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SUMMARY

In two-dimensional bow-like flows past a semi-infinite body, one must in gen-
eral expect a free-surface discontinuity, in the form of a splash or spray jet. How-
ever, there is numerical evidence that special body shapes do exist for which this
splash is absent.

In the first part of this thesis an attempt is made to demonstrate steady state
flow for an arbitrary (non-special) bow shape. Such flows necessarily include a
splash jet, i.e. a portion of the incident stream is deflected upward and backward
in the form of a jet, which then (in the presence of gravity) falls freely forever.
This problem is exactly solved here via hodograph techniques, but only for infinite
Froude number, i.e. by letting g = 0.

In the middle part of the thesis, conditions are established on the bow geom-
etry in order that it should be splash-free at zero gravity, by solving the mathe-
matical problem exactly using complex variable techniques, assuming a continuous
non-stagnant flow attachment at the extreme bow. Then solutions are obtained
for finite non-zero gravity by solving a non-linear integral equation numerically.
A class of splashless non-bulbous body geometries with a downward directed seg-
ment at the extreme of the bow, to which the free surface attaches tangentially, is
discussed in detail.

In the final part of the thesis, the flows of interest possess a stagnation point at
the attachment point and demand underwater bodies of bulbous type, in order to
be splashless. The nature of the solutions is discussed, giving analytical evidence,

and a numerical scheme is then presented. The variation in the bulb shape and



size with Froude number is discussed in detail. Figures and tables are given at the

end of the each chapter.
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GENERAL INTRODUCTION

One of the most important problems in ship hydrodynamics concerns the
wave resistance of the ship. In particular the resistance is strongly influenced by
the flow pattern around the bow. The search for means to reduce or possibly
to minimise this resistance has taken many directions. So far, one of the most
significant solutions has been the development of a bulbous shape bow, that dates
back to 700 or 800 B.C.

Due to the lack of adequate mathematical theories and related experimental
results concerning the bulbous bow, as well as the added cost in their construction,
until the nineteenth century many ships did not seem to have them and so were
excluded from whatever advantages might have ensued.

The bulbous bow reappeared in the nineteenth century with the advent of
mechanical propulsion. As a result of various developments in war-ship design,
this bulbous bow became a distinctive feature at the beginning of the twentieth
century. It was on hulls of this type that David W.Taylor[7](1911) did his exper-
iments and observed a reduction of resistance and a hydrodynamic superiority in
higher speed ranges. Taylor was convinced that a bulbous nose located deeply
at the forefoot and of rounded shape would produce less wave drag, because of a
newly created pressure pattern in the vicinity of the bow wave. Since then, bow
wave phenomena have been studied experimentally and theoretically by many out-
standing hydrodynamicists. From the modern hydrodynamicist’s point of view,
the wave resistance of the ship can be dissected into two parts: one associated
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with the non-breaking waves that are radiated far away from the bow, and the
other associated with the wave energy that is dissipated by breaking close to the
bow. This situation was first described by Froude(1955).

The non-breaking part is the one which was of main concern to Taylor, and
the classical work on use of bulbous bows to reduce non-breaking wave resistance is
that of Inui [13,14,15,16,17]. The breaking resistance received little attention until
Babal8,9] showed its importance. Since then, many researchers have studied the
bow wave-breaking both experimentally and theoretically. Dagan and et al [11],
Tnui et al [12] and Baba[10] demonstrated the effect of reducing wave-breaking
resistance by a bulbous bow. The so-called breaking waves are not so simple that
they can be described in a few words. The term bow-wave breaking was used by
Babal[g] for the white waves which looked like a necklace of pearls surrounding the
ship. This term implied a plunging type of breaking, as defined in Peregrine(8],
which breaks down vortically at the bow, and which was related to a spray jet by
Dagan and Tulin[11]. In the latter theoretical study of the phenomenon for two-
dimensional steady flow, breaking of the free surface was assumed to be related
to a local Taylor instability, and application of the stability criterion determined
the value of the critical Froude number which characterized breaking. Dagan and
Tulin’s high Froude number solution was based on a model of a jet detaching from
the bow and not returning to the flow field.

This free streamline discontinuity in the form of a spray jet was later discussed
by Tuck and Vanden-Broeck[2] for the flow around semi-infinite bodies. They
called flows without such jets “splashless” and pointed out that in general if the
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flow direction is reversed, so solving a stern rather than bow flow problem, a train of
waves can be expected at downstream infinity. On the other hand, if one has been
able to construct a special stern flow without such waves, that flow can be reversed
in direction to yield a splashless bow flow. Examples of such near-bow or near-
stern flows were computed by Vanden-Broeck and Tuck[3] using series expansion
in the Froude number, and also by Vanden-Broeck, Schwartz and Tuck[4]. These
authors showed the existence of downstream waves for stern flows, but were not
able to find continuous solutions without waves because of the restricted geometries
they considered. However their work suggested that the wave-free and splash-free
property may exist only for specially selected body geometries. Later, Vanden-
Broeck and Tuck[5] studied linear and nonlinear free-surface flows under gravity in
a two-dimensional framework, in which a disturbance was caused to an otherwise
uniform stream by a distribution of pressure over the free surface. Even though
such a disturbance, in general, creates a system of trailing waves, they observed
the existence of special disturbances that do not have waves. Their work strongly
suggested the existence of special splashless bow geometries. The investigation
made by Schmidt[1] using linearized theory has also suggested such bow flows.
The flows of interest can possess a stagnation point at the attachment point,
or alternatively can involve tangential (continuous) attachment. Tuck and Vanden-
Broeck[2] demonstrated numerically one such bow shape with a stagnation point,
and further suggested that those bow flows in which the splash drag component
can be eliminated are of a bulbous character. These authors, using a numerical
scheme, observed that a train of waves is present at infinity, downstream of a stern
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or upstream of a bow, and then they succeeded in a search for that particular body
geometry which made the wave amplitude vanish.

Subsequent work by Tuck and the present author (1985)[6] is contained in
chapter 2, which concentrates upon the tangential attachment case. The corre-
sponding mathematical problem is exactly solved here for infinite Froude number
by letting g = 0 and then, for finite Froude numbers, a special numerical scheme
which always forces itself to converge to a waveless solution is presented. This
is achieved by letting the scheme estimate one of the unknown parameters deter-
mining the bow geometry. The results obtained seem more suitable for a waveless
stern rather than for a bow, since all the so-derived bodies (which are in general
not bulbous) demand a downward slope at attachment.

Chapter 3 of the thesis concentrates on splashless and waveless bows
which involve conventional-type bulbous bows with a stagnation point at attach-
ment. It is proved that such a flow has a locally horizontal free surface at attach-
ment, if the angle to the horizontal of the body at the stagnation point is greater
than 60°. A numerical scheme similar to the above mentioned is then employed
to obtain only splashless solutions, by allowing the scheme to change the body
geometry accordingly. Numerical evidence indicates that wave-free stern flows, or
equivalently splash-free bow flows with a stagnation point at attachment, demand
underwater bodies of unique bulbous shape for F' > 0.54, where F' is the Froude
number based on the draught of the ship. For 0.50 < F' < 0.54, this unique shape
is non-bulbous and essentially rectangular. For 0.45 < F' < 0.50 there seems to
exist two or three distinct solutions and consequently two or three quite different
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bulb sizes that allow splash-free flows, and for F' < 0.45, many solutions exist.
The existence of many solutions for small Froude numbers (F < 0.45) supports
the conclusion that body geometry is arbitrary in this range, in which gravity is
effectively infinity and no stern creates waves.

A large collection of results is included, generalising the single case presented
by Tuck and Vanden-Broeck[2]. In particular, variation in the bulb shape and size

with Froude number is discussed in detail.





