THE UNIVERSITY OF ADELAIDE

DEPARTMENT OF MECHANICAL ENGINEERING

RELATIONSHIP BETWEEN INTERNAL SOUND GENERATION AND CHARACTERISTICS
OF FLOW IN A REGION OF FLOW SEPARATION DUE TO DISTURBANCE OF-
FULLY-DEVELOPED TURBULENT FLOW IN A PIPE

by

NAVAL KISHORE AGARWAL, M.Tech.

Thesis for the Degree of Doctor of Philosophy

November, 1985,



SUMMARY
Mean flow characteristics in the fully-developed turbulent pipe flow
approaching an orifice plate, in the region of separated flow and in
the flow downstream of reattachment up to and beyond the point where an
undisturbed pipe flow regime is again established, for a wide range of
flow speed and orifice sizes (0.62 < D0 < 0.83), have been studied.
Mean positions of separation and reattachment points have been determined
using a surface fence gauge. The development of the free jet shear
layer in the separated flow region downstream of the orifice and recovery
of the attached flow to the fully developed state are discussed. Time-
histories of the streamwise fluctuating velocity very close to the wall
have been obtained by means of a probe incorporating three wires. The
mean position of the reattachment point deduced from these measurements
is compared with the results obtained with surface fence gauge and

surface hot film.

The effects of shear flow on the transmission of sound waves in a hard-
walled pipe are theoretically investigated. A fully developed turbulent
velocity profile, where various regions are appropriately represented,
has been used. Results for the effect of shear flow on the acoustic
pressure and radial velocity distribution, cut-off frequency and modal

phase speeds are discussed.

Measurements of the power spectral density and rms value of the wall
pressure fluctuations, p' in the initially undisturbed flow, in the
separated-flow region and in the re-established fully-developed pipe
flow have been made. Scalings for p' and the spectra in the various
regions have been suggested. Higher-order acoustic modes in the wall-
pressure spectra upstream and downstream of the orifice, have been
identified. Attenuation and variation of cut-off frequencies of higher-

order modes with the orifice size and flow rate are discussed. Measure-

ments of the axial velocity fluctuations in the separated flow, far



downstream and upstream of the orifice plate are presented. Flow
regions where higher order modes are detectable have been identified,
and variation of their cut-off frequencies with flow rate is compared

with the results obtained with the wall pressure measurements.,
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1.1

CHAPTER 1
INTRODUCTION

General Introduction

There is an increasing emphasis on reducing the noise levels in the
industrial environment, and this has given rise to a large amount of
noise legislation; a lTong exposure to very high noise levels can be

a health hazard leading to a permanent hearing loss. Use of fittings
in pipe-lines with moving fluid is unavoidable, and it has been
recognised that pipe fittings can contribute significantly to the
overall noise level in an industrial situation. The flow disturbance
caused by these pipe fittings excites the higher order acoustic

modes in the fluid, thus generating an internal pressure field which
js the sum of turbulent and acoustic pressure fluctuations. These
pressure fluctuations excite pipe-wall vibration which transmits the

acoustic energy to the atmosphere.

The acoustic energy propagatgs both upstream and downstream, the
propagation being governed by the convected-wave equation. The
solution of this equation applied to fully-developed turbulent flow
leads to a set of characteristic pressure patterns across the pipe,
the so-called higher-order acoustic modes. The lowest (plane-wave)
mode propagates at all frequencies but the higher order modes
propagate only at frequencies above their cut-off frequencies. 1In
the real situation, the noise generated by flow separation in the
pipe covers a wide frequency range with many modes simultaneously

propagating.
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Previous investigations by Karvelis (1975), Walter (1979), Rennison
(1976), Norton, (1979) and Hyland, (1978) have been concerned with
the effects of pipe fittings, e.g. bends, valves and orifice
plates, on vibrational response and acoustic radiation from a pipe
with fully-developed turbulent flow. The work reported here is
concerned with detailed mean-flow measurements and the generation
and propagation of higher order acoustic modes in fully-developed

turbulent pipe flow with separation caused by an orifice plate.

Literature Review

Flow separation in a fully-developed turbulent pipe flow is a matter
of concern to designers as it poses difficulties for mathematical
modelling, and understanding of it is poor because of the inability

of conventional instrumentation to measure in reversing flows.

The flow structure associated with separation and reattachment of a
turbulent shear layer is important in a large number of engineering
applications. The flow, after separation, becomes a free shear layer
which grows into the adjacent recirculating flow, so that finally
the separated shear layer curves sharply towards the wall, where
part of the fluid is deflected upstream. The separated-flow

region seems to be dominated by low frequency oscillations, and, in
order to understand the separated flow, one should understand the
behaviour of reattaching flows. Until recently, few reliable
quantitative data on the structure of separated flow were available,
owing to difficulties with measurement. The quality of available
data is now improving, with increasing use of the laser anemometer

and multi-wire probes.
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Most of the studies of the reattaching shear layer are confined to
two-dimensional flows, such as steps and sudden expansions;

good reviews of the available data have been presented by Bradshaw
and Wong (1972) and Eaton and Johnston (1981). Langren and Sparrow
(1967) reported some measurements on the streamwise static pressure
variation for an end-cap orifice in a tube, and derived the length of
the separated-flow region from these measurements. McGuinness
(1978) studied the large-eddy structure in a separated flow behind
an orifice at the entrance of a pipe. No detailed measurements of
flow structure after the separation caused by an orifice plate are
reported in the literature. To the author's knowledge the only data
on the length of the reattachment downstream of orifice plates are
those compiled by Dyban and Epik (1972), but they did not study the

effects of Reynolds number,

Beyond the reattachment, the boundary layer again begins to develop
and after many pipe diameters (40-50) downstream the flow returns to
"the fully-developed undisturbed state. Numerous measurements of
flow structure downstream of the disturbed flow are reported, but
again almost all of them are for backward-facing steps and

sudden expansions (Bradshaw and Wong (1972), Ethridge and Kemp

(1978), Smyth (1979), Eaton and Johnston (1980)).

It has been established (Stratford (1959)), that the logarithmic law
of the wall is valid just before separation and also beyond re-
attachment. Stratford observed the existence of a half-power

law in the separated-flow region, while according to Schofield (1981)
this extends to the whole region of adverse pressure gradient; beyond
reattachment the extent of the half-power law decreases and that of
the logarithmic region increases. These studies and those of Perry

and Schofield (1981, 1983), Simpson, Strickland and Barr (1977),
Simpson, Chew and Shivaprsad (1981), Perry and Fairlie (1975) and
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Schofield (1981) are related to two-dimensional flow. Simpson

(1982) proposed a correlation for the backflow mean-velocity profile,
based on the maximum reverse velocity and its distance from the
wall. Schofield (1982) used the distance of the point of zero
velocity from the wall instead of maximum reverse velocity and
obtained an improvement on Simpson's correlation. No such compre-
hensive mean-flow measurements for the fully-developed turbulent

pipe flow, with flow disturbance caused by an orifice, are available,

It is established (Karvelis (1975), Norton (1979)) that flow
separation in fully-developed pipe flow, caused by pipe fittings,
generates an intense internal fluctuating pressure field which is

the sum of the turbulence and acoustic pressure fluctuations. The
pressure and velocity spectra of the internal sound field show a
strong plane-wave component at Tow frequencies and the presence of
higher-order acoustic modes at the higher frequencies. In the plane-
wave range the spectra have peaks at characteristic frequencies and

- the higher-order acoustic modes are most intense at frequencies

close to their cut-off frequencies. The acoustic modes thus generated

travel with small attenuation in the direction of flow and upstream.

Acoustic energy is also dissipated to the atmosphere through the

pipe wall, by means of vibration excited by the internal wall-pressure
field. Theoretical studies of acoustic plane-wave and multi-mode
transmission in pipes with no flow have been made by Cremer (1956),
Heckl (1958) and Morfey (1971). Vibrational response of the pipe to
the random wall-pressure field, due to the flow separation caused by
the p{pe fittings, has been investigated by Karvelis (1975), Rennison
(1976), Hj]and (1978), Norton (1979) and Walker (1979). Kuhn (1974),
and Kuhn and Morfey (1976) investigated the transmission loss of

sound through pipe walls. Norton studied the excitation of the pipe



wall and sound power radiation from a pipe carrying fully-developed
turbulent flow with various valves and fittings., Karvelis's work is
mainly an experimental investigation of the wall-pressure fluctuations

in piping containing control valves.

To the author's knowledge, no systematic experimental study of the
propagation of higher-order acoustic modes in the pipe with fully-
developed turbulent flow, or the variation of cut-off frequency with
the flow speed, is reported in the literature. It is known that the
cut-off frequencies of the higher-order acoustic modes are reduced

by a factor of /Tfﬁg with uniform mean flow (Mason (1969)). In a
pipe carrying fully-developed flow, the mean-flow velocity varies
over the cross-section even when the flow is undisturbed, and con-
siderably higher flow velocities exist in the separated-flow region
and in the vicinity of it. Now the interesting question is what is
the flow Mach number which determines the factor by which the cut-off
- frequencies are reduced. How do the cut-off frequencies change with
flow speed? Cut-off frequency for a propagating mode may change with
streamwise distance; therefore the cut-off frequency of a given mode
must correspond to the Mach Number at one particular streamwise

position.

In order to study the variation of cut-off frequency and modal
amplitude one needs to separate the higher order acoustic modes.
Various researchers have separated the higher order modes in a duct
with mean flow (Bolleter and Chanaud (1970), Mugridge (1969), Bolleter

and Crocker (1972), Moore (1972-79), Karvelis (1975), Norton (1979)).
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In the above cases, cross-correlation between two hot-wire anemometers
or two pressure transducers has been used to separate the various
order modes. Cross-correlation techniques, which can be used to
determine whether the acoustic energy being transmitted is in the
plane-wave or a higher-order mode, were used by Karvelis and more
recently by Norton. Norton extended the technique to jdentify the
contribution of plane-waves and higher order modes to the wall-
pressure fluctuations in various frequency bands. However, in
general, separation of radial mode orders in addition to the circum-
ferential ones, requires traversing the measuring instrument across

the radius or making measurements at more than one radius.

Kerschen and Johnston (1980, 1981a,b) developed a technique which
separates broadband noise propagating inside a circular pipe

into the higher-order acoustic modes. The technique uses
combinations of the instantaneous outputs of microphones located
around the pipe circumference. It has some advantages over the

- cross-correlation method: the instantaneous values of the modal
coefficient can be studied (cross-correlation technique produces the
power spectral densities of the modal coefficients), and considerable
simplification in measurements occur when the various circumferential
modes are not correlated. This technique has been used in the

present investigations.

Beatty (1950), Ingard and Singhal (1974) and Howe (1979) studied the
attenuation of sound in circular pipes. In all these cases, only the plane-
wave mode was studied and Beatty did not consider the effect of flow.
Ingard and Singhal derived an expression for the attenuation of the
plane-wave mode. Doak and Vaidya (1970), using perturbation methods,
obtained analytical expressions for the attenuation of higher-order

and plane-wave sound propagation, as a function of frequency, for
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nearly hard-walled pipes. They included the effects of the uniform

mean flow but not of shear.

Fricke and Stevenson (1968), Fricke (1971), Norton (1979) and Bull
and Norton (1981) have studied pressure fluctuations in separated
flows. Fricke and Stevenson and Fricke from their measurements in
flow over a fence concluded that the total rms wall pressure fluc-
tuations are associated with the convected turbulence in the shear
layer and ruled out any significant contribution from acoustic
waves. Bull and Norton and Norton made measurements in fully-
developed turbulent pipe flow through a 90° mitred bend. They
showed that, after about 12 pipe diameters, the total rms pressure
reaches an asymptotic value, higher than that found in undisturbed
flow; the difference was attributed to the contribution from the
higher-order acoustic modes. Mabey (1972) summarises various
measurements of wall-pressure fluctuations in separated flow, and
demonstrates that spectra for various flow geometries show
similarity when plotted in terms of a frequency parameter based on

the reattachment length.

As discussed earlier, the total rms pressure will be composed of the
turbulence and acoustic pressure fluctuations, and both will contribute
to the particle velocity, u . Both the turbulence and acoustic
pressure vary with streamwise distance x, and therefore u will also
vary with x. Hence the velocity spectrum may, at certain streamwise
locations, show spectral peaks corresponding to the higher-order
acoustic modes, and may also show up radial modal patterns at a given
x, depending on the relative amplitudes of turbulence and acoustic
contributions to u . In the present investigation, extensive hot

wire measurements have been made to identify the higher-order acoustic

modes from the velocity spectra.
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So far, the literature review has been concentrated on the mean-flow
measurements, measurements of the pressure fluctuations and separation
of acoustic modes. In order to predict the cut-off frequencies of
the higher-order acoustic modes and their relative magnitude at
various radial locations, one needs to know precisely the variation
of acoustic pressure and cut-off frequencies in the fully developed
turbulent pipe flow. After a classic paper by Pridmore-Brown

(1954) on the propagation of acoustic waves in a two-dimensional duct
with flow, numerous publications have appeared in the literature.

The earlier studies were limited to the two-dimensional duct, but
later Mungur and Plumblee (1969) derived an equation for the sound
propagation in a circular duct with mean flow. Studies by Mungur

and Plumblee and others (e.g. Savkar (1971), Shankar (1972a,b),

Ko (1972-73), Mikhail and Abdelhamid (1973a,b)) were Timited to
annular ducts or to the use of a mean-velocity distribution given

by a power law or a boundary layer with uniform flow in the core. An

. excellent review of the available literature is presented by Nayfeh,

Kaiser and Telionis (1975)., 1In the present work, results for the
sound propagation in circular duct with hard walls using a fully-

developed turbulent flow profile have been obtained.

Aims of the Present Investigation

As discussed in the preceding section, little work on the detailed
structure of the separated flow caused by an orifice plate in a
pipe, or on the reattaching layer, is reported in the literature.
Extensive experimental data on the vibrational response of the pipe
and the acoustic radiation from it, for various flow disturbances,
have been collected. Almost all of the available literature on

noise due to internal flow disturbances in pipes is concerned with
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the process of conversion of the pressure fluctuations associated
with a given internal acoustic field, by their interaction with

the pipe wall, into externa]]y-radiéted acoustic energy. No compre-
hensive measurements in fully-developed turbulent pipe flow of

the propagation of higher-order acoustic modes, or of the variation
of their cut-off frequencies and modal-amplitude attenuations

with flow speed, size of obstruction and streamwise distance are

available,

In this investigation comprehensive measurements of the flow resulting
from the separation of a fully-developed turbulent pipe flow, caused

by an orifice plate, have been made.

The general aims of the investigation can be defined as follows:
(i) The development of an analytical method for the solution
of the convected-wave equation for sound propagation in
fully-developed turbulent pipe flow (with the appropriate
mean velocity profile), for use in the study of
(a) modal cut-off frequency,
(b) acoustic pressure, axial particle velocity and radial
particle velocity variation across the pipe radius,
(c) modal phase speed,
and their variation with sound frequency and flow Mach

number,

(i1) To measure mean-velocity profiles downstream and upstream
of the orifice plate and the positions of the separation
and reattachment points, and hence to study the flow

development through separation and reattachment.

(iii) To study the wall-pressure characteristics, spectrum levels

and generation of higher order modes for various sizes
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of orifice plate and flow speeds. It is also intended to
study the variation of modal amplitude and cut-off frequency
with streamwise distance for various flow conditions, and
to establish the effective Mach number of the flow system

by which the cut-off frequencies are scaled.

To study the turbulence properties and velocity spectra

for various flow speeds and orifice sizes, and to identify
the regions in the flow where the higher order acoustic

modes are detectable, It is also intended to study the
variation of the modal amplitude of the axial component

of acoustic particle velocity across the pipe radius, and

the variation of cut-off frequency with flow Mach number, and

to relate them to the wall-pressure and theoretical results.

To study the fluctuations in the line of flow reattachment.
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CHAPTER 2

PROPAGATION OF ACOUSTIC WAVES IN FULLY-DEVELOPED

TURBULENT PIPE FLOW WITH HARD WALLS

Introduction

Disturbances to fully-developed turbulent pipe flow which cause flow
separation are responsible for the generation of a strony sound
field in the flow which propaygates throughout the fluid in the
piping system. The pressure spectrum of the sound field shows a
strong plane wave component at low frequencies and the presence of
higher order acoustic pipe modes at higher frequencies. Earlier
studies of acoustic wave propagation in circular and annular ducts
with hard walls were limited to axisymmetric modes. In the study of
external noise radiation from piping systems, resulting from pipe
wall vibrations excited by internal acoustic fields, it is important
to know the propagational characteristics of both symmetrical and
asymmetric acoustic modes. It is also important to know the modal
cut-off frequencies fairly accurately to enable modes to be iden-
tified in pressure and velocity spectra and also for the prediction
of “coincidence" (phase speeds of structural and acoustic modes

being equal) frequencies excited by flow disturbances.

Various aspects of acoustic wave propagation in circular and annular
ducts with soft and hard walls containing shear flow have been
studied by a number of investigators : Mungur and Plumblee (1969),
Doak and Vaidya (1970), Eversman (1971, 1972, 1973), Ko (1972 and
1981), Savkar (1971), Shankar (1972a,b), Mikhail and Abdelhamid
(1973a,b). An excellent review of the work has been presented by
Nayfeh, Kaiser and Telionis (1975). In almost all cases the mean

velocity profile of the shear flow has been taken as that of fully
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developed laminar flow or as a uniform core flow with a thin boundary

layer at the wall,

However Savkar, Shankar and Eversman have given results for a

1/7th power law velocity distribution. This distribution gives an
infinite slope at the wall; and hence the resulting wave equation is
singular at the wall. In the present study a three-region (viscous
sublayer, logarithmic region and central core region) mean velocity
distribution has been used. The results have been obtained by numerical
solution of the convected-wave equation, for flow Mach numbers up to
0.6. The numerical scheme, for any specified acoustic mode, flow speed
and pipe wall impedance, allows the determination of the cut-off
frequency of the mode, and, for any specified values of the frequency
parameter wa/c, the propagation constant of the mode and the radial
distribution of acoustic pressure and velocity. Although the scheme

is applicable to both hard-walled and soft-walled pipes, only results
for hard-walled pipes, which are relevant to vibration of and acoustic
radiation from industrial piping systems, have been included. Centre-
line Mach numbers up to 0.6 and values of wa/c up to 30 have been
considered adequate to cover cases of interest. Total temperature has

been taken to be constant across the pipe diameter.

Acoustic Wave Propagation in a Pipe for the Cases of Stationary

Internal Fluid and Uniform Flow

The wave equation governing propagation of acoustic pressure waves

inside a circular pipe containing stationary fluid is,

@
N

1 2
cZ - vp =0, (2.1)
In the solution to this equation for harmonic waves in a hard-

walled pipe of constant cross-sectional area, the pressure can
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be represented in the form (in the coordinate system illustrated in

Figure 2.1)
p = CP(r)el (kyxtme- wt) | (2.2)

The solution wust be continuous at & = U and 8 = 2w, and therefore
must be an integer. The function P(r), representing the radial

variation of pressure amplitude, is then given by the Bessel equation

d2p 1 dP m2
arZ trdr t Ckpn - 72)P =0 . (2.3)

The solution satisfying the wall boundary conditions and remaininyg
finite on the pipe axis can then be expressed in the well known
form (see e.y. Morse and Ingard (1968))
- - - i(k,x-wt)
p(r,e,x) TV (Ayy cos me + B sin me)J, (kg rle \ox .
m n
(2.4)

The «yn are eigenvalues which satisfy the hard-wall boundary

condition
J'( kgn ) = 0, (2.5)

where the prime denotes differentiation of the Bessel function
with respect to its argument, and the axial and transverse wave
number components are related to the freyuency by
w
k2 + k2 = (92, (2.6)
mn X o

The dispersion relation between ky and w can therefore be written in non-

dimensional form as

Kx = * {Qz L (Kmna)2 Py (2./)
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X

FIGURE 2.1 : COORDINATE SYSTEM
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where Ky = kya, @ = wa/c, and the plus and minus signs correspond
to wave propagation in the positive and negative axial coordinate

directions respectively.

The (m,n)th acoustic mode has m plane diametral modal surfaces and
n cylindrical nodal surfaces concentric with the cylinder axis; it
can propagate only at frequencies above its cut-off freguency

which is given by

(@ codmn = <mnd - (2.8)

The modes can be classified as plane waves (m = n = 0), symmetric
higher order modes (m = 0, n > 1) or asymmetric higher order

(spinninyg) modes (m > 1, n » 1).

At cut-off there is no propagation of sound energy along
the pipe and therefore the axial group velocity is zero. As

frequency increases above cut-off, the wave form beyins spiralliny
down the pipe, finally approaching plane wave velocity in both

phase and group ve]ocity;*

For the case in which the fluid inside the pipe is in uniform
axial motion with velocity U and Mach number M, the governing

equation is formally the convected-wave equation

1 32 2M 32 32 (2.9)
cZ ng g atai + M2 axg -v2p =0 .

For harmonic waves the variables are again separable and the pressure
can be represented by equation (2.2). The radial distribution
function is again given by equation (2.3), the solution can still

be expressed by equation (2.4), and the eigenvalues kg are given

by the boundary condition equation (2.5). This is to be expected

¥ (see e.g. page 70, Stephens and Bate (1966) for definitions of
phase velocity and group velocity)
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since the system of acoustic inodes in a stationary fluid is simply
being translated relative to the space-fixed coordinate reference

frame at mach number M., Eyuation (2.6) is, however replaced by

w
K2+ k2 = (—- Mky)2 , (2.10)
mn X Cc

the term M ky being associated with the Doppler treguency shift

experienced by a stationary observer as a resuit of the fluid motion.

The non-dimensional dispersion relation follows from equation

(2.10) as

-Me £ V7 - (kppa)? (1-M%)

, (2.11)
kg = (1-m2)

which replaces equation (2.7).

Positive and neyative values of ky, (which do not coincide ex-
clusively with the positive and negative signs in equation (2.11))
correspond to downstream and upstream propagation respectively.

The cut-off frequency is modified to

(2 codmn = (kpna)y1-M2 , (2.12)

and is associated with a wave propagating upstream and having an

axial wave number of

M

Ky = -
y1-M2

(kmna) . (2.13)

The Convected-Wave Equation in Cylindrical Polar Coordinates for

Fully-Developed Shear Flow

When the pipe contains a shear flow the convected-wave eyuation
which then governs acoustic propagation does not admit simple

analytical solutions as in the two limitiny cases which have been
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referred to. The complexity introduced by the combined effect of
convection and refraction resulting from transverse velocity
gradients necessitates numerical solutions. Numerical results for
various aspects of propagation in circular or annular ducts have
been obtained by Munyur and Plumblee (196Y), Eversman (19Y7la, 1973),
Shankar (1972), Ko (1973, 1981) and Mikhail and Abdelhamid (1973a,b)
Doak and Vaidya (1970). A comprehensive review of methods of
calculating wave propagation in ducts carrying shear flows is

given by Nayfeh, Kaiser and Telionis (1975).

The derivation of the wave equation governing propagation of sound
in a fully-developed duct flow in cylindrical polar coordinates is
given by Mungur and Plumblee (1969). The term fully-developed, as
used here, implies that the mean flow is confined to the axial
direction (the mean flow velocity components in both the circum-
ferential and radial direction are zero) and that the mean flow
velocity at a yiven radial position is independent of the axial
coordinate. The only mean shear is therefore that associated
with the variation of axial mean velocity U with the radial
coordinate, namely au/sr. The effects of viscosity are neylected
except in so far as they govern the mean-velocity distribution.
Under these conditions the equations obtained by first order
perturbation of the Navier-Stokes equations and the continuity
equation, linearisation by subtraction of the time averaged
quantities, and neylect of products of perturbation velocities

are given by Mungur and Plumblee as

au LY u -_13ap

at * Var TUBX = p, X (2.14)
v v -_13p

at * U ax = o, 8r (2.15)
W oW

ol -1 0p .

st oX -——p-;—r" 70 (2.16)
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QL

Qu v W Vv
st T Uax T el ax tar t e) o 7=V

, 0 (2.17)
In addition to the neglect of viscous effects, it is assumed that
the effects of thermal conductivity of the fluid are negligible;

this allows the pressure and density fluctuations to be isentropically

related so that
p = pc2 (2.18)

In Mungur and Plumblee's analysis the temperature of the fluid is

taken to be uniform throughout, in which case ¢ is constant.

Addition of the three equations obtained by differentiation of
equations (2.14), (2.15) and (2.16) with respect to x, r and o
respectively, and the use of equations (2.15), (2.17) and (2.18),
leads to the convected-wave equation in the form

1 32 M 32p 32 aM av (2.19)
— 2 - _— 2 =
<z atg 20 axat T M axg 2p,Carax " VP =L

For the uniform flow case aM/ar = U and the equation reduces to
equation (2.9), while for stationary internal fluid M = U and the

equation further reduces to equation (2.1).

For a harmonic wave propagatinyg in the direction of flow, with p and u

proportional to exp[i(vx-wt)], where v is a propagation constant,

] 9
—_+ U —
(at ax)

i (wU-w)

- iw(1-MK) (2.20)

where K = vc/w and M = U/c is the local flow Mach number. Here v is

allowed to be complex, so that its real part is the axial wave number
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component ky and its complex part gives the spatial attentuation of
the acoustic wave. Equations (2.20) and (2.15) allow the radial

acoustic velocity component to be expressed as

1 )
PR et . (2.21)
i pow(l-MK) ar

Substitution of equations (2.20) and (2.21) in equation (2.19) then

leads to
1 32%p M 32%p 92p 2K aM 3p _ (2.22)
TZREZ *+ 2 C axat * M2 oxZ T {I-MK) ar ar VAP = U .

Separation of all variables is again possible, and the acoustic

pressure can be expressed in the form
p = CP(r)el(vxime-ut) (2.23)

Combination of equations (2.22) and (2.23) and introduction of
the non-dimensional variables @ = wa/c and R = r/a yields the

equation for the radial distribution function P(R):

d2p 1 2K dM dP m2
qiZ + (R + TomK dr)aR + 920(1-MK)2 - K2 - g7g7]P = U .
(2.24)
The boundary conditions to be satisfied are that
(i) dP/dR = 0 for axisymmetric (m=0) modes |
at R = 0 (2.25)
P =0 for asymmetric (m » 1) modes
and
(ii) B = p,C v/p at R = 1, where g is the specific acoustic

admittance of the pipe wall.

From equations (2.21) and (2.23) the latter condition is equivalent

to
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Qo

p
dar = 1 asL(1-MK)Plp=1 (2.26)

which, for the case in which the mean flow satisfies the no slip

condition at the pipe wall (M = 0, at R = 1), becomes

[a%
~

drR = 1 QP at R = 1. (2.27)

For a hard-walled duct (8 = 0), this boundary condition further

reduces to v = 0 or

d
gR=0atR =1 . (2.28)

x|

The singular nature of equation (2.24) at R = 0 prohibits applic-
ation of the boundary condition (2.25) at the centre of the pipe.
Eversman (3) has dealt with the problem by shifting the centre to
a point n, where n << 1, In the present study also, the boundary

conditions are applied at a point close to the centre (e.g. n < 0.001).

Mungur and Plumblee (1969) derived equation (2.24) and devised an
iterative trial and error process for determining the K eigenvalues,
utilising a fourth-order Runge-Kutta numerical inteyration scheme.
They present results for the shapes of axisymmetric (m = 0) modes

in annular ducts with rigid walls containing fully-developed

laminar flow with a parabolic distribution of mean velocity.

The same equation has also been solved numerically by Eversman
(1970) using similar techniques. The results given by Eversman

are for the effect of shear flow on the attenuation of axisymmetric
acoustic waves in a soft-walled circular pipe with a mean axial-
velocity distribution consisting of a central region of uniform

flow and a boundary layer region adjacent to the pipe wall in
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which the mean velocity drops sinusoidally (over a quarter-wave)

from the core-flow value to zero at pipe wall.

Eversman [1972] used a 1/Nth power law velocity profile to solve the
same equation for the case of lined annular ducts. He derived a
method to avoid another singularity (due to infinite slope of the

velocity) at the wall because of 1/Nth power law.

Propagation of plane waves in a two dimensional duct containing sub-
sonic flow was considered by Shankar [1972]. He solved the initial
value problem in time and space within the framework of a perturbation
scheme about uniform flow. Though his scheme can be used for

weakly sheared flow, it cannot be used for boundary layer type

flow e.g. no slip boundary.

Shankar (1972a) has also obtained numerical solutions to equation
(2.25) for hard-walled circular pipes and annular ducts with a 1/7
power distribution of axial mean velocity over the flow cross-
section. Results are given for mode shapes and propagation
constants (both real and complex, the latter corresponding to cut-
off modes in a hard-walled duct), but again the analysis is confined

to axisymmetric (m = 0) modes.

Mikhail and Abdelhamid (1973) give results of numerical solutions
for annular ducts for both axisymmetric and asymmetric modes for
the same form of mean velocity distribution as used by Eversman
(1970) for incompletely-developed flow and for a parabol ic
profile of fully-developed flow. They have considered the effects
of mean-flow Mach number and frequency parameter on mode shapes
and propagation constant for both upstream and downstream wave

propagation. The results indicate that the acoustic waves are
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refracted towards the wall for downstream propagation and away
from it for upstream propagation, and that the effect is greater
the yreater is the mean flow Mach number and the greater is the
difference between the frequency of the wave and its modal cut-off

frequency.

In the analysis of the response of the wall of a hard-walled pipe
to excitation by an internal acoustic field in the presence of
shear flow, and the external acoustic power radiated by the
vibrating wall, non-axisymmetric modes (m # 0) may be as important,
if not more important than, axisymmetric modes. It will be noted
that in a pipe with stationary internal fluid the non-axisymnetric
modes (1,0), (2,0) occur at lower frequencies than the lTowest-

frequency axisymmetric mode, the (U,1).

Since the level of pipe wall response to excitation by these
acoustic modes depends on the deyree to which their phase velocities
and wave numbers match those of flexural waves in the pipe wall at

a given frequency, it is important to be able to calculate the
effects of a shear flow (and in particular that corresponding to
fully-developed turbulent pipe flow) on mode shapes and phase
velocities of both axisymmetric and non-axisymmetric acoustic

modes.

To this end, the convected-wave equation derived by Mungur and
Plumblee, equation (2.24) has been solved numerically for both
upstream and downstream wave propagation, over a range of values
of the non-dimensional frequency parameter 0 < @ < 30 and for a
range of flow conditions, 1In all cases, a radial distribution of

mean axial velocity corresponding in detail to that of fully-
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developed turbulent pipe flow has been used in the analysis
(although no account is taken of the effects of the turbulent
motion itself on acoustic wave propagation). Calculations have
been made for flows with various values of My, the centre-line
Mach number, in the range 0 < My < 0.6. Results will be presented

for all modes with 0 < m < 5 and 0 < n < 5 (see Figure 2.2).

However before results are considered, details of the mean velocity
profile used and of the techniques used to obtain the numerical

solutions will be given.

Mean Velocity Profile

So that the mean velocity profile used in the calculations is
truly representative of fully-developed turbulent pipe flow at all
radial positions, three regions are distinyuished - the viscous
sublayer and buffer layer, the Togarithmic region and the central
core region, each with its own form of velocity distribution, with

appropriate matching conditions at the limits of the regions.

2.4.1 wall region : 0 < Y < 33.2

The basic relation for the velocity distribution in this
region, which includes the viscous sublayer and the buffer
layer, has been based on the velocity gradient distribution

given by Bull (1969), namely

Ut Yv*oivt, 1 vt -vtral
vF = [1+3m+2@E") +5(GE) le , (2.29)
where a' and b' are constants with the values a' = 4.0 and

b' = 1300. This relation yields the appropriate limitiny

form of velocity distribution at small Yt namely
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2.4.2

2.4.3

-2bH-
Ut = Yt + cY™ + .., (2.30)

where ¢ is a constant, and at very small Y* reduces to the

sublayer variation
ut = Y+, (2.31)

Integration of equation (2.29) leads to the velocity
distribution for this region, which will be denoted by

Ug, given by

+ ) 720 1
Up = af{(3 + —) - [=(720+720Y +360Y2 +120Y3 + 30Y% +6YS +Y6)
b b a a a a a a
1
+ (3+2Y +=Y2 yle-Ya}, (2.32)
a 2 a

where Y, = yt/a'. This is in close ayreement with the

distribution recommended by Coles (1954) for this reyion
(see Shubert and Corcos (1967)) and at y* = 33.2 matches
the logarithmic profile as given below in Section 2.4.2

with B = 5.0,

Logarithmic region

Once Yt exceeds 33.2, it is assumed that the velocity

distribution is loyarithmic with the basic form

1
ut = 2 In Yt +8 , (2.33)

with K = 0.41 and B = 5.0,

Composite velocity profiles

Calculations have been made with two different forms of
composite velocity distribution, one based on the velocity
distribution in the central core region of the flow yiven

by Townsend (1976, p.149) and the other based on the
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correction function proposed by Allan (1970).

For the core region, Townsend gives the parabolic distribution
vt = Uy - E R (1 - y/a)2, (2.34)

valid for o < Y/a < 1. This distribution follows from the

linear variation of shear stress with radial distance which

characterises fully-developed turbulent flow together with

the assumption of constant eddy viscosity vT over the

central region of the flow. The flow constant for the

central region Rg is given by Rg = RU;/v I The value

of o corresponds to the point where the eddy viscosity

in the equilibrium region of the turbulent boundary layer at

Y/a < a, which is given by KU.Y, becomes equal to the

constant value vT of the core region. This leads to
a = 1/KRg . (2.39)

With Townsend's value of Rg = 15.2 and K = 0.41, o = U.160.
For Y/a < a (but outside the buffer layer), the loyarithmic

relation of equation (2.33) applies. The composite profile

is thus
ut = |y for 0 < ¥Y'< 33.2 (2.36a)
1
k1n vyt + 8 for 33.2 v/U_< y < 0.16a  (2.36D)
+ i Y 2
Vg = =R (1 - =)2 for 0.16 < y/a < 1.0 (2.36¢)
2 a

The relation between the friction velocity and the centre-
Jine flow velocity is obtained by equating the logarithmic

and core distributions at y/a = o as

on 1l aRe 1 ) ]
UO = R]n(?—) + B + éRs(l—a) N (2.37)
0

where the Reynolds number Re = Uga/v.
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The distribution given by Allan applies to all radial
positions outside the buffer layer. For a pipe with a

smooth internal wall, it takes the form

1
U vt e K'fc(g, k'), (2.38)

with K' = 0.7 and the "correction" function

1 - cos(By/a
fFo(L,k') = yia) (2.39)
a 1 - cos B

The parameter g is the solution of the equation

g sin B 1
1-cos 8 = -~ KK'- (2.40)

With K = 0.41 and K' = 0.7 its numerical value is B = 4.46606
(a value slightly different from that given by Allan, owinyg
to a slightly different choice here of the value of K).
Equation (2.38) then becomes, with B = 5.0U,

1
Ut = = 1n Y* + 5,563 - U,5630 cos(4.4666 y/a). (2.41)

~

For Y¥ < 33.2 the values of K'f_(y/a, K') are insignificant
compared with the values of Ug given by equation (2.32),
and hence the correction function can be applied at all y.
The composite distribution in this case therefore becomes
ot = Kf (L, k) (Y for 0 < Y* < 33.2
a (2.42)

1
5 In Y+ + B for 33.2 v/U_ <y <2

The expression for Ug is yiven by the second relation of

equation (2.42) with y = a, or by eyuation (2.41), and is
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+_1 ReO . '
Ug -‘Elnazf + B + K'f(1,K')
0
1 Reg
= =-ln— + 5.7V 2.43
0 nU+ (2.43)
0

For calculation purposes, where the centre-line flow velocity
Mach number is assiyned a chosen value, it is necessary

to solve either equation (2.37) or (2.43) by iteration to

+

determine the value of UO,

and hence UT, to allow all

parameters in equations (2.36) or (2.42) to be evaluated.

Of the two profiles considered above, equations (2.36)

and (2.42), because the former based on Townsend's parabolic
distribution in the core region has a discontinuity in slope

at y/a = a , and falls below the loyarithmic-law line (as

shown in Figure 2.3, in which ut - UTog’ the difference

in U* given by equations (2.36b) and (2.36¢) has been plotted),
the latter has been preferred. Althouyh resuits for both
profiles have been obtained, only those obtained using Allan's

profile function are presented.

+

Vo

and then U_ were evaluated by iteration of equation

(2.43), tor My between U.Ub to U.b.

2.5 Numerical Procedure

Equation (2.24) has been solved numerically, as an initial
value problem, by means of a forward integration procedure

employiny the fourth-order Runge-Kutta method (Kreysziy, 1972).

Equation (2.24) may be rewritten as

d2p  Cy(R) dP  Cu(R)
— —_— P = U
dR2 R dR R2

) (2.44)
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where the coefficients Cy(R) and Co(R), which are dependent on R

through the Mach number variation across the pipe, are yiven by

2KR dM
C]. E 1 4 —— . =
1-MK dR (2.45)
and

Co = (RR)2[(1-MK)2 - k2] - m2 .

The boundary conditions for a hard-walled pipe are
dpP
drR = U at the wall (R=l)

and those given by equation (2.25) at R = 0.

Equation (2.44) may be rewritten as pair of first-order

equations
dpP
drR = Q
and (2.46)
dQ Ci(R)  Ca(R)
—_= - Q - P .
drR R R2

If the region 0 < R < 1, where the solution is required, is divided
into N steps with a step width h (not necessarily constant), then
PN+l and Qu+1» the the values of P and Q at R = (n+l)h, can be
obtained from the corresponding values P and Q, at R = nh from
the relations

Pne1 = Pp + h(Q + Kp)

and

*
Qn+1 Qn + Kn, (2.47)
where

Kn = 1/3 (Ap + By + Cp)

K> =1/3 (A, + 2B, + 2C, + D)
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and

Ay = 1/2 h £(Ry, Pps Qs
By = 1/2 h f(Ry + 1/2 h, Ppn + Bps Un + Ap),
Ch =1/2 h f(Ry +1/2 h, Py + Bp, Qny + Bp)s
(2.48)
Dp =1/2 h f(Rp + hy, Py +8p, Qpn 2C,) s
By = 1/2 h (Qn + 1/2 An),
5n=h(Qn+Cn)- |

Equations (2.47) and (2.48) with the initial values for P0 and Qo
allow Equation (2.44) to be integrated numerically over the pipe
radius from R = 1 to R = 0 and the value of P, at R = 0 (subject to
qualification for the singularity at R = 0 discussed below) obtained.
The procedure for solving Equation (2.44) is then as follows (and
as values of P and K are complex for soft-walled ducts and in some
cases, discussed later, for hard-walled ducts also, it is done

in complex mathematics). Values are chosen for

(1) centre line flow mach Mumber Mo,

(i) circumferential mode order, m ,

(ii1) radial order, n, and

(

iv) non-dimensional frequency parameter, Q.

The initial value of dP/dR is zero at R =1 (i.e. Q_=U). The
initial value of P at R = 1 can be arbitrarily assiyned and is here
taken to be P0 = (1+i) (and this does not affect the eigenvalue K, of

the equation (2.44)).

A value of K is then assumed for the given m, n, My and @ and the
integration using Equations (2.47) and (2.48) carried out across
the pipe radius starting at the wall. Smaller steps are taken in
the sublayer and buffer 1ayer'regions, Y+'< 33.2 (h=0,0005) than

in the logarithmic and core region of the velocity profile (h=0.02).
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The integration is continued to the point ¥ = 1l-e (e << 1) just

short of the pipe centre-line (it cannot be taken right to the
centreline, Y = 1, because of the singularity associated with the
terms (1/R) (dP/dR) and m2/R2 at R = 0). If the boundary condition at
the centre line (Q, = O for m=0 modes or Pp = 0 for m > 1 modes)

is not satisfied (which generally will be the case), the integration
is repeated with a new value of K. A good initial guess for K (as
suggested by Shankar (1972a)) is the value corresponding to uniform
flow with Mach number Mo’ for the given m,n and Q. As the K value
for the sheared flow lies between the uniform and no-flow values,

the initial guess for K (in increments AK) is moved towards the
no-flow value and the variation of P and Q (i.e. dP/dR) across

the pipe radius calculated ti11 the pressure distribution exhibits
the appropriate number of sign changes (namely n) between Y =0

and Y = 1-¢, and satisfies the boundary condition. In practice,

to reduce the computing time, P and dP/dR are not calculated across
the complete radius for an assumed value of K, but a check is kept on
the number of sign changes in the pressure and if this number exceeds
the required one, the integration is restarted from the wall with

a new guess.

The situation is compliicated in the case of a soft-walled pipe or
when K is complex for a hard-walled pipe (discussed later in this
section), as the check on sign has to be kept for both the real

and imaginary values of P and dP/dR; and to complicate the situation
further, a change in the guess requires a change in both the real

and imaginary parts of K.
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After the range of K is established, the increment is cut to half
and the integration is repeated. The increment is again cut to
half, and added to or subtracted from the previous value dependiny
upon the number of sign changes in P (or dP/dR for the m=U case).
The process is repeated until the boundary condition at the centre
is satisfied. The inteyration is then stopped and the guess is
the required value of K. Integration is also stopped if the
increment becomes less than a specified limit (a value of 10-10 45
used). In real arithmetic it is almost impossible to achieve a
value of zero for P and dP/dR for the boundary conditions to be
satisfied, and hence a value of 10~% is normally used as the
1imit. This procedure for finding the roots of equation (2.44) is
illustrated in Fiyure 2.4, A step size of 0.0l has been found

to be adequate for @ > (qua), but for Qcg < Q < (qua) a

smaller step size (0.001) is required.

For each value of the freguency parameter @, there will be two values
of K which will satisfy equation (2.44), one corresponding to
downstream propagation and other to upstream propagation (see Figyure
2.6). The effect of shear is not to chanye the freyuency (yiven

by kgna = (Rco)nF) corresponding to zero axial wave number ky,

and therefore for @ < (Qco)NF both the values of K will be neyative,

i.e. both will correspond to upstream propagation.

Values of K will be real (imayinary part zero), for frequency
greater than the cut-off frequency Qcq of the mode, but for
Q < Qcg, K will be complex, i.e. the acoustic wave will be
attenuated with distance. Therefore, Qco is the Timiting

frequency, above which K will be real.
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Table 2.1
My = 0.2, @ = 20, A = 0.90842 Modes (2,n)
K (= Kx/9) Values for uniform| % difference
flow, AMg
QCO | |
Real Imaginary| Real Imaginary| Real |[Imayinary
3.00930| 0.85352 - 0.83452 - -2.226 -
6.59636| 0.79062 - 0.78842 - -0.278 -
9.80387| 0.71436 - 0.71349 - -0.123 -
12.,95096| 0.60045 - 0.60014 - -0.051 -
16,07541| 0.42726 - 0.42736 - +0,023 -
19.18925|-0.103138 - 0.10376 - +0.,565 -
22.29792|-0.18898| 0.50937 |-0.18788| 0.50935 |+0.582 -0.006
25 40463 |-0.18905| 0.80962 |-0.18788| U.80928 |+0.619 -0.042
28.51170(-0.18947| 1.05028 |-0.18788| 1.04952 |+0.839 -0.073
31.62116|-0.18975| 1.26586 |-0.18788| 1.26454 |+0.985 -0.100
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Table 2.1 shows a typical set of results for the values of K, in

this case for the (2,n) modes for Mg = 0.2 and @ = 20. It is evident
that when Q < Q¢g, the K have non-zero imaginary parts. (Calcul-
ations for the (U,n) modes with Mg = 0.3 and @ = 20 and with a mean-
velocity distribution corresponding to a 1/7th power law reproduced

the results of Shankar (1972b) accurate to three decimal places.)

Cut-0ff Freguency Calculations

The following properties of the cut-off frequency of an acoustic

mode are used in the scheme for its location.

(1) At frequencies below the cut-off frequency propagyation is
not possible and K then has a non-zero imaginary part.

(i1) At the cut-off freguency, the two solutions of equation
(2.44) become identical.

(iii) At the cut-off frejuency the yroup velocity do/dK is zero.

But its calculation is much more cumbersome than the calculation
of K, because here for each assumed value of frequency parameter
Q, both the eigenvalues of the equation (2.44) have to be calculated
usiny the procedure described in section 2.5. Then the process

has to be repeated for other assumed values of Q.

The first trial value of @ is chosen between (Qcq)yr and

(Rco)yr and K is calculated (both the eigenvalues if K is real).
Now the frequency step size, which is half the.difference between
cmnd (=0co) and (Rco)yr, is halved, and added to the previous
trial value of @ if the K calculated has a non-zero imaginary part
(subtracted, if K is real) to form the new trial @. The process

is repeated until

(1) K is real and the two eiyenvalues are the same, and
(1) the frequency step size is less than the specified tolerance
(1-10),

This scheme is illustrated in Figure 2.5.
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Effect of Shear Flow

The effect of shear flow on acoustic wave propagation in an annular
duct has been discussed by Mungur and Plumblee (1969), Mikhail and
Abdelhamid (1973a,b) and Shankar (1972a,b) for the case of a mean-
velocity profile made up from a thin boundary layer and a uniform
core flow. Here, the effects of shear, with a velocity profile
given by equation (2.42), on phase speed, acoustic pressure and
radial velocity profiles, and modal cut-off frequencies have been

investigated.

2.7.1 Dispersion Curves

Typical dispersion curves (Kx v. Q), derived from real numerical
solutions for K(Ky = @K), those for the (0,0), (2,3) and (5,4)
modes, are shown in Figure 2.6 for Mg = 0, 0.2 and 0.6, together
with curves for no flow and uniform flow with M = Mg. The
curves for shear flow lie between those for no flow and uniform
flow. The effect of flow is to translate the dispersion curve
towards lower frequencies and lower values of the axial wave
number component. The shape of the curve for the fully-
developed shear flow is similar to that of the no-flow and
uniform flow curves, but the curve is shifted less than the
uniform-flow curve. Compared with the no-flow case, the effect
of flow is therefore, in particular, to reduce the cut-off
frequency and to displace the axial wave number at which it
occurs to a negative value. Shear-flow cut-off frequencies

are higher than the uniform-flow values.

For Ky =0 i.e. K = 0, equation (2.24) reduces to

a2p  1dP m2
R +R AR + Le?2 -grzlP =0 (2.49)
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i.e.
d2p 1 dP m2
d@)Z * TR) dRay + L1 - aryzlP =0, (2.50)
whose solution is given by Jy(oR) = 0 3 (2.51)

and the boundary condition to be satisfied 1is
J'pleR) =0 . (2.52)

This is the same as for the no-flow and uniform-flow cases.
Therefore, for a yiven mode, the shear-flow value of Q corres-
ponding to Ky = 0 is the same as that for no flow and uniform
flow, and is independent of both flow Mach number and its
radial distribution. The dispersion curves for the three
cases therefore pass throuyh the same point at Ky = U, as

shown in Figure 2.6.

In the case of the plane wave (U,0) mode, K for uniform flow
(M = Mg) is independent of freguency and equal to 1/(1M),
Shear flow not only increases the value of K but also makes it

frequency dependent, i.e. even the plane wave becomes dispersive

(see Table 2.2).
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Table 2.2

Numerical solutions for K : (0,0) Mode; My = 0.2, Downstream Propagation

K= 1/(cy/c)
Q Uniform flow Sheared flow U.F. Approx.
for shear flow

= 0 0.83333 U.85334 0.84625

1 " " "

2 ! 0.85339 .

4 " 0.85373 "

6 " 0.85423 "

8 - U.85493 "

10 = 0.85579 g

12 " 0.85678 !

14 " 0.85786 !

16 e 0.85898 "

18 " 0.86010 "
20 " 0.86121 "
22 : 0.86227 "
24 ¥ 0.86328 !

26 ! 0.86424 !
28 " 0.86515 !
30 ! 0.86602 "
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2.7.2 Modal cut-off frequency

Cut-off frequencies have been calculated for twelve values of
Mo in the range 0.05 to 0.6, for modes with 0 <m < 5 and

0 < n < 5; these values are shown in table 2.3. They are lower
than the corresponding no-flow values, but somewhat higher than
those for uniform flow with M = My (in which case the cut-off
frequencies are reduced from the no-flow values by a factor
/I-mZ;). These effects are illustrated for typical cases in
Figure 2.7. 1In general, the progression of cut-off freguencies
follows that for no flow. However, it is interesting to note
that in two cases, those of the (4,0) and (1,1) modes, the

order of progression is reversed.

The numerical scheme for the calculation of cut-off frequency
described in section 2.6 takes a very large amount of computing
time, as trial values have to be selected for both freyuency Q
and K; and the computiny time increases with the mode order and
the Mach number of flow. However, as illustrated in Figure 2.8
by the values for (U,1), (2,3) and (»,4) modes, the ratio of
cut-off frequency to the no-flow value is very nearly a unigue
function of Mach number (although there is a suyyestion that
the ratio increases slightly with increasiny mode order at a
given Mach number). In fact, as found by Mikhail and Abdelhamid
(9,10), the cut-off frequency can be closely approximated by
that in uniform flow with an effective Mach number Mg = AMg
obtained by averaging over the shear flow Mach number profile,
where

1

[ M(R) dR. (2.53)
0

|
(@] -

Note that M, is not a mass-weiyghted averaye Mach number over
e

the pipe cross section.)
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Table 2.3
(a) Qco for Mg = 0.05

N, m
‘\\\\ 0 1 2 3 4 5

n
U 1.83979 3.051b57 4,19780 5.31352 6.41104
1 3.82782 5,32858 6.69953 8.U00755 9.,27374 | 10.51038
2 7.00839 8.53400 9.95954 | 11.33480 | 12.66969 | 13.97411
3 10.16299 11,70600 13.15742 14,57168 | 15.94885 17.29681
4 13.30978 14.86358 | 16.,33202 | 17.77210 | 19.17842 | 20.55712
5 16.45362 18.,01553 19.,49570 | 20.95432
6 19.59569

(b) Qco for Mg = 0.10
m

\\\\\\\ U 1 2 3 4 5

n
U 1.83422 3.04327 4.18717 5.30U78 0.39626
1 3.81679 5.31203 6.67922 7.98386 Y.24688 | 10.48U59
2 6.99025 8.50742 9.92888 11.30038 | 12.63173 | 13.93278
3 10,13943 11.66958 | 13.11676 14.,52703 15.,90041 17.24467
4 13.28264 | 14.821b5 | 16.28148 | 17.71742 | 19.11979 | 20.49476
o} 16.42443 | 17.96996 | 19.435%35 | 20.88972




(c) Qco for Mg = 0.15
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U 1 Z 3 4 5
n

U 1.82482 3.02920 4.16907 5.27896 6.37092
il 3.79634 5.28411 6.64492 7.94378 Y.20145 | 1U.43005
2 6.95311 8.46256 9.8772 11.24221 | 12.56754 | 13.86286
3 10.08580 | 11.60811 | 13.04811 | 14.45160 | 15.81857 | 17.1%672
4 13.21257 | 14,74356 |