer-centred model is typically a set of views

of an object covering a restricted range of views of the object. Therefore, a number of models

are required to represent the object from all possible views.

An obvious weakness of the viewer-centred approach is the need for an extremely large mem-

ory of stored models. In contrast only one model is required for each object in object-centred

representation. Nonetheless, viewer-centred representations are easier to acquire and manipu-

late than object-centred ones. Furthermore, some studies in physiology and psychophysics have

provided experimental results that suggest viewer-centred representation may be employed by

the visual system [109, 148, 183]. Computational models and approaches of object recognition

are further discussed in Chapter 3.

2,4 SelectiveAttention

Attention is usually regarded as a complex mental process that performs selective processing.

In many cases, authors avoid defining attention directly, rather it is explained or illustrated in

terms of phenomena that are associated with attention such as the "cocktail-party" effect. The

reluctance to define attention can be attributed to our lack of understanding of the underlying

neural mechanisms and processing. Unlike object recognition which can be defined as a com-

putational process, attention is bordering on consciousness and intelligence, thus difficult to
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define adequately. Review papers on attention can be found in12,3, 50,54,941.

Attention is most commonly conceptualised as the consequences of limited or insufficient pro-

cessing resources or processing capacity of the brainl22l. There are two aspects to this concep-

tion: the first is the limited processing resources which means attention must act as a resource

allocator in terms of mental effort and time; the second is the limited processing capacity which

requires attention to serve as a scheduler, thus its selectivity processing nature.

So how does attention relate to object recognition, and what role does it play in visual scene

analysis? Given that limited capacity is the basis of attentional processes, our visual system

must utilise the system resources in the most effective and efficient manner. Therefore, visual

attention can be described as the "processes that enable an observer to recruit resources for

processing selected aspects of the retinal image more fully than nonselected aspects" 1146l.

For survival purposes, the visual tasks of detection, location, searching, learning and recognition

must be performed effectively in the shortest possible time, despite system limitations. To

achieve this, our visual system must choose to process information that is most relevant to our

needs.

Accordingly, attention first handles the priority of processes. It requires detection and location

of regions of interest based on elementary feature strengths. Our everyday life can attest this,

for example, if an unknown object was flying towards us, understandably, most of us would try

to move out of its path. For this to happen, the moving object must first attract our attention -

this amounts to target detection. We then need to know where the object is coming from and its

flight path, i.e., its location. From which we can determine if we are in danger of being hit, thus

reach an appropriate decision to counter the situation, and finally act upon it. Notice how during

the entire process, it was not necessary to identify what the actual object was, because situations

of this nature require urgent attention. Recognition of the object may come afterwards. This

example shows that attention tells us which cbjects cr events we need tc understand. and be

aware of first and how much system resources should be allocated for processing. While object

recognition is required to identify all objects involved. Attention is also involved in higher

level perceptual functions such as segmentation and grouping. It helps the selection of related

features to form meaningful objects, and assists in analysing and interpreting stimulus events

using memory and knowledge. Thus attention is essential to semantic encoding and analysis.

Failures in the attentional system can lead to recognition failures.

In the above, we have described the "where" and "what" of visual perception. Not only must

we recognise what we are looking at, but we also need to know where it is in order to respond

appropriately. The existence of the what-where pathways in higher cortical layers is widely

supported by experimental evidence in neurophysiology [90, 156].
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Cleady, effectiveness and efficiency are two conflicting and competing requirements of atten-

tion. A balance between the level of detail processed and processing speed must be maintained.

It appears that the attentional system achieves this by allocating system resouÍces, in terms of

mental effort and time, according to the situation. As the level of analysis increases, more in-

teraction with memory is required, and the longer it takes to process. Detection, classification

and recognition differ in their level of abstraction, which can be attributed to the amount of

resources allocated in each case. It is interesting to note, as pointed out by Ullman [191], that

classification is more demanding than recognition in artificial systems contrary to their biologi-

cal counterparts.

2.4.1 Psychology of Attention

One of the first psychological models on selective attention is the "filter theory" by Broadbent

[20], which proposes that the sensory system has a limited-capacity channel and all the infor-

mation passing the channel is screened to let the most important portion through. This filtering

mechanism has been described as a gate that can be selectively opened for attended informa-

tion and closed for ignored information. This theory has since been modified to suggest that

unattended information is degraded and attenuated rather than gated out completely [21].

Studies in psychophysics have suggested that visual perception is a two-stage process, namely

parullelpreattentive (or distributed attention) and serial attentive (or focussed attention). Exper-

imental observations on time course of attention [198] have been able to show bimodal distribu-

tions of attention shifts. The first mode is a quick, effortless, automatic process which operates

in parallel over the entire visual field. In contrast, the second mode operates serially over a

limited portion of the input, and is a slower, effortful, controlled process. This has since been

supported by experimental data in human electrophysiological and neuromagnetic recordings

[118,121].

Theories based on the two-stage model have suggested the preattentive mode locates regions

of interest from the visual scene by processing simple features such as colour, direction of

motion, orientation of edges, and luminance contrast in parallel rapidly. These regions are

then processed by the spatially limited serial attentive stage [97, 186,202,203]. Experimental

results on visual search tasks involving single feature and multi-feature targets have supported

the theory t1871. It was found that response times for single feature searches were independent

of the set size. In contrast, response times for conjunction searches increased with the set size.

Visual search is guided by the two modes of attention. In a search, there must be a target which

may be partially or completely known. This information is used to guide the sea¡ch of the visual
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scene. Generally speaking, there are two types of search tasks [187]. The first is the so-called

"pop-out" tasks, where the target stands out from its background on the basis of a strong featural

cue. This may be achieved by having a target with a unique feature from distractors (e.g., yellow

target among blue distractors). Reaction times for search tasks of this nature a¡e not affected by

increase in size set. In contrast, reaction times for the second type, conjunctíon search, increase

as a function of set size, indicating the scene is searched region by region. Here the target is

defined by a conjunction of features shared with distractors. Reaction times for these two search

types suggest that pop-out searches are performed in parallel whereas conjuncture searches are

performed by a serial processing stage, corresponding to the preattentive and attentive modes,

respectively.

In our everyday life, we encounter complex visual scenes that require us to perform these search

tasks repeatedly and frequently. Not only are the two search types not independent, in fact, they

complement each other. Together they allow visual search to be performed in an efficient and

effective manner - with one being fast but coarse, and the other sophisticated but slow. In
searching for a particular object from a visual scene, the preattentive stage is first employed to

single out one or a few potential regions that are most likely to contain the target object. This

selection is based on the strength of some pop-out feature associated with the target (e.g., a red

hat from a variety of items, then red regions would first be located). These regions are further

analysed one by one by the attentive mode to verify the identity of each of these stimuli (e.g.,

checking one at a time if any of the red stimuli is a hat). Being able to perform one type of
search without the other is useless to the visual system, as without pop-out search we would not

know where to start the search; whereas lacking the ability to do conjuncture search means we

lose the ability to make sense out of basic features, thus the ability to relate to known models in

memory, i.e., failure in semantic encoding.

2.4.2 Neurophysiology of Attention

Psychophysical experimental results have provided us with behavioural information and input-

output relationships of the attentional system. However, they fall short of revealing the under-

lying neural mechanisms that are involved in attentional processes. To gain insights into neural

mechanisms of attention ancl fincl support for psychological theories, researchers have turned to

physiological methods in humans and animals to monitor neural events during attention. We

provide a brief account of the development and findings in neurophysiology of attention based

on the following review papers [50,120,123].

Neurophysiological experiments are commonly conducted using electric and magnetic record-

ings of brain activity and neuro-imaging techniques. Early neurophysiological studies in spatial
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attention by measuring brain waves that are directly related to stimulus processing, referred to

as event-related potentials (ERPs), have been able to detect changes in ERPs. When a stim-

ulus appears at an attended location, the conesponding ERP is enlarged in amplitude. This

implies that spatial attention occurs in part via the modulation of sensory processes in the visual

coftex. Further experimental results show that ERPs are enhanced in both automatic and volun-

tary attention, indicating that automatic and voluntary attention to locations involves a common

mechanism with regard to the effect on cortical stimulus processing.

Lucket aL [118] show fromrecordings of ERPs that sensory processing is modulated in a

spatially restricted manner during visual sea¡ch. This provides support to the idea that focal

spatial attention is required to analyse conjunction targets.

Modulations in extrastriate cortical regions specialised for processing colour, form and motion

during visual attention have been detected using neuro-imaging techniques, hence providing

support that selective attention alters the perceptual inputs prior to completing feature analysis.

In short, neurophysiological findings have provided support for some psychological theories on

attention such as the concept of early selection. To a certain extent the data revealed that the at-

tentional system achieves its objectives by altering incoming visual signals when stimuli having

relevant physical features are encountered. The major implication of these data is that descend-

ing projections (feedback pathways) from attentional control systems affect the excitability of

neurons coding the features of the attended or ignored stimuli.

2,5 Summary

The information presented in this chapter forms the basis for the construction of the proposed

visual scene analysis system. In explaining visual perception, two essential perceptual func-

tions: object recognition and selective attention have been described.

Object recognition plays a significant role in visual perception. V/hen we see, we do not de-

scribe the physical world with simple, meaningless features such as colours, shapes, lines or

curves. We see the world as a recollection of familiar objects and events that are informative,

and can be understood and comprehended. We have explained why object recognition is a

difficult problem. Variability in sensory information and stored object representation are two

computational problems that must be solved for successful object recognition.

We have also discussed the importance of attention in visual perception and its relation to object

recognition. Basically, attention can be regarded as a controller, controlling both the system

resources and the selection of information to be processed. V/ithout attention one would lose
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the ability to detect changes in the environment, thus the ability to switch focus. Furthermore,

failures in the attentional system can cause object recognition to fail because linking of simple

features to form a coherent percept requires attentional processing.

Psychological theories on selective attention have suggested that the attentional system is anal-

ogous to a limited-channel that allows attended information through unchanged or amplified

while unattended information is passed in an attenuated form. Psychophysical experimental re-

sults further indicate that attention operates in two distinct modes in order to maintain a balance

between alertness and focussed processing.

Neurophysiological experimental findings have enabled us to understand the neural mechanisms

of attention. Some of the important results are:

o spatial attention occurs in part via the modulation of sensory processes in the visual cor-

tex;

o modulation is required to analyse multi-feature targets;

o modulation may occur to features at an early stage; and

o descending projections from attentional control systems affect a neuron's excitability in

feature coding. Feedback pathways have been found to boost activities in LGN cells.
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Chapter 3

Object Recognition Approaches and

Models

Visual processes are often classified into low- and high-level. Low-level processes are con-

cerned with the manipulation of input signals for preliminary analysis of the image. For ex-

ample, contrast and brightness adjustment, and the detection of lines, edges, colour, direction

of motion and orientation of edges. HighJevel processes are involved in the interpretation of

the image, i.e., the where and what of vision. They typically include shape extraction, object

recognition and classification, visual attention and some intermediate processes such as feature

grouping, segmentation and fi gure-ground separation.

In this chapter, we provide a literature survey of several commonly employed approaches to the

high-level visual task of object recognition. In particular, we emphasize the approach of neuro-

vision systems, and introduce two neural network models that are essential in our proposed

neural architecture for visual scene analysis. Learning in neural systems is also considered.

This chapter lays the theoretical and mathematical foundations of the research.

3.1 ComputationalApproaches

Methods and recognition systems developed using computational approaches are well estab-

lished, and are traditionally from the fields of machine and robot vision, computer science, and

artificial intelligence. Object recognition in these approaches is viewed as the establishment

of a correspondence between an input image and its stored object representation. Generally,

no considerations are given to the neural mechanisms that perform visual recognition, and the

phenomena of visual attention are ignored. Furthermore, object models are usually not learned,
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rather they are stored as some featural representations, and memory activation is not necessary.

In the following, we present a review of two major approaches of computational object recog-

nition: model-based and appearance-based. These two approaches differ in their internal object

representations. Model-based object recognition uses geometric features to construct object de-

scriptions, whereas appearance-based representations are formed by large sets of images with-

out any need for knowledge on the geometric structure of the objects. The review is primarily

based on several survey papers and books 14, 14, 40, 154, 180, 191, 21 11.

3.1.1 Model-BasedMethods

The central idea behind model-based recognition methods is the construction of a model using

features extracted from 2D, 2lD or 3D sources [40]. Recognition is achieved through matching

input object features with stored models. There are three major components in a model-based

approach. The first is the extractionof features thatcan adequately describe an object's physical

properties and their spatial relations. The second is the construction of an object model based

on the extracted features such that all objects in the same class can be recognised using the

same model. Lastly, amatching process is required to establish correspondence between image

features and object models in order to achieve object recognition.

The type of model constructed is categorised by the features used in the construction. 2D

models are viewer-centred representations, i.e., viewpoint dependent, constructed using mainly

2D geometric features such as shape, edge, corner, line, curve, hole, and boundary curvature.

Since these features are 2D in nature, they belong to an "image space". Full 3D description of
an object using 2D features is rarely achieved, thus these models are limited by the number of
viewpoints used in feature extraction.

2]D models are also viewer-centred representations, but instead of boundary features, surface

features are used, e.g., depth and surface orientation. Thus 2|D models are defined in a "surface

space". An example of 2lD representation is the 2lD sketch by Marr ll22l. These models

generally provide a more accurate representation of the object than 2D models but they are also

limited by the viewpoints used.

3D models are object-centred representations and volumetric in nature, providing full descrip-

tions of objects from an unconstrained viewpoint. Thus 3D models are defined in an "object

space". They represent exact specifications of objects using surface patches, spines, and volume

primitives such as generalised cylinders, cubes, spheres, and rectangular blocks. An obvious

difficulty is the need to define an efficient method for conespondence between 2D images and

3D models.
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The choice of features used in model construction is an important factor in determining the

success of a recognition system. A clever selection of features can enhance recognition rate

and speed. A single feature is rarely enough to uniquely describe a class of objects, most often

a combination of features is required. Geometric features can be classified into three types:

global, local, and relational features. Global features are physical attributes of an overall object,

examples of which are perimeter, centroid, aÍea, curvature, contour points from centroid, and

moments of inertia. Local features are physical attributes of a part of an object, some examples

are line segment, corner, arc segment, and area of a salient region. Relational features are

usually distance or orientation measurements that provide information about neighbourhood

relations between local features or substructures of an object.

Depending on the situation, it is not always necessary to have all types of feature for object

modelling, but in complex cluttered scenes all three types of feature are usually required. Global

features are deceptive to occlusion and varying illumination condition, so models with local

features can provide additional robustness. Relational features provide important information

regarding the arrangements of object parts, without which an object can be disassembled into

its parts, may yet still have the same global and local features.

Matching in model-based systems is a model-driven process in that the features used in model

construction must be used in the matching process, therefore the choice of object features dic-

tates the recognition algorithm. The literature for model-based recognition methods is vast

and for illustrative purposes we restrict our discussion to 2D recognition methods only. Gen-

erally, 2D models constructed from global features use statistical pattern-recognition schemes,

local feature based models employ syntactic and hierarchical matching methods, while rela-

tional feature models use graph-matching techniques. In the following, three classes of method

are discussed: (i) feature spaces method, (ä) parts and stuctural method, and (iii) alignment

method.

Feature Spaces Method

The most critical part of feature spaces methods is the choice of features for object model

construction. Ideally, inva¡iant features that are coÍrmon to all views are selected. Object

moments and Fourier descriptors are examples of invariant features that have been suggested

1147, 1491. Recognition is achieved by matching features of an object with those of the model.

However, invariant features are difficult to acquire. Different objects may share some features

but not all, or a feature extracted is invariant for a limited range, thus it is possible to define

each object uniquely using a combination of features, i.e., individually each feature may not be

invariant but together as a whole it is.

2t



Chapter 3. ObjectRecognition Approaches and Models

If a view of an object is described by n features, it can be represented by a vector with r¿

elements, so that the view is a point in an r¿-dimensional space, Rn, referred to as the feature
space.It follows that an object which is completely described by its views is a cluster of points

or a subspace in R . The features are relatively invariant if the subspace spanned by the views is

compact. Furthermore, objects can be identified uniquely if the subspaces are non-overlapping.

Recognition of an object usually involves statistical measures to determine which subspace that

the point representing the object view is closest to. Alternatively, objects are represented as

linearly separable subspaces such that an object is uniquely identifled by the subspace that it
occupies.

Parts and Structural Method

Instead of using global physical properties and attributes, this method describes objects in terms

of their local geometric features such as arcs, lines and corners, or higherJevel generic compo-

nents that are composed of the geometric features, for example boxes and cylinders. Models

are constructed by decomposing objects into parts with semantic information and geometrical

relations between components stored implicitly as an ordered list or explicitly as a graph.

Recognition involves locating those local features and parts first, and then the structural and

relational information is used to verify the identity of an object. Since recognition is carried out

at a local level, this method is less affected by occlusion and illumination conditions. Having

said that, structural description methods are limited in several ways. While man-made objects

can usually be decomposed into simple geometric parts, this is not so for natural objects. Even

if an object is decomposed into some generic parts, it is often insufficient to uniquely identify

the object. A well known example of recognition by components is discussed in [6].

Alignment Method

This method assumes that there is a solution to the spatial conespondence problem in which the

view of an object, V , can be mapped to its object model, M, through a series of transformations,

or vice versa [189, 191]. Each of the set of transformations, such as changes in position, orien-

tation or scale, may be represented by a matrix, ?. These transformations are applied explicitly

to either the incoming image or the stored model.

Recognition of a viewed object becomes a process of locating a model and a transformation

matrix that can maximise the matching between the model and the viewed object. The search

for a transformation matrix and a model is a two-stage process of hypothesis generation and

verification. To find a suitable transformation matrix, hypotheses are generated for all possi-
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ble matches between the image and the model. Followed by the verification stage, in which

small errors are allowed in the matching between the image and the model according to some

thresholds. Occlusion can be handled by generating hypotheses using local feature sets from

non-occluding parts of the model and the image.

3.1.2 Appearance-Based Methods

In recent times, an object recognition approach based on an object's appearance rather than its

shape has received considerable attention [86, 133, 154]. The appearance-based approach has

been successfully applied to 3D recognition of a large collection of complex objects [138], as

well as recognition in the presence of clutter and occlusion [165], with robustness and efficiency.

The success of the approach can be attributed to the power of the appearance representation

which is both compact and descriptive. Besides shape information, the appearance representa-

tion includes both inninsic and extrinsic visual information such as surface reflectance proper-

ties and illumination conditions. Since an appearance representation is a viewer-centred repre-

sentation, each object is represented by alarge number of views of the object. Such views can

be simple 2D,image-like representation of the object. These can be acquired easily without any

prior knowledge of the object, allowing direct training from visual data. Therefore the approach

is relatively general and can be applied to a variety of object types. To achieve compactness,

the object views are usually transformed into a representation in a low-dimensional space.

In contrast, model-based methods require construction of models manually, which is often dif-

ficult and time-consuming. The type of model constructed is based on the features extracted, so

object modelling is case dependent, requiring experience and knowledge for effective feature

selection. Thus the process of object modelling cannot be performed without human assistance.

The appearance of an object is not restricted to shape or reflectance information, spatial fre-

quency descriptions such as discrete cosine transform, Fourier descriptors, wavelets, or eigen-

images can also be used as long as the primary visual features are captured by the representation.

For 3D object recognition, the appearance of an object is the combined effect of its shape,

surface reflectance properties, pose in the scene, and the illumination conditions. Nayar, Murase

and Nene [ 137] acquire pose and illumination information from an image sensor using two robot

manipulators; one for rotation, while the other varies the illumination direction. As a result, a

large set of object images with high correlation among them is generated. To efficiently search

for the corresponding object representation for a particular scene, the large set of training images

is compressed into a low-dimensional representation of object appearance.
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Principal Component Analysis

One image compression method that has been successfully applied in appearance object repre-

sentation is the Karhunen-Loéve transform or principal component analysís [6I, 142]. In this

method, all images are projected to an orthogonal space, they are then reconstructed by using

their principal components only.

Consider a set of n images of size N : p x q represented as l/-dimensional vectors xl r . . . , xr¿.

For highly correlated images, the image vectors form a cluster in the l/-dimensional space.

In order to reduce the dimensionality of the image space, all the images are projected onto a

lower dimensional space by minimising the mean squared error between the images and their

projections. The average of the images, also the centre of the cluster, *, is an important reference

point and is given by
n

(3.1)
i=7

and the corresponding covariance matrix, C, can be computed:

1
(*t - *,xz - *,...,xr, - *)(*, - *,xz - *,...,*r, - *)r. (3.2)C n-L

C is an I/ x Iú matrix that allows us to determine the associated eigenvectors €¿ ând eigenvalues

À¿ through the identity

À¿e¿ - Ce| (3.3)

The projection of the images to an M-dimensional space or eigenspace, such that M < I/, is

given by

y¿ : [er, e2¡. . ., e¡a]T(x¿ - *) (3.4)

where y¿ is the prcjection of x¿ and is a point in the eigenspace.

In principle, all ¡/ eigenvectors €¿ âre needed to completely describe the input image set, but

usually a small number of eigenvectors, (M < ¡/), is sufficient to capture the significant

appearance characteristics of the set.

Parametric Eigenspace Representation and Recognition

The projection of the images yields a set of discrete points in the eigenspace. With high cor-

relation among the images, the points are expected to be closely located. One can construct a

manifold for a continuous appearance function based on these points. Nayar et al. ll37l used a

standard quadratic B-spline interpolation algorithm [157] to construct such a manifold.

^1x--
n D*,,
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Each class of object will have a different manifold. Object identification is according to the

distance between the projection of an image and the closest manifold in the eigenspace. The

simplest distance measure is the Euclidean distance

d- (*-v)t(*-v) (3.s)

where x is the projection of an input image and y is a manifold in the eigenspace. The matching

problem is simply to find the minimum distance, d^in, between x and some manifold y¿:

dmin: min llx - v,ll (3.6)

lf d,^¿n is within a certain threshold, we can conclude that the input image x belongs to the

manifold y¿, and the object class ¿.

Since the appearance representation is acquired from global visual data, occlusion and varia-

tions in scene illumination can cause problems for matching. Various approaches have been

proposed to deal with such problems, in particular, Huang et al. 186l use principal components

of segmented regions for indexing; Rao [154] tackles the occlusion problem based on the mem-

orisation of the responses of a set of steerable filters, and Nelson and Selinger [140, 141] use

contour patterns in keyed context regions.

3,2 Neuro-Vision Systems

Neuro-vision systems can be described as artificial neural machines that are designed to see and

perceive the visual world. Motivated by the advances in the fields of biology, psychology, phys-

iology and cognitive neuroscience on the understanding of various aspects (behavioural, func-

tional, structural, and computational) of visual processing, and the lack of significant progress

in traditional computer and machine vision. The approach seeks to use artificial neural network

paradigms that are inspired by, or based on, the biological visual system for the development of

high-level vision systems.

From an engineering point of view, an artificial vision system must be effective, efficient and

robust under a variety of visual conditions. While the field of machine vision has made good

progress on low-level visual tasks such as feature detection, high-level functions such as ob-

ject recognition in general conditions is still a challenging problem. By realising some of the

strengths of the biological visual system, it is hoped that we may overcome some of the short-

comings of machine vision systems that have hindered the progress of artificial vision.

The goal of neuro-vision is not to emulate the precise physiological mechanisms and structure of

the visual system, rather it is more important to replicate the neuronal computational structures
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and emulate the neuronal computational principles for processing, representing, storing, and

interpreting visual information. Therefore neuro-vision systems are expected to have some or

all of the strengths derived from the biological neural networks.

Examples of neuro-vision systems are numerous, tackling a variety of problems, ranging from

low-level image processing and compression, texture analysis, and frequency domain analysis

148,78,119, 150, 1511 to high-level visual functions such as pattern recognition [65, 64, 105,

2011, visual perception [1, 159], preattentive vision [75], colour analysis 1130, I92l,3D object

recognition [106, 1771, stereo vision [136], automatic target recognition systems [181, 197],

and visual search models 12031, to name a few. In the following sections, we review the com-

putational basis for artificial neural networks and learning in neural nets in general.

3.2.L Artificial Neural Networks

Artificial neural networks (ANNs) are highly simplifled models of their biological counterparts,

intended for exploiting the computational beneflts of their massively parallel networking archi-

tecture. Some of desirable characteristics of ANN systems include massive parallelism, dis-

tributed representation and computation, learning ability, generalisation ability, adaptivity, in-

herent contextual information processing, fault tolerance, and low energy consumption. Multi-
layer feedforward type of neural networks are particularly popular due to their ability to ap-

proximate any nonlinear function [67,83, 84, 85, 101, 200]. There are other neural network

paradigms [91], some of which will be discussed in a later section.

An ANN is a highly interconnected network of simple processing units called neurons or cells.

There are three basic elements for a neuron, as follows:

o Synapses. Neurons are connected together via synapses or more correctly synaptic con-

nections. They act as information and communication channels. Each synapse is char-

acterised by its weight. For example, an input signal u¡ to neuron k is modulated by the

synaptic weight tu¡¡. Positive weights represent excitatory connections, while negative

weights represent inhibitory.

o Adder. A neuron is connected to a number of synaptic links, each carries an input signal,

therefore an adder is needed to sum up all the input signals to the neuron.

o Activatíonfunction. A neuron is only activated if the summed input, u¡ is greater than a

certain threshold, 0n. The activation function serves to limit the amplitude of the output

ofthe rreuron, !¿.
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Mathematically,aneuron k withpsynapticinputs, n¡ (j:1,...,p), aweightvector, w¡¡,ãnd

an activation function g, canbe described by the following pair of equations:

uk:f ukiri: wf,x (3.7)
j=I

and

yn: p(un - 0ù. (3.8)

There are three basic types of activation function:

1. Threshold function

2. Piecewise-linear function

1 if u > 0
0 ifu<0.

if u) A

if -A<u<A
if u 1-A

p(u): (3.e)

(3.10)

(3.11)

ç(u):
1

u

0

where -A < u < A defines the linear region.

3. Sigmoid function

where ø is the slope parameter of the sigmoid function.

3.2.2 Learning in Neural Nets

One of the most powerful properties of a neural network is its ability to learn from its environ-

ment. Performance of a neural network system can improve through learning over time. The

learning process has been accurately described by Mendel and Mclaren [126]:

Learning is a process by which the free parameters of a neural network are adapted

through a continuing process of stimulation by the environment in which the net-

work is embedded. The type of learning is determined by the manner in which the

parameter changes take place.

Mathematically, the synaptic weight w¡¡ attime (t+1) is determinedby its value and adaptation

in weight 6wni at time ú:

,ni(t + 1) : wn¡(t) + Luki(t) (3'12)
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3.2.3 Network Architectures and Learning Paradigms

ANNs can be regarded as directed graphs, consisting of nodes with interconnecting synaptic and

activation links. Based on the graph connection pattern, two network architectural categories

can be defined:

i. Feedforward networks, in which graphs have no loops, and the data flow from input to

ouþut is strictly feedforward.

ä. Feedback or recumel¿t networks, in which loops exist between nodes. Contrary to the

feedforward type, dynamic properties of the network are important.

Examples of feedforward networks are multilayer perceptron and radial basis function net-

works, while major models for the feedback type include competitive, Self-Organising Map,

Hopfield, and Adaptive Resonance Theory networks l3l, 57,79, I07, 1251.

Besides architectural differences, neural networks are typically distinguished by their learning

paradigms, which can be sorted into two classes:

o Supervised or associatíve learning, in which the network is trained by an external teacher,

providing it with matching input and output patterns, V/eights are updated to allow the

network to produce an output as close to the correct training ouþut as possible for a given

input.

o Self-organisation ot unsupervised learning, in which an output node is trained, without

a teacher, to responC tc a cluster cf patterns from the input, by exploring the underlying

structure or correlations between patterns in the data statistically. The resultant output

nodes represent categories extracted from the data.

Under both learning paradigms, there are four basic types of learning rules (principles under

which weights are updated): error-correction learning, Hebbian learning, competitive learning,

and Boltzmann learning. Each learning rule can be performed in one or more ways, which we

ref'er to as learning algorithms. For example, error-correction can be implemented using the

back-propagation learning algorithm or the perceptron learning algorithm.

Some of the common neural architectures and their associated learning algorithms are briefly

described below.

28



Chapter 3. Object Recognition Approaches and Models

Multilayer Perceptron

The most well known and popular class of neural networks is multilayer perceptrons, whose

structure consists of an input stage, one or more hidden layers, and an output layer of nodes

successively connected in a feedforward manner with no interconnections between nodes in the

same layer and no feedback connections between layers.

Multilayer perceptrons are trained in a supervised manner with the effor-colrection learning

rule, which is commonly implemented using the back-propagation learning algorithm [158].

Learning using the back-propagation algorithm is a two phase process: a forward phase and

a backward phase. In the forward phase, an input pattern is applied to the input stage and is

allowed to propagate through the network, thereby generating a set of ouþuts. Comparing the

actual and desired outputs produces an effor signal which is used in the backward phase to

adjust the synaptic weights so as to minimise the differences between the actual and desired

outputs. As such, the back-propagation algorithm is a generalisation of the least-mean-square

algorithm. The error cost function most frequently used in the back-propagation is given by

1
p

D ll¿, - ynll'E
2 i=l

where p is number of training patterns, d¿ is the desired output response, and y¿ is the actual

output response.

Hopfield Network

The Hopfield network is a recurrent network that stores information in a dynamically stable

configuration [82]. It acts as a nonlinear associative memory that can retrieve a stored pattern

in memory upon presentation with an incomplete or noisy version of that pattern. The Hopfield

network learns in an unsupervised manner according to Hebb's postulate of learníng using

associative memory learning. V/eights in the Hopfield network are symmetrical and non-self-

feedback, i.e., if w¿¡ is the synaptic weight, then w¿¡ - u jitYi, i, and w¿¿ : O,Yi.

Self-Organising tr'eature Map

Kohonen's self-organising feature map (SOFM) is another unsupervised neural architecture

t1001. Basically, a self-organising feature map is a topographical map of the input patterns,

in which the spatial locations of the neurons in a lattice structure correspond to intrinsic fea-

tures of the patterns. Learning is based on the competitive learning rule or winner-take-all

(WIA) in which only one output node is active at any given time. The algorithm used in SOFM

(3.13)
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learning simply transforms an input pattern of arbitrary dimension into a lD or 2D discrete map

by computing the Euclidean distance between the input and the stored weight.

3.2.4 Related Neural Architectures for Object and Pattern Recognition

The neural architectures introduced so far are more for general purposes and are applicable to a

wide range of problems. In this section, we review several specialised neural architectures for

object or pattern recognition that are related to the theme of this thesis.

The Neocognitron

The neocognitron by Fukushima 164,661 is a neural a¡chitecture that is closely related to the

one proposed in this thesis. It is loosely based on known properties of the mammalian visual

system for visual pattern recognition. It was motivated by the need to overcome the inability of
the cognitron [62] to recognise position-shifted or shape-distorted patterns.

Figure 3.1 shows the basic topological structure of the neocognitron. It consists of a number

of functionally equivalent stages, shown as U¿ and U"¿, where I : 1,... )n for an n Iayer

neocognifton. Each U,¿ layer is compose d, of S-cells and each Ua of C-cells. There are also two

other cell-types, called % and I/". These cells only serve to normalise the activities of the S-

and C-cells, thus are not required for understanding the basic operations of the neocognitron.

Utt uu us2 ue u$ uü

uo

lct=Kt
kt=Kt

kt=Kt
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Figure 3.1: Topological structure of the neocognitron. Adapted from [66].
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The S-cells, denoted by ur, are feature extracting cells. Connections to u" are variable and

reinforced by learning. The C-cells, denoted by u", are for positional effors in the features of

the input pattern. Connections from LL" to r..t" are fixed and invariable. Cells in each layer are

divided into K subgroups or S- and C-planes, indexed by lr¿ : I,. . .,K¿, corresponding to

K different features. Within each S-plane, cells receive input connections of the same spatial

distribution. This has the effect of detecting a particular pattern of activities in the preceding

C-layer by correlation. Each S-plane is followed by a C-plane that contains fewer cells. The

C-plane forms a compressed representation of the features extracted in the S-plane. Each u"

cell receives inputs via fixed connections from a group of u,, cells that extract the same feature.

Ttre u" cell is activated if any of those z" cells is active.

The entire network of alternate U¿ andU"¿layers allows individual features of the input pattern

to be extracted and compressed repeatedly. This ensures the features are detected wherever they

lie in the input layer, and the successive stages of compression provides tolerance to changes in

size and shape.

An extended model with backward connections added to the neocognitron was proposed [63,

651 in order to recognise two or more patterns in the input layer. This extended model per-

forms many functions that are similar to our proposed neural architecture, for example, selec-

tive attention, pattern segmentation, and associative recall. Although the neocognitron has many

important properties and functions shared by our proposed neural architecture, both the archi-

tecture and implementation differ significantly. We have chosen to use the adaptive resonance

theory neural architecture as a basis to model selective attention because its ability to handle

the stability-plasticity dilemma [28]. Moreover, the degree of translation in the neocognitron is

controlled by the number of layers [9]. Menon and Heinemannll2Tl reported that the neocog-

nitron did not perform satisfactorily when it had to deal with large shifts in a 128 x 128 pixels

image. Therefore, the neocognitron is suitable for applications with small shifts such as digit

and cha¡acter recognition (good performance on digit recognition has been demonstrated with

small shifts in a 16 x 16 image t66l). For visual scene analysis, the number of layers required

is exceedingly large, and in most cases impractical to implement. Most of our simulated scenes

in Chapter 5 are larger than 200 x 200 pixels. Also, the original neocognitron lacks the mech-

anisms to handle occluded and arbitrarily rotated patterns. Rotation invariance in neocognitron

has since been proposed by Satoh et al. 1160, 16ll.

Adaptive 3D Recognition from Multiple Views

Seibert and rWaxman 1162, 1631 developed a hierarchical real-time neural architecture for 3D

object recognition from multiple 2D view sequences. The approach takes a viewer-centred
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representation for 3D objects based on appe¿ìrance. 3D object representations are constructed

from both views and view transitions using the aspect graph concept [99]. An aspect graph

consists of a number of nodes or aspects representing characteristic views of an object. Each

characteristic view is formed by a number of invariant 2D appearance descriptions clustered

together using the ART2 l29l learning algorithm. Between two connected nodes is an arc

representing the visual event (aspect transition) that is linking the two aspects. Each aspect

provides a partial description of the 2D appearance of one or more objects. Together with the

aspect transitions the nodes form a complete description of a 3D object.

This workhas introduced many novel concepts, in particular the use of aspect transitions as part

of the 3D representation modelling can significantly improve the real-time recognition accuracy.

However it has not considered more realistic visual scenarios, where objects are often in partial

occlusion and embedded in cluttered backgrounds.

VIEWNET

This is another neural architecture for 3D object recognition from multiple 2D views. In fact,

VIEWNET ll2,74l was inspired by the work of Seibert and Waxman 1162l. The simplest

VIEWNET consists of three parts: a preprocessor for generating compressed invariant 2D

representation of an image, a self-organising pattern recognition network based on the Fuzzy

ARIMAP 132,341, and a working memory to accumulate evidence over multiple views. As

in the neural architecture of Seibert and Waxman, VIEWNET also uses log-polar transform to

achieve size and orientation invariant 2D aspects of 3D objects.

While good recognition performance has been achieved with noisy and clean images, VIEWNET

does not address recognition of incomplete objects due to occlusion or cluttered images. Both

VIEWNET and the approach of Seibert and Waxman assume the pattern to be recognised has

been separated from its background.

3.3 Adaptive Resonance Theory

Of all the neural network models described so far, none can be used to explain biological cog-

nitive data and processes better than the Adaptive Resonance Theory (ART) network. For ex-

ample, ART has been used to explain data on visual perception, speech perception, and neural

substrates of learning and memory 1731. Besides, ART has a number of useful properties that

have enabled it to be applied in a variety of applications [1I,35,89, 93, 102,2I0]. For these

reasons, ART has been chosen as the basis for our proposed visual scene analysis system.
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ART was first proposed by Grossberg Ul,721as a theory of human information processing.

The theory was motivated by the stability-plasticity dilemma in competitive learning. A neural

network must be stable enough to preserve significant past learning, and yet remain adaptible

enough to incorporate new information should it arise. Therefore, ART allows for the learning

of new input patterns on an incremental basis, while preventing the erosion or comrption of past

memories. In contrast, the multilayer perceptron must be retrained using the entire set of inputs

each time a new input is presented.

An ART network, shown in Figure 3.2, is a feedback neural architecture that is capable of

self-organising stable pattern recognition codes in response to arbitrary sequences of input pat-

terns. It consists of two neural fields: Fl and F2, which are interconnected by a pair of adaptive

filters containing long-term-memory (tIM) weights. The architecture is the result of two com-

plementary subsystems. Familiar patterns and top-down expectations are processed within an

attentional subsystem, which consists mainly F2 and the top-down adaptive filter. An orienting

subsystem is also required to process unfamiliar patterns and reset the attentional subsystem

when an unfamiliar pattern appears. Learning is performed in an unsupervised manner, based

on the competitive learning rule such that synaptic weights are adaptively changed in an ap-

proximate match phase or a resonant state. It can self-stabilise in learning while maintaining

plasticity. An ART network also has three useful propertiesl. normalisatíon, contast enhance-

ment, and short-term-memory 6TM) reverberation loops. Normalisation has the benefits of

becoming adaptive to large changes in input patterns, and allowing direct access to category

representation without search after learning stabilised. Contrast is enhanced through nonlinear

feedback processes and normalisation in the STM loops, thus noise is separated and suppressed

from the input signal.

The critical property of self-stabilisation is achieved by the introduction of top-down pathways

and matching mechanisms. The signals from the top-down pathways can be regarded as learned

expectations. They enable the network to perform attentional priming, pattern matching, and

self-adjusting parallel search, all of which help stabilise learning in response to arbitrary se-

quences of input patterns.

Figure 3.3 illustrates a typical ART search cycle. A STM pattern X is generated across Fl

when an input pattern 1 is presented to an ART network. A signal pattern 
^9 

is sent from Fl
to F2 through the bottom-up adaptive filter. As a result, ,S is transformed to ?, which in turn

activates a STM pattern Y inF2. Y represents an internal category. The output of F2, [/, is
transformed to V through the top-down filter into F1. X becomes a new STM pattern formed

by the common features between 1 and V. X is then compared with .I. If the two patterns are

sufficiently close, then learning may proceed, otherwise a reset signal is triggered suppressing

the currently active F2pattern Y. After Y is inhibited, the top-down pathway is eliminated, and
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Figure 3.2: An ARTl architecture. Adapted from [28].

the original X is restored. X is once again transformed into 7, which leads to the activation

of a different Y in F2. This sea¡ch cycle continues until a match is found or all established

categories are inhibited, in which case the pattern.I is established as a new category.

A family of ART based neural architectures have since been proposed, including: ART1 for

binary inputs [28], ART2 for both binary and analog inputs, ART3 for hierarchical neural archi-

tectures [30], ARTMAP and FuzzyARTMAP for supervised self-organisation of memory codes

132,33,34], and other variants of the ones mentioned here. For our research, we focus mainly

on the ART2 and ART3 architectures.

3.3.1 ART2 and ART3

ART2 is the second generation of the Adaptive Resonance Theory networks. The primary

intention of ART2 is to overcome some of the shortcomings of ARTI such as noise deception,

category proliferation, non-distributed representation, and non-analog input representation. The

major structural difference of ART2 from its predecessor ARTI is the incorporation of several

preprocessing layers (STM loops) in Fl, which allows ART2 networks to stably categorise

sequences of analog input patterns, by performing operations such as contrast enhancement,

noise suppression and normalisation. An ART2 architecture is depicted in Figure 3.4@).
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ART2 with a more sophisticated parallel search mechanism. It enables ART to be embedded in

network hierarchies. ART3 achieves this robust parallel search of a learned pattern recognition

code by modelling computational properties of the chemical synapse in both bottom-up and

top-down memory pathways. Among the properties modelled are intracellular operations such

as transmitter accumulation, release, inactivation, and modulation. Another novel feature in

ART3 is that it allows recognition codes in compressed or distributed representations.

An ART3 neural architecture is depicted in Figure 3.4(b). It is clear from the figure that STM

loops are implemented in the same way for both ART2 and ART3. Since learning was not

mentioned in the ART3 article [30], it is assumed that learning in ART3 is as given in ART2

[29]. Thus, it is sufficient to consider ART3 alone.

We begin reviewing ART3 from its search mechanism which is realised by a model of the

chemical synapse. Figure 3.5 shows a model of the chemical synapse for the bottom-up path-

ways in Figure 3.4(b). The model is characterised by the dynamics of production and release

of chemical transmitter, the inactivation of transmitter at postsynaptic sites, and the modulation

of these transmitter processes. As a result, the postsynaptic cell is driven by the net excitatory

or inhibitory signal arisen by the bound transmitter. According to Figure 3.5, we may write a

set of differential equations in terms of uboj, ruo;, ,'n;,^9f3, and rjt to describe the dynamics of the

Y

\

\

X

v

\

I
x/'

Y

35



Chapter 3. Object Recognition Approaches and Models

c3l¡

v

x

F"
c2xi

cll¡
x

reset z
bc
|J

b3Jr

Reset
b2

!i
,1," Fb

b1
zJi

c3

¡

c2

t

cl
j

cb
7

b3xi

b1xi

v

r qi

a3

- bound transmitter

!i

a3xi

a2
!i F,

!i
u

vi F1
a2

!i
wi xi

a1
Ii !i

(a)

(a) (b)

Figure 3.4: ART architectures: (a) ART2; (b) ART3. Larye filled circles are gain

control nuclei; small filled circles are nodes; and semi-circles are synapses. Adapted

from [29, 30].

oo
z bc

ij
bc
ij

u - LTM weight

)c
cl bc

ij

bc
ij

- presynaptic transmitter

presynaptic signal b3

al
i

x

I

v?f

bc
ij

- postsynaptic activation

Figure 3.5: Model of the chemical synapse.

z

u

vs1' s
T

36



Chapter 3. ObjectRecognition Approaches and Models

chemical synapse:

P re synap lic transmitter

Bound transmitter

Po s t synap t íc ac tiv ation

d"ff
dt

: (4; - "'oÐ - "!;pÊSl'1njr 
+ nä)

aruni

dt - -rli + 
"un;etsl'çn|r 

+ n3).

# : -*i' +(A - r;l)tÌ u¿¡ + pisi2l

*T':s"@i')+ús"@Tt)

nT2

where A is the upper limit of rjl and SffL : g"(AiL) is the presynaptic signal for ûeld fi, node

k, and layer L.

Each field ,tl, in ART3 is completely described by the following set of equations:

nTt: Ii +úg"@T2)

(3.t4)

(3.ls)

(3.16)

(3.17)

(3.18)

(3.1e)

(3.20)

(3.2r)

(3.22)

(3.23)

aT2 :

*Tt

y\t :

pT + llx"2ll

: g"fuT2)

-n3JJi

pä + llx"3ll

where g" is the signal function for the r¿th field, pi æe nonzero constants, and llx"ftll is the -L2

norm. The signal function gn caÍLbe selected to produce either distributed or choice codes. For

choice networks with threshold 0, g"(U) : y if y > 0, otherwise g"(y) : 0

Matching is performed by findingthe L2 norm of the reset vector:

^b - ai'+al2'L pi + llv"2ll + llvö'll'

so that matching is considered a success if llrbll > p, where p, called the vigilance parameter,

is a predefined value that determines the degree of approximate match that needs to be satisfied

prior to learning.
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Simulations of Learning in ART

In this section, we present several simulations for learning in an ART neural network. The

bottom-up long-term-memory (UIM) trace equation is given by

w-:aolsf' - ,';¡ (3.24)
dt

where ô is the learning rate and -R is a gating signal determined by the degree of match M and

vigilance parameter p:

R_ I if M > p and steady state

0 otherwise
(3.25)

The following simulations are intended to illustrate several aspects of learning in ART: (i)

uncommitted versus committed learning, (ii) match-reset tradeoff, and (iii) stability-plasticity

tradeoff.

(i) Uncommitted learning simply refers to the creation of a new category for learning the current

input pattern. In contrast, committed learning occurs in an existing category which can be seen

as updating and reinforcing the category identity, or overwriting an existing category with a

new one. Uncommitted learning is the result of mismatches with existing categories, while

committed learning is performed in an approximate match phase under resonance.

On the left of Figure 3.6 are two very similar input patterns. Upon presenting the top input pat-

tern to an ART system, the pattern is learned by an uncommitted node due to the nonexistence

of memory. The learning process is displayed in the top row in four stages from left to right,

showing the increase in weight size as learning progresses. When the bottom input pattern is

presented, the same node is chosen due to their similarity, therefore the system is engaged in

committed learning. In this case, it has the effect of updating an existing category.

lnputs LTM patterns

Figure 3.6: Committed versus uncommitted learning in ART.

(ii) Match-reset tradeoff: the criterion for a successful matching is determined by the level

#Ì
J
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of the vigilance parameter p. Therefore, under normal circumstances, p is a deciding factor in

performing either committed or uncoÍrmitted learning. Under high vigilance, minor differences

can cause matching to fail, whereas the same differences are tolerated for low vigilance levels,

allowing committed learning to proceed.

Figure 3.7 shows five categories that are created when five input patterns of the same appearance

are presented to an ART network under high vigilance.

Figure 3.7: Learned categories under high vigilance.

We may observe the conftast enhancement property of ART in Figure 3.7 by increasing the

threshold d in the signal function 9". The result of this contrast enhancement is shown in

Figure 3.8.

Figure 3.8: Contrast enhancement in ART learning.

A very high vigilance level will ensure that each different input pattern will create a new cate-

gory, however under a low vigilance only one category will be created and the resultant LTM

pattern may take on one of several forms. This is discussed in (iii).

(iii) Stability-plasticity tradeoff: the system must be able to protect information stored at a

given committed node, and yet maintain the ability to update the node with new or additional

information, if needed. Once a committed node has been selected for learning, there are a

number of factors that determine the outcome of the LTM pattern. Tlpically, we can identify

LTM patterns produced by three types of system. The first is a highly stable system; the LTM

pattern for the committed node is affected very little by the input pattern. The LTM trace tends

to grow with learning, which is evident in Figure 3.9. Stable systems may be caused by slow

learning rates, and large top-down feedback with weak input signal. It should be noted that

each pattern in Figures 3,7 and 3.8 is a category, i.e., five categories in each figure, while in

Figures 3.9-3.11 all five patterns represent the same category with respect to time (from left to

d
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i
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r
J
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right). Each pattern corresponds to an instance when a new input pattern is presented, and the

patterns are presented in the same order throughout.

Figure 3.9: Learning in a highly stable system.

On the other hand, limiting the top-down signal can increase the plasticity of the system. In

the extreme case, the system becomes unstable and the LTM pattern for a committed node is

overwritten each time the node is activated. Figure 3.10 shows such a case.

Figure 3.10: Learning in an unstable system.

Lastly, we can have a system that has the right balance between stability and plasticity such that

the LTM pattern is a combination of the existing LTM pattern and the current input. Figure 3.11

shows the LTM pattern stored at a category is a bluny representation of all past input patterns

combined together.

Figure 3.11: Learning in an intermediate system produces bluny LTM patterns.

3.3.2 Parameter Estimation - A Case Study of ART

As a further investigation of ART, a case study involving ART for solving a practical control

problem is provided. The purpose of this study is to thoroughly examine the clustering nature

of ART networks as a mapping function in the context of nonlinear dynamical systems. The
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study will illustrate many ART related concepts such as input vector compression, clustering,

and basins of attraction. We have chosen a control problem simply to demonstrate that ART is

not restricted to visual applications.

Identification and parameter estimation problems have been tackled by artificial neural net-

works in recent years. Multilayer feedforward networks and radial basis function networks are

particularly successful 15,47,135, 1531 in solving these problems, due to their ability to repre-

sent arbitrary nonlinear mappings Í67,841. An alternative approach based on ART, in particular

ART2 and FuzzyART [29, 36] is introduced. It is hoped that through the use of a self-organising

neural network, significant improvement could be gained in weight convergence time and also

avoids difficult network topology design issues such as the number of hidden nodes and other

related problems.

Problem Definition

Consider a simple inverted pendulum system as depicted in Figure 3.12. Ttre dynamics of this

system can be described by the following set of differential equations:

tl:,] : I
(3.26)

where: frt : þ: angle between the pendulum arm and the zero degree position in clockwise.

nz : # : angular speed of the pendulum measured in clockwise directions.

u: the external force applied to the pendulum by a motor.

0(/ )

u(f)

Figure 3.12t An inverted pendulum.

In the mathematical model of the system, the pendulum motion is characteristed by three fac-

tors: i) the force of the gravity on the pendulum represented by the 9.81 sin trl term, ii) the

viscous friction acting against the motion by the -2r2 term, and iii) the control signal u of the

system.

f2

9.81sin 11 - 2r2l u

0

4t
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Assuming that the model structure is unavailable but can be written in the form of:

X¿+r : f (Xt,u), where X: I "t 
'l

= l;, ) 
(3'27)

in discrete time. So given a particular state X¿ and the control signal u,, we can estimate the

next state X¿+r by utilizing a priorí information from the input-output data sets. In other words,

we can use the current angular position and speed of the pendulum and the control signal to

estimate the angular position and speed of the pendulum over one sampling period 7 based on

experimental input-output observations of the system only.

This is a nonlinear mapping problem from ffi3 -+ m2 and can be solved using any neural network

that possesses the universal approximation property [83, 200]. Although ART networks are not

universal approximators, they can form clusters of discrete states for mapping.

Methodology

The general neural approach to this kind of problems is to train a neural network to represent

the unknown function / such that (3.27) becomes

Îr+r : ,n/(X¿, u) (3.28)

where *.¿.,1 is the next state estimate and I/ is a nonlinear function in the form of a neural

network representing the nonlinear system.

The next state is given by

Xt+t : X¿ + AX¿. (3.29)

So instead of (3.28) we now have

AÎ' : l/(X¿' z) (3'30)

which is still a ffi3 -+ ffi2 nonlinear mapping and is best illustrated by a block diagram in

Figure 3.13.

The remaining issue is how to train a neural network to represent the nonlinear mapping in

(3.30). With multilayer feedforward networks, a data set of angular position and speed and

control signal combinations (X¿,,u)" covering the entire operating range together with the cor-

responding data set of state changes (AX)" over one sampling period are generated. In practice

where the system's mathematical model is unavailable or unknown the state change data set is

obtained from the physical system by means of measurements.

Here the state change data set is actually obtained by solving the system model, (3.26), over

one sampling period. The data set (X¿, z)" is used as the network inputs while the set (AX)"
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Neural

Network

X r+l

X¡

ÀX¡

Figure 3.13: Parameter estimation block diagram.

provides the target vectors for which the network weights are being optimised:

lN(Xr, u) - l(Xr,u)l < .

thus enabling the network to achieve any desirable degree of accuracy.

(3.31)

In contrast ART networks do not perform optimisation of weights, instead input vectors contain-

ing sufficient similarities are grouped into "clusters", so that each cluster represents the centre

of a region of attraction. In effect ART networks discretise the system input space and hence a

compression of input vectors is achieved. This is illustrated in Figure 3.14, where the grey cu-

bic region represents a continuous input space, the spheres are basins of attraction, and within

each attraction region there is a cluster. Once learning is completed the clusters are linked to

their corresponding state change vectors, the system becomes a content-addressable memory

(cAM).

When an input vector is presented to the system, the cluster whose attraction region within

which the vector falls is activated. The associated state change vector with the activated cluster

is used to solve (3.29). It should be noted that this diagram represents the ideal case where

clusters are evenly spaced, but in practice the clusters are usually scattered in space depending

on the data distribution.

In the case of the inverted pendulum, when the first input vector (Xr, u)1 is presented to an

ART network, it automatically becomes a cluster. If the next input vector (Xr,u)2 is within

the predefined neighbourhood (unsupervised learning) of (X¿, u)l then (Xr,r)'becomes at-

tracted to the cluster and is being grouped to that cluster. As a result of the grouping, the cluster

or the centre of the attraction region is shifted to a position in between (X¿, u)l and (Xr,u)'
(self-organising). However if (X¿, z)2 lies outside of the (Xr, u)1 neighbourhood then (Xr,u)2

becomes another cluster. This process continues until the entire continuous input space is rep-

resentedby clusters,i.e., a. continuous input space is being transformed into a discrete input

space. These clusters are then pointed to the appropriate state change vectors. Subsequently

an input vector will activate the cluster closest to itself and therefore acquiring the state change

vector required.

u

43



Chapter 3. Object Recognition Approaches and Models

Basins of attraction

Continuous
input space

Clusters

Figure 3.14: Cluster representation of a 3D continuous space.

This approach is often referred to as nearest neighbour search, and is similar to a lookup table.

However with their massively parallel architecture, potential hardware implementations would

allow this approach to be performed in a very efficient manner.

FuzzyART

A FuzzyART network has a similar structure to ARTI. It also incorporates a similar pattern

matching mechanism, in which the bottom-up input and top-down learned template are com-

pared, leading to either the resonant state and prototype learning or to the mismatch state which

triggers a search cycle. This search continues until an established category that satisfies the

matching criterion is found or an unffained node is selected if no matching category can be

found.

Although FuzzyART takes analog inputs as in ART2, its operations and characteristics are

actually closer to those of ART1 due to the similarity of their structures. One major feature

which highlights this is the comparison of input and template vectors, instead of comparing the

vectors spatially, both ART1 and FuzzyART perform elementary comparison. For the binary

case (ARTI), elementary comparison is simply a bit-wise logical AND (n) operation between

two vectors, whereas elementary comparison in the analog case (Fuzzy ART) is achieved by

replacing the AND (ô) operator with the MIN (A) operator of fuzzy set theory. The MIN

operator between two vectors x and y is also known as the fizzy AND, and is defined by

44
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Simulation Results

In this section four sets of results comparing the relative performances of ART2 and FuzzyART

for pendulum parameter estimation are presented, in each case both of the ART2 and FuzzyART

networks are trained using the same data sets. These data sets are generated from samples of

the pendulum input and output vectors within a predefined operating range so as to reduce the

number of clusters required. So it is important to realise this method is only valid when applied

to inputs within the trained region.

Simulation I

This simulation involves recalling some of the trained states. The purpose of this simulation is

to examine the direct memory access property of ART networks. This is achieved by training

the ART network with states that correspond to the actual behaviour of the pendulum system

under a variety of initial conditions. That is, for a particular initial condition (ô", ó.)¿, we

can obtain all subsequent states (assuming the free fall case, where u : 0) via the pendulum

system. Upon presentation of the state (þo, ó")u to an ART net ork trained with these states, it

will recall all relevant states, thus the pendulum's dynamical response is generated.

In this simulation, the states used to train the ART network are actually generated using ten

different initial conditions, each producing eighty one states with 0.05 seconds between the

states, thus spanning a period of four seconds. The results for both ARI2 and FuzzyART

networks are shown in Figure 3.15(a) and (b), respectively.
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Figure 3.15: Complete recall of memory: (a) ART2; (b) FuzzyART.

Simulation II

Unlike the first simulation, this part requires the ART network to find the best match cluster

- acluol pendulum ouÞut

+ glmulatod p€rdulum oulput
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to the input state. The initial input state is chosen in such a way that none of the subsequent

input vector has been used for training previously. This simulation can be used to verify the

interpolation ability of ART networks. As in Simulation I, the ART networks are first trained

with states corresponding to ten different initial conditions. An input state vector within the

trained region but different from the training states is presented to the ART networks. Based

on the clusters generated from the training states, the ART networks are able to estimate the

pendulum behaviour. The resultant pendulum responses are shown in Figure 3.16.
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Figure 3.16: Untrained predictive estimation l: (a) ART2; (b) FuzzyART.

Simulation III

This simuiation is simiiar to Simulation tr with the intention to ciemonstrate what couici happen

if the input was significantly different from the training data. The simulation also highlights

that open-loop estirnation reduces the effectiveness of the scherne, as errors accumulate over

successive estimation iterations, finally inducing an incorrect estimation. Thereafter, due to the

open-loop nature of the estimation scheme, the system becomes out of control. The result is

shown in Figure 3.17.

Simulation IV

This last simulation illustrates how the estimation scheme can be improved, especially for the

ARI2 network, by converting it into a closed-loop scheme, thus avoiding any accumulations

of error. It can be seen from Figure 3.18(a) that an incorrectly estimated state will not lead to

outright failure of the system. In practice, one step ahead prediction may not be sufficient, in

which case the closed-loop scheme can be altered to allow for several states to be estimated in

each cycle.
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Discussions

The results in Figures 3.15-3.18 suggest that the FuzzyART network is more suitable for the

problem described. Both networks achieve similar results in Simulations I and II, but the results

from the ART2 network in Simulations III and IV clearly show the inadequacy of the ART2

network for parameter estimation problems. However this cannot be taken as FuzzyART net-

works are more effective than ART2 networks in general, the choice of network is dependent

upon the nature of the problem concerned.

The superior performance of the FuzzyART network over ART2 can be attributed to the match-

ing mechanism of the respective networks. In ART2, the degree of matching is defined by the

angle between the input and cluster vectors, and matching is a multi-dimensional comparison

process. In FuzzyART, however, matching is only one dimensional as it is performed on the

vector elements.

In the parameter estimation problem, each input vector comprises th¡ee elements representing

angle, angular velocity and force, so it is appropriate that matching is carried out between

corresponding elements, not spatially between two vectors. This is the main reason for the

better results generated from the FuzzyART network. It is also important to realise that in

applications where the vector elements are not independent quantities but rather parts of an

input, for example in an image recognition process where the vector elements represent image

pixels, the matching mechanism in ART2 can still recognise a trained image that has been

slightly shifted or deformed. This is one area where the vector matching is preferred over the

matching in FuzzyART.

This study has shown that ART is applicable to problems other than visual pattern recognition.

In particular, ART draws on its ability to perform vector quantisation and clustering to achieve

nonlinear mapping.

3.4 Selective Attention Adaptive Resonance Theory

ART is a neural architecture with certain builrin attentional mechanisms, and is specifically de-

veloped for categorisation of recognition codes. Although it may be applied to 2D shape-based

object recognition, it does not consider many visual conditions under which object recognition

may occur. It has been shown lIl2, l13l that for ART to perform object recognition in the pres-

ence of background clutter and occlusion, image segmentation must be performed prior to the

recognition phase, but such preprocessing greatly diminishes the role of the neural a¡chitecture

in object recognition.
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Recognising objects from a complex scene is difficult because object parts tend to merge with

or be hidden by their sunoundings. In human vision, our ability to select a portion of input

stimuli for further processing is performed by the attentional system.

Experimental flndings from neurophysiology suggest that visual attention has modulatory ef-

fects on neuronal signals ll23,l3ll and top-down mechanisms from memory may selectively

favour desired bottom-up stimuli [50, 51]. These findings have led to the suggestion that feed-

back pathways from higher cortical areas affect the excitability of neurons coding the features

of the attended or ignored stimuli. Ullman also suggests top-down feedback connections are

directly involved in the direct activation of a lower area [191]. Several experimental studies

lI29,l72lhave produced evidence supporting these theories. It prompted Lozo [113] to suggest

that attentional phenomena may be modelled by using top-down feedback pathways to modu-

late bottom-up signals. That is, top-down feedback signals may be used to selectively process

stimuli from a complex scene. Furthermore,Lozo proposed that the top-down pathways achieve

attentional modulation by regulating the amount of chemical transmitter flow from synaptic ter-

minals to postsynaptic cells, thereby controlling the net excitation or inhibition available to the

postsynaptic cells. Figure 3.19 shows Lozo's proposed modification to ART that would enable

it to deal with objects in cluttered images.

F1

(D Modulatory
top-down
feedback

Figure 3.19: Selective attention adaptive resonance theory concept. The top-down

feedback can be used to regulate bottom-up signals to achieve attentional modula-

tion. Adapted from [113].

The model shown in Figure 3.19 is based on a generic ART structure derived from ARTI [28],

therefore the fields displayed correspond directly to those in ARTI. It simply emphasizes the
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structural changes required to implement a top-down feedback pathway in an ART system to

achieve attentional modulation.

Under a complex and cluttered environment as shown in Figure 3.19, an ART system would

reset the choice node in F2 after failing to satisfy the matching criterion. The system has failed

to recognise the input, even though a recognisable object is contained in the input. For the same

input, the model by Lozo has a top-down modulatory feedback from the recalled memory that

amplifies the corresponding bottom-up pattern into field f'0. Furthermore, lateral competition

in ,F'0 will actively suppress the activity of all cells whose bottom-up signals are not amplified

by the top-down memory pathways. This process is referred to as top-down selectíve attention.

The interactions between the bottom-up and top-down pathways enable resonance to occur

between the recalled memory and a familiar portion of the input. Thus, the new model has been

named selective attention adaptive resonance theory (SAARI).

3.4.1 The SAART Chemical Synapse and Neural Layers

The computational requirements of top-down selective attention in SAART are fulfilled by for-

mal properties of chemical transmitters. Attentional modulation is achieved by regulating the

amount of chemical transmitter flow from synaptic terminals to postsynaptic cells. In SAART,

this regulation occurs in an idealised chemical synapse model which is an extension of the

ART3 synapse introduced in Section 3.3.1. The transmitter dynamics of the SAART synapse

are characterised by an external facilitatory signal which can alter the gain (defined as the the

amount of mobilised transmitter) of a chemical synapse. A detailed implementation of the

SAART synapse with the notation for transmitter dynamics is shown in Figure 3.20.

J,fy; Yt]+

Fi

Ku - constant
,I, - presynaptic input

4 - facilitatory input
Z¡ - transmitter production rate
¿r¡ - stored transmitter
)¡ - mobilised transmitter

l¡ u"",þ*þy- tonic synaptic arousal

þu+KuJi

+

B

+

au
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Figure 3.20: Model of the SAART chemical synapse. Adapted from [113].
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According to Figure 3.20, there are two input signals to the SAART synapse: the presynaptic

input ,[ and the facilitatory input -Q, and one output J¿ly¿ - Y¿]+, where ly¿ -y¿l* : max(A¿ -
Y¿,0) is a simple thresholding function. The internal dynamics are represented by u¿ and y¿,

which denote the amount of stored and mobilised transmitter, respectively. Mathematically, u¿

and y¿ can be expressed as two differential equations:

du¿ ,

; : au(z¡ - un) - (þ" + K"J¿)(un - a") (3'33)

and

# : @o + F¿)(u¿ - a¿) - J¿pyla¿ - Yl* - 'ysU¿ Q.34)

where au, þs and Bu are the tonic activities of the synapse, z¡is the transmitter production rate,

and Ku and.ya are constants.

Equation (3.33) says the rate of change of the amount of chemical transmitter available in the

synapse is controlled by its production rate z¿ and the amount that has been mobilised already

(u¿ - y¿). A close examination reveals that F¿ in (3.34) acts to speed up the rate of transfer of

available transmitter (u¿) to the mobilised state (g¿). Since -Q increases the presynaptic signal

J¿, the process has been referred to as presynaptic facilitation More specifically, top-down

presynaptic facilitation if 4 is a feedback from top-down, i.e., from recalled memory as in

Figure 3.19.

Lozo went on to propose a number of neural layers that are built upon the SAART chemical

synapse using the shunting competitive neural architecture [70, 73]. These layers have been

termed Presynaptically Modulated Competitive Neural Layers (PMCNLs). PMCNLs are mod-

elled by a set of nonlinear differential equations that represent the dynamics between neurons

organised in a shunting competitive fashion that are driven by SAARI chemical synapses. Fig-

ure3,2I shows the simplest implementation of a PMCNL.

The set of differential equations that completely describe the PMCNL in Figure 3.2I are given

by the synapse equations (3.33) and (3.34), and three additional equations below:

r Postsynaptic cellular activity

# : -Ar¿ + (B - r¿)Gu¿ - (C + r¿)(Gø¿ +t) (3.3s)

where ,4 is the passive decay rate, B and C are the saturation limits for the upper and

lower bounds respectively; both G and G are amplification factors, and f is the tonic level

of inhibition. This equation represents shunted competition of a layer of neurons with the

on-centre off-surround anatomy whose cellular activity is restricted to range (-C, B).
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Figure 3.21: Simplest implementation of a presynaptically modulated shunting

competitive neural layer. Adapted from [113].

o Excitatory postsynaptic potential

y: _Du¿_t J¿ly¿_yl* (3.36)
dt

where D and pu ar:ê, constants, J¿ is the input, Y is the threshold for transmitter release,

and ly¿ - Yl* - max(y¿ - Y,0) is the thresholding function. The excitatory postsynaptic

potential acting on a cell is due to the bound transmitter on the postsynaptic cell.

o Lateral feedback inhibition

(3.37)

where A and B are positive constants, n is the number of neurons in a layer. The equation

indicates that the postsynaptic cellular activity must be above the thresholdT/ before the

cell fires, and thus begins charging.

So how may we use SAART, in particular PMCNL, to improve the matching between bottom-

up and top-down patterns? How can we use stored models in memory to selectively segment

portions of the input scene? And, how do we achieve selective attention in object recognition?

Answers to the above questions lie in the postulate by Lozo [113] on top-down presynaptic

facilitation, which states that "a facilitatory presynaptic feedback from the higher neural layer

to the lower neural layer mediates the neural mechanism of selective attention". As a result,

facilitated presynaptic signals are amplified while nonfacilitated ones are weakened, causing an

_ 1_
-Aa¿+-Bn

du¿

dt t
i+i

(r¡r
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increase in the degree of match between bottom-up and top-down patterns. This is in agree-

ment with Broadbent's theory l27l that unattended stimuli are degraded or attenuated as in a

PMSCNL. Furthermore if the facilitatory signal is provided by the top-down memory, then we

have used a stored model, in memory to selectively focus on segments of the input scene. These

segments, when grouped together, reminisce of or resonate with that stored model.

Figure 3.22 illustrates an application of presynaptic facilitation. The system is implemented

using two competitive neural layers. The first layer,labelled as .t'0, holds a steady state pattern

of the input. This pattern is gated at Fl by modulated chemical synapses. If the modulating

signal is pattern specific as shown in Figure 3.22, then cells that correspond to the modulating

pattern will be facilitated. Under mutual inhibition, spatial cells that are facilitated will act

to suppress the non-facilitated cells, resulting in a filtering effect as shown in the steady state

pattern in F1.

Steady state
activity in Fl

Pattern selective
facilitatory presynaptic
signals

Steady state
activity in F0

Input

Figure 3.222 Pattern specific presynaptic facilitation of information transfer. A sup-

plementary stage - in which attention is voluntary, applied only when required, akin

to "looking harder" to locate something that is familiar but cannot be recognised

instantly. Adapted from [113].

Neural Layer Parameter Selection

The PMSCNL consists of a considerable number of parameters. Some of the parameters are

chosen according to the input attributes, and once chosen they form the basis for the selection

t>

1>
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of the remaining parameters. Since there is not a set of parameters suitable for all conditions,

inputs of very different nature may require adjusting the parameters. Tuning system parameters

for improved performances is common for neural based systems [9, 111]. On most occasions,

this can be achieved empirically from good intuition.

In (3.33) a., controls the rate of transmitter storage, which must be slower than the dynamics

of the postsynaptic potential u¿. So we need au 1 D in (3.36). B" and K, are constants for

the depletion of the stored ffansmitter, which is triggered by the input "I¿, therefore we have

Ku ) B". Similarly, in (3.34) we want F¡ ) þs, so that the facilitatory signal has a greater

influence over the flow of transmitters. Both ps and 7, counterbalance the flow, and should be

set accordingto Bu.

The cellular activity n¿ in (3.35) is bounded in the range (C, B); for convenience we can set

this to (0,1). Since the dynamics of ï¿ àra much faster than the synaptic dynamics, we have

/ ) aut þo. If we let A : I, then we can set a, : 0.05 ffid þ" : þs :0.01. The gain factor

G should be set large enough to excite the layer beyond the threshold for small inputs. Whereas

G is crucial for increasing competition among nodes. As the amount of competition required

varies from case to case, G is usually determined empirically. D the decay rate of u¿ should be

greater than au but less than A, so we choose D : 0.5. The lateral feedback interneuron Ð in

(3.31) is more responsive than the synapse but less than r¿, so we let A and B equal to one-tenth

of A and B.

3.4.2 The SAART Architecture

A SAART neural network architecture is an implementation of the SAART concept in Fig-

ure 3.19 using SAART chemical synapses and neural layers introduced in the previous section.

The SAART architecture is an extension of ART, therefore SAART is also a real-time and self-

organising neural network. However, one significant property of SAART that is not shared by

ART is its ability to learn and recognise patterns in a complex and noisy environment through

the process of top-down presynaptic facilitation. Figure 3.23 shows one such implementation.

This particular implementation of SAART consists of five presynaptically modulated shunting

competitive neural layers (PMSCNLs), which have been labelled as Fields Al, Bl, 82, 83,

and CI. These ûve fields are interconnected via dynamic synaptic pathways whose internal

dynamics represent short-term-memory of the most recent neural activity pattern. Field Cl is a

competitive winner-take-all neural layer, whose nodes represent stored categories. The synaptic

connections between Fields BL, 82, and Cl are bottom-up and top-down long-term-memory

pathways, respectively. Field .B3 provides top-down presynaptic facilitation to Field AI. An
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Figure 3.232 A SAART neural network architecture,

input pattern arriving at Field Al may be presynaptically facilitated by top-down signals from

Field 83, thereby amplifying desirable bottom-up signals from input to Field,41. Bottom-up

signals that are not amplified by the top-down signals will be actively suppressed by lateral

inhibition across Field ,41. Resonance is established if the STM pattern reverberating between

Fields BI, F2, and B3 matches the facilitated pattern in Field Al and the network is in a stable

state.

The SAART architecture in Figure 3 .23 is one of the many possible implementations. Variations

are only limited by the number of f,elds used and the type of neural layer employed, and their

organisation. Fundamental to all SAART implementations is the essential process of top-down

presynaptic facilitation.

3.5 Summary

In this chapter, we presented a literature review on the computational aspects of the higher

visual function of object recognition. We have considered both the traditional machine vision

approach and the biologically inspired approach based on neural networks. The computational

power of artificial neural networks has been explored, in particular, a thorough and detailed

study of Adaptive Resonance Theory neural networks has been provided, demonstrating many

important properties of ART in learning and categorisation.

Field Cl

Field 82

Field 83

Input
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An extension of ART called Selective Attention Adaptive Resonance Theory, proposed by Lozo

[113], was introduced in Section 3.4. This class of neural networks attempt to exploit the com-

putational role of top-down feedback pathways and chemical synapses for selective attention.

This theory suggests that top-down feedback signals may be used to selectively process stim-

uli from a complex scene, and attentional modulation is achieved by regulating the amount of
chemical transmitter flow from synaptic terminals to postsynaptic cells, thereby controlling the

net excitation or inhibition available to the postsynaptic cells. The most important proposi-

tion by Lozo is the SAART process of top-down presynaptic facilitation, which allows the use

of top-down recalled memory as an external input to selectively facilitate individual synaptic

signals by modulating the gain of the synaptic pathways.

SAART in its current form has limited applicability in terms of visual scene analysis. It can only

deal with a single normalised input pattern, however it has provided an important theoretical and

mathematical foundation for our research. Both top-down presynaptic facilitation and ART will
be utilised in the modelling of our proposed visual scene analysis system in the next chapter.
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Chapter 4

Models of Visuat Object Recognition

4.1 Introduction and Overview

This chapter presents a neural architectural framework for visual object recognition and se-

lective attention. The proposed model encompasses a two-stage theory of biological vision,

namely the parallel preattentive stage and the serial attentive stage. These two stages enable the

model to perform automatic attentional shifts and attentional gating, where information can be

selected for further processing, or attenuated.

Architecturally, the framework consists of massively parallel feedback and feedforward con-

nections. It is based on a bi-directional structure with both bottom-up and top-down pathways.

Bottom-up signals from the input are converted to elementary features and used as visual cues

for capturing attention. The captured region is further processed with the eventual goal of

memory activation. Top-down signals from memory are used in memory-guided search and

recognition. In particular, the recalled memory is used as a feedback to achieve attentional

modulation of the bottom-up pathways.

Specifically, the model is capable of detecting, locating, and recognising any familiar objects

automatically in a cluttered image. Moreover, it forms a translation, rotation and distortion

invariant object representation of the recognised object in an object-based reference frame.

This chapter is structured using an incremental approach. V/e start from a very basic neural

architecture for translation invariant pattern recognition, then additional visual function modules

are gradually incorporated into the model to form an integrated neural framework for visual

object recognition and selective attention. The additional functions incorporated are recognition

in cluttered images and partial occlusion, automatic attentional capture and shift (model of

preattentive stage), rotation invariance, and distortion invariance. A graphical illustration of the

57



Chapter 4. Models of Visual Object Recognition

integrated framework is given in Section 4.7.

4.2 Thanslationlnvariance

Tolerance to shifts in position for visual object recognition is a widely acknowledged prop-

erty of the biological visual system. An early study in electrophysiology by Hubel and W'iese

[88] indicated that complex cells in the primary visual cortex exhibit approximate invariance

to position within a limited range. There is further evidence from a more recent study that

the inferotemporal (IT) cortex, an area of the brain that is highly sensitive to complex shapes,

is invariant to certain stimulus transformations [90]. Studies in psychophysics ll7, 521have

reinforced experimental findings that human visual recognition is translation invariant.

In many neural network based recognition systems [18], the translation invariant feature is not a

part of the neural model, rather they rely on pre-processing stages such as feature extraction and

segmentation to achieve position invariance. Such models fail to exploit fully the benefits of the

massively parallel architecture of neural networks. Furthermore, they make no consideration

for synaptic gain control mechanisms which are critical for visual attention [50].

In this section we propose a neural architecture for translation invariant recognition. The model

consists of neurons whose synaptic connections can be selectively gated by attention, such

that the attended visual information is transferred to an object-centred reference frame that is

translation invariant. The model is derived from the translation invariant representation concept

of Lozo[ I 13].

4.2.1 Stages of Operation

Figure 4.1 depicts the basic schematic of the proposed neural architecture that is capable of
performing translation invariant object recognition. The schematic depicts all the processing

fields involved, and the directions of information flow between the fields,

The model consists of five neural representation fields. Starting from the bottom where the

visual scene is fìrst registered in the inputfield. Apotentially known object is located by aligning

partitions of the input field with all stored models in the memory fieldl. The best correlated pair,

chosen by a winnertake-all (WTA) neural layer shown as the spatial alígnment WTAfield, are

selected as the most likely match. Since every memory is correlated with the input field, there

are as many spatial alignment WTA fields as stored memories. Based on the selected pair, the
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memory field sends a read-out of that particular stored model in memory to the top-downfield,

while the cental representation rcceives from the input teld a bottom-up translation inva¡iant

obj ect representation.

Reset signal

<:gating

+ :signalflow

ffl : rier<r

Q :præes

Figure 4.1: Neural architecture for translation invariant object recognition. The

model is based on a bi-directional architecture, having both top-down and bottom-

up pathways. Note: Long-term-memory (UIM) patterns are depicted as neural ac-

tivity fields instead of synaptic weights to enable better visualisation.

The system is now ready to match the selected object with the activated memory. The object is

deemed to be recognised if the matching is successful, otherwise a reset signal will be triggered,

thereby suppressing the currently chosen memory. Therefore, another stored memory may be

activated, and the matching process repeats until either the object is recognised, or all the stored

memories are exhausted, in which case the object is declared unrecognisable.

Structurally, the fields are arranged in accordance to the bi-directional architecture of visual

perception [190], consisting of both bottom-up (BU) and top-down (TD) pathways. These

two streams eventually meet and take paft in the matching process in an attempt to establish

match

Inp¡t
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resonance [28].

There are five main processes for translation invariant pattern recognition. These include:

1. partitioning of the input field;

2. bottom-up activation of a stored memory;

3. selective transfer of the bottom-up and top-down patterns;

4. matching of the bottom-up and top-down pair; and

5. mismatch reset if matching failed.

4.2.2 Partitioning of the Input Field

Consider an inputpattern P stimulating a spatial pattern X, shown in Figure 4.2, This is divided

into overlapping sub-patterns x¡¿ whoso individual activities can be described ds r¿¡,¡¿, where

i,j are local spatial indices for cell activity positions within each sub-pattern, and, lcl are spatial

indices for the sub-pattern positions. These sub-patterns are sampled in parallel, emerging

from each sub-region are thresholded synaptic signals ,9¿y,¿¿. Mathematically, the above can be

expressed as follows:

/:P-+X
x¿¿ C x (4.1)

I¿¡,¡r¿ e xp¡.

Synaptic signals 
^9¿¡,¿¿ 

arisen from individual cells are given by a threshold function with thresh-

old þ, shown in (4.2). This is a piece-wise linear function with a discontinuity at tþ. Only

cellular activities that are above the threshold may pass:

Sni,u, : f (r¿¡,n¿)

:max(n¿¡,t¿-,þ,0).
(4.2)

4.2.3 Bottom-Up Activation of Stored Memory

After partitioning the input field with overlapping regions, the model attempts to establish rela-

tionships between the stimuli in each partition and the stored models in memory. The purpose

of this stage, illustrated in Figure 4.3, is to align a potentially familiar object with its possible

counterpart in memory. In order to perform this alignment, the region must undergo a translation
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Figure 4.22 Partitioning of the input field. The input field is the neural representa-

tion of the visual scene which is processed in parallel in a number of overlapping

sub-patterns.

invariant transformation. It determines the best correlated stored model with the transformed

region, thereby generating an invariant object representation. The mechanism that determines

the best correlated pair is a multi-dimensional WTA, termed as the spatial alignment WIA field,

whose function is to localise the most active pair of stored memory and bottom-up pattern.

The synaptic signals are gated by long-term-memory (LIM) weight vectors, Moj,,, resulting in

postsynaptic signals:

Gkt,r:tl M¿i,,s¿i,tt Ø'3)
xJ

where the subscript, r, denotes the rth stored model in memory. From Figure 4.3, G¡¿,, become

the input signals to the spatial alignment WTA field.

Equation(4.3) shows thatG¡¿,,isameasureof correlationbetweenpatterns M¿¡,7ãndS¿j,r¿. The

strength of G¡¿,, is an indication of how well the sub-pattern from location (k,l) in the input

field is matched to the rth I-|IM vector. The signals G¡¿,7 convetge at the spatial alignment WTA

field and compete against each other to produce a unique winner. The winning node indicates

that the region (k, l) from the input field and the rth stored model in memory are a likely match.

In its simplest form, a V/TA network is equivalent to a maxima-finding operator, and is given

by
( o if y¡¿ l max{yoo}

utr: 
| | iry¡¿:ÅÅ*t rr\. 

(4'4)

A parallel implementation of the V/TA network can be achieved using the shunting competitive

neural layer [31], however alternative parallel implementations also exist [58, 98].

In general, a shunting competitive layer with cellular activity n¿, flucfitating within the finite in-

terval l-C¿, Br], stimulated by excitatory and inhibitory inputs I¿ and J¿, and nonlinear feedback

X¡1
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Figure 4.3: Bottom-up activation of stored memory. Each sub-pattern from the

input field is gated by all LIM weights, and the resultant synaptic signals then

engage in a V/TA competition to identify a likely bottom-up and top-down match,

with the winning cell representing the spatial location of the bottom-up pattern and

the location of the top-down pattern from memory.
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signals f¿@¿) and h¡(r¡), can be expressed as

#: -A¿n¿+ (B¿- n¿)lI¿+ Í¿(n¿)l- (cot r¿)lJ¿* Ë D¿¡h¡(n¡)l
j=7

where ,4¿ is the passive decay rate.

A close examination of the equation reveals that the main function provided by the shunting

competitive layer is contrast enhancement - improving the stronger signals while suppressing

the weaker ones. WIA can be regarded as an extreme case of contrast enhancement, where only

the strongest survives. This is achieved through strong competition by having very large lateral

inhibitions, so that under f,erce competition only the cell with the largest activity remains.

It follows that competition in the spatial alignment WTA field is given by

+ : -Agh¿,, + (B - gH,r)lGH,r r I bnu,)] - (C + nm,,)D I I (s,o,o). Ø.6)
uu,pflel,r

Equation (4.6) canbe regarded as a three dimensional competition, with two dimensions, lc and

l, in spatial competition, and the remaining dimension, r, for determining the best correlated

LTM vector. This is graphically illustrated in Figure 4.3.

4.2.4 Selective Tbansfer of Bottom-Up and Top-Down Patterns

After the multi-dimensional competition, the winning stored model in memory is sent to the

top-down field, and its corresponding winning region from the input field is transferred to the

central representation - an object-centred invariant reference frame. These two transfers are

summarised in Figures 4.4 and 4.5.

The purpose of the bottom-up transfer is to place the attended object into its canonical form

in accordance to [143], in which it was suggested the invariant object representation (usually

refers to invariance in position, size, and orientation) of a fixated object may be routed to higher

cortical areas in a bottom-up manner. Similarly the process in Figure 4.5 is for the read-out of

a top-down expectation, triggered by a bottom-up input.

Figure 4.4 shows that individual cellular activities C¿¡ inthe central representation are given by

/1 - Ð \,(so¡,*,I ø*,,"). (43)t_,ij_ ln 
I r

Similarly, activities T¿¡ inthe top-down field are

T¿j :l(two¡,\lor,,,) (4.8)

(4.5)

ktr
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Figure 4.4: Selective ftansfer of bottom-uppattern from input field. Each cell in the

central representation is connected to a neighbourhood of cells in the input field. In

addition, each synaptic pathway is connected to a cell in the spatial alignment W'TA

field via a gating terminal. The gating terminals act as switches, allowing signals

through only when the gating signals are on. Under WTA only one cell remains

active, and its corresponding region is transferred to the central representation.

M,j,,

I u,,
Top-down field

Spatial alignment WTA

Figure 4.5: Selective transfer of top-down pattern from memory. A complementary

process to the bottom-up transfer. Here the selected model in memory is transferred

to the top-down fleld for matching with the bottom-up pattern. For better visual-

isation, LTM patterns are represented as neural activity fields instead of synaptic

weights. This, however, has no bearing on the mathematical model.

o
oooo

ooooo oo
o

o o o
o o

o

oooo
oooo

o ooo oooo
ooo

ooo o

oooo

64



Chapter 4, Models of Visual Object Recognition

4.2.5 Matching of Bottom-Up and Top-Down Patterns

The mechanism employed for matching is similar to that used in ART based neural networks

129,301. The degree of match between the bottom-up and top-down patterns is determined by

the vector r, such that each individual element

,,i-- ffiffi, e)o (4's)

where llyll is the -L2-norm of a vector V and e is a non-zero constant, installed in order to avoid

zero division if both llCll and llTll become zeros.

4.2.6 Mismatch Reset

The matching is considered a success if the degree of match is greater than a preset value, called

the vigilance parameter p: 
p

ffi.t. (4.10)

However, if the selected memory fails to match the bottom-up input, a reset signal is triggered

causing a temporary suppression of the selected memory location in a process similar to the

mismatch reset in ART3 [30]. This reset allows another memory to be selected and compared

with the input.

4.3 Recognition in Cluttered Images

Single, well defined objects can be recognised by a variety of methods and approaches. This

area of object recognition has been well researched and a wealth of literature exists [8, 39, 28,

29,I22,1911. However, real-world images are usually rich in context and high in detail. Objects

contained within real-world images are rarely seen in isolation, they are usually seen against

some background, with other objects next to, or in partial occlusion to, them. Recognising

objects in cluttered scenes is a very challenging problem.

The traditional approach deals with complex scenes by performing a process called segmenta-

tion or figure-ground separation 16,77, 1911, whereby a well defined region that contains an

object to be recognised is separated from other objects and background clutter. The isolated

region can then be recognised using any desired method.

Segmentation is arguably the most difficult and crucial stage in a traditional object recognition

system. Generally, this stage determines the success of the entire system. Failures in segmen-
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tation are usually caused by vaguely defined object contours. There are many instances where

ill-defined contours may occur, the most commonly encountered ones are low image resolution,

noise conuption, complex background, occlusion, bad illumination and low contrast scenes.

This section presents an extension to the translation invariant model proposed in the previous

section. The new model incorporates an additional capability for recognising familiar objects

in cluttered environment. The model is based on Selective Attention Adaptive Resonance The-

ory, or SAART [113, 116], introduced in Section 3.4. SAART is a self-organised real-time

learning, memory-guided search neural network for recognition in cluttered images. SAART

is incorporated into the model in the form of a neural layer modelling the effect of selective

attention.

The underlying principle and mechanisms which enable SAART to perform recognition in clut-

tered images is the use of top-down feedback connections as a control signal to bottom-up

synaptic signals for attentional modulation or gating. In this way, memory or prior knowledge

can be used to selectively retune the signal transmission gains and the filtering characteristics

of the lower neural layers. This allows desired synaptic signals that resemble a familiar object

to be strengthened, while the remaining bottom-up synaptic signals from the background and

other objects are weakened, or in the extreme case, totally suppressed under shunting mutual

competition [31].

The extended model for translation invariant object recognition in cluttered images is shown in

Figure 4.6. In comparison with Figure 4.1, art additional processing layer called the selective

attention field is incorporated for its ability to selectively process stimuli that correspond to a

familiar object. The layer is constructed upon chemical synapse models [113], consisting of
neurotransmitters, excitatory and inhibitory neural connections, and facilitatory connections,

modelled entirely using differential equations. In Figure 4.6, synaptic signals from the central

representation are gated by a feedback pathway from the memory field to perform presynaptíc

facilitation (a major interaction in SAART). The synaptic strength of each neural pathway is

dynamically governed by a gain conffol mechanism, so that the neural signal from each spatial

location can be amplified or attenuated as desired (discussed in detail in Section 3.4). This has

the effect of attending to familiar object stimuli while ignoring any other background stimuli.

Besides the extra neural layer and top-down feedback pathway, the main difference between

this model and the one in Section 4.2 is a more sophisticated processing unit at the heart of
the model. We have employed a structure similar to AttT2 l29l,for short-term-memory (STM)

reverberation, normalisation and pattern matching. In order to make minimal modifications to

ART2, where appropriate we have kept the same notations and STM equations as given inl29l.
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Figure 4.6: Neural architecture for translation invariant object recognition in clut-

tered images. Small filled circles are gating terminals.
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4.3.1 Stages of Operation

The framework in Figure 4.6 operutes in the same way as the one in Figure 4.1 up to the selective

transfer of the bottom-up and top-down patterns. After that, the top-down and bottom-up pat-

terns are processed in a number of STM loops, spanning over several processing fields, which

has the effects of normalisation, contrast enhancement, noise suppression and self-stabilisation.

After several iterations, the STM patterns are stabilised and ready for matching. Tivo courses

of action may be taken after a matching failure. The first is when the degree of match is un-

acceptably low, then a mismatch reset process is initiated. The second is when the matching

fails marginally, i.e., the degree of match is sufficiently high, which is often due to the object

being occluded by other objects or is seen against some background. To handle such prob-

lems, the aligned object region is further processed in the selective attention f,eld which utilises

learned 2D object patterns in memory as a feedback signal to achieve top-down segmentation.

For selective attention to be initiated, we propose there is a secondary vigilance parameterthat

controls the activation of the presynaptic facilitation process. The original vigilance parameter

may be called the primary vigilance parameter. Whenever the degree of match is above the

secondary vigilance but below the primary, we can interpret this as the input object strongly

resembles the activated top-down memory pattern but inconclusive.

In addition to the processes discussed in Section 4.2, two more processes must be performed

in order to achieve translation invariant object recognition in cluttered images. The overall

operation can be summarised as follows:

l. partitioning of the input field;

2. bottom-up activation of a stored memory;

3. selective transfer of the bottom-up and top-down patterns:

4. short-term-memory iteration;

5. matching of the bottom-up and top-down pair; and

6. choice after matching:

o mismatch reset or

o top-down presynaptic facilitation, and back to 4.

In the next two sections, we will discuss the details of incorporating ART2 and presynaptic

facilitation into our model.
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4.3.2 Incorporation of Adaptive Resonance Theory

An ART2-like neural structure, shown in Figure 4.7, is incorporated into the framework for

STM reverberation, normalisation and pattern matching. To begin with, we ignore the details

of the selective attention field and top-down feedback pathway, and simply incorporate ART2

into the translation invariant model. The layer named "selective attention field" in Figure 4.7 \s

then modif,ed using differential equations in the next section.
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Figure 4.7: STM and matching of top-down memory and bottom-up patterns. An

ART2 architecture is incorporated in the heart of the framework to provide STM

patterns, as well as the extension for top-down presynaptic facilitation.

For the incorporation of ART2, we have treated the top three STM layers or field F1 in ART2
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central representation, as indicated by the dashJined boxes in Figure 4.7 . The spatial alignment

V/TA field may also be regarded as an extended version of the category representation field ,F2

in ART2;both are responsible for making a choice for a top-down LTM pattern, however in the

former case it has the added function of spatial alignment.

Since the top-down field and central representation are the top and bottom STM layers,T¿¡ and

C¿¡ arc equivalent to p¿ andwon

fz-{T¿¡) - p¿ ãnd f"-t(C¿¡) - u)oi, (4.11)

where Íz-t is a transformation, mapping a 2D vector to a lD vector.

This gives (4.12) and (4.13):

P¿: lz-t(l(wtu,,Ð 
Ð 

skt,,)) + ui, Øl2)

'uo¿: lr-t(ll(so¡,r,100,,,)) ¡ Iot. Ø,r3)
k¿r

Besides (4.12) and (4.13), the rest of the STM equations are in the same form as in ART2 [29],
and are given below:

P¿qi: 
e + ll'pll

A¿ui: 
e + llull

u¿: f (r¿) +bf @¿)

(4.r4)

(4.15)

(4.t6)

(4.te)

w¿: I¿ I au¿ (4.I7)
Lr¿r,¿: -ffi (4.18)

where llVll is the L2-norm of a vector V, e is a non-zero constant, and f is a nonlinear function

wrtn a rnresnOrq 7 anq ls grven Dy

t@):
0 if 0 1n 10
n if n> 0.

Equations for the STM variables with a subscript o are similar to their counterpart in field ,F1,

except for uru which is without its second term in accorclance to Figure 4,7 , i.e., aoo : f (ro).

Once stable STM patterns are established across all layers, the system proceeds to compare or

match the patterns from top-down and bottom-up, representing internal memory and external

input, respectively. The degree of match is determined by the reset vector r:

_.__Itlch -: rr,: I¡1ffi, e ) 0. (4,20)

70



Chaptü 4. Models of Visual ObjectRecognition

The matching process is considered a success if the degree of match is greater than the vigilance

parameter p, thus satisfying the consftaint (4.10).

If the constraint cannot be met, either a mismatch reset is initiated or a top-down presynaptic

facilitation process is required. The former results in the currently active choice node being

temporarily suppressed, thus allowing another category (stored model in memory) to be chosen.

The latter assumes that a familiar object is present but successful matching is only hindered by

cluttered background or partial occlusion. For this to happen, some ART2 equations may be

replaced by a set of dynamic differential equations that constitute a selective attention neural

layer. Details of this process will be discussed in the next section.

4.3.3 Implementation of Selective Attention

An essential process of visual attention is attentional gating whereby some input stimuli are

selected for further processing, while the rest are ignored or attenuated12,13ll. The effect of

attentional gating can be either spatial or object-based [94]. The former requires spatial cues

for priming purposes, whereas the latter is responsible for perceptual grouping.

V/e showed in Section 3.4 that perceptual grouping could be modelled using top-down presynap-

tic facilitation in a Presynaptically Modulated Shunting Competitive Neural Layer (PMSCNL)

t 1 131. To incorporate the process of presynaptic facilitation, we simply convert node oou in Fig-

ure 4.7 into a PMSCNL by modelling the five equations given in (3.33)-(3.37). TherefoÍe, non

becomes the synaptic input signal J, in PMSCNL, the top-down signal 4¡ (without the STM

term) in (4.8) as the facilitatory signal F¿, lnd the resultant cellular activity r¿ in PMSCNL, after

normalisation, as .I¿ in Figure 4.7. The whole process continues on as usual in iterating STM

loops, except 1¿ is a presynaptically facilitated pattern of noo. If after presynaptic facilitation the

patterns still fail to match, a mismatch reset is triggered, causing the currently selected LTM

pattern and STM equations to be reset for a new category. The entire process is repeated until

either a match is found or all stored models in LTM are exhausted, in which case the pattern is

declared unrecognisable. For easy reference, the five equations are listed here:

Postsynaptic cellular activity

dn¿

dt - -Ar¿ + (B - r¿)Gu¿ - (C + n¿)(Gø¿ +r) (4.2r)

where A is the passive decay rate, B and C are the saturation limits for the upper and lower

bounds respectively; both G andG are amplification factors, and f is the tonic level of inhi-

bition. This equation represents shunted competition of a layer of neurons with the on-centre

off-surround anatomy whose cellular activity is restricted to range (-C, B).
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Excitatory postsynaptic potential

9:-Du¿rJ¿ly¿-yl*dt -Du¿ r J¿lY¿ - YJ- @.22)

where D is a constant, "I, is the input, Y is the threshold for transmitter release , and ly¿ -Yl* :
max(y¿ - Y,0) is the threshold function. The excitatory postsynaptic potential acting on a cell

is due to the bound transmitter on the postsynaptic cell.

Lateral feedback inhibition

#: -Ãøo+iaDtr,¡) (4.23)
i+i

where A and B are positive constants, r¿ is the number of neurons in a layer. This equation

indicates that the postsynaptic cellular activity must be above the threshold r/ before the cell

fires, and thus begins charging.

Stored transmitter
du¿ ,

ã : au(z¿ - u¿) - (0" + K"J¿)(uo - an) (4.24)

where au and 0u are tonic adaptation constants, z¿ is the transmitter production rate, and Ku is

a constant.

Mobilized transmitter

(4.2s)

where B, is the tonic activity of the synapse, 4 is the facilitatory signal, and po and 1o are

constants.

4.4 Preattentive Processing: Deploying Automatic Attention

Attention is necessary in visual perception due to the limited information processing capacity

of the brainl22, 128, 1391. Visual attention must maximise our speed of response, yet maintain

an acceptable level of analysis. Somehow, it must find a compromise between these two con-

trasting and competing requirements. For this reason that a number of psychophysical studies

have suggested a two-stage theory of human visual perception [139, 187]. The first stage is the

parallel-preattentive mode, in which the visual scene is rapidly processed to identify important

portions to be processed thoroughly by the second stage, the serial-attentive mode. The exis-

tence of two distinguishable modes during attentional processes are supported experimentally

[118,121,198].

# : @, + F,)(uo - a¿) - J¿pula¿ - Yl* -.ysu¿
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Tlvo influential theories of visual attention [186, 97], that are based on the two-stage model,

have suggested that the preattentive mode locates regions of interest from the visual scene by

processing simple features such as colour, direction of motion, orientation of edges, and lu-

minance contrast rapidly in parallel. These regions are then processed by a spatially limited

serial stage. Experimental results [187] on visual search tasks involving single feature and

multi-feature tatgets have supported the theory. It was found that response times for single fea-

ture searches were independent of the set size, and in contrast, response times for conjunction

searches increased with the set size.

Another important issue in preattentive processing is whether these elementary features capture

attention in a bottom-up (stimulus-driven) manner. This has been referredto asfeature singleton

attentional capture [54]. Bacon and Egeth [7] propose that singleton attentional capture may

occur under singleton detection mode, in which attention is directed to the location exhibiting

the largest local feature contrast.

In the previous section, we have implemented the serial attentive mode. Here we model the

effect of preattentive processing. The model uses luminance contrast as an elementary feature

for attentional capture. As a result, a region of interest is located based on the strength of its

luminance contrast. The region is then transfened via selective mapping [98] to a higher cortical

area for a thorough analysis, as suggested in the serial-attentive mode.

V/ith this latest incorporation, the model is enhanced in many ways. Firstly, it will have a

more theoretically sound parallel-serial a¡chitecture. Secondly, it improves the efficiency of

processing with a parallel front end. Lastly, the model becomes more biologically plausible

due to the fact that translation invariance in the visual system is very limited in range [52]. To

recognise objects away from the fixation point, eye movements are necessary. These are carried

in the superior colliculus, driven by some attentional mechanism. By modelling the preattentive

mode, we have shifted the translation invariant transformation to a higher cortical layer which

is limited in size. Also the signals resulting from singleton attentional capture may be used

to drive the attentional mechanism for eye movements. Both of these agree with experimental

observations [52, 54].

4.4.1 Stages of Operation

Tïvo noticeable changes present in the framework for modelling the effects of the preattentive

mode, shown in Figure 4.8, arc two additional neural processing fields: the high activity WA

fietd and high actívity field. More subtle changes are also made in neural connections, for

example, a new pathway is directed towards the input field; the central representation receives
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Figure 4.8: Neural architecture for object recognition with visual selective atten-

tion. Small filled circles are gating terminals.

As their names suggest, the new processing fields are involved in detecting, locating and se-

lecting a region of interest based on the level of activity of some feature contained within that

region. The input field is partitioned into a number of overlapping and equal size regions. These

regions are sampled in parallel by a 2D Gaussian receptive field for spatial averaging - finding

the average spatial activity across a well defined region using a weighted sum approach, so that

each average value represents the overall activity level of a region. Each region is represented

by a cell in the high activity W1'l{ field, such that each cell receives the average spatial activity

value of its corresponding region as input. Under mutual W'TA competition, a winner cell is
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chosen corresponding to the region with the maximum level of spatial activity. Thus, a region

of interest is located based on a local feature contrast. Since our model is designed for ob-

ject recognition in 2D gray scale images, we have chosen luminance contrast as the elementary

feature measured.

The selected region is projected to the high activity field via synaptic gating, in turn the high

activity field holds the selected region which plays a similar role to the input f,eld in the previ-

ous model. That is, one may regard the model in Figure 4.8 the same as the one in Figure 4.6

if the bottom two processing fields in Figure 4.8 were removed. The reason is that the model in

Figure 4.6 assumes the translation invariance property is applicable throughout, but it turns out

that translation invariance is limited in range and is only processed in the second stage of atten-

tion. V/hereas the model proposed in this section takes into account the effects of attentional

capture.

It shouldbe noted that attentional capture can only occur if the level of neural activity stimulated

by the visual scene is above some activation level which we simply refer to as the activation

threshold.

Another function performed by the preattentive mode is attentional shift. Once a region of

interest has been analysed another region may capture attention, thereby shifting the focus. In

our model, attentional shifts are based on the degree of conspicuity, measured in terms of an

elementary feature contrast, so that shifts are carried out in descending order from the most

conspicuous region to the least one. Koch and Ullman [98] propose that there are two rules

governing shifts in selective visual attention: proximíty and similariry with the presently selected

location. These are discussed in Section 4.4.4.

In order for attentional shift to function properly, there are time lapses in which previously

selected locations cannot capture attention again until the lapses are over. In our model we

simply assume that the model operates within these time lapses, so that after a region has been

selected, it is precluded from selection. This is carried out by means of an inhibitory Gaussian

receptive field which acts to suppress any selected locations, thereby preventing them from

winning the V/TA competition in the high activity WTA field.

From the above, several more stages are now involved in the model for the inclusion of preat-

tentive processing. The overall processing can be summarised as follows:

1. attentional capture - high activity region selection based on elementary features and WTA

competition for locating the most active cell, provided the minimum activity level is above

the activation threshold;

2. selective transfer of high activity region;
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3. bottom-up memory activation and translation invariant transformation;

4. selective transfer of bottom-up and top-down patterns;

5. shortterm-memory iteration, matching of the bottom-up and top-down pair; and

6. choice after matching:

a) automatic attentional shift, details of this stage are discussed in Section 4.4.5, and back

to stage 1,

b) mismatch reset and back to stage 3, or

c) top-down selective attention and back to stage 5.

In the following sections, stages I,2 and 6a) will be discussed in details, while the remaining

stages are the same as presented in previous sections.

4.4.2 Attentional Capture: High Activity Region Selection

Upon encountering a visual scene, one is inevitably attracted to the most "eye-catching" region,

by which we mean a region having the highest contrast to the rest of the scene. This contrast

may be formed by simple elementary features such as colour, direction of motion, orientation of
edges, and luminance. One reason for singling out this region is for the visual system to allocate

its resources to the "most" important part of the visual scene first. Thereafter one's attention

shifts to the next most conspicuous region. The purpose of this processing stage is to locate this

"eye-catching" region.

Consider Figure 4.9, where a partitioning operation is required, and therefore equations (4.1)

and (4.2) apply. Converging at the high activity WTA layer are postsynaptic activities Y¡¿, given

in (4.26). This has the effect of space averaging a region, with respect to its centroid:

Yt¿:tt s¿j,ntw¿j' (4.26)
xl

The Gaussian receptiveW¿¡ is given by

Wij : Woexp _(i"-i,)"+(j"-j),
02

(4.27)

where Wois aconstant, (i,, j") is the centroid of the sub-pattern, and o is the standard deviation.

In the high activity WTA field, signals y¡¿ compete against each other to produce a unique

winner, which indicates that its corresponding region has the highest level of activity based on

some elementary feature.
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Figure 4.9: High activity region selection. Overlapping regions are gated by a

Gaussian receptive field. The resultant cellular activities participate in a \il'TA com-

petition in a shunting competitive neural layer to locate the region with the highest

level of contrast.

Thus, a shunting competitive neural layer implementation of the high activity WTA field is

given by

W:-Ayn¿+(B-un¿)lYnt + f @nùl- (C +ak¿)D D, l@oi)
¿,j+li,l

where f @nù:max(y¡¿-,þ,0) isathresholdfunctionwiththreshold1þ,andA,B,C andD

are constants.

Before competition individual activities are bounded, such that y¡¿ € [0, 1]. After competition

the winner cell is quantised to one, so that (4.4) is satisfied.

Figure 4.9 is very similar to the competitive learning module of Grossberg [31], which is con-

structed upon two separate model architectures: the instar and the shunting competitive net-

works. The competitive learning module can be expressed as shown in Figure 4.10, where an

input pattern p is gated by a weight vector (*, , *, , . . . , w,). A unique winner is then produced

from the gated signals using shunting competition.

The processing in Figure 4.9 is summarised in Figure 4.11. Here instead of having one single

input pattern and many different synaptic weights, we have a set of patterns (pt, pr, . . . , P,,)

and a fixed weight w. In a similar way, postsynaptic activities are generated, and from which a

winner is chosen.

(4.28)
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Figure 4.10: The competitive learning module.
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Figure 4.11: Competition in the high activity W'IA field.

4.4.3 Selective T[ansfer of High Activity Region

In this stage, the winner region from the previous stage is transferred from the input field to the

high activity field, using a massively parallel set of neural connections, as shown in Figure 4.12.

For each cell in the high activity field, its activity H¿¡ is given by

H¿j:Itunts¿i,xt (4.2e)

\ ---+

---l w -->

I ---+
Ptt

k¿

which describes a selective transfer process of information in parallel.

However, since only one unit in the high activity WTA field remains active after competition, it

may be interpreted as a control signal to a digital multiplexer, thus the transferred pattern is

H¿j : Sli,1-u*¡' (4.30)

The equation boils down to a direct transfer of information in parallel. The selected region is

the one with the maximum average spatial activity, and in this case it is the region of highest

luminance contrast. This is a gating stage where no signal is allowed through initially, i.e,,

with all control signals zero indicating no passing or switched off, until a choice is made to

selectively pass the chosen region.

After the transfer to the high activity field, the framework operates as in Figure 4.6 until the

current region of interest is analysed. At this point, the system must shift its focus to another

region of interest.
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Figure 4.12: Selective transfer of high activity pattern.

4.4.4 AttentionalShift Considerations

Studies in psychophysics have come up with conflicting suggestions regarding how attentional

shifts are carried out. At the centre of the debate is whether attentional shifts occur in an

analog continuous or discrete spontaneous onset fashion. That is, whether shifts in attention are

distance-dependent. Shulman et al. llTll and Tsal [188] have provided evidence that it takes

some measurable time to shift the focus of attention from one location to another. Furthermore,

this time increases with distance between these locations. Contrary to those claims, more recent

studies by Kwak et al. ll03l, and Sperling and Weichselgartner [175] have reported that longer

movements of attention do not require more time.

Regardless of the exact nature of movement of attention, these findings only serve to provide

some inspirations and insight into the implementation of attentional shift across the visual scene.

In both cases, attentional movements are performed in descending order of conspicuity, i.e.,

from the most salient location to the least. For that to happen the currently selected region must

be prevented from selection, so that another region of interest may be chosen. Koch and Ullman

[98] proposed that the cell representing the currently selected location be allowed to decay,

even if constant stimuli are present. They further proposed that this decay may occur locally

within the cell or centrally from an external source which inhibits the cell as its conspicuity

fades. As a result, the WTA network responds to the changes by shifting to the next most

salient location. Based on findings from Shulman et aL [171] and Tsal [188], they claimed that

the WTA network convergence time is depended on the distance between selected locations.

clo s €,'s
s
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After selecting this new location, the visual stimuli representing this location are selectively

transferred to the central representation as in Section 4.4.3.

According to Koch and Ullman [98], there are two rules for shifting the processing focus, in
particular, they concern the relationship between the currently selected location and the next

location to be selected. The first rule is called proximity preference, in which local salient

locations are preferred over global locations of similar level of saliency. The second is called

similaríty preþrence, where locations that share some common or similar features with the

current location are selected ahead of those unrelated locations. For example, if the current

processing focus is green in colour, then other green locations will be facilitated, thus enhancing

their saliency,

As mentioned above, the distance-dependence theory of attentional shift is at odds with more

recent findings, and the conclusiveness of earlier findings by Shulman et al. [171] and Tsal

[188] have been challenged by Eriksen and Murphy [56], and Yantis 12061. Emerging results

are certainly indicating a distance-independent nature of movement of attentional focus. This

has led us to suggest that there are two separate issues at hand regarding attentional shift: where

to shift, i.e., the location of the next processing focus, and how to shift, i.e., the mechanics of
carrying out the shift itself. The former concerns the selection process and has no bearing on

how the shift is performed. Selection can be classified as either initial or on-going. The first

type is unaffected by internal or external factors, is based purely on local feature contrast, and is

thus unbiased. Whereas the on-going type is affected by both bottom-up and top-down factors,

which are automatic stimulus driven and voluntary goal-directed, respectively. However, it is
not always possible to clearly distinguish top-down or bottom-up attentional capture. It seems

that they complement each other and operate in a pair, often attention capture is a result of both

top-down and bottom-up factors, with the balance and mixture depending on the situation. We

can thus interpret the two rules by Koch and Ullman [98] as external factors which influence the
cala¡finn ñr^^aoo in norfi¡"lor nn nni-n "^l^^+;^- S^ ^-^f^-^- -;"^- +^ -^;-LL^"-L^^,{ovrwllv¡l Hrvvvoù, rrr y@Lrvsr4 v¡¡-Ëvrrré ùwrwlrvrr. uv I/lwrv¡vrlwwù 4Iv ËrYvu Lv ltvlËrluvurrlvv\I

regions or features associated with the current location by enhancing their saliency. Selection

aside, the shift itself appears to be invariant and discrete in nature, which agrees with the par-

allel architecture in the early stages of the visual system. Furthermore, Koch and Ullman [98]
adopted the distance-dependence theory of attentional shift for supporting their particular im-

plementation of a WTA network, while our implementation using a shunting competitive neural

layer is distance-independent. Indeed, if there was any delays found in attentional shift experi-

ments, they would most likely be caused by the selection process, rather than the shift itself.
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4.4.5 Attentional Shiftlmplementation

The theories and findings on the movement of attention, considered in the previous section,

have enabled us to make a number of propositions regarding the implementation of attentional

shift in our model:

¡ Attentional capture is only triggered if the minimum level of activity present in the visual

scene exceeds some activation threshold.

o Initial selection is based purely on elementary feature contrast.

o After attentional processing, the currently selected cell is allowed to decay centrally by

means of a temporary inhibitory signal. This signal may take the form of many individual

inhibitory signals to each synaptic pathway or a receptive field covering the appropriate

feature spaces.

o Ongoing shift selection is primarily based on elementary feature contrast of the remain-

ing regions; bottom-up or top-down factors may influence the outcome of the selection

process by providing biases, such as spatial and similarity biases.

o The shift process is distance-independent and discrete, thus the processing focus is relo-

cated to the newly selected location abruptly.

o Finally, we assume that the model operates within the inhibition period, thus any selected

locations may not be revisited.

Based on the above propositions, we have derived the complete attentional shift process as

follows:

1. attentional capture in initial selection mode as given in Section 4.4.2 - elementary feature

confiast detection, provided the activation threshold is exceeded;

2. W'IA competition to select the most conspicuous region, referred to as the high activity

region;

3. selective transfer to high activity region;

4. attentional focus processing;

5. decay of the currently selected cell by an inhibitory signal, lasting for the whole duration

of a scene analysis;
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6. attentional capture in ongoing selection mode, i.e., selection is based on biased elemen-

tary features, and then back to Stage 2. The shift between the old and new locations

is distance-independent and discrete, thus the pröcessing focus is relocated to the newly

selected location abruptly; and

7. the process continues until the level of activity falls below the threshold.

The shift process above is a more detailed version of the operation described in Section 4.4.I,

and is graphically illustrated as a flowchart in Figure 4.I3.

Attentional shift

Figure 4.13: Flowchart for attentional capture and shift. For highlighting the pro-

cesses involved in attentional capture and shift, other processes are grouped as one

in the unit labelled "attentional focus processing".

The activation threshold may be placed immediately after the visual scene stimulates a spa-

tial neural pattern of activity, so that the threshold gates the overall or global contrast level as

in Figure 4.13. Alternatively, it may be placed locally, in which contrast levels for individ-

ual partitions of the visual scene are computed in parallel, and the resultant activity levels are

thresholded, allowing through only highly contrasted regions for V/TA competition.
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Threshold Selection
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Ongoing selection:
- biased feature

conüast detection
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End

Initial selection:
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Decay of the selected cell. Since inputs to the high activity WTA field are from overlapping

regions, neighbourhoods that are close to the current winner must also be inhibited based on

their proximity to it. In other words, a region that is close to the winner region may contain

partially stimuli that are already processed; how much depends on the amount of overlap. For

this reason, we have applied an inhibitory Gaussian filter to cells in the high activity WTA field,

centered at the centroid of the current winner, so that the amount of inhibition falls away with

distance:

Go, -- | - G,, / (k - k")'+ (¿ - ¿,)2) 
(4.31),*p\_T/

where Go is a constant and (lro,l,) is the centroid of the region to be inhibited. The spread

(standard deviation) of the receptive field is specified by p; the size of which is determined by

the amount of overlap between neighbouring partitions.

Proximity and similarity biases. There are two obvious ways in which the proximity bias

may be implemented. The first is by a receptive field that is similar to the one we have used

above for the decay of the selected cell, but instead of inhibitory in nature, this receptive field

acts to enhance all neighbouring cells in the high activity WTA field. Also, the scope of this

receptive field is applied globally covering the entire WTA field, while the one above is only

applicable locally. The other way is by presynaptic facilitation, as in Section 4.3.3, such that

synaptic signals to the high activity WTA fleld are facilitated according to their proximity to the

centroid of the currently selected region.

Implementation of the similarity bias requires separating elementary features into feature maps,

so that features that are similar to the currently selected location will be facilitated. This fa-

cilitatory signal may be a feedback from the high activity WTA identifying the major feature

associated with the current location.

4.5 Rotationlnvariance

Another important invariant property for object recognition is rotation invariance. Under the

scope of this thesis, we restrict our discussion to in-plane rotation for two-dimensional objects.

In this context, rotation invariance refers to the ability of an object recognition system to recog-

nise a learned object despite changes in its planar orientation.

There are atleast three basic approaches to achieving rotation invariance in neural recognition

systems, in fact invariance in general, including ffanslation and scale as well [10, 18]. However,

these techniques are more suitable to the supervised multilayer feedforward type of neural net-
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works than the proposed visual scene analysis system, thus we shall restrict our discussion to

some of the more relevant ideas.

The first of these three approaches is invariance by structure. Under this scheme, the neural

architecture is arranged in such a way, through weight sharing and a higher-order structure,

so that rotated patterns of the same input produce the same output classification. This is a
particularly popular implementation of invariance in feedforward neural networks, examples of
which arc 149, I47, 1761. However, as Barnard and Casasent [10] pointed out, such networks

are constrained by the need to duplicate weights for locations of equal distance. Because of
this the number of connections required is unrealistically large, making it almost infeasible to

implement.

The second, invariance by training, is somewhat a brute-forced approach to rotation invariant

recognition. It involves the training of a neural network with a large number of examples of the

same object in various orientations. An obvious deficiency is the need for a substantial data set

that is able to cover the entire operating Íaîge, otherwise the invariance ability of the network

is reduced. Furthermore, the time required to train such a large set of data is impractically

long. It should however be pointed out that the human visual system seems to have multiple

representations in specific orientations for highly overlearned objects. For example, one could

learn to read upside down if enough practice is performed.

The last one is invariance by preprocessing or feature spaces, in which features that are invari-

ant to transformations are extracted by a suitable choice of preprocessing. Some of the prepro-

cessing methods that have been employed are moments lI47l,log-polar transform 1162, L631,

Fourier transform [69], and direct rotation [60, 178]. It has been pointed out [10] that the use of
moments is plagued by noise. Furthermore, this approach is computational intensive, requiring

new computation for each new input image.

It is not unusual to ennploy a connbination of the abo.,'ementioned approaches. One example

is by Perantonis and Lisboa ll47l, in which a higher-order structure is utilised together with

moment classifiers. The main benefit of this hybrid approach is a reduction in the number of
weights required. Another example is by Rumelhart, Hinton, and Williams [158]; their neural

model has been regarded as a form of invariance by training [0] as well as by structure [8].

Having reviewed, in mostly an engineering perspective of rotation invariance, let us consider

the psychological view of the issue. It has been well documented in the findings by Shepard and

his co-workers [67, 168] that humans take more time to recognise a shape that is oriented away

from its upright position. In fact, the recognition time increases with increasing rotation angles

up to 180', independent of whether the rotation is clockwise or anticlockwise. This finding has

led to the interpretation that a representation of the shape is rotated mentally so as to align the
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represented object with a perceptual frame of reference. The resultant mental transformation

is referred to as mental rotation. The level of consideration for mental rotation in the current

approaches to rotation invariance is very minimal. Particularly, the first and second approaches

above do not perform explicit rotation at any stage of processing.

However, Tarr and Pinker [183] have suggested it is not necessary to perform mental rotation

each time a rotated object is recognised. According to [183], rotated objects can be recognised

readily via some short-cuts:

o unique visunl cues - orientation-independent features or parts that are unique;

o multiple storedmodels - as mentioned in the second approach that highly familiar objects

may be stored in multiple orientation-specific representations in memory, which allows

direct matching against the input; and

o dimensionality - different objects consists of the same parts may be distinguished if the

objects differ only in how the parts are arranged along a single dimension.

There are other factors that may affect the execution of mental rotation, and thus the identifi-

cation of disoriented objects. For examples orientation congruency effects are studied in [95];

effects of stimulus complexity and familiarity are investigated in [15]; Jolicoeur and Cavanagh

[96] considered the relationship between mental rotation and physical motion, as well as the

effects of surface medium on mental rotation; the effects of dimensionality and type of task

on mental rotation by Shepard and Metzler [169]. Some of these factors along with the visual

short-cuts mentioned above go beyond the scope of the current study, and thus are not imple-

mented in our proposed model. They do, however, serve as important factors that help shape

the proposed model and its implementation.

An interesting attempt for a rotation-invariant neural pattern recognition system to take into ac-

count the phenomenon of mental rotation has been proposed by Fukumi, Omatu, and Nishikawa

[59]. The emphasis of the paper is the application of the theory of information types developed

by Täkano [182] to explain mental rotation. The theory seeks to classify various information

types into two categories for recognising disoriented patterns: orientation bound and orienta-

tion free. The first category represents disoriented objects that must be mentally rotated in order

for recognition to occur, while mental rotation is not required in the latter. This has important

implications on when and how mental rotation is triggered, and the processing of any proposed

recognition system.

In this section, we consider how rotation invariance can be implemented and incorporated into

the model we have proposed so far. In particular, we are interested in implementing some of the
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ideas inspired by mental rotation. We begin by analysing and summarising these findings and

theories, so that we may propose how this incorporation may take place.

4.5.1 Rotation Invariant Model Propositions and Assumptions

After considering the issues involved in rotation invariance and mental rotation, we are able to

make a number of assumptions and propositions regarding the incorporation and implementa-

tion of rotation invariance into our model.

Assumptions:

1. Objects to be recognised are complex in nature, consisting of parts arranged in more than

one dimension.

2. There are no other unique visual cues available since the proposed model detects only

one feature.

3. Objects to be recognised are low in familiarity, thus multiple views of the same object are

not present in memory.

4. The variation in reaction times, for recognising a rotated object in varying orientations,

has no direct effect on the operation of the overall model, and is thus not modelled.

The first three assumptions are necessary for the implementation of mental rotation so that only

orientation bound objects are considered. There are several reasons for ignoring orientation free

cases. For an initial implementation of mental rotation, it is logical to derive a relatively simple
mnrlel ac o hocic fnr frrfrrra rafinamanfo Â ccrrmnfinn 1 ranrriroc fha onal.roio nf an nl-io^f on¡l ito¡v¡¡ ¡ ¡vYs¡rvu lr¡v 4¡¡urJ u¡u v¡ qrr vvJwL qrrg rlu

parts to determine the dimensionality of the object, but the proposed model treats each object

as a whole and parts analysis is not supported. Furthermore, the current understanding of the

underlying mechanisms that perform this function is minimal and unclear, therefore we assume

that all incoming objects consist of parts arranged in more than one dimension. It is obvious, as

stated in assumption2, that with our implementation there is only one feature detected, so it is

not possible to provide another elementary feature as a visual cue for orientation free rotation

invariant recognition. Training our neural system with multiple views of each object in varying

orientations fails to illustrate the phenomenon of mental rotation, thus defeating the need to

implement mental rotation. For computational reasons and the lack of complete understanding

of the underlying neural mechanisms, we have chosen to ignore the va¡iation in reaction time

as stated in assumption 4.

86



Chapter 4. Models of Visual Obiect Recognition

Propositions:

1. Disoriented objects are processed by the visual system using mental rotation.

2. Mental rotation is to be carried in a bottom-up manner.

3. There exists a number of parallel frames of reference, each representing a transformation

of the input via mental rotation, and are competing for activation.

4, The activated parallel frame of reference is aligned with another perceptual frame of

reference - the central representation.

Proposition 1 is based on the above-stated assumptions, which have enabled us to propose

that mental rotation is performed each time a disoriented object is recognised, i.e., rotation

invariance is achieved through rotating the input object explicitly. While propositions 2, 3 and

4 are based on the concept of parallel frames of reference by Hinton and Parsons [81], which

suggests that the brain possesses multiple and competing frames of reference in the bottom-up

visual pathways through which the visual input can be transformed and analysed. The proposed

model is also in agreement with the interpretation of mental rotation 196,167l that a potentially

recognisable object pattern is rotated internally so that it is aligned with a perceptual frame of

reference which corresponds to the central representation.

4.5.2 Stages of Operation

For the implementation of mental rotation three major modifications are needed. Figure 4.14

reveals, in comparison with Figure 4.8, that the three modifications are located in the top right-

hand quarter of the depicted framework. They are irwariant transþrmntion, rotational templates

and rotational and spatial alignment WTA fields. V/e shall begin our discussion from the high

activity field, since stages prior to this field have been described already in Section 4.4.I.

Overlapping regions from the high activity field are projected in parallel through an invariant

transformation unit. This unit serves to transform an incoming pattern into several patterns

consisting of the same elements in various orientations. These patterns are mapped directly

onto a number of parallel frames of reference which we call the rotational templates. The

templates can be regarded as a set of topographical, cortical maps encoding a subset of the

visual scene in various orientations. Since each overlapping region is carrying its own spatial

information and each rotational template has an associated orientation, the rotational template

resulting from a particular spatial region has both translational and angular information. When

these templates a¡e gated by top-down memory patterns, synaptic signals corresponding to the
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correlation between input and memory patterns are generated. The signals then participate in

a multi-dimensional WTA competition in the rotational and spatial alignment W'TA fields. V/e

can regard this as a four-dimensional competition with two dimensions in spatial alignment,

one in locating the canonical orientation, and the last one for the most likely match in memory.

Therefore the rotational and spatial alignment WTA fields are a choice representation field as

well as a spatial location field. So the winning cell provides information for four quantities on

the identities of the bottom-up and top-down pair: the location of the input pattern in the input

field along the ø-axis, the location of the input pattern in the input teld along the gt-axis, the

orientation of the input pattern, and the corresponding top-down pattern in memory. As a result,

the activated rotational template is selectively transferred to the central representation, and its

counterpart in memory is transferred to the top-down field. Thereafter, the processing continues

on as described in Section 4.4.I.

By extending the operational process with the three modifications, we have now the stages of

operation as follows:

1. attentional capture in initial selection mode for high activity region selection: elementary

feature contrast detection, provided the activation threshold is exceeded;

2. WIA competition to select the most conspicuous region, referred to as the high activity

region;

3. selective transfer of high activity region;

4. translation and rotation invariant transformations;

5. mapping of transformed patterns to parallel frames of reference;

6. multi-dimensional bottom-up memory activation;

7. selective transfer of bottom-up and top-down patterns;

8. short-term-memory iteration, matching of the bottom-up and top-down pair;

9. choice after matching:

a) automatic attentional shift, go to stage 10,

b) mismatch reset and back to stage 6, or

c) top-down selective attention and back to stage 8;

10. decay of the currently selected cell by an inhibitory signal, lasting for the whole duration

of a scene analysis;
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11. attentional capture in ongoing selection mode, i.e., selection is based on biased elemen-

tary features, and then back to Stage 2. The shift between the old and new locations

is distance-independent and discrete, thus the processing focus is relocated to the newly

selected location abruptly; and

12. the process continues until the level of activity falls below the threshold.

Our treatment of rotation invariance is consistent with the three-level approach employed for

the overall model, consisting of a high abstraction level using psychological experimental evi-

dence, a mid-level using models and theories of neuromechanisms from physiological experi-

mental results, and a low-level using simple models of the neuron to implement the model. In

this case, we examine the findings in psychology regarding rotation invariance, in particular the

phenomenon of mental rotation. For the mid-level, we employ a massively parallel intercon-

nected neural structue; synaptic gain mechanisms for gating and selective transfer; an on-centre

off-surround shunting competitive feedback neural network for WTA; and rotational templates

as parallel frames of reference. In practice, rotational transformations are usually associated

with some loss in information due to the discrete nature of image pixels, resulting from the

lack of one-to-one correspondence between the mapping fields. Besides loss of information,

a pixel location may be mapped to more than once causing a mapped value to be overwritten

(this is graphically illustrated in Figure 4.I5), so that a suitable computational algorithm must

be derived to deal with multiply-mapped pixels, as well as information loss to best realise the

invariance property.

4.5.3 fmplementation of Mental Rotation

Our implementation begins after locating and transferring a region of interest for analysis in

the previous stages, as the system attempts to establish a relationship between the stimuli in

that region and a stored model in memory. The neuro-representation of this stage is illustrated

in Figure 4.16, for aligning a potentially familiar object with its possible counterpart in mem-

ory. In order to perform this alignment, the region must undergo an invariant transformation,

and determine the best correlated stored model with the transformed region. Thereby, gen-

erating an invariant object representation which is aligned with that particular stored model,

both spatially and orientationally. The mechanism that determines the best correlated pair is a

multi-dimensional \ry'IA network, the rotational and spatial alignment WTA fields introduced

in the previous section, whose function is to localise the most active pair of stored memory and

bottom-up pattern.

The high activity pattern H, from stage 3 of the operational process, is partitioned into overlap-
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Figure4.15: Discretenatureofdigitalimages. Itshowsahorizontalbarof fivepixel

elements is reduced to four pixel in length after a 45'rotation, and the highlighted

element is mapped to twice.

ping regions hrr, whose individual activities may be described as hop,uu:

h,r, C H

hop,u, e huo. (4.32)

A set of parallel frames of reference, called the rotational templates, are generated for each sub-

pattern h,r. The templates generated are of the same pattern but different in orientation, with a

fixed angular distance apart. The transformation is denoted 7l:

R : huu I huu,ô Ø.33)

where þ e [0,211.

Within each rotational template, the transformed indices at and 0' æe given by

0,:cos ó(o_fl _sinþ(B-fi .+
þ':sinó(o-fl *cos ó(þ-fl *{#,

where l/ is the dimension of the rotational template, thus (l/ + I) 12 is the centroid.

The above equation is derived from the rotation matrix R with the (l/ +l) 12 term representing

(4.34)

(4.3s)
cos/ -sin/
sin / cos /

the offset from the origin:

R_
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Activities in a rotational template can be denoted as either ho,B,,uu oÍ hoB,1'1,6. A sub-pattern

from location (u, u) in the high activity field, with spatial indices o and B, which are rotated

through an angle of /.

The rotational templates ate gated by LIM traces, Mop,,, (stored models in memory), resulting

in postsynaptic signals Gur1,y,q às

Guo,r,6 : t Ð, .,u,rnap,uu,þ (4.36)
ap

where the subscript, r, denotes the rth stored model in memory. From Figure 4.16, Guo,,,6

become the input signals to the rotational and spatial alignment WTA field.

Equation (4.36) shows that Gr,,,,6 is a measure of correlation between signals Mop,¡ ãîd

hap,uu,6. The strength of Guu,r,4 is an indication of how well the sub-pattern from location

(u, u) in the high activity field, rotated through an angle of /, is matched to the rth LTM trace.

A multi-dimensional WIA network is employed to select a winner as shown below:

dguo,r,ô : -Agur,r,ô + (B - 9ur,r,ç)lGua,r,6 * f (gru,r,o)l - (C + 9uu,r,6)D t f (g¿¡,n,e)

(4.37)

where A, B, C and D are constants, and f is a threshold function.

Equation (4.37) is a four dimensional competition as discussed earlier, with two dimensions, u

aîd u, in spatial competition, one dimension, /, in rotational competition, and the remaining

dimension, r, for determining the best correlated LTM trace. This is graphically illustrated in

Figure 4.16.

We have already demonstrated in Figure 4.15 that on a square lattice of a visual scene, exact

transformations in rotation by arbitrary angles are not realisable due to the lack of one-to-one

correspondence on matrix anays. Even though real world scenes are analog in nature, for

modelling and simulations, digital images must be used. Therefore, we need to somehow deal

with this quantisation effect [38], so that invariant properties can best be realised.

The algorithm we employed is to double map a point to its ceiling (rounding up) and floor

(rounding down), so that information loss due to quantisation is being compensated to a certain

extent. Also, if a location is mapped to more than once, the average value is sought as the pixel

value. It is obvious that this process is noninvertible.

dt dj,k,|ful,r,þ
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(a) (b) (c)

Figure 4.17: Quantisation effect of rotational transformation. (a) The original pat-

tern; (b) after rotating 135' about the origin without compensation; and (c) the same

rotation with compensation.

4,6 Distortionlnvariance

In order to obtain a perfect match between an input pattern and its counterpart in the stored

memory, there must be a perfect elementary alignment between the two. If, however, due to

various reasons, some part of the input pattern is out of place or deformed, depending on its

severity, it could lead to nonrecognition of a known object. A robust mechanism for dealing

with distortion is required for object recognition in images that contain minor distortion.

Of all the invariant properties considered in this thesis, distortion invariance is by far the most

difficult and least researched. This can be attributed to the fact that distortion may take on many

different forms, and thus is not easily modelled. Distortion of object figures in an image can

occur in signal transmission, noisy environment, or objects being physically deformed prior to

the capturing of the scene.

With its generalisation ability, a multilayer feedforward neural network can generally tolerate

distortion or deformation to a small extent. This is also true for several other neural network

models, in particular the Neocognitron by Fukushima [65, 64] has a tolerance mechanism that

allows for small positional errors and distortions for pattern recognition. Convolutional network

models that have a shared weight structure and involve subsampling have been found to be

tolerant to minor distortion t1051.

However, these models often have limited applicability in that they do not include other invariant

properties or fail to take into account the presence of occlusion and clutter. For example, a

distortion invariant object recognition system is proposed in [104], but has only been applied to

images containing a single well-defined pattern. Another recognition system by Würtz [204] is

not rotation invariant. A useful approach to distortion invariance is via the use of deformable

shape templates; examples of this approach include [92, 108]. One drawback of this approach

is the need for a príori shape knowledge and a set of probabilistic deformation transformations,
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i.e., any deformed shape is deterministic, and thus distortions other than those generated by the

probabilistic deformation ffansformations are not accounted for.

In this section, we aim to equip our proposed system with a robust mechanism that can deal

with arbiftary distortions. In order to achieve this goal we need to define two new concepts in

band transþrmationand shape attaction that are required for its implementation.

An arbinarily distorted object is likely to have its outline deviated away from its normal to-

pographical arrangements. Such deviations, however, are often confined by its neighbourhood

relations, i.e., nearby locations in the canonical form of an object are still nearby locations in

its distorted form, albeit not in exactly the same arrangement. This means local elements of a

distorted pattern are within a close proximity to their former locations, such that a controlled

tolerance at each spatial location can account for minor elementary positional shifts. Such tol-

erance may be in the form of a spatially aligned 2D Gaussian receptive field. \ühen applied

to every spatial location of a canonical object, a region, in the form of a band covering the

object is created, hence the name "band transformation". The band is the result of combining

circular expansions based on elementary locations. A graphical illustration of this operation is

shown in Figure 4.18. Part (a) of the figure shows a normal, undistorted shape. This is sampled

by Gaussian receptive fields in Part (b). The result in Part (c) is a band transformed shape of

the original shape. Finally, Part (d) shows how a distorted shape can be tolerated under band

transformation.

(a) (b) (c) (d)

Figure 4.18: Band transformation: (a) canonical shape; (b) applying receptive field;

(c) band transformed shape; and (d) distorted shape.

A complementary process of band transformation is shape attraction. The concept was first

proposed by Lozo [113] to solve minor elementary shifts in the selective attention adaptive res-

onance theory (SAART) network, reviewed in Section 3.4, for shape recognition. This model

recognises shape patterns that are positioned in the centre of the input scene such that it can

only recognise a pattern whose centroid is positionally aligned with the centroid of its stored

model counterpart. With the introduction of shape attraction, SAART is able to deal with minor

elementary shifts, so that SAART is robust against minor distortions in the input pattern. How-

ever SAART has yet to address how distortion can be handled in conjunction with translation
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and rotation in a large input scene. The concept of shape attraction is graphically illustrated in

Figure 4.I9. Part (a) shows conceptually the effect of applying shape attraction to a SAART

neural network model, in which a distorted shape is sampled by 2D Gaussian receptive fields

whose centroids correspond to spatial locations of another neural representation field, called the

shape attractor. Those regions covered by the 2D Gaussian receptive fields can be regarded as

regions of attraction generated by the shape attractor, such that elements within a region of at-

traction converge to a single location through the shape attractor on a projected layer as shown.

An enlarged version of this process is shown in Figure 4.19(b), and this is analogous to a funnel

or a vortex, where randomly located elements are drawn in through an opening, thus redirected

to another spatial location. As a result, the distorted shape is transformed into a clean copy of

the shape attractor pattern, provided the distorted shape consists of elements within the regions

of attraction generated by the shape attractor. Obviously, the shape attractor must be a pattern

from one of the stored models in memory.

It should be noted that there are various ways in which the concept of shape attraction may

be implemented. A successful implementation of shape attraction (without translation, rotation

and automatic attention) in SAART has been reported in [199], with its operation similar to that

shown in Figure 4.I9(a). This is a bottom-up approach to distortion invariance where the input

pattern is transformed to match the top-down pattern; the other way is also possible where the

top-down pattern may be ffansformed to match the incoming distorted pattern. Alternatively,

elastic matching 125,2091is a potentially suitable method for distortion invariance.

Region of
attraction 

.-+
Distorted shape

Distorted
elements

Shape attractor l1
Shape attractorzy'

element

Projected shape

Projected
element \ O

(a) (b)

Figure 4.19: Shape attraction. (a) A distorted pattern is shape attracted into a

clean copy of its attractor. (b) A zoom-in view of shape attraction in operation, in

which the region of attraction acts as a vortex, through which distorted elements are

channelled to a desired spatial location.
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4.6.1 Stages of Operation

Several issues must be resolved for the enhancement of distortion invariance to our proposed

visual scene analysis system. At the forefront of these issues is the question of when one should

try to locate and recognise a distorted object. Assume that we have all the necessary mechanisms

to deal with a distorted figure but what are the suitable conditions under which such processes

are to be performed?

Once we have decided that there is a potentially known object in the visual scene but is deformed

in shape, we need to determine, at the very least, coarsely its spatial location and orientation.

That aside, we need to decide how we can compare the focussed pattern with the stored models

in memory, and what constraints can be used to positively identify a distorted object, or through

what transformation can such an identification be performed.

Our approach to these issues is based on two separate steps. First, there must be no familiar

object recognised in the high activity field. Then we apply band transformation to the LTM

patterns, so that when gated with the rotational templates, the extra tolerance provided can

locate a distorted pattern, thus giving its spatial location and orientation. If the resultant match

between the distorted pattern and a band transformed top-down pattern is reasonably good, then

the second step can be taken to attempt to recognise the distorted pattern. This step involves the

use of the activated top-down pattern, in its original form, i.e., non-band transformed, as a shape

attractor to reshape the distorted pattern into a clean copy of the pattern. Figure 4.20 shows that

these two steps have been incorporated into the framework as two separate units, denoted as

b and toleranc e t ransÍo rmation and shap e attraction fi eld, r espectively.

Extending upon the existing stages of operation to include band transformation and shape at-

traction, the overall stages of operation are given as follows:

1. attentional capture in initial selection mode for high activity region selection: elementary

feature contrast detection, provided the activation threshold is exceeded;

2. WTA competition to select the most conspicuous region, referred to as the high activity

region;

3. selective transfer of high activity region;

4. translation and rotation invariant transformations;

5. mapping transformed patterns to parallel frames of reference;

6. multi-dimensional bottom-up memory activation;
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7. selective transfer of bottom-up and top-down patterns;

8. short-term-memory iteration, matching of the bottom-up and top-down pair;

9. choice after matching:

a) automatic attentional shift, go to stage 10,

b) mismatch reset and back to stage 6,

c) top-down selective attention and back to stage 8,

d) band tolerance transformation and back to stage 6, or

e) shape attraction and back to stage 8;

10. decay of the currently selected cell by an inhibitory signal, lasting for the whole duration

of a scene analysis;

11. attentional capture in ongoing selection mode, i.e., selection is based on biased elemen-

tary features, and then back to Stage 2. The shift between the old and new locations

is distance-independent and discrete, thus the processing focus is relocated to the newly

selected location abruptly; and

12. the process continues until the level of activity falls below the threshold.

As can be seen above, the overall process is highly complex and the use of a flow chart, in

Figure 4.2I, can be of a great aid to understanding the operations involved. For simplicity we

have grouped a number processes that a¡e performed prior to distortion invariant operations into

a single block, details of which can be seen in Figure 4.I3 or the complete flowchart is given in

Figtne 4.24, so that we can concentrate on operations that are required for distortion invariance.

It can be seen that band transformation and shape attraction are complementary operations with

the former representing expansion and the latter contraction. Furthermore, band transformation

serves to detect and locate distorted patterns, while shape attraction is required for recognition,

These dual operations are analogous to the two fundamental morphological operators: erosion

alnd dilation ll74l.

V/hile the method proposed here is capable of recognising familiar patterns with minor distor-

tions, it is not realistic to expect the system to be able to handle highly distorted shape patterns,

since the shape or contour of an object is the very feature that we use for matching. By increas-

ing the size of the region of attraction and the band of tolerance, we increase the system's ability

to deal with distorted patterns, but we also increase the probability of incorrect recognition.
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Figure 4.21: Flowchart f'or distortion invariance.
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4.6.2 Band TFansformation

Figure 4.22 shows a neural implementation of the concept of band transformation. A single

LTM pattern element spawns a number of elements, labelled as band transformed LTM ele-

ments, which are confined within the predefined receptive field region as shown. The activities

of individual band transformed elements are the activity of that single LTM pattern gated by

distributed 2D Gaussian weights.

IA LTM element

Distributed
2D Gaussian

weights

\ ¿ Receptive
'{ field region

0
0

Band transformed
LTM elements

Figure 4.22: Neural diagram for band transformation.

Suppose Moþ,, is a stored model in memory and Mop,, is its band transformed model, then

band transformation ß is amapping process such that ß : MoB,, + Mop,r.

For a2D Gaussian receptive field of size lún x À1, with standard deviation ô the transformation

can be computed by using

Mop,,: max { *,*o,u*,,r €XP l-ry1 I . (4.38)
ltvra+2,11+J,r"^" \ 62 ) I,

fori,,j: -Y,...,T.

4.6.3 Shape Attraction

Since shape attraction is the dual process of band transformation, its neural implementation,

shown in Figure 4.23, is thus a reverse of the one for band transformation inFigxe 4.22.

We can see from Figure 4,23 that elements of the distorted pattern are modelled as neurons or

cells, which are synaptically connected to a single cell, whose spatial location corresponds with

the origin of the shape attraction region, in the shape atfraction field. The weights connecting

may be modelled using a distributed 2D Gaussian receptive field, such that greater contribution

is extracted from the central part of the shape attraction region. The shape attractor element

depicted acts as a reference for forming the desired top-down pattern by modulating the synaptic
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Figure 4.23: Neural diagram for shape attraction. The shape attractor element acts

as a reference to the distorted elements.

gains. Depending on the requirement, the facilitatory signal provided by the shape attractor can

be made to filter out distorted elements that are outside regions of attraction, so that a clean copy

of the top-down pattern is obtained, or these elements may be suppressed but not eliminated if
the facilitation is inhibitory for non-shape attraction regions.

Alternatively, we can choose the maximum element from the attraction region as the one passed

to the shape attraction field, which is more direct and efficient for practical implementations.

LetDoB beadistortedobject andMrB,, bethereferenceforshapeattraction, i.e.,DoB islocated

by Mop,r, then the shape attracted object, SoB, generated by a shape attraction region of size

¡/, x ¡/, is given by

E.,þ : max{Do¡¿,p¡¡l, if Mop,, } 0,

fori,, j: -T,...,ry.
(4.3e)

4.7 Integrated Model of Architectural Framework

This section illustrates the operation of the overall framework, combining all of the visual func-

tion models proposed in this chapter, except distortion because the need to simplify the illustra-

tions. However, distortion invariance of the proposed model will be demonstrated in simulations

in Chapter 5.

Since the stages of operation and the framework diagram for the integrated model are as given

in Section 4.6.I, they are not repeated here. By combining the flowcharts in Figures 4.I3 and

4.2I,we have the complete flowchart as shown in Figure 4.24. T\e flowchart is best explained

using graphical illustrations depicted in Figures 4.25 and 4.26; they show exactly the expected

outcomes at each processing stage.
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Starting with Figure 4.25, where a visual scene consisting of a dog, horse and tree is first regis-

tered by the model in the input field. The scene is checked for activation before scene analysis

can begin. Upon activating the attentional mechanism, it proceeds to capture a region of inter-

est for further analysis. Based on elementary featural contrasts, a region of interest is located,

indicated by the dotted region in the input field, as well as in the high activity WIA fleld. The

disk in the high activity WTA field represents the winning cell which contains the spatial in-

formation of the region that has captured attention. This region of interest is transferred to the

high activity field from which parallel processings for invariant transformations are performed,

resulting in a large number of parallel frames of reference. Due to space limitation, we are

only able to show the parallel frames that correspond to the chosen spatial location, indicated

by the disk in the rotational and spatial alignment WTA field. These parallel frames are gated

by top-down memory patterns, as a result the best correlated top-down and bottom-up pair are

chosen as a potential match. This is indicated by the highlighted rotational template, memory,

and rotational and spatial alignment WTA field. The chosen top-down and bottom-up patterns

are transferred to the top-down fleld (TD) and cenfral representation (CR).

If the outcome of the matching process satisfles the preset criterion, then the selected input

pattern is deemed to be recognised and the attentional shift mechanism is set in motion. If the

match is not satisfactory, then a mismatch reset occurs for unacceptably low degrees of match-

ing, else top-down selective attention is triggered for reasonably good degrees of matching, In

Figure 4.25, the pattern in CR failed to match the pattern in TD. Subsequently, pattern CR is

top-down presynaptically facilitated by pattern TD to produce the pattern in the selective atten-

tion field (SA). The effect of top-down presynaptic facilitation is the suppression or in extreme

cases removal of irrelevant information from the bottom-up pattern, as shown in SA. As a result

of top-down presynaptic facilitation the matching criterion is satisfied, allowing the attentional

system to be activated to shift the focus of attention from the current region of interest to the

next by inhibiting the current winning cell in the high activity field.

The processing of the next region of interest can be seen in Figure 4.26. As before the region

of interest is indicated by a filled circle in the high activity WTA field and the dotted region in

the input field, where there is a dog with some background information. Repeating the same

processing steps as above, we see that the rotational template with a 45' anticlockwise rotation is

selected as a potential match to the highlighted memory. V/ith top-down presynaptic facilitation

the bottom-up pattern matches the top-down pattern, so the object is recognised. Since there are

no more regions of interest, the operation is complete until a new scene is registered.
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4.8 Conclusions

This chapter is the main theoretical part of this thesis. Theories and models reviewed in Chap-

ters 2 and 3 are brought together to develop a number of neural models for visual object recog-

nition and attention. The visual functions modelled include translation invariance, cluttered

background with minor occlusion, rotation invariance, automatic attentional shift and capture,

and distortion invariance. Together these models form an architectural framework that is based

on a two-stage theory of biological vision and attention. The major contribution of this chapter

is our attempt to merge selective attention with object recognition to form a framework for vi-

sual scene analysis. The chapter also highlights the research methodology adopted in Chapter 1.

Our models of visual object recognition and attention are based on a three level-approach from

the highest absffaction to the lowest: psychological, neurophysiological, and implementational.

First we attempt to develop a framework for our proposed model from psychological theories

and models based on experimental findings and observations using a "blackbox" strategy, where

the details are hidden, and with the emphasis entirely on the input and output relationship of

the system concerned. Models and concepts on the findings and results of neurophysiological

studies are used to devise neural representations, as well as establishing computational relation-

ships and connections between various neural substructures within the framework. Finally, the

framework is implemented using building blocks such as chemical synapses, and neural layers.

In the psychological level, the framework is able to perform higherJevel visual functions by

employing a two-stage parallel-serial architecture with bi-directional pathways in top-down

and bottom-up connections. Attended bottom-up stimuli are stored in an object-based invariant

frame of reference, while disoriented patterns are processed in competing parallel frames of

reference generated by mental rotation. In the neurophysiological level, the framework con-

sists of massively parallel feedforward and feedback connections. Some feedback pathways

are engaged in attentional modulation (presynaptic facilitation) and gating. Also, many equa-

tions are based on the on-centre off-surround receptive field organisation. It accepts luminance

contrast as visual stimuli and it has both short-term-memory and long-term-memory. In the im-

plementation level, the neural networks are modelled using synapses, excitatory and inhibitory

connections, and cells. Models of the neurotransmitter are used in synaptic facilitation, and ex-

isting artificial neural network models such as Adaptive Resonance Theory (ART) and Selective

Attention Adaptive Resonance Theory (SAART) are used in implementation.

The next chapter aims to verify and analyse the proposed visual scene analysis system using

computer simulations. Further extensions to the framework will be presented in Chapters 6 and

7.
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Chapter 5

Model Simulations and Analysis

5.L lntroduction

This chapter provides a comprehensive simulation study of the proposed visual scene analysis

system. The study aims to demonstrate the system's capability and effectiveness in various

visual conditions, and analyse the system behaviour. The chapter also includes discussions on

the selection of system parameters, and system limitations.

The chapter is arranged in an incremental fashion as in Chapter 4. An ART2 based neural

network model for learning input patterns is presented in Section 5.2. Simulations on the trans-

lation invariant object recognition model are presented in Section 5.3. Sections 5.4 - 5.1 provide

simulationresults for additional visual functions in the following order: recognition in cluttered

backgrounds and occlusion, automatic attentional shift and capture, rotation invariance, and

distortion invariance. A discussion on the choice and design of system parameters is provided

in Section 5.8, and a real-world application of the proposed visual scene analysis system is

presented in Section 5.9. Subsequently, any limitations identified during the simulations are

discussed in Section 5.10.

For each visual function, there are at least two simulations provided using synthetic images.

Additional simulations are included for more complex visual conditions such as recognition

in the presence of clutter and occlusion. In order to illustrate the operations involved and the

model's capability, the two cases considered are usually one simple and one complex. \il/e have

chosen to use synthetic images in some of the simulations as they provide greater flexibility for

object manipulation, a reduction in visual scene complexity which simplifies the problem under

consideration, and a large database that can readily be generated. Furthermore, it allows fewer

parameters to be chosen, and enables the model's inadequacy and limitations to be located with

109



Chapter 5. Model Simularions and Analysis

ease. Another advantage of employing synthetic imagery is that it allows a systematic approach

to implementing and developing a pilot simulation model. However, in the absence of common

benchmark databases, a credible way to demonstrate the effectiveness of the proposed system is

to apply it to real-world problems. So we provide simulations on real-world imagery in addition

to those obtained using synthetic imagery.

Some of the simulation results are presented in the same format as the framework so as to

provide greater ease for interpretation and understanding. However, for input scenes that contain

several recognisable objects, only the first recognised object is presented in the framework form.

The subsequently recognised objects are presented in a more compact form with LTM patterns

and their input scene omitted, as these do not provide any further useful information and yet take

up space needlessly. All simulations provided were achieved with software programs written in

the C programming language.

5.2 Learning

An important stage of a neural network recognition system is the learning phase. It is this

ability to learn and adapt to its environment that has attracted most interest from researchers

and scientists worldwide. A neural network learns about its environment through an iterative

process of adjustments applied to its synaptic weights and thresholds.

In Chapter 1, we adopted a shape-based approach to object recognition. A common image

processing technique to achieve this is edge detection. Unlike intensity, edge maps are less

sensitive to noise and changes in the illumination. On the other hand, intensity maps can provide

a better representation visually. It has also been found that the proposed system works equally

",^ll ".;-^ in+anci+" *^^" ;- mn¡f "i."^l ^^-'l;+i^-. tr "+ i-+^-.i+" +a 1r^"^ ^vYvr¡ sùr¡¡ó rrrLvr¡ù¡LJ rlr4l/ù ¡rr r¡rvùL vlùu4r vvrlurtrvrlùt uuu rttLwrrùrLJ rrr4Pù ev I,IUUV tv llqvv 4

relatively high false alarmrate for visually cluttered environment.

Figure 5.1 shows four input objects in both intensity and edge forms. The depicted objects

are images of four different types of aircraft captured digitally. Several preprocessing steps

were performed to convert the images to the depicted form. The original images containing

the aircrafts were resized and cropped to a size of 40x40 pixels. They were then converted

to grayscale and segmented from their backgrounds using computer graphics tools. Finally,

the images were edge detected using a 3x3 Sobel edge operator with both the horizontal and

vertical kernels.

The learning algorithm chosen for the proposed system is the ART2 neural architecture 1291,

which has been reviewed in Chapter 3. Hence we shall not repeat the steps involved. However,
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ryrF iilF

(a) (b) (c) (d)

Figure 5.1: Aircraft simulation input objects and their edge maps. (a) Aircraft I.

(b) Aircraft tr. (c) Aircraft trL (d) Aircraft IV.

results and the parameters used are presented in this section. The learned IjIM weights will be

used in all subsequent simulations, unless specified.

Figure 5.2 shows the degree of match between the top-down and bottom-up patterns for the

duration of the simulation. Instances where new input objects were applied are highlighted by

vertical dotted lines; the vigilance parameter is represented as a dashed horizontal line.

With no learned object prior to the start, Aircraft I activates an uncommitted node, which will

always have a perfect match with the bottom-up pattern due to a zero top-down pattern. The

adaptation of synaptic weights associated with the activated node is performed iteratively until

the degree of match falls below the vigilance parameter (learning in ART is performed in the

approximate match phase, instead of mismatch t73l). As expected, this occurs at the switching

point from Aircraft I to Aircraft II, indicated by a single dip at the 25th iteration mark. As a

result, the previously chosen node is reset, allowing another node to be selected, which is duly

adapted with the bottom-up pattern.

As mentioned in Chapter 3 bottom-up activation is based on the strength of the dot product (or

linear combination) between the bottom-up pattern and LíIM weights, therefore upon switching

to Aircraft trI, the node that has been learning Aircraft II is reset, and the node that learned

Aircraft I is selected ahead of an uncommitted node due to its LIM weight size. Since Aircraft

I is very different from Aircraft III, this node is also reset, allowing an uncommitted node to

be selected and adapted with Aircraft trI. For Aircraft IV, there are now three learned nodes, so

three resets occurred before it was learned. Details of the simulation are provided in Table 5.1.

Figure 5.3 is a very good illustration of the iterative nature of learning in neural networks. It

depicts, for each input, the synaptic weights at various stages of the learning process. In con-

junction with Figure 5.2,we can see that during the simulation the neural network is stimulated
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Figure 5.2: Graph of degree of match during learning. There are four input objects

indicated by the vertical dotted lines. The horizontal dashed line is the vigilance

parameter. The dips are caused by mismatch resets.

Thble 5.1: Simulation details for learning

Input object size l/o x l/n
Number of input objects

Vigilance parameter p

Number of STM iterations

Number of learning iterations

Simulation time step Af
Simulation method

STM equation parameters

Initial values

40 x 40 pixels

4

0.97

5 per time step

25 per input

0.5

Euler's method

o : 10;b : 10; c: L;d:0.9;e: L0-6;0 : I0-3

P¿i : Q¿i - 't'ti,i : a¿i :1x¿i : rii :0;
,zbu 

- 
0.001 .rztd, 

-n"iik-@,oiitt-v

Refer to Section 3.3 for relevant equations and symbols.
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by its input, as a result it undergoes changes to its LTM weights. The network becomes more

knowledgeable about its stimuli after each iteration of the learning process. This is evident

in the relative strengths in the weight patterns. As learning progresses, the LIM weights get

stronger and stronger.

Due to the changes to its LIM weights, the network behaves in a new way to its stimuli over

time. For example, at the end of the learning process, the committed (learned) node will respond

maximally to bottom-up patterns that are familiar. So the network can begin to recognise more

and more objects if the network continues to be exposed to novel stimuli.

Input I

Input 2

Input 3

Input 4

Stage I Stage II Stage III Stage IV Stage V

X'igure 5.3: Bottom-up LTM patterns at various stages of learning.

5.3 T[anslationlnvariance

This section demonstrates the translation invariant recognition ability of the proposed system.

The model simulated in this section is as described in Section4.2, thus it does not possess other

visual functions such as rotation invariance, and automatic attention. These will all be dealt

with in the remaining sections in this chapter.

Typically, a scene requiring translation invariant object recognition can contain one or several

objects that may appear anywhere within the visual scene. Hence, we consider two scenarios

here: i) a single known object visual scene; and ii) a multiple known object visual scene. The

:?F .*\rt
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first is to highlight how a familiar object may be detected, located and recognised. The second

emphasizes the bottom-up competition among objects within the visual scene. In both cases, we

would expect a familiar object to be located by the WTA field, from which the located region is

selectively transferred to the cenfral representation to be compared with the bottom-up activated

top-down memory.

5.3.1 Simulation I

Figure 5.4 shows the input scene, in both intensity and edge forms, for the single object simu-

lation. It depicts an aircraft located randomly near the bottom left hand corner of a clear back-

ground scene. The input is simulated using the model in Section 4.2 with simulation details as

given in Table 5.2. The choice of system parameters will be discussed in Section 5.8.

Fd

(a) (b)

Figure 5.4: Translation invariance: Simulation I input scene. A simple scene re-

quiring translation invariant object recognition. (a) Intensity map; (b) edge map.

The simulationresults are affanged in the same structural format as in Figure 4.1, andare shown

in Figure 5.5. The region highlightedby a gray square in the WTA f,eld is selected after a WTA

competition based on convolution outputs between the input scene and the LIM weight patterns

(acting as convolution kernels). The selected region is transferred to the central representation

via presynaptic gating as shown in Figure 4.5. At the same time a memory pattern is activated

by that selected region, causing the memory pattern to be transferred to the top-down field. The

bottom-up and top-down patterns are then engaged in a matching process to determine whether

the pair are an acceptable match.

To assist in visualising how the correct spatial location was selected, a 3D neural activity proflle

of the W'IA field is shown in Figure 5.6. Under WTA competition, only the strongest cell

114



Chapter 5. Model Simulations and Analysis

Tbble 5.2: Translation invariance simulation I details

Input scene size A[ x I/¡
Central representation size

Top-down field size ¡ú, x 1Vn

LIM weight pattern size

Available LTM patterns

ThresholdT/

Threshold d

Vigilance parameter p

W'IA field competition

Simulation time step Âl
Simulation method

200 x 200 pixels

40 x 40 pixels

40 x 40 pixels

40 x 40 pixels

4

0.01

0.002

0.97

A: l; B : l;C :0;D : 100

0.005

Euler's method

Refer to Section 4.2for relevant equations and symbols.

þ Memory

Top-down field

Central representation

w il
Input field WTA field

Figure 5.5: Translation invariance: Simulation I results. The results are set out in

the same format as the framework model introduced in Section 4.2.

-b.,
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survives. So when applied to the synaptic signals, only the region that has the most common

features remains, and this is evident in the shape peak depicted in Figure 5.6. Note that the

spatial alignment V/TA field is in fact multi-dimensional in nature (see Figure 4.1), so there

would be four layers (four stored models in memory) thus giving four different 3D profiles. We

have only shown one to illustrate the competitive nature between spatial locations for aligning

the origins of the bottom-up and top-down patterns. While the other spatial alignment WTA

layers concern the selection of the bottom-up activated memory pattern, which will be further

demonstrated in the next simulation.

Spatial region

Figure 5.6: Translation invariance: Simulation I - 3D WTA field profile.

5.3.2 Simulation II

Let us examine what happens if an input scene contains multiple objects. Consider the scenario

in the input field of Figure 5.7, there are four aircrafts randomly placed in the input scene. So

how does the system know which aircraft to recognise or would the presence of other familiar

objects cause any problem to the system? Tt is obvious from Figure 5.7 that other familiar

objects pose no problem to the system. But why is aircraft Itr chosen ahead of the other three in

the simulation results? The answer lays in the multi-dimensional nature of the spatial alignment

WTA field. Besides competing for spatial alignment as shown in Simulation I, it also competes

to activate a LTM pattern.

To illustrate the competition in the spatial alignment WTA field, all four layers of the WTA

>l

(n

t-
Þ
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Memory

Top-down field

Central representation

Input field WTAfield

Figure 5.7: Translation invariance: Simulation II results.

field are shown in Figure 5.8. The figure has four parts, each showing a LTM pattern, a 2D

and a 3D spatial alignment WIA layer. The 3D profiles are corelation outputs between the

input field and the LTM patterns. If we restricted ourselves just to any one of the 3D layers,

we see that the peak location is where we have the most common features between the input

scene and the kernel (LIM pattern). However, if we consider all four 3D layers, we see that

layer 3 has the largest peak, thus is chosen ahead of the others. This should not be interpreted

as Aircraft Itr has a better match with its selected location than the other pairs, simply this is

caused by the stronger weight size of Aircraft Itr. A similar situation is discussed in ARI3 [30]

under "Trade-off between weight size and pattern match", in which a category may be selected

ahead of another category that offers a better match, simply because it has larger weights. The

paper suggests such a problem can be solved by normalising all weight patterns at all times.

If normalisation was applied throughout, then there would be no difference between the peak

values in the V/TA fields, in that case, memory activation is based on the order of the LTM

patterns. Although there is a clear advantage in applying normalisation in terms of searching,

it can also be useful to not have normalisation in certain cases. For example, a high contrast

object should be recognised ahead of a low contrast one.
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Figure 5.8: Translation invariance: Simulation II - 3D \VTA field profiles.
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5.4 Recognition in Cluttered Images

This section demonstrates the proposed system's ability to handle object recognition in a variety

of complex backgrounds, through the use of presynaptic facilitation.

The proposed system is expected to perform ftanslation invariant object recognition in complex

cluttered scenes in which objects may be subject to minor partial occlusion. So, three scenar-

ios are to be considered: i) a non-clear visual scene; ii) a complex cluttered scene; and iii) a
complex cluttered scene with minor occlusion. These cases are designed to firstly clarify the

theoretical concepts used in modelling and illustrate the processing steps involved, and secondly

to demonstrate the extent of the proposed system's capability to deal with such problems.

5.4.1 Simulation I

Consider Figure 5.9, which is an extension of Simulation tr for translation invariance in Sec-

tion 5.3.2. The figure contains four randomly placed aircrafts in a cloudy, non-clear background.

The edge map appears to be reasonably clear and it is possible that top-down presynaptic fa-

cilitation may not be required to achieve recognition. Indeed, this is the case found in the

simulation; the results are summarised in Figure 5.10. They correctly show that the bottom-up

pattern, depicted in the central representation as well as indicated in the WTA field, is recog-

nised as aircraft III, as given in the top-down field. The system is able to recognise the correct

object because the amount of clutter is relatively low and the image contrast is high. However,

the noisy background causes the degree of match to drop from 1 to 0.988. We can conclude that

the model is tolerant to minor background noise without the need for presynaptic facilitation.

(a) (b)

Figure 5.9: Cluttered image: Simulation I input scene. A non-clear background.

(a) Intensity map; (b) edge map.
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Top-down

Central
representation ÌWTA field

f,

Input field

Figure 5.10: Cluttered images: Simulation I results. Results for input scene with a

non-clear background. No presynaptic facilitation required.

5.4.2 Simulation II

A typical cluttered scene is shown in Figure 5.11. ft shows an aircraft embedded in a complex

scenic background. It can be seen from the figure that after edge detection, the target object is

surrounded by clutter and irrelevant edges which have comrpted the outline of the aircraft. This,

undoubtedly, would reduce the degree of match between the target object and its counterpart in

memory, which would normally cause recognition to fail. This simulation illustrates the use

of top-down presynaptic facilitation to increase the degree of match by strengthening the target

object and reducing the amount of clutter surrounding the target object.

(a) (b)

Figure 5.11: Cluttered images: Simulation II input scene. A highly cluttered visual

scene. (a) Intensity mapi @) edge map.

The input scene in Figure 5.11 was simulated using the model in Section 4.3 with simulation

details as given in Table 5.3. The parameters chosen are based on ART3 [30] and SAART [113],

further discussions on the design of parameters are provided in Sections 5.8.

As before, the simulation results are set out in the same format as the framework, shown in
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Ibble 5.3: Cluttered images: Simulation II details

Simulation time step Aú

Primary: P:0.97; SecondarY: ç : 0.94

A: l; Ã:0.1; B : I;B : 0.1; C :0; D :0.5; E :
1.0; G : 130; G : 1.885) Ku:0.1;n: N¿Nj - L;

Y : 0', c\u : 0.05; B" : þa : 0.01; 7 : 0.5; I : 0;

Pu:0'05;d:0'05;
fr¿j : 0i u¿j : li uij : 0; Ð : 0; A¿j : l; z¿j : l;
Ttij : T¿i; J¿¡ : C¿j,

0.1

Refer to Section 4,3 for relevant equations and symbols. Unspecified parameters are as given in

previous tables.

Figure 5.12. The main feature of the results is the addition of the selective attention field. The

model behaves much like the translation invariant model, except when the bottom-up and top-

down patterns failed to match and the degree of match is above the secondary vigilance, then the

process of top-down presynaptic facilitation is triggered. As explained in Section 4.3, presynap-

tic facilitation works by enhancing object specific bottom-up synaptic signals, allowing familiar

object signals to be facilitated, while non-object signals are suppressed under mutual competi-

tion. As a result, the bottom-up object is enhanced and the background clutter suppressed or

removed, depending on the level of facilitation and competition.

A better illustration of presynaptic facilitation with shunting competition is shown in Fig-

ure 5.13. It depicts the bottom-up pattern in various levels of facilitation, highlighting the

effects facilitation level has on a bottom-up pattern. .F', is an extra gain factor associated with

the facilitatory signal and D^ is the resultant degree of match. For the results in Figure 5.12,

the default facilitation level (as set out in Table 5.3) is sufficient to lift the degree of match from

0.965 to an acceptable level of 0.975. If however the primary vigilance was set at a higher level,

then the facilitation level must also be set higher to improve the degree of match.

From Figure 5.13, we can see that as the level of facilitation increases, the degree of match

tends to increase, albeit not linearly. Also, as the degree of match approaches a certain level,

saturation occurs. Any further increases in the facilitation level have little effect on the degree

of match, e.g., from F, : L6 to 4 - 2.0. However, if the facilitation level gets too high, it

can have a negative effect on the degree of match. F" : 4.0 caused a reduction in the degree

of match relative to its previous facilitation level. Thus, the facilitation level should be kept at a

moderate level to avoid impacting negatively on the degree of match. Unnecessarily high levels

of facilitation can also cause a higher false alarm rate.

Vigilance

PMCNL parameters

PMCNL initial values
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tu
ffiË *#ffi #- Memory

Top-down field

Selective attention field

Cenüal representation

t
Input field WTAfield

Figure 5.12: Cluttered images: Simulation II results. Presynaptic facilitation was

applied, improving the degree of match from 0.965 to 0.975.
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Fs = 0.0 Fs = 1.0 Fs = 1.2 Fs = 1.4

Dm = 0.965 Dm = 0.975 Dm = 0.983 Drn = 0.988

Fs = 1.6 Fs = 1.8 Fs = 2.0 Fs = 4.0

Dm = 0.990 Dm = 0.991 Dm = 0.992 Dm = 0.986

Figure 5.13: Cluttered images: Simulation II - effect of varying the facilitation

level. In general, strong top-down presynaptic facilitatory signals have a positive

effect on the degree of match. But as it gets too great, it could have the opposite

effect. fl is the facilitation level; D* is the degree of match.

5.4.3 Simulation III

Occlusion is generally considered a more challenging problem than visual clutter. Although

in both cases the outline of an object can be severely infringed upon after edge detection, the

former has the problem that the occluded part is completely missing, thus provides no bottom-

up information. Whereas in the cluttered case, it usually results in a degradation of its edge

map, but one may use other visual features, if available, such as colour to assist recognition.

Consider Figure 5.14 which shows an aircraft flying over a city. In this simulation, we try

to create a minor occlusion effect by covering the entire visual scene with vertical shipes. In

real-life such problems could be caused by bad transmission of a digital image.

A common approach to occlusion is to match object fragments, rather than the whole object

[86, 196]. This approach deals with occlusion in an explicit manner, but we have yet to im-

plement object fragment matching mechanisms into the framework, therefore we use top-down

presynaptic facilitation to solve the occlusion problem in an implicit fashion as shown in Fig-

ure 5.15. A more effective way for recognising object parts in occlusion is implemented in

ChapterT.

A close examination of the edge map reveals that the outline of the target object has been

infringed, and is thus not complete, i.e., segments are not linked together, which greatly reduces

the recognisability of the target object. This is confirmed by registering a degree of match
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(a) (b)

f igure 5.14: Cluttered images: Simulation Itr original input scene. Prior to mod-

ifications to a highly cluttered scene with minor occlusion. (a) Intensity map; (b)

edge map.

of only 0.884 without presynaptic facilitation. The recognition would surely have failed, if
the parameters listed in Table 5.3 were used. Howeve¡ with some simple adjustments in the

secondary vigilance, the facilitation level and the shunting competition gain value, the proposed

system was able to recognise the target object as shown in Figure 5.15. Obviously the secondary

vigilance parameter was lowered to allow for presynaptic facilitation to proceed, and the other

two were changed to provide greater facilitation and competition to enhance the critical spatial

features and suppress the background clutter,

5.5 Preattentive Processing: Automatic Attentional Shift and

Capture

The framework to be simulated in this section overcomes a major deficiency of the previously

simulated model. Vision is a continuous process. We observe and recognise many objects in a

visual scene (not all objects are recognised, only those attracting our attention), as long as our

eyes remain open. To achieve this, the proposed system must be able to perform attentional

capture and shift automatically, so as to recognise all familiar objects in the visual scene. As

discussed in Section 4.4, this model is based on the preattentive stage of visual perception. The

main function of this stage is to perform a preliminary analysis of the visual scene, from which

the visual system decides where to focus. In a way, it acts as a task scheduler on the basis of the

importance of various parts of the input.

V/ith this important addition, the proposed system is expected to be able to detect and locate a
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*,h'ì*
Memory

Top-down field

Selective attention field

Central representation

Input field WTA field

Figure 5.15: Cluttered images: Simulation III results. Simulation results for a

highly cluttered scene with minor occlusion. Presynaptic facilitation was applied,

improving the degree of match from 0.884 to 0.98. f." : 1.6, and G is increased by

a factor of 2.5.
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region of interest based on some bottom-up elementary features. The preattentive mode directs

the attentional focus to the region, allowing a thorough analysis of the region to proceed. The

resultant region of interest can be regarded as a window of attention, which we have termed the

high activity field. This window of attention is expected to shift to another region of interest

upon completing the analysis of the current region of interest.

Three simulations are presented in this section for automatic attention on: i) a simple scene with
familiar objects clearly visible; ii) a complex scene with background clutter and a low contrast

object; and iii) a complex scene that highlights the importance of the size of the window of
attention.

5.5.1 Simulation I

This simulation illustrates the entire process from initial attentional capture, which includes the

detection and localisation of a region of interest, to attentional focus processing for achieving

object recognition, and finally shifting of attention to another region of interest. The input scene

has a very simple background and several familiar objects located randomly within it. The input

scene and details of the simulation are shown in Figure 5.16 and Täble 5.4.

In order to improve efficiency and speed in attentional capture, as well as modelling the coarse

nature of the preattentive mode, the initial parallel sampling for the high activity WIA field is

performed sparsely, with overlapping regions separated both horizontally and vertically by 
^[pixels. Further discussion on the choice of l/, is provided in Section 5.8.

Thble 5.4: Automatic attention: Simulation I details

High activity WTA field size

Sampiing skip

Vigilance

Gaussian receptive field:

^äx^L:60x60Itv'" : 10 Pixeis

Primary: p:0.97; Secondary: ç : 0.92

standard deviation o : I0

constant Wo: L

standard deviation Q : 25

constant Go:2
Inhibitory Gaussian receptive field:

Refer to Section 4.4for relevant equations and symbols. Unspecified parameters a¡e as given in

previous tables.

With automatic attention, each simulation is expected to produce as many sets of results as the

number of familiar objects contained in the input scene. To present results in a more eff,cient
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Memory

Top-down field

Selective attention field

Cental representation

Spatial aligrment rüTA

High activity field

Input field WTA field

Figure 5.16: Automatic attention: Simulation I - Part 1. Shows the first recognised

object, with no presynaptic facilitation, and a degree of match of 0.99.
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and compact manner, only the first recognised object is presented in the framework format

(shown in Figure 5.16); the rest of the results are presented with the memory and input fields

omitted. Since the detection of a high activity region is based on the strength of its edge activity,

this means the selected high activity regions may not contain any familiar objects at all.

Figure 5.16 shows that a high activity region is chosen by the high activity WTA field. This

defines the location and contents of the window of attention as shown in the high activity WTA

field and high activity field. The system then proceeds to recognise the bottom-up object in the

usual manner as described in previous simulations. Once the bottom-up pattern is recognised,

the system switches its attention to the next region of interest. As a result, the remaining objects

in the scene are detected and recognised as shown in Figure 5.17.

Top-down field Spatial alignment WTA Top-down field Spatial alignm€nt WTA Top-down fleld Spatlal alignment WTA

Select¡ve attention field High ectivity reg¡on Select¡ve attention field High act¡vity region Selective attention field Hlgh activity region

ru
n

centrel representation High acliv¡ty WTA Central representetion High activity WTA Central representation High act¡vlty WTA

(a) (b) (c)

Figure 5.17: Automatic attention: Simulation I - Parts 2,3 and 4. (a) The second

recognised object, with no presynaptic facilitation and a degree of match of 0.98; (b)

the third recognised object, with no presynaptic facilitation and a degree of match

of 0.99; and (c) the fourth recognised object, with a degree of match of 0.965 prior

to presynaptic facilitation and 0.984 after. Note that the patterns are not to scale.

Figure 5. 1 8 highlights the locations of the windows of attention and the order of attentional shift.

In particular, Figure 5.18(a) indicates aircraft IV is the first one to capture attention, followed

by Aircraft I, Aircraft tr and Aircraft trI. Since the input scene has a very simple background,

the selected windows of attention have all contained a familiar object, but we shall see in the

next section this is not always the case with complex visual scenes.
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II

(a)

(b)

Figure 5.18: Automatic attention: Simulation I - windows of attention. (a) Selected

high activity regions. (b) Spatial locations of the windows of attention.

5.5.2 Simulation II

This simulation shows the elementary feature strength dependence of the preattentive mode for

attentional capture. Figure 5.19 shows the input scene used in this simulation. The outline of

Aircraft II is barely visible, and the outline of Aircraft Itr is infringed by its background, Both

of these could potentially cause problems for our system. Results of the simulations are shown

in Figures 5.20 and 5.21. Note that due to low contrast in the region containing Aircraft II, it

takes seven cycles before attention reaches that region.

(a) (b)

Figure 5.19: Automatic attention: Simulation II input scene. (a) Intensity map; (b)

edge map.
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Top-down lleld Spat¡al alignment WTA Top-down field Spatial alignm€nt WTA Top-down fleld Spatlal alignment WTA

Selective ettention field High activity region Selectlve att€nlion fiêld High activity reg¡on Select¡ve attention field High activlty region

Central represêntation High act¡vity WTA Central representetion High activity WTA Central representation High actlvlty WTA

(a) (b) (c)

Figure 5.20: Automatic attention: Simulation tr - Parts 1,2 and 3. (a) The first

recognised object, with a degree of match of 0.96 prior to presynaptic facilitation

and 0.981 after; (b) the second recognised object, with no presynaptic facilitation

and a degree of match of 0.98; and (c) the third recognised object, with no presy-

naptic facilitation and a degree of match of 0.97.

ru n T
il

Figure5.21: Automaticattention: Simulationll-windowsof attention. Duetolow

contrast in the region containing aircraft II, it takes seven cycles before attentional

capture is achieved over that region. Columns 1,2 and 7 contain familia¡ objects.

The WTA fields show the order of attentional shift.

n
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5.5.3 Simulation III

This simulation demonstrates what might happen if the size of the window of attention is too

small, and when a familiar object is near a region of high contrast. In both cases, it is possible

that the target object is partially included in the high activity field, which causes the system to

fail. Figure 5.22 shows the input scene and edge map used in this simulation. Results of the

simulation are shown in Figures 5.23 and5.24.

(a) (b)

Figure 5.222 Automatic attention: Simulation Itr input scene. (a) Intensity mapi

(b) edge map.

V/hile the above situation is undesirable, we do come across similar situations in our everyday

life. V/e tend to get attracted to novel events and objects, and it is very easy to overlook items

that are less attractive, even though they are adjacent to where we have been paying attention.

One possible solution to this problem is to enlarge the size of the window of attention to provide

an extra tolerance to familiar objects that a¡e not being captured at the centre of the window of

attention. Currently, the high activity field size is 1.5 times that of the object size along a single

dimension, therefore it would be reasonable to use a high activity field size that doubles the

object size along a single dimension. However, for processing efficiency and speed the high

activity field size should be kept as small as possible. Further discussions on the high activity

field size is given in Section 5.8.

After changing the high activity field size from 60 x 60 to 80 x 80 pixels, the proposed system

is now able to recognise Aircraft I as shown in Figure 5.25. The proposed recognition system

demonstrates its robustness in this case, as the size of the window of attention can be changed

as desired without affecting the operation of the system. Note that for subsequent simulations

the high activity field size is still 60 x 60, unless stated otherwise.
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Top-down field Spetial alignment WTA To¡down field Spatial elignment WTA Top-down fleld Spatlal allgnmant WTA

Selective attention field High activity region Selective attention field High act¡vity region Selectlv€ ettention field Hlgh actlvlty reglon

Central representetlon H¡gh actlvlty WTA Central fepresentation High activity WTA Central representatlon Hlgh actlvlty WTA

(a) (b) (c)

Figure 5.23: Automatic attention: Simulation trI - Parts I,2 and 3. (a) The first

recognised object, with a degree of match of 0.966 prior to presynaptic facilitation

and 0.982 after; (b) no familiar object detected due to the object not completely

within the window of attention; and (c) the second recognised object, with a degree

of match of 0.956 prior to presynaptic facilitation and0.973 after.

t

n

t

r
Figure 5.24: Automatic attention: Simulation Itr - windows of attention. High ac-

tivity region2failed due to the missing tail of aircraft I. Note that in this simulation

aircraftl is in the reversed direction and to counter that a reversed aircraft I has been

learned.

'tð I

n

t32



Chapter 5. Model Simulations and Analysis

Top-down field Spatial alignment WTA

S€lective att€ntion fleld High activity reglon

C€ntral rêpresentation High activity WTA

tr'igure 5.25: Automatic attention: Simulation III results with new window of at-

tention size. The above high activity field size is 80 x 80, thus allowing the system

to overcome problems encountered in Figure 5.23.

5.6 Rotation Invariance

It is common to see everyday objects in orientations other than their upright positions, thus it is

very important for a recognition system to be able to recognise rotated objects. In this section,

we present simulations for the model developed in Section 4.5, which is capable of recognising

all familiar rotated objects located anywhere within a complex cluttered visual scene.

Rotation invariant recognition is achieved by transforming the window of attention, via mental

rotation, into a number of competing parallel frames of reference. The winning reference frame

is aligned with another perceptual frame of reference, the cenffal representation, for matching.

TTvo simulations a¡e presented for rotation invariance. In both cases, familiar objects are rotated

and placed randomly within a complex cluttered environment. In the first simulation, results

are presented in the framework format showing all the rotational templates derived from the

bottom-up object location. In addition, STM patterns are also provided for Simulation I, while

Simulation II results are presented in the compact format.

5.6.1 Simulation I

Results of Simulation I are summarised in Figures 5.26,5.27 and 5.28. In each of the figures,

we can see that a region of interest is first detected and located from the input field. From the

resultant high activity field a large number of parallel frames of reference are generated. These
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rotational templates are then gated by top-down memory patterns, generating synaptic inputs

to the rotational and spatial alignment WTA field. A winner is produced from the WIA field,

allowing us to determine the location and orientation of a potentially recognisable object, as

well as the most likely match in memory. The chosen bottom-up and top-down patterns are

compared. The outcome of which decides whether top-down presynaptic facilitation is required

to improve matching.

Memory

Top-down field

Selective attention field

Central representation

Rotational & spatial alignment WTA

Rotational templates

High activity field

Input field WTA field

Figure 5.26: Rotation invariance: Simulation I - Part 1. The first recognised object,

with a degree of match of 0.944 prior to presynaptic facilitation and 0.990 after.

In addition to the main results, STM patterns for each of the recognised objects are shown in
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Memory

Topdown field

Selective attention field

Central representation

Rotational & spatial alignmentWTA

Rotational templates

High activity field

Input field WTA field

Figure 5.27: Rotation invariance: Simulation I - Part 2. The second recognised

object, with no presynaptic facilitation and a degree of match of 0.993.
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*'ft:t

Memory

Top-down field

Selective attention field

Cenhal representation

Rotational & spatial alignment WTA

Rotational templates

High activity field

Input field WTA field

Figure 5.28: Rotation invariance: Simulation I - Part 3. The third recognised object,

with a degree of match of 0.961 prior to presynaptic facilitation and 0.989 after.
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Figure 5.29. It demonstrates the use of STM loops as a stabilising mechanism. Most impor-

tantly, it illustrates how a bottom-up pattern is transformed as it progresses upwards.

qPqPP

Vo Vo Vo

Wo Xo Wo Xo Wo Xo

(a) (b) (c)

Figure 5.29: STM patterns for rotation invariance simulation I. (a) First object; (b)

second object; and (c) third object.

The recognised objects need not be the first detected high activity regions. However, it is point-

less to show regions that report no recognisable objects. On the contrary, any false alarm is

reported.

5.6.2 Simulation II

Simulation tr is another example of rotation invariant objectrecognitionby the proposed system.

It also has a very complex background which can be seen in Figure 5.30.

All recognised objects are summarised in Figure 5.31. Rotational templates have been omitted,

since they a¡e the same as the central representation depicted in various orientations.

5.7 Distortionlnvariance

The framework simulated in this section represents the complete model for the proposed sys-

tem, capable of performing translation, rotation and distortion invariant object recognition in

complex visual scenes with automatic attentional capture and shift.

.*Rñ-
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(a) (b)

Figure 5.30: Rotation invariance: Simulation II input scene. (a) Intensity map; (b)

edge map.

Top down field Rot, & spat. align. WTA Top down field Rot, & spat, align. WTA Top down f¡eld Rot. & spet. allgn. WTA

Selective attention fleld High actlv¡ty reglon Selective attention field High acüvity region Sel€ctive attentlon fleld High activlty rêgion

m
n

Central representation High activity WTA field Central representation High activ¡ty WTA fi€ld Cenkal representation High ect¡vity WTA fiêld

(a) (b) (c)

Figure 5.31: Rotation invariance: Simulation tr - Parts I,2 and 3. The first recog-

nised object, with no presynaptic facilitation and a degree of match of 0.983; (b)

the second recognised object, with a degree of match of 0.935 prior to presynaptic

facilitation and 0.979 after; (c) the third recognised object, with a degree of match

of 0.925 prior to presynaptic facilitation and 0.987 after.

T
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Two simulations have been devised to highlight the distortion invariant property of the system.

In particular, the use of band transformed memory patterns to detect and locate arbitrarily dis-

torted 2D object patterns, and the use of shape attraction to reshape the distorted patterns into a

recognisable form. The two cases considered are: i) a clear background visual scene; and ii) a

complex cluttered background visual scene. Additional results are provided in Appendix A.

Distorted visual scenes used for the simulations are generated using computer graphics tools

from normal scenes. The software package used is GIMPI. The distortion effect is achieved

through the use of the waves distort filter under GIMP, which simulates the effect of throwing

a stone in a pond.

5.7.1 Simulation I

Consider the input field in Figure 5.32. It contains three randomly placed objects on a clear

background. As the objects are quite severely distorted, it would present some degree of diffi-

culty even for humans to visually recognise them against the learned memory patterns.

Encouraging results have been achieved using the proposed recognition system to deal with

distorted objects, and are shown in Figures 5.32 and 5.33. From Figure 5.32, we can see that

the system operates in very much the same way as before. It begins by detecting and locating

a region of interest, from which rotational templates are generated to activate a stored model in

memory for comparison with the bottom-up pattern. It is only when the matching fails, that the

system considers whether to use shape attraction to reshape distorted patterns to a recognisable

form. If the conditions for shape attraction are met (see Section 4.6), then band transformed

memory patterns, as shown in the top of Figure 5.32, arc used in place of normal memory

patterns for bottom-up memory activation and initial matching. This enables the system to

determine the spatial location of a potentially recognisable object, and thus shape attraction can

be applied.

Figure 5.33(a) shows that it may notbe necessary to apply shape attraction to recognise distorted

objects. A distorted version of Aircraft I was recognised using only top-down presynaptic

facilitation. Of course, this is only possible if the distorted object is sufficiently similar to the

original object as in Figure 5.33(a), while in Figure 5.33(b), the object can only be recognised

using shape attraction.

lThis program is available at www.gimp,org
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Normal & band
transformed LTMs
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Top-down field

Selective attention field/
Shape athaction field

Central representation

Rotational & spatial alignment WTA

Rotational templates

High activity field
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Input field WTA field

Figure 5.32: Distortion invariance: Simulation I - Part 1. The first recognised

object, with a degree of match of 0.94 prior to shape attraction and 0.992 after.
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Tofdown field Rot. & spat. align. WTA

Selective attention field High activity region

Top-down fleld Rot. & spet. align. WTA

Selectlve ettention lield High acdvity region

C€ntral repres€ntadon High activity WTA field Central repr€sentatlon Hlgh aclivity WTA lisld

(a) (b)

Figure 5.33: Distortion invariance: Simulation I - Parts 2 and 3. (a) The second

recognised object, with a degree of match of 0.964 prior to presynaptic facilitation

and 0.988 after; and (b) the third recognised object, with a degree of match of 0.941

prior to shape attraction and 0.988 after.

5.7.2 Simulation II

Performing distortion invariant object recognition under complex cluttered environments is a

much more challenging problem than the one with a clear background as in Simulation I. This

can be attributed to the fact that background clutter can be mistakingly treated as part of a

distorted pattern. Inevitably, this increases the false alarm rate of the system, because a mean-

ingless pattern could be interpreted as a familia¡ object pattern.

Figure 5.34 shows the input scene for this simulation. It has basically the same distorted aircrafts

as before, except it now has a complex cluttered background. V/ith the experience of Simulation

I, we would expect Aircraft II to be recognised without much trouble, however it is not so easy

to predict whether the other two aircrafts would be recognised.

From the simulation, four recognised objects were reported by the system. The four sets of re-

sults are shown in Figures 5.35 and 5.36. Three out of the four sets have correctly identified its

bottom-up object, the remaining one confirms our earlier prediction that complex background

scenes can dramatically increase the false alarm rate of the system. Due to the vortex nature

of shape attraction, care must be exercised in choosing the vigilance parameters and other as-

sociated parameters. If the vigilance parameters are set too high, then we risk lowering the

recognition rate. On the other hand if too low, a high false alarm rate is likely to occur.
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Figure 5.34: Distortion invariance: Simulation II input scene.

Top-down field Rot. & spat. align. WTA Top-down fiêld Rot. & spat. allgn. WTA

S€lect¡ve attention field High actlvity reglon Selective attention field High activity region

Central reprêsentation Hlgh actlvity WïA field Central r€pres€ntet¡on High activ¡ty WTA field

(a) (b)

Figure 5.35: Distortion invariance: Simulation II - Parts I and 2. (a) The first

recognised object, with a degree of match of 0.957 prior to presynaptic facilitation

and 0.989 after; and (b) the second recognised object, with a degree of match of
0.931 prior to shape attraction and 0.993 after.
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ToÈdown fleld Fot. & spet. align. WTA

Selective att€ntlon field High activlty region

Top-down field Rot. & spat. ellgn. WTA

Selectlve attention fiêld High activity region

Central repr€sentation High actlvity WTA field Centrel representatlon High ectivlty WTA field

(a) (b)

Figure 5.36: Distortion invariance: Simulation II - Parts 3 and4. (a) false alarm; (b)

the third recognised object, with a degree of match of 0.950 prior to shape attraction

and 0.989 after.

The proposed system obtains a recognition rate of 907o and a false alarm rate of 27% when

simulated using 8 distorted input scenes with a total of 24 distorted familiar objects. The high

false alarm rate is indicative of the difficulty associated with the recognition of distorted patterns

in complex cluttered scenes. Some of these results are provided in Appendix A. It should be

pointed out that the rates are highly dependent on the values used for the primary and secondary

vigilance parameters. In the simulated cases, these were determined empirically to achieve

the best recognition rate. A fixed choice for the vigilance parameters would produce different

recognition and false alarm rates. The above flgures represent the optimal rates achieved by the

proposed system.

Note that the high activity regions shown in Figures 5.35 and 5.36 are not necessarily the first

four regions of interest, but the four that the system reported containing familiar objects.

5.8 Design of System Parameters

The proposed visual scene analysis system requires a considerable number of parameters to

perform object recognition effectively and efficiently. As with most engineering systems there

is not a single set of parameters that will work in all situations. For that reason, adjustments

are often required for complex scenes. Some of the major parameters that require frequent

adjustments are discussed in this section.

n
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There are many factors that may affect the choice of system parameters, some of which are

based on personal preference, and so can be arbitrary but within a reasonable range. Others are

mostly image and performance dependent, such as the input scene and object sizes, the nature of
the image background, illumination conditions and contrast levels, locations of target objects,

and false alarm rates, etc.

The best way to illustrate the design process is through an example. In this section we provide a

design that is used in our real-world imagery simulations in the next section, in which real-world

scenes captured by a digital camera are analysed by the proposed system.

Beginning with the size of the object fields, l/o x Äü, the enclosed object pattern should occupy

as much space as possible in order to minimise potential problem with objects near image

borders. Once we have assigned a convenient size, e,9., the minimum size that maintains a

reasonable resolution, we can train the system with objects of the same size. In the real-world

imagery case, we let I/o x l/q : 64 x 64. As in Section 5.2, learning and STM equations a¡e

based on ART2 neural networks [29], therefore parameters required in learning can be derived

accordingly.

With the lack of explicit size invariant mechanism, the target objects contained in the visual

scene must be similar in size to those learned (minor size variations are allowed). The input

scene is scaled so that its objects approximately match those in memory. Due to changes in

camera angle, height and position, visual scenes captured by the camera will have slightly dif-

ferent sizes after scaling, resulting in N, x Nj : 208 x 166 to 250 x 200 pixels, as given in

Section 5.9. Next the size of the high activity field must be chosen. Obviously, this field must

be large enough to include the entire target object and yet be kept as small as possible to reduce

processing time. It has been found that a high activity field size that is 1.5 times of the object

field's size is a good starting point, thus we let l/, x Iú¿ : 100 x 100 pixels. Since the initial

attentional capture is based purely on contrast (edge information), it is possible for objects situ-

ated near strong clutter to be partially included in the high activity field, which of course leads

to non-detection, thus no recognition is possible. To provide more tolerance we may set the high

activity field size to twice the object ûeld size at the expense of additional computational time,

Ways to improve the robustness of the automatic attention stage are proposed in Chapter 7.

Coarse sampling is generally acceptable with a large window of attention. It allows the preat-

tentive mode to process information rapidly, and therefore capture attention at a relatively short

time. But as pointed out above a large window of attention is very inefficient, so a balance

between preattentive sampling and focussed processing must be reached in order to optimise

the system performance. It has been empirically determined that a sampling skip, l/r, between

5 to 10 pixels is effective in achieving attentional capture at a relative fast speed. It should be

noted that a large sampling skip can result in the same problem as a small window of attention
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- the non-detection of targets due to partial inclusion. Thus, it is advisable to begin with a small

sampling skip first.

Another quantity that needs to be selected carefully for attentional capture is the Gaussian re-

ceptive field size, i.e., its standard deviation ø. This determines the origin of each region of

interest, therefore it is particularly important to get this right. Given 
^L 

x ÀIa : 100 x 100 and

¡úo x 
^t 

: 64 x 64, the ideal scenario would be to have detected a region of interest containing

a familiar object at the centre of the window of attention. For that to happen, we need to set

o such that the receptive field draws contribution mainly from the centre 64 x 64 pixel area

of the high activity region. An intuitive way to choose ø is to use graphical means to display

the receptive field as shown in Figure 5.37. By inspecting the Gaussian profile of the receptive

field, we can see that it covers most of the centre 64 x 64 area. However in extremely cluttered

visual scenes, re-adjustment of the receptive field size may be needed.

v
10c

xt0 æ m {o Ð 70 80 100

(a) (b)

Figure 5.37: Graphical parameter determination. Region of coverage by a receptive

field with a standard deviation o : 40. (a) Effective region in2D; (b) in 3D.

The graphical approach can be applied equally well to the design of the post-attention inhibitory

signal, since it also has a Gaussian profile. The size of the inhibitory signal should be smaller

than the receptive field so as not to accidentally suppress information from neighbouring regions

or closely located objects. For the real-world imagery simulations in Section 5.9, it has been

empirically determined that a value between 15-35 for q in (4.31) is effective.

The choice of the primary and secondary vigilance parameters is arbitrary in nature, and usually

depends on the nature of the input, or the outcomes of a preliminary simulation which provides

indications on the adjustment that is required. In general, increasing vigilance parameters low-
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ers the false alarm rate but it compromises the detection rate. Useful ranges are 0.96-1.00 and

092-0.96 for the primary and secondary vigilance, respectively.

In certain cases, it is desirable to increase the effect of top-down presynaptic facilitation. There

are two ways in which this may be achieved. First, we can simply increase the facilitatory signal

as shown in Figure 5.13. The other is by increasing the competition, G, between cells so that

cells without facilitation are suppressed more readily. The rest of the parameters used in the

PMCNL are based on SAART, which was covered in Chapter 3.

5.9 Real-WorldlmagerySimulations

In this section, three realJife scenes captured by a digital camera are simulated by the pro-

posed system. The input scenes were designed to highlight specific properties of the system. In

particular, they allow the system to exhibit translation and rotation invariances, automatic atten-

tional capture and shift, and recognition in cluttered environments. Although it is preferable to

simulate real distorted objects as well, distortions on rigid realJife objects cannot be obtained

easily, thus we have adopted the same approach as before by using a computer graphics tool to

artificially distort the scenes.

5.9.1 Learning

Five input objects were learned by the system using the ART2 learning algorithm. Subse-

quently, real-life complex cluttered scenes featuring these input objects were captured digitally.

A number of preprocessing steps must be performed before an input object can be learned. First,

each object was captured against a clean background. The object image was then resized and

cropped to an appropriate size, followed by grayscale conversion and edge detection. In certain

cases where illumination conditions are inconsistent, contrast enhancement was necessary in

order for the important features to become visible. Similar steps were applied to the scenes to

transform them to the appropriate edge map input format.

Figure 5.38 shows the input objects for the simulations. The input objects are toy figures

of "Snoopy" dressed in a variety of national costumes. For easy reference, the figures have

beenlabelledas "Snoopy China", "Snoopy Hongkong", "Snoopy Japan", "Snoopy Korea", and

"Snoopy Russia", respectively. These objects were chosen because they all belonged to the

same class of object having a very similar body shape and sharing many features. Hence, under

a complex cluttered environment, they pose a challenging problem to our visual scene analysis

system.
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Figure 5.38: Real-world imagery simulation input objects. (a) Snoopy China. (b)

Snoopy Hongkong. (c) Snoopy Japan. (d) Snoopy Korea. (e) Snoopy Russia.

The edge maps of the input objects are also shown in Figure 5.38. These edge maps were

learned by the ART2 algorithm and the results of the learning process are shown in Figures 5.39

and 5.40. As for the aircraft simulations, during the learning process, an uncommitted node

is selected, whose weight vector is adapted over time as shown in Figure 5.40. Figure 5.39

indicates the fluctuation of the degree of match for the duration of the learning process. The

vertical dotted lines are instances where a new input object is presented. V/hile the horizontal

line is the vigilance parameter level.
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Figure 5.39: Degree of match during learning of real-world input objects. Vertical

dotted lines are instances where a new input object is presented.
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Figure 5.40: Adaptation of UIM weight patterns. LTM weight vectors are strength-

ened during the learning phase.

5.9.2 Simulation I

The first real-world visual scene to be simulated, shown in Figure 5.41(a), features three learned

objects that are placed randomly on a cluttered background containing several everyday items:

a toy car, a toy basketball player figure, a book, a mobile phone and an eraser. Tlvo of the three

learned objects are erected in their upright positions, and the remaining object is placed upside

down. In order to recognise all the familiar objects in the input scene, our system must be

able to detect, locate and identify them correctly in spite of changes in position and orientation,

and influences from background clutter. The original scene was captured in an ordinary office

environment using an Olympus digital camera, model C- 1400L, as a 640 x 5 12 24-bit true colour

image, with items arranged as shown in Figure 5.41(a). Due to the lack of size invariance

mechanism in the system, the input scene was scaled to an appropriate size such that the objects

contained are approximately the same as those learned. Further processing was performed to

convert the image to the standard edge map input format as shown in Figure 5.41(b).

The simulation results are sffuctured in the same compact format as before with the IJIM pat-

terns, rotational templates and input field omitted. The recognised objects are shown in Fig-

ure 5.42 in order of their recognition from left to right. As before, the high activity WIA field

indicates the location of the window of attention in the input field. The rotational and spatial

alignment WIA field further pinpoints the exact location of a potential target within the region

of interest. Patterns from top-down and bottom-up are matched, and if required presynaptic
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(a) (b)

Figure 5.41: Real-world imagery: Simulation I input scene. (a) Intensity map. (b)

Edge map.

facilitation or shape attraction may be applied to enhance the degree of match between the two

Top-down fleld Rot. & spat. allgn. WTA Top-down field Rot. & spat align. WTA To¡down field Rot. & spat. align. WTA

Sel€ctive ettention fleld High activlty fi€ld Sêlective attention field Hlgh actlvlty f¡eld Selective attention field High activity field

Centfal representetion
High activity WTA field

Central reprêsentation
Hlgh acrivity wTA field

Central representation
High ect¡vlty WTA field

(a) (b) (c)

Figure 5.42: Real-world imagery: Simulation I - Parts I,2 and3.

In addition, STM patterns of the recognised objects are shown in Figure 5.43 to illustrate the

steps involved in transforming the bottom-up pattern to become a better match with its top-down

memory. This real-world imagery simulation has presented a problem previously not encoun-

tered with the synthetic imagery simulations. Although we have already scaled the input scene

so that the contained objects are similar in size to those learned, the 2D projections captured

are different to the learned ones. As real-life objects are 3D in nature, any slight change in the

camera angle or distance to an object can result in a slightly different 2D projection. It can

also affect the relative size of the scene objects. It should be pointed out that no scaling on the

€
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individual LTM patterns was performed, only the overall scale of the input scene was changed.

Hence, the system was found to be robust against slight changes in size, as well as changes in

2D projection. For example, Figure 5.43(b) shows the bottom-up Snoopy Russia was captured

at an angle deviated from its horizontal position, therefore Snoopy Russia in the input scene is

noticeably shorter than the one learned. It is also clear that the two 2D projections of the same

object are not exactly the same. Further evidence on the robustness of the system is given in

subsequent simulations where the input objects were captured with slight changes in both the

azimuth and elevation angles.

qPqPqP

Wo

Vo Vo

Xo Wo Xo Wo

(a) (b) (c)

Figure 5.43: Real-world imagery: Simulation I STM patterns.

Vo

Xo

Another problem encountered is that when a captured object is too close to the image border -

Snoopy China in Figure 5.a2@). Because the object pattern is contained within anaÍeathat lacks

a full set of neighbours, and convolution cannot proceed smoothly through the area. Common

image processing techniques employed to solve this problem include: (a) extending the image

size by repeating the border rows and columns, (b) wrapping the image such that the first column

comes immediately after the last, and (c) padding the image with zero rows and columns. As a

quick-fix, we have shiftecl the object pattern slightly right to compensate for the lack of a full set

of neighbours. A subsequent simulation employing method (c) above has allowed recognition

to be performed successfully without any changes to the LTM patterns.

Note that the STM patterns are blank at their corners, this is due to the lack of one-to-one

mapping under rotation transformation. We have padded those locations with zeros, but other

methods can also be used. One can extend the area to be rotated by including extra rows and
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columns from the input scene.

Distorted Real-World Scene 1

We present simulations for two distorted versions of the scene in Figure 5.41. The first is what

we call awaves distortion which simulates the effect of throwing a stone in a pond. The second

is called a rípple distortion which displays the image in ripples as to achieve the effect of a

disturbed water surface. These two distortions are shown in parts (a) and (b) of Figure 5.44.

The two distortions are similar in nature, with the ripple case appearing to have an added blur-

ring effect on the image. There are other distortion filters available but for the purpose of

illustration the two examples are sufficient. Certainly, there is a limit to how much distortion

the system can handle. A severely distorted image would challenge the human visual system.

(a) (b)

Figure 5.44: Distorted images of real-world imagery scene 1. (a) Waves distortion.

(b) Ripple distortion.

The results of the two distortion simulations are shown in Figures 5.45 and 5.46. The system

was able to correctly identify the bottom-up objects in each case through the use of band trans-

formation and shape attraction. The use of shape attraction has provided an added degree of

robustness to the system in terms of tolerance towards slight changes in size and2D projection.

Furthermore, the similarity in body shape between, say, Snoopy Russia and Snoopy China has

confirmed the system's ability to distinguish and identify similar objects, despite distortion and

background clutter.
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Figure 5.45: Waves distorted real-world imagery scene 1 simulation results.
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Figure 5.46: Ripple distorted real-world imagery scene 1 simulation results.
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5.9.3 Simulation II

Real-world imagery scene 2 is similar to scene l. The main difference is scene 2 contains a

greater amount of background clutter which is strategically placed to interfere with the target

object edges. From Figure 5,47 we can see that some of the edges from Snoopy Hongkong

blend into the edges of the toy basketball player in the background. Similarly, the mobile and

the pen appeu to be natural extensions of Snoopy Japan in the edge map.

Figure 5.47: Real-world imagery: Simulation [I input scene and its edge map.

Results from the simulation on real-world scene 2 are shown in Figure 5.48. The system ex-

hibited no difficulty in identifying the objects correctly, and the greater amount of background

clutter did not apped to have much negative effect on the system's performance.

Top-down fleld Rot. & spat. align. WTA Top-doì¡/n field Rot. & spat. allgn. WTA ToÞdowì field Rot. & spat. align. WTA
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n

n
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Central r€prssentetion

(a) (b) (c)

Figure 5.48: Real-world imagery: Simulationll - Parts l,2and3.
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Distorted Real-World Scene 2

As before, real-world scene 2 is distorted and simulated. The distorted image is shown in

Figure 5.49. Once again the system was able to conectly recognise all familiar objects in the

scene, despite distortion and background clutter, as shown in Figure 5.50.

Figure 5.49: Ripple distorted image of real-world imagery scene 2.

Top-down field Rot. & spat. align. WTA Top-down field Rot. & spet. align. WTA Top-down field Rot. & spat. allgn. WTA

Select¡ve attention field High actlvity region Selectlve atþntlon field High activlty region Seleclive attentlon lield Hlgh activlty region

Central representation
High activ¡ty WTA field

Central repres€ntatlon
High act¡vity WTA field

Central repr€sentation
High actlvlty WTA fleld

(a) O) (c)

Figure 5.50: Ripple distorted real-world imagery scene 2 simulation results.

5.9.4 Simulation III

The third real-world scene is a much more challenging scena¡io. It can be seen from Figure 5.51

that the input scene is low in contrast but high in clutter. The problem is further compounded

r
t
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by bad illumination conditions. A close examination of the input scene also shows the 2D

projections of the target objects are noticeably different from the learned 2D projections. For

example, the heads of Snoopy Japan and Snoopy Korea are facing away from their normal

directions, caused by variations in the camera's azimuth and elevation angles.

Figure 5.51: Real-world imagery: Simulation III input scene and its edge map.

Results for the simulation are shown in Figure 5.52. All familiar objects in the scene are recog-

nised, demonstrating the system's robustness in scene analysis. It also shows the system's

ability to handle extreme visual conditions such as bad illumination, strong background clutter,

and slight changes in size and2D projections.

Top-down field Bot. & spat. allgn. WTA Top-down field Rot. & spat. align. WTA Tofdown field Rot, & spat. align. WTA

Select¡v€ attendon fleld Hlgh activity region Selective attention ll€ld High actlv¡ty region Select¡ve attention field High activity region

High activity WTA fiêld
central representation

Hlgh aclivity WTA field
C€ntral repres€ntation

(a) (b) (c)

tr'igure 5.52: Real-world imagery: Simulation trI - Parts 1,2 and3.

High activity WTA field
Csntral representatlon

155



Chapter 5. Model Simulations and Analysis

Distorted Real-World Scene 3

The same distortion is applied to real-world scene 3, as shown in Figure 5.53. However, this

time the system has falsely recognised Snoopy Hongkong in the visual scene as Snoopy Japan

due to a combination of extreme background clutter and distortion, as shown in Figure 5.54.

Figure 5.53: Ripple distorted image of real-world imagery scene 3.

Top-down field Rot. & spat. align. WTA Top-down field Rot. & spat. align. WTA Top-down fleld Fot, & spat. allgn. WTA
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central representat¡on

High activity WTA field
Central representetlon

High act¡vlty WTA f¡eld
Central representetion

High ectlvlty WTA fleld

(a) (b) (c)

Figure 5.54: Ripple distorted real-world imagery scene 3 simulation results.

Real-lVorld Imagery Simulation Parameters

A summary of the major parameters used in the real-world imagery simulations is shown in Ta-

ble 5.5. The values shown in the table only serve to provide an indication on the useful range for
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each parameter. In many cases the choice of parameters depends very much on the input object

and scene sizes, as well as the nature of the input scene. For example, a highly cluttered scene

will require extra care in the selection of the vigilance parameters, and whether the competition

and facilitation provided in PMCNL is strong enough to filter out the undesirable elements from

the input. For input scenes with closely placed objects, the post-attention inhibitory signal must

not be too strong otherwise it can suppress important information from neighbouring objects.

As discussed in Section 5.8 the size of the Gaussian receptive is particularly important given

that a window of attention that does not cover the entire target object can lead to recognition

failures. However an overly large window of attention is inefficient and time consuming.

Thble 5.5: Real-world imagery simulation parameters

Input scene size A[ x l/¡
High activity region size /Vo x À16

Input object size l/o x I/n
Number of learned objects

Sampling skip

Primary vigilance parameter p

Secondary vigilance parameter ç

STM equation parameters

PMCNL parameters

Simulation time step Aú

Gaussian receptive f,eld:

208 x 166 to 250 x 200 pixels

100 x 100 pixels

64 x 64pixels

5

5 - 10 pixels

0.96 - 1.00

092 - 0.96

a : l;b : 0.2; c : I;d : 0.9; e : 10-6;

0 : I0-3
A : L; A : 0.1; B : L; B : 0.1; C : 0; D :
0.5;E:1.0; G:130; G:100; Ku:0.1;
n : N¿Nj - L;Y : 0; au: 0.05; þu : þa :
0.01; 7:0.5;f :0; Ps:0.05;á:0.00;
0.1

standard deviation 20 < o 1 40

constant Wo: L

standard deviation 15 < q < 35

constant Go:2
Inhibitory Gaussian receptive fi eld:

V/here a range of values are given indicates the choice for that parameter is case dependent but

within the given range. Parameters not given above are the same as before.

Refer to Chapter 4 for relevant equations and symbols.
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5.L0 Limitations of the Model

So far, we have shown that the proposed system is capable of performing well, but as with

any engineering system there are imperfections and weaknesses. Some of the more obvious

shortcomings are caused by visual functions that have yet to be implemented, such as 3D object

recognition and handling large variations in size. However, the system has been shown to be

tolerant to minor changes in 2D projections and size, as illustrated by the real-world imagery

simulations in Section 5.9.

One main limitation discovered during the simulations is the need for adjustment and fine tuning

of system parameters for new images. This is especially true for complex cluttered scenes.

While simple scenes of similar nature usually only require adjustment once, it has been found

that for complex scenes the success of the system is highly sensitive to the vigilance parameters.

For example, a familiar object surrounded by background clutter requires top-down presynaptic

facilitation to strengthen object elements while inhibiting non-object elements. But applying

presynaptic facilitation indiscriminately can have adverse effects on the false alarm rate, as

it attempts to extract a similar pattern out of the cluttered background. Similarly, if shape

attraction is not applied carefully, it could attract unrelated elements to form a familiar pattern,

thus it is important that prior to their application the bottom-up and top-down patterns must be

of an acceptable degree of match. This problem of finding suitable system parameters has also

plagued other neural architectures. The performance of the neocognitron [64] is shown to be

strongly dependent on the choice of parameters [9, 111].

Another process that often requires adjustment is attentional capture. For low contrast objects

or objects surrounded by sftong background clutter, it is possible that they may never capture

attention, resulting in their non-detection. In practice, the problem is more likely to be that

the target object is near the border or partially captured by the window of attention. In either

case, the object cannot be detected due to the lack of a full set of neighbours, the region of

interest is then suppressed by the post-attention inhibitory signal, therefore the object becomes

undetected. This problem is usually solved by changing the receptive field and post-attention

signal sizes. The size of the high activity field may also be changed to accommodate for these

objects.

Instead of changing the system parameters, the attentional capture problem may be solved by

applying a top-down expectation. Cunently, the preattentive mode captures attention based

on bottom-up information only by selecting the region with the highest contrast. However,

the preattentive mode can also use top-down information for attentional capture. Consider the

toy f,gures used in the real-world imagery simulations; it depends whether we are consciously

looking for those toys or simply studying a visual scene containing those toys. If it is the latter
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case, then we would simply recognise all objects within the scene as modelled in our system.

On the other hand, if we were trying to look for the toys, then we would have some knowledge

from top-down on what the toys would look like. So instead of using a Gaussian receptive field

to capture the most salient region, we would use an object body shape receptive field to capture

regions containing object patterns similar to the toys' general shape. Preliminary simulation

results have proved that the use of body shape receptive field is feasible and effective, and are

shown in Appendix A.

In the following, we provide a list of situations where the proposed visual scene analysis system

might fail.

o Extremely cluttered scenes, e.9., newspaper as background.

o Large part of an object is occluded.

o Poor edge maps from low contrast scenes or bad lighting conditions.

o Object size differs significantly from memory.

¡ Tlvo dimensional projections that differ significantly from their counterparts in memory.

o Severely distorted scenes.

Solutions to some of these problems will be proposed in Chapter 7.

5.LL Conclusions

In this chapter, the proposed visual scene analysis system was applied to a number of digital

images, consisting of both synthetic and real-world scenes, for visual analysis. The simulations

showed that the proposed system is capable of detecting, locating and recognising all familiar

objects within a visual scene, regardless of their positions, orientations and background com-

plexity in an automatic fashion. The system is also robust against minor changes in an object's

shape caused by distortion or different viewing angles, i.e., different 2D projections of the ob-

ject.

\ù/e have chosen to use both synthetic and real-world images because the former are useful

during model development and testing. V/hile the latter provide us a more challenging prob-

lem with many practical considerations. Camera angle and distance, lighting conditions, non-

uniform object size and differences in shape between stored models and input objects are just

some of the issues encountered only in real-world imagery simulations.
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The real-world imagery simulations undertaken involved capturing a number of realJife scenes

featuring several input objects by using a digital camera. The captured images were pre-

processed into suitable edge maps. Appropriate system parameters were chosen for the input

scenes and objects. The actual system began by learning the input objects using the ART2learn-

ing algorithm. The input scenes were simulated by the system after some parameter adjustment

and fine tuning.

By and large, with the aid of adjustment, the proposed system was successful in locating and

recognising all familiar objects in the input scenes despite difficult visual conditions. Several

minor problems encountered during simulations are highlighted and possible solutions pro-

posed, and in some cases verified via further simulations. In particular, the problems associated

with changes in camera angles are discussed. The results demonstrated that the system is robust

against minor arbitrary changes in an object's shape.

An example of system parameter design is provided. It describes how the system can be adjusted

to produce better performance. Limitations of the system are discussed and possible solutions

are offered in some cases.

In conclusion, the proposed recognition has been demonstrated to be effective in performing

translation, rotation and distortion invariant object recognition with automatic attentional cap-

ture and shift, in the presence of background clutter and occlusion.
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Chapter 6

Recognition of Moving Objects

6.1 Introduction and Overview

Motion is an important part of seeing. To see is to connect inferences about motion, colour

and patterns into a unified explanation of the visual scene. Elementary motion is involved in an

early stage of object recognition 123,1951, since the same pattern must be located over a spatial

and temporal range, in order to perceive motion. Movements of an object have been identified

as one of the elementary features used in attentional capture [19, 98]. Furthermore, Lu and

Sperling [117] have shown that voluntary attention can determine the direction of perceived

visual motion.

Besides luminance contrast, motion would be an important addition for the proposed visual

scene analysis system for bottom-up attentional capture. Such an addition would allow the sys-

tem to detect, locate and recognise any familiar moving objects, complementing and enhancing

the existing capabilities for static object recognition. It can also demonstrate the model's ex-

tendibility as a framework for visual scene analysis.

This chapter presents a neural architecture for the detection of elementary motion direction.

The approach is based on the human motion perception that motion is a visual inference called

"apparent motion". Modelling is primarily inspired by interactions along the motion pathway,

using similar neural equations as for the static system. The chapter describes how this motion

detection architecture fit into the overall framework for recognising moving objects.

By modelling the motion detection architecture with the same building blocks, it acquires the

ability to perform presynaptic facilitation, thus it possesses attentional mechanisms. A useful

application of the attentional mechanisms is the modelling of directional bias, such that the

system can favour movements in a particular direction via a top-down cognitive signal. Selective

161



Chapter 6. Recognition of Moving Objecß

attention can even determine whether motion is perceived at all [117]. An attentional modulated

motion detection module may allow the system to selectively follow and interpret one moving

object, whilst avoiding being distracted and confused by other moving objects or background.

This chapter is organised in the following manner. A brief introduction of the motion pathway

and apparent motion is given in Section 6.2. The proposed neural architecture is presented

in Section 6.3. Simulations and analyses of the motion module are provided in Section 6.4,

and finally, we describe how the motion module can be incorporated into the framework in

Section 6.5.

6.2 The Motion Pathway

Strong physiological evidence exists to indicate that motion is processed by a discrete visual

portion of the visual pathway. The discovery of direction-sensitive neurons, which are relatively

insensitive for other features such as colour and orientation, in cortical areas is an important

step in understanding motion perception [53, 208]. Direction-selective neurons are only found

in certain layers of the cortex and are quite rare in other areas. Besides area Vl (striate cortex),

a principle projection site of the LGN (lateral geniculate nucleus), they are also located in area

MT (middle temporal). The direction-selective neurons in area Vl appear to send their output

mainly to area MT, which leads to the suggestion that the path from area V1 to a¡ea MT plays

an important role in motion perception. Based on the direction-selective receptive field property

in these areas, this particular visual stream is called the motion pathway which is summarized

in Figure 6.1.

Area V2ï

"7
I

Area MT

Area Vl

LGN

Retina
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As we move up the motion pathway, the receptive field properties of the neurons within the

motion pathway respond to increasingly sophisticated stimulus properties, showing the hierar-

chical nature of information processing in the visual system. For example, Movshon et al. ll32l
discovered direction-sensitive neurons that are also pattern-sensitive.

The motion detection module is inspired by the receptive field properties in the areas Vl and

MT, as indicated by the dotted box in Figure 6.1. Although the vast majority of neurons in area

MT are direction-selective, there are neurons with other receptive field properties.

6.2.L Apparent Motion

Motion perceived by our eyes is only an inference of the retinal image by the visual system, not a

description of the physical world. A demonstration of this inference is apparent motion, which

is a phenomenon we see in our everyday life. You may have noticed apparent motion when

sitting in a stationary bus that is side by side with another bus. If the other bus moves forward

and yours remains, occasionally you get the sensation that your bus is moving backwards. This

sensation is apparent motion.

Understanding apparent motion can help explain motion perception, because our visual system

responds as well to apparently moving stimuli as to real moving stimuli. Apparent motion can

be thought as a form of visual illusion, and by exploiting the imperfections of our visual system

we can be tricked into seeing something that is not real. Motion pictures are a common appli-

cation of apparent motion, in which still frames are rapidly altered in time, thereby inducing

motion perception, even though there is no actual movement of stimuli. So the motion module

will be simulated using apparent motion.

Because motion is an inference process, humans are good judges of relative speeds but tend

to perform poorly in judging absolute speeds. Also, due to the physiological structure of the

visual system, perceived speed is affected by stimulus contrast. The effect of contrast on speed

perception will be discussed further in a later section.

6.3 Neural Architecture for Motion-Direction Computation

Three areas have been identified from the motion pathway that are required for modelling the

motion module. The first is image formation, which concerns the encoding of the retinal im-

age. The second is related to how the encoded information is represented by the neural re-

sponses within the early visual pathways. Finally, an interpretation of the neural representation
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is achieved. In this case, the interpretation is usually the detection of motion and its direction.

Several broad principles regarding the representation of input stimulus by the neural response

within the peripheral and early cortical visual pathways have emerged from vision research.

Two of which are fundamental to our approach to the implementation of the neural motion

detector:

Principle 1. Anatomical studies show that neurons in the visual pathway are segregated into

different visual streams, with each responsible for a specialized visual function. For ex-

ample, areaY4 is believed to be responsible for colour perception 12071and area MT for

movement [53]. The functional role of individual visual streams is identified by infening

from the anatomical properties along with the way the neurons in these separate streams

respond to light stimulation.

Principle 2. Electrophysiological experiments suggest that the most important information rep-

resented by the visual pathways is the image contrast, not the absolute stimulus level.

Neurons in the early stages of the visual system are most sensitive to image contrast and

respond best to highly contrasted input stimuli. The perceived speed of an object is con-

trast dependent. High-contrast targets appear to move faster than low-contrast targets

when both have the same physical speed ll79l.

Principle I allows us to treat the motion pathway as an independent module of the visual system

model. The modular approach is useful for modelling, since individual visual processes can be

modelled andanalyzed independently before integration. This is the approach we have adopted

to incorporate the motion module into the framework. The second principle indicates that the

proposed motion detection model should utilize contrast information to generate motion signals,

and be able to explain why perceived speed is contrast dependent.

The three identified areas ¿ìre translated into the following processing stages: light adaptation,

contrast-gain control, motion-direction computation, and top-down selective attention. To im-

plement these processes, we propose a five-layer neural architecture, comprising of the input

layer, the photo-sensítive layer, the transient layer, the direction-selective layer, and the selec-

tive attention layer, as depicted in Figure 6.2.

The layers are modelled using the same or variant of the differential equations for the chemi-

cal synapse and neurotransmitter models, reviewed in Section 3.4, and used in modelling the

framework in Section 4.3.

Although the visual stream shown in Figure 6.1 is termed the motion pathway, it consists of
neurons of unknown function. This suggests that the pathway may have functions beyond
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motion perception, and that other portions of the visual pathways may also be important for

motion. So the motion module described herein is merely a model inspired by the motion

pathway, and is far from a model of the motion pathway. FurtheÍnore, the model covers only the

motion pathway features that are responsible and essential for motion-direction computation.
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tr'igure 6.2: Direction-selective neural architecture.

6.3.1 The Input Layer

This layer is for the acquisition of external visual stimuli in2D space. Equivalent to the forma-

tion of the retinal image. The input is represented by I*n denoting the luminance of the input

at position mn. We can view this as an image formation layer.

+
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6.3.2 The Photo-Sensitive Layer

This is a preprocessing layer, consisting of models of the photoreceptors, for space-averaging

and contrast enhancement of the input image. In other words, this layer performs the initial

encoding of light to neuronal responses. This layer is modelled by a shunting on-cenfteloff-

surround competitive neural network 127 ,731. As a preprocessing stage, this layer is not always

required, except when the input image is very large or low in contrast. The ouþuts of this layer

are denoted as J¿¡.

6.3.3 The Thansient Layer

The early visual pathways in primate retina consist of sustained ganglion cells and transient

ganglion cells [55], which are believed to be responsible for processing information for form

perception and motion. Sustained cells are responsive to local contrast of image, while transient

cells give transient responses to light onset or offset, thus are sensitive to movement or changes

in contrast pattern. So it is appropriate for us to model the early stage of the neural motion

detector with a layer of transient cells.

Two types of transient cells are needed, transient on-cells and offcells, for input increments

and decrements, respectively. These two cell types are based on 176, 1451 and have the same

structure which is shown in Figure 6.3.

f ( x )

Postsynaptic
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Chemical synapse
(u,y)

F+ F-
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J
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A transient cell is characterised by its two synaptic connections: the excitatory channel and the

inhibitory channel. Both of these channels respond to the input luminance level "I, except that

the inhibitory channel acts to prevent the cell from firing while the excitatory channel does the

exact opposite. Hence, the cell fires whenever the input from the excitatory channel exceeds the

inhibitory one. The transient pair are modelled by the basic synaptic equations as follows:

o Postsynaptic cellular activity

dn

dt: -Ani@ -u)Gl'+ -'-f+ -(c +r)Glu- -'*l* (6'1)

where .4 is the passive decay rate, B and, C are the saturation limits for the upper and

lower bounds respectively, and both G and G are amplification factors. This equation

represents shunted competition of a layer of neurons with the on-centre off-surround

anatomy whose cellular activity is restricted to the range (-C,B). lal* : max(gr,0)

is a threshold function. The middle term [u+ - u-]+ provides excitation to the transient

cell, while the last term [t,- - ,*]* inhibits it.

o Excitatory postsynaptic potential

d,'ù'

T : - D+ u+ + Jla - vl* (pl + E+ f (n)) (6.2)

¡ Inhibitory postsynaptic potential

oor, : -D-u- + Jla -Yl+þ, + E- f (r)) (6.3)
dt

where Dt, Er, and pl are constants, .I is the input, Y is the thresholdfor transmitter

release, and /(r) : max(r - 0,0) is the thresholding function. The excitatory/inhibitory

postsynaptic potential acting on a cell is due to the bound transmitter on the postsynaptic

cell.

¡ Stored transmitter

du

ã : *o(, - u) - (P" + K"J f (r))(" - a) 6.4)

where ao arrd þo are tonic adaptation constants, z is the transmitter production rate, and

Ku is a constant. This equation says that the transmitter storage rate in the excitatory

synapse is depleted by the correlated firing of the input signal J and the postsynaptic

feedback signal /(ø).

o Mobilized transmitter

(6.5)# : @, + F)(u - a) - J(ps + Krf (r)la - Yl* - ta
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where f. is the facilitatory signal, po and Ko are constants, and 1 is the decay constant.

The equation says that the transmitter mobilization rate is increased by the facilitatory

signal ,t' and that the transmitter is released by the input signal -I and by the correlated

flring of J and the postsynaptic feedback signal /(ø).

How does the cell work given that both synaptie channels are modelled by similar equations?

The answer lies in the rates at which the two channels react. If one channel reacts faster than

the other, then it will always reach steady state first upon a change in input. This creates a

difference between the two channels during the transient period. Our model exploits this period

to provide activation to the cell. For a transient on-cell the excitatory channel must be faster

than the inhibitory one, so that whenever there is a rise in the luminance level the excitatory

channel will react first and the inhibitory one will try to catch up, the difference between these

two triggers the on-cell as in Equation (6.1). When the two finally reach steady state they

negate each other's input to the cell, thus the on-cell is shut off. The off-cell works on the same

principle, but the inhibitory channel is faster instead. A drop in the input luminance level will
cause both channels to decay, but with a faster decaying rate the inhibitory channel will reach

the steady state first, and the off-cell remains excited until the two channels settle at their steady

state.

These cells can be regarded as change detectors, they respond whenever changes occur to the

input luminance. The transient on- and off-cell outputs converge to a maximal activation neuron

which outputs the larger one of the two signals, denoted as T(i,/). In Figure 6.2 the off-cells

are represented as dark circles with bright arrows and the on-cells as bright circles with dark

alTows.

To illustrate how the excitatory and inhibitory synaptic channels interact with each other to give

rise to transient on and off signals, two computer simulation results are included in Figure 6.4
^-l Fi 

----- 
Z < 'É- ¿^- --^-L i- ¿L- ----^^L:--- C-----^ :^ .L^ ^^.--^1 .-^^^:--L .L^ 

-:Salru rrBur9 u.J, rlle rup Brapu lrr ul9 rgJpgçrrv9 uB[rI9¡r ls rue açrual uauslçrrr lg¡ilrurrrg, ulË ulru-

dle graph has plots of the excitatory postsynaptic potential u*, in solid line, and the inhibitory

postsynaptic potential u-, in dashed line. The bottom graph is the input which is the same for

both on- and off-cells. Figures 6.4 and 6.5 show clearly that transient cells are driven by the

difference between the two opposing potentials which negate the effect of each other when in

steady state.

6.3.4 The Direction-Selective Layer

The motion pathway is basically inferred from areas with direction-selective neurons. From

electrophysiological experiments on the detection of such neurons and the signals leading up to
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them, we can speculate on how the transformation takes place and propose hypothetical models

which utilize the same input signals and generate direction-selective outputs. The outcome of
this approach is a computational model. However, a computational model that is inspired by

biological findings can help explain and predict physiological phenomena.

The direction-selective layer takes transient signals as inputs and outputs directionally sensitive

neural responses. Each direction-selective neuron has apreferred direction ñ ltlOl of motion,

to which the cell responds best. Movements to the motion module is simply the shifting of a

contrast pattern from one spatial location to another in time. Based on these ideas we derive

a structure, shown in Figure 6.6, for one-dimensional motion detection. As an example, the

depicted structure's preferred direction is to the right.

.L.L.l_,'L
1_, 1_,

xll_tt

Input Input

(a) (b)

tr'igure 6.6: Simplified lD direction-selective layer.

The main feature in Figure 6.6 is the interconnections between synaptic pathways, whose role is

to facilitate the synaptic pathway to the right of itself. This has the effect of allowing information

to flow from one spatial location to the next. Also note that the synaptic input in each pathway is

a transient signal, which means it can only persist for a certain period of time. If a change in the

input, as in Figure 6.6, takes place before the transient signal is completely decayed away, then

the pathway with the change is facilitated by its neighbour. More importantly the facilitation as

shown is from left to right in agreement with the preferred direction, resulting in the activation

of the direction-selective cell, as shown in Figure 6.6(b). The excitation is generated by transient

signals across two spatial locations, which can be regarded as a temporal contast pattern and

the resultant transformation as a spatio-temporal receptive field. To cover movements beyond

the next spatial location in the preferred direction, each pathway can either facilitate all or some

of the pathways to its right, depending on the desired effective range. This forms the basis of
the direction-selective layer.

The structure is only capable of detecting movements to the right. So for 1D motion detection,
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another similar structure with synaptic pathways interconnected from right to left is required

for detecting movements to the left.

Several design issues are addressed below prior to the extension of the layer to 2D:

¡ The model is such that without facilitation the cellular activities will be very minimal, as

in the case of Figure 6.6(a), where a single change occurs in the input stimulus.

o A sudden change, such as the presentation or removal of a contrast pattern spanning

several spatial locations, will cause all corresponding direction-selective neurons to fire.

This is of no concern as the cellular activity in each will be of the same magnitude, and

under the mutual inhibition and competition no overall movement will be detected.

o At the facilitatory node of each pathway, the synaptic input is facilitated by neighbouring

transient signals. This allows movements in the stimulus pattern to be detected. If the

synaptic pathway has no input, then the facilitatory signals simply increase the rate of

accumulation of neurotransmitters at the synapse, so the pathway is more responsive to a

future input.

o There exists two types of direction-selective cell. The first, nd.-, responds locally to

movements in its preferred direction as in Figure 6.6. The pattern formed by local

direction-selective cells is called the directionalfield. The second, X6, pÍovides a global

measure of the overall movement in the preferred direction. X5 is obtained by summing

up individual local direction-selective cell activities, shown as a large direction-selective

cell in Figure 6.2.

Figure 6.7 shows a 2x2 example for a 2D direction-selective layer. Each 2x2 field represents

an input stimulus, consisting of four pixels. Next to each field is a cell which represents a global

direction-selective neuron in the direction indicated by the ¿urow encircled. The arrows in the

fields represent the facilitatory connections required, thus the synaptic pathways connections

that are required to form the directional field. The number of synaptic pathways and facilita-

tory connections required by each direction-selective neuron varies. It is impractical to model

each direction-selective cell with a different structure, because changing the direction requires

rewiring the neural circuitry. In the following, we propose an architecture for computing move-

ment directions by wiring all synaptic pathways together.

A more general model that is suitable for any input stimulus size and motion direction is needed

if this were to become a useful engineering model. Inspired by the fact that complex webs

of interconnections [193] are very common in visual pathways, all the synaptic pathways are

connected together as in Figure 6.2. Given that all pathways can communicate with each other,
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f igure 6,7 z 2D direction-selective layer design.

we need to pick out the contributions in the preferred direction while ignoring the rest of the

signals. Figure 6.8 is another representation of the interconnecting nature of the layer, which

should give us some idea how this can be done. It shows that the preferred direction is to

the right, and according to Figure 6.7 only two of the twelve connections (shown as arrow

heads) are in agreement with it. The two connections can be selected by performing simple

dot product operations between the prefened direction vector and the vectors formed by the

interconnections, denoted as d and p-, respectively.

#t ìt
Figure 6.8: Combined design approach.

Architecturally, the resultant design of the direction-selective layer consists of four sub-layers

as shown in Figure 6.2. T:he first is an interconnected synaptic layer, (onj,u¿j,gr3), for com-

municating spatial and temporal information between synaptic pathways. Next is a directional

field layer, r 5.., formed by a group of direction-selective cells. Followed by alateral feedback

inhibition layer, a¿¡, for providing local competition. Lastly, a global direction-selective layer,

+

+

t

I +
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X6, is required for determining the overall direction of movement. Note the number of local

direction-selective cells depends on the input stimulus size, and the number of global direction-

selective cells depends on the number of directions required. For example, for computing 2D

motion with a 45o resolution, it will require eight global direction-selective cells, thus eight

preferred directions,

Mathematically, the layer is completely described by the dynamic equations in (6.6)-(6.10).

, õn, it the postsynaptic cellular activity which is a measure of the neuronal activity for the

preferred direction ñ atlocation (i, j). u¿¡,Uq and,u¿¡ àra the postsynaptic potential, the mo-

bilized transmitter and the stored transmitter for location (i,, j) lor modelling the behaviour of

a chemical synapse t1131. The main feature of this layer is the cooperative and competitive

interactions of the network. IVithin each directional field, the individual cells * Ðn, *" engaged

in an intra-competition provided by the lateral feedback inhibition in (6.8) to contrast enhance

the movement locations. At the same time these competing cells cooperate to form an over-

all activity, .t¡ (represented by the large cell in Figure 6.2), which in turn forms the directional

excitatory feedback signal D By in (6.11). This feedback is then used against an inhibitory feed-

back D¡¡¡ in an inter-competition between opposing directional fields in (6.7). DrN is formed

by the opposing directional field ífor inhibiting r5 .. T\efacilitatory signal F¿¡ isdetermined

by summing up transient signals facilitating location (i, j) from location (k, l) and multiplied

by a dot product between the normalised vector f and the preferred direction d. So that only

transient movements in agreement with the preferred direction of the directional field can pro-

vide excitations to the directional cells as in Equation 6.12. Note all parameters have the same

meanings as before.

+: -hñti+ @ - 16 )Gu¡¡ - (c +16 )(Ga¿¡+l) (6.6)

¿uq

dt - -puii -lT¿¡A¿i(po + Ef (n5 ) - Dr* + Døx)

#: -ÃDii*;n¡ t r@n*,)

(6.7)

(6.8)

(6.e)

(k,t)+(i,j)

¿uû

dt
: ao(z¿j - uo¡) - (P" + K"T¿jl(nnu))(u¿¡ - u¿¡)

da¿¡ : (P' * F¿¡)(u¿¡ - a¿ì - T¿¡(p, + Krf (r6n,)a¿) - 'YU¿¡ (6.10)
dt
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Døx, D
1

TN: 
¡,T¿ArJ

N¿,Nj

\ Í(*o)n,t
ørJ

(6.11)

(6.r2)F¿j:ñ'ø Ðr"
(k,t)+(¿,j)

Computationally, a2D dtrection-selective layer of size lü x 1/¡ can be summa¡ized as follows:

1. ateachsynapticpathway (i,, j),i - 1...l/,and j: I...Nj,testif thefacilitatorysignal

frompathway(k,l)k:1...¡/iandl:1...tr¡isofdifferenttransientsignaltypeto
that of (a, j). As no facilitation between pathways with the same type of transient signal

is allowed;

2. calculate the normalised spatial vector p-from location (k, i) to location (i, j) and the dot

product ñ . p,thus the facilitatory signal, Ft¡, as given in (6.12);

3. compute Dsy arLd D¡N)

4. iterate uij, uij, u¿¡ ãndUqi and

5. iterate 16 in (6.6). The subscript.ö indicates this cell is directionally selective in the

direction of d. So for a system requiring detection of motion in r¿ directions, there will
be r¿ sets of the direction-selective layer.

6.3.5 The Selective Attention Layer

Selective attention is incorporated at the facilitatory terminals located alongside the synapses.

It allows attentional modulation - a gain control mechanism which governs the flow of charge

particles from the synapses to their cells modelled in (6.10), thereby adjusting the postsynaptic

potential in (6.7), available to the cells. The facilitatory signal 4¡, shown in (6.13), is a control

signal which carries out decisions from top-down. This particular implementation of top-down

selective attention allows the system to favour movements in a chosen direction, while ignoring

or inhibiting the others, i.e., a directional bias. The bias, b-, is modelled as a dot product with

the preferred direction d:
F -ö.i Ðr*ñ.t. (6.13)' t'J - 

(k,¿)+(i,j)

Neuropsychological studies [152, 155] support the existence of the directional bias and its effect

in determining directional cell responses.
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6.4 Simulations and Analysis

There are three parts in the analysis of the motion module. The first seeks to verify the model's

ability to detect and compute motion direction. Next, the effects of stimulus contrast and tem-

poral frequency on motion signals are investigated. Lastly, we illustrate how to use top-down

attentional modulation to achieve directional bias.

6.4,L Motion-Direction Detection

To demonstrate the effectiveness of the proposed model, two computer simulations of apparent

motion based on greyscale image sequences are described. The images in each simulation are

fed to the neural model at arate of twenty-five frames per second. Tho sets of image sequence

have been chosen to illustrate different aspects of the model's properties. The first set is a

moving tennis ball sequence, which is good for visualizing the process. The other set is a

sequence of simple shapes at pixel level, such as a bar moving to the right, up or diagonally.

This allows us to examine individual cell locations, and is useful for analysis as this shows how

activities build up over successive frames.

For computational convenience, we have excluded the photo-sensitive layer which has the func-

tions of image compression and contrast enhancement. This is a relatively unimportant layer in

terms of motion detection. For large or low confrasted images, this layer must be incorporated

for the model to be efficient. The exclusion has the effect of making the image pixel at location

(i,, j) as the transient layer input J(i,, j).

The results of each simulation are organised and presented in a number of grid-like representa-

tions, as shown in Figure 6.9, for easy interpretation. Each grid consists of nine boxes with the

centre box being the actual source input of the model, and the remaining eight representing the

activity in their respectively direction-selective cell, as indicated by the affows. The plots shown

can be considered as snapshots of cell activities after lf25 seconds þeriod between frames) of

iteration of each source input.

Simulation I

In this simulation we present six greyscale images of size 32 x 30 to the neural model, and

the results are summarized in Figures 6.10-6.12. An initial presentation of a contrast pattern

would cause all direction-selective cells to fire, but due to their strength being equal, no cell

would emerge as winner under competition, which is the case in Figure 6.10. Movement of
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Figure 6.9: Motion direction representation.

the tennis ball in successive frames causes the activities in those direction-selective cells that

have preferred directions close to its movement direction to build up. All plots have been

scaled uniformly to display better contrast, this however does not affect the model's behaviour

in anyway. The relative strength of the f,elds is an indication which directional cell is winning.

It is difficult to tell in Figure 6.12, whether the "R" cell or the "DR" cell is stronger, but this can

readily be determined by a winner-take-all competition. Presenting results in this "futzzy" way

allows us to observe the activity in each directional field.
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Figure 6.10: Ball frames I and2.In the above U stands for up or upper; L for left;

R for right; D for down.
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Figure 6.11: Ball frames 3 and4.
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Figure 6.122 Ball frames 5 and 6
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Simulation II

This simulation allows us a close examination of individual pixels of the input frames. We have

sixteen input frames of size 4 x 4 pixels, starting from Figure 6.13 to Figure 6.16. The first

few frames contain a vertical bar moving from left to right, and the corresponding results show

that the "R" cell is the strongest (by inspection). Source 6 in Figure 6.14 illustrates that model

displays motion persistence property when the source is a blank image, the "R" cell is still the

most active. From frame 7 to frame 9, a diagonal line of pixels is made to appear moving either

up or to the right. The model responds by showing both "U" and "R" as possible winners. The

rest of the results display similar characteristics. It is important to note that the results could

be drastically different by changing the parameters in the dynamic equations as they govern the

behaviour of the model. For example if the system is slow to react to changes, or motion signals

are allowed to persist due to slow decaying rates, then inputing images with an object moving

to the right and then down, will result in the activation of the "DR" cell. If this kind of residual

effect is dominant, then the motion signals are either incorrect or delayed.

Figure 6.13: Pixel frames I,2,3 and 4
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Figure 6.14: Pixel frames 5,6,7 and 8.
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Figure 6.15: Pixel frames 9, 10, Il and 12.

tr'igure 6.16: Pixel sequence 13,14,15 and 16.

6.4.2 Effects of Stimulus Contrast and Temporal Frequency

Contrast plays an important role in the coding of speed and direction in the visual system. It

is thus a major concern to both physiologists for the understanding of the visual system, and

engineers requiring to design models to account for its effects. Stimulus properties such as

spatial frequency, temporal frequency, contrast and duration have a strong influence on the cod-

ing of motion signals in the human visual system 124,26, I44, 173, 179, 184, 185, 2051. In

particular, Stone and Thompson [179] have shown that human speed perception is contrast de-

pendent. However motion sensitive cells in the primate's visual cortex do not detect speeds,

but rather are directionally selective [I24]. The contrast dependence of the motion sensitive

neuronal response poses a serious problem to any speed-coding scheme in that any motion per-

ception model based on the direction tuning property of the motion pathway will have neuronal

responses partly arising from the contrast and partly from the speed of the stimulus.

This section intends to analyse the effects of stimulus properties such as contrast and temporal

frequency on the motion module. Since the model is inspired by its biological counterpart, we

need to examine the effects these stimulus properties have on the detected speed and direction

of motion.
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Effect of Input Stimulus Contrast

This simulation shows the effect of contrast on the model behavour, and demonstrates the role

of facilitatory signals in enhancing the responsiveness of the model.

We have a number of gray-scale image sequences as inputs, each frame is of size 30x 30 pixels,

as shown in the rows of Figure 6.17. Each sequence depicts a tennis ball moving from left to

right in the form of apparent motion at the same speed, but the contrast level of the sequences

decreases from top to bottom. So in theory, if contrast played no part in the model's motion

signal, then the responses stimulated by the inputs of Figure 6.17 would be the same. Basically

this is an apparent motion simulation of the same sequence performed over a number of times

with the contrast level varied each time.

lnput 1

lnput 2

lnput 3

lnput 4

Figure 6.17: Inputs for contrast simulation.

The resultant global direction-selective cellular activities are plotted in Figure 6.18 with plots

corresponding to rows of the inputs in Figure 6.17.Itshows that a cell is excited whenever there

is a change in the input, i.e., a movement occurred. Movements are characterised by the dips

in the plots, which coincides with the change over of frames. The decaying behaviour of the

curves is also indicative of the transient nature of a temporal system, such that if the frame rate

is too slow the model will fail to respond. This is analogous to exceeding the ISI (interstimulus

interval) limit, the model is unable to associate the two events as being motion. By comparing

the cellular activities in Figure 6.18, we can see that the cellular activity drops as the contrast

reduces. However plots for inputs 1 and 2 show, as expected, that contrast has minimal effect

on the response when it has reached a certain level of contrast.
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Figure 6.18: Motion cellular activities for various levels of contrast.

The same simulation was repeated for six contrast levels. The resultant cellular activities were

converted to root-mean-square values and plotted against the input as a percentage of intensity

of the original input sequence, shown in Figure 6.19. This percentage can be regarded as a form

of contrast since the ffansient cells take the temporal difference as being the input, so by reduc-

ing the intensity level we reduce the contrast level. Figure 6.19 shows that the model ouþut is

significantly affected by the contrast of the stimulus. It also agrees with Stone and Thompson's

result that higher contrast inputs yield faster perceived speeds as represented by the cellular ac-

tivities here. The plot can be viewed as having three distinct regions. Along the y-axis between

0 - 0.1 reflects the weak responses of low contrasted stimuli, 0.1 - 0.5 is a relatively linear

region characterised by its sharp rise in cellular activity, and the remaining region indicates that

contrast is not having as a noticeable effect on the response as it saturates towards the limit. It

must be pointed out that the exact location of the curve is strongly influenced by the parameters

used in the model's dynamic equations, however this should not have too much effect on the

general shape of the response.

Facilitatory inputs One of the main features of the motion module is the incorporation of

facilitatory terminals [113] to all synaptic connections, enabling the modulation of transmitted

signals for gain control purposes. The effect of providing facilitatory signals is illustrated by

Figure 6.20 for facilitation levels of 0.9, 0.5 and 0.3 from top to bottom, respectively.
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tr'igure 6.19: Effect of contrast level on cellular activity.

It shows that modulation of synaptic signals via facilitation can cause the model to behave more

responsively for a range of contrast levels. In particular, outputs of input sets of mean intensity

above IIVo are significantly enhanced by facilitatory inputs. For a given input stimulus, with
known initial conditions of the model, the facilitatory signals can be used to tune the model to

provide an appropriate output.

Thning Characteristics of Tbansient Cells

The transient layer is vital to the functioning of the system. Understanding of its characteristics

is crucial to further extensions of the model. The transient layer as mentioned before is respon-

sible for temporal changes in the input stimulus. These changes can be either in continuous or

discrete form as described in the following sections.

Continuous Input Stimulus This section examines the effect of gradual continuous change

in the rising rate of the input stimulus on the transient layer. Input stimuli shown in the bottom

graph of Figure 6.21 ue presented to the transient layer to produce transient signals as shown

in the top graph of Figure 6.2I. Each input is characterised by the angle at which the signal

rises from zero to one, thus this angle can be used as a measure of the rate of increase in the

intensity level. From the graph, the angle can vary between 0' to 90' with 0' being the slowest
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Figure 6.20: Effect of facilitation on conffasted inputs.

rate of increase and g0' the fastest, representing no rise in intensity and an instantaneous rise,

respectively.

The transient cell outputs produced are a series of pulses with their shapes determined by the

input stimulus rising rate. Slow rising stimuli have small and flat pulse shaped outputs, in

contrast fast stimuli have tall and sharp pulse outputs. While fast stimuli produce large output

signals, they tend to decay away in a short period of time. In order to maximise the final motion

signal the model requires the transient signals to be both large in magnitude and persistent in

time. The results are therefore replotted in another representation by taking the root-mean-

square value of the transient response to accommodate for time and magnitude as a function of

the input rate, shown inFigure 6.22.

Figure 6.22 consists of four plots of fiansient output as a function of input stimulus rate for four

different levels of facilitation. In descending order of magnitude the facilitation levels are 0.9,

0.6, 0.3 and 0.2. They all exhibit the same general characteristics that no output is generated

when the angle is small, and the signal peaks before 90'. The effect of reducing facilitation can

be seen as shifting the transient curve down and slightly to the right. This is expected since the

role of the facilitatory signal is to provide a mechanism under which the transmitted signal can

be modulated to achieve gain control.

Discrete Input Stimulus However, for apparent motion the changes in intensity are sudden,

non-continuous and discrete, i.e., from frame to frame. We examine how the transient layer
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tr'igure 6.222 Effect of facilitation on variable rated inputs.
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responds to variations in the speed of the input stimulus as a function of the facilitation level.

Figures 6.23-6.25 show six sets of results. Within each set, the top graph is the maximal tran-

sient cell response at each level of facilitation to the input stimulus shown below it. The speed

of the input is defined as the frequency of rectangular input pulses oscillating between zero and

one. All the simulated speeds have frequencies that are multiples of the numerical time step h,,

which are specified at the bottom of each figure.
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Figure 6.23t Trcnsient cell characteristic curve with input stimulus speed depen-

dence. (a) 1000h, and (b) 400h. The rectangular pulse input speed is measured in

terms of the numerical time step h.

(a) (b)

Figure 6,242 Transient cell characteristic curve with input stimulus speed depen-

dence. (a) 150h, and (b) 60h.

Figure 6.26 reveals that there are two limits by which the transient cell ouþut is bounded. The

upper limit is approached when the input stimulus is sufficiently slow, allowing the transient

cell to respond fully to the input. The lower limit is reached when the input speed is too fast for
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FÍgure 6.252 Transient cell characteristic curve with input stimulus speed depen-

dence. (a) 25h, and (b) 10h.

the transient cell to respond. The role of the facilitatory signal is to make the transient cell more

responsive and receptive to faster input stimuli and to provide an external gain. As evident from

the graphs, the transient response tends to saturate as the facilitation level increases.

These characteristic curves can be used to tune receptive fields to obtain the desired output sig-

nals. For example, given a system is tuned for movements in a particular direction, facilitatory

signals can be provided to all the bottom-up inputs gated by the transient cells responsible for

detecting movements in the chosen direction.

When the data are plotted in a different format as in Figure 6.27,it shows that there is an optimal

temporal frequency at which over a period of time the average (RMS) transient activity is at its

peak. This frequency occurs when the transient cell is allowed appropriate time to respond and

decay, hence resulting in sftong direction-selective signals. If the temporal frequency is too

low, there are long periods between transient pulses as given in Figures 6.4-6.5. This can result

in weak or no direction-selective signals. Whereas high temporai frequencies do not provide

enough time for the transient cell to respond, therefore transient changes may not be detected at

all, resulting in no direction-selective signals.

6.4.3 Directional Bias

Tlvo apparent motion simulations are performed on the proposed network architecture, one

with selective attention and one without, to demonstrate the effectiveness of the scheme, The

test visual stimuli are 32 x 32 pixel gray-level images, each with two rectangular bars, one

vertical and the other horizontal. These bars are displaced slightly in successive frames, creating

movements in apparent motion, with the horizontal bar moving upwards and the vertical to the
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Figure 6.262 Transient cell characteristic curve with input stimulus speed depen-

dence. The plots (from top to bottom) are for speeds of 1000h, 400h, 150h, 60h,
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left. The simplistic visual stimuli were designed to clearly display the effects of the top-down

directional bias.

The simulation results are summarized in Figures 6.28-6.31. Each flgure consists of nine

squares of size À4 x l{¡, with the centre one being the source and the surrounding eight the

directional fields. The labels beneath the boxes indicate the preferred directions of the direc-

tional fields. Figures 6.28 and 6.29 are the results of elementary movements without directional

bias. The results can be interpreted as the effects of the preattentive process - that it detects

any unusual events in the visual scene, in this case the detection of stimulus movements. Start-

ing from Figure 6.28 we can see that when the stimuli first appear they excite all directional

fields equally, and as the frames change over time only the directional ûelds in the movement

directions receive facilitation and gradually become stronger. The inter-competition amongst

directional fields is evident in the fading of the activities in opposing directional fields. In each

active directional field there appears to be two images of the moving bars, this is caused by the

residual activities remained from previous movements, and can be regarded as the short-term

memory. Figures 6.30 and 6.31 are the results of a control selection process initiated by the

top-down attentional system having a directional bias towards movements to the left.
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tr'igure 6.28: Moving bars frames I and2.

Notice how at the same stage 'source4', shown in Figures 6.29 and6.3l, the downwards 'D' di-

rectional fields are different, with one inactive and the other active. Because the directional cells

are excited as long as there are moving stimuli, the strength of these activities depends on how

well the stimulus properties match the cells' receptive fields. That is how well the movements

match the preferred directions. Since none of the movements matches the downwards direc-

tional fields' receptive f,eld, the resultant activities are weak. However, the directional fields a¡e
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Figure 6.29: Moving bars frames 3 and4.
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Figure 6.3L: Moving bars frames 3 and 4 with directional bias.

engaged in an inter-competition for directional supremacy between opposing directional f,elds.

With strong upwards activities in Figure 6.29 the downwards field is being suppressed by a

stronger force, and hence the absence of activity. While in Figure 6.31 the upwards activities

are similar to that of the downwards, either one is not strong enough to suppress the other.

6.5 A Visual Motion Cue for Recognition of Moving Objects

Motion has long been recognised as one of the basic perceptual features that can be used as a

visual cue to capture attention [19]. As mentioned in Chapters 3 and 4, attentional capture is

performed by the preattentive mode using bottom-up features. So far, the proposed recognition

model uses luminance confrast as its sole input feature, however it is important to include other

features. Ln this section, the motion module presented in this chapter is incoqporated into the

framework for the detection, location and recognition of moving objects.

The main objective of the proposed incorporation is to use it as a pilot study to test the feasibility

of integrating the static recognition system with the dynamic motion module. For that reason

the integrated system is relatively primitive, and as will be seen, the system is tested on a simple

synthetic image sequence, featuring line-drawing objects. Nevertheless, it is an important step

towards the development of a dynamic visual scene analysis system.

A diagram for the framework is shown in Figure 6.32.Itcan be seen that the middle to top parts

are the same as in Figure 4.I4. T\e motion module appears early in the processing hierarchy.

It takes input image frames continuously, from which motion information is infened. In the

meantime, the same image frames are processed by a reverberating memory loop, consisting

ffiJT
Èætìì

II

190



Chapter 6, Recognition of Moving Objecß

of two STM fields. The purpose of this memory loop is to stabilise the input pattern sent to

the input field as shown in Figure 6.32,because the static recognition is considered to be much

slower than the motion module, thus a buffering mechanism is required to regulate the rate of

change of the input signals.

The transient signals generated by the motion module are used to gate the bottom-up stimuli

from the input field to the high activity field such that regions with movement are allowed

through and the rest are filtered out. The system proceeds to analyse those regions as in static

object recognition.

Reset signal
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Figure 6.32: Visual object recognition and selective attention framework for mov-

ing objects.
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6.5.L 4 Test Case

A simple sequence with line-drawing objects has been chosen for simulating the integrated

system. The input image sequence consists of two static objects, a rectangle and a triangle,

and a moving object, a circle, in apparent motion sense. The objects can be seen in the middle

patterns in Figures 6.33-6.34. There are frve frames in the sequence. In which the rectangle and

the triangle remain stationary while the circle moves from left to right. Each frame is 32x32
pixels in size and the objects are 7 x7 pixels, with a high activity region of 15 x 15 pixels.

Results of the motion-direction detection and computation are shown in Figures 6.33-6.34. As

before, when an input is first registered all directional fields are activated equally, thus no overall

direction of movement. As the number of frames processed increases, the directional field

corresponding to the movement direction continues to gain in strength as shown in Figure 6.34.

Since the recognition system is slow relative to the motion module, the system has been set such

that it analyses the input field for every three frames processed by the motion module.
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DL

UU UF UL UB
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S0@l R SouH2
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Figure 6.33: Motion cue frames I and2.

Figure 6.35 shows the results of the recognition process. The input field shows the pattern

generated by gating the input frame with the transient signals from the motion module. The

system proceeds to select a region of interest from the input field. The region is analysed in

the usual manner, and as a result of this analysis the moving circle is recognised as one of the

stored models in memory.
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Figure 6.34: Motion cue frames 3 and 4.
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Figure 6.35: Recognition of a moving object.
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6.6 Conclusions

A brief overview of the motion pathway was provided in this chapter, which led to the presenta-

tion of a biologically inspired neural architecture for motion-direction detection and computa-

tion. The entire model is based on the same fundamental building blocks as for the visual scene

analysis system presented in Sections 4.3 and3.4.

The motion module respects key neuro-psychological and physiological findings. The main

features of the model are:

o sensitive to direction-of-motion but insensitive to direction-of-contrast;

o cooperative and competitive nature of directional cells;

o possession of facilitatory terminals allowing top-down attentional modulation, the imple-

mentation of directional bias is an example of the usefulness of presynaptic facilitation;

o an implementation of the transient ganglion cell based on [76, 145] for detecting transient

onset and offset; and

o a complex interconnected synaptic network for modelling the direction-selective layer

Simulation results have demonstrated the motion module to be effective in detecting and com-

puting motion direction. The effects of stimulus contrast and temporal frequency were also

investigated. Top-down attentional modulation has been successfully applied to achieve direc-

tional bias.

More importantly, a preliminary study on the integration of the static recognition system with

the motion detection architecture has been successful. This demonstrates the flexibility and

extendibility of the framework architecture, and it provides insights for extending the model for

motion perception.
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Chapter 7

Advanced Frame\ryork Features

7.1 Introduction

This chapter presents several advanced features that can signif,cantly improve the performance

and capability of the neural architecture proposed in Chapter 4. These new features are inffo-

duced to overcome some of the deficiencies of the model in the areas of partial object recogni-

tion, robust automatic attention and size invariance.

7,2 Complementary Selective Attention Adaptive Resonance

Theory

Objects are commonly seen only partially. A recognition system should be able to tell a part

of an object is not a new object but merely a subset of an established object category. To solve

this problem, the system must be able to activate a stored representation based on its parts, and

reconcile the differences between the two.

Anatomical studies have provided evidence that massively parallel feedforward and feedback

connections exist along the visual pathway ll94l. Throughout the visual areas, all neural con-

nections are matched by reciprocal feedback connections, hence there are reasons to believe

the feedforward and feedback connections are complementary in nature 1124,231. Although

the precise uses of the feedback pathways are unclear, some have suggested these are directly

involved in priming and attentional modulation of the bottom-up pathway, and in the direct acti-

vation of a lower areanl3l,191l, several experimental studies l50,ll2l have produced evidence

supporting the theories. Regardless of their exact nature, feedforward-feedback interactions are
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essential in neural processing. In this section, we propose an extension to ART and SAART that

employs feedforward and feedback pathways for modulating top-down and bottom-up patterns.

As a result, the patterns can adapt to each other in a closed-loop manner, allowing incomplete

objects to be recognised from cluttered images in the context of 2D shape-based object recogni-

tion. Since the proposed architecture is based on ART 128,29,301, it is called Complementary

Selective Attentíon Adaptíve Resonance Theory (CSAART) neural network. Significantly, the

model can be used to explain the phenomenon of visual completion and why perceptual group-

ing of fragmented object parts under occlusion is more effective when the occlusion cues are

strong.

7.2.1 Complementary Feedforward-Feedback Interactions

Conceptually, the bottom-up feedforward and top-down feedback interactions may be modelled

in an architecture as shown in Figure 7.1. The architecture consists of four fields of network

nodes, labelled as Input, F0, Fl, and F2, and a pair of adaptive filters between Fl and F2.

All four fields are for storing short-term-memory (STM) patterns, in particular, F2 is a winner-

take-all (WIA) network where at most one node can be active at a time. The active node in -F 2

represents the currently activated category in memory. An incoming signal x is represented as

a neural pattern xFO across tr'O. The pattern xFl across .t.1 is the result of the combined neural

activities between the bottom-up input and the top-down activated memory from the kth node

in F2.

The main features are the complementary feedforward and feedback modulatory pathways,

which serve to provide synaptic gain control to the top-down and bottom-up neural patterns.

When triggered, the top-down feedback modulatory pathway facilitates F0 cells that form the

desired neural pattern by increasing their synaptic gain. At the same time, the bottom-up feed-

forward modulatory pathway gates the top-down neural pattern such that only common parts of
the patterns can reach f.l. With the introduction of the modulatory connections, the system is

able to resolve any minor differences between the top-down and bottom-up patterns by adapting

to each other. Therefore, an incomplete or occluded familiar object can be recognised as a part

or parts of its stored model in memory represented by a category node in F2.

The complementary selective attention adaptive resonance theory architecture is an extension

of ART and SAART. By removing the bottom-up feedforward modulatory pathway, the archi-

tecture reduces SAART (see Section3. ), which has the ability to perform top-down perceptual

grouping by filtering out irrelevant input stimuli. Further removal of the top-down feedback

modulatory pathway, results in the original ART (see Section 3.3).
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F2

T

Modulatory
bottom-up
feedforward

Modulatory
top-down
feedback

Figure 7. I : Complementary feedforward-feedback interactions.

To illustrate the feedforward-feedback interactions, two situations are considered inFigtre7.2.

In Part(a), an input pattern that resembles a part of a learned object is partially occluded, and in

Part(b), a familiar object is occluded by some irrelevant stimuli. In both situations the depicted

networks are in resonant state.

Figure 7 .2(a) shows that an input pattern is incomplete with parts missing. When the input x1 is

presented to the architecture, it propagates through the fields ,F 0 and .F l to activate a category

node in F2. Consequently, a stored category is sent to -F 1 through the top-down adaptive

filter, together with the bottom-up pattern a STM pattern xfl1 is formed. Matching between

STMs xflo and xfll is considered a success if the degree of match satisfies a matching criterion

determined by a dimensionless vigilance parameter. Since the missing parts (due to occlusion

and incompleteness) can cause matching to fail, an additional matching criterion, based on

a secondary vigilance parameten is required to initiate feedforward-feedback modulation in

order for the patterns to adapt to each other. In this case, the recalled memory patten x[2
is gated by *t, so that only parts of the memory pattern that match x1 âre allowed through.

Concurrently, the feedback modulatory signal gradually filters out the irrelevant parts from the

input as in xfo. The feedforward and feedback processes continue in a closed loop fashion until

the two patterns have adapted to each other, and resonance is attained.

Consider Figure 7.2(b), where the missing parts are caused by occlusion alone. This situation

can be dealt with using the feedback modulatory pathway. In this case, the top-down recalled

memory is used to facilitate the bottom-up pattern and non-common elements are suppressed

under latenl inhibitory competition, resulting in a filtered version of the input to appear in f'0
that matches the top-down pattern in -F 1. Hence resonance is established. It should be noted
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F2F2

T
F1 F1

Input Input

(a) (b)

Figure 7.2: Visual recognition with feedforward-feedback interactions. (a) Bottom-

up seeing, and (b) top-down imagining.

that the feedforward modulatory pathway is also triggered at the same instance as the feedback,

however as shown in Figure 7.2(b) the gating pattern (x2) is a superset of the gated pattern

fxl\, thus the whole of x[2 is passed to .F'l unaffected.

7.2.2 Network Implementation

To illustrate the concept of feedforward-feedback interactions, the CSAART network is imple-

architecture 1291, and with the feedforward and feedback pathways incorporated as shown in

Figure 7.3.

Five major components are required to be modelled for the implementation of CSAART. These

are short-term-memory (STM) loops, a winner-take-all (WTA) neural layer, feedforward-feedback

modulatory pathways, long-term-memory (tIM) adaptation, and a matching mechanism. All
the stages have been described in parts in Chapters 3 and 4, except the feedforward-feedback

modulatory pathways. For self-containment, they are briefly summarised below.

STM Equations

Variables u)i, ti,,'t)i,'ttri, Qi, p¿, Ii,'tron, non and uon in Figure 7.3 represent STM activities. Among

them øoo, Ii, fr¿, u¿ artd Ç¿ âre norlnalised activities of their respective input activities. It follows
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Figure 7,32 Complementary selective attention adaptive resonance theory

(CSAART). Large filled circles are gain control nuclei for normalisation, small

filled circles are STM nodes, and open circles are gating terminals.
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that they all have the form of

"o:ffi1
where llVll is the .L2-norm of a vector V and e is a non-zero constant.

The remaining STM activities are

u¿: l(n¿) + blQù,
w¿:IiIau¿,

Pi: ui + D, Mi.,rg,

u)ot: Iou + I¿

aon : f (ron)

(7.r)

(7.3)

(7.4)

(7.2)

where I @) : max(ø - P, 0) is a nonlinear function with threshold 0, a and ö are constants, g,

is the rth cell of the WIA choice field, and M¿,, is the UIM weight.

WTA Neural Layer

Field f'2 is a W"IA network. In its simplest form, a WTA network is equivalent to a maxima

finding operator. A winner !¡ otJt of nodes 93 is expressed as

0 if y¡, < max{y¡}

1 if Ak: m?x{Aj}
J

More specifically, the winner node .R in F2 is determined by the maximum rth summed filtered

input from FI -+ F2:

1 if DpnMn,o: max{D M¿,rp¿:r:1,...,¡¡/}
9n: 't,

0 otherwise

where I/ is the total number of nodes in F2.

A WTA network can be implemented in parallel using the shunting competitive neural layer

[31], or other parallel implementations [58, 98].

In general, a shunting competitive layer with cellular activity ø¿, fluctuating within the finite in-

terval l-Co,B¿], stimulated by excitatory and inhibitory inputs I¿ and J¿, aîdnonlinear feedback

signals l¿@¿) and g¡(n¡), can be expressed:

dr¿ a . /^ \r, I / \r /^
dt 

: -A¿n¿ + (B¿ - r¿)ll¿ + l¿@¿)l - (c¿ + n¿)lJ¿+ t D¿¡g¡(ri)l (7.5)
j:l

where A¿ is the passive decay rate, D¿¡ is the gain between nodes i and j, and n is the number

of cells in the layer.

,r:{

L
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Feedforward-Feedback Modulatory Pathways

Under feedforward-feedback modulation, node uoo is modelled dynamically using a single

shunting competitive equation. The equation is a simplification of the full presynaptically mod-

ulated shunting competitive neural layer used in Section 4.3.3. The facilitatory terminal at the

bottom-up feedforward pathway is modelled using a simple gating mechanism. As a result, the

gated synaptic signals are either blocked or passed.

For the top-down presynaptic facilitation pathway, node uo, is converted to a dynamic cellular

activity using an equation similar to (7.5):

d,uot

dt - -Muo; + (B - uoo)Gnou(l + s¿) - (C + ,,,)*rl f @,,)
i+i

(7.6)

(7.8)

where A is the passive decay rate, B and C are the saturation limits for the upper and lower

bounds respectively, G is a gain factor, s¿ is the top-down facilitatory signal, D is the lateral

inhibition gain for providing intra-field competition, and lú is the number of neurons in a layer.

Node p¿ in the top-down field can be expressed as:

pi : u¿ + ó(1")D *n,,n, (7.7)
r

where Ó(1,) : max(Iou, 0) is a threshold function.

Weights Adaptation

The adaptive filters between .F'l and F2 are characterised by their long-term-memory (LIM)

weights. In ART the weights are adapted during resonance. If the .Rth node in F2 is activated

and the degree of match between the top-down expectation and the bottom-up input satisfies a

predefined matching criterion, then the LIM weights (M¿,p) are updated according to

: gn(P¿ - M¿,n)

However, under feedforward-feedback modulation learning must be restricted, so that existing

object categories are not recoded by their parts. This may be achieved with a very slow learning

rate, thus existing LIM weights are not eroded significantly but merely enhanced in the matched

object parts.
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The degree of match between the bottom-up and top-down patterns is determined by the vector

r 1291, such that each individual element

,o:5. e)0. (7.g)'' 
llqll +lllll +e' w'

The matching is considered a success with resonance established, if the degree of match is

greater the vigilance parameter p by satisfying the constraint

p

ffi.t. (7.10)

The Matching Equation

7.2.3 Parts Recognition and Occlusion Simulations

Computer simulations have been performed, four selected simulations of the neural architecture

are presented in this section. The simulations are intended to demonstrate the feedforward-

feedback interactions for parts recognition in the presence of clutter and occlusion.

The results of the simulations are shown in Figure 7 .5. Each column corresponds to a separate

simulation. The results are affanged in the same format as in Figure 7.1, showing four neural

activity patterns which have been labelled as activated memory? top-downfield, selective atten-

tionfield, and input, corresponding to F2, Fl, -t'0, and Input in Figure 7.1. Prior to the four

simulated inputs, the objects in Figure 7.4werc learned.

Ob¡êct 1 Objoct 2 Objoct 3 Object 4 Object 5

Figure 7.42 Learned object patterns

In Figure 7 .5(a) we have an input objectpartially occludedby white stripes, and the results show

that resonance is established after gating out the missing stimuli from the top-down pattern by

the feedforward pathway. Put (b) shows recognition can still be achieved if a significant portion

of a familiar object is present. The mechanisms achieving this parts recognition are the same as

those in Part (a). The input in Part (c) is similar to that in Part (a) except the stripes are black.

Although the two inputs are very similar, the mechanisms that enable matching in Part (c) are

predominantly feedback in nature. The results show that a mental percept of the occluded object
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may be formed by "imagining" what is hidden behind the occluding stripes. In contrast the case

in Part (a), where the stripes are clear, such top-down imagination is not possible because the

object is not "hidden". Finally in Part (d), we have an incomplete object that is in occlusion,

and the results demonstrate the effects of both feedforward and feedback modulations.

Activated memory Activated memory Activated memory Activated memory

Top-down field Top-down field Top-down field Top-down field

Selective attention field Selective attention field Selective attention field Selective attention field

lnput

(a)

lnput

(b)

lnput

(c)

lnput

(d)

tr'igure 7.5: Parts recognition and occlusion simulations.

The results show that our model can be used to explain why grouping of fragments caused by

occlusion is more effective when the occlusion cues are strong as shown in Figure 7.6(a), in

contrast, the recognition of objects fragmented by weak occlusion cues ¿re much more diffi-

cult [134]. From our neural architecture point of view, strong occlusion cues allow top-down

visual imagination to occur as in Figure 7.5(c), while the case in Figure 7.6(b) is similar to

Figure 7.5(a) where object fragments are classified as belonging to a particular learned category

but not linked together, thus failing to form a stable mental percept (the top-down field) of the

bottom-up pattern.

#
-f
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WMM IrÈal r¡ -u=
FF
I ¡L'

.-F Ë

] Ìi.u=
(a) (b)

Figure 7.6: Perceptual grouping of object fragments. (a) More effective with strong

occlusion cues. (b) Weak occlusion cues increase object recognition difficulty.

Adapted from [134].

7.2.4 Framework Simulations with CSAART

In this section, four simulations on the neural framework with CSAART incorporated are pre-

sented. The simulations are designed to demonstrate the framework's ability to perform partial

object recognition in the presence of occlusion and clutter. The simulated scenes feature ob-

jects from Columbia Object Image Library (COIL-20) tl33l. The set of objects from COIL-2O

is shown in Figure 7.7. By using the COIL-2O objects, we show that the system is capable of
handling a reasonably large number of objects. These objects can also be used as a benchmark

for visual scene analysis.

Figure 7.72 T\e Columbia Object Image Library (COIL-2O).

As usual, the COIL-2O objects are learned by the framework using the ART2 learning algorithm.

Image scenes featuring these objects are then simulated. The simulation results are shown in

Figures 7.8-7.I1.

-t5s.
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Centrel reprêsêntatlon Hlgh actlvlty WTA fleld

(b)

Select¡ve attention f ield

C€ntrel representetion Hlgh actMty WTA Íeld

(c)

Activated merþry
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(d)
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Figure 7.8: CSAART simulation I. (a) Input test scene. Parts (b), (c), (d) and (e)

are the simulation results of the recognised objects.
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(b)

I
Figure 7.9: CSAART simulation tr. (a) Input test scene. Paft (b) is the simulation

results of the recognised object.
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(b)
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Cenùel representet¡on High actlvlty WTA fleld

(c)

Figure 7.10: CSAART simulation ltr. (a) Input test scene. Parts (b) and (c) are the

simulation results of the recognised objects.
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Actlvetêd memory

Grayscale scene

Rot. & spat. allgn. WTA
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Rot. & spat. allgn. WTA

Top-down fleld

Hlgh ectivity region

S€lectiv€ attenüon f leld
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(b)

Selectlve attêntlon f i€ld

Cêntral repres€ntatlon High activity WTA field

(c)

Top-down fleld

Edge map

(a)

Figure 7.11: CSAART simulation IV. (a) Input test scene. Parts (b) and (c) are the

simulation results of the recognised objects.

7.3 Robust Automatic Attentional Capture

Automatic attentional capture was introduced to improve the efficiency of the proposed system.

The principle idea of automatic attention is coarse-to-fine sampling, whereby the visual scene

is analysed in a coarse manner to locate a region of interest for further detailed analysis. Sim-

ulation results in Chapter 5 have shown that implementing automatic attention is more difficult

than anticipated. The major problem for robust automatic attention is the presence of strong

background clutter, which may offset the window of attention (the high activity field), causing

familiar objects to be partially captured. Further investigations have shown that capturing atten-

tion based on the region with the maximum amount of edge activity is ineffective in a textured

image. The reason is that the background texture generates fa¡ more edges than the objects. In

such cases, intensity information is more suitable because of its compactness and homogeneous

nature. Nonetheless, edges are still an important visual representation for matching, because

edges are generally not affected by illumination conditions and surface reflectance. Hence both

edge and intensity information may be used to improve the robustness of the framework.

An example of a highly textured image is shown in Figure 7 .I2.I¡ each part of the figure, there

is an input scene in either edge or intensity representation and a region of interest map generated

from the inputs to the high activity WTA field. Both region of interest maps show three distinct

areas, but the one from intensity is more compact and well defined. In Part (a), there is more

edge activity in the background than the object regions, selection is based on the region with

_J

n

207



Chapter 7. Advanced Framework Featurcs

the minimum amount of edge activity

High degree
of interest

Low degree
of interest

(a) (b)

Figure 7.122 Attentional capture in a highly textured background image using edge

and intensity maps. (a) Edge map and an activity map showing regions of interest.

(b) Intensity map and its corresponding regions of interest. The highlighted area is

one of the captured regions.

A nanow Gaussian receptive field produces sharper and more compact regions of interest than

a wider receptive field as evident in Figure 7.13. It is not always suitable to use a narrow

Gaussian receptive field. An appropriately chosen receptive field can provide continuity, so

that an object consists of several different intensity regions may be treated as a whole. The

highlighted object in Figure 7.I2(b) is detected as having two separate regions in Figure 7.13(a),

while it is correctly shown as one in Figure 7.13(b).

(a) (b)

Figure 7.13: Effect of Width of Gaussian receptive field on region of interest map.

The input scene is the same as in Figure7.I2(b). (a) o' : 100. (b) o2 : 500.

In order to improve the robustness of automatic attention, several issues must be resolved:

o the choice of automatic selection threshold;

o automatic resizing of the window of attention; and

208
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7.3.1 Automatic Selection Threshold

The threshold was previously obtained by the 'worst case scenario, in which the region of in-

terest containing a familiar object with the lowest level of activity is used to set the threshold.

This guarantees no region with a familiar object would go undetected. However this approach

requires prior knowledge of the worst case scenario for each scene. A more general approach

is to use a certain percentage of the peak region of interest activity as a guide for setting the

threshold. In most of the simulations ,5OVo of the maximum region of interest activity was ade-

quate to locate all regions containing familiar objects. We have simulated 30 randomly created

test scenes, and in 837o of them we have been able to detect all regions of interest.

7.3,2 Automatic Resizing of Window of Attention

The robustness and efficiency of automatic attention may be improved by allowing automatic

resizing of the window of attention. Isolated objects on a clear background may be detected

easily, thus a tightly fit window of attention is sufficient. On the other hand, a window of

attention that is much larger than the object might be required if the object is closely located to

other objects. Such an approach ensures the window of attention is able to capture most of the

significant information.

An example of closely located objects is shown in Figure 7.I4. T\e region of interest map

indicates that there are two regions of interest: a large region in the top left-hand corner of the

scene and a smaller one in the bottom right-hand corner. Their relative sizes may be used to

resize the window of attention, hence giving one large and one small window of attention. The

large window is expected to capture both objects, from which one of the objects is expected to

be recognised. Instead of applying a spatial inhibition as in Section 4.4.5 after the recognition

of the first object, an object-based inhibition is used. This reduces the risk of suppressing the

yet to be recognised object.

Figure 7.14: Automatic resizing of window of attention. The region of interest map

provides information on the selection of the window size.
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7.3.3 Partially Captured Objects

With the aid of automatic resizing of the window of attention, an added degree of flexibility

and robustness has been intoduced to the framework. As a result, partial capturing in the high

activity field is not expected to occur as frequently as for a fixed window size. However should

it happen, there are two strategies which may be employed to deal with it:

o Zero padding - problems arise when a familiar object is located near the border of the win-

dow, where it lacks a full set of neighbours for convolution. This is a common technique

for edge detection [38]. Although not sophisticated, it is the most direct approach.

o Partial sampling - each LIM is restricted to its central region, such that bottom-up mem-

ory activation is based on the restricted region only. The assumption is that any partially

captured object would contain its central region, and sampling by partial LTMs can deter-

mine the position and orientation of the object. Several examples of LIMs reduced to the

centralregions are showninFigureT.l5. If thecapturedregionis as showninFigureT.16,

then convoluting with partial memories can correctly activate the corresponding memory

and determine the captured object's position and orientation. The window of attention is

duly shifted to the new location, and the rest of the framework operates as normally.

Figure 7.15: Examples of partial long-term-memory.

2r0

Figure 7.16: Memory activation using partial sampling.
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7.4 Size Invariance

The size of the region of interest map has strong implication to the actual size of the captured

object. From the size of the region of interest, we can estimate the size of the window of atten-

tion, which gives the maximum size of any potentially recognisable object within the region.

This has only provided the upper limit to the object size. To cater for a range of other possible

sizes we extend the idea of parallel reference frame introduced in Section 4.5 by using multi-

resolution LTMs as shown in Figure 7.17. Instead of using fixed-size LTMs for bottom-up

memory activation, multiple copies of different resolution of each LTM are used to determine

the probable size, location and orientation of the captured object, as well as its potential match

in memory. Since all object patterns are normalised, the bottom-up and top-down pair with the

most common features will have the largest activity regardless of pattern size. Although only

discrete sizes are used for the multi-resolution LTMs, minor size variations are dealt with using

band transformation and shape attraction as in Section 4.6. Because there is no hint as to what

the lower size limit should be, it must be set manually.

EI

Figure 7.17: Multi-resolution LTMs. The sizes of the depicted objects are 16x 16,

32x32, 64x64, 96x96 and 128 x 128 pixels.

An example of a visual scene featuring different size objects is shown in Figure 7.18. Part

(a) shows that a large region of interest is detected from the scene. A window of attention

based on the detected region is generated, from which multi-resolution LTM patterns are used

to identify the bottom-up object. After recognising the object, it is suppressed from the scene

using object-based inhibition. As a result, two smaller regions of interest are detected as in Part

(b). V/ith the framework's ability to handle incomplete objects, the two remaining objects are

readily recognised in order shown in Parts (b) and (c).
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Figure 7.18: Object size from region of interest map. In each part, there are the

input scene and its region of interest map. (a) A large region of interest requires a

large window of attention. (b) After object-based inhibition, two regions of interest

remain. (c) The last of the three detected regions.

7.5 Conclusion

In this chapter we proposed three advanced features for the framework: i) feedforward-feedback

modulatory pathways for parts recognition, ii) robust automatic attention, and iii) size invari-

ance.

In the first part, we demonstrated the importance and usefulness of feedforward-feedback inter-

actions in neural network modelling. In particular, we found that both ART and SAART may

be enhanced to recognise incomplete objects by having the complementary feedforward and

feedback modulatory pathways. The simulation results illustrated how occluded and incom-

plete objects are handled explicitly using top-down imagination (forming an expectation for the

occluded parts) and implicitly using bottom-up seeing (limiting the mental percept to the visible

object parts only). The results also showed why strong occlusion cues allow better perceptual

grouping.

The feedforward-feedback interactions enable the top-down and bottom-up patterns to adapt

to eac.h othe.r by forming a closed-loop in the neural architecture, thus resonance is allowed to

occur.

In the second part, we described several ways in which the robustness of the automatic attention

stage could be improved. These improvements were specifically designed to overcome some of

the deficiencies experienced in the simulations in Chapter 5.

Lastly, we proposed a method f'or incorporating size invariance into the framework. Although

the framework is capable of dealing with minor size changes as shown in Section 5.9, it lacks

the mechanisms to handle arbitrary size change,
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Chapter I

Conclusions and Recommendations

8.1. Recapitulation of the Thesis

This study was motivated by the need to incorporate attentional mechanisms into models of

visual functions. Attention is essential to visual perception if one is to remain vigilant to changes

in one's immediate surroundings. The ability to detect and locate changes visually is crucial to

the smooth operation of our everyday lives. Amongst all sensations, vision is unparalleled in

its richness of information content and remoteness from the source. It allows us to examine and

understand our environment without having to come into physical contact with the source, thus

minimising any potential danger that might exist.

In acknowledging the importance of attention in visual perception, this study set out to inves-

tigate the role of attention in performing visual functions, in particular object recognition and

visual scene analysis. Specifically, this study aimed to model the computational properties and

dynamics of attentional processes in spatial attention and top-down memory-guided attention

using feedforward-feedback interactions and neural mechanisms. A neural architecture with at-

tentional mechanisms for the analysis of visual scenes under a variety of visual conditions was

the main expected outcome of this study.

A top-down modelling approach consisting of three levels was employed to achieve the objec-

tives of this study. The three levels, formed according to their degree of abstraction, are psycho-

logical, neurophysiological and implementational. In the psychological level, a framework for

the proposed neural architecture was developed using psychological models and theories of vi-

sual perception and attention. The level of neurophysiology enabled us to establish connections

and computational relationships among various neural substructures within the framework. Fi-

nally, the implementation level provided details on the modelling and construction of those
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neural substructures.

In order to lay the psychological and neurophysiological foundation for the proposed system, a

review of cognitive findings on visual perception, object recognition, visual attention, and the

visual system was provided in Chapter 2. In addition, the chapter addressed computational is-

sues in object recognition such as variability in sensory information and object representation.

The main conclusions of this chapter were: attention is a limiting process whereby attended

information is allowed through unchanged or amplified, while unattended information is atten-

uated; spatial attention occurs via the modulation of sensory processes in the visual cortex, and

top-down feedback pathways have been found to boost neuronal activities in LGN cells during

attention.

Common approaches to the modelling of the highJevel visual function of object recognition

were considered in Chapter 3, not only to provide a survey of this area, but also to highlight

some of the advantages and limitations of the existing approaches. In particular, we focussed on

the biological approach using artificial neural networks. It was our intention to equip the pro-

posed vision system with some of the computational benefits of neural networks derived from

their massively parallel networking architecture. Of the several neural architectures and their

associated learning paradigms discussed, the Adaptive Resonance Theory (ART) neural net-

work architecture was the most suitable choice to form part of our proposed neural architecture.

ART is a theory of self-organising network that includes the cognitive concept of attention, vig-

ilance, top-down priming and bidirectional learning in real-time neural systems. An extension

of ART, called Selective AttentionAdaptive Resonance Theory (SAART), was also considered.

SAART is an important class of neural networks that complements ART by overcoming some

of the weaknesses of ART. This theory models the computational role of top-down feedback

pathways and chemical synapses during selective attention. It suggests that top-down feed-

back signals may be used to selectively process stimuli from a complex scene, and attentional

moelulation is aehieved by regulating the amount of ehemiea.l transmitter flow from synaptie

terminals to postsynaptic cells, thereby connolling the net excitation or inhibition available to

the postsynaptic cells. Under SAART selective processing was achieved by a process called

top-down presynaptic facilitation, where top-down recalled memory was used to selectively

facilitate individual synaptic signals by modulating their synaptic gain.

However, ART and SAART alone were insufficient for visual scene analysis as the two classes

of neural networks did not address problems such as shifts in position and orientation, atten-

tional capture and shift, distortion, occlusion, and recognising multiple objects from the visual

scene. This led us to propose a neural architecture that is based on ART and SAART with

computational properties and dynamics of attentional processes for visual scene analysis.

Chapter 4 represents the main body of the thesis, in which a biologically inspired neural frame-
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work for distorted and cluttered visual scene analysis was proposed. The proposed model unifies

some of the cognitive findings in Chapter 2 with computational models described in Chapter 3

by using the methodology adopted in Chapter 1. Psychologically, the proposed model encom-

passes a two-stage theory of biological vision, namely the parallel preattentive stage and the

serial attentive stage. Architecturally, the model consists of massively parallel feedback and

feedforward connections, and is based on a bi-directional structure with both bottom-up and

top-down pathways. Bottom-up signals were converted to elementary features and used as

visual cues for capturing attention, from which a region of interest was located for further pro-

cessing with the eventual goal of memory activation. Top-down signals were used in memory

guided search and recognition. In particular, memory was used as a feedback to achieve atten-

tional modulation of the bottom-up pathways. Specifically, the model was capable of detecting,

locating, localising and recognising any familiar objects from a visual scene, in the presence of

occlusion, distortion and background clutter, in an autonomous fashion. Moreover, it formed

a translation, rotation and distortion invariant object representation of the recognised object in

an object-based reference frame. The framework was presented in a modular fashion with vi-

sual functions considered individually. In addition, we considered the effect of proximity and

similarity on attentional capture and other psychological processes such as mental rotation.

The proposed neural architecture was implemented and simulated in Chapter 5 using a number

of digital images, of both synthetic and real-world scenes. As mentioned in Chapter 5, syn-

thetic images are useful during the development and testing stages as they exclude many prac-

tical considerations such as camera angles and distance, illumination conditions, non-uniform

object size, and variations in 2D projections. \Whereas real-world images are required to prove

the effectiveness and robustness of the system in practical applications. Besides verifying the

model, the simulations also served to illustrate the concepts behind the model and expose any

weaknesses that it might have. The simulation results demonstrated the two modes of attention

modelled in Chapter 4, showing a fast, coarse sampling process that operated in parallel over the

entire visual scene, and a slower process that analysed a limited spatial region in great details.

On the whole, the proposed system was found to be effective in detecting, locating and recog-

nising familiar objects from the test images despite shifts in position and orientation, distortion,

and the presence of severe background clutter and occlusion. Furthermore, the objects captured

in the real-world images were specifically chosen to have a very similar body shape in order to

increase the difficulty of the problem. Because of its ability to deal with distortion, the system

is robust against minor changes in size and 2D projections of 3D objects. Discussion on the

design of the system parameters was also provided in Chapter 5.

Chapter 6 provided an illustrative example on how the framework model may be extended to

incorporate other visual functions. Extendibility was one of the aims of this study, as vision

is a vast and diverse field, comprising of many visual functions, the proposed model must be
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flexible enough to allow for additional functions. This chapter showed elementary motion as a

visual cue for attentional capture in the framework, thus allowing moving objects to be recog-

nised. We proposed a motion detection neural architecture that was modelled according to the

motion pathway, hence it respects key neuro-psychological and physiological findings. Signifi-

cantly, this extension demonstrated the flexibility and extendibility of the framework, and it also

provided important insights for modelling motion perception.

Chapter 7 extended the idea of presynaptic modulation to the top-down pathway by incorpo-

rating a feedforward modulatory pathway. The feedforward connection could modulate any

top-down expectation, so that incomplete objects may be recognised as subsets of learned cat-

egories. The resultant feedforward-feedback interactions enabled the top-down and bottom-up

patterns to adapt to each other by forming a closed-loop in the neural architecture, thus reso-

nance was allowed to occur. Ways to improve the robustness of the automatic attention stage

were proposed. An extension to achieve size invariance was also presented.

8.2 ConcludingStatement

This thesis addressed the development of a biologically inspired neural framework with at-

tentional mechanisms for visual scene analysis. The original contribution of the research was

outlined in the body of the thesis. The main objectives of the work that have been fulfilled are:

r A detailed study of attentional phenomena in visual perception with a view to under-

standing the computational role of attention in relation to object recognition and visual

focussing.

o A thorough review of the current status of artificial vision systems in the context of object

renn cn i fi nn¡ vvvó¡¡¡ùrvr¡.

o The development of a neural framework with computational properties and dynamics of

attentional processes for visual scene analysis using feedforward-feedback interactions

and various biological mechanisms.

o The development of a neural architecture for elementary motion detection modelled ac-

cording to the motion pathway and its incorporation into the framework.

o The investigation, via simulation studies, of the effectiveness of the proposed system

under a variety of non-favourable visual conditions.

o The application of the proposed system to practical real-world images under realistic

conditions.
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o The development of a self-organising neural a¡chitecture called Complementary Selective

Attention Adaptive Resonance Theory (CSAART) network for parts recognition and its

incorporation into the framework.

V/e conclude that attention plays a very important role in many high-level visual functions.

By modelling computational properties and dynamics of attentional processes we can enhance

artificial vision systems to cope with difficult visual conditions. We show that feedforward-

feedback interactions with synaptic modulation are a versatile and powerful mechanism for

performing many useful functions such as transformations, filtering, gain control, and selective

processing in neural network based vision systems. As demonstrated in the thesis, these inter-

actions have been used in modelling selective neural pattern transfer, top-down memory-guided

selective processing, synaptic signal facilitation, attentional capture and shift, shape attraction

and band transformation, and directional selectivity.

Although the theory and results presented in the thesis were primarily concerned with vision, the

concepts and basic computational mechanisms that were proposed do not place any restrictions

on the type of input signals being estimated. The theory can thus be readily applied to other

modalities such as audition.

8.3 Recommendations for Future Work

Visual scene analysis is a much more complex process than what has been considered in this

thesis. Although in our investigation we restricted ourselves to visual selective attention and

object recognition, visual scene analysis also relies heavily on other higherJevel cognitive and

mental processes such as interpretation, memory, inference, and intelligence. There is a great

degree of flexibility in what one can perceive from a complex visual scene, thus it is common

for two people to have a very different percept from each other upon encountering a visual

scene. Even within our scope of visual attention and object recognition, ñffiy improvements

can be made to enhance the proposed model. Specifically, we have identified several areas

where future work may be carried out.

1. Elementary features - In this thesis we considered only luminance contrast and elementary

motion as the features extracted from the visual environment for analysis. There are,

however, many other features which we could have used to represent objects such as

colour, texfure, and orientation. In doing so, we generate a separate feature map for each

feature from the input scene. These feature maps are subsequently combined to form the
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saliency map from which a region of interest based on all those features may be selected

for further processing [98].

2. Attentional processes - V/ith the use of multiple features to represent objects we can

implement the so-called feature search mode (instead of the singleton detection mode

implemented in Section 4.4) in which attention is directed to locations that match some

desired visual feature [54]. It is clear that singleton detection is achieved in a bottom-up

manner, while feature search is a top-down process where the synaptic signals repre-

senting the desired feature are biased in premeditation. From an implementation point

of view a presynaptic facilitatory signal may be used to facilitate signals from the coffe-

sponding feature map, so that the desired feature may be selected from the winner-take-all

competition in the saliency map. Another form of top-down expectation that can be im-

plemented is during a visual search in which the target of the search is known by its
shape alone. Therefore we can apply a "body shape" receptive filter instead of a sim-

ple Gaussian receptive field to measure the bottom-up activation from the neural input

pattern. For example, the real-world objects captured for simulations in Section 5.9 all

shared a similar body shape, if we were to search for all those objects, it would be a lot

more efficient if their body shape receptive field was applied during attentional capture. It
should be noted that both the preattentive and attentive modes interact with top-down and

bottom-up processes, so there are many attentional processes that may be implemented.

3. Visual functions - As mentioned in the limitations of the proposed model in Section 5.10

additional visual functions are required to deal with 3D objects and changes in size, as

well as a number of other visual conditions. For 3D object recognition, we may em-

ploy compressed object representations as in appearance-based object recognition in Sec-

tion3.I.2, via principal components analysis. It has been successfully employed in vari-

ous neural architectures [80].

4. Applications - Since the proposed theory is not restricted to the visual domain, we can

reformulate our model to suit the audio domain, so that the neural architecture could

detect and recognise audio patterns such as words or sentences from a noisy environment,

or model the well known cocktail party effect.
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Appendix A

Additional Simulations

This appendix provides four additional real-world imagery simulations. These simulations were

performed prior to the incorporation of the feedforward modulatory pathway proposed in Chap-

ter 7, therefore minor occlusions were dealt with using top-down presynaptic facilitation alone.

Satisfactory results were obtained in each of the four simulations; of the ten recognisable ob-

jects in the input scenes, nine were correctly detected and recognised. The one that failed to be

recognised is of different size to its learned projection.

The four simulations are briefly described below:

r Simulation I, shown in Figures 4.1 and A.2, features three recognisable objects standing

side-by-side in a cluttered scene.

o Simulation II, shown in Figures 4.3 and 4.4, also features three recognisable objects but

they are closely positioned such that one of the objects occludes the the other two.

o Simulation III, shown in Figures A.5 and 4.6, contains one recognisable object that is

placed behind a toy figurine.

o Simulation IV, shown in Figures 4.7 and 4.8, has three recognisable objects. This simu-

lation was specifically designed to show the system's ability to distinguish and recognise

two highly similar objects in occlusion (similar in shape and both have outstretched arms).
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Simulation I

(a) (b)

Figure 4.1: Additional real-world imagery: Simulation I input scene. (a) Intensity

map. (b) Edge map.

Top-down fi€ld Rot. & spet. align. WTA Top-down field Rot. & spat, align. WTA Top-down field Rot. & spat. allgn. WTA

Selective attention field High act¡vity region Selective attention field H¡gh activity r€glon Selective attentlon fi€ld High act¡vity region

E
Centrel representation

High activity WTA field
Central repres€ntation

High activity WTA field
Cêntral represenlation

High actlvity WTA fleld

(a) (b) (c)

Figure 4.2: Additional real-world imagery: Simulation I - Parts 1,2 and3.
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Simulation II

(a) (b)

Figure 4.3: Additional real-world imagery: Simulation tr input scene. (a) Intensity

map. (b) Edge map.

Top-down flêld Rot. & spat. allgn, WTA Top-down fleld Bot. & spet. elign. WTA To¡down fleld Rot. & spat. align. WTA

Selectlve attenüon field Hlgh activlty reglon S€lect¡ve attention fleld Hlgh actlvlty region S€lective attentlon field High ectivity region

I ü

Centrel representation
Hlgh activity WTA field

C€ntral repres€ntation
High activity WTA field

C€ntral reprêsentadon
High activity WTA lield

(a) (b) (c)

tr'igure 4.4: Additional real-world imagery: Simulation tr - Parts I,2 and3.

221



Appendix A. Additional Simulations

Simulation III

(a) (b)

Figure 4.5: Additional real-world imagery: Simulation Itr input scene. (a) Inten-

sity map. (b) Edge map.

Top-down fiêld Rot. & spet. allgn. WTA Top-down fleld Rot. & spat. allgn, WTA

Selective attenlion field High activity region S6lective attention fleld High actlvity region

Central representetion
Hlgh activity WTA field

C€ntral representation
H¡gh act¡vlty WTA fl€ld

(a) (b)

Figure 4.6: Additional real-world imagery: Simulation Itr - Parts I and2.
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Simulation IV

(a) (b)

tr'igure 4.7: Additional real-world imagery: Simulation IV input scene. (a) Inten-

sity map. (b) Edge map.

Top-down field Rot. & spat. allgn. WTA Top-dolrn lield Rot. & spat. align. WTA ToÞdown fleld Rot. & spat. align. WTA

Sêl€ctlve attenton field High ectivity r€gion Seleclive attêntion field High actlvity region Selêctive att€nt¡on field High activity region

Hlgh actlvity WTA feld High ectivity WTA field Hlgh activlty WTA lield
C€ntral represenhtlon Cenhal representetion C€ntral reprêsentaüon

(a) (b) (c)

Figure 4.8: Additional real-world imagery: Simulation IV - Parts I,2 and3

{}p
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