
SPLASHLESS SHIP BO'WS AND
\MAVELESS STERNS

by

M.A.D.MADURASINGHE
B.Sc(Physics),B.Sc.Hon(Maths),

M.Sc(Computer Sc)A.I.T.

Thesis submitted for the degree of Doctor of Philosophy
in the University of Adelaide,

Department of Applied Mathematics

Dec. l-986

l) ,rr ;r 1 ¡'i 'it'l



SUMMARY

In two-dimensional bow-like flows past a semi-infinite body, one must in gen-

eral expect a free-surface discontinuity, in the form of a splash or spray jet. How-

ever, there is numerical evidence that special body shapes do exist for which this

splash is absent.

In the first part of this thesis an attempt is made to demonstrate steady state

flow for an arbitrary (non-special) bow shape. Such flows necessarily include a

splash jet, i.e. a portion of the incident stream is deflected upward and backward

in the form of a jet, which then (in the presence of gravity) falls freely forever.

This problem is exactly solved here via hodograph techniques, but only for infinite

Froude number, i.e. by letting g : 0.

In the middle part of the thesis, conditions are established on the bow geom-

etry in order that it should be splash-free at zero gravity, by solving the mathe-

matical problem exactly using complex variable techniques, assuming a continuous

non-stagnant flow attachment at the extreme bow. Then solutions are obtained

for finite non-zero gravity by solving a non-linear integral equation numerically.

A class of splashless non-bulbous body geometries with a downward directed seg-

ment at the extreme of the bow, to which the free surface attaches tangentially, is

discussed in detail.

In the final part of the thesis, the flows of interest possess a stagnation point at

the attachment point and demand underwater bodies of bulbous type, in order to

be splashless. The nature of the solutions is discussed, giving analytical evidence,

and a numerical scheme is then presented. The variation in the bulb shape and
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size with Froude number is discussed in detail. Figures and tables are given at the

end of the each chapter.
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GENE L INTRODU N

One of the most important problems in ship hydrodynamics concerns the

v¡ave resistance of the ship. In particuiar the resistance is strongly infl.uenced b5'

the flow pattern around the bow. The search for means to reduce or possibly

to minimise this resistance has taken many directions. So far, one of the most

significant solutions has been the development of a bulbous shape bow, that dates

back to 700 or 800 B.C.

Due to the lack of adequate mathematical theories and related experimental

results concerning the bulbous bow, as well as the added cost in their construction,

until the nineteenth century many ships did not seem to have them and so were

excluded from whatever advantages might have ensued.

The bulbous bow reappeared in the nineteenth century with the advent of

mechanical propulsion. As a result of various developments in war-ship design'

this bulbous bow became a distinctive feature at the beginning of the twentieth

century. It was on hulls of this type that David W.Taylor[7](1911) did his exper-

iments and observed a reduction of resistance and a hydrodynamic superiority in

higher speed ranges. Taylor was convinced that a bulbous nose located deeply

at the forefoot and of rounded shape would produce less wave drag, because of a

newly created pressure pattern in the vicinity of the bow wave. Since then, bow

wave phenomena have been studied experimentally and theoretically by many out-

standing hydrodynamicists. From the modern hydrodynamicist's point of view,

the wave resistance of the ship can be dissected into two parts: one associated
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with the non-breaking waves that are radiated far away from the bow, and the

other associated with the wave energy that is dissipated by breaking close to the

bow. This situation was first described by Froude(1955).

The non-breaking part is the one which was of main concern to Taylor, and

the classical work on use of bulbous bows to reduce non-breaking wave resistance is

that of Inui [13,14,15,16,17]. The breaking resistance received little attention until

Baba[8,9] showed its importance. Since then, many researchers have studied the

bow wave-breaking both experimentally and theoretically. Dagan and et al [11],

Inui et al [12] and Baba[10] demonstrated the effect of reducing wave-breaking

resistance by a bulbous bow. The so-called breaking r¡/aves are not so simple that

they can be described in a few words. The term bow-wave breaking was used by

Baba[8] for the white waves which looked like a necklace of pearls surrounding the

ship. This term implied a plunging type of breaking, as defi.ned in Peregrinef8],

which breaks down vortically at the bow, and which was related to a spray jet bir

Dagan and Tulin[11]. In the latter theoretical study of the phenomenon for two-

dimensional steady flow, breaking of the free surface was assumed to be related

to a local Tayior instability, and application of the stability criterion determined

the value of the critical Froude number which characterized breaking. Dagan and

Tulin's high Froude number solution was based on a model of a jet detaching from

the bow and not returning to the flow field.

This free streamline discontinuity in the form of a spray jet was later discussed

by Tuck and Vanden-Broeck[2] for the flow around semi-infinite bodies. They

called flows without such jets "splashless" and pointed out that in general if the
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flow direction is reversed, so solving a stern rather than bow flow problem, a train of

rvaves can be expected at downstream infinity. On the other hand, if one has been

able to construct a special stern flow without such waves, that flow can be reversed

in direction to yield a splashless bow flow. Examples of such near-bow or near-

stern flows v¡ere computed by Vanden-Broeck and Tuck[3] using series expansion

in the Froude number, and also by Vanden-Broeck, Schwartz and Tuck[4]. These

authors showed the existence of downstream rfi¡aves for stern fl.ows, but were not

able to find continuous solutions without waves because of the restricted geometries

they considered. However their work suggested that the wave-free and splash-free

property may exist only for specially selected body geometries. Later, Vanden-

Broeck and Tuck[5] studied linear and nonlinear free-surface flows under gravity in

a two-dimensional framework, in which a disturbance rvas caused to an otherrvise

uniform stream by a distribution of pressure over the free surface. Even though

such a disturbance, in general, creates a system of trailing waves, they observed

the existence of special disturbances that do not have waves. Their work strongly

suggested the existence of special splashless bow geometries. The investigation

made by Schmidtfl] using linearized theory has also suggested such bow flows.

The flows of interest can possess a stagnation point at the attachment point,

or alternatively can involve tangential (continuous) attachment. Tuck and Vanden-

Broeck[2] demonstrated numerically one such bow shape with a stagnation point,

and further suggested that those bow flows in which the splash drag component

can be eliminated a¡e of a bulbous character. These authors, using a numerical

scheme, observed that a train of vr'aves is present at infinity, downstream of a stern
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or upstream of a bow, and then they succeeded in a search for that particuiar body

geometry which made the wave amplitude vanish.

Subsequent work by Tuck and the present author (1985)[6] is contained in

chapter 2, which concentrates upon the tangential attachment case. The corre-

sponding mathematical probiem is exactly solved here for infinite Froude number

by letting g :0 and then, for finite Froude numbers, a special numerical scheme

which always forces itself to converge to a waveless solution is presented. This

is achieved by letting the scheme estimate one of the unknown parameters deter-

mining the bow geometry. The results obtained seem more suitable for a rvaveless

stern rather than for a bow, since all the so-derived bodies (which are in general

¿ol bulbous) demand a downward slope at attachment.

Chapter 3 of the thesis concentrates on splashless and waveless bows

which involve conventional-type bulbous bows with a stagnation point at attach-

ment. It is proved that such a flow has a locally horizontal free surface at attach-

ment, if the angle to the horizontal of the body at the stagnation point is greater

than 600. A numerical scheme similar to the above mentioned is then employed

to obtain only splashless solutions, by allowing the scheme to change the bod¡'

geometry accordingly. Numerical evidence indicates that wave-free stern flows, or

equivalently splash-free bow flows with a stagnation point at attachment, demand

underwater bodies of unique bulbous shape for F > 0.54, where -t' is the Froude

number based on the draught of the ship. For 0.50 < F <0.54, this unique shape

is non-bulbous and essentially rectangular. For 0.45 < ¡' < 0.50 there seems to

exist two or three distinct solutions and consequently two or three quite different



bulb sizes that allow splash-free flows, and for ¡' < 0.45, many solutions exist.

The existence of ma,ny solutions for small Froude numbers (.F' < 0.45) supports

the conclusion that body geometry is arbitrary in this range, in which gravity is

effectively infinity and no stern creates ïvaves.

A large collection of results is included, generalising the single case presented

by Tuck and Vanden-Broeck[2]. In particular, variation in the bulb shape and size

with Froude number is discussed in detail.
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CHAPTER 1

SOME EXACT SOLUTIONS FOR SPLASHES AT
INFINITE FROUDE NUMBER

1.1 Introduction

This approach is to compute steady state flow for an arbitrary (non-special)

bow shape. Such flows necessarily include a splash jet, i.e. a portion of the

incident stream is deflected upward and backward in the form of a jet, which

then (in the presence of gravity) falls freely forever in an approximately parabolic

trajectory (see Fig. 7.2a). The jet and the incident stream are supposed to

passs across each other without interference. Mathematically they lie on distinct

ttRiemann Sheetst'.

These problems are exactly solved here only for infinite Froude number, i.e.

by letting g : 0. In the presence of gravity these problems become extremely

difficult numerical problems. First we consider a simplified version of this phe-

nomenon where the attention is given only to the jet, which travels upward along

the bow and corresponds to a horizontal channel at upstream infinity(Fig.1.1).

Secondly, we formulate the general problem which takes in to consideration the

fl.ow underneath the body as well(Fig.1.2a). In this formulation there will be a

submerged stagnation point where the dividing streamline intersects the body.

Dagan and Tulin[ll] studied this problem using perturbation expansions.
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1.2 Formulation of the simplified problem

Let us consider a part of the incident stream which rises up the bow and

defl.ects upwards (see Fig 1.1). At upstream infinity, there is a uniform stream

of unit magnitude, in the form of a horizontal channel of width h. ABD is a

fixed boundary wall, where the slope is specified without loss of generality from

A(ó - -oo) to D(d : 0) as follows:

Q- 0,
o(d),

-oo( Ó<-I;
-1 <d<0. (1.1)

where O(/) is the slope of the curved section of the wall. It is assumed that the

flow is irrotational and the fluid is inviscid and incompressible. Continuous fl.orv

attachment is assumed at D (d : 0), where the wall ends. Here / is the potential

function and r/ is the stream function. Let tþ : 0 on the wall and on the free

streamline DE. Let tþ : -I on the upper free streamline, which is completely

free from d : -oo to $ : foo, as seen in Figure 1.1. The complex velocity

u - iu is an analytic function of the complex potential Í : ó f i{, where rL)u ate

the velocity components in the ø and y directions respectively(see Fig1.1). The

function r - i0 is defined by

dr
b: u - iu: exp(r - io). (1.2)

In the presence of gravity, Bernoulli's equation and the condition of constant

pressure on the free surface yield

(1.3)

,þ :0,0 < Ó ( *oo and for tþ : -7,

df
E

-oo(d<+*.

1e'

for
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1.3 Solution and its properties

Consider the potential function f Q) given by the integration of

.dru-2u:E: "*o;/i'*(
e-t _1+ e-nE - O'(s)ds. (1.4)
e-1r -1- e-n" - L

This can be derived using a formula developed later (Chaptet 2) and by applying

the appropriate conformal transformations. However, it can be checked directly,

as follows. It can be shown that (1.4) defines the complex velocity u - iu as an

analytic function of the complex potential f : ó t itþ ar.d satisfles the required

conditions as follows.

(a) On ,þ : -I, we have f : ó-i for -oo < ó < *oo and hence l#l: t,

since -1 ( s ( 0 in the integrand. Also, wehave u-iu -+ 1as

ó--æ.

(b) On ú : 0, ó > 0 \¡/e can show | #l :1 as above.

(c) On ,þ:0,-1 < ó <A rñ/e can write #:r-iu: R(ö)e-io(C) fo,

some real function -R(/).

(d) On ,þ:0,ó < -L it is clear that ff:u'-iu is real and u _ iu ->1

as / --+ -oo.

Hence (1.4) gives the correct complex potential for the problem. Further-

more, (1.a) holds for continuous as well as discontinuous slopes. For polygonal

barriers O'(s)ds in (1.a) should be interpreted as O'(s)ds : d,O: O("+)-O(r-),

where ö : " is the corner of the polygon. From (1.a) we can extract the free-

streamline slope as follows.

t-e e-n" - 7 dø f.or tþ:0d)0,

(1.5)

2_e-nó_e-ts
e@): 

+ l":::,,.^-' (

8



and

(1+e- Xe-'r, - 1)
dO on,/ - -1. (1.6)

The ultimate direction of the jet, 0o" (say), is obtained by letting d * *oo

in either of the above expressions. Hence we have

e-ßs - 7
d@

2 - e-Ts
(1 .7)

e-n" - 7dc-.

Consider for example a polygonal wall, where the slope is defined by

O(d) :þt -a1ó<0,
( 1.8)

--0" -1< þ<-a.
The direction of the jet 0.o is given by (1.7) as

2
0 (þztun-t !ñ + (þt - þr)tan-l

0(ö):+ 1""::,,."-'(
2

r ¡3:0
l.-: ! I tan-l

T J s:_l
n ¡3=0
¿I: a I tan-l
T J "- -r

oo-
7t

eta -t (1.e)

If P"" ) zc then the jet falls back on the incident stream. But in this g : 0 case,

to demonstrate this situation we have to define a downwa¡d directed segment

at the end of the barrier(just before the point of detachment). If g > 0, this

happens whenever 0* ) f, of course.

We may expect a horizontal drag force .t' on the wall given by

F : ph(7 - cos9oo), (1.10)

where p is the fluid density. x,y cordinates must be obtained by integrating

: e-'sitt0, ( 1.11)

and

: e-' cos 0

0y
ao

ðæ

ãó

I

(1.12)



1.4 General nroblem

Consider the same two dimensional steady flow, but now around a blunt

body of semi-infinite length (Figure 7.2a). A portion of the incident stream with

thickness h at upstream infinity is deflected upward in the form of the jet. Let

ú:0 on the free streamline AJ, where / varies from -oo to *oo. Let rþ - -t

on J'DSA' and on PS, where S is a submerged stagnation point and the section

J'D is a free streamline. The slope is prescribed on the body, i.e on DS,{ as

0 : @(Ó), Óo < Ó ( oo, where / is the potential function'

A continuous flow attachment is assumed at D (d : Óo). " and y axes are

located as in Figure7.2a, where the r axis merges with the bottom of the ship

at downstream infinity on tþ : -t. H is the draught of the body and a flow fi.eld

of unit magnitude is assumed at both downstream and upstream infinities.

The analytic functions / and r - i0 are defined as above, and we map / on

the auxiliary half plane { plane by the transformation

f : €- l tos {, (1.13)
'tf

where € : X + iY, and I is the jet thckness in the / plane.

Now let us identify some of the important points on the auxiliary plane ( :

X +iY (Fig. 1.2c). X - 0,Y :0- corresponds to JJ' (jet end), X : *,Y : 0-

is the submerged stagnation point. Let the detachment point D corresponds to

X : Xo,Y :0-(0 < Xo I |)' fhe relationship between X and / is given by

ó(x)-x-!øe¡l. (1.14)
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The slope of the ship bow (DSA') O(d) do < ó < oo will be used in the X scale

by referring to O(/(X)), Xo < X < oo. It should be noticed that O(/(X))

represents the direction of the flow as well, i.e. O(/(X)) t 
I 

for Xo < X < +,

O(d(Jf)) ( 0 for | < X ( oo and O(d(X)) -+ 0 as X -r foo.

1.5 Solution and its properties

Consider the potential function f Q) given by the integration of

u - iu : #- exp + l":::',"* (
\/Ã- s- 0

JT_xo+.,ffi do, (1.15)

where this integration is performed in the auxiliary plane aiong its real axis. In

case of continuous slope, we require dO : ##, where ff must be obtained by

differentiating (1.14). Forpolygonal bodies we have d@ : o(d(x¡))-o(d(xrt))

where ó : ó(X¡) is a corner of the polygon. It should be noted that there is

a compulsory corner, due to the change of flow direction above and below the

submerged stagnation point S. This solution also can be derived using formula

(2.10) in chapter 2 and by the use of appropriate conformal mappings. However,

it can be shown that (1.15) satisfies all the boundary conditions, by referring to

the { plane. i.e.

@ l#l : 1 for Y :0-,X 1 Xo. This includes both free streamlines AJ

and J'D. Further we have # -- 1 as X --+ -oo.

(b) y - 0-, Xo ( X < oo we have #: n@(X¡;e-;otÓ(x)) ¡or ro-"

real function R(þ(X)), where R(ó(X)) -+ 1 as X * +*.
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The free streamline slopes are given by

0(ó): 
+ l:0 -2 (Xo-X)(s-X6

d@ X 1Xo. (1.16). _1tan ^ s+X-2Xo

This includes both free streamlines, namely AJ and J'D for -oo ( X < 0 and

0 < X { Xo respectively. The ultimate direction 0oo of the jet is given at X : 0,

l.e.

0
2

oo-
7f

tan-1 ;| - rao (1.17)

(1.18)

For example let us consider a simple bow geometry, which consists of a

vertical front and a flat bottom, as seen in Figure 1.3. This problem with a

single corner was discussed by Oertel[18], and he obtained doo by inverting the

related semi-infinite Hilbert transforms. The slope function can be given by

(r

o(d(x)):lfi
[0,

if xo < x < *;
, if * < x <2;

if.x>2.

The potential function is given by( using (1.15))

\ffi- L/2 \ffi- -1dr
dz \ffi+\m 'ffi+

(
0 t

t 0

r-Xo
( 1.1e)

(1.20)

1f-

substituting 0(ó(X)) in (1.17) we have

0* :Ztan-L 2__1
Xor+ -1 - tan-1

TAo
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1.6 Concludine remarks

In this chapter we have solved the problems related to splashes at zero

gravity. But application of gravity to any.of the above formulations is extremly

difficult. One has to first attempt to solve the simplified version of this problem

in Fig.1.l by using a numerical procedure. However, these exact solutions may

be useful to check the accuracy and validity of such a numerical scheme near

zero gravity.
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CHAPTER 2

SPLASHLESS SHIP BO\MS OR .WAVELESS STERNS WITH
CONTINUOUS FLO\M ATTACHMENT

2.1 Introduction

In this chapter we treat the free streamline problem associated with the flow

at the bow of a ship within the framework of steady two-dimensional potential flow

with the aim of deriving a bow geometry which possesses the desirable property

of splashlessness or equivalently wavelessness. Our attention is strictiy restricted

here to the tangential attachment at the extreme bow where the flow separates.

First, conditions are established on the geometry of the bow, in order that

it should be splash-free at zero gravity, i.e. for infinite Froude number. That is,

we set g : 0, and solve the corresponding mathematical problem exactly by a

hodograph method. This zero-gravity soiution necessarily has either infinite or

(exceptionally) zero draught, and those special solutions that have zero draught

are selected for further attention. Numerical evidence then indicates that ryr/ave-

free stern flows, or equivalently splash-free bow fl.ows, exist for a finite range of

gravity, i.e. for 0 < g < g-, where grn is an upper bound which depends on

the family of bow shapes considered. A numerical scheme which determines only

such splashless solutions is employed to investigate the deformation of the original

bow shape, as gravity increases from zero. This task is achieved by ailowing the

numerical scheme to adjust one of the parameters determining the geometry of

the bow.
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2.2 Forrnulation

Consider the steady two-dimensional irrotational flow of an inviscid incom-

pressible infinitely-deep fluid past a semi-infinite body, whose bottom surface is

the plane A: -D, for r ( 0. A finite non-planar termination to the body lies in

r ) 0, and there is tangential free surface attachment at the point where the body

ends. The flow underneath the body is assumed to approach a uniform stream of

unit magnitude as t --' -oo. The level y : 0 çorresponds to the level of the free

surface at which the velocity is equal to 1 when c ) 0. In general, we expect a

mean free-surface level A : 0 as t --+ *oo and can interprcl D as the "draught"

of the body.

Let the potential function b. ó, and the stream function b" ,þ. Choose ö :0

at the point of detachment of the free streamline and the body, and t/ : 0 on the

free surface and on the surface of the body. Let the value of { at r : 0, A : -D

be -1; thus the body is curved only in -1 < ö < 0. Use of these dimensionless

variables will be justifred in the next chapter by referring them to a suitable velocity

scale and a length scale. It should be noted that the draft-based Froude number

is llt/gD. The complex velocity u -iu is an analytic function of the complex

potential f : ö + i1þ, where L!,,,u aîe the velocity components in the o and'y

directions respectively. The function r - i0 defined by

df
#: u - iu: exp(r - i0). (2.I)

is an analytic function of / in the half plane ,þ < 0, and tends !,o zero as l/l --+

oo, ty' ( 0. Therefore, orL 1þ : 0, its real part is the Hilbert transform of its

8



where z({) and d(/) denote respectively z(/,0-) and 0(ó,0-). The integral in

(2.2) is to be interpreted in the Cauchy principal-value sense. The kinematic

condition on the body yields

imaginary part, and we have

where y is given by

,(ó):+l::ffi^*, (2.2)

0 :0, tþ :0ró < -1,

0:Ø(ó), ,þ:0,-1 < ö<o

(2.3)

(2.4)

Here the function O(/) defines the shape of the body. An important special case is

a polygonal body where O(/) is a step function, as sketched in Fig.2.1. Bernoulli's

equation and the condition of constant pressure on the free surface yield

1gVI 
rA

., 1

, (2 5)

(2.6)
oy -Ì.-:e Sfnt
oQ

Differentiating (2.5) with respect to S, using (2.6), and integrating gives

g t: sin|dp * 1

or)
-3r -

1

3
(2.7)

wherethelimits A +0 andr -+ 0 as d * oo havebeenenforced. Substituting

(2.3),(2.4) and (2.7) into (2.2), we get

l,* ffid'ç +r(ó): f tog¡r - tt [sintd'e] ror / > 0, (2'8)
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where

r@): ¡ o(ù,a,e. 
(2.e)

J-t9-Q

"(/) 
is a known function, for a given bow-shape function O(d).

For given O(d), -1 < d < 0, the problem reduces to finding a function d(/)

satisfying the nonlinear integral equation (2.8) for d > 0. The exact solution to

equation (2.8) in the absence of gravity is described in the next section. If g > 0,

equation (2.8) must be solved numerically.

2.3 Zero eravitv solution

In the previous chapter we solved exactly the problems related to splashes

by setting 9 : 0. Those solutions (1.4) and (1.15) were obtained by mapping the

flow fields on to a half plane and comparing the special solution we derive in this

section for a well known problem in the history of hydrodynamics. In other words,

the solution lve may find for the problem in which the splash drag component is

absent allows us to solve a variety of other problems including the one in which

the splash is present.

As g -+ 0, equation (2.7) indicates that r -+ 0 on the free streamline; i.e. the

fluid velocity is of constant (unit) magnitude. Potential flow past a curved obstacle

with a constant-speed free boundary has been long recognized as an interesting

mathematical problem, and questions of construction, calculation, existence, and

uniqueness have intrigued many outstanding hydrodynamicists and mathemati-

cians, see Gilbarg [20], Birkhoff k Zatantonello [19]. For simple configurations,

such as flat plates, symmetric wedges, and other simple polygonal shapes with one
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or two corners, the direct problem immediately admits a unique explicit solution

by the hodograph method, see Wu [23], Milne-Thomson [22], Gilbarg [21].

Consider the potential functio" f Q) given by integration of

.dru-LI):E:exp /o "'(') ur(
J-t 7t \

'Fî + -s
'fl - 'rc

ds (2.10)

This could be derived as a limiting case of the Schwartz-Christoffel transformation

in the hodograph plane, by adopting the following procedure which briefly explains

the major steps only

First we consider the simple geometry which has only one corner and hence,

only one angled straight line segment as in figure 2.1 when n : 0. The potential

function f (z) is given by the integration of (see Milne-Thomson[22])

(2.11)

Using the same technique, '\Ã/e may now extend the above solution for a polygonal

body with z¿ corners (Fig.2.1) as

ð^ /n 6r-t- în oo-et

df ( 'ff+ 1\ +
tL-L|/ 

- 
t 

- 

|dz \'/-Í - 1)

df
dz ( 'Fl + dn-7

-!ñ
'Fl +

-'F
(2.r2)

Now we can obtain (2.10) by allowing all the straightline segments in Fig.2.1

to form a smooth curve. However, it can be shown that (2.10) defines the complex

velocity u - iu as an analytic function of the complex potential ö +;ç, and satisfies
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the required conditions for tþ :0. That is

(l) u - iu is real on ú - 0,d ( -1,

(2) 
" - iu : R(Ó)e-io(Ó) for - L < ÓS 0,ú : 0,

for some real function R(/),

(3) l" -iul:lfor / ) 0,ú - 0,

(Ð"-iu-+1-as/--+{qo

Hence (2.10) satisfies (2.8 - 2.9) when 9 :0. Furthermore, (2.10) holds for bodies

with discontinuous as well as continuous slope.

trÌom (2.10) we can extract the free streamline slope as

As / --+ *, 0(ó) has the following form

where ys is a constant. The drag force -t'is given by

ä (? lo,"' ç,¡so") * o (o-' r')

u : uo + \Æl? I:,o'(s¡6¿"] * ot'- 1/2 rosx), (2.15)

o(ó) : 
+ l:,o'(s)arctan (#)

F: L[/i 
"',", 

a--"¿"f'

ds (2.13)

(2.16)

(2.14)

The corresponding asymptotic form of the free streamline at a large distance down-

stream can be written as

e(ó):

where p is the fluid density.
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In general, the free streamline is parabolic at a large distance downstream,

and the draught is infinite. However, there is a special case when this is not so,

and it is clear that the free streamline asymptotes to a line parallel to the r axis

if the zero-drag condition,

L, O'(s)fl-t¿s :0, (2.17)

is satisfied by the specified body shape. Furthermore, we can verify that y¡ - 0

in this 9 : 0 case, by using (2.10),(2.17) and the Cauchy residue theorem in

the complex plane. Thus the draught is zero in this special case; finite non-zero

draught is impossible.

It should be emphasized that (2.77) is a necessary but not a sufficient condition

for a physically acceptable shape of. zero draught, since some profiles may cut

themselves even though they satisfy (2.17). For bodies with discontinuous slopes

(as in Fig.2.1), conditio4 (2.17) should be written in the form

ï,
tFsdØ :0, (2.18)

where the discontinuity at ó : -a¡ has the contribution 
^Æ(0¡+t - 

0¡).Under

the zero-drag (consequently zero-draught) condition, equations (2.14) and (z.LT)

show that d behaves like S-s/z as / --+ oo.

2.4 Nurnerical scherne for ø l0

To solve the integral equation (2.8) in the presence of gravity, introduce the

Il mesh points defining the free surface by

g; : i2 L,2, i : o,!r2,9, ..., ¡r - 1. (2.1g)
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The quantity A2 is a small parameter that controls the size of the intervals of

discretization. Also, N corresponding unknowns are defined by 0¿, by the definition

0¿ - 0(p¡), i :0,I,2,..., (¡f - 1). (2.20)

The unknown 0s has the special property that it is the slope of the body at g - 0-

as well as that of the free-surface al g - 0..,.. Thus lve are assuming that the free-

surface joins the body smoothly and tangentially aI ó - 0, and in particular are

exclud.ing in this .h.pt", the possibility that this point is a stagnation point. The

problem with a stagnation point at attachment is treated in the next chapter.

\Me enforce the fi,nite draught (and wave-free) requirement by assuming an

asymptoti c a-t/z decay at infi.nity, by analogy wiih (2.14) subject to (2.17). Thus

we set

, 0(ç) : ¡N-tf 
(¡r - 1)'?L'? 1t". ,o, Ø > (¡r - L)'¿'. (2'2r)/ vt\-!l 

g f 
t'"'Yz

Now r(/) is computed at intermediate meshpoints

'': {tñ
ifilL;
ifi:1.

l)'n', (2.22)

i.e. we evaluate

r¿ : r(ó¿), i :7,2,3.,..., ff, (2.23)

in terms of.0¿,by applying the trapezoida,l rule to the integral (2.8), with the mesh

points g¿. The contribution to (2.8) for g ) p¡¡-t is estimated by the use of (2.21).

-ly' equations are obtained from (2.23) to evaluate 0¿ : 0¿(ç¿),,i : 0, 1,2,...,(¡f -1),

for any given function O(d).
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When g : 0, (2.8) reduces to a system of linear equations, the solution of

which agrees with the exact values to within 99To or better accuracy when .ð/ - 50

and A2 : # and these values of N and A2 were used for all calculations. Using

solution al g - 0 as an initial guess, Newton's method seemed to converge Tery

efficiently for a moderate value of gravity,, g : 1.0 (say). This solution is norv

used as an initial guess to obtain the next solution, which corresponds to a higher

gravit¡ g:2.0, etc. This process of increasing gravity can be continued up to a

certain upper limit g- (r.y), as discussed in the next section. The profiles of the

ship bow and of the free surface were obtained by numerically integrating (2.6)

and

0x
uó: e-' cosî. (2.24)

Some numerical results are given in the Tables 2.7,2.2 and 2.3.
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2.5 Discussion of results

Consider first a polygonal body defined by

O(d):Po, -ao(ó<0,

:0r, -or(Ó1-oo,

0z -az 1Ó 1-at,

(2.2í,)

0^ -1 < ö1-on-t.

6"'Æ * (0,-t - -eò@ + ... + (90 - 0)1@ : s, (2.26)

which can be rewritten as

- 0 o J a' o : 0 n (L - @) t 0 n - t (@ - @ù + . . . + 0 y (1la 1 - l-a| . Q.27 )

Now it is clear that, for all the body shapes which have d¡ ) 0, i :7,2,...,n, the

vaiue of ds must be negative. These geometries have the property that the borv

completely lies above its flat bottom level. \Mhen g > 0 the adopted numerical

procedure determines the value of d6 for given 0t,,...r0n.,o¿orott¡...¡orn-L,t such that

the corresponding bow flow is splashless.

By running the scheme for many different values of a6, ott¡...¡d¿-1, and

0t,...,0"(0¿ > 0), it was observed that, as g increases from zero to some upper

26
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limit g-, 0¡ increases from the negative value given by (2.27) to some non-zero

negative value 9- (say), where 0o 1 ïrn ( 0 for this particular class. As g ap-

proached g-, Newton's method needed mo e iterations to converge to a solution,

and fi.nally it failed beyond 9 : g,n. Figures 2.2 and 2.3 show some simple polyg-

onal profiles of this class. The upper bound g- itself is not easy to estimate, but

the largest values shown in Tables 2.1 and 2.2are close to g-.

Figure 2.4 corresponds to the smooth bow shape function O(d) : 0o * (00 t

k)ó + k$2 in the same class, where k is a negative constant and O(0) : do is

determined by the numerical scheme in order to yield a splashless solution for

g > 0. Lt g :0, by substituting O(/) into (2.77), we get the initial value 0o : kl5,

which is negative. Further, this function has the following properties:

(i) o(d) >o ror-7<ó.-ld'+lr\y/\ 
\ 2k ),

(ii)o(d)<o for - (+)<d<0.
It is clear that the section (ii) with O(d) < 0 describes a downward-directed rudder-

Iike segment, analogous to the last straightline segment in the case of polygonal

bodies. At k: -25rf12, it was observed thal g,n = 1.694 was the upper bound

for splashless solutions, and d6 increased from -L.32 al g - 0 to -0.495 at g : g*.

Smalle¡ values of k produced higher values for the upper limit g-. In Tables 2.1

ar'd 2.2, exact upper bounds were not given, due to the fact that a very large

number of computations is required to approach this number.
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2.6. Conclud

The bow shapes considered in this chapter have the special property that

they lie entirely above the plane lower surface and the flow separates tangentially

from the bow. The numerical evidence strongly suggests that this class will have

no splash-free solutions without a downward-angled rudder-like segment at the

extreme of the bow.

In fact, various attempts were made to obtain a solution without a

downward-angled segment at the attachment, even considering the possibility of

having a solution which may not belong to the above restricted class. However, no

such cases were found, and the solutions with downward slope at attchment seem

acceptable for a design of a waveless stern rather than a splashless bow.

Unequally spaced grid points in (2.19) and the selection of intermediate poinis

in (2.22) increased the accuracy considerably when compared to trial runs using

an uniform grid. Models were tested for many different values of .f[ and A2 but

l/ : 50 and A2 : # gave adequate accuracy. It should be emphasized that

the suggested upper bound g^ for gravity varies according to the parameters

that determine the bow geometry. In Fig.2.1 higher values ôf g^ are obtainable

by lowering the oblique flat front" It is suggested that a theoretical proof may

be feasible to verify the existence of such upper bounds for gravity, possibly by

justifying that it is unlikely to have a tangential flow attachment at infinite gravity,

i.e at zero Froude number.
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Tables and ffeures

Table 2.1: Corresponds to Fig. 2.2

Table 2,2: Corresponds to Fig. 2.3

Table 2.3: Corresponds to Fig, 2.4

o¿o : .26¡01 -- r 16
6
¿) 0o D

0 -0.5300 0.000
0.03 -0.5120 0.054
0.05 -0.5004 0.068
0.07 -0.4905 0.079

1.0 -0.2710 0.230
2.0 -0.1746 0.283

5.0 -0.0715 0.341
12.0 -0.0273 0.369
20.0 -0.0160 0.377

ao: .25,
çÒ 0o D

0 -1.590 0.000
0.05 -1.500 0.371
0.09 -1.440 0.481

0.3 -1.196 0.850
r,.0 -u.bbb 0.872
1.3 -0.250 0.896
7.4 -0.080 0.930
1.5 -0.010 0.968

: -25r L2
úò 0s D

0 -r.324 0.000
0.05 -L.284 0.102

0.1 -1.255 0.r42
0.2 -7.204 0.194

0.500 -1.076 0.305
1.000 -0.890 0.443
1.600 -0.609 0.610
1.694 -0.495 0.664
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CHAPTER 3

SPLASHLESS SHIP BO\MS \MITH STAGNANT
,{TTACHMENT

3.1 Introduction

The main results on splashless and wave-free bows to be presented in this

chapter, involve conventional-type bulbous bows with a stagnation point at at-

tachment. The problem is treated in the same two dimensional frame work as

in the previous chapters. It is proved that such a splashless flow has a locally

horizontal free surface at attachment, if the angle to the horizontal of the body at

the stagnation point is greater than 600. A numerical scheme very similar to that

previously discussed is then employed to obtain splashless solutions, by allowing

the scheme to change the body geometry accordingly.

Numerical evidence suggests that wave-free stern flows, or equivalently splash-

free bow flows, demand underwater bodies of a unique bulbous shape for l. > 0.54,

where .F is the Froude number based on the draught of the ship. For 0.5 < f' <

0.54, this unique shape is non-bulbous and essentially rectangular. For 0.45 <

.F < 0.5 there seems to exist two or three distinct solutions and consequentiy two

or three quite different bulb sizes that allow splash-free flows, and for'¡' < 0.45,

many solutions exist. The existence of many solutions for small Froude numbers

(,F < 0.45) supports the conclusion that the body geometry becomes arbitrary in

this range, in which gravity is effectively infinity and no stern creates v¡aves.
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A large collection of results is included, generalising the single case presented

by Tuck and Vanden-Broeck[2]. In particular, variation in the bulb shape and size

with Froude number is discussed in detail.
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3.2 Formulation

Consider the steady two-dimensional irrotational flow of an inviscid incom-

pressible fluid past a semi-infinite stern-like body, whose lower surface U* : -D*,

r* < 0 is plane (See Fig 3.1). As ø* -- -oor the veiocity underneath the body

is assumed to approach the constant value U. On the other hand, when o* ) 0,

the level U* : 0 corresponds to the level of the free surface at which the velocity

is equal to U; thus, in general, we expect a mean free-surface level g* : 0 as

t* -> foo, and can interpret D* as the "draught" of the body. It is assurned

that the flow rises up the rear face of the body to a stagnation point ^9, at which

separation occurs.

Denote the potential function by /*, and the stream function by ú., and

choose d* : 0 at the stagnation point and ty'* : 0 on the free surface and on the

surface of the body. The value of /* at æ* : 0, U* : -D* is denoted by -I{ and

the body has non-trivial shape variation only in -I{ < d* < 0. Defi.ne u* -iu* as

an analytic function of the complex potential f* : ó" + irþ*, where u*,u* are the

velocity components in the ø* and y* directions respectively. These variables are

now made dimensionless by referring them to the veiocity scale' [/ and the leng'uh

scale K f U. Thus rwe can introduce the new dimensionless variables

x I ia : (r* * iy-).U lK, (3.1)

u - iu : (u" - iu*)f U, (3.2)

r : ö + i,tþ : r- lK : (ó* + ilþ-)lK. (3 3)

The function r - id defined by
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dr
b:u-iu:exp(¡ -i0)' (3.4)

is an analytic function of / - ó + irþ in the half plane ,þ < 0, and tends to zero as

l/l * æ,1þ 10. Therefore, on ,þ:0, its real part is the Hilbert transform of its

imaginary part, and we have

,(Ó) : (3.5)

Here r(/) and d(/) denote respectively ,(ó,0-) and 0(ó,0-). The integral in (3.5)

is to be interpreted in the Cauchy principal-value sense. The kinematic condition

on the body yields

0 0 ,þ:0,ó < -1, (3.6)

e : ø(ó), tþ :0,, -1 < d < 0' (3.7)

Here the function O(/) defines the shape of the body. For the sake of convenience,

a straightline segment is introduced at the extreme of the body by setting

o(ó): p for -óSd<0, (3.8)

where B is the slope of ihis segment and -1 < -b < 0 (See Fig.3.1). Bernoulli's

equation and the condition of constant pressure on the free surface yield

1^tv+, (3.e)

1 : sKf U3,

L f* _e(ò=ae
T J-* 9-P

r18":r,

where
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urrd y is given by

Differentiating (3.9) with respecl to þ, using (3.11), and integrating gives

I t: sh9dtp I 1

3
e3' :

and

where

,(ó) :f r.*¡, - 
" l:sinLd,e) 

for / > 0, (3.13)

where the limits g --+ 0 and r + 0 as ö - æ have been enforced. Substituting

(3.6), (3.7) and (3.13) inio (3.5), we get

l,* y- 
ód'v 

+ r(ó): I log[r -, l:sin0(e)d,e] 
ror d > 0, (8.14)

H: e-' sirtl.

r(ó) : I:,Hde : I-,' Hdç + o"s r#l

1

;r)

(3.11)

(3.12)

(3. i5)

"(/) 
is a known function, for a given bow-shape function O(d).

For given O(d), -1 < d < 0, the problem reduces to finding a function á(/)

satisfying the nonlinear integral equation (3.1a) for / > 0. The Froude rlumber

based on draught is defined by

(3.1 6)
U

\/tF

where D is the draught in the dimensionless scale, i.e D : U D* lK.
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3.3 Nature of the solutions

Since the fluid is stagnant at þ: 0, it is clear from (3.4) and (3.13) that as

ó - 0*,7 --+ -oo, and hence the right hand side of (3.14) is singular for / --+ 0+.

On the free streamline, in the vicinity of the stagnation point $¡e may assume

0(ó) : -00 tkó" for o < d < ó, (3.17)

-37 sin ds - (3.20)

This limit for ds exists and is finite only for 0 + eo I f , and further it is clear

that ds : 0 if 0 + 0o > ä, i.r order to satisfy (3.20). In other words, solutions may

exist in only one or other of the following two categories,

where d(0+) - -0s, k,n are constants with n ) 0 and ó is a suffi.ciently small

positive quantity. Substituting (3.15), (3.17) into (3.14) and re-writing (3.14) rve

have

r - Bt[.," zcte :(#)- (#)+ "*p[^s(/)], (3 18)

where

,s(d) : [-' ?@)r¿ç + fo 40, + [* e@),ae. 
(3.1e)

J-t 9-ó Jo+9-ó Js 9-ó t

It is clear that ,S(/) is a well behaved function for 0 ( ó < 6 and, in the limit as

ó - 0t,(3.18) can be written in the form

d I öt<u*t,tt"(ó + 6)4eolt expts(d)llîöl l

(i) P , Lz, wiih do :0,

p.i(ii) þ+r,o:L, if

(3.21)
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The solutions for the "nearly horizontal entrance" case (ii), in which the in-

clination B of the flat front segment is less than 600 and the angle between the

body and the streamline is 1200 at the stagnation point, are not presented in this

research. The resulting bow geometries are non-bulbous, but of little practical

relevance. It appears that any given underwater shape with an entrance satisfying

0 < 
" 13 can be splashless at some (to-be-determined) Froude number . Equiva-

lently, any given specification O(/), -1 < ó < -b of the underwater shape can be

combined with a flat sloping entrance having a unique (to-be'determined) angle

0 < nl3, to yield a splashless flow at any given Froude number. If the given

Froude number is reasonably large, as corresponds to practical cases, the required

entrance angle B is quite small (i.e. the body is nearly horizontal at attachment),

and the resulting bow shape is unrealistic. On the other hand, if the given Froude

number is small, the required entrance angle B approaches ny'3 from below.

It is interesting to investigate this low Froude number limit in general by

approximating equation (3.14), i.e. by assuming 0(ó) : e(Ðll, for some bounded

d(/) and letting 7 -+ oo. Thus, we have solutions for very large 7 given by

e(ó):-+hlr*l*"*o (il-,"Y*)l .' ó>0, (323)

Although (3.23) was derived irrespective of the value of. B, it predicts ari. unac-

ceptable singularity at ó - 0* unless þ >-"13. In case (ii) above, this confirms

that the only acceptable possibility as 'y + oo is that B approaches zr/3 from

below. Furthermore, it is evident from (3.23) that, in case (i) where 0 > nlT,

we do not need any specific bow geometry near zero Froude number in order to
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yield a splashless solution" In other words, this conclusion supports the physically

obvious fact that flow around a semi-infinite body of arbitrary geometry creates

no ï¡aves at infi,nite gravity. Also, one can verify easily the f¿rct that the draught

approaches a constant value as 7 -+ oo.

Solutions for the "nearly vertical entrance" case (i), with B > Tl3, in general

demand bodies of a bulbous nature, i.e. have @ > r 12 for some / values, at finite

7. In the next section, a numerical scheme is presented to explore these solutions

at B: rf2,i.e for a vertical face at the waterline, by setting

T(12,,
o(d) : t(ó+rxd+ó)+ffi,

Thus (3.24) defines a continuous slope for the non-trivial section of the body, and

the constant ,4. is to be determined in order to satisfy the integral equation (3.14)

for fixed b. Tuck and Vanden-Broeck[2] used the same one-parameter function for

O(d), and they found that a train of \Maves is present on the free surface in general.

Further, they succeeded in their scan for a particular unique value of the parameter

-4., for which the free surface had zero wave amplitude. In the present study, the

numerical technique allows us to investigate the entire range of possible values

for A, by restricting attention only to waveless solutions. Substituting (3.15) and

(3.24) into (3.14) and rewriting (3.1a) we get

1 - 3z 
lJ","vd,e 

:(#) "'"*o [; (r,(d) + Aro(ó) * l,* Prù),
(3.25)

where

r,:îl'.(#)*(ffi)] , (326)

-ó<d<0;
-1 <ó<-b. (3.24)
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and

(3.27)

Now it is clear from (3.25), (3.26) and (3.27) that 
"1(/) 

,To(ó), and ff ffik,
tend to constants as / -+ 0+, subject to the condition 0(0+) : 0. Further, these

three functions tend to zeto aL the rate d-t u. d r *oo. Therefore, by differenti-

ating (3.25) and observingthe nature of sind at these extremes, we can conclude

that d(/) behaves like þrlz and. S-2 (more generally ö+-t and /-2) as / tends

to 0* and +oo respectively.

ro(ó): (d + rXd + b) ros (ffi) + d(1 - ö) + 'rft - u'¡.
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3.4 Numerical scherne

To solve the integral equation (3.25) subject to the restriction d(0+) : g,

introduce the N mesh points defining the free surface by

g¿:i2L,2, i:!r2rgr...,N - 1 (3.28)

The small parameter A2 controls the size of the interval of discretization. Also,

.lü corresponding unknowns 0¿ are defined by

0;:0(g¿), i:I,2,...,(N - 1), (3.2e)

0¡,r : A (3.30)

The unknown d¡¿ or A has the special property that it is a parameter that uniquell'

identifies the slope of the body at any fixed ó and 7.

The wave-free rgquirement is enforced by assuming an asymptoti c g-2 decay

at infinity. Thus we set

o

o(P) : ow-t

Further, for better numerical accuracy we may assume

o(ù :ot\Æ, for o < 9 1pr: L2,

in the first interval.

Redefine (3.25) at þ: $¿ as

, for g > (¡f -7)'Lt. (3.31)

(3.32)

z¿ : r*t, lr:sind- (#) t 
"*n [l (",r, ) + *oç6,) * l, r%*)),
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where

'': {tñ"o''

Lo-

;, _(
(i !

t

1

if
if tL

1

1
(3.34)

(3.36)

By applying the trapezoidal rule to (3.33) with the mesh points g¿, the quantity

Z¿ is cornputed in terms o1. 0¿ al the intermediate mesh points defined by (3.3a).

The contribution lo Z; for g ) g ¡,t -t and g ( 91 is estimated by the use of (3.31)

and (3.32) respectively. It should be noted that for i > 2

/-rir, od,e: ["o' singd,p+ [* sinod,g
J ó, J ç-r)2 a2 J ;zt

: Ã¿lsin 0¡-t *sine¿] (=") . 
/;, 

sinld"e, (3.35)

where the weights .rB¿(= .5) are estimated by

2

R; )

)
2<i<N

I,

N equations (Z¿: 0,i :1,,2,3,'..¡f) are obtained from (3.33) to evaluate 0; :

0g;),i :1,2,3, ...(N - 1), dru : A for a given slope function O(d)' which contains

an unknown parameter A.

This system of N non-linear equations was solved by using Newton's method.

First, the vertical section of the bow was controiled by fixing the value of ó, and

then, for a good initial guess of 0¿(i :7,2,...,4/) with an input value of 7 greater

than 2.0, the method always converged to a solution. The output value of A was

always found to be negative and, with the same values of b and 7 but for a different

initial guess of 0¿, a finite number (usually 2 or 3) of distinct solutions could be

obtained. In each case, by using the known solution as the initial guess, the next
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solution was obtained for a slightly different 7. This procedure allows us to obtain

multiple solutions for a wide range of 7 values and to investigate the variation of

this unknown body parameter 0¡¡ : A(l). The profiles of the ship bow and of the

free surface r,¡¡ere obtained by numerically integrating (3.11) and

ðx
6ó 

= 
e-" coso. (3.37)
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3.5 Discus n of results

The splashless solution for the unknown parameter A in the bow shape func*

tion (3.24) is always negative (see Figs.3.2.a and 3.2.b). This indicates that the

slope increases from O(-1) : 0 to a maximum slope of O(/-) : O-o"(say),

which is given by (3.2a) at ó - /-, where

1
ó* (1 +ó)-4,1n-o (3.38)

2

It can be seen that O-o' > Tl2 and that for S ) Ó^, O(/) decreases. Since

O(-ó) : r/2, this shows that these profiles are of bulbous nature. As can be seen

from Figures 3.2.a and 3.2.b, smaller values of 7 produce higher values of -A and

consequentty, higher values for O-or.(Note that @n o, is an explicit function of .4).

On the other hand, Iarger values of 7 (i.e. smaller values of -,4,) produce profiles

with O-o, closer to r f 2. Three distinct families of solutions, denoted by C1,C2

and C3, were obtained for -A(l) at ó : .3 (Fi9.3.2.a ) and the corresponding

profi.les are given in Figures 3.3,3.4 and 3.5 respectively, on t}'e xf D,yf D sca\e.

Figure 3.2.b shows similar families corresponding to change of the input parameter

ó from 0.3 to 0.2, which creates a shorter vertical segment in the bow geometry

(Figs. 3.6, 3.7,3.8). These bulbous-character profrIes have the following varying

characteristics along each curve in Figures 3.2.a and 3.2.b.

(a) The profile is non-physical (i.e. cuts itself) for -A ) lfi, where.lfl is

positive.

(b) The profile is physically acceptable, but non-practical for ¡fl > -A >

Nz ) 0, because its maximum slope @^o, is greater than 1800.
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(c) The profile is practical and has a bulbous geometry with O-o, (

1800 for -A <.f[2, where N2 must be obtained by solving (3.24) for

@(Ó,,"o'): n'

Since the maximum angle O,,"o, of the underwater geometry is an explicit

function of the parameter A, a more physically meaningful representation of our

solutions is to plot Ø^o, versus the basic input parameter 7. Such a plot is given

in same figures (3.2.a,3.2.b) by adding an extra vertical axis which clearly shows

the horizontal line O,',o, - 1800, below which solutions are practically useful for

ship designs.

Another important quantity is the rutio (B lD) of the protrusion of ihe bulb

to the draught. The protrusion B (Fig.3.1)is measured relative to the vertical

segment. Figures 3.9.a and 3.9.b indicate the Froude number variation for each of

the families Cr,,Cz,Cs and also give the protrusion of the bulb at several points

along the curves. Figures 3.10.a and 3.10.b show the variation of the bulb size

(relative protrusion as defined above) versus the Froude number .F.

The program was able to recover three distinct families of solutions at fixed

b for 1 < 4. Above this value of 7, the draught-based Froude number is small

( .F < 0.45) and these solutions were not distinguishable. It is likely that more

solutions than. those belonging to the families Ct,,Cz,Ca also exist in this range.

Along each curve in Figures 3.2.a and 3.2.b, as 7 increases -A decreases and

finally, solutions for large Z (i." Iow-Froude-number solutions) have a low value

of. -A. Consequently Orrro" is close to rf2 and the resulting profiles have nearly

vertical geometries with a smooth rounded corner joining the flat bottom. At the

47



other extreme, very low Z (i.e. high .F') solutions were not attempted, since -A

becomes very large (consequently O-o" exceeds zr) and the resulting profiles are

non-physical for some -,4 ).1/r, as mentioned above(see Figs. 3.2.a,3.2.b).

The multiple solutions at any fixed 7 all have different geometries, different

draughts and hence different Froude numbers. For example, at 7 :2.7 with b : .3

we have three solutions with -A : 7.01,15.56,19.75 belonging lo Ct,C2 and C3,

with Froude numbers 0.548,0.465 and 0.454 respectively. The solution in C3 is

non-physical (i.e. cuts itself), the solution in C2 is non-practical (i.e. O-", > a")

but the solution in Cr is practical.

Let us now investigate these multiple solutions from a practical point of vierv,

by assuming that the Froude number is given and we are asked to find suitable

splash-free bow geometries. \Me can easily see from Figures 3.9.a and 3.9.b that

there is a unique splashless member for F > 0.54 and this is in family C1. The

lowest Froude number in this family is about 0.54 and the highest is about 0.75.

As we attempt to approach the higher Froude number solutions in family C1

(i.e. f' > 0.72), the program begins to produce numerically unstable and highly

inaccurate solutions and finally does not converge to any soiution.

The important family C1 produces a unique splashless bulbous geometry wiih

0.75 > F > 0.54, wiih the following characteristics. At the obiainable higher limit

of -t', we have a very sharp long bulb, and as tr' decreases, the sharpness gradually

reduces (see Figs. 3.10.a, 3.10.b) until at around ,t' : 0.54 the profile is neariy

non-bulbous, with a flat front joining the flat ship bottom with a smooth rounded

corner.
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This family Cr is always incomplete at the low-Froude-number end, since as

we approach the lower limit of .t' (i.e. as v/e increase 7 ), the program reaches

a point beyond which it fails to converge to further solutions of this famil¡ and

instead jumps to more numerically stable, but less useful solutions, in the family

Cz or Cs. In other words, this instability occurs when the uniqueness of splashless

solutions fails. But none of these solutions produced profiles with .t' between

0.54 and 0.50; instead the multiple solutions (usually 2 or 3) obtained in family

Cz or Cs have the property that the Froude number is between 0.50 and 0.45

Furthermore, these solutions in Cz or C3 have the special property that at fixed

F with 0.45 < .F < 0.50, one profile can be nearly non-bulbous while the others

can have a very sharp bulb

For -F < 0.45, we do not need any specific bulbous geometry in order to be

splash-free, as is numerically evident by the apparent existence of more solutions

than those belonging to C2 or Cs, and by the fact that the bow geometry is

arbitrary al, zero Froude number.

Based on the above discussion on physical properties of the solutions of family

C1, we may come to the conciusion that the lowest Froude number for which a

bulb is required in order to be splash-free is just around F :0.54. These profiles

can be produced in family C1 only and further attention is given only to these

solutions in Figures 3.11.a and 3.11.b, where the input parameter ó which controls

the length of the vertical flat front in the bow geometry is changed. Solutions of

family C1 only are plotted (B lD and Ø,,,o,) against the Froude number.
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The program 'was run for several different input values of ó in the range

0.1 < ä < 0.5. Standard accuracy tests (doubling the number of points etc.)

indicated good accuracy for b > 0.2, but not such good accuracy for ó ( 0.2. Some

very accurate data are listed in Tables 3.1, 3.2 and 3.3 at å : .3 corresponding

to the three families Ct,Cz and C3 respectively. l/ : 60 and A2 - fr were

used for all the calculations. Higher values of ä (ó > .5) are not suitable for

a design of a splashless ship bow, since the bulb becomes very sharp and the

profiles tend to cut themselves before any practically-useful high Froude number is

achieved. Vanden-Broeck and Tuck[6] obtained the splashless solution A: -14.02

al ''l - 1.0, ó - 0.2. This proflle is approximated here on Cr with -A - 12.01 at

7 : 1.0. It was impossible to carry out a good accuracy test (doubling the number

of points etc.) at this point due to the fact the Froude number is very high and

the solution is neither suffi.ciently accurate nor numerically stable (see Fig.3.2.b).
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3.6 Concludine remarks

The bow shapes considered in this research have the special property that

they lie entirely above the plane lower surface and are of a single parameter fam-

ily. This restriction can be removed by introducing one additional unknorvn body

parameter. One can also use more complicated families, and introduce discon-

tinuous slope at the point where the vertical front meets the bulb, as is seen in

conventional-type bulbous bows. These corners will have either zero or infinite

fluid velociiies (i.e. r : *oo) and consequently higher numerical errors in ob-

taining r and y coordinates. Equation (3.14) is not directly solvable numerically,

due to the presence of a log l0l type singularity at the stagnation point, and this

diffi.culty was completely avoided in (3.25). Unequally spaced grid points in (3.28)

and the selection of the intermediate mesh points in (3.3a) were recommended to

be highly accurate by Tuck and the present author[6] in their research.

The one-parameter family of bow shapes considered here seems to'have a

unique splashless member for Froude numbers based on draught greater than 0.54

(see Fig. 3.8.a). (A super tanker normally operates above this limit.) A ship

operating below this limit does not need to have a bulb to eliminate splashes. For

-t' < 0.50, one can select 2 ot 3 different bulb shapes, and for .t' < 0.45, there exist

many solutions. Ultimatel¡ as .F' --+ 0 these shapes become indistinguishable,

convincing us of the fact that the bow geometry is arbitrary as f' tends to zero.

Existence of an upper bound for the Froude number is not confirmed in this

research, because one may be able to obtain higher values by considering more
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complicated bow geometries as suggested above. However, any solutions one may

obtain at very high Froude numbet (F > .72) arc likely to have very sharp bulbs

and will not be important for ship designers.

At this writing, and in summary, it appears that, while vÍave making and

breaking is a large component of the ship's expanded power, it is possible to

greatly reduce the expanded power and to effectively cancel it in specific situations

such as for very bluff barge-like bows where two dimensional solutions are highl¡r

appropriate.

'-)

52



Tables and ffgures

Table 3.1:Corresponds to Class Cy atb : .3

Table 3.2:Corresponds to Class Cz * b : ,3

^l _A Ør,.o, F B lD%
1.4 13.11 I42.6 0.742 22.0
ItrI.rJ 12.43 138.6 0.72L 19.8

1.6 11.80 134.5 0.700 18.1

7.7 11.42 131.5 0.681 16.7
1.8 11.02 128.9 0.624 15.5

1.9 10.85 127.8 0.640 14.9

2.0 70.74 L26.7 0.595 74.4
2.1 10.24 123.9 0.586 13.1
t, 9.05 116.5 0.572 10.0
2.4 8.65 114.0 0.564 8.9
2.5 8.29 111.4 0.557 7.8
2.6 7.62 107.9 0.552 6.3
2.7 7.01 104.5 0.548 5.0
2.8 6.77 103.2 0.545 4.4

7 _A Arno, F B lD%
2.4 19.98 188.9 0.463 36.9
2.5 18.67 180.0 0.462 33.6
2.6 t7.14 169.5 0.463 29.8
2.7 15.56 158.8 0.465 25.8
2.8 13.98 148.3 0.469 21.9
to 72.40 137.8 0.473 77.9

3.0 10.89 128.0 0.478 14.1
3.1 9,60 119.8 0.482 10.9
3.2 8.66 1 14.1 0.483 8.6
3.3 8.14 111.0 0.480 7.3
3.4 7.78 108.9 0.477 o.Ð

3.5 7.74 105.2 0.476 5.8
3.6 6.27 100.5 0.478 3.3
3.7 5.31 95.8 0.482 1.6
3.8 4.25 91.8 0.488 3

3.9 ,o, 90.0 0.502 0.0
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^f
_A @r,"o, F B lDTo

2.7 19.75 Lg7.2u 0.454 35.9

2.8 18.13 176.2u 0.455 31.9
2.9 16.55 165.5u 0.457 28.1

3.0 15.06 155.50 0.459 24.4

3.1 73.72 146.5u 0.462 21.0

3.2 12.61 139.2u 0.462 18.3

3.3 11.95 134.9u 0.460 16.6

3.4 1r.72 133.4u 0.454 16.0

3.5 11.28 130.50 0.450 14.8

3.6 10.54 125.8', 0.450 13.0

3.7 9.66 720.2u 0.454 10.8

3.8 8.72 L44.4u 0.453 8.6
3.9 t.t I 108.8', 0.455 6.4
4.0 6.83 103.5u 0.458 4.4
4.r 5.93 98.9u 0.462 2.6

4.2 5.09 94.9u 0.465 r.2
4.3 4.35 92,IU 0.467 0.4
4.5 3.32 90.0' 0.468 0.0

Table 3.3:Corresponds to Class Cg * b -- .3
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APPENDÏX

( Correc'bj-ons)

Line 6z rpasssr should þe rPassr .

Sentence before equation (l.J) shor"rld begin rIn the

absence of gravity o. .-- r.

Line after equation (1.tr): rthcknessr should be

Ithichnessr.

Line 2: Iextremlyr should be Iexteremelyr.

Figure legend tboubdaryr shoul-d be lboundaryr.

Second paragraph ra'btchmentf shoul-d be rattachment r.

l,ine 3z rframeworkf is one word, not two.

Line 9: Tlie r:eference to Vanden-Broectrr and 'Iuck

should be l-21 , not [6,] .

Reference I¿2) tThomsomr shoufd be rThomsonr.
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