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Abstract

The research presented in this thesis focuses on the settlement prediction of shallow
foundations on cohesionless soils using artificial neural techniques. The problem of
estimating the settlement of shallow foundations on cohesionless soils is very complex
and not yet entirely understood. Over the years, many methods have been developed to
predict the settlement of shallow foundations on cohesionless soils. However, methods
for such predictions that have the required degree of accuracy and consistency have not
yet been developed. Accurate prediction of settlement is essential since settlement,
rather than bearing capacity, generally controls the design process of shallow
foundations. In this research, artificial neural networks (ANNSs) are used in an attempt
to obtain more accurate settlement prediction. ANNs are numerical modelling
techniques that are inspired by the functioning of the human brain and nerve system.
ANNS use the data alone to determine the structure of the model as well as the unknown
model parameters. ANNSs have been applied successfully to many problems in the field
of geotechnical engineering and some of their applications are demonstrated in this

thesis.

A large database comprising a total of 189 case records is used to develop and verify the
ANN models. Five parameters are considered to have the most significant impact on
the settlement of shallow foundations on cohesionless soils and are thus used as the
ANN model inputs. These include the footing width, footing net applied pressure,
average SPT blow count over the depth of influence of the foundation, footing geometry
and footing embedment ratio. The model output is the average measured settlement of
the foundation, considered in its final state. Two types of ANNSs are used for the
development of ANN models. The first type is multi-layer perceptrons (MLPs) that are
trained using the back-propagation algorithm, whereas the second type are B-spline
neurofuzzy networks that are trained with the adaptive spline modelling of observation
data (ASMOD) algorithm. In relation to the multi-layer perceptrons, the feasibility of
ANNGs for predicting the settlement of shallow foundations on cohesionless soils is
investigated. A number of issues in relation to ANN construction, optimisation and

validation are also investigated and guidelines for improving ANN performance are

iv
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developed. The issue of data division and its impact on ANN model performance is
investigated in some detail by examining four different data division methods, namely,
random data division; data division to ensure statistical consistency of the subsets
needed for ANN model development; data division using self-organising maps (SOMs)
and a new data division method using fuzzy clustering. The success or otherwise of
ANNs for settlement prediction of shallow foundations on cohesionless soils is
illustrated and compared with three of the most commonly used settlement prediction
methods. A hand-calculation design formula for settlement prediction of shallow
foundations on cohesionless soils that is based on a more accurate settlement prediction
from ANN model is presented. It was found that ANNs have the ability to predict the
settlement of shallow foundations on cohesionless soils with a high degree of accuracy
and outperform traditional methods. It was also found that the new data division
method that is based on fuzzy clustering is suitable approach for data division. In
relation to the neurofuzzy models, the ability of ANNs to provide a better understanding
of the relationship between settlement and the factors affecting settlement is
investigated. It was found that neurofuzzy networks have the ability to provide a
transparent understanding of the relationship between settlement and the factors

affecting it.

Settlement analysis is often affected by considerable levels of uncertainty that are
usually ignored by traditional methods. In this research, ANNs are linked with Monte
Carlo simulation to provide a stochastic solution for settlement prediction that takes into
account the uncertainties associated with settlement analysis. A set of stochastic design
charts that provide the designer with the level of risk associated with predicted

settlements are developed and provided.
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Chapter 1

Introduction

1.1 Introduction

The settlement of shallow foundations is usually divided into three components (Fang
1991): (a) immediate, or distortion, settlement, (b) consolidation settlement and (c)
secondary compression settlement. Immediate settlement occurs with load application
during, or immediately after, the erection of a structure. It is primarily a consequence of
soil-grain distortion and reorientation. Consolidation settlement, on the other hand, is
time-dependent and generally takes months to years to occur and is due to the
dissipation of pore water pressure over time. Secondary compression settlement occurs
as a result of soil creep, which is viscous flow under loading with no changes in
effective stress. The total settlement of a foundation is the sum of the above three
components. For cohesionless soils, only the immediate settlement is of concern,
whereas consolidation and secondary compression settlements are the primary factors

associated with cohesive soils.

It is generally understood that sand deposits are much more heterogeneous than the clay
deposits and, as a result, differential settlements are likely to be higher in sand deposits
than in clay profiles (Maugeri et al. 1998). Because cohesionless soils exhibit high
degrees of permeability, settlement occurs in a short time; immediately after load
application (Coduto 1994). Such quick settlement causes relatively rapid deformation
of superstructures, which results in an inability to remedy damage and to avoid further

deformation. Furthermore, excessive settlement occasionally leads to structural failure

(Sowers 1970).

The two major criteria that control the design of shallow foundations are the bearing
capacity of the footing and settlement of the foundations. However, settlement usually
controls the design process, rather than bearing capacity, especially when the width of

footing exceeds 1 metre (3-4 ft) (Schmertmann 1970). As a consequence, settlement
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prediction is a major concern and is an essential criterion in the design process of

shallow foundations.

The prediction of settlement of shallow foundations on cohesionless soils is very
complex and not yet entirely understood. This can be attributed to the fact that
settlement is governed by many factors that are uncertain and difficult to quantify.
Among these factors are the distribution of applied stress (Holzlohner 1984), the stress-
strain properties of the soil, soil compressibility and the difficulty in obtaining

undisturbed samples of cohesionless soils (Moorhouse 1972) for laboratory testing.

The geotechnical literature contains many methods, both theoretical and experimental,
to predict settlement of shallow foundations on cohesionless soils. Due to the difficulty
of obtaining undisturbed samples for cohesionless soils, many settlement prediction
methods have focussed on correlations with in-situ tests, such as the standard
penetration test (SPT), cone penetration test (CPT), dilatometer test, plate load test,
pressuremeter test and screw plate load test. However, most of the available methods
simplify the problem by incorporating several assumptions associated with the factors
that affect settlement. Consequently, consistent and accurate prediction of settlement
has yet to be achieved by the use of a variety of methods ranging from purely empirical
to complex non-linear finite elements (Poulos 1999). Comparative studies of the
available methods (e.g. Jorden 1977; Jeyapalan and Boehm 1986; Gifford et al. 1987;
Tan and Duncan 1991; Wahls 1997) indicate inconsistent prediction of the magnitude of
settlements. As a result, alternative methods are needed, which can overcome the

limitations of the existing methods and provide more accurate settlement prediction.

The intention of this study is to apply an alternative approach, which is based on the
data alone, in an attempt to obtain more accurate settlement prediction. The approach
has been successfully applied to many problems including those of a geotechnical
engineering nature and is known as artificial neural networks (ANNs). ANNs are a
form of artificial intelligence, which, by means of their architecture, attempt to simulate
the biological structure of the human brain and nervous system. ANNs have the ability
to model the non-linear relationship between a set of input variables and the
corresponding outputs without need for predefined mathematical equations. The ANN

modelling philosophy is similar to most available methods for settlement prediction in
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the sense that both are attempting to capture the relationship between a set of model
inputs and corresponding outputs. However, unlike most available methods, ANNs do
not need prior knowledge about the nature of the relationship between the model inputs
and corresponding outputs. ANNs use the data alone to determine the structure of the
model as well as the unknown model parameters. This enables ANNs to overcome the

limitations of the existing methods.

Settlement analysis, as in many geotechnical engineering problems, is affected by a
considerable level of uncertainty associated with the factors that influence settlement.
Most available methods for settlement prediction of shallow foundations on
cohesionless soils disregard this uncertainty in their analysis and simulation. In order to
provide practical design tools, ANNs will be linked with Monte Catlo simulation to
incorporate the uncertainties associated with the factors that affect settlement prediction.
Such a probabilistic approach is useful in the sense that it can overcome the limitations
of the deterministic techniques and provide the geotechnical practitioner with some
guidance about the level of risk (i.e. degree of uncertainty) that is associated with the

predicted settlement.

1.2 Objectives and Scope of the Research

The overall objectives of this research are:

1. To explore the use of ANN models for predicting the settlement of shallow
foundations on cohesionless soils and to compare their performance with some of

the most commonly used traditional methods;

2. To introduce new data division methods for use in the development and verification

of ANN models for settlement prediction;

3. To introduce a new validation approach for ANN models by carrying out a

parametric study with a set of hypothetical data;
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4. To provide a mathematical equation and produce a set of design charts for
settlement prediction of shallow foundations on cohesionless soils based on the
ANN technique;

5. To provide a better understanding of the relationships between the ANN model
inputs and outputs for settlement prediction in the form of a set of fuzzy rules by

applying the neurofuzzy technique;

6. To investigate the influence of including the uncertainty associated with the factors
affecting settlement on the magnitude of settlement prediction and to produce a set
of stochastic design charts for routine use in practice that provide the geotechnical
practitioner with some guidance regarding the level of risk associated with predicted

settlements; and

7. To assess the benefits and limitations of the proposed techniques as a practical tool

for settlement prediction in comparison with more traditional methods.

Original contributions provided in this thesis and research are detailed in §8.3.

1.3 Layout of the Thesis

In the following chapter (Chapter 2), the structure and operation of ANNSs are described.
Categories for different classifications of ANNs are presented. Issues related to the
development of ANN models are demonstrated and discussed. In Chapter 3, the major
ANN applications in the field of geotechnical engineering are reviewed to illustrate the

relative success or otherwise of ANNs in this field.

In Chapter 4, the main causes of settlement of shallow foundations are presented and the
main factors that govern settlement prediction of shallow foundations on cohesionless
soils are discussed. The different methods of settlement prediction of shallow

foundations on cohesionless soils, are categorised and the more successful are
highlighted.
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In Chapter 5, the modelling methodology of multi-layer perceptrons that are trained
with the back-propagation algorithm for predicting the settlement of shallow
foundations on cohesionless soils is described and a method that tests the robustness of
ANN models is introduced. Different data division methods for the development of
ANN models are presented and a new approach for data division based on fuzzy
clustering is introduced and evaluated. The effect of input data transformation on the
performance of ANN models is examined. The relative importance of the factors
affecting settlement is investigated. A comparison of the results obtained using ANNs
and some of the most commonly used traditional methods is presented. A simple
practical equation and a series of design charts for settlement prediction, based on

ANNS, are developed.

In Chapter 6, the neurofuzzy technique is applied to assist with providing a better
understanding of the relationships between settlements and the factors affecting them.

The technique helps to produce a set of fuzzy rules that govern these relationships.

In Chapter 7, a practical stochastic approach is proposed for settlement prediction of
shallow foundations on cohesionless soils that includes the uncertainty associated with
the factors affecting settlement. The approach is based on linking the Monte Carlo
technique with predicted settlements from the ANN model developed in Chapter 5. The
results of the proposed stochastic approach are presented in the form of cumulative
probability distribution design charts from which the probability that certain settlement
predictions are exceeded can be readily obtained. The effect of varying the uncertainty
associated with the factors affecting settlement on the magnitude of predicted settlement
is examined. A set of stochastic design charts for settlement prediction are developed

and provided for routine use in practice.

In the final chapter (Chapter 8), the research work is summarised and conclusions are

presented. Recommendations for future work are also given.



Chapter 2
Artificial Neural Networks

2.1 Introduction

Artificial neural networks (ANNS) are a form of computing that attempt to simulate the
operation of the human brain and nervous system. Although the concept of artificial
neurons was first introduced in 1943 (McCulloch and Pitts 1943), research into
applications of ANNs has blossomed since the introduction of the back-propagation
training algorithm for feed-forward ANNs in 1986 (Rumelhart et al. 1986; McClelland
and Rumelhart 1988). ANNs may thus be considered a relatively new tool in the field
of prediction and forecasting. Recently, ANNs have been applied successfully to a wide
range of areas including classification, estimation, prediction and functions synthesis
(Moselhi et al. 1992). Moreover, ANNSs have also been used successfully in predicting
business failure, speech production and recognition, pattern recognition, medical
diagnosis and treatment, control problems (Fausett 1994) and many fields of

engineering, including geotechnical engineering, as will be examined in Chapter 3.

ANNs learn ‘by example’ in which an actual measured set of input variables and the
corresponding outputs are presented to determine the rules that govern the relationship
between the variables. Consequently, ANNs are well suited to model complex
problems where the relationship between the variables is unknown (Hubick 1992) and

when non-linearity is suspected (Maier 1995).

The aim of this chapter is to detail the more important features associated with ANNs
and particularly those aspects addressed in the present research. The chapter begins
with a brief description of natural neural networks and follows with an overview of the
structure and operation of ANNs. The classification of different ANN types is
presented and finally, the salient features of ANN model development are described and

discussed.
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2.2 Natural Neural Networks

The structure and operation of natural neural networks (NNNs) have been described by
many authors (e.g. Hertz et al. 1991; Zurada 1992; Masters 1993; Fausett 1994).
NNNSs, of which the brain is an example, consist of billions of densely interconnected
nerve cells called neurons. Each neuron receives the combined output signals
(information) of many other neurons through synaptic gaps by input transmission paths
called dendrites (Figure 2.1). The transmitted signals are electrochemical, which means
that they are electronic impulses that transmit across the synaptic gaps to the dendrites
by means of a chemical process (Fausett 1994). Consequently, the connection between
neurons is chemical and the strength of this connection is modified by the action of the
chemical transmitters and as the brain learns. The dendrites collect the incoming signals
and send them to the cell body, or the soma, of the neuron. The soma sums the
incoming signals and, if the charge of these signals is strong enough, the neuron is
activated and produces an output signal; otherwise the neuron remains inactive. The
output signal is then transmitted to the neighbouring neurons through an output
structure called the axon. The axon of a neuron divides and connects to dendrites of the
neighbouring neurons through junctions called synapses. The way neural networks
receive, process and transmit the electrochemical signals, as well as the action of the
chemical transmitters, comprise the basic memory mechanism and communication

system of the human brain.

Axon from
Another Neuron

Dendrite
) Dendrite of
Another Neuron
X
Synaptic
Gap Soma
Axon/
Synaptic
i Gap Dendrite of
rom Another N
Another Neuron ki

Figure 2.1: Typical structure of biological neuron (Fausett 1994)
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2.3 Structure and Operation of Artificial Neural Networks

Artificial neural networks (ANNs) attempt to mimic some of the behaviour of the basic
biological and chemical processes of NNNs. Many authors have described the structure
and operation of ANNs (e.g. Hecht-Nielsen 1990; Maren et al. 1990; Zurada 1992;
Fausett 1994; Ripley 1996). Briefly, ANNs consist of a number of artificial neurons
variously known as ‘processing elements’ (PEs), ‘nodes’ or ‘units’, representing the
neurons in NNNs. Processing elements in ANNs are usually arranged in layers: an
input layer, an output layer and one or more intermediate layers called hidden layers
(Figure 2.2).

Xn

Bias (ej)

Figure 2.2: Typical structure and operation of ANNs (Maier and Dandy 1998)

Each processing element in a specific layer is fully or partially connected to many other
processing elements via weighted connections. The weight in each connection
represents the synaptic strength in NNNs. The scalar weights determine the strength of
the connections between interconnected neurons. A zero weight refers to no connection
between two neurons and a negative weight refers to a prohibitive relationship. From
many other processing elements, an individual processing element receives its weighted
inputs, which are summed and a bias unit or threshold is added or subtracted. The bias
unit is used to scale the input to a useful range to improve the convergence properties of
the neural network. The result of this combined summation is passed through a transfer
function to produce the output of the processing element. For node j, this process is

summarised in Equations 2.1 and 2.2 and illustrated in Figure 2.2,
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I;= Z w,x, +6, summation 2.1)
i=1

y, =1, transfer 22)

where:

I = the activation level of node j;

W = the connection weight between nodes i and J;

X, = the input fromnode i,i=0, 1, ..., n;

g = the threshold for node J;

Y = the output of node j; and

fil) = the transfer function.

The propagation of information in ANNGs starts at the input layer where the input data
are presented. The inputs are weighted and received by each node in the next layer.
The weighted inputs are then summed and passed through a transfer function to produce
the nodal output, which is weighted and passed to processing elements in the next layer.
The network adjusts its weights on presentation of a set of training data and uses a
learning rule until it can find a set of weights that will produce the input-output mapping
that has the smallest possible error. The above process is known as ‘learning’ or

‘training’.

Transfer functions

Transfer functions can take a variety of forms. The logistic sigmoid and hyperbolic
tangent transfer functions are the most common functions in neural networks (Fausett
1994). The logistic sigmoid function is usually used when the desired range of output
values is between 0 and 1, whereas the hyperbolic tangent function is often used when
the desired range of output values is between —1 and 1. The logistic sigmoid and
hyperbolic tangent transfer functions are shown in Figures 2.3 and 2.4 and Equations
2.3 and 2.4, respectively. Usually, the same transfer function is used for all processing

elements in a particular layer. The effect of using either the logistic sigmoid or
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hyperbolic tangent transfer functions in the hidden and output layers on the performance

of ANN models will be investigated in Chapter 5.
f(y)
A\

7 —
N

Figure 2.3: The logistic sigmoid function (Maier 1995)

A

()
N

1
o} Jj

Figure 2.4: The hyperbolic tangent function (Maier 1995)
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e’ —e
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Learning (training)

Learning or training is the process of adjusting the weights in accordance with a
learning rule and on the presentation of the training data. Learning in ANNs is usually
divided into supervised and unsupervised learning (Masters 1993). In supervised
learning, the network is presented with a historical set of model inputs and the
corresponding (desired) outputs. The actual output of the network is compared with the

desired output and an error is calculated. This error is used to adjust the connection
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weights between the model inputs and outputs to reduce the error between the historical
outputs and those predicted by the ANN. The number of training samples presented
between weight updates is called an epoch. The network may choose to be updated
after: each training record is presented; the entire set of training data is presented or a

certain number of training samples is presented.

In unsupervised learning, the network is only presented with the input stimuli and there
are no desired outputs. The network itself adjusts the connection weights according to
the input values. The idea of training in unsupervised networks is to cluster the input
records into classes of similar features. Unsupervised learning is similar to the way

learning takes place in the NNNs of the human brain.

2.4 Classification of Artificial Neural Networks

ANNs can be categorised on the basis of two major criteria: (i) the learning rule used
and (ii) the connections between processing elements. Based on learning rules, ANN,
as mentioned above, can be divided into supervised and unsupervised networks. Two
examples of supervised networks are multi-layer perceptrons and neurofuzzy networks.
An example of an unsupervised network is the self-organising map. Based on
connections between processing elements, ANNs can be divided into feed-forward and
feedback networks. In feed-forward networks, the connections between processing
elements are in the forward direction only (Figure 2.5a). In feedback networks,
connections between processing elements are in both the forward and backward

directions (Figure 2.5b).

(a) Feed-forward network (b) Feedback network

Figure 2.5: Connections between PEs for different neural network types
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2.4.1 Multi-layer Perceptrons

Multi-layer perceptrons (MLPs) belong to the class of supervised feed-forward
networks in which the processing elements are arranged in a multi-layered structure.
The topology and algorithm details of MLPs are discussed in many publications (e.g.
Hertz et al. 1991; Fausett 1994; Picton 1994; Ripley 1996). As mentioned previously,
the structure of MLPs consists of an input layer, one or more hidden layers and an
output layer. The input from each processing element (PE) in the previous layer is
multiplied by a connection weight. These connection weights are adjustable and may
be likened to the coefficients in statistical models. At each PE, the weighted input
signals are summed and a bias or threshold value is added or subtracted. This combined
input is then passed through a non-linear transfer function (e.g. logistic sigmoid or
hyperbolic tangent transfer functions) to produce the output of the PE. The output of
one PE provides the input to the PEs in the next layer. This process was summarised

previously in Equations 2.1 and 2.2 and illustrated in Figure 2.2.

The global error between the output predicted by the network and the actual desired
output is calculated using an error function. The mean squared error (MSE) function is
usually preferable for the following reasons (Masters 1993): (a) the subsequent
derivatives of this function are simple; (b) it gives more attention to large errors and (©)
it lies close to the heart of the normal distribution in which, if the errors can be assumed
to be normally distributed, minimising the MSE is optimal. Other measures can also be

used and these are discussed in §2.5.7.

As mentioned earlier, the objective of the learning process is to minimise the errors
between the predicted and actual outputs. This minimisation process can be achieved
by the error function with respect to all variables in the neural network (e.g. connection
weights, network architecture, learning rate and threshold). For simplicity and since the
connection weights are the most influential variable, Rumelhart et al. (1986) proposed
the back-propagation algorithm in which the error function is minimised with respect to
the connection weights only. This error function is used in a backward manner to adjust
the weights. The weights between the hidden layer and the output layer are adjusted
first, followed by the weights between the hidden layer and the input layer. This

process is repeated, which propagates the error term needed for weight adjustment until
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the network can obtain a set of weights, which have the input/output mapping that has
the minimum error. Once the desired learning is achieved, the weights are fixed and the

neural network can be deployed and used in practice.

The back-propagation training algorithm uses a gradient descent technique to adjust the
weights. This process involves changing the weights from their initial random state by
an amount proportional to the partial derivative of the error function, E, with respect to
the given weight. For example, the error function, for node j, is calculated using the

following equation:

1
E=—30,~d,) 2:5)
where:
E = the global error function;
Y = the predicted output by the network; and
d = the desired (historical or measured) actual output.

The global error function, E, is minimised by modifying the weights using the gradient

descent rule as follows:

oF
Aw, =—-n—-m 2.6
i =N By (2.6)
where:
Aw, = weight increment from node i to node j; and
n = learning rate, by which the size of the step taken along the error surface is

determined.
Equation (2.6) can be further defined by the delta rule as follows:

Aw, =1d x, 2.7)
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where:
X, = input fromnode i,i=0, 1, ..., n;
S, = error value between the predicted and desired output for node j.

If node j is in the output layer, d; can be calculated by applying the delta rule, as

follows:
5j = (y_j _dj)f'(lj) (28)

where:

Sf'(I;) = the derivative of the activation function J with respect to the weighted sum of

inputs of node j.

If node j is in the hidden layer, the generalised delta rule, proposed by Rumelhart et al.
(1986), can be used as illustrated in Equation 2.9 and Figure 2.6.

5, = [i S Wy J ;) (2.9)

Figure 2.6: Nodej in a hidden layer

The weights are then updated by adding the delta weight, Aw

/» to the corresponding

previous weight as follows:

wﬁ(n+1)=wﬁ(n)+Awﬁ (2.10)
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where:
wyn) = the value ofa weight from node i to node j at step » (before adjustment); and

w,(n+1) = the value of the weight at step (n +1) (after adjustment).

The back-propagation algorithm is sensitive to the initial conditions, i.e. the initial
values of the weights, as a result of its gradient descent nature. For example, training
may start with a set of initial weights that are positioned in a flat region of the error
surface from which convergence becomes very slow (Hassoun 1995). Moreover,
training may start from an unfavourable position in weight space from which the
network may get stuck in a local minimum and cannot escape (Maier and Dandy 1998).
The effect of using different initial random starting positions in weight space on the

performance of ANN models will be investigated in Chapter 5.

There are two training modes for weights to be updated, on-line and batch modes. In
on-line mode, the weights are updated after each training case is presented. In batch
mode, the weights are not updated after each training case, rather, the weight change

(Aw,) that is computed for each training case is accumulated to a certain epoch or until

all training cases are presented. The average weight changes are then computed and
used for weight updating. It has been suggested that on-line mode is better than batch
mode as the sequence of training cases presented to the network can be easily
randomised to avoid local minima (Zhang 1997). Consequently, on-line mode will be

adopted for all ANN models that will be developed later in this research.

The choice of the learning rate is critical and the optimum learning rate is usually
determined by trial-and-error. If the learning rate is selected to be small, convergence
will be achieved, however, it will be very slow. In addition, convergence will be
subject to the local minimum in the error surface that is closest to the random starting
position. On the other hand, if the learning rate is selected to be large, convergence will
never occur. Rumelhart et al. (1986) described a process to solve the above problem
without leading to oscillation. This process is simply to add a momentum term () to
the weight adjustment that is proportional to the amount of the previous weight change.
Once an adjustment is carried out, it is saved and used to modify all subsequent weight

adjustments. This means that the weight change of the current step should carry some



16 Chapter 2. Artificial Neural Networks

momentum of the weight change from the previous step. The modified adjustment

equations are as follows:

oF
AW,-,-("+1)=—77&W_ +IUiji(n) 2.11)
Ji
and
wﬁ(n+1)=wj,.(n)+Awﬁ(n+1) (2.12)

A momentum value of 0.9 is customarily set, for both on-line and batch training modes,
(Sarle 1994a). Ripley (1993) argued that it is often better to use momentum values of
0.99 or 0.999 for on-line training mode and a smaller value of 0.5 for batch training
mode. However, Sarle (1994a) argued that the best momentum can be determined by
trial-and-error. The effect of using several values of learning rates and momentum

terms will be investigated in Chapter 5.

There are several other algorithms for training MLPs that are described by Hertz et al.
(1991). Most of these algorithms are based on the assumption that the learning rate is
constant from one epoch to the next and from one weight to another. However, some
researchers (e.g. Chan and Fallside 1987; Jacobs 1988) challenged the above
assumption by proposing learning rules that use varying learning rates and provided
guidelines for learning rate update. This can decrease the number of cycles required for
training, however, it has been argued that the automatic methods of updating learning

rates have the risk of being trapped in local minima (Mukherjee and Deshpande 1997).

Despite the effectiveness of MLPs that are trained with the back-propagation algorithm
for solving many engineering problems, they suffer from a number of shortcomings.
MLPs trained with the back-propagation algorithm may be slow to converge
(Wasserman 1989; Vitela and Reifman 1997). This is attributed to the fact that these
networks rely on non-linear transfer functions for learning. If node activation is large,
nodal outputs may tend to get stuck in the flat spots at the extreme values of the transfer

functions as shown previously in Figures 2.3 and 2.4. The changes used to update the
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weights are a function of the derivative of the transfer functions. At the extreme values
of the transfer functions the derivative is near zero. Consequently, very small weight
changes can occur, resulting in a slow down in convergence. A number of ways are
proposed in the literature to solve this problem. For example, Fahlman (1988) proposed
adding a small, constant value to the derivative of the transfer function to prevent it
from becoming zero. Fahlman (1988) achieved a dramatic improvement in training
time by adding 0.1 to the derivative of the sigmoid transfer function. Another way to
solve the above problem is the adjustment of the transfer function so that it never drops

below a predefined level (Rojas 1996).

Another limitation of MLPs trained with the back-propagation algorithm is that when
the network tries to find the global minimum of the error surface, it can get trapped in a
local minimum. However, for many applications, local minima are not a significant
problem, as they occur relatively infrequently (Weiss and Kulikowski 1991). Again,
there are several ways proposed in the literature to escape local minima, including
increasing the learning rate, adding a momentum term, adding a small amount of
random noise to the input patterns to shake the network from the line of steepest
descent, adding more hidden nodes and relocating the network along the error surface
by randomising the initial weights and retraining (Sietsma and Dow 1988; Vitela and
Reifman 1997; Maier and Dandy 2000). The effect of some of these approaches on the
performance of ANN models will be investigated in Chapter 5.

Finally, feed-forward neural networks that are trained with the back-propagation
algorithm are often criticised for being black boxes. The knowledge acquired by these
networks during training is stored in their connection weights and bias values in a
complex manner that is often difficult to interpret (Touretzky and Pomerleau 1989;
Hegazy et al. 1994; Brown and Harris 1995; Shaopei and Boru 1998). Consequently,
the rules governing the relationships between the input/output variables are difficult to
quantify, especially for large networks that have a large number of PEs. As will be seen
in the following section, one way to overcome this problem is to use neurofuzzy

networks.
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242 Neurofuzzy Networks

Neurofuzzy networks are modelling techniques that combine the explicit linguistic
knowledge representation of fuzzy systems with the learning power of MLPs (Altrock
1995; Brown and Harris 1995). Neurofuzzy networks can be trained by processing data
samples to perform input/output mappings, similar to the way MLPs do, with the
additional benefit of being able to provide a set of production rules that describe the
model input/output relationships and thus, they are more transparent (Brown and Harris
1994; Sayed and Razavi 2000). Neurofuzzy networks are new tools in the field of
geotechnical engineering and, as will be seen in Chapter 6, they can be used to provide a

better understanding of the relationships between ANN model inputs and outputs.

Neurofuzzy networks use the fuzzy logic system to store the knowledge acquired

between a set of input variables (x,, x,, ..., x,) and the corresponding output variable (y)

in a set of linguistic fuzzy rules that can be easily interpreted, such as:

IF (x, is high AND x, is low) THEN (y is high), c = 0.9

where (c = 0.9) is the rule confidence which indicates the degree to which the above
rule has contributed to the output. The concept of fuzzy logic was introduced by Zadeh
(1965). As part of any fuzzy logic system, two main components (i.e. fuzzy sets and
fuzzy rules) need to be determined. In order to determine the fuzzy sets, linguistic
terms (e.g. small, medium and large) can be interpreted mathematically in the form of
membership functions, and model variables are fuzzified to be partial members of these
membership functions in the interval grade (0,1). This means that, for a fuzzy set 4, an
input variable x is fuzzified to be a partial member of the fuzzy set 4 by transforming it
into a degree of membership of function u ,(x) of interval (0,1). There are many forms
of membership functions including B-spline and Gaussian functions (Brown and Harris
1994). Figure 2.7 is an example of B-spline basis functions of different order. For each
variable, the fuzzy sets overlap and cover the necessary range of variation for that
variable in a process called fuzzification. It should be noted that the model output of a

fuzzy set is also fuzzy and, in order to obtain a real-valued output, defuzzification is
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needed. The mean of maxima and centre of gravity are the most popular defuzzification

algorithms (Brown and Harris 1994).

Order 1 i Order 2 1 Order 3
0l— i 0 — 0
input knots input knots input knots

Figure 2.7: B-Spline fuzzy membership functions of different order

A typical structure of a neurofuzzy network contains three layers: an input layer; a
single hidden layer and an output layer (Brown and Harris 1994). The input layer
normalises the input space in a p-dimensional lattice (Figure 2.8). Each cell of the
lattice represents similar regions of the input space. The hidden layer consists of basis
functions (e.g. B-spline and Gaussian functions) which are defined on the lattice formed
by normalising the input space. The size, shape and overlap of the basis functions
determine the structure and complexity of the network. The output layer sums the
weighted outputs from the basis functions to produce the network output using Equation
(2.13).

y=Y aw, (2.13)
i=1

where:

y = model output;

a; = output from the pth basis function; and

w; = connection weight associated with a;

This output is compared with the actual measured output and a correction error (the
mean squared error, MSE, is usually used) is calculated. Using this error and
implementing a learning rule, the neurofuzzy network adjusts its weights and

determines its fuzzy parameters (i.e. fuzzy sets and fuzzy rules). The Least Mean
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Figure 2.8: Typical structure of a neurofuzzy network (Brown and Harris 1995)

Squared (LMS) and the Normalised Least Mean Squared (NLMS) learning algorithms
are generally used to update the weights (Brown and Harris 1994). At time ¢ and as part
of these algorithms, Equations 2.14 and 2.15, respectively, are used to adjust the
weights for the LMS and NLMS algorithms (Brown and Harris 1995):

w,(t) = w,(t = 1) + n((®) - y(t))a,(¢) (2.14)

w() =w(-D+ n[y(t);yz(t) a,(t) (2.15)
@)

where:

n = learning rate; and

y = desired output.

It should be noted that, when the output error is zero, the weights are not updated,
whereas if it is not zero, the weights are adjusted so as to reduce the output error. If the
basis functions have nonzero outputs in only a small part of the input space, then only
the numbers of weights that are contributing to the network output are updated during
training. Consequently, similar network inputs result in similar sets of nonzero basis
functions and therefore, the knowledge is stored locally in the network without

interfering with the knowledge that is stored in other regions of the network.
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One major disadvantage of B-spline networks is that the number of basis functions (i.e.
fuzzy sets or membership functions) is exponentially dependent on the dimension of the
input space (Brown and Harris 1995). Consequently, the number of rules is also
exponentially dependent on the dimension of the input space, resulting in impractical
model representation. This problem has been termed the curse of dimensionality
(Brown and Harris 1995). To illustrate this problem, consider a fuzzy logic system that

has five input variables and that each input variable is presented over five-valued

membership functions. This fuzzy system will contain as many as (5° =3125) rules.
One useful approach for overcoming such problem is to use the analysis of variance
(ANOVA) representation (Brown and Harris 1995). ANOVA decomposes an n-
dimensional function to a linear combination of a number of separate functions, as

follows (Brown and Harris 1995):

h

= fot S+ D Doy () 4ot Fra ) @2.16)

i=1 j=i+l

where f; represents a constant (the function bias); and the other terms represent the

univariate, bivariate and high-order subfunctions. In many situations, the majority of
high-order terms are zero or negligible, resulting in a limited number of subfunctions
(often called subnetworks) of much lower dimensions that approximate the network
input/output mapping. It should be noted that each subnetwork in the ANOVA
description represents a neurofuzzy system of its own and the overall model output is
produced by summing outputs of all subnetworks. ~An example of ANOVA
decomposition for the problem of five input variables and five membership functions
for each of these is shown in Figure 2.9. The 5D function is decomposed into one 1D
and two 2D subnetworks, resulting in 5, 25 and 25 fuzzy rules for the first, second and
third subnetwork, respectively. Consequently, the network with ANOVA
decomposition will produce an overall number of rules equal to 55 instead of 3125 for

the non-decomposed network.

The adaptive spline modelling of observation data (ASMOD) proposed by Kavli (1993)
is an automatic algorithm for obtaining the optimal structure of B-spline neurofuzzy

networks. ASMOD has been found to perform well in a wide variety of modelling
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Figure 2.9: ANOVA decomposition of a neurofuzzy rule base
(Brown and Harris 1995)

problems (Brown and Harris 1994). The algorithm starts with a simple model (e.g. only
one variable with two membership functions) and iteratively refines the model structure
during training so as to gradually increase model capability until some stopping
criterion is met.  Possible refinements include adding or deleting input variables,
increasing the number and dimension of an individual subnetwork by linking it to an
existing input, forming multi-variate subnetworks using ANOVA and changing the
number and spacing of the basis functions (i.e. the optimum partitioning of the input
space). Changing the order of B-spline functions for an individual input variable is also
a possible refinement; however, the order of B-spline functions has to be determined in
advance. It should be noted that higher order B-spline basis functions result in
smoother model outputs; however, it is likely to lead to data overfitting (Brown and
Harris 1994). Consequently, lower order basis functions are more desirable if they are
able to model the desired relationship with a satisfied accuracy (Maier et al. 2001). For
every refinement, the impact of network pruning is evaluated and the network that has
the simplest structure with the best performance is chosen. As part of ASMOD,
stopping criteria have to strike a balance between model performance and model size,
training data and model error. Examples of such measures are given by Brown and
Harris (1994), which include:

Bayesian Information Criterion (BIC): X = nIn(MSE) + pIn(n) (2.17)

Akaike’s Information Criterion (AIC): X (¢) = nIn(MSE) + pg, ¢ >0 (2.18)
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Final Prediction Error (FPE): K = nIn(MSE) + n h{" TP J (2.19)
n-p

where K is the performance measure, p is the size of current model, MSE is the mean
square error and » is the number of data pairs used to train the network. The effect of
using the aforementioned stopping criteria on the performance of neurofuzzy networks

will be investigated in Chapter 6.

2.4.3 Self-Organising Maps

Self-organising maps (SOMs) belong to the genre of unsupervised neural networks and
were proposed and developed by Kohonen (1982). Unsupervised neural networks are
usually used for data clustering to optimise and identify similarities associated with raw
data. SOMs will be used in Chapter 5 to cluster the data variables in order to divide the
data into their training, testing and validation subsets. The typical structure of SOMs

consists of two layers: an input layer and a Kohonen layer (Figure 2.10).

Kohonen layer

AN
et
M7V
L

Input layer

Figure 2.10: Typical structure of self-organising map

The Kohonen layer has a number of competitive processing elements (PEs) or nodes

arranged in a one- or two-dimensional array. The input from each node in the input
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layer (x; for i =1, 2, ..., n) is fully connected to the Kohonen layer through connection
weights (w;; forj =1, 2, ..., m). At the beginning of the self-organising process, these
weights are randomly initialised. At each node in the Kohonen layer, the input (x) is

presented without providing the desired output, and a matching value is calculated.
This value is typically the Euclidean distance. For node J in the Kohonen layer, the

Euclidean distance (D;) between the weights and the corresponding input values, is

given by Equation 2.20.
D= (w,=x),j=1,2,...,m (2.20)
i=1

The node that has the minimum Euclidean value is declared the winner. That is, the
winner is the node whose weights are most similar to the input values. The weights of
the winning node and its neighbouring nodes, in terms of topology, are then updated to
match the input values more closely. The incremental weight update for node J is as

follows:
Aw, =n(x, —w) (2.21)

where;:

n = learning rate.
At step » of the training, node j can be updated as in Equation 2.10.

The process is repeated by successively presenting new input data records to the model
and adjusting the connection weights until they remain unchanged. The result is a
topological map in which similar data records are clustered together. A full description

of the operation of self-organising maps is given by Kohonen (1997).
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2.5 Development of Artificial Neural Network Models

In order to improve performance, ANN models need to be developed in a systematic
manner. Such an approach needs to address major factors such as the determination of
adequate model inputs, data division and pre-processing, the choice of a suitable
network architecture, careful selection of some internal parameters that control the
optimisation method, the stopping criteria and model validation (Maier and Dandy

2000). These factors are explained and discussed below.

2.5.1 Determination of Model Inputs

An important step in developing ANN models is to select the model input variables that
have the most significant impact on model performance. A good subset of input
variables can substantially improve model performance. Presenting as large a number
of input variables as possible to ANN models usually increases network size, resulting
in a decrease in processing speed and a reduction in the efficiency of the network
(Lachtermacher and Fuller 1994). A number of techniques have been suggested in the
literature to assist with the selection of input variables. An approach that is usually
utilised in the field of geotechnical engineering is that a fixed number of input variables
can be used in advance and assumed to be the most effective input variables in relation
to the model output variables. This approach will be adopted for the ANN models that
are developed in this research (see Chapter 5). Another approach used by some
researchers (e.g. Goh 1994b; Najjar et al. 1996; Ural and Saka 1998) is to train many
neural networks with different combinations of input variables and to select the network
that has the best performance. A step-wise technique described by Maier and Dandy
(2000) can also be used in which separate networks are trained, each using only one of
the available variables as model inputs. The network that performs the best is then
retained, combining the variable that resulted in the best performance with each of the
remaining variables. This process is repeated for an increasing number of input
variables, until the addition of any extra variable results in no improvement in model
performance. Another useful approach is to employ a genetic algorithm to search for
the best sets of input variables (NeuralWare 1997). For each possible set of input

variables chosen by the genetic algorithm, a neural network is trained and used to rank
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different subsets of possible inputs. A set of input variables derives its fitness from the
model error obtained based on those variables. The adaptive spline modelling of
observation data (ASMOD) algorithm proposed by Kavli (1993) is also a useful
technique that can be used for developing parsimonious neurofuzzy networks by
automatically selecting a combinations of model input variables that have the most
significant impact on the outputs. The ASMOD algorithm will be adopted in Chapter 6

for the neurofuzzy models that are developed in this research.

2.5.2 Division of Data

ANN's are similar to conventional statistical models in the sense that model parameters
(e.g. connection weights) are adjusted in the model calibration phase (training) so as to
minimise the error between model outputs and the corresponding measured values for a
particular data set (the training set). ANNs perform best when they do not extrapolate
beyond the range of the data used for calibration (Flood and Kartam 1994; Minns and
Hall 1996; Tokar and Johnson 1999). Therefore, the purpose of ANNs is to non-
linearly interpolate (generalise) in high-dimensional space between the data used for
calibration. Unlike conventional statistical models, ANN models generally have a large
number of model parameters (connection weights) and can therefore overfit the training
data, especially if the training data are noisy. In other words, if the number of degrees
of freedom of the model is large compared with the number of data points used for
calibration, the model might no longer fit the general trend, as desired, but might learn
the idiosyncrasies of the particular data points used for calibration leading to
‘memorisation’, rather than ‘generalisation’. Consequently, a separate validation set is
needed to ensure that the model can generalise within the range of the data used for
calibration. It is common practice to divide the available data into two subsets; a
training set, to construct the neural network model, and an independent validation set to
estimate the model performance in a deployed environment (T womey and Smith 1997;
Maier and Dandy 2000). Usually, two-thirds of the data are suggested for model
training (i.e. training and testing sets) and one-third for validation (Hammerstrom
1993). A modification of the above data division method is cross-validation (Stone
1974) in which the data are be divided into three sets: training, testing and validation.

The training set is used to adjust the connection weights, whereas the testing set is used
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to check the performance of the model at various stages of training and to determine
when to stop training to avoid over-fitting. The validation set is used to estimate the
performance of the trained network in the deployed environment. There are no
guidelines in the literature for the optimal proportion of the data to use for training,
testing and validation sets. In an attempt to determine an optimal proportion of the data,
the relationship between the proportion of the data used in each subset and ANN model

performance will be investigated in Chapter 5.

In many situations, the available data are small enough to be solely devoted to model
training and collecting any more data for validation is difficult. In this situation, the
leave-k-out method can be used (Masters 1993) which involves holding back a small
fraction of the data for validation and the rest of the data for training. After training, the
performance of the trained network has to be estimated with the aid of the validation set.
A different small subset of data is held back and the network is trained and tested again.
This process is repeated many times with different subsets until an optimal model can

be obtained from the use of all of the available data.

In the majority of ANN applications in geotechnical engineering, the data are divided
into their subsets on an arbitrary basis. However, recent studies have found that the way
the data are divided can have a significant impact on the results obtained (e.g. Tokar and
Johnson 1999). As ANNs have difficulty extrapolating beyond the range of the data
used for calibration, in order to develop the best ANN model, given the available data,
all of the patterns that are contained in the data need to be included in the calibration set.
For example, if the available data contain extreme data points that were excluded from
the calibration data set, the model cannot be expected to perform well, as the validation
data will test the model’s extrapolation ability, and not its interpolation ability. If all of
the patterns that are contained in the available data are contained in the calibration set,
the toughest evaluation of the generalisation ability of the model is if all the patterns
(and not just a subset) are contained in the validation data. In addition, if cross-
validation is used as the stopping criterion (see §2.5.6), the results obtained using the
testing set have to be representative of those obtained using the training set, as the
testing set is used to decide when to stop training or for example which model
architecture or learning rate is optimal. Consequently, the statistical properties (e.g.

mean and standard deviation) of the various data subsets (e.g. training, testing and
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validation) need to be similar to ensure that each subset represents the same statistical
population (Masters 1993). If this is not the case, it may be difficult to judge the
validity of ANN models (Maier and Dandy 2000).

This fact has been recognised for some time (Masters 1993; ASCE 2000; Maier and
Dandy 2000), and several studies have used ad-hoc methods to ensure that the data used
for calibration and validation have the same statistical properties (Braddock et al. 1998;
Campolo et al. 1999; Tokar and Johnson 1999; Ray and Klindworth 2000). Masters
(1993) strongly confirms the above strategy of data division as he says “if our training
set is not representative of the data on which the network will be tested, we will be
wasting our time”. However, it was not until recently that systematic approaches for
data division have been proposed in the literature. Bowden et al. (2002) used a genetic
algorithm to minimise the difference between the means and standard deviations of the
data in the training, testing, and validation sets. While this approach ensures that the
statistical properties of the various data subsets are similar, there is still a need to choose
which proportion of the data to use for training, testing, and validation. Kocjancic and
Zupan (2000) and Bowden et al. (2002) used a self-organising map (SOM) to cluster
high-dimensional input and output data in two-dimensional space and divided the
available data so that values from each cluster are represented in the various data
subsets. This ensures that data in the different subsets are representative of each other
and has the additional advantage that there is no need to decide what percentage of the
data to use for training, testing and validation. The major shortcoming of this approach
is that there are no guidelines for determining the optimum size and shape of the SOM
(Cai et al. 1994; Giraudel and Lek 2001). This has the potential to have a significant
impact on the results obtained, as the underlying assumption of the approach is that the
data points in one cluster provide the same information in high-dimensional space.
However, if the SOM is too small, there may be significant intra-cluster variation.
Conversely, if the map is too large, too many clusters may contain single data points,

making it difficult to choose representative subsets.

In this research, a new data division approach is introduced and compared with existing
approaches. The new approach utilises a fuzzy clustering technique, which overcomes

the limitations of existing methods. Shi (2002) has recently used fuzzy clustering for
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the evaluation and validation of neural networks. However, thus far, fuzzy clustering

has not yet been used as a data division approach for ANNs.

2.5.3 Data Pre-processing

Once the available data have been divided into their subsets (i.e. training, testing and
validation), it is important to pre-process the data in a suitable form before they are
applied to the ANN. Data pre-processing is necessary to ensure all variables receive
equal attention during the training process. Moreover, pre-processing usually speeds up
the learning process. Pre-processing can be in the form of data scaling, normalisation
and transformation (Masters 1993). Scaling the output data is essential, as they have to
be commensurate with the limits of the transfer functions used in the output layer (e.g.
between —1.0 to 1.0 for the tanh transfer function and 0.0 to 1.0 for the sigmoid transfer
function). Scaling the input data is not necessary but it is almost always recommended
(Masters 1993). In some cases, the input data need to be normally distributed in order
to obtain optimal results (Fortin et al. 1997). However, Burke and Ignizio (1992) stated
that the probability distribution of the input data does not have to be known.
Transforming the input data into some known forms (e.g. linear, log, exponential, etc.)
may be helpful to improve ANN performance. Shi (2000) showed that distribution
transformation of the input data to a uniform distribution improves network
performance by 50%. However, empirical trials (Faraway and Chatfield 1998) showed
that the model fits were the same, regardless of whether raw or transformed data were
used. The distribution transformation method proposed by Shi (2000) will be examined

in Chapter 5 in an attempt to improve the performance of ANN models.

2.5.4 Determination of Model Architecture

Determining the network architecture is one of the most important and difficult tasks in
ANN model development (Maier and Dandy 2000). It requires the selection of the
optimum number of layers and the number of nodes in each of these. There is no
unified theory for determination of an optimal ANN architecture. It is generally

achieved by fixing the number of layers and choosing the number of nodes in each
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layer. There are always two layers representing the input and output variables in any
neural network. It has been shown that one hidden layer is sufficient to approximate
any continuous function provided that sufficient connection weights are given (Cybenko
1989; Hornik et al. 1989). Hecht-Nielsen (1989) provided a proof that a single hidden
layer of neurons, operating a sigmoidal activation function, is sufficient to model any
solution surface of practical interest. To the contrary, Flood (1991) stated that there are
many solution surfaces that are extremely difficult to model using a sigmoidal network
using one hidden layer. In addition, some researchers (Flood and Kartam 1994; Sarle
1994b; Ripley 1996) stated that, the use of more than one hidden layer provides the
flexibility needed to model complex functions in many situations. Lapedes and Farber
(1988) provided more practical proof that two hidden layers are sufficient, and
according to Chester (1990), the first hidden layer is used to extract the local features of
the input patterns while the second hidden layer is useful to extract the global features
of the training patterns. However, Masters (1993) stated that using more than one
hidden layer often slows the training process dramatically and increases the chance of

getting trapped in local minima.

The number of nodes in the input and output layers are restricted by the number of
model inputs and outputs, respectively. There is no direct and precise way of
determining the best number of nodes in each hidden layer. A trial-and-error procedure,
which is generally used in geotechnical engineering to determine the number and
connectivity of the hidden layer nodes, can be used. It has been shown in the literature
(e.g. Maren et al. 1990; Masters 1993; Rojas 1996) that neural networks with a large
number of free parameters (connection weights) are more subject to overfitting and poor
generalisation.  Consequently, keeping the number of hidden nodes to a minimum,
provided that satisfactory performance is achieved, is always better, as it: (a) reduces
the computational time needed for training; (b) helps the network to achieve better
generalisation performance; (c) avoids the problem of overfitting and (d) allows the
trained network to be analysed more easily. For single hidden layer networks, there are
a number of rules-of-thumb to obtain the best number of hidden layer nodes. One
approach is to assume the number of hidden nodes to be 75% of the number of input
units (Salchenberger et al. 1992). Another approach suggests that the number of hidden
nodes should be between the average and the sum of the nodes in the input and output

layers (Berke and Hajela 1991). A third approach is to fix an upper bound and work
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back from this bound. Hecht-Nielsen (1987) and Caudill (1988) suggested that upper
limit of the number of hidden nodes in a single layer network may be taken as (2/+1),
where [ is the number of inputs. The best approach found by Nawari et al. (1999) is to
start with a small number of nodes and to slightly increase the number until no
significant improvement in model performance is achieved. Yu (1992) showed that the
error surface of a network with one hidden layer and (/~1) hidden nodes has no local
minima. For networks with two hidden layers, the geometric pyramid rule described by
Nawari et al. (1999) can be used. The notion behind this method is that the number of
nodes in each layer follows a geometric progression of a pyramid shape, in which the
number of nodes decreases from the input layer towards the output layer. Kudrycki
(1988) found empirically that the optimum ratio of the first to second hidden layer

nodes is 3:1, even for high dimensional inputs.

Another way of determining the optimal number of hidden nodes that can result in good
model generalisation and avoid overfitting, is to relate the number of hidden nodes to
the number of available training samples. Masters (1993) stated “the only way to
prevent the network from learning unique characteristics of the training set, to the
detriment of learning universal characteristics, is to flood it with so many examples that
it cannot possibly learn all of their idiosyncracies”. There are a number of rules-of-
thumb that have been suggested in the literature to relate the training samples to the
number of connection weights. For instance, Rogers and Dowla (1994) suggested that
the number of weights should not exceed the number of training samples. Masters
(1993) stated that the required minimum ratio of the number of training samples to the
number of connection weights should be 2 and, the minimum ratio of the optimum
training sample size to the number of connection weights should be 4. Hush and Horne
(1993) suggested that this ratio should be 10. Amari et al. (1997) demonstrated that if

this ratio is at least 30, overfitting does not occur.

More recently, a number of systematic approaches have been proposed to automatically
obtain the optimal network architecture. The adaptive method of architecture
determination, suggested by Ghaboussi and Sidarta (1998), is an example of the
automatic methods for obtaining the optimal network architecture that suggests starting
with an arbitrary, but small, number of nodes in the hidden layers. During training, and

as the network approaches its capacity, new nodes are added to the hidden layers, and
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new connection weights are generated. Training is continued immediately after the new
hidden nodes are added to allow the new connection weights to acquire the portion of
the knowledge base which was not stored in the old connection weights. For this
process to be achieved, some training is carried out with the new modified connection
weights only, while the old connection weights are frozen. Additional cycles of training
are then carried out where all the connection weights are allowed to change. The above
steps are repeated and new hidden nodes are added as needed to the end of the training
process, in which the appropriate network architecture is automatically determined.
Pruning is another automatic approach to determine the optimal number of hidden
nodes. One such technique proposed by Karnin (1990) starts training a network that is
relatively large and later reduces the size of the network by removing the unnecessary
hidden nodes. Genetic algorithms provide evolutionary alternatives to obtain an
optimal neural network architecture that have been used successfully in many situations
(Miller et al. 1989). The adaptive spline modelling of observation data (ASMOD)
(Kavli 1993) algorithm, is an automatic method for obtaining the optimal architecture of

B-spline neurofuzzy networks, as shown in §2.4.2.

Cascade-Correlation (Fahlman and Lebiere 1990) is another automatic method to
obtain the optimal architecture of ANNs. Cascade-Correlation is a constructive method
that can be characterised by the following steps (Fahlman and Lebiere 1990). The
neural network is initially trained using Fahlman’s quickprop (Fahlman 1988) algorithm
without hidden nodes and with direct connection between the input layer and the output
layer. Hidden nodes are added randomly one or a few at a time. New hidden nodes
receive connections from all previously established hidden nodes as well as from the
original inputs. At the time new hidden nodes are added to the network, their
connections with the inputs are frozen and only their output connections are trained
using the quickprop algorithm. This process is stopped when the model performance
shows no further improvement. Consequently, the architecture of ANN networks using
Cascade-Correlation is that the input nodes are connected to the output nodes and the
hidden nodes are connected to the input and output nodes as well as other previously

established hidden nodes, as shown in Figure 2.11.

The constructive nature of the Cascade-Correlation method means that the way in which

the hidden nodes are connected results in the addition of a new single-node layer to the
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Figure 2.11: ANN architecture with the Cascade-Correlation
(Fahlman and Lebiere 1990)

network each time a new node is added. This is designed to result in the smallest
network that can adequately map the design input-output relationship, which has a
number of advantages, including improved generalisation ability (Castellano et al.

1997) and higher processing speed (Bebis and Georgiopoulos 1994).

It should be noted that Masters (1993) has argued that the automatic approaches for
obtaining optimal network architectures can be easily abused, as they do not directly
address the problem of overfitting. In an attempt to exploit the benefits of both the
automatic and manual approaches, the Cascade-Correlation and ad-hoc trial-and-error
methods will be examined for the development of ANN models in Chapter 5. On the

other hand, the ASMOD algorithm will be used for the development of the neurofuzzy
networks in Chapter 6.

2.5.5 Model Optimisation (Training)

The process of optimising the connection weights is known as ‘training’ or ‘learning’.
This is equivalent to the parameter estimation phase in conventional statistical models.
The aim is to find a global solution to what is typically a highly non-linear optimisation
problem (White 1989). The method most commonly used for finding the optimum
weight combination of feed-forward neural networks is the back-propagation algorithm

(Rumelhart et al. 1986) which is based on first-order gradient descent. The use of
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global optimisation methods, such as simulated annealing and genetic algorithms, have
also been proposed (Hassoun 1995). The advantage of these methods is that they have
the ability to escape local minima in the error surface and, thus, produce optimal or near
optimal solutions. However, they also have a slow convergence rate. Ultimately, the
model performance criteria, which are problem specific, will dictate which training
algorithm is most appropriate. If training speed is not a major concern, there is no
reason why the back-propagation algorithm cannot be used successfully (Breiman
1994). Consequently, the back-propagation algorithm will be used for optimising the
connection weights of the MLP models developed in Chapter 5. On the other hand, as
mentioned in §2.4.2, the weights of B-spline neurofuzzy networks are generally updated
using the Least Mean Squared or Normalised Least Mean Squared learning rules
(Brown and Harris 1994), which will be used for the development of the neurofuzzy
models in Chapter 6.

2.5.6 Stopping Criteria

Stopping criteria are used to decide when to stop the training process. They determine
whether the model has been optimally or sub-optimally trained. Many approaches can
be used to determine when to stop training. Training can be stopped: after the
presentation of a fixed number of training records; when the training error reaches a
sufficiently small value; or when no or slight changes in the training error occur.
However, the above examples of stopping criteria may lead to the model stopping
prematurely or over-training. As mentioned previously, the cross-validation technique
(Stone 1974) is an approach that can be used to overcome such problems. It is
considered to be the most valuable tool to ensure over-fitting does not occur (Smith
1993). Amari et al. (1997) suggested that there are clear benefits in using cross-
validation when limited data are available, as is the case for many real-life case studies.
The benefits of cross-validation are discussed further in Hassoun (1995). As mentioned
in §2.5.2, the cross-validation technique requires the data be divided into three sets;
training, testing and validation. The training set is used to adjust the connection
weights. The testing set measures the ability of the model to generalise, and the
performance of the model using this set is checked at many stages of the training

process and training is stopped when the error of the testing set starts to increase. The
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testing set is also used to determine the optimum number of hidden layer nodes and the
optimum values of the internal parameters (learning rate, momentum term and initial
weights). The validation set is used to assess the model performance once training has
been accomplished. Model validation is discussed in more detail in the following
section. Cross-validation will be used for the development of all MLP models in this
research, as will be seen in Chapter 5. On the other hand, as mentioned in §2.4.2, B-
spline neurofuzzy networks use a number of different stopping criteria (e.g. Bayesian
Information Criterion, Akaike’s Information Criterion and Final Prediction Error).
Unlike cross-validation, these stopping criteria require the data be divided into only two
sets; a training set, to construct the model; and an independent validation set, to test the
validity of the model in the deployed environment. The basic notion of these stopping
criteria is that the model performance should balance the model complexity with the
amount of training data and model error. The above stopping criteria will be

investigated for the development of the neurofuzzy models in Chapter 6.

2.5.7 Model Validation

Once the training phase of the model has been successfully accomplished, the
performance of the trained model should be validated. The purpose of the model
validation phase is to ensure that the model has the ability to generalise within the limits
set by the training data in a robust fashion, rather than simply having memorised the
input-output relationships that are contained in the training data. The approach that is
generally adopted in the literature to achieve this is to test the performance of trained
ANNSs on an independent validation set, which has not been used as part of the model
building process. If such performance is adequate, the model is deemed to be able to
generalise and is considered to be robust. In this thesis, an additional approach to test
the generalisation ability and robustness of ANN models will be proposed. The
proposed approach is suggested to complement the approach that is usually used in the

literature and will be presented in Chapter 5.

The coefficient of correlation, r, the root mean squared error, RMSE, and the mean
absolute error, MAE, are the main criteria that are often used to evaluate the prediction

performance of ANN models. The coefficient of correlation is a measure that is used to
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determine the relative correlation and the goodness-of-fit between the predicted and

observed data and can be calculated as follows:

G
=2 (2.22)
g, 0,
and
il n _ 1 n ;yl JZ_;dJ
G —=y)d,-d)=—— d, -1 2.23
yrd; n—lj;(yj yX( J ) n—1 jglyj J 7 ( )
(2.29)
(2.25)
2.7
y==L (2.26)
n
_ 24,
d =" (2.27)
n
where:
Y, =model (predicted) output, V=YYV oo Vb
ai. = desired (observed) output, a}= d,d,d,...,d;

C, 4, = covariance between the model output (») and the desired output (@);

o, ~ =standard deviation of the model output Vs
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o, = standard deviation of the desired output d;;
y = mean of the model output y;

d = mean of the desired output d; and

n = number of data.

Smith (1986) suggested the following guide for values of |#| between 0.0 and 1.0:

e |08 strong correlation exists between two sets of variables;
e 02<|r<0.8 correlation exists between the two sets of variables; and

e |1<0.2 weak correlation exists between the two sets of variables.

The RMSE is the most popular measure of error and has the advantage that large errors
receive much greater attention than small errors (Hecht-Nielsen 1990). RMSE is

calculated as follows:

RMSE = {li(yj —azr,.)z}2 (2.28)
ni5

In contrast with RMSE, MAE eliminates the emphasis given to large errors. Both
RMSE and MAE are desirable when the evaluated output data are smooth or continuous

(Twomey and Smith 1997) and is calculated as follows:

MAE= 1%

n j=1

y;—d,| (2.29)

2.6 Summary

It has been demonstrated that ANNs are a form of artificial intelligence, which, by
means of their architecture, attempt to simulate the biological structure of the human
brain and nervous system. It is evident from this chapter that the ANN modelling
philosophy for prediction and forecasting is similar to that used in more conventional

statistical models. In both cases, the purpose of the model is to capture the relationship
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between a set of model inputs and the corresponding outputs. To achieve this, it has
been shown that ANNS rely on the data alone to determine the structure and parameters
of the model. It has also been shown that the development of ANN models must
address several factors which include the determination of adequate model inputs, data
division and pre-processing, the choice of a suitable network architecture, careful
selection of some internal parameters, the stopping criteria and model validation. The
relative success of ANNSs in the field of geotechnical engineering will be examined in

the following chapter.



Chapter 3

Artificial Neural Network Applications in
Geotechnical Engineering

3.1 Introduction

The engineering properties of soil and rock exhibit uncertain behaviour from one
location to another due to the complex and varied physical processes associated with the
formation of these materials (Jaksa 1995). This is in contrast to most other civil
engineering materials, such as steel, concrete and timber, which exhibit far greater
homogeneity and isotropy. In order to cope with the complexity of geotechnical
behaviour and the spatial variability of these materials, traditional forms of engineering
design models are justifiably simplified. An alternative approach, which has shown
some promise in the field of geotechnical engineering, is artificial neural networks
(ANNEs).

Over the last few years, the use of ANNSs has increased in many areas of engineering.
In particular, ANNs have been applied to many geotechnical engineering problems and
have demonstrated some degree of success. A review of the literature reveals that
ANNSs have been used successfully in pile capacity prediction, predicting the settlement
of structures, modelling soil properties and behaviour, determination of liquefaction
potential, site characterisation, modelling earth retaining structures, evaluating stability
of slopes and the design of tunnels and underground openings. In the majority of these
applications, multi-layer perceptrons (MLPs) trained with the back-propagation
algorithm were used. The aim of this chapter is to provide an overview of most ANN
applications that have appeared to-date in geotechnical engineering to reveal the relative
success of ANNs in predicting various geotechnical engineering properties and
behaviour. It is not intended to cover every single application or scientific paper that
can be found in the literature. Rather, the intention is to provide a general overview of
some of the more relevant ANN applications in geotechnical engineering problems.
Some works are selected to be described in some detail while, others are acknowledged

for reference purposes.

39
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3.2 Pile Capacity

The prediction of the load capacity, particularly that based on pile driving data, has been
examined by several ANN researchers. Goh (1994a; 1995b) presented a neural network
to predict the friction capacity of piles in clays. The neural network was trained with
field data of actual case records. The model inputs were considered to be the pile
length, pile diameter, mean effective stress and the undrained shear strength. The skin
friction resistance was the only model output. The results obtained by utilising the
neural network were compared with the results obtained by the method of Semple and
Rigden (1986) and the B method (Burland 1973). The methods were compared using
regression analysis as well as the error rate (Yeh et al. 1993) as shown in Table 3.1. It
is evident from Table 3.1 that the ANN model outperforms the conventional methods.
The study also pointed out that the main criticism of the ANN methodology is its

inability to trace and explain the logic it uses to arrive at the prediction.

Table 3.1: Summary of correlation coefficients and error rate for friction pile

capacity (Goh 1995b)
Method Coefficient of correlation, r Error rate (kPa)
Training Testing Training Testing
ANN 0.985 0.956 1.016 1.194
Semple and Rigden (1986) 0.976 0.885 1.318 1.894
B method 0.731 0.704 4.824 3.096

Goh (1995a; 1996b), soon after, developed another neural network to estimate the
ultimate load capacity of driven piles in cohesionless soils. In this study, the data used
were derived from the results of load tests on timber, precast concrete and steel piles
driven into sandy soils. The inputs to the ANN model that were found to be more
significant were the hammer weight, hammer drop, pile length, pile weight, pile cross
sectional area, pile set, pile modulus of elasticity and the hammer type. The model
output was the pile load capacity. When the model was examined using a testing set, it
was observed that the neural network successfully modelled the pile load capacity. By
examining the connection weights, it was observed that the more important input factors

are the pile set, the hammer weight and the hammer type. The study compared the
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results of the ANNs with the following common formulae: Engineering News formula
(Wellington 1892), Hiley formula (Hiley 1922) and Janbu formula (Janbu 1953).
Regression analysis was carried out to obtain the coefficients of correlation, r, of the
predicted versus measured results for the ANNs and the traditional methods. Table 3.2
summarises the regression analysis results, which indicate that the neural network
predictions of the load capacity of driven piles were found to be significantly better than

those obtained using the other methods.

Table 3.2: Summary of regression analysis results of pile capacity prediction

(Goh 1995a)
Method Coefficient of correlation, r
Training data Testing data
ANN 0.96 0.97
Engineering News 0.69 0.61
Hiley 0.48 0.76
Janbu 0.82 0.89

Chan et al. (1995) developed a neural network as an alternative to the pile driving
formulae. The network was trained with the same input parameters listed in the
simplified Hiley formula (Broms and Lim 1988), including the elastic compression of
the pile and soil, the pile set and the driving energy delivered to the pile. The model
output considered was, again, the pile capacity. The desired output value of the pile
capacity that was used in the training process was estimated by using the computer
algorithm CAPWAP (Rausche et al. 1972) or the CASE method (Goble et al. 1975).

The root mean squared percentage error, EN, of the neural network

2
n — d ]
(EN = Z(y / y ! ) /1 where y, and d; are the network predicted output and the

j=l J

desired output, respectively) was 13.5% for the training set, and 12.0% for the testing
set, compared with the results of 15.7% in the training and testing sets for the simplified

Hiley formula.

Lee and Lee (1996) utilised ANNSs to predict the ultimate bearing capacity of piles. The

problem was simulated using data obtained from model pile load tests using a
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calibration chamber and results of in-situ pile load tests. For the simulation using the
model pile load test data, the model inputs were the penetration depth ratio (ie.
penetration depth of pile/pile diameter), the mean normal stress of the calibration
chamber and the number of blows. The ultimate bearing capacity was the model output.
The prediction of the ANN model showed a maximum error not greater than 20% and
an average summed square error of less than 15%. For the simulation using the in-situ
pile load test data, five input variables were used representing the penetration depth
ratio, the average standard penetration number along the pile shaft, the average standard
penetration number near the pile tip, pile set and hammer energy. The data were
arbitrarily partitioned into two parts, odd and even numbered sets and two neural
network models were developed. The results of these models were compared with
Meyerhof’s equation (Meyerhof 1976), based on the average standard penetration value.
Figure 3.1 shows the plots of the testing set results of the estimated versus measured
pile bearing capacity obtained from the neural network models and Meyerhof’s
equation. The plots in Figure 3.1 show that the predicted values from the neural
networks matched the measured values much better than those obtained from

Meyerhof’s equation.
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Figure 3.1: Testing results of predicted vs measured pile bearing capacity from

in-situ pile load test (Lee and Lee 1996)

Abu-Kiefa (1998) introduced three ANN models (referred to in the paper as GRNNMI,
GRNNM2 and GRNNM3) to predict the capacity of driven piles in cohesionless soils.

The first model was developed to estimate the total pile capacity. The second model
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was employed to estimate the tip pile capacity, whereas the final model was used to
estimate the shaft pile capacity. In the first model, five variables were selected to be the
model inputs. These inputs were the angle of shear resistance of the soil around the
shaft, the angle of shear resistance at the tip of the pile, the effective overburden
pressure at the tip of the pile, pile length and the equivalent cross-sectional area of the
pile. The model, again, had one output representing the total pile capacity. In the
model used to evaluate the pile tip capacity, the above variables were also used. The
number of input variables used to predict the pile shaft capacity was four, representing
the average standard penetration number around the shaft, the angle of shear resistance
around the shaft, pile length and pile diameter. The results of the networks obtained in
this study were compared with four other empirical techniques. These techniques were
those proposed by Meyerhof (1976), Coyle and Castello (1981), the American
Petroleum Institute (1984) and Randolph (1985). The results of the total pile capacity
prediction demonstrated high coefficients of determination (0.95) for all data records
obtained from the neural network model, while those for the other methods ranged
between 0.52 and 0.63. Figures 3.2 to 3.4 show the measured versus predicted values of
all data records for the pile capacity, tip pile capacity and shaft pile capacity,
respectively. It can be seen from these figures that the predictions of the ANNs produce
less scatter than the predictions of all other methods, and thus provide the best

prediction of pile load capacity, tip pile capacity and shaft pile capacity.
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Figure 3.2: Comparison of predicted and measured total pile capacity
(Abu-Kiefa 1998)
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Teh et al. (1997) proposed a neural network for estimating the static pile capacity
determined from dynamic stress-wave data for precast reinforced concrete piles with a
square section. The networks were trained to associate the input stress-wave data with
capacities derived from the CAPWAP technique (Rausche et al. 1972). The study was
concerned with predicting the ‘CAPWAP predicted capacity’ rather than the true
bearing capacity of the pile. The neural network learned the training data set almost

perfectly for predicting the static total pile capacity with a root mean square error of less
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than 0.0003. The trained neural network was assessed for its ability to generalise by
means of a testing data set. Good prediction was obtained for seven out of ten piles as

shown in Figure 3.5.
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Figure 3.5: Static capacity predicted by CAPWAP and neural network for
testing set (Teh et al. 1997)

Another application of ANNs includes the prediction of axial and lateral load capacity
of steel H-piles, steel piles and prestressed and reinforced concrete piles by Nawari et al.
(1999). In this application, ANNs were found to be an accurate technique for the design

of pile foundations.

3.3 Settlement of Foundations

As mentioned previously, the design of foundations is generally controlled by the
criteria of bearing capacity and settlement, the latter often governing. The estimation of
the settlement of foundations is very complex, uncertain and not yet entirely
understood. This fact has encouraged some researchers to apply the ANN technique to
settlement prediction. Goh (1994a) developed a neural network for the prediction of
settlement of a vertically loaded pile foundation in a homogeneous soil stratum. The

input variables for the neural network consisted of the ratio of the elastic modulus of the
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pile to the shear modulus of the soil, pile length, pile load, shear modulus of the soil,
Poisson’s ratio of the soil and radius of the pile. The output variable was the pile
settlement. The desired output that was used for the ANN model training was obtained
by means of finite element and integral equation analyses developed by Randolph and
Wroth (1978). A comparison of the theoretical and predicted settlements for the
training and testing sets is given in Figure 3.6. The results show that the neural

network was able to successfully model the settlement of pile foundations.
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(Goh 1994a)

Sivakugan et al. (1998) carried out a preliminary study on a small set of data to explore
the possibility of using neural networks to predict the settlement of shallow foundations
on sands. A neural network was trained with five inputs representing the net applied
pressure, average blow count from the standard penetration test, width of the
foundation, shape of the foundation and depth of the foundation. The output was the
settlement of the foundation. With the aid of Cascade-Correlation, a network with one
hidden layer and 11 hidden nodes was found optimal. The results obtained by the
neural network were compared with methods proposed by Terzaghi and Peck (1967)
and Schmertmann (1970). Based on the results obtained, it was shown that the
traditional methods of Terzaghi and Peck and Schmertmann overestimate the
settlements by about 2.2 times and 3.4 times, respectively, as shown in Figure 3.7. In

contrast, the predictions using the ANN model were good (Figure 3.8). Using the same
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neural network features, Arnold (1999) extended the work done by Sivakugan et al.

(1998) with a database containing a larger number of data cases. His work, although

relatively superficial, found that the best network consisted of 18 hidden layer nodes

with correlation coefficients equal to 0.954, 0.955 and 0.944 for the training, testing and

validation sets, respectively.

It should be noted that 18 hidden layer nodes are

considered to be large for a network with 5 input variables, which may affect the

generalisation ability of the model, as discussed in §2.5.4.
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3.4 Soil Properties and Behaviour

Soil properties and behaviour is an area that has attracted many researchers to modelling
using ANNs. Developing engineering correlations between various soil parameters is
an issue discussed by Goh (1995a; 1995¢).  Goh used neural networks to model the
correlation between the relative density and the cone resistance from the cone
penetration test (CPT), for both normally consolidated and overconsolidated sands.
Laboratory data, based on calibration chamber tests, were used to successfully train and
test the neural network model. The neural network model used the relative density and
the mean effective stress of soils as inputs and the CPT cone resistance as a single
output. The ANN model was found to give high coefficients of correlation of 0.97 and
0.91 for the training and testing data, respectively, which indicated that the neural
network was successful in modelling the non-linear relationship between the CPT cone
resistance and the input parameters. Many other studies have successfully used ANNs
for modelling soil properties and behaviour, which, for brevity, are acknowledged for

reference purposes in the following paragraphs.

Ellis et al. (1995) developed an ANN model for sands based on grain size distribution
and stress history. Sidarta and Ghaboussi (1998) employed an ANN model within a
finite element analysis to extract the geomaterial constitutive behaviour from non-
uniform material tests. Penumadu and Jean-Lou (1997) used neural networks for
representing the behaviour of sand and clay soils. Ghaboussi and Sidarta (1998) used
neural networks to model both the drained and undrained behaviour of sandy soil
subjected to triaxial compression-type testing. Penumadu and Zhao (1999) also used
ANNSs to model the stress-strain and volume change behaviour of sand and gravel under
drained triaxial compression test conditions. Zhu et al. (1998a; 1998b) used neural
networks for modelling the shearing behaviour of a fine-grained residual soil, dune sand
and Hawaiian volcanic soil. Cal (1995) used a neural network model to generate a
quantitative soil classification from three main factors (plastic index, liquid limit and
clay content). Najjar et al. ( 1996) showed that neural network-based models can be
used to accurately assess soil swelling, and that neural network models can provide
significant improvements in prediction accuracy over statistical models. Romero and
Pamukcu (1996) showed that neural networks are able to effectively characterise and

estimate the shear modulus of granular materials. Agrawal et al. (1994), Gribb and
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Gribb (1994) and Najjar and Basheer (1996b) all used neural network approaches for
estimating the permeability of clay liners. Basheer and Najjar (1995) and Najjar et al.

(1996) presented neural network approaches for soil compaction.

ANNs are also used successfully in other applications including: modelling the
mechanical behaviour of medium-to-fine sand (Ellis et al. 1992), modelling rate-
dependent behaviour of clay soils (Penumadu et al. 1994), simulating the uniaxial
stress-strain constitutive behaviour of fine-grained soils under both monotonic and
cyclic loading (Basheer 1998; Basheer and Najjar 1998), characterising the undrained
stress-strain response of Nevada sand subjected to both triaxial compression and
extension stress paths (Najjar and Ali 1999; Najjar et al. 1999), predicting the axial and
volumetric stress-strain behaviour of sand during loading, unloading and reloading (Zhu
and Zaman 1997) and predicting the anisotropic stiffness of granular materials from

standard repeated load triaxial tests (Tutumluer and Seyhan 1998).

3.5 Liquefaction

Liquefaction is a phenomenon which occurs mainly in loose and saturated sands as a
result of earthquakes. It causes the soil to lose its shear strength due to an increase in
pore water pressure, often resulting in large amounts of damage to most civil
engineering structures. Determination of liquefaction potential due to earthquakes is a
complex geotechnical engineering problem. Goh (1994b) used neural networks to
model the complex relationship between seismic and soil parameters in order to
investigate liquefaction potential. The neural network used in this work was trained
using case records from 13 earthquakes that occurred in Japan, United States and Pan-
America during the period 1891-1980. The study used eight input variables and a
single output variable. The input variables were the SPT N-value, fines content, mean
grain size, total stress, effective stress, equivalent dynamic shear stress, earthquake
magnitude and the maximum horizontal acceleration at the ground surface. The output
was assigned a binary value of 1 for sites with extensive or moderate liquefaction, and a
value of 0 for sites with marginal or no liquefaction. The results obtained by the neural
network model were compared with those obtained using the method of Seed et al.

(1985). The study showed that the neural network gave correct predictions in 95% of
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cases, whereas the method of Seed et al. (1985) gave a success rate of 84%. Goh
(1996a) also used neural networks to assess liquefaction potential from CPT resistance
data. The data records were taken for sites of sand and silty sand deposits in Japan,
China, United States and Romania, representing five earthquakes that occurred during
the period 1964-1983. A similar neural network modelling strategy, as used by Goh
(1994b), was used for this study and the results were compared with the method of
Shibata and Teparaksa (1988). The neural network showed a 94% success rate, which
is equivalent to the same number of error predictions as the conventional method by
Shibata and Teparaksa (1988).

Two other papers (Najjar and Ali 1998; Ural and Saka 1998) also used CPT data to
evaluate soil liquefaction potential and resistance. Najjar and Ali (1998) used neural
networks to characterise the soil liquefaction resistance utilising field data sets
representing various earthquake sites from around the world. The ANN model that was
developed in this work was generated to produce a liquefaction potential assessment
chart that could be used by geotechnical engineers in liquefaction assessment. Ural and
Saka (1998) also used neural networks to analyse liquefaction. Comparisons between
the ANN approach and a simplified liquefaction procedure indicated a similar rate of

success for the neural network approach as for the conventional approach.

Other applications of ANNs for liquefaction prediction include the prediction of
liquefaction resistance and potential (Juang and Chen 1999), investigation of the
accuracy of liquefaction prediction of ANNs compared with fuzzy logic and statistical
approaches (Ali and Najjar 1998) and assessment of liquefaction potential using

standard penetration test results (Agrawal et al. 1997).

3.6 Site Characterisation

Site characterisation is an area concerned with the analysis and interpretation of
geotechnical site investigation data. Zhou and Wu (1994) used a neural network model
to characterise the spatial distribution of rockhead elevations. The data used to train the
model were taken from seismic refraction surveys on more than 11 km of transverse

lines. The network used the spatial position (x- and y-coordinate) and the surface
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elevation as inputs, and was used to estimate the rockhead elevation at that location as
the output. The trained network was tested to estimate the rockhead elevations for all
locations within the area of investigation by producing a contour map. Results from the
neural network model compared well with similar contour maps generated using kriging
(Journel and Huijbregts 1978), with the additional benefit that neural networks do not

make assumptions or simplify spatial variations.

A similar application relevant to ground water characterisation was described by
Basheer et al. (1996). Basheer et al. (1996) indicated that neural networks can be used
to map and logically predict the variation of soil permeability in order to identify
landfill boundaries and to construct a waste landfill. Rizzo et al. (1996) presented a new
site characterisation method called SCANN (Site Characterisation using Artificial
Neural Networks) that is based on the use of neural networks to map discrete spatially-
distributed fields. Other applications were presented by Najjar and Basheer (19962) and
Rizzo and Dougherty (1994).

3.7 Earth Retaining Structures

Goh et al. (1995) developed a neural network model to provide initial estimates of
maximum wall deflections for braced excavations in soft clay. The neural network was
used to synthesise data derived from finite element studies on braced excavations in
clay. The input parameters used in the model were the excavation width, soil
thickness/excavation width ratio, wall stiffness, height of excavation, soil undrained
shear strength, undrained soil modulus/shear strength ratio and the unit weight of the
soil. The maximum wall deflection was the only output. Using regression analysis, the
scatter of the predicted neural network deflections relative to the deflections obtained
using the finite element method were assessed. The results produced high coefficients
of correlation for the training and testing data of 0.984 and 0.967, respectively. Some
additional testing data from actual case records were also used to confirm the
performance of the trained neural network model. The agreement of the neural network
predicted and measured wall deflections was encouraging, as shown in Table 3.3. The
study intended to use the neural network model as a time-saving and user-friendly

alternative to the finite element method.
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Table 3.3: Comparison of neural network and field measurements (Goh 1995)

Case history Measured wall Predicted wall
deflection (mm) deflection (mm)
Laveder (Singapore) 32 31
Laveder (Singapore) 36 28
Telecom (Singapore) 56-84 65
Vaterland 3 76 76
(NGI 1962) 114-140 107
San Francisco 20-60 59
(Mana 1977) 72-150 122

3.8 Slope Stability

Ni et al. (1996) proposed a methodology of combining fuzzy sets theory with artificial
neural networks for evaluating the stability of slopes. In this approach, the input
parameters were gradient, horizontal profile, vertical profile, location, height, geological
origin, soil texture, depth of weathering, direction of slopes, vegetation, land use,
maximum daily precipitation and maximum hour precipitation. The output was the
slope failure potential. A number of hypothetical natural slopes were evaluated by both
neural networks and an analytical model, and the results of the neural network approach

were in good agreement when compared with those obtained by the analytical model.

3.9 Tunnels and Underground Openings

Shi et al. (1998) presented a study of neural networks for predicting settlements of
tunnels. A general neural network model was trained and tested using data from the 6.5
km Brasilia Tunnel, Brazil. The study identified many factors to be used as the model
inputs and three settlement parameters as the model outputs. The input parameters were
the length of excavation from drive start, the depth of soil cover above tunnel crown, the
area of tunnel section, the delay for closing the invert, water level depth, the rate of

advance of excavation, construction method, the SPT mean blow count at the tunnel
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crown level, the SPT mean blow count at the tunnel spring-line level and the SPT mean
blow count at tunnel inverted arch level. The three output parameters were the
settlement at the face passage, settlement at the invert closing and the final settlement
after stabilisation. The results showed that the neural network model could not achieve
an appropriate level of accuracy. To improve the prediction accuracy, the study
proposed a modular neural network model based on the concept of integrating multiple
neural network modules in one system, with each module being constrained to consider
one specific situation of a complicated real world problem. The modular concept
showed an improvement in terms of model convergence and prediction. The capability
to improve the models developed in this work was later extended by Shi (2000) by
applying input data transformation. This extended study indicated that distribution

transformation of the input variables reduced the prediction error by more than 13%.

Lee and Sterling (1992) developed a neural network for identification of probable
failure modes for underground openings from prior case history information. The study
used the knowledge obtained by the neural network to produce an assistance system for
the design of tunnels. Sterling and Lee (1992) used the neural network as part of a
knowledge-based expert system for assisting with tunnel design. Moon et al. (1995)
also used ANNSs, integrated with an expert system, for the preliminary design of tunnels.

3.10 Summary

It is evident from the review presented in this chapter that ANNs have been applied
successfully to many geotechnical engineering areas. This includes the prediction of
pile capacity, predicting the settlement of foundations, modelling soil properties and
behaviour, determination of liquefaction potential, site characterisation, modelling earth
retaining structures, evaluating slope stability and the design of tunnels and
underground openings. Perhaps the most successful and well-established applications
are the capacity prediction of driven piles, liquefaction and the prediction of soil
properties and behaviour. There are several areas in which the feasibility of ANNs has
yet to be tested, such as bearing capacity prediction of shallow foundations, capacity of
bored piles, design of sheet pile walls and dewatering, among others. The feasibility of

ANNs for some other applications such as settlement of shallow foundations has been
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tested in a preliminary fashion and has shown some degree of success. However, thus
far, a comprehensive study has yet to be achieved. The ANN models that have been
developed in the literature for settlement prediction of shallow foundations have been
built on either a limited number of data cases (e.g. Sivakugan et al. 1998) or have
suffered from the lack of a comprehensive procedure for testing their robustness and
generalisation ability (e.g. Arnold 1999). Consequently, these models need to be treated
with caution until the development of more well-established models, which will be one

of the main focuses of the present research.

Based on the results of the studies reviewed in this chapter, it is also evident that ANNs
perform better than, or as well as, the conventional methods used as a basis for
comparison in many situations, whereas they fail to perform well in a few. This is
implies that ANNs are a powerful and practical tool for solving many problems in the
field of geotechnical engineering. The predictions of ANN models developed in the
applications reviewed in this chapter were based on an assumption that the data used for
ANN model development are ideal (i.e. have no parameter uncertainty) and that the
model is a perfect predictor (i.e. has no model uncertainty). It may be possible to
achieve better predictions if these uncertainties are considered. In Chapter 7, the issue
of model and parameter uncertainties will be considered and discussed in detail for
settlement prediction of shallow foundations on cohesionless soils. In the following
chapter, the problem of settlement prediction of shallow foundations on cohesionless

soils will be discussed.



Chapter 4

Settlement of Shallow Foundations on
Cohesionless Soils

4,1 Introduction

This chapter provides a background to the settlement of foundations and focuses on the
settlement of shallow foundations on cohesionless soils. The major causes of settlement
of shallow foundations are presented and the factors affecting the settlement prediction
of shallow foundations are reviewed and discussed. In addition, the available methods
for settlement prediction of shallow foundations on cohesionless soils are categorised
and the more successful are described in more detail, with some discussion of their

relative advantages and disadvantages.

4.2 Causes of Settlement of Shallow Foundations

Settlement of shallow foundations may arise from a number of causes (Poulos 1975),

including:

1. Static loads imposed by the weight of structures;

2. Dynamic loads produced by machinery, earthquakes, moving loads on roads or
airfield pavements;

3. Changes in moisture content from seasonal fluctuation in the water table, rainfall
and evaporation or the absorption of water by roots of large trees; or

4. The effects of nearby construction resulting from adjacent excavation, pile driving

and dewatering.

This chapter concentrates on settlement of shallow foundations on cohesionless soils

due to static loads only, as this is the focus of the research described in this thesis.

55
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4.3 Factors Affecting Settlement of Shallow Foundations on Cohesionless Soils

A proper estimation of settlement of shallow foundations on cohesionless soils can be
obtained through a thorough understanding of the factors affecting settlement. Such
factors can be categorised as ‘primary’ and ‘secondary’ factors, which are discussed

below.

4.3.1 Primary Factors

In a statistical analysis carried out by Burland and Burbidge (1985), for more than 200
case records of settlement of shallow foundations on sands and gravels, three factors

were found to govern settlement prediction:

¢ Footing width, B;
e Footing net applied pressure, ¢; and

* Soil compressibility within the depth of influence of foundation,

This conclusion has also been recognised by most traditional methods for settlement

prediction of shallow foundations on cohesionless soils.

Soil compressibility within the depth of influence of a foundation requires the
assignment of a depth over which the compressibility of the soil beneath the footing
significantly influences the settlement and the assignment of soil properties that can
accurately reflect this compressibility. There is no unanimous agreement in the
literature on the definition of the depth of influence of a foundation. For example,
Terzaghi and Peck (1948), Bazaraa ( 1967) and D’Appolonia et al. (1968) recommended
taking a depth of influence equal to the width of the footing, B. Parry (1971) and
Schultze and Sherif (1973) took a depth of influence equal to 2B in their settlement
analyses. Schmertmann et al. (1978) considered a depth of influence of 2B for square
and circular footings and 4B for continuous footings. Gupta (1993) assumed this depth
to be 2B for L/B < 3 and 4B for L/B > 3, where L is the footing length. When the
average SPT blow count N decreases with depth, Burland and Burbidge (1985) took this
depth to be equal to the lesser of 2B or the depth from the bottom of the footing to
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bedrock. On the other hand, when the blow count is constant or increasing with depth,
Burland and Burbidge (1985) considered a depth of influence of approximately B%7. In
this research, the guidelines proposed by Burland and Burbidge (1985) are used for the
definition of the depth of influence, as most case records in the database used for the

purpose of this thesis were obtained from Burland and Burbidge (1985).

Determining an appropriate value of soil compressibility is the most difficult part of
settlement prediction (Sivakugan et al. 1998). Due to the difficulty in obtaining
undisturbed soil samples from cohesionless soils, soil compressibility is often obtained
from in-situ tests. Penetration tests such as the cone penetration test (CPT) and the
standard penetration test (SPT) are commonly used for estimating the compressibility of
soils. The CPT is one of the best available penetration methods for determining soil
compressibility and has the advantage of giving a continuous profile of soil strength
with penetration. The CPT is also rapid and inexpensive compared with other soil
profiling techniques (Orchant et al. 1987). However, the CPT suffers from a number of
shortcomings. It does not provide soil samples for visual inspection and, thus,
additional boreholes are necessary to correlate the penetration resistance with the soil
profile. Moreover, small variations in sand density and grain size often produce very
large changes in CPT penetration resistance, making it difficult to interpret the general
nature of the in-situ soil deposit (D'Appolonia and D'Appolonia 1970). In addition, in
dense and very dense soils, it is often difficult to push the penetrometer to the required

depth, which often needs substantial jacking reaction (Bazaraa 1967).

The SPT, on the other hand, is one of the most commonly used tests in practice for
measuring the compressibility of cohesionless soils (D'Appolonia and D'Appolonia
1970). The SPT has been used successfully for many years with thousands of
foundations and other structures (Gordon and Fletcher 1965). The SPT has the
advantage that it is often conducted as part of a routine subsurface exploration program,
which enables the visual inspection of soil samples. The SPT can also detect the
important variations in granular soil density and its procedure is simple, relatively
inexpensive and can be applied both below and above the water table with a reasonable
degree of accuracy. However, the SPT has also several notable disadvantages. The
SPT does not give a continuous soil profile and is notorious for its unreliability with

regard to the reflection of soil compressibility. The results of the SPT are also uncertain
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due to several factors associated with the test equipment and procedures (see Gordon
and Fletcher 1965; Wang and Lu 1982).

It has been argued that the CPT gives a better indication of the soil properties than the
SPT. In fact, as time proceeds, the CPT is replacing the SPT as the industry standard.
Whilst the SPT is not the most accurate in-situ method for measuring soil
compressibility, it is used extensively worldwide and most available data sets in the
literature include SPT measurements rather than more accurate estimates of soil
properties from the CPT. The performance of ANN models depends mainly on
collecting as much reliable data as possible. Consequently, the SPT is used as a
measure of soil compressibility for the development of the ANN models introduced in

this thesis. As a result, a brief description of the SPT test procedure is given below.

Standard Penetration Test (SPT)

The SPT is carried out using the following steps (Standards Australia 1993):

1. A vertical hole of at least 65 mm diameter is drilled to the depth at which the test is
to be conducted for the first time.

2. A split spoon sampler (Figure 4. 1) is inserted into the hole via steel rods.

3. A63.5+ 1 kg hammer, as shown in Figure 4.2, is raised a distance of 760 + 15
mm using a self-tripping mechanism and is allowed to fall freely due to lifting
winch inertia.

4. The process is repeated until the sampler penetrates the soil for a total distance of
450 mm.

5. The number of hammer blows required for each 150 mm interval is recorded.

6. The test is stopped if (i) a total of 30 blows causes less than 100 mm penetration at
any stage or (ii) there is no measurable penetration or the hammer bounces for 5
consecutive blows.

7. The blow counts for the last 300 mm of penetration are summed and the number of
blows of the standard penetration test (V) is computed, noting that the blow counts
for the first 150 mm are not used for computing N, as this soil is assumed to be

disturbed by the drilling process.
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8. The sampler is extracted and the soil sample is removed, inspected and placed in an
airtight container to maintain the sample moisture content, if required.
9. The hole is then drilled to the depth required for the next test and steps 2 to 8 are

repeated, as required.
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Figure 4.1: The split spoon sampler (Standards Australia 1993)

Crown Sheave(s)
or Pulley(s)

Typically 1-in. (25-mm)
Diameter Manila Rope

Donut Hammer —

Slip or Guide 30-in.
Pipe (762-mm) Fall
Anvil
Drill Rod
Ground Surface
.J-'
II i_l‘:l""__‘ Bore Hole
R
2

Figure 4.2: The standard penetration test (Coduto 1999)

The blow counts obtained from the SPT may be affected by submergence and
overburden pressure. Terzaghi and Peck (1948) found that the SPT blow count, N, for
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dense, fine or silty sand beneath the water table is abnormally high if the measured
value of N is greater than 15. This is due to the tendency of dense, fine or silty
submerged sand to dilate during shear in undrained conditions. Consequently, Terzaghi
and Peck (1948) recommended a correction for reducing the measured N values for

dense, fine or silty submerged sand when N> 15 as follows:

N,poea =15 +0.5(N —15) (4.1)

The above proposal was confirmed by a study carried out by Bazaraa (1967) for a large
number of results of SPT tests within 1 m above and below the water table. In his
study, Bazaraa (1967) concluded that the effect of submergence on very fine or silty
sand, in general, increases the number of blows of the SPT test. However, Bazaraa
(1967) established his conclusion for loose rather than dense sand. As a consequence,
Bazaraa (1967) proposed an alternative correction for the SPT blow count beneath the

water table in fine or silty sand as:

Ncorrecred = 0’6N (4‘2)

Schultze and Menzenbach (1961) and Bazaraa (1967) have shown that medium to
coarse sand and gravel are not affected by submergence. Burland and Burbidge (1985)
recommended no correction to N be taken for submergence. However, for very fine and
silty sand below the water table, Burland and Burbidge (1985) used the submergence
correction proposed by Terzaghi and Peck (1948) when N > 15. For soils consisting of
gravel or sandy gravel, Burland and Burbidge (1985) proposed a correction for N as

follows:

Ncorrected == 125N (43)

Another factor that may affect the results of the SPT blow count is the influence of the
effective overburden pressure, which is a measure of the confining pressure at the level
where the SPT is carried out. Many researchers (e.g. Sutherland 1963; Thorburn 1963;
Alpan 1964) recommended that the SPT blow count should be corrected for overburden
pressure. Mansur and Kaufman (1958), Philox (1962) and Zolkov and Wiseman ( 1965)
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confirmed the substantial influence of overburden pressure on the penetration resistance
of the SPT. Gibbs and Holtz (1957) and Bazaraa (1967) developed SPT correction
charts for overburden pressure. On the other hand, Peck et al. (1974) suggested no
correction for overburden pressure should be applied unless footings are below 6 m or
above 2 m in depth. Burbidge (1982) suggested that overburden pressure is not usually
an important correction to the SPT blow counts of granular soils because the overburden
pressure is normally restored after the construction of foundations and before the
beginning of any settlement monitoring. Burland and Burbidge (1985) recommended
no correction to N be taken for overburden pressure. Since most case records in the
database used for the purpose of this thesis were obtained from Burland and Burbidge
(1985), the correction factors recommended by Burland and Burbidge (1985) were
applied.

4.3.2 Secondary Factors

In addition to the three primary factors discussed in the previous section, there are many
other factors that contribute to a lesser degree to the settlement of shallow foundations
on cohesionless soils and, thus, can be considered as secondary factors. These factors

include:

e Depth of the water table beneath the foundation level;

e Time since load application;

e Footing geometry or shape (length-to-width), L /B;

e Depth of footing embedment, D, (usually expressed as a ratio of B and known as the
footing embedment ratio) ; and

e Thickness of the soil layer beneath the foundation.

Burland and Burbidge (1985) stated that the depth of water table beneath the foundation
level has little influence on settlement. Meyerhof (1965) also concluded that the water
table is reflected in the measured blow count of the SPT. Consequently, the effect of
depth of water table can be ignored without any significant error to the settlement

prediction.
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Burland and Burbidge (1985) also found that settlement of shallow foundations on sand
and gravels exhibit time-dependence. However, no distinct pattern emerged from their
statistical analysis in relation to the effect of time-dependence. Fang (1991) observed
that time-dependence for settlement of shallow foundations on cohesionless soils may
result from the consolidation of thin layers of silt and clay within sand or gravel soils
and, consequently, the impact of this factor is not recommended in the calculation of

settlement of foundations on cohesionless soils.

Amar and Baguelin (1984) concluded that foundation geometry, L /B, was not shown to
have any significant influence on settlement. On the other hand, Burland and Burbidge
(1985) concluded from their statistical study that there is a correlation between
settlement and L /B of the foundation. However, they stated that the correction factor
for L /B is quite small. Burbidge (1982) found that there is no significant difference
between the settlement of square, circular and continuous strip foundations having the
same width, B, on the same soil. Consoli et al. (1998) also demonstrated that the shape

of the loaded area does not influence initial soil compressibility.

In their study, Burland and Burbidge (1985) found that, for foundations with

D, /B <33, there is no obvious correlation between settlement and depth of footing

embedment. This conclusion confirms the results obtained previously by D’ Appolonia
et al. (1968) who found that, from the analysis of a number of results on a single site,

only 12% reduction in settlement occurred when D, /B increases from 0.5 to 1.0.

Moreover, Christian and Carrier (1978) stated that the material above the foundation
level does not seem to contribute very significantly to the settlement behaviour.
Consequently, Christian and Carrier (1978) demonstrated that ignoring the depth of
footing embedment in calculating settlement gives reasonably satisfactory results,
especially when some other factors such as heterogeneity and non-linearity of the soil
are to be taken into consideration. The relative importance of the previous factors (main
and secondary) on settlement will be investigated in Chapter 5 by carrying out a

sensitivity analysis on the optimal ANN model.

In the present research and for the purpose of predicting the settlement of shallow

foundations on cohesionless soils using ANNs, the following aspects are considered.
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The depth of the water table and time-dependence are not included in the study as
proposed by Meyerhof (1965) and Fang (1991), respectively. There are also insufficient
data for the thickness of the soil layer in the database used in this research and thus it is
not considered in this work. The conclusion made by Burbidge (1982) that there is no
significant difference between the settlement of circular or square footings having the
same width, B, on the same soil is considered and thus L /B is assumed to equal unity
for circular footings. In the following section, three of the most commonly used
methods for settlement prediction of shallow foundations on cohesionless soils will be
described in some detail. These methods will be the basis of assessing the relative
performance of the ANN models. These include the methods proposed by Meyerhof

(1965), Schultze and Sherif (1973) and Schmertmann et al. (1978).

4.4 Methods of Settlement Prediction of Shallow Foundations

A remarkable number of methods for calculating settlement of shallow foundations on
cohesionless soils are available in the literature. Some methods are simple and direct
empirical correlations between field settlements and field tests such as the plate load,
Other
methods apply the theory of elasticity with soil properties obtained from empirical

standard penetration, cone penetration, dilatometer and pressuremeter tests.

correlations with in-situ or laboratory tests. In accordance with Poulos (1999), the

available methods can be classified into three main categories (Table 4.1).

Table 4.1: Categories for classification of settlement methods (Poulos 1999)

Category Characteristics Method of parameter estimation

1 Empirical; not based on soil [ Simple in-situ or laboratory tests,
mechanics principles with correlations

2 Based on simplified theory or | Routine; relevant in-situ  or
charts; uses soil mechanics | laboratory tests; may require some
principles; linear or non-linear | correlations
elastic, rigid or elasto-plastic soil
models

3 Based on theory using site- [ Careful laboratory and/or in-situ
specific  analysis; wuses soil | tests which follow the appropriate
mechanics principles, linear or | stress paths
non-linear elastic, rigid plastic
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It is extremely difficult and expensive to obtain relatively undisturbed samples from
cohesionless soils to represent the in-situ properties of such soils. As a result, methods
that use the results of field tests are much more common than those based on laboratory
tests. As previously mentioned in Chapter 1, as yet, no universally accepted method
exists for predicting the settlement of shallow foundations on cohesionless soils. The
purpose of this section is not to summarise all the available methods that are found in
the literature, but, rather describe and discuss, in some detail, some of the most
commonly used, and more relevant ones. Among these, three are selected: Meyerhof
(1965); Schultze and Sherif (1973) and Schmertmann et al. (1978), for the following

reasons:

¢ They are in common use;

* They represent the chronological development of settlement prediction;

e Each of them falls into one or more of the categories of settlement classification
methods given in Table 4.1; and

* The database used later in this research contains most parameters required to
calculate the settlement by these methods, which is necessary for the purposes of

comparison with the techniques proposed in this thesis.

The finite element method (FEM) is one of the well-established techniques that might
be used for settlement prediction, as it has been used successfully for solving many
problems in the field of geotechnical engineering. FEM has the advantage of dealing
with complicated geometry and boundary conditions and non-linear stress-strain
behaviour of soil (Poulos 1975). However, it is not necessarily the case when it comes
to the settlement prediction of shallow foundations on cohesionless soils. The reason is
that the key to success of FEM lies mainly in an appropriate evaluation of the stress-
strain behaviour of soil (Poulos 1999), which is a difficult task in the case of
cohesionless soils (Moorhouse 1972). With regard to applying FEM for settlement
prediction of shallow foundation on cohesionless soils, Poulos (1999) stated that "...the
more complex finite element methods appear to require far more development before
being able to be used with confidence". In addition, this method requires a greater
amount of soil data, as well as data that are costly to measure. Consequently, FEM will
not be used as a basis of comparison with ANNs in this research, primarily because

sufficient data are unavailable.
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4.4.1 Meyerhof’s Method

Meyerhof (1965) suggested the following equations for estimating the settlement, S, of

shallow foundations on sand:

S, = % for B<4ft (1.2 m) “4.4)
or
2
S, = lgg(—-B—) for B> 4 ft (1.2 m) 4.5)
N \B+1
where:
S, = calculated settlement (inch);

q = footing net applied pressure (ton/ft?),
B = footing width (ft); and
N = average SPT blow count to a depth of 2B below the foundation level.

There is no overburden pressure correction for the average blow count, N, except for
dense submerged silty sand when the minimum average blow count exceeds 15. The

corrected, N, ......» iS given as:

N,

corrected 15+ 05(N - 15) (46)
Meyerhof also suggested no correction be made for the effect of the ground water table,

as its influence would be implicitly incorporated into the measured SPT results.

Meyerhof’s method is simple to implement and has been one of the most popular
methods for calculating settlement of shallow foundations based on SPT data (Coduto
1994). However, the method tends to be conservative, as it overestimates the settlement

about 75% of the time (Coduto 1994).
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4.4.2 Schultze and Sherif’s Method

Shultze and Sherif (1973) proposed a procedure for settlement estimation based on
elastic theory. By applying a statistical analysis to settlements obtained from 48
commercial and industrial structures, Schultze and Sherif (1973) proposed the following

equation:

S =y a +q(f4D /B) @7
!

where:

S, = calculated settlement (cm);

q = footing net applied pressure (kg/cm’);

F = settlement coefficient (obtained from a chart);

N = average SPT blow count to a depth of 2B or thickness of the compressible
layer, whichever is the lesser;

D, = depth of footing embedment (cm); and

B = footing width (cm);

Schultze and Sherif’s method relies mainly on elastic theory. The limitation concerning
methods involving elastic theory is the difficulty of evaluating the in-situ stress-strain

properties and that, in most cases, settlement is non-linear (Moorhouse 1972).

4.4.3 Schmertmann’s Method

Schmertmann (1970) proposed a procedure for estimating the settlement of foundations
on granular soils, which was later updated by Schmertmann et al. (1978). The
procedure is based on the theory of elasticity, finite element analyses, observations from
field measurements and laboratory model studies. The method proposed that the

calculated settlement, S, at the surface of a profile for a granular mass, can be expressed

in terms of the vertical strain, €,, as follows:
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S, = o]ezdz (4.8)

2=0

The profile can be considered as consisting of a series of homogeneous sub-layers with

approximately constant values of cone resistance and N, and the settlement, S, can be

computed as:

n o~ 1,
S, = C1C2QZ,=IZ(E )i Az, 4.9)
i=1 s
in which:
S, = calculated settlement (m);
q = footing net applied pressure (kPa);
I, = strain influence factor (obtained from a chart);
E, = Young’s modulus at the middle of the ith layer of thickness Az, (kPa);
Az, = thickness of the ith layer (m); and

Cl, C2 = correction factors for embedment and creep.

A chart was developed to obtain 7,, and correlations were suggested to obtain E; from

the results of CPT and/or SPT tests. Schmertmann (1978) also suggested two correction

factors, Cl, Cz’ which account for the effect of strain relief due to embedment and the

effect of time-dependence or creep, respectively. The chart, correction factors and other

details are given by Schmertmann (1970) and Schmertmann et al. (1978).

Schmertmann’s method provides a more reliable method of estimating settlement of
shallow foundations on granular soils (Moorhouse 1972). This method is also popular,
useful and more precise than other methods (Coduto 1994). The reliability and
accuracy of these three methods will be examined later in this thesis and compared with
the model based on ANNS.
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4.5 Summary

It has been argued that there are three main factors affecting settlement of shallow
foundations on cohesionless soils that have more than marginal effects. These are the
footing width, B, footing net applied pressure, ¢, and soil compressibility, which can be
reflected by the average blow count from the standard penetration test (SPT). It has also
been shown that other factors affecting settlement, including depth of water table, time

dependence, footing geometry, L/B, and depth of footing embedment, D, are secondary

compared with the three main factors illustrated above. In the following chapter, the
use of multi-layer perceptrons (MLPs) that are trained with the back-propagation
algorithm will be examined for predicting settlement of shallow foundations on

cohesionless soils.



Chapter 5
Settlement Prediction by Multi-layer Perceptrons

5.1 Introduction

Over the years, many methods have been developed to predict the settlement of shallow
foundations on cohesionless soils, as discussed in Chapter 4. However, methods for
making such predictions with the required degree of accuracy and consistency have yet
to be developed. Accurate prediction of settlement is essential since settlement, rather
than bearing capacity, generally controls foundation design. In this chapter, artificial
neural networks (ANNs) are used in an attempt to obtain more accurate settlement
prediction. A large database of actual measured settlements is used to develop and
verify the ANN models. As the prediction of settlement of shallow foundations on
cohesionless soils does not involve any time-related parameter components, feed-
forward multi-layer perceptrons (MLPs) are used. Feed-forward MLPs that are trained
with the back-propagation algorithm are the most commonly used neural network type
(Maren et al. 1990), as they have a high capability of data mapping (Hecht-Nielsen
1990). MLPs trained with the back-propagation algorithm have been applied
successfully to many geotechnical engineering problems (e.g. Goh 1994a, b; Najjar and
Basheer 1996a, b), and are thus used in this work.

The objectives of this chapter are to:

1. Investigate the feasibility of the ANN technique for predicting the settlement of
shallow foundations on cohesionless soils.

2. Introduce a method of model validation that tests the robustness of the predictive
ability of ANN models.

3. Study the effect of ANN geometry and internal parameters on the performance of
ANN models.

4. Investigate the relationship between the statistical properties of the data subsets used
to develop ANN models and model performance.

5. Investigate the relationship between the proportion of the data in each of the subsets

used to develop ANN models and model performance.

69
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6. Investigate the use of different approaches for dividing the available data into the
subsets needed to develop ANN models and introduce and evaluate a new approach
for data division that is based on fuzzy clustering.

7. Examine the effect of data transformation on the performance of ANN models.

8. Provide information on the relative importance of the factors affecting the
settlement of shallow foundations on cohesionless soils.

9. Compare the performance of ANNs with some of the most commonly used
traditional methods.

10. Provide a practical equation and a series of design charts for settlement prediction of
shallow foundations on cohesionless soils from the developed ANN model for

routine use in practice.

5.2 Development of ANN Models

The data used to calibrate and validate the neural network models are obtained from the
literature, and include field measurements of settlement of shallow foundations as well
as the corresponding information regarding the footings and soil. The data cover a wide
range of footing dimensions and cohesionless soil types and properties. The database
comprises a total of 189 individual cases; 125 cases were reported by Burland and
Burbidge (1985), 22 cases by Burbidge (1982), 5 cases by Bazaraa (1967) and 30 cases
by Wahls (1997). Another 4 cases are given by Briaud and Gibbens (1999), one case by
Picornell and Del Monte (1988) and 2 cases by Maugeri et al. (1998). Full details of the

database are given in Appendix A.

The steps for developing ANN models, as outlined by Maier and Dandy (2000) and
given in §2.5, are used as a guide in this work. These include the determination of
model inputs and outputs, division and pre-processing of the available data, the
determination of appropriate network architecture, optimisation of the connection
weights (training) and model validation. ‘I'wo PC-based commercial software systems
are used to simulate neural network operation. The first is NeuralWorks Predict
Release 2.1 (NeuralWare 1997), which adopts the Cascade-Correlation algorithm to
automatically determine optimal network architecture. The second is Neuframe Version

4.0 (Neusciences 2000), in which optimal network architecture is determined by trial-
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and-error. ANN models that are developed using the aforementioned software systems

are described in detail below.

5.2.1 ANN Models Developed Using Predict

e Model Inputs and Qutputs

As discussed in Chapter 4, it is generally accepted that five parameters have the most
significant impact on the settlement of shallow foundations on cohesionless soils
(Burland and Burbidge 1985), and are thus used as the ANN model inputs. These
include footing width (B), footing net applied pressure (g), the average SPT blow count
(N) over the depth of influence of the foundation, footing geometry (L/B) and footing

embedment ratio (D,/B). The model output is the average measured settlement (S,,) of

the foundation, considered in its final state. A sensitivity analysis to investigate the

relative importance of the ANN model inputs will be explored in §5.5.

e Data Division

The next step in the development of ANN models is dividing the available data into
their subsets. For reasons given in Chapter 2, cross-validation (Stone 1974) is used as
the stopping criteria in this research. Consequently, the data are randomly divided into
three sets: training, testing and validation, as is standard practice in the development of
ANN models in geotechnical engineering. In total, 80% of the data are used for training
and 20% are used for validation. The training data are further divided into 70% for the
training set and 30% for the testing set. For reasons discussed in §2.5.2, the training,
testing and validation sets are also divided in such a way that they are statistically
consistent and thus represent the same statistical population. In order to achieve this,
several random combinations of the training, testing and validation sets are tried until
three statistically consistent data sets are obtained. The statistics of the training, testing
and validation sets are shown in Table 5.1. The statistical parameters considered

include the mean, standard deviation, minimum, maximum and range. The relationship
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between the statistical properties of the data subsets, and the effect of the proportion of
the data used in each subset on model performance will be investigated in §5.3. The use
of different available data division methods for ANN models will also be investigated in

§5.3 and a new approach that is based on fuzzy clustering will also be introduced and

evaluated in this section.

Table 5.1: Input and output statistics for the ANN models

Model variables Statistical parameters

and data sets Mean Std. Dev. | Minimum | Maximum Range
Footing width, B (m)
Training set 8.3 9.8 0.8 60.0 59.2
Testing set 9.3 10.9 0.9 55.0 54.1
Validation set 9.4 10.1 0.9 41.2 40.3
Footing net applied pressure, g (kPa)
Training set 188.4 129.0 18.3 697.0 678.7
Testing set 183.2 118.7 25.0 584.0 559.0
Validation set 187.9 114.6 33.0 575.0 542.0
Average SPT blow count, N
Training set 24.6 13.6 4.0 60.0 56.0
Testing set 24.6 12.9 5.0 60.0 55.0
Validation set 24.3 14.1 4.0 55.0 51.0
Footing geometry, L/B
Training set 2.1 1.7 1.0 10.5 9.5
Testing set 2.3 1.9 1.0 9.9 8.9
Validation set 2.1 1.8 1.0 8.0 7.0
Footing embedment ratio, D, /B
Training set 0.52 0.57 0.0 3.4 34
Testing set 0.49 0.52 0.0 3.0 3.0
Validation set 0.59 0.64 0.0 3.0 3.0
Measured settlement, S, (mm)
Training set 20.0 27.2 0.6 121.0 120.4
Testing set 21.4 26.6 1.0 120.0 119.0
Validation set 20.4 25.2 1.3 120.0 118.7

To examine how representative the training, testing and validation sets are with respect
to cach other, ¢- and F-tests are carried out. The r-test examines the null hypothesis of
no difference in the means of two data sets and the F-test examines the null hypothesis
of no difference in the standard deviations of the two sets. F or a given level of
significance, test statistics can be calculated to test the null hypotheses for the ¢- and F-

tests, respectively. Traditionally, a level of significance equal to 0.05 is selected
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(Levine et al. 1999). Consequently, this level of significance is used in this research.
This means that there is a confidence level of 95% that the training, testing and
validation sets are statistically consistent. A detailed description of these tests is given
by Levine et al. (1999). The results of the #- and F-tests are given in Table 5.2. These
results indicate that the training, testing and validation sets are generally representative

of a single population.

Table 5.2: Null hypothesis tests for the ANN input and output variables

Variable Lower Upper Lower Upper

and t-value | critical critical t-test F-value | critical | critical | F-test
data sets value value value value
B
Testing —0.58 -1.97 1.97 Accept 0.81 0.59 1.87 Accept
Validation | —0.61 -1.97 1.97 Accept 0.94 0.61 1.77 Accept
q
Testing 0.23 —1.97 1.97 Accept 1.18 0.59 1.87 Accept
Validation 0.02 -1.97 1.97 Accept 1.27 0.61 1.77 Accept
N
Testing 0.00 -1.97 1.97 Accept 1.11 0.59 1.87 Accept
Validation 0.11 -1.97 1.97 Accept 0.93 0.61 1.77 Accept
L/B
Testing —0.64 -1.97 1.97 Accept 0.80 0.59 1.87 Accept
Validation 0.00 -1.97 1.97 Accept 0.89 0.61 1.77 Accept
D,/B
Testing 031 -1.97 1.97 Accept 1.20 0.59 1.87 Accept
Validation | —0.62 -1.97 1.97 Accept 0.79 0.61 1.77 Accept
Sm
Testing -0.29 -1.97 1.97 Accept 1.05 0.59 1.87 Accept
Validation | -0.08 -1.97 1.97 Accept 1.17 0.61 1.77 Accept

e Pre-processing of Data

Once the available data have been divided into their subsets, the input and output
variables are pre-processed by scaling them to eliminate their dimension and to ensure

that all variables receive equal attention during training. Scaling has to be
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commensurate with the limits of the transfer functions used in the hidden and output
layers (i.e. —1.0 to 1.0 for tanh transfer function and 0.0 to 1.0 for sigmoid transfer
function). The simple linear mapping of the variables’ practical extremes to the neural
network’s practical extremes is adopted for scaling, as it is the most commonly used
method (Masters 1993). As part of this method, for each variable x with minimum and
maximum values of x,, and x, , respectively, the scaled value x, is calculated as

follows:

xn = (x - xmin ) /(xmax - xmin) (5- 1)

Transformation of the input data as a way of improving the performance of ANN

models will be examined in §5.4.

® Model Architecture, Optimisation and Stopping Criteria

As discussed in Chapter 2, one of the most important and difficult tasks in the
development of ANN models is determining the model architecture (i.e. the number and
connectivity of the hidden layer nodes). In order to obtain the optimum number of
hidden layer nodes, it is important to strike a balance between having sufficient free
parameters (weights) to enable representation of the function to be approximated, and
not having too many so as to avoid overtraining. Overtraining is not an issue in this
study, as cross-validation is used as the stopping criterion. However, physical
interpretation of the model is important, and hence the smallest network that is able to
map the desired relationship should be used. In NeuralWorks Predict, the optimal
network architecture is found automatically with the aid of the Cascade-Correlation
algorithm (see §2.5.4). The process of optimising the connection weights is applied

using the default parameters of the software and are given as follows:

~ Learning rate: 100 for the hidden layer and 0.01 for the output layer; and
— Transfer function: tanh for the hidden and sigmoid for the output layer.

As Predict uses an automatic method for finding the optimal network architecture, the

final network architecture obtained might be different for different models, even though
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the same data sets and learning parameters have been used. As a result, studying the
effect of changing the learning parameters on the performance of ANN models could be
misleading and was therefore not done when Predict was used. However, because
Neufirame requires a manual process for determining optimal network architecture and
internal parameters, the effect of varying ANN internal parameters and geometry on the

performance of ANN models was investigated (§5.2.2).

e Model Validation

Using the above method, a number of networks are developed and the structure and
performance results of the developed models are shown in Table 5.3. A code is used in
this chapter to identify the names of the different models developed. The code consists
of two parts separated by a hyphen. The first part represents an abbreviation to the
current chapter. The second part begins with an abbreviation that denotes the software
used followed by the model number. Hence, for example, “CHP5-PD1” implies
Chapter 5, Predict Model No. 1.

It can be seen from Table 5.3 that the performance of the developed models is
quantified using three different measures; the coefficient of correlation (r), the root
mean squared error (RMSE) and the mean absolute error (MAE), as discussed in §2.5.7.
Three measures are used for assessing the models, including: (i) the performance of the
model on the testing set; (ii) the number of hidden nodes and (iii) the general
consistency of model performance on the validation set with those obtained on the
training and testing sets. Consequently, an ANN model is deemed to be optimal if the
model provides satisfactory performance on the testing set coupled with a small number
of hidden nodes and consistent performance on the validation set with that obtained on
the training and testing sets. It can be seen from Table 5.3 that model CHP5-PD14
performs well, as it has a high coefficient of correlation and low RMSE and MAE
between the measured and predicted settlement on the testing set, coupled with a
smaller number of hidden nodes and consistent performance on the training, testing and
validation sets. The above results indicate that model CHP5-PD14 has the capability of
predicting the settlement of shallow foundations on cohesionless soils with a high

degree of accuracy and can thus be used as a practical tool for predictive purposes.
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Table 5.3: Structure and performance of ANN models developed using Predict

Model No. No. Performance measures
hidden | Correlation coefficient, r RMSE (mm) MAE (mm)
nodes T S \% T S |V T S A%

CHP5-PDI 23 0.97 0.96 0.82 6.2 7.4 [ 155 4.2 4.3 9.8
CHP5-PD2 31 0.97 0.97 0.80 5.6 65 [ 16.4] 4.1 4.5 10.4
CHP5-PD3 35 0.98 0.96 0.81 4.5 76 [165] 33 5.1 9.7
CHPS5-PD4 17 0.97 0.95 0.87 5.6 83 | 13.1| 4.0 5.5 9.8
CHP5-PD5 47 0.98 0.97 0.83 4.2 6.7 [ 146 2.7 4.8 8.8
CHP5-PD6 42 0.98 0.97 0.84 4.4 6.1 | 140 ] 3.1 3.9 9.0
CHPS-PD7 48 0.98 0.96 0.86 4.9 6.6 [ 133 | 3.4 4.6 8.3
CHP5-PDS8 20 0.98 0.96 0.86 3.9 74 | 140 24 4.9 8.2
CHP5-PD9 50 0.97 0.95 0.84 5.7 83 | 149 42 6.0 9.9
CHP5-PD10 38 0.98 0.96 0.83 5.4 66 | 147 | 4.0 4.4 9.9
CHP5-PDI11 31 0.98 0.97 0.85 5.2 64 [ 136 3.8 4.5 8.3
CHP5-PD12 40 0.98 0.96 0.84 4.9 69 | 142 3.6 5.1 9.7
CHP5-PD13 39 0.98 0.97 0.87 4.7 63 | 129 | 34 3.9 8.3
CHP5-PD14 10092 092 | 088 | 11.5 | 11.5|12.0| 73 7.5 9.5
CHP5-PD15 48 0.98 0.96 0.87 4.7 72 1125 | 3.2 4.7 8.8
CHPS-PD16 44 0.98 0.96 0.86 5.0 7.1 [ 12.8 | 3.6 5.3 8.9
CHP5-PD17 23 0.97 0.96 0.86 6.2 7.0 [ 137 4.2 52 9.9

T = training, S = testing and V= validation

In order to confirm the generalisation ability and robustness of model CHP5-PD14, an
additional validation approach is proposed. The approach suggests carrying out a
parametric study in which the response of the ANN model output to changes in its
inputs is investigated. All input variables, except one, are fixed to their mean values
used for training and a set of synthetic data, between the minimum and maximum
values used for model training, are generated for the input that is not set to a fixed
value. The synthetic data are generated by increasing their values in increments equal
to 5% of the total range between the minimum and maximum values. The response of
the model is then examined. This process is repeated using another input variable and
so on until the model response is tested for all input variables. The robustness of the
model can be determined by examining how well the predicted settlements are in

agreement with the known underlying physical process over a range of inputs.
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The above approach is applied to model CHP5-PD14 and the results are shown in
Figure 5.1. It can be seen that some of the results obtained are contrary to what one
would expect based on the known physical behaviour of settlement of shallow
foundations on cohesionless soils. For example, in Figure 5.1(a), one would expect that
the predicted settlement would increase as footing width increases in a relatively
consistent and smooth fashion. In Figure 5.1 (c), one would expect that the predicted
settlement would decrease as the average SPT blow count increases. The model
behaviour displayed in Figure 5.1 (d) is also unexpected, as there is no obvious trend in
the relationship between predicted settlement and footing geometry. One would expect
that the predicted settlement would increase with an increase in footing geometry. In

addition, the odd shape of the curves is difficult to justify from a physical perspective.
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Figure 5.1: Results of parametric study for Model CHPS-PD14
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The above results indicate that there may be some level of model overfitting, even
though cross-validation was adopted and an independent validation set was used.
Consequently, further work is needed to determine the cause of this behaviour. Possible
factors affecting the generalisation ability and robustness of ANN models include the
number and type of connection weights, the degree of noise in the data and the software

implementation used. These are investigated and discussed below.

* Effect of Number and Type of Connection Weights

As mentioned in Chapter 2, one of the difficulties in using ANN models is that the
potential number of free model parameters (i.e. connection weights) is generally large
and there is therefore a danger of overfitting the training data. In other words, if the
number of degrees of freedom of the model is large compared with the number of data
points used for training, the model might no longer fit the general trend, as desired, but
might learn the idiosyncrasies of the particular data points used for training. In general,
one of two methods is used to overcome this problem. The first is to restrict the ratio of
the number of connection weights to the number of data points in the training set, and
several rules-of-thumb have been given in Chapter 2 as a guide. The second approach
to avoiding overfitting is to use a non-convergent method (Finnhoff et al. 1993) in
which training is stopped early once the error in an independent test set starts to
increase. This method is described in Chapter 2 and is commonly called cross-
validation (Stone 1974).

As mentioned above, if the ratio of the number of connection weights to the number of
data samples in the training set is too large, the model might no longer be able to fit the
desired trends. This makes it difficult to interpret the physical meaning of the
relationship found by ANN models. In order to investigate the impact of reducing the
number of connection weights and thus reducing the ratio of the number of connection
weights to the number of data samples, more networks are trained eliminating the direct
connections between the input and output nodes but allowing the cascaded connections
between the new hidden nodes and previously established ones (see §2.5.4). The

structure and performance results of the developed models are given in Table 5.4. It can
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be seen that model CHP5-PD26 with 4 hidden layer nodes gives as good performance
as model CHP5-PD14, which has 11 hidden layer nodes. The result of the parametric
study for model CHP5-PD26 is given in Figure 5.2. As model CHPS-PD26 performs
well on an independent validation set (Table 5.4), one would expect that the model is
adequately trained so as to be used for predictive purposes. However, Figure 5.2 shows
that, although some improvement of model robustness has been achieved compared
with model CHP5-PD14 (see Figure 5.1), reducing the number of connection weights
does not completely remedy the problem. There are still some unexpected deviations in
the trends that relate predicted settlement to the footing width, average SPT blow count

and footing geometry, as shown in Figures 5.2 (a), (c) and (d), respectively.

Table 5.4: Structure and performance of ANN models where direct connections
between the input and output nodes are prohibited and cascaded connections

between hidden nodes are permitted

Model No. No. Performance measures

hidden | Correlation coefficient, r RMSE (mm) MAE (mm)

Nodes T S A T S|V T S A%
CHPS-PD18 14 0.98 0.96 0.76 5.3 76 | 19.0| 4.0 5.4 11.0
CHP5-PD19 14 0.97 0.97 0.82 5.7 65 |166| 42 4.7 10.4
CHP3-PD20 46 0.97 0.96 0.85 5.5 6.7 | 141 41 49 9.8
CHP5-PD21 26 0.99 0.96 0.84 3.8 69 | 142 24 5.0 9.2
CHP5-PD22 45 0.99 0.96 0.83 3.6 69 | 160 25 4.8 10.8
CHPS5-PD23 28 0.98 0.96 0.85 5.2 75 | 137 2.7 5.2 9.1
CHP5-PD24 11 0.94 0.94 091 104 | 105118 7.4 7.5 9.4
CHP5-PD25 25 0.97 095 0.85 5.8 79 | 136 3.8 4.9 8.8
CHPS-PD26 4 0.90 -0.93 0.87 121 | 99 | 127 77 6.1 9.4
CHPS5-PD27 9 0.97 0.96 0.92 6.3 8.0 1102 | 4.4 5.8 7.7
CHP5-PD28 26 0.98 0.96 0.86 5.4 69 | 132 39 5.0 8.8
CHP5-PD29 5 0.87 0.89 0.79 134 | 119|159 | 86 8.2 11.9
CHP5-PD30 5 0.91 0.92 0.85 112 | 99 | 132 7.0 6.0 10.2

T = training, S = testing and V= validation
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Figure 5.2: Results of parametric study for Model CHP5-PD26

In an attempt to reduce the number of connection weights even further, both the direct
connections between the input and output nodes and cascaded connections between
hidden nodes are removed. Consequently, only the direct connections between the
input layer nodes to the newly added hidden layer nodes and between hidden nodes to
the output layer nodes are allowed. By following this procedure, a number of networks
are developed and the structure and performance results of the developed models are
given in Table 5.5. It can be seen that model CHP5-PD43, with 4 hidden layer nodes,
performs well and its performance, without both the direct connections between the
input and output nodes and cascaded connections between hidden nodes, is similar to
previously developed models (i.e. models CHP5-PD14 and CHP5-PD26). It should be

noted that the ratio of the number of connection weights to the number of training
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samples for model CHP5-PDA43, is approximately 1:5. This ratio is in accordance with
most ratios recommended by researchers in order to guarantee that overfitting does not
occur (Masters 1993; Rogers and Dowla 1994). The result of the parametric study for
model CHP5-PD43 is shown in Figure 5.3. It can be seen that, in Figures 5.3 (a), (¢)
and (d), respectively, some unexpected trends are still obtained between the predicted
settlement and footing width, average SPT blow count and footing geometry, even
though the number of connection weights has been reduced further. Consequently, it
can be concluded that eliminating the cascaded connections does not improve model
robustness and that the model behaviour shown in Figure 5.1 does not appear to be
affected by the number of connection weights nor the type of connection between

nodes.

Table 5.5: Structure and performance of ANN models where both direct
connections between the input and output nodes and cascaded connections
between hidden nodes are prohibited

Model No. No. Performance measures
hidden | Correlation coefficient, r RMSE (mm) MAE (mm)
Nodes T S \% T S|V T S \%

CHP5-PD31 4 0.89 0.91 0.85 120 105132 7.7 6.7 9.9
CHP5-PD32 15 0.96 0.96 0.84 7.4 68 | 144 | 5.1 4.6 9.9
CHPS-PD33 13 091 0.96 0.86 | 113 | 76 | 13.1] 7.1 4.8 9.4
CHP5-PD34 4 0.89 0.91 0.85 123 [ 107|136 8.0 7.0 10.3
CHP5-PD35 5 091 0.92 0.86 | 11.0 [10.1|129]| 7.0 6.2 10.4
CHP5-PD36 8 0.94 0.94 0.88 8.9 9.0 | 125| 6.0 6.3 9.4
CHP5-PD37 15 0.94 0.95 0.81 8.9 86 | 153 5.9 6.3 10.5
CHP5-PD38 4 0.94 0.92 0.84 89 |104]|146]| 5.7 7.5 11.5
CHP5-PD39 5 0.95 0.92 0.89 80 |102|117] 55 5.8 8.7
CHP5-PD40 14 0.97 0.95 0.84 6.1 77 | 144 44 5.2 10.0
CHP5-PD41 5 0.93 0.93 0.88 9.4 94 [ 11.8| 6.3 5.7 8.7
CHPS-PD42 20 0.97 0.96 0.81 6.2 69 [ 156 45 4.8 9.9
CHP5-PD43 4 091 0.92 0.86 | 11,6 [103]13.2] 73 6.7 9.7
CHP35-PD44 30 0.97 0.96 0.86 6.1 6.6 | 13.7| 4.4 5.0 9.2
CHP5-PDA45 5 0.89 0.91 0.85 119 | 105]13.6| 7.6 6.7 10.4
CHP35-PD46 4 0.87 091 0.75 132 | 106 | 17.6 | 8.6 7.3 12.5
CHP5-PD47 20 0.98 0.97 0.85 49 67 | 141 ] 35 4.5 9.5
CHP5-PD43 4 0.92 0.91 0.88 | 102 | 105|121 | 6.7 6.4 9.5

T = training, S = testing and V= validation
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Figure 5.3: Results of parametric study for Model CHP5-PD43

o

e Effect of Data Noise

In order to investigate the effect of data noise on the robustness of ANN models, a clean
set of 500 data samples (see Appendix B) consisting of different combinations of B, q
and N, is generated randomly from a uniform distribution. The corresponding
settlements are calculated using Meyerhof’s equation for settlement prediction as
follows (Meyerhof 1965):
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where S, = calculated settlement (mm), ¢ = footing net applied pressure (kPa), N =

(5.2)

average SPT blow count and B = footing width (m). The ANN models are developed
using B, q and N as input variables and the calculated settlement from Equation 5.2 as
single output variable. The data are divided randomly into 300 cases for training, 100
for testing and 100 for validation and selected to be representative of the same statistical
population. The statistics and null hypothesis tests for the training, testing and
validation sets are shown in Tables 5.6 and 5.7, respectively. It can be seen that the
training, testing and validations sets are statistically consistent and thus representative

of the same statistical population.

Table 5.6: Input and output statistics for ANN models of synthetic clean data

Model variables Statistical parameters

and data sets Mean Std. Dev. | Minimum | Maximum Range
Footing width, B (m)
Training set 26.1 14.5 0.55 49.9 494
Testing set 26.7 13.2 2.2 49.5 473
Validation set 284 13.6 2.1 49.6 47.5
Footing net applied pressure, g (kPa)
Training set 393.9 233.2 5.1 799.4 7943
Testing set 416.7 242.2 14.9 795.7 780.8
Validation set 401.6 2241 144 795.6 781.2
Average SPT blow count, N
Training set 31.7 16.5 5.1 59.8 54.7
Testing set 31.8 14.8 5.3 58.8 53.5
Validation set 31.0 15.8 52 59.3 54.1
Measured settlement, S,, (mm)
Training set 36.9 44.9 0.11 267.9 267.8
Testing set 37.5 43.1 0.76 253.1 252.3
Validation set 394 47.6 0.83 252.1 2513
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Table 5.7: Null hypothesis tests for ANN input and output variables of synthetic

clean data
Variable Lower Upper Lower Upper
and t-value | critical critical t-test F-value | critical | critical F-test
data sets value value value value
B
Testing —0.37 -1.97 1.97 Accept 1.21 0.73 1.39 Accept
Validation | -1.39 -1.97 1.97 Accept 1.14 0.73 1.39 Accept
q
Testing —0.84 -1.97 1.97 Accept 0.93 0.73 1.39 Accept
Validation -0.29 -1.97 1.97 Accept 1.08 0.73 1.39 Accept
N
Testing -0.05 -1.97 1.97 Accept 1.24 0.73 1.39 Accept
Validation 0.37 -1.97 1.97 Accept 1.09 0.73 1.39 Accept
Sm
Testing -0.12 -1.97 1.97 Accept 1.08 0.73 1.39 Accept
Validation | -0.47 -1.97 1.97 Accept 0.89 0.73 1.39 Accept

A number of networks are developed using the clean data and the structure and
performance results of the developed models are shown in Table 5.8. As with the
models developed previously using the actual data, a code is used to identify the names
of the different models developed using the synthetic clean data. The code consists of
three parts separated by two hyphens. The first part represents an abbreviation to the
current chapter, the second represents the first letters of the term “synthetic clean data”
and the third part represents the model number that uses Predict software. Hence, for
example, “CHP5-SCD-PD1” implies Chapter 5, synthetic clean data, Predict Model No.
1. It should be noted that models CHP5-SCD-PD1 to CHP5-SCD-PDI10 are trained
with the direct connections between the input and output nodes and cascaded
connections between hidden nodes, whereas models CHP5-SCD-PD11 to CHP5-SCD-
PD20 are trained without these connections. It can be seen from Table 5.8 that model
CHP5-SCD-PD6 with 7 hidden layer nodes and model CHP5-SCD-PD17 with 8 hidden

layer nodes perform well.
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Table 5.8: Structure and performance of ANN models developed using Predict and
synthetic clean data

Model No. No. Performance measures

hidden | Correlation coefficient, r RMSE (mm) MAE (mm)

nodes T S \% T S| Vv | T S |V
CHP5-SCD-PD1 14 0.98 0.97 098 [ 93| 97 [119] 56 | 55| 69
CHP5-SCD-PD2 18 0.99 0.99 099 | 46 | 3.4 | 49 | 23 19 | 23
CHP5-SCD-PD3 11 0.99 0.99 0.99 s5s | 54| 55|33 ]34]35
CHP5-SCD-PD4 10 0.98 0.97 098 | 65| 98| 79 | 40 | 50 | 4.6
CHP5-SCD-PD5 13 0.99 0.99 099 | 33351 29]20 20|19
CHP5-SCD-PD6 7 0.99 0.99 099 | 36| 35|33 |21 ]21]20
CHP5-SCD-PD7 15 0.99 0.99 099 | 36 | 28 | 31 [ 252123
CHP5-SCD-PD8 9 0.99 0.99 099 | s2 | 39| 56| 3528137
CHP5-SCD-PD9 12 0.99 0.99 099 | 44 | 35| 59|27 ]| 23|33
CHP5-SCD-PD10 15 0.99 0.99 099 | 41| 38|37 |26 |25]26
CHP5-SCD-PD11 12 0.99 0.99 099 | 59| 54|69 ]| 32] 28] 33
CHP5-SCD-PD12 15 0.99 0.99 099 | 47 [ 39| 44 |31 ] 24130
CHP5-SCD-PD13 18 0.99 0.99 099 | 59| 76| 67 | 34|40 ] 38
CHP5-SCD-PD14 12 0.99 0.99 099 | 44 | 44 | 43 | 3.1 | 32| 29
CHP5-SCD-PD15 14 0.99 0.99 099 | 42 | 34|33 |27 |22 23
CHP5-SCD-PD16 9 0.99 0.99 099 | 55| 47| 55|37 ]32] 36
CHP5-SCD-PD17 8 0.99 0.99 099 [ 34| 36| 42| 19|21 ] 19
CHP5-SCD-PD18 10 0.99 0.99 099 | 59 | 69| 72|35 39] 40
CHP5-SCD-PD19 14 0.99 0.99 099 | 49 | 46 | 52 [ 33 ] 33|35
CHP5-SCD-PD20 8 0.99 0.99 0.99 58|42 | 51|37 |31]33

T = training, S = testing and V= validation

The results of the parametric studies for models CHP5-SCD-PD6 and CHP5-SCD-
PD17 are shown in Figure 5.4, which also includes predictions from Meyerhof’s
equation (Equation 5.2). It can be seen that both models (i.e. models CHP5-SCD-PD6
and CHP5-SCD-PD17) are able to produce similar predictions to those of Meyerhof’s
equation and both models are able to reflect the underlying physical process of
settlement prediction and thus may be considered to be robust. However, the robustness

of these models is based on a set of clean data that cannot be replicated in reality.

In order to simulate real-world conditions, some noise is added to the settlements
calculated from Equation 5.2 for all 500 data samples. The noise is derived from a
normal distribution that has a mean value equal to zero and a standard deviation equal to
20% of the calculated settlement. Details of the noisy data are given in Appendix B and
the statistics and null hypothesis tests for the input and output variables are given in

Tables 5.9 and 5.10, respectively.
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Table 5.9: Input and output statistics for ANN models of synthetic noisy data
Model variables Statistical parameters

and data sets Mean Std. Dev. | Minimum [ Maximum Range
Footing width, B (m)
Training set 26.1 14.5 0.56 49.9 49.3
Testing set 26.7 13.2 2.2 49.5 473
Validation set 28.4 13.6 2.1 49.6 47.5
Footing net applied pressure, g (kPa)
Training set 393.9 233.2 5.1 799.4 794.3
Testing set 416.7 242.2 14.9 795.7 780.8
Validation set 401.6 224.1 14.4 795.6 781.2
Average SPT blow count, N
Training set 31.7 16.5 5.1 59.8 54.7
Testing set 31.8 14.8 53 58.8 53.5
Validation set 31.0 15.8 N2 59.3 54.1
Measured settlement, S, (mm)
Training set 36.8 47.8 0.12 430.3 430.2
Testing set 37.9 51.5 0.56 285.3 284.7
Validation set 42.2 58.5 0.45 361.1 360.7

Table 5.10: Null hypothesis tests for the ANN input and output variables of
synthetic noisy data
Variable Lower Upper Lower | Upper
and t-value | critical critical t-test F-value | critical | critical F-test
data sets value value value value

B
Testing —0.37 -1.97 1.97 Accept 1.20 0.73 1.39 Accept
Validation -1.39 -1.97 1.97 Accept 1.14 0.73 1.39 Accept
q
Testing —0.84 | -1.97 1.97 | Accept | 0.93 0.73 139 | Accept
Validation —0.29 -1.97 1.97 Accept 1.10 0.73 1.39 Accept
N
Testing —0.05 -1.97 1.97 Accept 1.24 0.73 1.39 Accept
Validation 0.37 -1.97 1.97 Accept 1.09 0.73 1.39 Accept
S
Testing -0.19 -1.97 1.97 Accept 0.86 0.73 1.39 Accept
Validation -0.92 -1.97 1.97 Accept 0.67 0.73 1.39 Reject

Training is repeated and a number of models are developed. The structure and
performance results of the developed models are shown in Table 5.11. Again, a code

similar to that used previously for identifying the names of the different models of
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synthetic clean data is also utilised except that the middle part of the previous code
(SCD) is replaced by (SND), which denotes the term “synthetic noisy data”. It should
be noted that models CHP5-SND-PD1 to CHP5-SND-PD10 are trained with direct
connections between the input and output nodes and cascaded connections between
hidden nodes, whereas models CHP5-SND-PD11 to CHP5-SND-PD20 are trained
without these connections. It can be seen from Table 5.11 that there are two models that
perform well with respect to the training, testing and validation data (i.e. models CHP5-
SND-PD4 and CHP5-SND-PD14), with 6 and 7 hidden nodes, respectively. The results
of the parametric studies for models CHP5-SND-PD4 and CHP5-SND-PD14 are shown
in Figure 5.5. It can be seen that the behaviour of models CHP5-SND-PD4 and CHPS-
SND-PD14 is not robust, as some abnormal trends are obtained regardless of the type of
connection used. This tends to suggest that the behaviour shown in Figure 5.1 may be
due to the presence of noise in the data. However, the unexpected behaviour of the
ANN models trained with the noisy hypothetical data shown in Figure 5.5 may also be

due to the software used, the impact of which is investigated in the next section.

Table 5.11: Structure and performance of ANN models developed using Predict for
synthetic noisy data

Model No. No. Performance measures
hidden | Correlation coefficient, r RMSE (mm) MAE (mm)
nodes T S \% T S \% T S \4
CHP5-SND-PD1 16 0.87 0.88 0.89 [229123.81292|105] 129|132
CHP5-SND-PD2 12 0.87 0.88 087 1229|244 129.7]|109 | 13.3| 13.7
CHP5-SND-PD3 12 0.88 0.90 0.90 |23.1 230|280 105] 1221129
»: GHPS-SND-PD4 . 6 087 |-0.88 | .0.89 [23.5.]724.1 | 293 |:10.7 | 12.57|13:1.
CHP5-SND-PD5 19 0.87 0.89 091 |23.8]24.4(29.1|11.1]12.7] 132
CHP5-SND-PD6 14 0.88 0.90 092 |23.6]23.8(29.4(11.7]|13.0| 142
CHP5-SND-PD7 14 0.88 0.89 091 ]22.6|23.1]27.7|1021] 124 | 12.5
CHPS5-SND-PD8 15 0.87 0.90 090 |23.3]232]293|10.6] 12.1 | 12.7
CHP5-SND-PD9 12 0.87 0.88 0.87 | 2341243301 |11.5] 129 14.0
CHP5-SND-PD10 36 0.88 0.90 090 |23.0]122.6(27.1(109] 125 13.2
CHP5-SND-PD11 16 0.87 0.88 0.80 122912381292 10.5] 129 13.2
CHP5-SND-PD12 12 0.87 0.88 0.87 122.9]124.4129.7|109]| 133 | 13.7
CHP5-SND-PD13 15 0.87 0.86 085 | 229|256 (31.8|11.1]13.7] 14.8
“CHP5-SND-PD14 - i - “0.88  |[-0.89 | 0.88 |22.8]232|298 /105|124 ]13.5
CHP5-SND-PD15 12 0.88 0.89 090 |23.023.1(289109] 1241|129
CHP5-SND-PD16 12 0.88 0.89 0.89 |222]23.5]1292|104 ]| 126 13.2
CHP5-SND-PD17 17 0.88 0.89 091 [225]23.1]|274(104] 123|122
CHP5-SND-PD18 20 0.89 0.89 091 [242]256 328|129 14.1 | 15.6
CHP5-SND-PD19 15 0.87 0.88 0.88 [22.9]24.1]303]|10.8] 13.0 14.1
CHP5-SND-PD20 8 0.86 0.87 0.86 [24.5|256|31.7|11.1 133|134

T = training, S = testing and V= validation
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Figure 5.5: Parametric study for Models CHP5-SND-PD4 and CHPS-SND-PD14
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* Effect of Software Implementation

In order to investigate the effect of software implementation on the robustness of ANN
models, an alternative commercial software system Neuframe Version 4.0 (Neusciences
2000), is used. The ANN models that are developed using Neuframe are described in

the next section.

5.2.2 ANN Models Developed Using Neuframe

The model input and output variables, data subsets (i.e. training, testing and validation)
and data pre-processing used are the same as those used in the development of model
CHP5-PD14 (see §5.2.1). As Neuframe Version 4.0 does not support an automatic
model-building procedure, the optimum network architecture is obtained using a trial-
and-error approach. As mentioned in Chapter 2, a network with one hidden layer can
approximate any continuous function, provided that sufficient connection weights are
used (Cybenko 1989; Hornik et al. 1989). Consequently, one hidden layer is used in

this research.

The general strategy adopted for finding the optimal network architecture and internal
parameters that control the training process is as follows. A number of trials are carried
out using the default parameters of the software used with one hidden layer and 1, 2, 3,
.., 11 hidden layer nodes. It should be noted that 11 is the upper limit for the number
of hidden layer nodes needed to map any continuous function for a network with 5
inputs, as discussed by Caudill (1988) and consequently, is used in this work. The
network that performs best with respect to the testing set is then retrained with different
combinations of momentum terms, learning rates and transfer functions in an attempt to
improve model performance. As discussed in Chapter 2, since the back-propagation
algorithm uses a first-order gradient descent technique to adjust the connection weights,
it may get trapped in a local minimum if the initial starting point in weight space is
unfavourable. Consequently, the model that has the optimum momentum term, learning
rate and transfer functions is retrained a number of times with different initial weights

until no further improvement occurs.
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Using the default parameters of the software, a number of networks with different
numbers of hidden layer nodes are developed and the results are shown graphically in
Figure 5.6 and summarised in Table 5.12. It can be seen from Figure 5.6 that the
number of hidden layer nodes has little impact on the predictive ability of the ANN
model. Even a network with only one hidden layer node is able to adequately map the
underlying relationship. For networks with larger numbers of hidden layer nodes, there
is no sign of overtraining, as evidenced by fairly consistent prediction errors. This is to
be expected, as cross-validation is used as the stopping criterion. Figure 5.6 shows that
the network with 5 hidden layer nodes has the lowest prediction error. However, it is
believed that the network with 2 hidden layer nodes is considered optimal, as its
prediction error is not far from the network with 5 hidden layer nodes (the error
difference being only 0.17 mm) coupled with a smaller number of connection weights.
It can also be seen from Table 5.12 that the results obtained for model CHP5-NF2
during validation are generally consistent with those obtained during training and
testing, indicating that the model is able to generalise within the range of the data used

for training, and can thus be used for predictive purposes.

RMSE for testing set (mm)

g O N o ©

1 2 3 4 5 6 7 8 9 10 11
No. hidden nodes

Figure 5.6: Performance of the ANN models developed using Neuframe with
different hidden layer nodes

(Learning rate = 0.2 and momentum term = 0.8)



Table 5.12: Structure and performance of ANN models developed using Neuframe

Parameters | Model No. No. Learning | Momentum Transfer Transfer Performance measures
effect hidden rate term fun‘ction in | function in Correlation coefficient, 7 RMSE MAE
nodes hidden output
lgyer |ayer T S \'% T S \'% T S A\
CHPS-NF1 1 0.2 0.8 Tanh __Sigmoid 0.930 0.928 0.903 10.00 10.16 11.10 6.85 6.42 8.79
CHP5-NF2 SED EF0.2 0.8 it Tanh Sigmoid 0.930 0.929 1120905 °| " 1001 | 1012 11.04 6.87 643" | 878
CHP5-NF3 3 0.2 0.8 Tanh Sigmoid 0.931 0.927 0.906 9.90 10.23 10.91 6.76 6.78 8.69
Default CHP5-NF4 4 0.2 0.8 Tanh Sigmoid 0.919 0.929 0.895 10.79 10.27 11.63 7.38 6.89 9.13
parameters ™ CHps NFs 5 0.2 0.8 Tanh Sigmoid 0936 | 0.931 | 0.899 9.54 9.95 1134 | 656 | 637 | 9.06
CHP5-NF6 6 0.2 0.8 Tanh _Sigmoid 0.916 0.931 0.889 11.15 10.61 12.03 7.85 7.46 9.49
CHP5-NF7 7 0.2 0.8 Tanh Sigmoid 0.915 0.928 0.891 11.17 10.74 11.87 7.81 7.46 9.31
CHP5-NF8 8 0.2 0.8 Tanh Sigmoid 0.915 0.929 0.890 11.19 10.73 11.93 7.86 7.51 9.38
CHP5-NF9 9 0.2 0.8 Tanh Sigmoid 0.916 0.929 0.890 11.08 10.54 11.84 7.64 7.27 9.29
CHP5-NF10 10 0.2 0.8 Tanh Sigmoid 0.915 0.928 0.891 11.12 10.70 11.79 7.70 7.38 9.23
CHPS-NF11 11 0.2 0.8 Tanh Sigmoid 0.918 0.928 0.899 11.41 11.51 11.39 7.81 7.82 8.62
CHP5-NF12 2 0.2 0.01 Tanh Sigmoid 0916 0.929 0.88 11.06 10.56 11.61 7.44 7.05 8.88
CHP5-NF13 2 0.2 0.05 Tanh _Sigmoid 0917 0.929 0.890 11.03 10.58 11.55 7.42 7.07 8.84
CHP5-NF14 2 0.2 0.1 Tanh Sigmoid 0.916 0.928 0.891 11.10 10.75 11.47 7.41 7.12 8.68
Momentum CHP5-NF15 2 0.2 0.15 Tanh Sigmoid 0.917 0.928 0.893 11.07 10.79 11.39 7.38 7.15 8.62
teang CHP5-NF16 2 0.2 0.2 Tanh Sigmoid 0916 0.929 0.888 10.99 10.45 11.68 7.44 7.02 9.00
CHP5-NF17 2 0.2 0.4 Tanh Sigmoid 0.919 0.928 0.898 10.92 10.79 11.19 7.31 7.16 8.55
CHP5-NF18 2 0.2 0.6 Tanh Sigmoid 0.920 0.926 0.902 10.83 10.87 10.96 7.19 7.11 8.39
CHP5-NF19 2 0.2 0.9 Tanh Sigmoid 0.933 0.919 0.907 9.84 11.05 10.60 6.65 6.91 8.38
CHP5-NF20 2 0.2 0.95 Tanh Sigmoid 0.935 0.911 0.907 9.98 11.80 10.67 6.50 7.42 8.23
CHPS-NF21 2 0.005 0.8 Tanh Sigmoid 0.901 0.924 0.855 11.85 10.49 12.96 7.95 6.81 9.89
CHP5-NF22 2 0.02 0.8 Tanh Sigmoid 0.910 0.928 0.875 11.30 10.39 12.16 7.61 6.88 9.26
. CHP5-NF23 2 0.10 0.8 Tanh Sigmoid 0.920 0.926 0.903 10.84 10.90 10.95 7.19 7.12 8.37
Learning CHPS-NF24 2 0.15 0.8 Tanh Sigmoid 0.930 0.926 0.907 9.96 10.41 10.73 6.77 6.50 8.52
iales CHP5-NF25 2 0.4 0.8 Tanh Sigmoid 0.935 | 0.924 | 0.902 9.64 1053 | 1095 | 6.69 | 6.41 8.65
CHP5-NF26 2 0.6 0.8 Tanh Sigmoid 0.936 0.921 0.904 9.57 10.89 10.94 6.60 7.03 8.63
CHP5-NF27 2 0.8 0.8 Tanh Sigmoid 0.941 0.915 0.902 9.29 11.45 11.08 6.47 7.47 8.66
CHP5-NF28 2 0.9 0.8 Tanh Sigmoid 0.944 0.919 0.896 9.11 11.25 11.51 6.34 7.49 8.91
CHP5-NF29 2 0.95 0.8 Tanh Sigmoid 0.949 0.924 0.887 8.80 10.97 12.14 6.17 7.51 9.37
CHP5-NF30 2 0.99 0.8 Tanh Sigmoid 0.949 0.924 0.886 8.70 10.96 12.22 6.13 7.52 9.41
CHP5-NF31 2 0.2 0.8 __Sigmoid _Sigmoid 0917 0.927 0.893 10.92 10.49 11.37 7.29 6.90 8.71
Transfer CHP5-NF32 2 0.2 0.8 Tanh Tanh 0.918 0.927 0.913 11.43 11.50 10.68 7.96 8.02 8.36
functions CHP5-NF33 2 0.2 0.8 Sigmoid Tanh 0.909 0.928 0.899 11.83 10.96 11.14 8.34 7.62 8.78

T = training, S = testing and V = validation
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The effect of the internal parameters controlling the back-propagation algorithm (i.e.
momentum term and learning rate) on model performance is investigated for the model
with two hidden layer nodes (model CHP5-NF2) resulting in models CHP5-NF12 to
CHP5-NF30 (Table 5.12). The effect of the momentum term on model performance is
shown graphically in Figure 5.7. It can be seen that the performance of the ANN model
is relatively insensitive to momentum, particularly in the range 0.01 to 0.6. The best

prediction was obtained with a momentum value of 0.8.
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Figure 5.7: Effect of various momentum terms on ANN performance

(Hidden nodes = 2 and learning rate = 0.2)

Figure 5.8 shows the effect of different learning rates on model performance. It can be
seen that the optimum learning rate was found to be 0.2. At smaller learning rates,
prediction errors were higher, probably as a result of the inability of the networks to
escape local minima in the error surface due to the small step sizes taken. At larger
learning rates, prediction errors increased slightly, possibly as a result of the pseudo-
random behaviour of the optimisation algorithm near the local minima in the error

surface due to the large step sizes taken in weight space (Maier and Dandy 1998).
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Figure 5.8: Effect of various learning rates on ANN performance

(Hidden nodes = 2 and momentum term = 0.8)

The effect of using different transfer functions is shown in Table 5.12 (models CHP5-
NF31 to CHP5-NF33). It can be seen that the performance of ANN models is
insensitive to transfer functions although a slightly better performance is obtained when
the tanh transfer function is used for the hidden layer and the sigmoid transfer function
is used for the output layer. The effect of different random starting positions in weight
space on prediction error was negligible for the model trained with 2 hidden layer
nodes, a momentum value of 0.8, a learning rate of 0.2, tanh transfer function in the
hidden layer and sigmoid transfer function in the output layer (i.e. model CHPS-NF2).
One possible reason for this is that the error surface in weight space is relatively
uncomplicated for the problem under consideration. In addition, as discussed above, by
using a learning rate of 0.2, the model is likely to escape local minima in the error

surface during training.

The results of the parametric study that investigates the generalisation ability and
robustness of model CHP5-NF2 is shown in Figure 5.9. It can be seen that the
behaviour of model CHPS5-NF2 is as expected, which indicates that the model may be
considered to be robust. For example, in F igures 5.9 (a), (b) and (d), respectively, there
is an increase in the predicted settlement as footing width, footing net applied pressure

and footing geometry increase, respectively. On the other hand, in Figures 5.9 (c) and
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(e), respectively, the predicted settlement decreases as the average SPT blow count and

footing embedment ratio increase, respectively.
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Figure 5.9: Results of parametric study for Model CHPS-NF2

In an attempt to further investigate the effect of the software used on the robustness of
ANN models, additional models are developed using Neuframe with the same 500 data
cases derived from Equation 5.2 for both clean and noisy samples (i.e. the data used in
the development of models CHP5-SCD-PD1 to CHS5-SCD-PD20 and CHPS5-SND-PD1
to CHP5-SND-PD20). The optimal network parameters that are used for developing
model CHP5-NF2 (i.e. learning rate of 0.2, momentum term of 0.8, tanh transfer
function in the hidden layer and sigmoid transfer function in the output layer) are

utilised and networks with 1, 2, 3, ..., 7 hidden layer nodes are trained, resulting in



96 Chapter 5. Settlement Prediction by Multi-layer Perceptrons

models CHP5-SCD-NF1 to CHP5-SCD-NF7 for clean data and models CHP5-SND-
NF1 to CHP5-SND-NF7 for noisy data. The structure and performance results of the
developed models are given in Table 5.13. It can be seen that four hidden layer nodes
were optimal for both clean and noisy data (i.e. model CHP5-SCD-NF4 for clean data
and model CHP5-SND-NF4 for noisy data). The results of the parametric study for
models CHP5-SCD-NF4 and CHP5-SND-NF4 are shown in Figure 5.10. It can be seen
that regardless of whether the data are clean or noisy, the models obtained using
Neuframe succeed in interpreting the physical meaning of the settlement problem in a
robust fashion. It can also be seen that the models obtained are able to produce similar
predictions to those of Meyerhof’s equation. This suggests that it is the software used,
rather than the degree of noise in the data, that results in the model behaviour exhibited

in Figure 5.1.

Table 5.13: Structure and performance of ANN models developed using Neuframe

of synthetic clean and noisy data

Model No. No. Performance measures

hidden | Correlation coefficient, r RMSE (mm) MAE (mm)

nodes T S \% T|S|]lv]T]|s ]|V
CHPS-SCD-NF1 1 0.973 0.960 0967 [114 119|148 86 | 89 [ 10.0
CHP5-SCD-NF2 2 0.991 0.988 0.991 6.1 | 72 [ 65 | 3.9 | 42 | 4.1
CHP5-SCD-NF3 3 0.991 0.988 0.991 62 163 |67 | 40| 43| 42
CHP_SIS_CD-_NF4 4 0.997 0.996 0998 |34 |34 | 41 |20 28] 20
CHP5-SCD-NF5 5 0.997 0.997 0998 | 33133 (39|19 ]20] 1.9
CHP5-SCD-NF6 6 0.997 0.997 0998 [ 33|33 40| 18] 18] 1.9
CHPS5-SCD-NF7 7 0.997 0.997 0998 [ 35|36 | 44| 20] 21121
CHPS5-SND-NF1 1 0.877 0.867 0.894 [24.0|24.4 327134157 167
CHPS-SND-NF2 2 0.884 0.889 0916 |23.0|24.7|303|112]13.3]13.9
CHP5-SND-NF3 3 0.885 0.890 0918 |23.0]245]30.1|11.4]132] 141
CHP5-SND-NF4 4 | 0.88§_u_- - 0.889 | 0916 [ 223 ].23.6 -26;2. 10.51 12.8 | 12.5
CHPS5-SND-NF5 5 0.886 | 0.889 0914 | 222 23.6 26.3 | 10.5 12.6 12.4
CHP5-SND-NF6 6 0.886 0.889 0915 |225]1241(29.2]107]13.0] 134
CHPS5-SND-NF7 7 0.886 0.889 0913 |223]23.6|264|106]12.8] 126

T = training, S = testing and V= validation

It is evident from the previous analyses that mode] CHPS-NF? is optimal and can be
used successfully as a robust ANN model for settlement prediction of shallow

foundations on cohesionless soils. The data used for the development of this model and
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the predicted settlement obtained for the training, testing and validation sets are

summarised in Table 5.14.
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SND-NF4
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Table 5.14: Training, testing and validation data used for the ANN model

Case Input variables Output variable
record | B(m) | q (kPa) N L/B D,/B S,,(mm) [ S (mm)
1* 60 385 47 I 0.09 40 30.1
2k 0.8 78 15 | 0.0 fl 11.2
3 2.1 697 50 1 0.71 23 7.5
4 14 18.32 15 1.61 0.18 42 19.1
5 2.5 284 60 3.8 1.2 1 6.7
6 2.8 142 4 5 0.36 97 60.3
7 1.2 250 25 10.6 0.25 10 10.5
8 0.9 300 20 1 3.44 6.7 7.4
9 25 70 6 1 0.04 121 102.5
10 1.2 150 45 1 0.5 0.6 6.2
11 4.5 195 35 1.3 0.67 3.9 6.3
12 5.5 93 35 29 0.52 6.5 6.2
13 4.3 161 20 1.6 0.49 5 8.2
14 4.5 91 12 6.8 0.6 11 16.7
15 15 81 35 4.9 0.2 54 6.9
16 4.9 188 20 1.59 0.47 15 8.8
17 4 145 20 1.6 0.5 7.4 7.9
18 2.5 158 21 5.24 0.0 11.7 114
19 1.5 7 | 13 1.0 0.8 2.1 7.8
20 6.0 190 7 1 0.0 74 64.6
21 1.0 284 45 1.0 0.5 4.7 6.5
22 33 304 40 1.7 0.9 11.6 6.6
23* 12.2 130 17 1.0 0.09 22 19.5
24 5.2 127.8 58 3.7 0.0 17 6.3
25 3.8 90 12 3.2 0.39 15.5 15.0
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Table 5.14: Training, testing and validation data used for the ANN model
(continued)

Case Input variables Output variable
record | B(m) [ g(kPa)| N L/B D./B S, (mm) | S (mm)
26 6.7 113 21 1.59 0.51 5.0 7.7
27* 274 154 17 1.0 0.0 100 72.3
28 25 75 6 1.0 0.11 87 101.1
29 1.2 199 7 1.0 0.17 13 38.5
30 43 102 20 1.6 0.49 7.1 7.5
31 21.7 148 30 1.0 0.14 19.8 9.7
32 52 95.8 42 5.3 0.44 99 6.1
33 1.0 220 34 1.0 0.0 3.6 6.6
34* 2.5 245 16 1.0 0.0 11 17.8
35 4.9 118.7 22 1.1 0.3 6.4 7.7
36 4.0 512 37 1.8 1.3 12.8 7.2
37 1.5 77 13 1.0 0.8 1.3 7.8
38* 36.6 193 28 1.0 0.0 18.0 40.7
39 14.5 74 6 4.4 0.07 75 90.7
40 30.2 386 18 1.0 0.09 91.6 98.0
41 6.4 71.8 18 1.45 0.23 6.6 9.7
42 4.1 125 20 1 1.2 17.8 6.5
43 3.0 140 38 4.8 0.95 3.0 6.2
44 4.0 225 20 1.6 0.5 9.1 8.9
45 6.4 150 20 1.6 0.5 14.5 8.5
46 43 139 20 1.6 0.49 7.1 7.9
47 16.2 154 16 1.6 0.29 15 26.8
48 4.9 123 20 1.6 0.47 6.6 7.9
49 1.2 300 50 1.0 0.42 4.5 6.6
50 49 107 20 1.6 0.47 3.6 7.7
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Table 5.14: Training, testing and validation data used for the ANN model

(continued)

Case Input variables Output variable
record | B (m) | q (kPa) N L/B D,/B S,,(mm) | .S (mm)
51 22.5 221 20 29 0.44 21 29.6
52 2.5 576 18 1.0 0.3 25 27.0
53 3.7 135 20 1.0 1.4 10.1 6.4
54 224 64.0 6.0 3.8 0.04 70 102.9
55 4.9 182 20 1.6 0.47 13.8 8.7
56 43 134 20 1.0 1.2 15.4 6.6
57 3.0 500 18 1.0 0.29 25 22.2
58 5.1 114.9 42 4.6 0.35 5.8 6.1
59 4.9 97 20 1.6 0.47 43 7.7
60 4.3 150 20 1.6 0.49 6.8 8.0
61 1.0 294 40 1.0 0.0 5.0 6.6
62* 22 79 21 1.0 0.23 10.5 17.3
63 52 134 22 1.0 0.96 14.7 6.7
64 25 75 6 1.0 0.09 87 101.6
65* 33.5 156 19 1.0 0.0 90 81.1
66 1.2 215 18 1.0 22 8.6 6.3
67 6.6 168.1 39 2.0 0.0 15.5 6.5
68 4.3 145 20 1.6 0.49 11 8.0
69 5.2 153.2 44 3.7 0.0 8.9 6.3
70 4.9 161.4 49 2.8 0.0 7.1 6.3
71 224 75 6 3.8 0.04 92 103.4
72 5.0 181.9 24 1.7 0.5 11.9 7.4
73 3.4 129 20 1.0 1.5 11.5 6.3
74 11 120 24 3.0 0.45 19.6 8.3
75 20 85 5 1.0 0.15 116 95.5
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Table 5.14: Training, testing and validation data used for the ANN model

(continued)

Case Input variables Output variable
record | B(m) | g (kPa) N L/B D,/B S, (mm) | S (mm)
76 2.6 147 10 8.5 0.77 12 21.2
77 4.0 507.5 32 1.8 1.3 11.9 7.3
78 45 304 40 1.5 0.67 18.3 6.7
79 1.2 268 8 1.0 0.75 12.7 19.2
80 3.7 215 20 1.59 0.49 15 8.7
81 13.1 47.6 25 1.8 0.23 3.6 8.0
g2* 33 191 34 1.0 0.16 43.8 12.5
83 8.5 102.5 24 1.0 0.0 16.3 8.7
84 1.5 150 35 1.0 0.4 2.1 6.2
85% 1.0 247.5 16 1.0 0.0 9.9 16.2
86 4.9 112 20 1.7 0.31 7.4 8.4
87 3.7 215 20 1.59 0.49 6.4 8.7
88 4.9 113 20 1.59 0.47 8.9 7.9
89 16 209 14 2.7 0.46 18.6 383
90 22 82 21 3.4 0.22 7.7 21.7
91 1.2 215 26 1.0 2.2 1.5 6.3
92%* 10 240 60 1.0 0.15 7.0 6.7
93 1.4 230 25 1.0 2.1 3.9 6.3
94 43 134 20 1.6 0.49 10.2 7.9
95 4.9 102 20 1.59 0.47 6.9 7.7
96 33 52 8 4.2 0.54 35 19.2
97 6 214.5 42 2.7 0.6 4.1 6.5
98 2.1 584 50 1.1 1.4 4.6 73
99 14 300 50 1.0 2.6 1.5 6.7
100 4.4 93 10 5.5 0.57 8.0 19.9
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Table 5.14: Training, testing and validation data used for the ANN model

(continued)

Case Input variables Output variable
record | B (m) | q (kPa) N L/B D./B S, (mm) (S (mm)
101 1.6 250 25 7.9 0.25 9.3 9.4
102 4.9 199 20 1.6 0.47 11.7 8.9
103 23.6 167 35 1.14 0.13 15.4 8.4
104 1.5 666 18 1.0 0.51 25.0 25.7
105 33 52 8 4.2 0.54 20.0 19.2
106 2.5 284 60 3.8 1.2 3.0 6.7
107 19 80 15 1.0 0.0 52.0 429
108 22.9 165 30 1.4 0.13 204 10.7
109 5.5 139 20 1.6 0.47 9.4 8.3
110 3.0 231 20 1.6 0.5 8.1 8.7
111 3.7 290 20 1.59 0.49 11.2 9.9
112 34 247 20 1.6 0.5 12.2 9.0
113 12.2 181 53 1.0 0.25 9.6 6.5
114 7.0 177 22 1.6 0.5 83 8.2
115 5.6 112 22 4.3 0.27 15.5 8.8
116 13 193 18 24 0.16 22 235
117 33 98.6 7.0 44 0.61 371 243
118 1.2 320 25 1.0 0.0 2.8 9.2
119 25 63 6 1.0 0.08 84 101.3
120 13 193.8 18 1.7 0.16 18.8 22.0
121 4.6 112 24 5.0 0.43 11.2 7.4
122 6.1 155.6 38 5.0 0.25 16.8 6.5
123 4.6 85.7 39 4.5 0.59 21.1 6.1
124 1.0 564 45 1.0 0.5 44 7.3
125 5.8 72.8 17 4.1 0.43 11.9 10.2
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Table 5.14: Training, testing and validation data used for the ANN model
(continued)

Case Input variables Output variable
record | B (m) | q (kPa) N L/B D,/B S,,(mm) | S (mm)
126 4.6 113 20 1.6 0.5 5.1 7.7
127 3.7 252 20 1.6 0.49 16.5 9.3
128 6.1 144.1 23 5.0 1.1 11.7 6.8
129 3.7 139 20 1.6 0.49 7.4 7.8
130 7.0 1312 | 42.0 5.1 0.33 11.9 6.3
131 6.0 158 42 2.7 0.47 7.9 6.3
132 3.7 279 20 1.6 0.49 8.6 9.7
133 16 70 12 1.3 0.09 90 45.1
134 6.0 162 30 2.7 0.6 11.0 6.6
135 0.9 113 6 1.0 1.0 6.4 11.6
136 34 81.4 34 6.7 0.0 10.7 6.5
137 4.0 97 20 1.6 0.5 6.1 7.4
138 24 190 22 1.6 1.9 8.5 6.3
139 17.6 218 20 4.8 0.61 26 19.4
140 4.3 177 20 1.6 0.49 8.1 8.3
141 3.0 500 18 1.0 0.25 25.0 235
142 1.5 150 50 1.0 0.4 1.0 6.2
143 55 233.6 60 1.8 0.18 25.0 79
144 5.3 121 17 9.9 0.49 12.0 15.6
145 1.0 196 25 1.0 3.0 6.0 6.2
146* 42.7 166 21 1.0 0.0 80.0 96.5
147 20.0 85.0 5 1.0 0.15 81.0 95.4
148 0.9 300.0 30 1.0 1.3 4.0 6.5
149 20.0 145.0 7 1.0 0.0 120.0 98.5
150 35 25.0 12 1.0 0.43 3.0 10.3
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Table 5.14: Training, testing and validation data used for the ANN model

(continued)

Case Input variables Output variable
record | B(m) | q(kPa)| N L/B D,./B S, (mm) | S (mm)
151 2.1 584.0 50 1.1 1.1 4.4 7.2
152% 244 120.0 27 1.0 0.0 14.3 14.8
153 1.2 215.0 29 1.0 2.2 2.5 6.2
154 9.0 115.0 11 8.0 0.5 25.0 384
155 4.6 111.1 43 35 0.0 239 6.2
156 3.6 304.0 40 1.8 0.83 13.3 6.6
157 25.0 76.0 6 1.0 0.08 85.0 101.9
158 3.7 225.0 20 1.6 0.49 7.4 8.8
159 13.0 193.0 18 2.1 0.16 235 22.8
160 14.5 2535 26 1.0 0.24 18.0 10.8
161 41.2 104.0 36 1.0 0.24 10.0 12.2
162 6.0 162.0 30 2.7 0.47 10.5 6.7
163 34.0 270.0 30 1.7 0.23 22.0 253
164 3.3 99.0 4 44 0.30 37.0 55.9
165 25.0 86.0 6 1.0 0.10 120.0 102.0
166 1.8 575.0 50 1.6 0.83 2.7 7.2
167 15.0 148.0 20 1.3 0.0 40.0 20.1
168 1.0 339.0 45 1.0 0.5 6.0 6.6
169* 15.2 33.0 20 1.0 0.02 2.8 13.7
170 15.0 136.0 55 1.7 0.40 16.2 6.5
171 2.6 293.0 37 4.1 0.38 10.9 6.8
172 6.4 100.5 18 1.0 0.23 7.1 10.1
173 4.6 166.0 20 1.6 0.5 8.1 8.2
174 1.2 150.0 28 1.0 0.5 1.3 6.4
175 6.1 161.0 20 1.6 0.49 10.2 8.6
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Table 5.14: Training, testing and validation data used for the ANN model
(continued)

Case Input variables Output variable
record | B(m) | q (kPa) N L/B D,/B S, (mm) | S (mm)
176 3.0 230.8 50 3.3 1.0 21.1 6.5
177 1.1 78.0 13 1.0 1.09 2.0 7.0
178 1.8 230.0 25 1.0 1.7 34 6.3
179 0.9 133.0 5 1.0 0.33 7.6 31.4
180 5.1 116.8 19 3.1 0.24 19.3 10.2
181 0.9 300.0 20 1.0 1.33 2.7 6.9
182 2.25 400.0 8 1.1 1.02 43.0 22.7
183 2.6 196.3 9 8.1 0.77 33.0 27.9
184 2.1 347.0 50 1.9 1.4 1.8 6.7
185 14.5 74.0 6 4.4 0.07 74.0 90.7
186 25.5 175.0 21 1.0 0.1 25.0 37.3
187 1.0 284.0 25 2.2 3.0 10.5 6.4
188 17.2 34.0 17 2.5 0.27 3.6 19.1
189 18.3 41.0 20 1.0 0.02 4.8 17.2

*Circular footings
Training data = 1 to 121, Testing data = 122 to 152 and Validation data = 153 to 189

5.3 Data Division for ANN Models

It is evident from Chapter 3 that ANNs have been applied to many geotechnical
engineering problems and have demonstrated some degree of success. In the majority
of these applications, data division is carried out on an arbitrary basis. However, as
mentioned in Chapter 2, the way the data are divided can have a significant impact on
the performance of ANN models. In this section, the issue of data division and its
impact on ANN model performance is investigated. Four data division methods are
tested: (i) random data division; (ii) data division to ensure statistical consistency of the
subsets needed for ANN model development; (iii) data division using self-organising
maps (SOMs); and (iv) a new data division method using fuzzy clustering. For the first
two methods, the relationship between the statistical properties of the training, testing
and validation sets and model performance is investigated. For the second method, the
effect of the proportion of data used for training, testing and validation on model
performance is also investigated. The last two methods are introduced as alternative

approaches for data division that (i) negate the need to choose which proportion of the
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data to use for training, testing and validation and (ii) ensure that each of the subsets are

representative of the available data. The specific objectives of this section are:

1. To investigate the relationship between the statistical properties of the data subsets
used to develop ANN models and model performance;

2. To introduce a new approach to data division for ANNs based on fuzzy clustering;

3. To compare the performance of the new approach with that of three existing
approaches, including random data division, data division to ensure statistical
consistency between the various subsets and data division using a SOM, although
the second and third of these have yet to be applied to geotechnical engineering;

4. To investigate the relationship between the proportion of the data in each of the
subsets used to develop ANN models and their performance, in relation to the data
division method that ensures statistical consistency between data sets; and

5. To investigate the impact of the number of data points used from each cluster for

training on model performance in relation to the SOM data division method.

In order to meet the objectives set out above, the four approaches to data division are

investigated below.

e Approach 1: Random

As mentioned in Chapter 2, a random approach is generally used in the field of
geotechnical engineering for dividing the available data into the subsets needed for
ANN model development, with no attention given to the statistical consistency of the
data subsets. As a result, the performance of the trained model on the validation data is
highly dependent on which data are contained in the validation set (e.g. whether the
validation set contains extreme data or not), making it impossible to assess the true
generalisation ability of the model within the domain of the available data. Another
shortcoming of this approach is that the proportion of the data to be used for training,
testing and validation needs to be chosen a priori by the modeller. However, there are
no firm guidelines in the literature to assist with this task, although, as mentioned in
Chapter 2, some rules-of-thumb exist, such as using two thirds of the data for model

calibration (i.e. training and testing) and one third for model validation.
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As part of this approach, the available 189 individual case records are randomly divided
into training, testing and validation subsets. In total, 80% of the data (i.e. 152
individual cases) are used for calibration and 20% of the data (i.e. 37 individual cases)
are used for validation. The calibration data are further divided into 70% for training

(i.e. 106 individual cases) and 30% for testing (i.c. 46 individual cases).

e Approach 2: Statistically Consistent

As mentioned in §5.2, part of this approach is to divide the data into their subsets in
such a way that the statistical properties of the training, testing and validation are as
close to each other as possible, and thus represent the same statistical population. The
major shortcoming of this approach is that it is based on trial-and-error and that the
proportion of the data to be used for training, testing and validation needs to be chosen

in advance by the modeller, as discussed previously.

As mentioned above, as part of this approach, the 189 individual case records are
divided into three statistically consistent subsets. In order to investigate the impact of
the proportion of the data used in the various subsets in relation to model performance
(see Objective 4), a number of different proportions of the available data are used for
training, testing and validation. The different proportions investigated are summarised
in Table 5.15.

Table 5.15; Different proportions of data for training, testing and validation

Validation set (%) Remaining data
Training set (%) Testing set (%)
10 70 30
80 20
90 10
20 70 30
80 20
90 10
30 70 30
80 20
90 10
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® Approach 3: Self-organising map (SOM)

As mentioned in Chapter 2, self-organising maps belong to the class of unsupervised
neural networks, and can be used for data clustering. Once clustering has been
successfully accomplished, samples are chosen from each cluster to form the training,
testing and validation sets. Different approaches for achieving this have been suggested
in the literature. Kocjancic and Zupan (2000) suggested using a fixed number of data
samples from each cluster to form the data subsets needed for ANN model
development. However, this still requires a subjective decision as to what proportion of
data points from each cluster to allocate to the different data subsets. Bowden et al.
(2002) suggested randomly selecting three samples from each cluster to form the ANN
data subsets; one for each of the training, testing and validation sets. In the instance
when a cluster contains two data records, one record is chosen for training and the other
is chosen for testing. If a cluster contains only one data record, this record is included
in the training set. This approach overcomes the problem of having to decide how
many data points from each cluster to allocate to the different data subsets. In addition,
this approach utilises the minimum number of data points for model development, thus
increasing computational efficiency. However, it is unclear if better model performance
could be achieved if all data points remaining in a cluster, after removal of the testing
and validation values, are used for training rather than just one data point from each
cluster. Although Bowden et al. (2002) conducted a preliminary investigation into this
issue and found that the inclusion of the additional training samples did not improve

model performance, further investigation into this matter is needed.

In summary, the SOM data division method has a number of advantages, including:

L. There is no need to decide which proportion of the data to use for training, testing
and validation.

2. The statistical properties of the training, testing and validation data are similar,
provided that intra-cluster variation is sufficiently small.

3. Information is provided about whether “outliers” (not necessarily in the statistical
sense) exist in the data set. For example, if a cluster contains only one data sample,

this sample should be included in the training set. If it were to be included in the
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validation set, the trained ANN model could not be expected to perform well, as the

validation data may fall outside the range of the training data.

The main disadvantage of this approach is that different parameters that control the
learning process in SOMs (i.e. learning rate, neighbourhood size and size and shape of
the map) have to be selected in advance. Moreover, as mentioned in Chapter 2, there

are no precise rules for the optimum choice of these parameters.

As part of this approach, the PC-based software Neuframe Version 4.0 (Neusciences
2000) is used to cluster the data using a SOM. The available data inputs (i.e. B, g, N,
L/B and D,/B) and corresponding output (S,,) are presented to the SOM as inputs (Figure

5.11). As mentioned previously, there is no precise rule for determining the optimum
size of the map. Consequently, a number of map sizes are investigated, including 5 x 5,
6 x 6,7 x7and 8 x 8. For all map sizes, the default parameters (e.g. learning rate and
neighbourhood size) suggested in the software are used (Neusciences 2000) and training
is continued for 10,000 iterations, as the connection weights remain stable after this
point. A grid size of 8 x 8 is chosen as it ensures that the maximum number of clusters

are found from the training data (Bowden et al. 2002).

In order to investigate the impact of the number of data points used from each cluster
for training on model performance (see Objective 5), two different options for choosing
training data from each cluster are adopted. As part of the first option, all data records
remaining after the selection of the testing and validation data are used for training, As
a result, a total of 110 records are used for training, 46 for testing and 33 for validation.
As part of the second option, only one data point from each cluster is chosen for
training. As a result, 54 records are used for training, 46 for testing and 33 for

validation, resulting in a reduction in the data used for training by approximately 50%.

e Approach 4: Fuzzy Clustering

The fuzzy clustering algorithm attempts to minimise the following objective function

(Kaufman and Rousseeuw 1990):



110 Chapter 5. Settlement Prediction by Multi-layer Perceptrons

Kohonen layer

Input layer

L/B DB S,

Figure 5.11: SOM for settlement data clustering
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(5.3)

where:

) = number of clusters;

d; = given distance between data point i and j; and

u, = unknown membership function of data point i to cluster v.

The sum in the numerator ranges over all pairs of data points (i), and the membership

functions are subject to the following constrains:

u, =0 for i=1,..,p;0=1,...,1 (5.4)
Zuiu =1 for i=1,..,p (5.5)

The above constraints imply that memberships cannot be negative, and that each data
point has a constant total membership value, distributed over the clusters, normalised to
unity. For hard clustering, a data point is assigned to the cluster that has the largest

membership value.
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The basic notion of fuzzy clustering for data division is similar to that underlying the
SOM data division approach in the sense that both are used to cluster similar data
records together and once data are clustered, samples are chosen from the clusters to
form the training, testing and validation sets. However, the fuzzy clustering approach
has a number of features that enable it to overcome the shortcomings of the SOM data

division approach.

Firstly, an analytical procedure can be used to determine the optimum number of
clusters. This is achieved with the aid of the silhouette value s(i), which is a measure of
how well individual data points lie within the cluster they have been assigned to at the

end of the clustering process, and is given by (Kaufman and Rousseeuw 1990):

s(@) = -n%l,(blz—i)}’ -1<s@i) <1 (5.6)

where:

a(i) = average dissimilarity of data point i to all other points in a cluster 4; and

b(i) = the smallest average dissimilarity of data point i to all points in any cluster £
different from A4.

For an individual data record (i) in cluster 4, if s(i) is close to 1, this implies that the
“within” dissimilarity a(i) is smaller than the smallest “between” dissimilarity b(i), and
therefore data record i can be deemed to have a strong membership to cluster 4. By

calculating the average silhouette width 5(/) for the entire data set for different numbers

of cluster, the optimum number of clusters can be determined by choosing the number

of clusters that maximises the value of 5(7).

Secondly, guidelines can be developed to determine which data points from each cluster
should be used for training, testing and validation. Information about the degree of
membership each data point has to the cluster it has been assigned to can be used to
ensure that any significant intra-cluster variation is taken into account when assigning
data points to their respective subsets. As part of the data division approach introduced

in this research, it is suggested to rank the data points in each cluster in order of
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increasing membership value. Next, each data point is assigned to one of ten equally
spaced membership intervals (i.e. 0.0-0.1, 0.1-0.2, ..., 0.9-1.0) and one data point from
each membership interval is assigned to the testing set and another data point from that
interval is assigned to the validation set while the remaining data points from the same
interval are assigned to the training set. By using this approach, the best possible

representation of the available data is achieved in each of the three data subsets.

The detailed procedure for using fuzzy clustering for ANN data division introduced in

this research is as follows:

1. An initial number of clusters, not less than two, is chosen (the initial number of
clusters can be assumed to be equal to 5% of the available data);
2. ' The available data are clustered using the fuzzy clustering technique and the average

silhouette width 5(/) of the entire data set is calculated;
3. The number of clusters is increased by one and Step 2 is repeated until § (/) remains

constant or the number of clusters reaches 50% of the available data;

4. The number of clusters that result in the largest value of 5(/)is considered optimum;

5. For the optimum number of clusters, the data records included in each cluster are
ranked according to their membership values in incremental intervals of 0.1 between
0.0 and 1.0 (i.e. 0.0-0.1,0.1-0.2, ..., 0.9-1.0); and

6. For each cluster and membership interval (e.g. cluster 1 and membership interval
0.0-0.1), two samples are chosen, one for the testing set and one for the validation
set, and all remaining data samples are chosen for the training set. In the instance
when two records are obtained, one record is chosen for training and the other is
chosen for testing. If only one record is obtained, this record is included in the

training set.

As part of this method, the software FANNY (Kaufman and Rousseeuw 1990) is used
to cluster the data using fuzzy clustering. Using the procedure outlined above, 10 to 94

clusters are tried. The average silhouette width of the entire data 5(/)is maximised

when 16 clusters are used and is equal to 0.3. The membership values obtained for all
data records are shown in Appendix C. Using the procedure outlined previously,
samples are chosen for the training, testing and validation sets and as a result, a total of

143 data records are used for training, 25 for testing and 21 for validation.
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e Results and Discussion

The statistics of the training, testing and validation sets obtained when the data are
divided in a purely random fashion (Approach 1) and where the statistics of the subsets
are taken into account (Approach 2), are shown in Tables 5.16 and 5.17, respectively. It
can be seen that when the data are divided in a purely random manner (Approach 1 —
Table 5.16), there are some inconsistencies in the statistics between the various data
subsets. This is confirmed by the results of the - and F-tests (Table 5.18), which show
that the hypotheses are rejected for most of the testing and validation sets and
consequently, the data in the three subsets generally do not belong to the same statistical
population. However, it should be noted that this is not necessarily the case when the
data are divided in a random manner, as there are many different possible ways in which
the data can be divided into training, testing and validation subsets. The results in Table
5.17 show that when the data are divided in a way that takes into account the statistical
properties of the various subsets (Approach 2), the statistics are in much better
agreement, as expected. This is confirmed by the outcomes of the - and F-tests (Table
5.19), which show that the hypotheses are accepted for all of the testing and validation
sets and consequently, the training, testing and validation sets are generally

representative of each other.

The structure and performance results of the ANN models developed using the random
data division method are given in Table 5.20. It should be noted that these models are
developed using a learning rate of 0.2, momentum term of 0.8, tanh transfer function in
the hidden layer and sigmoid transfer function in the output layer. It can be seen from
Table 5.20 that model CHP5-NF34 with one hidden layer node can be considered

optimal.

The performance of the optimum models developed using the data sets whose statistics
are shown in Tables 5.16 and 5.17 (i.e. models CHP5-NF34 and CHP5-NF2) are shown
in Table 5.21 (columns 2 and 3). It can be seen that there is a direct relationship
between the consistency in the statistics between training, testing and validation sets and
consistency in model performance. When the training, testing and validation data are
not representative of each other, there can be large discrepancies in the model

performance obtained using the training, testing and validation sets. Consequently, the
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results obtained using the validation set may not be truly representative of the
performance of the trained model, as the validation set may contain extreme data points
that were not used in the model calibration (training) phase. Consequently, the best
model given the available data has not been developed. Similarly, if the results
obtained using the testing set are not representative of those obtained using the training
set, training may be ceased at a sub-optimal time, or a sub-optimal network geometry or
learning rate or momentum value may be chosen. However, when the training, testing
and validation sets are representative of each other, the performance of the model on
each of the three subsets is very similar, indicating that the model has the ability to

interpolate within the extremes contained in the available data.

The model performances obtained when different proportions of the available data are
used for training, testing and validation, in conjunction with the data division method
which takes into account the statistical properties of the data (Approach 2), are shown in
Table 5.22. It should be noted that these models are developed using two hidden layer
nodes, a learning rate of 0.2, momentum term of 0.8, tanh transfer function in the
hidden layer and sigmoid transfer function in the output layer. The statistics and null
hypothesis tests for the training, testing and validation sets are given in Appendices D
and E, respectively. A code is used to distinguish between the various proportions of
the available data used for training, testing and validation. The code consists of three
numbers. The first number represents the percentage of the data used in the validation
set, whereas the second two numbers, placed between brackets and separated by a
hyphen, are the percentages that divide the remaining data into training and testing sets,
respectively. It can be seen from Table 5.22 that there is no clear relationship between
the proportion of data used for training, testing and validation and model performance.
The best result is obtained when 20% of the data are used for validation and the
remaining data are divided into 70% for training and 30% for testing (i.e. model CHP5-
NF2). The results in Table 5.22 also indicate that there can be significant variation in
the results obtained, depending on which proportion of the data is used for training,
testing and validation, even when the statistical properties of the data subsets are taken
into account. This may be due to the difficulties in obtaining representative data sets for
some of the proportions for training, testing and validation investigated for the

particular data set used.
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Table 5.16: Input and output statistics obtained using random data division

Model variables

Statistical parameters

and data sets Mean Std. Dev. | Minimum | Maximum Range
Footing width, B (m)
Training set 94 11.3 0.8 60.0 59.2
Testing set 9.2 10.3 0.9 41.2 40.3
Validation set 6.1 43 2.25 25.5 23.25
Footing net applied pressure, g (kPa)
Training set 161.3 98.0 18.3 697.0 678.7
Testing set 267.2 155.2 47.6 666.0 618.4
Validation set 161.2 101.5 71.8 507.6 435.7
Average SPT blow count, N
Training set 21.6 11.8 4.0 60.0 56.0
Testing set 28.6 15.7 4.0 60.0 56.0
Validation set 27.8 134 7.0 58.0 51.0
Footing geometry, L/B
Training set 1.9 1.5 1.0 9.9 8.9
Testing set 1.9 1.9 1.0 10.5 9.5
Validation set 33 1.9 1.0 8.1 7.1
Footing embedment ratio, D,/B
Training set 0.57 0.59 0.0 34 34
Testing set 0.52 0.64 0.0 3.0 3.0
Validation set 0.41 0.41 0.0 1.8 1.8
Measured settlement, S, (mm)
Training set 20.7 28.7 0.6 121.0 120.4
Testing set 23.0 30.5 1.8 120.0 118.2
Validation set 16.1 9.7 4.1 43.0 389
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Table 5.17: Input and output statistics obtained using data division to ensure

statistical consistency

Model variables Statistical parameters

and data sets Mean Std. Dev. | Minimum | Maximum Range
Footing width, B (m)
Training set 8.3 9.8 0.8 60.0 59.2
Testing set 9.3 10.9 0.9 55.0 54.1
Validation set 94 10.1 0.9 41.2 40.3
Footing net applied pressure, g (kPa)
Training set 188.4 129.0 18.3 697.0 678.7
Testing set 183.2 118.7 25.0 584.0 559.0
Validation set 187.9 114.6 33.0 575.0 542.0
Average SPT blow count, N
Training set 24.6 13.6 4.0 60.0 56.0
Testing set 24.6 12.9 5.0 60.0 55.0
Validation set 243 14.1 4.0 55.0 51.0
Footing geometry, L/B
Training set 2.1 1.7 1.0 10.5 9.5
Testing set 23 1.9 1.0 9.9 8.9
Validation set 2.1 1.8 1.0 8.0 7.0
Footing embedment ratio, D, /B
Training set 0.52 0.57 0.0 34 34
Testing set 0.49 0.52 0.0 3.0 3.0
Validation set 0.59 0.64 0.0 3.0 3.0
Measured settlement, S, (mm)
Training set 20.0 272 0.6 121.0 120.4
Testing set 214 26.6 1.0 120.0 119.0
Validation set 204 25.2 1.3 120.0 118.7
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Table 5.18: Null hypothesis tests for random data division
Variable Lower Upper Lower | Upper
and t-value | critical | critical t-test F-value | critical | critical F-test
Data sets value value value value
B
Testing 0.10 -1.97 1.97 Accept 1.20 0.59 1.87 Accept
Validation 1.70 -1.97 1.97 Accept 6.90 0.61 1.77 Reject
q
Testing -5.10 -1.97 1.97 Reject 0.39 0.59 1.87 Reject
Validation 0.00 -1.97 1.97 Accept 0.93 0.61 1.77 Accept
N
Testing -3.00 -1.97 1.97 Reject 0.56 0.59 1.87 Reject
Validation | —2.70 -1.97 1.97 Reject 0.78 0.61 1.77 Accept
L/B
Testing 0.00 -1.97 1.97 Accept 0.62 0.59 1.87 Accept
Validation | —4.50 -1.97 1.97 Reject 0.62 0.61 1.77 Accept
D,/B
Testing 0.47 -1.97 1.97 Accept 0.85 0.59 1.87 Accept
Validation 1.52 -1.97 1.97 Accept 2.10 0.61 1.77 Reject
Sm
[ Testing —0.45 | -1.97 1.97 | Accept | _0.89 059 | 1.87 Accept
Validation 0.95 -1.97 1.97 Accept 8.80 0.61 1.77 Reject

Table 5.19: Null hypothesis tests for data division to ensure statistical consistency

Variable Lower Upper Lower Upper
and t-value | critical critical t-test F-value | critical | critical F-test
data sets value value value value

B
Testing -0.58 -1.97 1.97 Accept 0.81 0.59 1.87 Accept
Validation | -0.61 -1.97 1.97 Accept 0.94 0.61 1.77 Accept
q
Testing 0.23 -1.97 1.97 Accept 1.18 0.59 1.87 Accept
Validation 0.02 -1.97 1.97 Accept 1.27 0.61 1.77 Accept
N
Testing 0.00 -1.97 1.97 Accept 1.11 0.59 1.87 Accept
Validation 0.11 -1.97 1.97 Accept 0.93 0.61 1.77 Accept
L/B
Testing —0.64 -1.97 1.97 Accept 0.80 0.59 1.87 Accept
Validation 0.00 -1.97 1.97 Accept 0.89 0.61 1.77 Accept
D, /B
Testing 0.31 -1.97 1.97 Accept 1.20 0.59 1.87 Accept
Validation —0.62 -1.97 1.97 Accept 0.79 0.61 1.77 Accept
S
Testing —0.29 -1.97 1.97 Accept 1.05 0.59 1.87 Acceplt
Validation | —0.08 -1.97 1.97 Accept 1.17 0.61 1.77 Accept
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Table 5.20: Structure and performance of ANN models using random data division

Model No. No. Performance measure

hidden | Correlation coefficient, r RMSE MAE

nodes T S \% T S \% T S v
CHP5-NF34 1] 0944 | 0845 [ 0.659 | 9.35 | 16.39 10.57- 1 6.23 | 11.94 | 8.85
CHP5-NF35 2 0.945 0.834 | 0.653 | 934 | 17.12 | 10.85 | 6.30 | 12.42 | 8.97
CHP5-NF36 3 0.944 0.844 | 0.660 | 9.61 | 16.54 | 10.96 | 6.45 | 12.06 | 9.34
CHP5-NF37 4 0.945 0.845 | 0.655 | 939 | 16.47 | 10.83 | 6.29 | 11.96 | 9.17
CHP5-NF38 5 0.944 0.848 | 0.656 | 939 | 16.27 | 10.75 | 6.26 | 11.82 | 9.08
CHP5-NF39 6 0.943 0.843 | 0.663 | 9.49 | 16.57 | 11.12 | 6.47 | 12.29 | 9.46
CHP5-NF40 7 0.943 0.837 | 0.671 | 9.51 | 16.93 | 11.28 | 6.47 | 12.65 | 9.69
CHP35-NF41 8 0.943 0.832 | 0.674 | 9.51 | 17.22 | 11.43 | 6.49 | 12.91 | 9.77
CHP5-NF42 9 0.942 0.846 | 0.647 | 9.59 | 16.48 | 10.97 | 6.49 | 12.23 | 9.13
CHP5-NF43 10 0.944 0.839 | 0.664 | 9.47 | 16.79 | 11.24 | 6.45 | 12.45 [ 9.60
CHP5-NF44 11 0.943 0.852 | 0.651 | 9.55 | 16.12 | 11.02 | 6.53 | 11.94 [ 9.27

T = training, S = testing and V= validation

Table 5.21: Performance of ANN models using data subsets obtained for different
approaches of data division

Performance measures Random Statistical SOM Fuzzy
and data sets division division clustering

Training
Correlation coefficient, » 0.944 0.930 0.890 0.912
RMSE (mm) 9.35 10.01 11.58 10.62
MAE (mm) 6.23 6.87 7.93 7.43
Testing
Correlation coefficient, » 0.845 0.929 0.942 0.967
RMSE (mm) 16.39 10.12 10.43 10.48
MAE (mm) 11.94 6.43 7.98 6.92
Validation
Correlation coefficient, 0.659 0.905 0.958 0.957
RMSE (mm) 10.57 11.04 10.12 9.59
MAE (mm) 8.85 8.78 7.12 6.13
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Table 5.22: Performance of ANN models for different data proportions using
statistical data division approach

Model No. Data Performance measures
proportions Correlation RMSE (mm) | MAE (mm)
and sets coefficient, r
CHP5-NF45 | 10(70-30)
Training set 0.922 9.34 6.55
Testing set 0.929 11.34 7.35
Validation set 0.861 17.08 9.49
CHP5-NF46 | 10(80-20)
Training set 0.939 9.26 6.63
Testing set 0.876 13.82 7.96
Validation set 0.909 12.72 9.07
CHP5-NF47 | 10(90-10)
Training set 0.934 9.25 6.04
Testing set 0.924 13.87 10.43
Validation set 0.849 18.35 9.95
CHP5-NF2 | 20(70-30)
Training set 0.930 10.01 6.87
Testing set 0.929 10.12 6.43
Validation set 0.905 11.04 8.78
CHP5-NF48 | 20(80-20)
Training set 0.933 9.57 6.63
Testing set 0.929 10.96 6.94
Validation set 0.898 11.39 9.01
CHP5-NF49 | 20(90-10)
Training set 0.918 10.67 7.51
Testing set 0.945 10.46 6.89
Validation set 0.878 12.52 9.49
CHP5-NF50 | 30(70-30)
Training set 0.920 11.01 7.88
Testing set 0.938 10.93 7.28
Validation set 0.903 10.94 7.76
CHP5-NF51 | 30(80-20)
Training set 0.926 10.68 7.12
Testing set 0.903 11.52 7.71
Validation set 0.887 11.55 7.83
CHP5-NF52 | 30(90-10)
Training set 0.923 10.10 7.38
Testing set 0.835 16.33 10.78
Validation set 0.920 10.80 7.53
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The difficulties associated with deciding which proportion of the available data to use
for training, testing and validation can be overcome by using a SOM (Approach 3) or
fuzzy clustering (Approach 4) for obtaining appropriate data subsets. However, as
discussed previously, two different approaches for choosing the training data from the
clusters obtained for a SOM have been proposed in the literature, and are investigated
here. The statistics of the data used from clusters obtained using the two different
approaches of SOM are given in Tables 5.23 and 5.24, respectively, whereas the null
hypothesis tests are given in Tables 5.25 and 5.26, respectively. It can be seen that the
statistics of the data in each of the subsets obtained using the two approaches of SOM
are very close to each other (Tables 5.23 and 5.24). This is confirmed by the results of
and the - and F-tests (Tables 5.25 and 5.26), which indicate that the three data sets in
Tables 5.23 and 5.24 may be considered to be representative of the same statistical
population. The performance of ANN models developed using the aforementioned
SOM approaches (model CHPS-NF53 and CHP5-NF54) is shown in Table 5.27. It
should be noted that these models are developed using two hidden layer nodes, a
learning rate of 0.2, momentum term of 0.8, tanh transfer function in the hidden layer
and sigmoid transfer function in the output layer. The results in Table 5.27 indicate that
it is better to use all of the data remaining after the testing and validation data have been
removed from each cluster for training, rather than choosing only one data point from
each cluster, as the RMSE in the testing set increases from 10.43 to 14.43 mm and the
MAE increases from 7.98 to 10.21 mm, when the additional training data are discarded.
However, there is a slight decrease in the coefficient of correlation, r, from 0.942 to
0.928 when the additional training data are included. Consequently, the subsequent
discussion in relation to the SOM data division method (Approach 3) is restricted to the

case where all remaining data are used for training.

The statistics of the data in each of the subsets obtained using the fuzzy clustering
(Approach 4) data division method are shown in Table 5.28. The #- and F-tests (Table
5.29) of the data indicate that the three data sets may be considered to be representative
of each other. The performance of the ANN model (model CHPS5-NF55) developed
using the fuzzy clustering data division method is shown in Table 5.30. It should be
noted that this model is developed using two hidden layer nodes, a learning rate of 0.2,

momentum term of 0.8, tanh transfer function in the hidden layer and sigmoid transfer
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function in the output layer. It can be seen from Table 5.30 that the model performs

well with respect to all data sets (i.e. training, testing and validation).

Table 5.23: Input and output statistics for the first approach of SOM data division

Model variables Statistical parameters

and data sets Mean Std. Dev. | Minimum | Maximum Range
Footing width, B (m)
Training set 7.9 9.0 0.8 60.0 59.2
Testing set 10.8 13.1 0.9 55.0 54.1
Validation set 8.8 8.8 1.1 33.5 324
Footing net applied pressure, ¢ (kPa)
Training set 184.6 119.0 18.3 697.0 678.7
Testing set 204.6 133.9 52.0 666.0 614.0
Validation set 170.8 122.3 25.0 584.0 559.0
Average SPT blow count, V
Training set 24.0 12.8 4.0 60.0 56.0
Testing set 263 154 5.0 60.0 55.0
Validation set 24.0 13.0 6.0 50.0 44.0
Footing geometry, L/B
Training set 2.1 1.7 1.0 10.5 9.5
Testing set 2.1 1.9 1.0 9.9 8.9
Validation set 22 1.7 1.0 7.8 6.8
Footing embedment ratio, D /B
Training set 0.57 0.6 0.0 34 34
Testing set 0.49 0.5 0.0 2.1 2L
Validation set 0.42 0.4 0.0 1.8 1.8
Measured settlement, S, (mm)
Training set 18.7 24.5 0.6 121.0 120.4
Testing set 22.7 274 1.3 116.0 114.7
Validation set 23.0 31.8 1.0 120.0 119.0
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Table 5.24: Input and output statistics for the second approach of SOM data

division

Model variables

Statistical parameters

and data sets Mean Std. Dev. | Minimum | Maximum Range
Footing width, B (m)
Training set 8.5 10.6 0.8 60.0 59.2
Testing set 10.8 13.1 0.9 55.0 54.1
Validation set 8.8 8.8 1.1 335 324
Footing net applied pressure, ¢ (kPa)
Training set 185.2 123.2 18.3 697.0 678.7
Testing set 204.6 133.9 52.0 666.0 614.0
Validation set 170.8 122.3 25.0 584.0 559.0
Average SPT blow count, N
Training set 23.6 14.4 4.0 60.0 56.0
Testing set 26.3 15.4 5.0 60.0 55.0
Validation set 24.0 13.0 6.0 50.0 44.0
Footing geometry, L/B
Training set 2.1 1.9 1.0 10.5 9.5
Testing set 22l 1.9 1.0 9.9 8.9
Validation set 2.2 1.7 1.0 7.8 6.8
Footing embedment ratio, D,/B
Training set 0.53 0.65 0.0 34 34
Testing set 0.49 0.5 0.0 2.1 2.1
Validation set 0.42 0.43 0.0 1.8 1.8
Measured settlement, S, (mm)
Training set 22.1 29.9 0.6 121.0 120.4
Testing set 22.7 27.4 1.3 116.0 114.7
Validation set 23.0 31.8 1.0 120.0 119.0
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Table 5.25: Null hypothesis tests for the first approach of SOM data division

Variable Lower | Upper Lower Upper
and t-value | critical | critical t-test F-value critical critical F-test
data sets value value value value

B
Testing -1.64 -1.97 1.97 Accept 047 0.62 1.68 Reject
Validation | —0.56 -1.97 1.97 Accept 1.05 0.59 1.84 Accept
q
Testing -0.92 -1.97 1.97 Accept 0.79 0.62 1.69 Accept
Validation 0.58 -1.97 1.97 Accept 0.95 0.59 1.83 Accept
N
Testing —0.96 -1.97 1.97 Accept 0.69 0.62 1.69 Accept
Validation 0.00 -1.97 1.97 Accept 0.97 0.59 1.83 Accept
L/B
Testing 0.00 -1.97 1.97 Accept 0.80 0.62 1.69 Accept
Validation | —0.29 -1.97 1.97 Accept 0.99 0.59 1.83 Accept
D,/B
Testing 0.76 -1.97 1.97 Accept 1.99 0.62 1.69 Reject
Validation 1.24 -1.97 1.97 Accept 2.28 0.59 1.83 Reject
Sm

| Testing 092 | -197 1.97 | Accept | 0.79 0.62 1.69 | Accept
Validation | —0.84 -1.97 1.97 Accept 0.59 0.59 1.83 Reject

Table 5.26: Null hypothesis tests for the second approach of SOM data division

Variable Lower | Upper Lower Upper
and t-value | critical | critical t-test F-value critical critical F-test
data sets value value value value

B
Testing -0.97 —1.98 1.98 Accept 0.65 0.57 1.77 Accept
Validation 0.14 —1.98 1.98 Accept 1.45 0.57 1.77 Accept
q
Testing —0.75 -1.98 1.98 Accept 0.85 0.57 1.77 Accept
Validation 0.53 —-1.98 1.98 Accept 1.01 0.57 1.77 Accept
N
Testing —0.91 —1.98 1.98 Accept 0.87 0.57 1.77 Accept
Validation | —0.13 —1.98 1.98 Accept 1.22 0.57 1.77 Accept
L/B
Testing 0.00 -1.98 1.98 Accept 0.98 0.57 1.77 Accept
Validation | -0.25 —1.98 1.98 Accept 1.25 0.57 1.77 Accept
D./B
Testing 0.35 —1.98 1.98 Accept 1.69 0.57 1.77 Accept
Validation 0.86 —1.98 1.98 Accept 2.30 0.57 1.77 Reject
S
Testing —0.10 -1.98 1.98 Accept 1.19 0.57 1.77 Accept
Validation | —0.13 -1.98 1.98 Accept 0.88 0.57 1.77 Accept
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Table 5.27: Performance of ANN models using different approaches of data

division for SOM
Performance measures SOM (first approach) | SOM (second approach)
and data sets Model CHP5-NF53 Model CHP5-NF54
Training
Correlation coefficient, r 0.890 0.931
RMSE (mm) 11.58 11.80
MAE (mm) 7.93 9.19
Testing
Correlation coefficient, » 0.942 0.928
RMSE (mm) 10.43 14.43
MAE (mm) 7.98 10.21
Validation
Correlation coefficient, » 0.958 0.960
RMSE (mm) 10.12 12.07
MAE (mm) 7.12 9.32

Table 5.28: Input and output statistics obtained using fuzzy clustering

Model variables Statistical parameters

and data sets Mean | Std. Dey. | Minimum | Maximum | Range
Footing width, B (m)
Training set 8.7 10.1 0.8 60.0 59.2
Testing set 8.6 10.1 1.0 42.7 41.7
Validation set 9.2 10.6 1.2 36.6 35.4
Footing net applied pressure, (kPa)
Training set 180.2 120.0 18.3 697.0 678.7
Testing set 209.4 134.4 64.0 584.0 520.0
Validation set 207.0 164.4 47.6 584.0 536.4
Average SPT blow count, N
Training set 24.6 13.2 4.0 60.0 56.0
Testing set 234 12.4 6.0 50.0 44.0
Validation set 25.5 16.8 5.0 60.0 55.0
Footing geometry, L/B
Training set 2.2 1.9 1.0 10.5 9.5
Testing set 2.0 1.5 1.0 6.7 o7
Validation set 1.7 1.1 1.0 5.2 4.2
Footing embedment ratio, D./B
Training set 0.54 0.61 0.0 3.4 3.4
Testing set 0.50 0.40 0.0 1.4 1.4
Validation set 0.50 0.51 0.0 2.1 2.1
Measured settlement, S, (mm)
Training set 20.0 25.8 0.6 121.0 120.4
Testing set 21.5 26.5 2.1 87.0 84.9
Validation set 22.1 32.5 1.3 120.0 118.7
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Table 5.29: Null hypothesis tests for data division using fuzzy clustering

Variable Lower Upper Lower Upper

and t-value | critical | critical t-test | F-value | critical critical | F-test
data sets value value value value
B
Testing 0.05 -1.97 1.97 Accept 0.65 0.57 1.99 Accept
Validation | -0.21 -1.97 1.97 Accept 1.45 0.55 1.99 Accept
q
Testing 1.10 -1.97 1.97 Accept 0.85 0.57 1.99 Accept
Validation | —0.91 -1.97 1.97 Accept 1.01 0.55 1.99 Reject
N
Testing 0.42 -1.97 1.97 Accept 0.87 0.57 1.99 Accept
Validation | —0.28 -1.97 1.97 Accept 1.22 0.55 1.99 Accept
L/B
Testing 0.50 -1.97 1.97 Accept 0.98 0.57 1.99 Accept
Validation 1.18 -1.97 1.97 Accept 1.25 0.55 1.99 Reject
D,/B
Testing 0.32 -1.97 1.97 Accept 1.69 0.57 1.99 Reject
Validation 0.29 -1.97 1.97 Accept 230 0.55 1.99 Accept
sm
Testing -0.27 -1.97 1.97 Accept 1.19 0.57 1.99 Accept
Validation | -0.34 -1.97 1.97 Accept 0.88 0.55 1.99 Accept

Table 5.30: performance of ANN model (Model CHP5-NFS5S5) using fuzzy
clustering data division method

Performance measure Data set
Training Testing Validation
Correlation coefficient, » 0.912 0.967 0.957
RMSE (mm) 10.62 10.48 9.59
MAE (mm) 7.43 6.92 6.13

The success of the SOM and fuzzy clustering data division methods is illustrated in

Table 5.21 (columns 4 and 5), which compares the predictive results obtained using the



126 Chapter 5. Settlement Prediction by Multi-layer Perceptrons

four different approaches to data division investigated. It can be seen that the results
obtained for the SOM (Approach 3) and fuzzy clustering (Approach 4) data division
methods are very close to those obtained for the statistically consistent data division
method (Approach 2) and significantly better than the results obtained for the purely
random data division method (Approach 1). It should be noted that the results presented
for the data division method that takes into account the statistical properties of the
subsets (Approach 2) are for the proportion of training, testing and validation data that
gives the best results. Consequently, it appears as though the SOM and fuzzy clustering
methods are suitable approaches for dividing data into training, testing and validation
subsets. However, as discussed previously, fuzzy clustering data division has the
advantage over SOM data division that an optimum number of clusters can be obtained
analytically and, consequently, the fuzzy clustering data division approach removes the

subjectivity associated with the SOM data division method.

The results of a parametric study carried out to examine the robustness of the ANN
models developed using the three successful data division methods (i.e. Approaches 2, 3
and 4) are shown in Figure 5.12. It can be seen that there is a slight difference in
settlement prediction among the models developed using the three data division
methods. However, this is to be expected, as the optimisation of the three models is
based on different initial weights and calibration data sets. In general, the performance
of the three models is in good agreement and may be considered to be similar. The
direction of the trends illustrated in Figure 5.12 also indicates that the behaviour of the
models developed is similar to what one would expect based on a physical
understanding of settlement prediction. This indicates that the three models are robust

and could be used for predictive purposes with confidence.

It is evident from the previous data division analyses that the performance of the ANN
models developed using the three successful data division methods is very similar (see
Table 5.21). However, it is also evident that the performance of the model that used
data division method based on statistical consistency (model CHP5-NF2) is slightly
better. Consequently, this model (i.e. model CHP5-NF 2) will be used for the remaining
analyses in this chapter and will henceforth be referred to as the ANN model.
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Figure 5.12: Results of parametric study of ANN models using data subsets

obtained for different approaches of data division

5.4 Data Transformation of ANN Model Inputs

The main purpose of data transformation is to modify the distribution of the input

variables before they are applied to ANNs in order to provide a better mapping to the

outputs. It has been suggested that certain transformations of input variables may help



128 Chapter 5. Settlement Prediction by Multi-layer Perceptrons

to improve the performance of ANN models (Fortin et al. 1997; Shi 2000). However, it
has also been shown that input data transformation does not affect the performance of

the ANN models in any way (F araway and Chatfield 1998).

Recently, Shi (2000) proposed a new data transformation method called distribution
transformation and found that the method reduced the prediction error for a cowboy hat
surface by 50%. Shi (2000) also found that the method succeeded in reducing the error
of predictions of settlement of tunnels by more than 13%. Consequently, it is
worthwhile to apply the distribution transformation method to the ANN model
developed in this research. The method transforms a stream of random data distributed
in any range to uniformly distributed data points between 0.0 and 1.0. The method
requires a probability distribution function to be fitted to each of the input variables and
by using the relationship between the probability distribution and cumulative
distribution functions, any distribution in any range can be transformed to a uniform

distribution between 0.0 and 1.0 (Shi 2000).

The ANN model (model CHP5-NF2) is redeveloped to incorporate the distribution
transformation of input variables. The network architecture and internal parameters are
maintained. For each input variable, the training data set is used to obtain the
distribution transformation function. The software @Risk (Palisade 2000) is used for
this purpose. For a set of data values, the software can define the probability
distribution function that best fits these values from 38 candidate distributions and
provides statistical parameters that describe the distribution. The theoretical
distributions that are found to best match the actual distribution of the available data for

the ANN model input variables are shown in Table 5.31.

Using the fitted distribution functions shown in Table 5.31, the original data are
transformed to uniformly distributed data points between 0.0 and 1.0. The ANN model
(model CHP5-NF2) is re-trained using the transformed data and the performance is
shown in Table 5.32, which also includes the performance of the ANN model without

distribution transformation (i.e. linear transformation or scaling).
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Table 5.31: Fitted distributions of input variables for Model CHP5-NF2
Input Fitted Statistical parameters
variable distribution a B ¥ X A
B Exponential N/A 7.5 N/A N/A N/A
q Inverse-gamma 5.1 963.7 N/A N/A N/A
N Log-logistic 3.7 26.6 -4.8 N/A N/A
L/B Exponential N/A 1.1 N/A N/A N/A
Dy/B Inverse-gaussian N/A N/A N/A 0.65 0.74
o = shape parameter for log-logistic distribution
yi) = scale parameter for inverse-gamma or decay constant for exponential distributions
y = location parameter for log-logistic distribution
X = mean
A = shape parameter for Inverse-gaussian distribution
N/A  =not applicable

Table 5.32: Performance of Model CHP5-NF2 using linear and distribution

transformations of input variables

Performance Linear transformation Distribution transformation
Measures Training Testing | Validation | Training | Testing Validation
r 0.930 0.929 0.905 0.722 0.832 0.616
RMSE (mm) 10.01 10.12 11.04 20.14 15.51 22.23
MAE (mm) 6.87 6.43 8.78 13.75 10.89 15.34

It can be seen from Table 5.32 that the performance of the ANN model on the training,
testing and validation sets is significantly worse when distribution transformation of the
input variables is used. This may be because of the distortion that might have occurred
to the original relationships between the ANN model inputs and the corresponding
This finding adds further weight to the
argument that data used by ANN models do not need to be transformed.

output as a result of data transformation.

5.5 Sensitivity Analysis of the ANN Model Inputs

In an attempt to identify which of the input variables have the most significant impact
on settlement predictions, a sensitivity analysis is carried out on the ANN model (model
CHP5-NF2). A simple and innovative technique proposed by Garson (1991) is used to
interpret the relative importance of the input variables by examining the connection
weights of the trained network. For a network with one hidden layer, the technique

involves a process of partitioning the hidden output connection weights into
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components associated with each input node. For model CHP5-NF2, the method is
illustrated as follows. The model has five input nodes, two hidden nodes, and one

output node with connection weights as follows:

Hidden Weights
nodes (B) (@) V) (L/B) (D,/B) (S,)
Hidden1  0.227354 0481161 0229593 —0.017031 0.067341 0.725351
Hidden2 -2.442513 -1.114891  4.239639 —0.498853 2.500301 —2.984165

The computational process proposed by Garson (1991) is as follows:

1. For each hidden node i, obtain the products P, (where j represents the column

number of the weights mentioned above) by multiplying the absolute value of the

hidden-output layer connection weight by the absolute value of the hidden-input

layer connection weight of each input variable j. As an example:
B, =0.227354%0.725351 = 0.164911 .
(B) (@) @) (L/B) (D,/B)

Hidden 1 0.164911 0.349011  0.166536 0.012353 0.048846
Hidden 2 7.288861 3.327017  12.65178 1.488659 7.461311

2. For each hidden node, divide P, by the sum of all input variables to obtain O, As
an example:

0, =0.16491 1/(0.16491 1+0.349011+0.166536 +0.012353 + 0.048846) =0.222355

(B) (9) &) (L/B) (D,/B)
Hidden 1 0.222355  0.470582  0.224545  0.016656 0.065859
Hidden 2 0.226238  0.103267  0.392698  0.046206 0.231591

3. For each input node, sum Q;to obtain S;. As an example:

S, = 0.222355 + 0.226238 = 0.448593 .
(B) (@) &) (L/B) (D,/B)
Sum 0.448593  0.573849  0.617243  0.062863 0.297451

4. Divide S, by the sum for all input variables to get the relative importance of all

output weights attributed to the given input variable. As an example, the relative

importance for input node 1 is equal to:

(0.448593x100)/(0.448593 + 0.573849 + 0.617243 + 0062863 + 0.29745 1)=22.4%
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(B) @ & (@LB) (DB
Relative importance (%) 224 28.6 30.8 3.1 14.8

The results indicate that N has the most significant effect on the predicted settlement
followed by g and B, each with a relative importance of 30.8, 28.6 and 22.4%,

respectively. The results also indicate that D, /B has a moderate impact on settlement

with a relative importance equals to 14.8%, while L/B has the smallest impact on
settlement with 3.1% relative importance. The above results indicate that N, g and B are

the most important factors affecting settlement, whereas the effect of L/B and D, /B may

be considered secondary, which agrees well with the discussion in Chapter 4.

5.6 Comparison of ANN Model with Traditional Methods

Comparisons of the results of the validation set obtained using the ANN model (model
CHP5-NF2) and the three traditional methods described in Chapter 4 are carried out and
presented in Table 5.33 and Figure 5.13. Table 5.33 shows that the ANN method
performs better than the traditional methods for all three performance measures
considered. The coefficient of correlation, », the RMSE and MAE obtained using the
ANN model are: 0.905, 11.04 mm and 8.78 mm, respectively. In contrast, these
measures range from 0.440 to 0.798, from 23.55 mm to 25.72 mm and from 11.81 mm
to 16.69 mm,xrespectively, when the traditional methods are used. Figure 5.13 shows
that the ANN model performs reasonably well for the full range of measured
settlements considered. In contrast, the traditional methods appear to work well only
for small settlements, in the range of 10 — 20 mm. The method of Schmertmann et al.
(1978) tends to overpredict larger settlements, the method of Schultze and Sherif (1973)
tends to severely underpredict larger settlements and the method of Meyerhof (1965)
appears to both over-and under-predict larger settlements, although all settlements in
excess of 60 mm are generally under-predicted. It is evident from the above results that
ANNs provide more accurate settlement predictions than the traditional methods which
indicates that ANNs succeeded to overcome the limitations discussed in Chapter 4 for
the traditional methods considered for comparison. This can be attributed to the fact
that ANNs are a data driven approach in which the data alone are used to capture the

relationship between settlements and the factors affecting them. This appears to result
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in a more reliable relationship between settlements and the factors affecting them,

especially when the theory that governs this relationship is uncertain.

Table 5.33: ANN and traditional methods for settlement prediction

Performance | ANN | Meyerhof | Schultze and Sherif Schmertmann et al.
measure (1965) (1973) (1978)
r 0.905 0.440 0.729 0.798
RMSE 11.04 25.72 23.55 23.67
MAE 8.78 16.59 11.81 15.69
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Figure 5.13: Measured vs predicted settlement for ANN and traditional methods
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5.7 ANN Model Equation and Design Charts

The small number of connection weights obtained for the optimal ANN model (model
CHP5-NF2) enables the network to be translated into a relatively simple formula. To
demonstrate this, the structure of the ANN model is shown in Figure 5.14, while its

connection weights and threshold levels are summarised in Table 5.34.

Input layer

Figure 5.14: Structure of the ANN optimal model

Table 5.34: weights and threshold levels for the ANN optimal model

Hidden w;; (weight from node i in the input layer to Hidden layer
layer node j in the hidden layer ) threshold
nodes i=1 | i=2 i=3 | i=4 | i=5 @)

j=6 0.227 0.481 0.229 | —0.017 | 0.067 0.124
j=1 —2.442 | -1.114 | 4.239 | -0.498 | 2.500 0.188

Output | w; (weight from node i in the hidden layer to Output layer
layer node j in the output layer ) threshold
nodes i=6 i=17 - - - (0].)
j=8 0.725 | —2.984 - - - -0.312
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Using the connection weights and threshold levels shown in Table 5.34, the predicted

settlement can be expressed as follows:

S, = ] 5.7)

l + e[ﬂ.3~0.? tanh x; 4+2.9 tanh x, )

where:

% = G5+ we B+ we,q + w N +w,(L/B) + Wes(D,/ B) (5.8)
and

X, =6, +wy B+ w,qg+w,N + Wy, (L/ B) + wy, (D,/B) 5.9

It should be noted that, before using Equations 5.8 and 5.9, all input variables (i.e. B, g,
N, L/B and D,/B) need to be scaled between 0.0 and 1.0 using Equation 5.1 and the data
ranges in the ANN model training (see Table 5.1). It should also be noted that the
predicted settlement obtained from Equation 5.7 is scaled between 0.0 and 1.0 and in
order to obtain the actual value, this settlement has to be re-scaled using Equation 5.1
and the data ranges in Table 5.1. The procedure for scaling and substituting the values
of the weights and threshold levels from Table 5.34, Equations 5.7, 5.8 and 5.9 can be

rewritten as follows:

120.4
Sp = O'6+[1+e(0.312—0.725tanhx,+2.984lanh xz):l (5'10)
and
x, =0.1+1073 3.83+O.7q+4.1N—1.8(L/B)+19(D /B) 5.1D)
1 S

X, =107[0.7-41B - 1.64 +75N ~52(L/ B)+740(D, / B)] (5.12)
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where:

S, = predicted settlement (mm);

B = footing width (m);

q = footing net applied pressure (kPa);
N = average SPT blow count;

L/B = footing geometry; and

D,/B = footing embedment ratio.

It should be noted that Equation 5.10 is valid only for the ranges of values of B, ¢, N,
L/B and D, /B given in Table 5.1. This is due to the fact that ANNs perform best in
interpolation and not extrapolation (Flood and Kartam 1994; Minns and Hall 1996;
Tokar and Johnson 1999). An executable computer program of the optimal ANN model

is also provided for routine work in practice and the FORTRAN code for the program is

given in Appendix F.

A numerical example is provided to better explain the implementation of the settlement
formula. A rectangular footing whose dimensions are 2.5 x 4.0 m is founded at a depth
equal to 1.5 m below the ground surface. The soil beneath the footing is sand that
extends to a depth in excess of twice its width. The net applied load exerted on the
footing is 350 kPa and the average SPT blow count over a depth of twice its width is 16.

Solution:

Given the information provided, B=2.5 m; L =4.0 m; ¢ = 350 kPa; N= 16 and D,= 1.5

m.

From Equation 5.11:

x =0.1+ 10'3[3.8 x2.5+0.7x350+4.1x16 —1.8(%%)+ 19(%)] =0.4286

From Equation 5.12:
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X, = 10'3[0.7 —41x2.5-1.6x350+75x16— 52(;—'(5)) + 740(;—2)] =0.8990

By substituting x, and x, in Equation 5.10, the predicted settlement can be obtained as

follows:

120.4

1 + e(0.312—0.725 tanh 0.4286+2.984 tanh 0.8990)

Sp=0.6+[ ]=13.2mm

In order to facilitate the ANN technique for settlement prediction of shallow
foundations on cohesionless soils, the information obtained from the ANN model is
translated into a set of design charts suitable for practical use in order to avoid computer
or hard calculations. This is carried out by entering synthetic data into the trained ANN
model such that the synthetic data lie within the ranges of the data used during the ANN
model development. A series of design charts are generated and are summarised in

Appendix G.

Figure 5.15 is an illustrative example of the design charts obtained for L/B = 1.0 and D,

/B =0.0. It can be seen that, for each graph and at a certain footing net applied pressure,
settlement increases as the footing width increases, as expected. It can also be seen that,
for each graph and at a certain footing width, settlement increases as the footing net
applied pressure increases, also as expected. On the other hand, moving from one graph
to another and at the same footing width and footing net applied pressure, the settlement
decreases as the SPT blow count increases, again, as expected. These results add more
confirmation to the robustness and credibility of the ANN model for settlement
prediction. The design charts provide a simple and quick tool of estimating settlement
for general use in practice. However, when greater precision is required, the computer

model (Appendix F) or formula (Equations 5.10 to 5. 12) can be used.
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Figure 5.15: Illustrative set of design charts based on the ANN model
(L/B=1.0 and D,/B = 0.0)
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5.8 Summary and Conclusions

Multi-layer perceptrons (MLPs) trained with the back-propagation algorithm were used
to demonstrate the feasibility of employing artificial neural networks (ANNS) to predict
the settlement of shallow foundations on cohesionless soils. A database containing 189
case records of actual field measurements for settlement of shallow foundations on
cohesionless soils was compiled and used for ANN model development and
verification. The use of parametric studies was presented as a way of testing the
generalisation ability and robustness of ANN models. The effect of the number and
type of connection weights, data noise and software implementation on the robustness
of ANN models was investigated. The effect of using various learning rates,
momentum terms, transfer functions and initial weights on the results of ANN models
was also investigated. The effect of various data division methods on the performance
of ANN models was examined and a new approach for data division was presented and
evaluated. The effect of data transformation of the input variables on the performance
of ANN models was also examined. A sensitivity analysis was carried out on the ANN
model to study the relative importance of the factors that affect settlement. The results
between the predicted and measured settlements obtained using ANNs were compared
with those obtained using the traditional methods. Finally, the ANN model was
translated into a relatively simple practical equation and a series of design charts from
which the settlement of shallow foundations on cohesionless soils can be easily

obtained.

The analyses carried out in this chapter have yielded the following results and

conclusions:

1. ANNs have the ability to predict the settlement of shallow foundations on
cohesionless soils with a high degree of accuracy for predicted settlements ranging
from 0.6 to 121.0 mm.

2. The results of the robustness studies carried out in this chapter lead to the following

findings:
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¢ Good performance of ANN models on training, testing and validation sets does
not guarantee the robustness of the predictive ability of the models over a range
of data similar to that used for training.

e If cross-validation is used as the stopping criterion, reducing the number of ANN
connection weights or changing the type of connection between nodes (e.g.
cascaded and direct connections) does not appear to improve their robustness.

e The results of the parametric study carried out on both noise-free and noisy
hypothetical data suggest that the degree of noise in the data used to calibrate
ANN models may affect their robustness. However, ANN models trained with
noisy hypothetical data using two different commercial software systems [i.e.
NeuralWorks Predict release 2.1 (NeuralWare 1997) and Neuframe version 4.0
(Neusciences 2000)] lead to the following conclusion. ANN models developed
using Predict failed to interpret the underlying physical meaning of the
relationships between settlements and the factors affecting them, whereas ANN
models developed using Neuframe succeeded in interpreting these relationships.
This indicates that it is the software used, rather than the degree of noise in the
data, that affects ANN models robustness. As some geotechnical engineering
researchers have used, and continue to use Predict, one must question the validity
of the subsequent models.

e It is recommended that the capability of the software used for developing ANN
models be considered carefully and that a parametric study, such as the one
presented in this chapter, be conducted in order to ensure that a model can be

used for predictive purposes with confidence.

3. The ANN models developed in this chapter to study the impact of the internal
network parameters on model performance indicate that ANN performance is
relatively insensitive to the number of hidden layer nodes, momentum term or
transfer functions. On the other hand, the impact of the learning rate on model
predictions is more pronounced, with step sizes that are too small or too large
resulting in reduced model performance. Overall, the optimum model (model
CHP5-NF2) is obtained using 2 hidden layer nodes, a momentum term of 0.8,
learning rate of 0.2, tanh transfer function in the hidden layer and sigmoid transfer

function in the output layer.
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4. There is a direct relationship between the consistency of the statistics between the
training, testing and validation sets and the consistency in model performance.
Consequently, the statistical properties of the various data subsets should be taken
into account as part of any data division procedure to ensure that the best possible

model is developed, given the available data.

5. The proportion of the data used for training, testing and validation appears to have
an effect on model performance. However, there appears to be no clear relationship
between the proportion of the data used in each of the subsets and model
performance, although in the trials conducted, the optimal model performance was
obtained when 20% of the data are used for validation and 70% of the remaining

data were used for training and 30% for testing.

6. The data division approaches using a SOM and the proposed approach using fuzzy

clustering appear to be applicable, as they have a number of advantages, including:

® There is no need to decide which proportion of the available data to use for
training, testing and validation.

e The statistical properties of the resulting training, testing and validation data are
similar, provided that the clusters are small enough.

* Information is provided about where extreme values exist in the data set and
consequently, they can be included in the training set. If they were to be included
in the validation set, the trained ANN model could not be expected to perform
well, as the validation data would fall outside the range of the training data. A
potential disadvantage of the SOM approach is that the parameters that control
the learning process need to be selected, potentially affecting the results obtained.

This disadvantage is overcome using the fuzzy clustering technique.

7. The distribution transformation method for input variables does not appear to

improve the performance of ANN models.

8. The sensitivity analysis indicated that the SPT blow count, the footing net applied
pressure and the footing width are the most important factors affecting settlement,

each with a relative importance of 30.8, 28.6 and 22.4%, respectively. The footing
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10.

embedment ratio and the footing geometry have less impact on settlement with a

relative importance equal to 14.8 and 3.1%, respectively.

The ANN method outperforms the traditional methods considered for an
independent validation set with 7 = 0.905, RMSE = 11.04 mm and MAE = 8.78 mm,
while these measures were: » = 0.440, 0.729 and 0.798; RMSE = 25.72, 23.55 and
23.67 mm and MAE = 16.59, 11.81 and 15.69 mm when the method proposed by
Meyerhof (1965), Schultze and Sherif (1973) and Schmertmann et al. (1978) are

used, respectively.

Due to its parsimonious nature, the ANN model was able to be translated into a
simple and practical formula from which settlement may be calculated, as shown in
Equation 5.10. In addition, the ANN model was translated into a computer program
(Appendix F) and a series of design charts (Appendix G), facilitating settlement

. prediction.

In the following chapter, neurofuzzy networks will be examined to investigate their

ability to predict settlement of shallow foundations on cohesionless soils and to assist

with providing a better understanding of the relationship between settlement and the

factors affecting it.
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Settlement Prediction by Neurofuzzy Networks
6.1 Introduction

As mentioned in Chapter 2, neurofuzzy networks can be trained to provide input/output
data mappings and to extract knowledge regarding the relationships between model
inputs and the corresponding outputs. Neurofuzzy networks enable the knowledge that
has been learnt in the network to be expressed in the form of a fuzzy rule base. Ni et al.
(1996) have already applied a neurofuzzy network approach in geotechnical engineering
to the evaluation of slope failure potential. However, a review of the literature indicates
that neurofuzzy networks are new tools in the field of geotechnical engineering. In this
chapter, the feasibility of adopting neurofuzzy networks for predicting the settlement of
shallow foundations on cohesionless soils is tested. In addition, the ability of
neurofuzzy networks to assist with providing a better understanding of the relationship

between settlement and the factors affecting settlement is investigated.

6.2 Development of Neurofuzzy Models

The database used for the development of the multi-layer perceptron (MLP) models in
Chapter 5 is also used to develop the neurofuzzy models in this chapter. The type of
neurofuzzy network that is used in this work is the B-spline network trained with the
adaptive spline modelling of observation data (ASMOD) algorithm described in
Chapter 2. The software Neuframe Version 4.0 (Neusciences 2000) is used to simulate
B-spline neurofuzzy network operation. The criteria adopted in Chapter 5 for choosing
the MLP model inputs and outputs are considered for the development of neurofuzzy
models in this chapter. As a consequence, five input variables are used as potential
neurofuzzy model inputs. These include the footing width (B), footing net applied
pressure (g), average SPT blow count (V) as a measure of soil compressibility (or

density), footing geofnetry (L/B) and footing embedment ratio (D,/B). The only output
variable is the measured settlement (S,)- As mentioned in Chapter 2, the ASMOD

142
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algorithm automatically optimises model architecture and selects the input variables that
have the most significant impact on model outputs. The ASMOD algorithm also uses
stopping criteria [e.g. Bayesian Information Criterion (BIC), Akaike’s Information
criteria (AIC) and Final Prediction Error (FPE)] that require the data to be divided into
two sets. A training set to build the model and an independent validation set to test the
predictive ability of the model in real-world situations. The training and testing sets
used in Chapter 5 to develop the optimum MLP model (i.e. model CHP5-NF2) are
combined to form the training set for neurofuzzy networks, whereas the validation set is
kept the same and thus, a fair comparison between neurofuzzy and MLP models can be
carried out. Using this procedure, 152 (80%) of the available data records are used for
training and 37 (20%) are used for validation. In an attempt to obtain an optimum
neurofuzzy model, the BIC, AIC and FPE stopping criteria are examined and the results

are given below.

6.3 Results and Discussion

A summary of the structure of the neurofuzzy models developed in this chapter, and the
number of fuzzy rules produced for each model, is given in Table 6.1. The performance
results of the models obtained are given in Table 6.2. A code is used to identify the
names of the different models developed. The code consists of two parts separated by a
hyphen. The first part is an abbreviation that denotes the current chapter, whereas the
second part is an abbreviation that denotes the stopping criterion used. It can be seen
from Table 6.1 that all models select only three input variables (i.e. B, ¢ and N) as the
most significant inputs, whereas the footing geometry (L/B) and footing embedment

ratio (D,/B) are not selected in any model. This is in agreement with the results of the

sensitivity analysis carried out in Chapter 5 on the optimum MLP model (model CHP5-
NF2). The sensitivity analysis in Chapter 5 indicated that B, g and N have the most
significant impact on settlement, D,/B has a moderate impact on settlement and L/B has
the smallest impact on settlement. The neurofuzzy models obtained in this chapter are
assessed in terms of prediction accuracy, model parsimony and model transparency and
the optimum model is described in more detail in §6.4. The following conclusions can

be drawn:
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Table 6.1: Summary of the neurofuzzy models developed

Model No. No. of Significant No. of No. of fuzzy
significant inputs connection rules
inputs weights
CHP6-BIC 3 B,g, N 8 10
CHP6-AIC 3 B,g N 7 8
CHP6-FPE 3 B,g, N 8 16

Table 6.2: Performance of the neurofuzzy models developed

Model No. Performance measures
Correlation coefficient, » RMSE (mm) MAE (mm)
Training Validation Training | Validation | Training | Validation
CHP6-BIC 0.889 0.881 12.33 12.36 8.08 9.36
CHP6-AIC 0.879 0.863 12.82 13.37 8.29 10.10
CHP6-FPE 0.910 0.875 11.16 13.00 6.82 9.49

e In terms of prediction accuracy, all models are comparable, although model CHP6-
BIC performs slightly better than the other models with respect to the validation set
(Table 6.2).

¢ In terms of model parsimony, all models are comparable, even though model CHP6-
AIC is found to be more parsimonious than the other models, as it has the lowest
number of connection weights (Table 6.1). This is because the AIC penalises
complex models.

e In terms of model transparency, models CHP6-BIC and CHP6-AIC are comparable,
even though model CHP6-AIC is found to be more transparent, as it describes the
relationship between model inputs and outputs using a smaller number of fuzzy rules
(Table 6.1). On the other hand, model CHP6-FPE is found to be the worst model in
terms of model transparency as it has the highest number of fuzzy rules (Table 6.1),
which is almost twice that obtained for models CHP6-BIC and CHP6-AIC. This is
because the FPE stopping criterion does not penalise larger models as much as the
BIC and AIC. The BIC and AIC stopping criteria penalise complex models to

ensure that more parsimonious models are chosen (Schwarz 1978).

It can be seen from Tables 6.1 and 6.2 that model CHP6-BIC is able to strike a balance
between model accuracy and model parsimony and transparency. In terms of model

accuracy, the performance of model CHP6-BIC is slightly better than the other models
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with respect to the validation set (Table 6.2). In terms of model parsimony and
transparency, model CHP6-BIC has as the same number of input variables as models
CHP6-AIC and CHP6-FPE combined, with a number of connection weights and fuzzy
rules that are approximately equal to the average of those obtained for models CHP6-
AIC and CHP6-FPE (Table 6.1). Overall, model CHP6-BIC can be considered to be

optimal.

6.4 Description of the Optimum Neurofuzzy Model

A schematic view of the optimum neurofuzzy model (i.e. model CHP6-BIC) is given in
Figure 6.1. It can be seen that the model uses only 3 of the 5 potential input variables as
the most significant inputs. The chosen inputs are the footing width (B), footing net
applied pressure (g) and the average SPT blow count () as a measure of soil density. It
can also be seen from Figure 6.1 that the model has one 1D and one 2D subnetwork. In
each of the subnetworks obtained, triangular membership functions of order 2 are used
for all input variables, as shown in Figure 6.2. It can be seen from this figure that the
membership functions of B, g and S, are presented over a two-valued linguistic universe
(i.e.-small and large for B, light and heavy for ¢, and low and high for S,). On the other
hand, the membership functions of the soil density, which is represented herein by the
average SPT blow count, N, is presented over a four-valued linguistic universe (i.e.
loose, medium, dense and very dense). As a result, the first subnetwork contains 8 rules
while the second subnetwork contains 2 rules, resulting in a model with 10 fuzzy rules,
as listed in Table 6.3. It should be noted that the number between brackets in Table 6.3

represents the rule confidence described in Chapter 2.

B XXX
XXX
Subnetwork 1 (2D)
q S,
XXY
XXX
—_—
N Subnetwork 2 (1D)

Figure 6.1: Schematic representation of the neurofuzzy model
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Figure 6.2: Membership functions of input variables used by the neurofuzzy model
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Table 6.3: Fuzzy rules extracted by the neurofuzzy model

Subnetwork | Rule Rule
No. No.
1 1 IF “Footing width, B is Small AND “Soil” is Loose

THEN “Settlement, S, is Low (0.84) OR “Settlement, S,” is High (0.16)
2 IF “Footing width, B” is Large AND “Soil” is Loose

THEN “Settlement, S, is High (1.00)
3 IF “Footing width, B” is Small AND “Soil” is Medium density

THEN “Settlement, S, is Low (0.99) OR “Settlement, S * is High (0.01)
4 IF “Footing width, B” is Large AND “Soil” is Medium density

THEN “Settlement, S, is Low (0.44) OR “Settlement, S is High (0.56)
5 IF “Footing width, B” is Smal] AND “Soil” is Dense

THEN “Settlement, S,” is Low (0.96) OR “Settlement, S, is High (0.04)
6 IF “Footing width, B” is Large AND “Soil” is Dense

THEN “Settlement, S, is Low (0.86) OR “Settlement, S, is High (0. 14)
7 IF “Footing width, B” is Small AND “Soil” is Very dense

THEN “Settlement, S, is Low (1.00)
8 IF “Footing width, B” is Large AND “Soil” is Very dense

THEN “Settlement, S, is Low (0.87) OR “Settlement, S * is High (0.13)

2 9 IF “Footing net applied pressure, g” is Light

THEN “Settlement, S, is Low (0.96) OR “Settlement, S, is High (0.04)
10 | IF “Footing net applied pressure, ¢” is Heavy

THEN “Settlement, S, is Low (0.87) OR “Settlement, S, is High (0.13)

The fuzzy rules in Table 6.3 are considered to be a valuable source of information from
which knowledge about the relationships between settlement and the factors affecting

settlement can be extracted. The knowledge that can be derived from Table 6.3 is as

follows:
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— Small footings are most likely to result in Jow settlement regardless of the density of
the soil they are founded on (Rules 1, 3, 5 and 7);

— Large footings are most likely to be susceptible to high settlement when they are
founded on loose soils (Rule 2), and they are most likely to result in low settlement
when they are founded on dense or very dense soils (Rules 6 and 8); and

~ Large footings are equally likely to be susceptible to either low or high settlement

when they are founded on soils of medium density (Rule 4).

It can also be seen from Table 6.3 that Rules 9 and 10 seem to contradict what one
would expect based on the underlying physical meaning of the settlement problem.
Rules 9 and 10 indicate that settlement is most likely to be low regardless of whether the
applied load is light or heavy. The most likely reason for this is that the footings
contained in the database used were designed so that the applied load does not result in
high settlement or bearing capacity failure. Another reason is that there were
insufficient training data to cover the full range of possible high settlement conditions.
A review of the data used indicates that almost 90% of the data records have settlement
that is described to be low settlement, as categorised by the settlement membership
functions of the neurofuzzy model. It should be noted that the range of applicability of
the fuzzy rules in Table 6.3 is a function of the quality of the data used in the model
calibration phase. Consequently, it is unlikely that these fuzzy rules provide a general
representation of the relationship between settlement and the factors affecting it.
However, in general, the fuzzy rules obtained are in agreement with what one would
expect based on the underlying physical meaning of the settlement problem. The above
results indicate that neurofuzzy networks have the ability to extract rules from data that
make physical sense, which may be used to gain understanding in situations where data

are available but physical relationships are not well understood.

One advantage of neurofuzzy networks is that available engineering knowledge can be
incorporated into the trained network to optimise model performance and to enhance the
interpretation of a constructed model. In this work, this is done by optimising the
membership functions of B and N so as to include available geotechnical engineering
knowledge. The membership functions of B are optimised to be presented over a three-
valued linguistic universe (i.e. small, medium and large) so that small footings are

limited to footings of maximum width of 5 m (see Figure 6.3). On the other hand, the
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membership functions of N are optimised to be presented over a four-valued linguistic
universe (i.e. loose, medium, dense and very dense) so that the classification of soil
density given by Terzaghi and Peck (1948) can be incorporated, as shown in Figure 6.3
and given in Table 6.4. It should be noted that the most probable values of N that are
incorporated in the membership functions for medium and dense soils are taken to be
equal to the average of the range given by Terzaghi and Peck (1948). On the other
hand, the most probable values of N that are incorporated in the membership functions
for loose and very dense soils are taken to be equal to the minimum and maximum
values of N, respectively, that are found in the database used. By doing this procedure,
model CHP6-BIC is retrained and the performance results of the new model, referred to
as “Optimised CHP6-BIC”, is given in Table 6.5 together with the performance results
of model CHP6-BIC, and the fuzzy rules of the Optimised CHP6-BIC model are listed
in Table 6.6. It should be noted that this model again has three inputs (i.e. B, ¢ and N)

and the number of connection weights is equal to 9.

Sval Mdum Large g 1 gt Heavy
3 g
> a
o '
£ :
$ 04— = 2 0 =)
08 5 60 18.32 697
Footing width (m) Footing net applied pressure (kPa)
g Loose Medium Dense Very dense 5 1 = Hah
2 r
] [
H] 2
E o E
e U T T | £ 0+ 1
o4 20 40 60 06 21
Average SPT blow count Settiement (mm)

Figure 6.3: Optimised membership functions of the neurofuzzy model

Table 6.4: Optimisation of membership functions of NV to incorporate the
classification of soil density of Terzaghi and Peck (1948)

Terzaghi and Peck (1948) Most probable value of N incorporated in
Soil density | Possible values of N | the membership functions of the neurofuzzy
model
Loose <10 4
Medium 10-30 20
Dense 30-50 40
Very dense >50 60
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Table 6.5: Performance of models CHP6-BIC and Optimised CHP6-BIC

Model No. Performance measure
Correlation coeff., r RMSE (mm) MAE (mm)
Training | Validation | Training | Validation Training Validation
Optimised 0.893 0.892 12.11 11.74 7.87 8.93
CHP6-BIC
CHP6-BIC 0.889 0.881 12.33 12.36 8.08 9.36

Table 6.6: Fuzzy rules extracted by the Optimised CHP6-BIC model

Subnetwork | Rule Rule
No. No.
1 1 IF “Footing width, B” is Small AND “Soil” is Loose

THEN “Settlement, S_” is Low (0.86) OR “Settlement, S ” is High (0.14)
2 IF “Footing width, B” is Medium AND “Soil” is Loose

THEN “Settlement, S ” is Low (0.64) OR “Settlement, S,” is High (0.36)
3 IF “Footing width, B” is Large AND “Soil” is Loose

THEN “Settlement, S, ” is High (1.00)

4 IF “Footing width, B” is Small AND “Soil” is Medium density

THEN “Settlement, S ” is Low (0.91) OR “Settlement, S,” is High (0.09)
5 IF “Footing width, B” is Medium AND “Soil” is Medium density

THEN “Settlement, S_” is Low (0.90) OR “Settlement, S, ” is High (0.10)
6 IF “Footing width, B” is Large AND “Soil” is Medium density

THEN “Settlement, S,” is Low (0.46) OR “Settlement, S, is High (0.54)
7 IF “Footing width, B” is Small AND “Soil” is Dense

THEN “Settlement, S, is Low (0.94) OR “Settlement, S,” is High (0.06)
8 IF “Footing width, B” is Medium AND “Soil” is Dense

THEN “Settlement, S is Low (0.89) OR “Settlement, S ” is High (0.11)
9 IF “Footing width, B” is Large AND “Soil” is Dense

THEN “Settlement, S,” is Low (0.84) OR “Settlement, S, " is High (0.16)
10 | IF “Footing width, B” is Small AND “Soil” is Very Dense

THEN “Settlement, S is Low (1.00)

11 IF “Footing width, B” is Medium AND “Soil” is Very Dense

THEN “Settlement, S is Low (0.90) OR “Settlement, S,” is High (0.10)
12 | IF “Footing width, B” is Large AND “Soil” is Very Dense

THEN “Settlement, S,” is Low (0.81) OR “Settlement, S, is High (0.19)
2 13 | IF “Footing net applied pressure, g” is Light

THEN “Settlement, S ” is Low (0.89) OR “Settlement, S_” is High (0.11)
14 | IF “Footing net applied pressure, ¢ is Heavy

THEN “Settlement, S_” is Low (0.78) OR “Settlement, S, is High (0.22)

It can be seen from Table 6.5 that the new model (i.e. Optimised CHP6-BIC) performs
well and its performance is slightly better than the previously developed model (i.c.
model CHP6-BIC) with respect to the training and validation sets. It can also be seen
from Table 6.6 that the model has 14 fuzzy rules. The knowledge that can be extracted
from this model is as follows (Table 6.6):
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— Small footings are most likely to result in Jow settlement regardless of the density of
the soil they are founded on (Rules 1, 4,7 and 10);

~ Medium size footings are approximately equally likely to be susceptible to either
low or high settlement when they are founded on Joose soils (Rule 2), and they are
most likely to result in Jow settlement when they are founded on medium, dense or
very dense soils (Rules 5, 8 and 11);

~ Large footings are most likely to be susceptible to high settlement when they are
founded on loose soils (Rule 3), and they are most likely to result in Jow settlement
when they are founded on dense or very dense soils (Rules 9 and 12); and

— Large footings are equally likely to be susceptible to either Jow or high settlement

when they are founded on soils of medium density (Rule 6).

Also, Rules 13 and 14 again indicate that settlement is most likely to be low regardless
of whether the applied load is Zight or heavy, which contradicts what one would expect.
As mentioned previously, the most likely reason for this is that the footings contained in
the data set were designed so that the applied load does not result in high settlement and
that there were insufficient training data to cover the full range of possible high
settlement conditions. In general, the knowledge obtained in Table 6.6 is in agreement
with what one would expect, based on the underlying physical meaning of the
settlement problem, and are in agreement with the knowledge obtained previously from
model CHP6-BIC (Table 6.3). However, the fuzzy rules in Table 6.6 describe the
relationship between settlement and the factors affecting settlement in more rational
fashion. The above results suggest that it is beneficial to add available expertise to
neurofuzzy models, as it can improve model performance and enhance the interpretation

of the constructed models.

In order to test the robustness of the neurofuzzy model (i.e. Optimised CHP6-BIC), a
parametric study on the input variables is carried out, as suggested in §5.2.1, and the
results are presented in Figure 6.4. It can be seen from F igures 6.4 (a) and (b) that the
settlement increases as the footing width and footing net applied pressure increase. On
the other hand, Figure 6.4 (c) shows that the settlement decreases as the average SPT
blow count increases. These results indicate that the behaviour of the neurofuzzy model

is similar to what one would expect based on the underlying physical sense of
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settlement prediction. Consequently, this model can be considered to be robust and

hence, can be used for settlement prediction.
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Figure 6.4: Robustness tests for the Optimised CHP6-BIC model

6.5 Comparison of the Neurofuzzy and MLP Models

A comparison between the optimum neurofuzzy model (i.e. Optimised CHP6-BIC) and
the best back-propagation MLP model (i.e. model CHP5-NF2) is carried out in terms of
model accuracy, model parsimony and model transparency. A summary of the number

of inputs and connection weights used by each model is given in Table 6.7. The
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performance results of the two models with respect to the validation set are also given in
Table 6.7. In terms of model accuracy, it can be seen that the two models are
comparable, although the MLP model performs slightly better than the neurofuzzy
model. This suggests that the two models provide similar settlement prediction.
However, although the robustness tests carried out on the two models (Figure 6.5) show
that both models are robust, there is a marked difference in the predicted settlements
between the two models for a range of data similar to those used for model training. As
can be seen from Figure 6.5, the trends of the predicted settlement using the neurofuzzy
model are linear, whereas they are non-linear for the MLP model. One possible reason
for this behaviour is that optimisation of the neurofuzzy model is based on linear
membership functions of order 2, whereas it is based on non-linear transfer functions

(sigmoidal or tanh transfer functions) for the MLP model.

In order to investigate the aforementioned reason, an attempt to obtain a non-linear
behaviour from the neurofuzzy model is carried out by retraining the Optimised CHP6-
BIC model with membership functions of order 3, and then comparing its robustness
behaviour with this of the MLP model, as shown in Figure 6.6. It can be seen that the
trends of the neurofuzzy model are changed to non-linear, which confirms the reason
proposed above. However, the unexpected deviations in the trends of the settlement
predicted by the retrained neurofuzzy model suggest that the model in not robust. One
would expect the settlement to increase with increase in footing width and footing net
applied pressure and that it decrease with the increasing average SPT blow count. It
seems that the robustness behaviour of the neurofuzzy model shown in Figure 6.6 is a
result of data overfitting. As mentioned in Chapter 2, increasing the order of the
membership functions of the B-spline neurofuzzy models results in smoother model

outputs, but can lead to overfitting of the data (Brown and Harris 1994).

Table 6.7: Comparison between the neurofuzzy and MLP models

Model No. of No. of Model performance on the validation set
type inputs | connection | Correlation | RMSE (mm) | MAE (mm)
weights coefficient, r
Neurofuzzy 3 9 0.892 11.74 8.93
MLP 5 12 0.905 11.04 8.78
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Figure 6.5: Robustness tests for the neurofuzzy and MLP models
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In order to further investigate the reason stated above, an attempt to obtain linear
behaviour from the MLP model is carried out by retraining model CHP5-NF2 using
linear transfer functions in the MLP hidden and output layers, and then comparing its
robustness behaviour with that of the Optimised CHP6-BIC model, as shown in Figure
6.7. Tt can be seen that the trends of the MLP model have changed to linear and that the
prediction of the MLP and neurofuzzy models becomes closer to each other, as shown
in Figures 6.7 (a) and (b). This confirms the reason proposed previously regarding the
difference in robustness behaviour between the neurofuzzy and MLP models. However,
as shown in Figure 6.7 (c), there still exists some unexpected deviation (negative
values) in the trend that relates the predicted settlement with the average SPT blow
count for the retrained MLP model, which suggests that the model is not robust. The
above results indicate that it is the functions used (i.e. membership basis functions for
the neurofuzzy model and the transfer functions for the MLP model) that result in the
difference in robustness behaviour between the neurofuzzy and MLP models shown in

Figure 6.5.

It is still necessary to decide which model to use as an optimum ANN model. The non-
linear robustness behaviour of the predicted settlement by the MLP model seems to be
more realistic, as it is unlikely that settlement is linear, which is confirmed by
traditional methods and underlying geotechnical engineering knowledge. In addition,
the more accurate performance of the MLP model, with respect to the validation set,
indicates that the MLP model can provide more accurate settlement predictions in real-
world situations. Consequently, the MLP model (i.e. model CHP5-NF2) developed in
Chapter 5 will be considered to be the best ANN model and hence will be used for the
analyses in the next chapter (Chapter 7).

In terms of model parsimony, the neurofuzzy model is found to be more parsimonious
than the back-propagation MLP model, as it has a smaller number of model inputs and
connection weights. In terms of model transparency, the neurofuzzy model is found to
provide a more explicit interpretation of the relationships between model inputs and the
corresponding output in the form of a set of linguistic fuzzy rules that describe the
model in a more transparent fashion (Table 6.6). However, as shown in Chapter 5, the
small number of hidden layer nodes of the back-propagation MLP model enabled the

translation of the model into a relatively simple equation that provides a valuable insight
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into the relationships between the model inputs and the corresponding outputs. For
large MLP models with a greater number of inputs and hidden layer nodes, a derivation
of such an equation could be difficult and consequently, the use of neurofuzzy models

would be better in such situations.
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6.6 Summary and Conclusions

B-spline networks trained with the ASMOD algorithm were used to demonstrate the
feasibility of neurofuzzy models to predict the settlement of shallow foundations on
cohesionless soils and to assist with providing a better understanding of the relationship
between settlement and the factors affecting it. The ASMOD is an algorithm that
automatically optimises model architecture and selects input variables that have the
most significant impact on settlement. Five potential input variables (i.e. B, g, N, L/B
and D, /B) were presented to the neurofuzzy models and settlement was the single
output. The sensitivity of the neurofuzzy models to a number of stopping criteria, i.e.
Bayesian Information Criterion (BIC), Akaike’s Information Criterion (AIC) and Final
Prediction Error (FPE), was investigated. The models were assessed in terms of
prediction accuracy, model parsimony and model transparency. The optimum
neurofuzzy model obtained was compared with the best back-propagation MLP model
obtained in Chapter 5.

This chapter has yielded the following results and conclusions:

1. Neurofuzzy models have the ability to accurately predict the settlement of shallow
foundations on cohesionless soils and are able to extract rules from the data that
make physical sense, which may be used to gain a better understanding in situations
where data are available but physical relationships are not well understood. In
addition, neurofuzzy networks can be modified by incorporating available
engineering knowledge to improve model performance and enhance the

interpretation of the constructed model.

2. The footing width (B), footing net applied pressure (q) and average SPT blow count
(N) were found to be the most significant factors affecting settlement. This is in
agreement with the results of the sensitivity analysis carried out on the MLP model

in Chapter 5.

3. All neurofuzzy models were found to be comparable in terms of prediction
accuracy, even though the model that uses the BIC was found to perform marginally

better than the other models on an independent validation set.
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4. All neurofuzzy models were found to be comparable in terms of model parsimony,
even though the model that uses the AIC was found to be more parsimonious than
the other models with the lowest number of connection weights. This was attributed

to the fact that AIC penalises complex models.

5. The neurofuzzy models that use the BIC and AIC were found to be more transparent
than the model that uses the FPE, as they have fewer fuzzy rules. This was
attributed to the fact that the BIC and AIC penalise complex models more.

6. The optimum neurofuzzy and MLP models were found to be comparable in terms of
model accuracy, although the MLP model was found to perform slightly better than

the neurofuzzy model.

7. The optimum neurofuzzy model was found to be more parsimonious than the back-

propagation MLP with fewer model inputs and connection weights.

8. The optimum neurofuzzy model was found to be more transparent than the back-
propagation MLP model as it was able to describe the relationship between the
model inputs and corresponding output using a set of fuzzy rules. On the other, as
shown in Chapter 5, the MLP model was able to be translated into a relatively
simple equation that gives valuable insight into the relationships between the model

inputs and corresponding outputs.

In the following chapter, the use of stochastic simulation in the analysis of ANN

settlement prediction will be examined.



Chapter 7
Stochastic Analysis of Settlement Prediction

7.1 Introduction

Settlement prediction, as with many geotechnical engineering problems, is often
affected by a considerable level of uncertainty. Such uncertainty may produce an
unreliable estimation of the magnitude of settlement, while reliable settlement
prediction is essential for design purposes. Uncertainty affecting settlement prediction

is generally caused by one or more of the following (Krizek et al. 1977; Cherubini and
Greco 1991):

1. Parameter uncertainty; and

2. Uncertainty associated with the model used for settlement prediction.

There are a number of major and minor factors that contribute to parameter uncertainty.
The major factors include (i) poor knowledge of soil properties and (ii) uncertainty in
forecasting the magnitude of the imposed loads. Uncertainty associated with poor
knowledge of the soil properties is due to the natural spatial variability of soil, which is
caused by variations in the mineral composition and characteristics of soil strata during
and after soil formation. It is also due to insufficient description of soil characteristics
as a result of limited spatial sampling. Uncertainty associated with this source can also

be due to errors associated with the technique used to measure the actual soil properties.

Theoretically, the uncertainty associated with the loads acting on foundations can be
determined with an acceptable degree of accuracy (Greco and Cherubini 1993).
However, realistically, it is unlikely that an accurate estimation of the magnitude of
design loads can be made and thus loads should be treated as random variables (Corotis
1972; Peir and Cornell 1973; Melchers 1987).

The minor factors that contribute to parameter uncertainty include (i) footing

dimensions and (ii) footing embedment depth. These sources of parameter uncertainty

are due to discrepancies between footing dimensions or the footing embedment depth

159
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implemented on site and those that appear in construction drawings, as a result of

human error.

The second source of uncertainty is caused by the inherent error associated with the
modelling technique used to characterise settlement prediction and is usually called
model uncertainty (Frey 1998). This type of uncertainty is due to the simplified nature
of models that are used to describe soil behaviour, which are generally based on a
number of assumptions. Unfortunately, model uncertainty is difficult to measure
physically and in most instances, the model used to describe a certain phenomenon is
assumed to be a perfect predictor (Fenton 2002). However, if sufficient measured and
predicted data are available, then the overall uncertainty associated with the prediction
method used can be quantified. Consequently, the overall uncertainty associated with a
certain prediction method is the sum of the parameter and model uncertainties. This

type of uncertainty can be referred to as the prediction method uncertainty.

Most deterministic modelling methods for settlement prediction of shallow foundations
on cohesionless soils disregard the above uncertainties in their analysis and simulation.
Despite the relative advantage, that has been shown in Chapter 5, for the ANN approach
over traditional methods, it does not take into account the considerable level of
uncertainty that may affect the magnitude of the predicted settlement. ANNs, like more
traditional methods of settlement prediction, are based on deterministic approaches that
ignore the above uncertainty and thus provide single values of settlement with no
indication of the level of risk associated with these values. An alternative stochastic
approach is essential to provide more rational estimation of settlement. Stochastic
simulation has a significant benefit over deterministic methods in the sense that the
degree of risk (i.e. uncertainty) associated with the model output can be quantified
(Jaksa 1995; Barthur 1997; Whitman 2000). In this chapter, stochastic analysis is
applied to the ANN model in order to obtain a stochastic model of ANN settlement
prediction of shallow foundations on granular soils. This chapter has three main
objectives. The first objective is to present and compare practical stochastic approaches
that incorporate parameter uncertainty and prediction method uncertainty in the analysis
of ANN settlement prediction of shallow foundations on cohesionless soils. The second
objective is to examine the effect of varying the parameter uncertainty on the magnitude

of the predicted settlement. Finally, and most significantly, the third objective is to
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develop and provide a set of stochastic design charts that are based on the ANN method
for routine use in practice. The charts are useful in the sense that they enable the
designer to make informed decisions regarding the level of risk associated with
predicted settlements and consequently provide a more realistic indication of what the
actual settlement might be. In order to demonstrate the first two objectives set out

above, a numerical example is provided.

7.2 Overview of Stochastic Settlement Prediction

Over the last decade, interest in applying more rational stochastic analyses in the field
of geotechnical engineering, rather than the less accurate traditional deterministic
solutions, has increased rapidly (see Tang 1993). For example, in the area of settlement
prediction of shallow foundations, Padilla and Vanmarcke (1974) developed a
stochastic approach for settlement prediction of a one-dimensional model based on a
first-order probabilistic description of loads and soil properties. Fraser and Wardle
(1975) used a first order probabilistic analysis to develop a model for the determination
of total and differential settlement of raft foundations resting on layered cross-
anisotropic elastic soils, taking into account the uncertainty associated with the imposed
loads and supporting soil modulus. Cherubini and Greco (1991) presented a
probabilistic approach for settlements predicted using the method proposed by Arnold
(1980) to estimate the settlement of spread footings on sand, taking into account the
uncertainty associated with the reliability of the technique used for settlement
prediction. Brzakala and Pula (1996) also combined finite element analysis with
stochastic simulation to provide a probabilistic solution for the estimation of settlement
of shallow foundations, considering three basic sources of input parameter uncertainty:
random shape of the subsoil (location of an interface between two strata), random
material parameters and random loads. Fenton et al. (1996) estimated probabilistic
measures of total and differential settlement of spread footings on elastic soils using a
two-dimensional finite element model combined with Monte Carlo simulation, taking
into account the variability of the soil modulus of elasticity. Sivakugan and Johnson
(2002) applied probabilistic analysis to settlement prediction of four deterministic

traditional methods including the methods proposed by Terzaghi and Peck (1967),
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Schmertmann et al. (1978), Burland and Burbidge (1985) and Berardi and Lancellotta
(1994), considering the prediction method uncertainty.

7.3 Basic Statistical Definitions

When data are available, it is useful to quantify their statistical properties.  The
following definitions are some of the most commonly used statistical parameters for
data presentation and are defined in many fundamental publications (e.g. Seber 1974;

Smith 1986; Raghavarao 1988), and are described here as they form part of the analyses

that follow.
® Mean (p): the mean is the average of the sample data (x,, x,, ..., x,) of size »# and is
defined as:
- 1
==Y x 7.1
=

* Standard deviation (c): the standard deviation is a measure of deviation or spread

of the sample data about their mean and is defined as:

o= \/%_lé(xi -x)* (7.2)

* Coefficient of variation (COV): the coefficient of variation is the expression of the
degree of spread of the data in terms of the mean. It is useful for comparing groups

with different means and is defined as:

cov =

=] Q

(7.3)

* Graphical presentation of data: the histogram is the most common graphical

method for data presentation (Lee et al. 1983). It is a grouping of data into
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categories of given numerical intervals showing the proportional frequency of
observations in each category. The hatched area in Figure 7.1 is an example of a
histogram representing the distribution of soil compaction data. The scaling
ordinates of the histogram are called the frequency distribution and can be obtained
by dividing the number of observed values within a specific interval by the total

number of observations.

Another method of data presentation is the probability distribution (usually referred
to as ‘PDF’ = probability density function), of which the solid line in Figure 7.1
provides an example. The PDF has the crucial property that the area under the curve
between any two values gives the probability of obtaining an observation between
those values. Another graphical method of data presentation is the cumulative
frequency distribution function, which calculates successive sums of frequencies up
to each interval point and connects these points. The dashed line and right-hand
ordinate in Figure 7.2 provide an example of a cumulative frequency distribution

curve of the soil compaction data shown in Figure 7.1.

03]

Frequency of occurrence

% specified dry density schieved

Figure 7.1: Histogram and probability distribution for soil compaction data
(Lee et al. 1983)



164 Chapter 7. Stochastic Analysis of Settlement Prediction

Cumulative Frequency

Frequency of occurrence

886
90-2
91-8
93
95-
96
98
101-4
03-0

% specified dry density achieved
Figure 7.2: Cumulative probability distribution of soil compaction data
(Lee et al. 1983)

7.4  Stochastic Analysis of Settlement Prediction

Stochastic analysis is a procedure of handling mathematical problems where some of
the parameters are uncertain and thus can be presented as random variables (Prekopa
1995). There are various stochastic approaches available for geotechnical engineering
applications. For models involving random input variables with known or assumed
probability distributions, Monte Carlo simulation can be used to estimate the probability
distribution of the model output. Monte Carlo simulation is the technique that will be
used to produce the stochastic solutions for settlement prediction given later and

consequently, it will be described briefly in this chapter.

Monte Carlo simulation attempts to generate a random set of values from known or
assumed probability distributions of some input variables involved in a certain problem
to determine the probability distribution of the output variable. The steps in the Monte

Carlo simulation, for a set of input variables (x1> X5, X3, ..., x,) and the corresponding

output variable y, where, y = f(x,, x,, x,, ..., x,), are as follows:
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1. Values of each input variable (x,, x,, X;, ..., X,) are generated randomly by knowing

or assuming their probability density function and statistical parameters (e.g. mean,

standard deviation);

2. The output variable y is obtained from its deterministic function, y =f(x,, x,, x3,

svey

X,);
3. The above steps are repeated, usually thousands of times; and

4, Finally, the output values are used to obtain the mean, standard deviation and
probability density function from which the probability of occurrence or risk

associated with a certain prediction can be estimated.

Further details about the Monte Carlo technique are given by many authors (e.g.
Hammersley and Handscomb 1964; Rubinstein 1981; Ang and Tang 1984).

As mentioned earlier, this chapter applies stochastic simulation to ANNs in order to
incorporate parameter uncertainty (i.e. uncertainty associated with the model inputs as
soil properties and imposed loads) and prediction method uncertainty (i.e. parameter
uncertainty + uncertainty associated with the ANN modelling technique). The approach
used to obtain the uncertainties in settlement prediction associated with each of the two

types of uncertainty considered is given below.

7.4.1 Inclusion of parameter uncertainty

For an individual case of settlement prediction, the procedure for obtaining the

stochastic solution that incorporates the parameter uncertainty is as follows:

1. The values of each input variable (i.e. B, g, N, L/B, D,/B) are generated randomly by

knowing or assuming their probability density function (PDF) and any correlation
that exists between them;
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2. The deterministic predicted settlement is obtained from the best ANN model
obtained in this research (i.e. model CHP5-NF2);

3. The above two steps are repeated, thousands of times as part of Monte Carlo

simulation; and

4. Finally, the subsequent settlements are used to obtain the cumulative distribution
function (CDF) or to plot the cumulative probability distribution from which the
probability of non-exceedance (Py,), or level of risk, associated with a certain

prediction can be estimated.

Among the five inputs to the ANN model, two, the footing net applied pressure, g, and
average SPT blow count, N, are likely to include more than marginal parameter
uncertainty, and thus, in this work, are assumed to be random variables. As mentioned
earlier, footing dimensions contribute to parameter uncertainty to a lesser degree and are
thus assumed to be deterministic for practical purposes. In addition, the input variable
of footing embedment depth, D,, is also assumed to be deterministic. A number of
studies have attempted to characterise the uncertainty associated with ¢ and N, as

discussed below.

According to Melchers (1987), loads acting on structures can be divided into two broad
groups: natural loads (e.g. wind and earthquake) and human-imposed loads (e.g. dead
loads and live loads) and the magnitude of each varies with time and location.
Consequently, estimation of total loads imposes uncertainty. As a guide, Auvinet and
Rossa (1991) showed that the coefficient of variation, COV (i.e. standard
deviation/mean), of permanent loads for Mexico City buildings is 8%. Melchers
(1987), stated that dead loads are commonly assumed to be closely approximated by a
normal distribution with a COV of 5 to 10%. Rao (1992) stated that dead loads are
usually described by a normal distribution with COV of 10%. Krizek et al. 1977
demonstrated that the uncertainty associated with the estimation of the total imposed
loads follows a normal distribution and Fraser and Wardle (1975) illustrated that the
COV of the total imposed loads that can be encountered in practice is equal to 14%.

Padilla and Vanmarcke (1974) also showed that, if dead and live loads were assumed to
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be stochastically independent, the resulting variability of their sum would have a COV
of 10%.

Uncertainty associated with the SPT blow count, N, as a measure of soil compressibility
is considerable due to the many factors that affect SPT results (Orchant et al. 1987).
Fletcher (1965) identified thirteen factors that affect the SPT and can be categorised into
the following two major groups: (i) equipment effects (e.g. hammer, hammer drop
system, drill rods, and sampler) and (ii) procedural/operator effects (e.g. height of
hammer drop, seating of the sampler, errors in counting blows, and cleaning of
borehole). Lee et al. (1983) reported that the uncertainty associated with the average
SPT blow count can be assumed to follow a normal distribution with COV ranges from

27 to 85% and recommended a value equal to 30%.

7.4.2 Inclusion of prediction method uncertainty

The stochastic solution that incorporates the prediction method uncertainty is based on
an assumption that previous measured settlements of foundations may be employed to
predict the settlements of other foundations in similar conditions (Cherubini and Greco
1991). The uncertainty of the prediction method can be examined by calculating the
settlement ratio, & (Cherubini and Greco 1991; Sivakugan and Johnson 2002), which is
defined as the ratio of the predicted settlement to the actual measured settlement. If a
set of predicted and measured settlements is available, the settlement ratios can be
calculated and used to obtain the PDF of &. A Monte Carlo simulation can then be
conducted to estimate the uncertainty associated with the predicted settlements. The

detailed procedure is as follows:

1. The PDF of k is estimated using a set of predicted and measured settlements;

2. Random values of k are generated from this PDF;

3. For each generated value of %, the deterministic settlement is calculated using the

ANN model;
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4. From the definition of , the deterministic predicted settlement is divided by the

generated random value of & in order to obtain the corresponding actual settlement;

5. Steps 2 to 4 are repeated for many iterations (Monte Carlo simulation); and

6. The settlements obtained as part of the Monte Carlo simulation are used to estimate
the CDF or to plot the cumulative probability distribution from which the
uncertainty or level of risk associated with a certain settlement prediction can be

estimated.

A number of studies have attempted to characterise the prediction method uncertainty.
For example, Greco and Cherubini (1993) demonstrated that the distribution of k could
be approximated by a lognormal distribution for settlement predictions obtained from
the methods proposed by Arnold (1980) and Papadopoulos (1992). Sivakugan and
Johnson (2002) showed that k can be represented by beta distribution for settlements
predicted using four traditional methods (i.e. Terzaghi and Peck 1967; Schmertmann et
al. 1978; Burland and Burbidge 1985; Berardi and Lancellotta 1994). In this work, the
distribution of k is obtained using the 189 data records used in Chapter 5 for the

development of the ANN model, as shown later.

7.5 Numerical Example

In order to demonstrate the approach outlined in the previous section, the following
numerical example is examined, which is identical to the one presented in §5.7. A
rectangular footing whose dimensions are 2.5 x 4.0 m is founded at a depth equal to 1.5
m below the ground surface. The soil beneath the footing is sand that extends to a depth
in excess of twice its width. The net applied load exerted on the footing is 350 kPa and

the average SPT blow count is 16.
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7.5.1 KEstimation of parameter uncertainty

The deterministic solution of settlement prediction is first obtained from the ANN
model in §5.2.2 (model CHP5-NF2) and is found to be 13.3 mm, as given previously in
§5.7.

parameters are taken to be equal to those commonly encountered in practice and

The statistical data representing the uncertainty associated with settlement

recommended in the literature, as described earlier, and are shown in Table 7.1. In
addition, the database used in Chapter 5 for the development of the ANN model is
utilised to determine the coefficient of correlation between the footing net applied

pressure, g, and average SPT blow count, N, which was found to equal 0.4.

Table 7.1. Statistics for parameter uncertainty used in the numerical example

Settlement parameter Mean | St. deviation COV (%) PDF
Footing width, B (m) 2.5 Deterministic | deterministic | N/A
Net applied footing load, g (kPa) 350 35 10 Normal
Average SPT blow count, N 16 4.8 30 Normal
Footing geometry, L/B 1.6 Deterministic | deterministic | N/A
Footing embedment ratio, D,/B 0.6 Deterministic | deterministic | N/A

N/A  =not applicable

In order to apply the stochastic approach that incorporates parameter uncertainty, the
statistical data in Table 7.1 are used to generate sample values for g and N. These
values are generated so as to be within (i) the range of data that can be expected in
practical applications and (ii) the ranges of the input data used for training of the ANN
model. Again, the PC-based software @Risk (Palisade 2000) is used for this purpose.
The stochastic procedure outlined previously for incorporating parameter uncertainty is
applied until a convergence criterion is achieved. In order to determine whether
convergence has been achieved, the statistics describing the distribution of the predicted
settlements are calculated at fixed numbers of simulations and compared with the same
statistics at previous simulations. Convergence is deemed to have occurred if the
change in the statistics describing the distribution of predicted settlement is 1% or less.
The

predicted settlements obtained for the 1,300 simulations are used to plot the cumulative

It was found that 1,300 simulations are sufficient to achieve convergence.
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probability distribution curve from which different probabilities of non-exceedance are
obtained. The results are shown in Figure 7.3 and are summarised in Table 7.2
(columns 1 and 3). The results shown in columns 2 and 4 of Table 7.2 will be

explained later in this section.
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Figure 7.3. Cumulative probability distribution incorporating parameter
uncertainty for the numerical example

Table 7.2: Predicted settlements accounting for parameter uncertainty of different
g and N for the numerical example

Probability of non- COY for g and N (%)
exceedance (%) | g=5andN=27 | g=10and N=30 | ¢ =14 and N =85
75 18.0 18.6 19.5
80 19.6 20.4 23.6
85 21.3 22.4 28.1
90 24.2 25.4 34.2
95 29.2 31.3 42.6

It can be seen from Figure 7.3 that there is a probability of approximately 50% that the
settlement could be higher than the deterministic estimation of 13.3 mm. This result

indicates that the uncertainty associated with g and N can considerably affect settlement
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and thus, should not be neglected in the analysis and simulation of settlement
prediction. In addition, there are probabilities of 75%, 80%, 85%, 90% and 95% (i.e.
probability levels that may be needed for design purposes) that the settlement will not
exceed 18.6, 20.4, 22.4, 25.4 and 31.3 mm, respectively (Table 7.2).

Once the stochastic simulation has been performed, a sensitivity analysis is carried out
to determine the relative impact of the input variables on the uncertainty associated with
predicted settlement. This is done by calculating the correlation coefficient between the
predicted settlements and the values generated for each input variable. The higher the
correlation between the input and settlement, the more significant the input is in
determining the stochastic predicted settlement. As expected, the results of the
sensitivity analysis show that the uncertainty associated with the average SPT blow
count has a considerable impact on the uncertainty associated with predicted settlement,
as it has a high correlation coefficient of —0.935. The negative sign of the correlation
coefficient indicates that, as expected, there is an inverse relationship between the
average SPT blow count and settlement prediction. On the other hand, the results show
that the uncertainty associated with the net applied footing load has a moderate impact
on the uncertainty associated with settlement prediction, as it has a correlation

coefficient of 0.169.

As discussed earlier, uncertainty estimation of g and N varies considerably (i.e. the
COV varies from 5 to 14% for ¢ and from 27 to 85% for N). Consequently, it is
worthwhile to carry out a parametric study to examine the effect of changing the COV
for ¢ and N on the magnitude of settlement prediction for the numerical example. Using
the ANN-based stochastic approach that incorporates parameter uncertainty, two
different combinations of the values of the COV for ¢ and N are examined. The
minimum values recommended in the literature for the COV of g and N (i.e. 5% for ¢
and 27% for N) are used for one trial and the maximum values (i.e. 14% for g and 85%
for N) are used for the other. The probability of non-exceedance for the predicted
settlement using the three different combinations of the COV for q and N are shown in
Table 7.2.

It can be seen from Table 7.2 that the predicted settlement becomes more conservative

as the COV for g and N increases. For example, if the probability of non-exceedance
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required in the design of a footing under consideration is 95%, the predicted settlement
will not exceed 29.2 mm when the COVs for g and N are equal to 5 and 27%,
respectively. In other words, there is a 5% chance that the predicted settlement will
exceed 29.2 mm when the COVs for ¢ and N are equal to 5 and 27%, respectively.
However, to achieve the same level of risk, this settlement will exceed 31.3 mm when
the COVs for ¢ and N are increased to 10 and 30%, respectively. Moreover, for a level
of risk of 5%, the predicted settlement will exceed 42.6 mm when the COVs for qand N
are increased further to be equal to 14 and 85%, respectively. The results in Table 7.2
also illustrate that, to achieve a level of risk of only 5%, the predicted settlement
obtained using the maximum combination of the COV for g and N (i.e. 14% for q and
85% for N) is approximately 45% more than the predicted settlement obtained when the
minimum combination of the COV for g and N (i.e. 5% for g and 27% for N) is used.
This suggests that estimating the correct values of the uncertainty associated with ¢ and
N is very important, as uneconomical design of footings results from increasing values
of the COVs for g and N.

7.5.2 Estimation of prediction method uncertainty

As discussed earlier, in order to obtain a stochastic solution for settlement prediction
that incorporates the prediction method uncertainty, the PDF of k is needed. In this
research, the PDF of & for the ANN method is obtained from the 189 data records that
are used in Chapter 5 for the development of the ANN model. The values of k are
found to fall within the range 0.3 to 10.4. The mean value of k is 1.4 and the standard
deviation is 1.3. As mentioned above, the stochastic solution that incorporates the
prediction method uncertainty relies on the estimation of the PDF of k. Consequently,
false estimation of the PDF of k will affect the final results of the stochastic predicted
settlements. If the data used to estimate the PDF of k contain outliers, the distribution
of k will be severely affected. As a result, it is necessary to exclude any possible
outliers from the data used to estimate the PDF of k. The box plot method (Kotzais et
al. 1990), as proposed by Cherubini (2000), is used for this purpose in this research. As
part of the method, the central tendency of k is indicated by the median, whereas its

spread is indicated by the lower (Q,) and upper (Qu) quartiles. Points whose values are
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either less than (Q,—1.5IQD) or greater than (Q,+1.5I1QD), where IQD is the
interquartile distance and is equal to (Q,~ @,), are considered to be outliers. Such a plot
is shown in Figure 7.4 for the available data. It can be seen that some points are greater
than (Q,+1.5I0D). Consequently, these data points may be considered to be outliers
and are omitted from the data used to estimate the PDF of k. The number of outliers are
found to be 20 out of 189 data records, resulting in 169 data records that are used to
estimate the PDF of k. The software @Risk is again used to determine the PDF that
provides the best fit to the remaining 169 data points. As mentioned in Chapter 5, for a
given set of data values, @Risk can identify the probability distribution that best fits
these values from 38 candidate distributions and provides the statistical properties that
describe the distribution. The theoretical distribution that is found to best match the
actual distribution of k is the Weibull distribution (Figure 7.5). The statistical properties
of the Weibull distribution obtained are given in Table 7.3. It can be seen that removing
the outliers from the analysis of k resulted in a reduction in the mean and standard

deviation of k from 1.4 and 1.3 to 1.06 and 0.53, respectively.
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Figure 7.4: Box plot for 189 data records of k = predicted settlement/measured

settlement
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Table 7.3: Weibull distribution parameters of k

Statistical parameter Value of & Value of k

(without outliers) | (with outliers)
Minimum 0.25 0.30
Maximum 2.80 10.4
Mean 1.06 1.40
Standard deviation 0.53 1.30
Shape parameter () 1.59 N/A
Scale parameter (B) 0.91 N/A

N/A = not applicable

The numerical example is re-calculated using the procedure outlined previously for
incorporating prediction method uncertainty. The Monte Carlo simulation is repeated
1,400 times until a convergence limit equal to 1% is achieved. The settlements obtained

are used to plot the cumulative probability distribution curve from which different
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probabilities of non-exceedance or levels of risk for predicted settlement are obtained.
The results are summarised in Table 7.4 and shown in Figure 7.6, which also includes

the obtained by considering only the parameter uncertainty.

Table 7.4: Predicted settlements accounting for prediction method uncertainty for
the numerical example

Probability of occurrence (%) | Predicted settlement (mm)
75 15.4
80 16.1
85 17.0
90 18.0
95 19.3
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Figure 7.6: Cumulative probability distribution incorporating parameter and

prediction method uncertainties for the numerical example

It can be seen from Table 7.4 and Figure 7.6 that the stochastic solution that
incorporates the prediction method uncertainty is less conservative than that obtained
when parameter uncertainty was considered. For example, there is a 5% level of risk

that the predicted settlement will exceed 19.3 mm when the stochastic solution that
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incorporates the prediction method uncertainty is used. However, to achieve the same
level of risk, this settlement will exceed 29.2 mm (for COVs of g and N equal to 5 and
27%), 31.3 mm (for COVs of ¢ and N equal to 10 and 30%), and 42.6 mm (for COVs of
g and N equal to 14 and 85%), respectively, when the stochastic solution that
incorporates the parameter uncertainty is used, resulting in an increase in the predicted
settlement of approximately 50%, 60% and 120%, respectively.  This result is
surprising, as the solution that incorporates the prediction method uncertainty includes
both parameter and model uncertainties and would thus be expected to produce more
conservative results. This result may be attributed to the fact that the estimation
obtained from the literature related to parameter uncertainty (i.e. uncertainty associated
with ¢ and N), is most likely to be conservative as a result of including the soil spatial
variation from one site to another in the evaluation of the COVs of q and N. Even the
lower end of the variability of ¢ and N appears to be conservative. Consequently, for an
individual case of settlement prediction, different results (Table 7.2) are most likely to
be obtained from different evaluators depending on how differently ¢ and N are
evaluated. On the other hand, the statistical properties and distribution used to estimate
prediction method uncertainty (i.e. uncertainty associated with k) are based on actual

measured settlements.

The above results imply that collecting as much data as possible, which enables accurate
characterisation of parameter or prediction method uncertainties, is very important, as it
has significant implications on the design settlement obtained. The results also imply
that the stochastic solution using  is probably preferable, as it is easier to collect data
on actual and predicted settlements, which enables the uncertainty associated with & to
be characterised, rather than data which enable the uncertainty associated with ¢ and N
to be quantified. In addition, the stochastic approach using k already includes parameter

uncertainty, as it sums the model and parameter uncertainties.

7.6  Stochastic Settlement Prediction Design Charts

The stochastic simulation that incorporates the prediction method uncertainty is used to
develop a generic set of stochastic design charts based on the ANN model for routine

use in practice. The procedure that is used to develop the charts is as follows:
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1. A random synthetic value of predicted settlement is generated between the ranges

used in Chapter 5 for the development of the ANN model;

2. The procedure for obtaining the corresponding PDF and CDF of predicted
settlements as a result of the uncertainties associated with the prediction method

outlined previously is applied;

3. From the above PDF or CDF, the 75%, 80%, 85%, 90%, and 95% probabilities of

non-exceedance are determined;

4. Another random synthetic value of predicted settlement is generated by increasing
the value generated in Step 1 by 5% of the total range between the minimum and

maximum values used for the development of the ANN model;

5. Steps 2 to 4 are repeated until the maximum synthetic value of predicted settlement

is reached; and

6. For each probability level of non-exceedance, the synthetic deterministic settlements
are plotted against stochastic settlements and a set of design charts are obtained, as

shown in Figure 7.7.

For any individual case of settlement prediction within the ranges of the data used for
the ANN model development, the deterministic settlement can be obtained from the
ANN model and the corresponding stochastic settlement can be obtained readily from
Figure 7.7, accounting for a certain desired probability of non-exceedance. For
example, if the deterministic ANN model predicts a settlement of 22 mm and reliability
levels (i.e. probabilities of non-exceedance) of 90% and 95% are required, the

corresponding design settlements are 30 mm and 32 mm, respectively.



178 Chapter 7. Stochastic Analysis of Settlement Prediction

30 &0
7| s vl
z Re=S%| | A/ =B Fhe =90% | A
ul - A A E .
£ A Sl P
g2 TR = i N A
qé 18 L// y / g45 IPME=w% // h ///7Z
. Y ° e
& 151 —%,/ PN.E=85%| T v é%/ —t
o 12 A/'\/ ] o o 1] 94
i, [ NPZZZ2 e
5 Lo | ol — -
% 6- PNE=75%|..._ . % %4 Ry=75%
3 P . = Probability of non-exceedance ] 2 % P, .= Probability of non-exceedance ]
N/E N/E
0 b— : } : : i : — 20 : : : - : : : :
0 2 4 6 8 10 12 14 16 18 2 D 2 4 6 8B D R 3 B 3B 4
Deterministic settiement (mm) Deterministic setlement (mm)
120 180 ] I
R:=%%
__1o A170 | N \__7/
E E 100 —— [R.=9% o] o
£ 10 E P
t il N T T [y
0 9 @ . //
140 M, S Sl P
5 E e ] 1 L
E o £ 120 --//, L1 . -
7] @ /
1 - - ot -\
%’ LY % BT L~ | [P=e%
j: 8 1o Ll L -
g & T Re=79% | 8 10 /,/ R =T5%
4 bl — F i il T
7. / . 2
= P, = Probability of non-exceedance €0 P,z = Probability of non-exceedance
40 : : : : ; : : 80 - : ; : : T
9 4 5 % 60 66 W /B QO 8 & 9w 95 100 105 110 15 10
Deterministic settlement (mm) Deterministic setlement (mm)

Figure 7.7: Stochastic ANN-based design charts for settlement prediction

7.7 Summary and Conclusions

Stochastic approaches that utilise the Monte Carlo technique were used to generate
stochastic settlement prediction of shallow foundations on granular soils from an
artificial neural network (ANN) model. The proposed stochastic approaches

incorporate either parameter uncertainty or prediction method uncertainty (parameter
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uncertainty + model uncertainty) and enable the uncertainty associated with predicted
settlements to be quantified in the form of a cumulative probability distribution function
that provides the designer with the level of risk associated with exceeding a given
predicted settlement. A parametric study was also carried out to examine the effect of
varying the uncertainty associated with the factors affecting settlement (i.e. coefficient
of variation, COV, for the imposed load, ¢, and soil property, N) on the uncertainty of
the predicted settlements. The proposed stochastic approaches compared were applied
to a numerical example of settlement prediction. A series of ANN-based design charts
that incorporate prediction method uncertainty were developed for routine use in

practice.

The results of the numerical example that incorporates parameter uncertainty indicated
that there was a probability of approximately 50% that the settlement could be higher
than the deterministic estimation with COVs of 10% and 30% for ¢ and N, respectively.
The results also indicated that over the range of COVs for ¢ and N suggested in the
literature, the design settlements ranged from 29.2 mm to 42.6 mm for a non-
exceedance probability of 95%. These results indicated that the uncertainties associated
with ¢ and N can considerably affect settlement and thus, they should not be neglected
in the analysis and simulation of settlement prediction. This also implied that it is
important to collect sufficient data to characterise the uncertainty associated with g and
N, as the results obtained were very sensitive to these variables. The ANN-based
stochastic approach that incorporates prediction method uncertainty resulted in less
conservative settlement prediction, despite the fact that this approach includes both
parameter and model uncertainties and thus would be expected to produce more
conservative results. This was attributed to the fact that parameter uncertainties were
obtained from a subjective evaluation of the COVs of g and N published in the
literature, which are likely to be conservative. On the contrary, prediction method
uncertainty (i.e. uncertainty associated with k) was obtained from measured data and not
from values published in the literature. Furthermore, it is easier to obtain data to
characterise the uncertainty associated with k than with ¢ and N. Finally, the charts
developed in this work can be used to predict settlements for a certain desired reliability
level given the deterministic settlement predicted from the ANN model developed in
Chapter 5, which will be a useful tool in the design of shallow foundations on

cohesionless soils.
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Summary, Conclusions and Recommendations

8.1 General

Settlement analysis of shallow foundations on cohesionless soils, as with many
situations in geotechnical engineering, is a complex problem that is not well understood.
For most mathematical models that attempt to solve this problem, the lack of physical
understanding is usually supplemented by either simplifying the problem or
incorporating several assumptions into the models. Conventional mathematical models
for settlement prediction of shallow foundations on cohesionless soils rely on assuming
the form of the model in advance, and the unknown model parameters are determined
by minimising an error function between model predictions and the known measured
values. Consequently, prior knowledge regarding the relationship between model
inputs and the corresponding outputs is needed. In the case of settlement of shallow
foundations on cohesionless soils, such knowledge is not yet entirely understood.
Consequently, model performance may be potentially compromised, as the form of the
model chosen may be sup-optimal. In contrast, as shown in this thesis, artificial neural
networks (ANNSs) use the data alone to determine the structure of the model as well as
the unknown model parameters. The ANN modelling philosophy is similar to most
available methods for settlement prediction in the sense that both are attempting (o
capture the relationship between a set of model inputs and their corresponding outputs.
However, unlike most available methods, ANNs do not need prior knowledge about the
nature of the relationship between model inputs and their corresponding outputs as
ANNS use the data alone to capture this relationship, as mentioned earlier. This is an
essential benefit that enables ANNs to overcome the limitations of existing methods.
Moreover, ANNs can always be updated to obtain better results by presenting new
calibration data records, as they become available. One limitation of ANNs, however,
is that often the relationship between the input parameters and the output, are complex
and cannot be described in a tractable fashion. In addition, the success of ANNSs in

finding this relationship is not always guaranteed.

180
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In this research, the feasibility of using ANNs for predicting the settlement of shallow
foundations on cohesionless soils has been investigated. In the following, summary,
contributions of this thesis, recommendations for future work and the main conclusions

of this research are presented.

8.2 Summary

This study has investigated the feasibility of using artificial neural networks (ANNs) for
settlement prediction of shallow foundations on cohesionless soils. An ANN model,
which was found to outperform the most commonly used traditional methods, has been
developed for routine use in practice. In addition, stochastic analysis has been applied
to the ANN model and a set of stochastic design charts that incorporate the uncertainty
associated with the ANN method has been developed and provided.

Chapter 2 detailed the more important features associated with ANNs. These include
the structure and operation of ANNs, classification of different types of ANNs and
development of ANN models. For the structure and operation of ANNS, it was shown
that ANNs consist of a number of processing elements or nodes that are arranged in
layers: an input layer, an output layer and one or more intermediate layers called hidden
layers. It was also shown that ANNs learn by presenting training data from which the
ANN network adjusts its weights until it can find a set of weights that produce the
optimum input/output data mappings. In relation to the classification of ANNs, it was
shown that ANNs can be categorised on the basis of two major categories: (i) the
learning rule used and (ii) the connections between nodes. In relation to learning rules,
it was shown that ANNs can be divided into supervised and unsupervised networks. In
relation to connections between nodes, it was shown that ANNs can be divided into
feed-forward and feedback networks. For the development of ANNs, many factors that
affect the development of ANN models were addressed. These include the
determination of model inputs, division of data, data pre-processing, determination of

model architecture, model optimisation, stopping criteria and model validation.

Chapter 3 provided an overview of some of the more relevant ANN applications in

geotechnical engineering. These include prediction of pile capacity, predicting the
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settlement of foundations, modelling soil properties and behaviour, determination of
soil liquefaction, site characterisation, modelling earth retaining structures, evaluating

stability of slopes and design of tunnels and underground openings.

Chapter 4 discussed the causes of settlement of shallow foundations. The chapter
described the factors affecting settlement of shallow foundations on cohesionless soils,
which were divided into primary and secondary factors. The primary factors were the
footing width, footing net applied pressure and soil compressibility. The secondary
factors were the depth of the water table, time dependence, footing geometry, depth of
footing embedment and the thickness of the soil layer. This chapter also described and
discussed some of the most commonly used and more relevant methods for settlement
prediction of shallow foundations on cohesionless soils. These include the methods
proposed by Meyerhof (1965), Schultze and Sherif (1973) and Schmertmann et al.
(1978).

Chapter 5 detailed the analysis of data and development of ANN models for settlement
prediction of shallow foundations on cohesionless soils. This chapter also presented a
comparison between the results obtained using ANN and traditional methods. The

analyses carried out in this chapter yielded the following results and conclusions:

° ANNs have the ability to predict the settlement of shallow foundations on
cohesionless soils with a high degree of accuracy for predicted settlements ranging
from 0.6 to 121.0 mm.

* Good performance of ANN models on training, testing and validation sets does not
guarantee the robustness of the predictive ability of the models over a range of data

similar to that used for training,

* If cross-validation is used as the stopping criterion, reducing the number of ANN
connection weights or changing the type of connection between nodes (e.g.
cascaded and direct connections) does not appear to improve ANN model

robustness.
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e It is recommended that the capability of the software used for developing ANN
models be considered carefully and that a parametric study to check model
robustness be used in order to ensure that a model can be used for predictive

purposes with confidence.

e The optimum model developed in this work was obtained using 2 hidden layer
nodes, a momentum term of 0.8, a learning rate of 0.2, the tanh transfer function in

the hidden layer and the sigmoid transfer function in the output layer.

e There is a direct relationship between the consistency of the statistics between
training, testing and validation sets and the consistency in model performance.
Consequently, the statistical properties of the various data subsets should be taken
into account as part of any data division procedure to ensure that the best possible

model is developed, given the available data.

e The proportion of the data used for training, testing and validation appears to have
an effect on model performance. However, there appears to be no clear relationship
between the proportion of the data used in each of the subsets and model
performance, although in the trials conducted in this work, the optimal model
performance was obtained when 20% of the data were used for validation and 70%

of the remaining data were used for training and 30% for testing.

e The data division approach using a SOM and the new approach using fuzzy

clustering introduced in this research appear to be suitable methods of data division.

e The distribution transformation method for input variables does not appear to

improve the performance of ANN models.

e The SPT blow count, footing net applied pressure and footing width have the most
significant impact on settlement with relative importance levels equal to 30.8, 28.6
and 22.4%, respectively. On the other hand, the footing embedment ratio and
footing geometry have less impact on settlement with relative importance levels

equal to 14.8 and 3.1%, respectively.
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® The ANN method outperforms the traditional methods considered for an
independent validation set with » = 0.905, RMSE = 11.04 mm and MAE = 8.78
mm, while these measures were: r = 0.440, 0.729 and 0.798; RMSE = 25.72, 23.55
and 23.67 mm and MAE = 16.59, 11.81 and 15.69 mm when the method proposed
by Meyerhof (1965), Schultze and Sherif (1973) and Schmertmann et al. (1978),

respectively, are used.

¢ The ANN model could be translated into a relatively simple and practical formula

from which settlement can be calculated as follows:

Sp=0.6+[

1+ e{U.SIZ-IlTZS tanh x, +2.984 tanh x, )

120.4 ]

and
x, =0.1+ 10"3[3.8B +0.7¢ +4.1N -1.8(L/B) + 19(Df /B)]

%, =10°[0.7-41B~1.6q + 5N —52(L/B) + 740(D, / B)|

where:

S, = predicted settlement (mm);

B = footing width (m);

q = net applied footing load (kPa);
N = average SPT blow count;

L/B = footing geometry; and

D,/B = footing embedment ratio.

* The ANN model could be used to generate a series of design charts (Appendix G)

from which settlement can be obtained easily.

Chapter 6 detailed the development of neurofuzzy networks for settlement prediction of
shallow foundations on cohesionless soils. Neurofuzzy networks were used in this

chapter to investigate their capability for predicting the settlement of shallow
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foundations on cohesionless soils and to assist with providing a better understanding of
the relationship between settlement and the factors affecting it. The sensitivity of the
neurofuzzy models to a number of stopping criteria [i.e. Bayesian Information Criterion
(BIC), Akaike’s Information Criterion (AIC) and Final Prediction Error (FPE)] was
investigated. The obtained models were assessed in terms of model accuracy, model
parsimony and model transparency. The optimum neurofuzzy model obtained was
compared with the best back-propagation MLP model obtained in Chapter 5. A number

of conclusions were derived from this chapter. These include:

e Neurofuzzy models have the ability to accurately predict the settlement of shallow
foundations on cohesionless soils and are capable of extracting rules from the data
that make physical sense, which could be used to gain understanding in situations
where data are available but physical relationships are not well understood. In
addition, neurofuzzy networks can be modified by incorporating available
engineering knowledge to improve model performance and enhance the

interpretation of the constructed model.

e The footing width, footing net applied pressure and average SPT blow count were
found to be the most significant factors affecting settlement. This is in agreement

with the results found in Chapter 5.

e All neurofuzzy models were found to be comparable in terms of prediction
accuracy, even though the model that uses the FPE was found to perform

marginally better than the other models.

e  All neurofuzzy models were found to be comparable in terms of model parsimony,
even though the model that uses the AIC was found to be more parsimonious than

the other models with the lowest number of connection weights.

e The neurofuzzy models that use the BIC and AIC were found to be comparable in
terms of model transparency and more transparent than the model that uses the
FPE, as they have fewer number of fuzzy rules. This was attributed to the fact that
the BIC and AIC penalise complex models to a greater extent.
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® The optimum neurofuzzy and MLP models were found to be comparable in terms
of model accuracy, although the MLP model was found to perform slightly better
than the neurofuzzy model.

®  The optimum neurofuzzy model was found to be more parsimonious than the back-

propagation MLP with fewer model inputs and connection weights.

® The optimum neurofuzzy model was found to be more transparent than the back-
propagation MLP model as it was able to describe the relationship between the

model inputs and corresponding output using a set of fuzzy rules.

Finally, Chapter 7 examined the use of stochastic simulation in the analysis of ANN
settlement prediction and produced a set of stochastic design charts for routine use in
practice. It was found that the stochastic analysis was essential to incorporate the
uncertainties associated with the predicted settlements. It was also found that the charts
developed are a useful tool for the design of shallow foundations on cohesionless soils,
as they provide the designer with the level of risk associated with predicted settlements

and thus can give a more realistic indication of what the actual settlement might be.

8.3 Original Contributions of the Research

To the author’s best knowledge, this thesis has made the following original

contributions:

1. The suitability of using two different types of artificial neural networks (ANNG), i.e.
multi-layer perceptrons (MLP) trained with the back-propagation algorithm and B-
spline neurofuzzy networks trained with the adaptive spline modelling of
observation data (ASMOD) algorithm, for predicting the settlement of shallow

foundations on cohesionless soils has been assessed.

2. New guidelines to assist in the development of ANN models have been provided

and in particular, information is given on:
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e How to test the robustness of ANN models. This is a new test that has never

before been proposed in any field of ANN application.
e How to test the capability of the software used for developing ANN models.

e The effect of using different internal network parameters on ANN model
performance, including the number of hidden layer nodes, learning rate,

momentum term and transfer function.

e The effect of the statistical consistency of the training, testing and validation data

sets on ANN model performance.

e The effect of the proportion of the data used for training, testing and validation on

ANN model performance.

e Four different methods for ANN data division, including random data division,
data division to ensure statistical consistency of the subsets needed for ANN
model development, data division using self-organising maps (SOMs) and a new
data division method using fuzzy clustering. The second and third data division
methods have been used to a limited extent in water engineering but never in
geotechnical engineering, whereas the fourth method (fuzzy clustering) has never
before been applied to the development of ANN models in any field.

e The effect of the distribution transformation method for input variables on ANN

model performance.

e How to test the relative importance of ANN model inputs using sensitivity

analysis.

3. An ANN model that has been found to outperform the most commonly used
traditional methods for settlement prediction of shallow foundations on cohesionless
soils has been developed and a database that contains a total of 189 case records of

measured settlements has been provided.

4. A simple and practical formula that is based on the ANN model for settlement
prediction of shallow foundations on cohesionless soils has been introduced and a
series of design charts that are based on the ANN model for settlement prediction

have been generated.
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5. It has been shown that neurofuzzy networks can be used to extract rules from data
that make physical sense, which could be used to gain understanding in situations
where data are available but physical relationships are not well understood. In
addition, it has also been shown that neurofuzzy networks can be modified by
incorporating available expertise to improve model performance and enhance the

interpretation of constructed model.

6. It has been demonstrated that ANNs can be used to provide valuable information
about the relationship between model inputs and their corresponding outputs in the
form of a relatively simple equation (in case of the back-propagation MLP) or a set
of fuzzy rules (in case of neurofuzzy networks), and thus ANNs do not have to be

treated as a “black boxes”.

7. The effect of the parameter uncertainty and prediction method uncertainty in the
analysis of ANN settlement prediction of shallow foundations on cohesionless soils
has been investigated, which, until now, has never been applied to ANN models in
geotechnical engineering. In addition, the effect of varying the amount of the
parameter uncertainty on the magnitude of the predicted settlement has been

investigated.

8. A set of useful stochastic design charts that are based on the ANN method has been

developed and provided for routine use in practice.

8.4 Recommendations for Future Work

1. Despite the good performance of ANNs in this work and in many situations in
geotechnical engineering, they suffer from a number of shortcomings, notably, the
lack of theory to help with their development, the fact that success in finding a good
solution is usually obtained by trial-and-error and their limited ability to explain the
way they use the available information to arrive at such solutions. Consequently,
there is a need for a comprehensive set of guidelines to assist in the development of

ANNG, even though, this thesis has provided a significant contribution in this regard.
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There is also a need for more future research into methods that provide a

comprehensive explanation of how ANNSs arrive at a prediction.

2. The guidelines proposed in this research for the development of ANN models need
to be applied to other case studies to investigate whether they can be considered as

generic or whether they are specific only to the case study considered in this thesis.

3. The ANN model developed in this research is based on 189 data records and is
suitable for use in an interpolative sense within the range of the data used for model
calibration. Consequently, like all empirical models, the range of applicability of
the developed ANN model is constrained by the data used in the model calibration
phase. In order to update the model and make it more accurate in the future, it is
desirable to include additional data so that the model can accurately predicts

settlements across a wider range of footing sizes and soil conditions.

4. Although the ANN model developed in this research was found to outperform all of
the traditional methods for settlement prediction examined, it is based on in-situ
measurements of soil compressibility that use the SPT. Whilst the SPT is not the
most accurate in-situ method for soil compressibility, a model based on the CPT, for
example, is likely to produce even better predictions. However, before such a model
can be developed, it is necessary to obtain an extensive set of CPT-based data and
corresponding settlement measurements. At present, in the published literature,

such data are very limited indeed.

8.5 Conclusions

From the analyses presented in this thesis, it can be concluded that:

e Artificial neural networks (ANNs) have the ability to predict the settlement of

shallow foundations on cohesionless soil with a high level of accuracy and

outperform the most commonly used traditional methods.
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® The new proposed approach for data division that is based on fuzzy clustering
appears to be applicable and provides a useful contribution to the development of
ANN models.

* ANNSs need not to be treated as a “black boxes” as it has been demonstrated that
ANNSs can be translated into a relatively simple equation (in the case of the back-
propagation MLP model) or a set of fuzzy rules (in the case of neurofuzzy networks)
that give valuable information regarding the relationships between the model inputs

and their corresponding outputs.

e The stochastic analysis for ANN models proposed in this study allows the level of
risk associated with predicted settlement to be quantified in the form of a set of
stochastic design charts that provide the designer with more rational settlement
prediction. The charts developed in this work can be used to predict settlements for a
desired reliability level given the deterministic settlement predicted from the ANN
model. This will be a useful tool in the design of shallow foundations on

cohesionless soils.
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Appendix A. Database Used for ANN Models

Case| Footing | Footing | Footing | Average | Footing | Depth | Thick. Soil type Soil density Structure Measured Reference
No. | width | length pet SPT | embedment | of of settlement
(m) (m) applied | blow depth water | soll (mm)
pressure | count (m) table | layer
(kPa) (m) m)

1 36.6 B 193 28 0 15 | >122 | fine to coarse sand dense Chemical storage tank 18 Burland and Burbidge (1985)
2 122 - 130 17 1.2 73 | >78 fine sand medium dense Dextrose storage tank 2 Burland and Burbidge (1985)
3 33 14 52 8 1.8 16 | >25 fine sand very loose Bridge with embankment 20 Burland and Burbidge (1985)
4 33 14 52 8 18 1.6 | >25 fine sand very loose Bridge with embankment 35 Burland and Burbidge (1985)
5 6 16 162 30 28 -15 | >15 fine sand dense RC bridge 10.5 Burland and Burbidge (1985)
6 6 16 162 30 3.6 23 | >15 fine sand dense RC bridge 1 Burland and Burbidge (1985)
7 55 16 93 35 2.85 -16 | >154 fine sand dense RC bridge 6.5 Burland and Burbidge (1985)
8 3 1425 140 38 2.85 -16 | >15.4 fine sand dense RC bridge Burland and Burbidge (1985)
9 44 24 93 10 25 05 | >18 silty sand loose RC bridge Burland and Burbidge (1985)
10| 26 22 147 10 2 0o | >18 silty sand toose RC bridge 12 Burland and Burbidge (1985)
11 25 9.5 284 60 3 - >13.6 fine sand very dense RC bridge 1 Burland and Burbidge (1985)
2| 25 9.5 284 60 3 - | >136 fine sand very dense RC bridge 3 Burland and Burbidge (1985)
13 53 525 121 17 2.6 05 | >14.8 silty sand medium dense RC bridge 12 Burland and Burbidge (1985)
14 19 19 80 15 0 1 silty fine sand loose Embankment 52 Burland and Burbidge (1985)
15| 08 - 78 15 0 1 - silty fine sand loose Load test 7 Burland and Burbidge (1985)
16 | 145 64 74 6 1 17 | >23 sand very loose to loose Residential building 74 Burland and Burbidge (1985)
17| 145 64 74 3 1 1.7 | >3 sand very loose to loose|  Residential building 75 Burland and Burbidge (1985)
18 | 224 84 64 6 1 2 >23 sand very loose to loose|  Residential building 70 Burland and Burbidge (1985)
19 | 224 84 75 6 1 1.6 | >23 sand very loose to loose Residential building 92 Burland and Burbidge (1985)
20 25 25 70 6 i 0.6 | >23 sand very loose to loose|  Residential building 121 Burland and Burbidge (1985)
21 25 25 86 6 26 08 | >3 sand very loose to loose|  Residential building 120 Burland and Burbidge (1985)
22 25 25 63 6 19 08 | >23 sand very loose to loose|  Residential building 84 Burbidge (1982)

23 25 25 75 6 23 08 | >23 sand very loose to loose|  Residential building 87 Burbidge (1982)

24 25 25 76 6 21 09 | >23 sand very loose to loose Residential building 85 Burbidge (1982)

25 25 25 75 6 2.8 06 | >23 sand very loose to loose|  Residential building 87 Burbidge (1982)




Case| Footing | Footing | Footing | Average | Footing | Depth | Thick. Soil type Soil density Structure Measured Reference
No. | width | length net SPT | embedment | of of settlement
(m) (m) | applied | blow depth water | soil (mm)
pressure | count (m) table | layer
(kPa) (m) | (m)
26 60 - 385 47 52 =37 60 slightly gravely sand very dense Nuclear reactor 40 Burland and Bm-bigge (1985)
27 3 4.8 231 20 L5 4 8 fine/medium sand dense to medium Steel mill 8.1 Burbidge (1982)
28 34 54 247 20 1.7 4 8 fine/medium sand dense to medium Steel mill 12.2 Burbidge (1982)
29 [ 37 59 139 20 18 4 8 fine/mediumsand | dense to medium Steel mill 74 Burbidge (1982)
30 [ 37 59 215 20 18 4 8 fine/medium sand | dense to medium Steel mill 15 Burbidge (1982)
31| 37 59 215 20 18 4 ] fine/medium sand | dense to medium Steel mill 64 Burbidge (1982)
2| 37 59 225 20 18 4 8 fine/medium sand | dense to medium Stee! mill 74 Burbidge (1982)
3| 37 5.9 252 20 18 4 8 fine/mediumsand | dense to medium Stec! mill 16.5 Burbidge (1982)
4| 37 59 219 20 18 4 8 finc/medium sand | dense to medium Steel mill 86 Burbidge (1982)
35| 37 59 290 20 18 4 g fine/medium sand | dense to medium Steel mill 11.2 Burbidge (1982)
36 4 64 97 20 4 8 fine/medium sand | dense to medium Steel mill 6.1 Burland and Burbidge (1985)
37 4 64 145 20 4 8 fine/medium sand | dense to medium Steel mill 74 Burland and Burbidge (1985)
38 4 64 225 20 4 8 fine/medium sand | dense to medium Steel mill 9.1 Burland and Burbidge (1985)
39 43 6.9 102 20 21 4 8 fine/medium sand dense to medivm Steel mill 7.1 Burland and meid;; (1985)
40 [ 43 6.9 134 20 2.1 4 8 fine/mediumsand | dense to medium Steel mill 102 Burland and Burbidge (1985)
4| a3 6.9 139 20 2.1 4 8 fine/mediumsand | dense to medium Steel mifl 7.1 Burland and Burbidge (1985)
2| 43 | 69 | 145 | 20 21 4 | 8 | fin/mediumsand | dense to mediam Steel mil 1 Burland and Burbidge (1985)
43 | 43 6.9 150 20 2.1 4 8 fine/medium sand | dense to medium Steel mill 6.8 Burland and Burbidge (1985)
4| 43 69 161 20 21 4 8 fine/medium sand | dense to medium Steel mill 5 Burland and Burbidge (1985)
45| 43 69 177 20 2.1 4 8 fine/mediumsand | dense to medium Steel mill 8.1 Burland and Burbidge (1985)
46 | 46 74 13 20 23 4 8 fine/medivm sand | dense to medium Steel mill 5.1 Burland and Burbidge (1985)
47 | 46 74 166 20 23 4 8 fine/medium sand | dense to medium Steel mill 8.1 Burland and Burbidge (1985)
48 | 49 78 97 20 23 4 8 fine/medium sand | dense to medium Steel mill 43 Burland and Burbidge (1985)
49 [ 43 7.8 102 20 23 4 8 fine/medium sand | dense to medium  Steel milt 6.9 Burland and Burbidge (1985)
50 | 49 78 107 20 23 4 8 fine/mediumsand | dense to medium Steel mill 3.6 Burland and Burbidge (1985)
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Case| Footing | Footing | Footing | Average | Footing Depth | Thick. Soil type Soil density Structure Measured Reference
No. | width | length net SPT | embedment | of of settlement
(m) (m) | applied | blow depth water | soil (mm)
pressure | count (m) table | layer
(kPa) (m) | (m
51 49 78 113 20 23 4 8 fine/medium sand | dense to medium Steel mill 89 Burland and Burbidge (1985)
52 49 7.8 123 20 23 4 8 fine/medium sand dense to medium Steel mill 6.6 Burland and Burbidge (1985)
53 4.9 7.8 182 20 23 4 8 fine/medium sand dense to medium Steel mill 138 Burland and Burbidge (1985)
54 49 7.8 188 20 23 4 8 fine/medium sand dense to medium Steel mill 15 Burland and Burbidge (1985)
55 49 78 199 20 23 4 8 fine/medium sand dense to medinm Steel mill 11.7 Burland and Burbidge (1985)
56 55 838 139 20 26 4 8 fine/medivm sand dense to medium Steel mill 9.4 Burland and Burbidge (1985)
57 6.1 9.8 161 20 3 4 8 fine/medium sand dense to medium Steel mill 10.2 Burland and Burbidge (1985)
58 6.4 10.2 150 20 32 4 8 fine/medium sand dense to medium Steel mill 14.5 Burland and Burbidge (1985)
59 67 10.7 13 21 34 4 8 fine/medium sand dense to medium Steel mill 5 Burland and Burbidge (1985)
60 7 1.2 177 22 35 4 8 fine/medium sand dense to medium Steel mill 83 Burland and Burbidge (1985)
61 421 - 166 21 0 56 | 274 fine/medium sand medium dense Steel storage tank 80 Burland and Burbidge (1985)
62 | 335 - 156 19 0 56 | 274 fine/medium sand loose Steel storage tank 90 Burland and Burbidge (1985)
63| 274 - 154 17 0 56 | 274 fine/medium sand loose Steel storage tank 100 Burland and Burbidge (1985)
64 55 101 233.6 60 9.7 -72 | 213 fine sand very dense Reactor building 25 Burland and Burbidge (1985)
65 35 35 25 12 15 0 16.2 medium sand loose Building 3 Burland and Burbidge (1985)
66 22 75 82 21 5 10 | >50 medium sand medium dense Coke oven 17 Burland and Burbidge (1985)
67 2 - i 21 5 10 >50 medium sand medium dense Chimney 10.5 Burland and Burbidge (1985)
68 25 - 245 16 0 10 >50 medium sand loose Plate load tests 11 Burland and Burbidge (1985)
69 1 - 2475 16 0 10 | >50 medium sand loose Plate load tests 9.9 Burland and Burbidge (1985)
70 16 20.5 70 12 L5 small | 26.7 fine sand loose Multi storey building 90 Burland and Burbidge (1985)
! 11 334 120 24 5 32 | 125 medium sand medium dense Building 19.6 Burbidge (1982)
72 52 5.2 134 22 5 32 125 medium sand medium dense Building 14.7 Burbidge (1982)
73 43 43 134 20 5 32 | 125 medium sand medium dense Building 154 Burbidge (1982)
74| 41 4.1 125 20 5 32 | 125 medium sand medium dense Building 17.8 Burbidge (1982)
75 37 37 135 20 5 32 | 125 medium sand medium dense Building 10.1 Burbidge (1982)
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Case| Footing | Footing | Footing | Average | Footing | Depth | Thick. Soil type Soll density Structure Measured Reference
No. | width | length net SPT | embedment | of of settlement
(m) (m) | applied | blow depth water | soil (mm)
pressure | count (m) table | layer
(kPa) (m (m)

76 | 34 34 129 20 5 32 | 125 medium sand medjum dense Building 11.5 Burbidge (1982)
g 1.5 15 150 35 0.6 >3 >3 medium sand dense Test footings 21 Burland and Em-bidge (1985)
8| 1s 15 150 50 06 >3 | >3 medium sand very dense Test footings 1 Burland and Burbidge (1985)
79 12 1.2 150 28 0.6 >3 >3 medium sand dense Test footings 1.3 Burland and Burb?lg:e (1985)
80 | 12 12 150 45 06 >3 | >3 medium sand very dense Test footings 06 Burland and Burbidge (1985)
81 13 31s 193 18 2.1 0 192 fine to coarse sand mediurm. dense Mutlti storey office block 22 Burland and Burbidge (1985)
82 13 274 193 18 2.1 0 19.2 fine to coarse sand medium dense | Muli storey office block 235 Burland and Burbidge (1985)
83 13 225 193.8 18 21 0 19.2 fine to coarse sand medium dense Multi storey office block 18.8 Burland and Burbidge (1985)
84 | 172 433 34 17 46 16.7 sand/gravel medium dense Student centre 3.6 Burbidge (1982)
85 1.2 1.2 215 29 2.6 >25 | >20 sand with gravel dense Plate load tests 25 Burland and_ﬁgbidge (1985)
86 1.2 1.2 215 26 2.6 >2.5 | >20 sand with gravel dense Plate load tests L5 Burland and Burbidée (1985)
87 12 1.2 215 18 26 >25 | >20 sand with gravel medium dense Plate load tests 8.6 Burland and Burbidge (1985)
88 34 57 270 30 7.9 09 | >27 medium sand dense 32 Storey building 22 Burland and Burbidge (1985)
89 183 - 41 20 03 1.8 | >89 silty fine sand medium dense Tank 4.8 Burland and Burbidge (1985)
90 152 - 33 20 0.3 1.8 | >89 silty fine sand medium dense Tank 28 Burland and Burbidge (1985)
91 4 7 512 37 5 5.6 7 sandy gravel dense 12 Storey tower block 12.8 Burland and Burbidge (1985)
92 1.2 1.2 300 50 0.5 dry 4.1 sand/gravel very dense Plate load tests 45 Burland and Bu:bidgc (1985)
93 14 14 300 50 37 1.5 1.5 sand/gravel very dense Plate load tests 1.5 Burland and Bu_[bﬁg_e (1985)
94 0.9 09 300 30 12 3.7 6.1 sand/gravel dense Plate Joad tests 4 Burland and Bm—bidge (1985)
95 0.9 0.9 300 20 3.1 0.9 6.1 sand/gravel medium dense Plate load tests 6.7 Burland and Burbidgc (]985)
9% 0.9 0.9 300 20 1.2 1.8 34 sand/gravel medium dense Plate load tests 27 Burland and Burbidge (1985)
97 45 305 91 12 2.7 -1.1 7.1 silty sand loose Bridge 11 Burland and Burbidge (1985)
98 1.1 1.1 78 13 1.2 1.5 - sandy gravel loose Factory building 2 Burland and Burbidge (1985)
99 1.5 LS 77 13 1.2 1.5 - sandy gravel medium dense Factory building 21 Burland and Burbidge (1985)
100 1.5 L5 77 13 1.2 1.5 - sandy gravel medium dense Factory building 13 Burland and Burbidge (1985)
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Case| Footing | Footing | Footing | Average | Footing Depth | Thick. Soil type Soil density Structure Measured Reference
No. | width | length net SPT | embedment | of of settlement
(m) (m) applied | blow depth water | sofl (mm)
pressure | count (m) table | layer
(kPa) (m) m
01| 236 | 269 167 35 3 03 | >25 | fine to medium sand dense Various structures 154 Burland and Burbidge (1985)
02| 18 1.8 230 25 3 03 | 525 | finctomediumsand | medium dense Various structures 34 Burland and Burbidge (1985)
103 14 14 230 25 3 03 | >25 | fine to medium sand medium dense Various structures 39 Burland and Burbidge (1985)
04| 1 22 | 284 25 3 53 | 525 | fine to medium sand | medium dense Various structurcs 105 Burland and Burbidge (1985)
105| 45 [X] 195 35 3 03 | >25 | fine to medium sand dense Various structures 39 Burland and Burbidge (1985)
106 15 72.9 81 35 3 03 | >25 | fine to medium sand dense Various structures 5.4 Burland and Burbidge (1985)
07| 16 | 126 | 250 25 04 76 | >25 | fine to medium sand dense Various structures 93 Burland and Burbidge (1985)
108 12 127 250 25 03 27 | >25 | finetomediumsand | mediumdense Various structures 10 Burland and Burbidge (1985)
109 1 1 294 40 0 3 >25 | fineto mediumsand | medium dense Various structures 5 Burland and BM (1985)
10| 33 57 304 40 3 03 | >25 fine to medium sand medium dense Various structures 11.6 Burland and Burbidég( 1985)
111 3.6 6.3 304 40 3 0-3 >25 fine to medium sand medium dense Various structures 133 Burland and Burbidge (1985)
112 45 6.8 304 40 3 0-3 >25 fine to medium sand medium dense Various structures 183 Burland and Burbid-ée (1985)
13| 229 | 326 165 30 3 03 | >25 | fineto medium sand dense Building 204 Burland and Burbidge (1985)
1a| 217 | 222 148 30 3 03 | >25 | fine to medium sand dense Building 19.8 Burland and Burbidge (1985)
15| 1 1 196 25 3 03 | >25 | finetomediumsand | medium dense Building 6 Burland and Burbidge (1985)
116 | 1 1 20 34 0 >2 | - fine sand dense Test footings 36 Burland and Burbidge (1985)
n7| 1 1 564 | 45 05 >2 | - fine sand very dense Test footings 44 Burland and Burbidge (1985)
s | 1 i 339 45 05 0 = | compacted moistsand | medium densc Test footings 6 Burland and Burbidge (1985)
119 1 1 284 45 0.5 0 - compacted moist sand | medium dense Test footings 4.7 Burland and Burbidée (1985)
120 1.2 1.2 320 25 0 - - sand/gravel dense Plate load tests 28 Burland and Burbidge (1985)
121 122 122 181 53 3 1 >32 | coarse sand with gravel very dense Bridge 9.6 Burbidge ( 19_-8.5
122 225 65 221 20 10 25 | >30 fine coarse sand medium dense 25 Storey building 21 Burland and Burbidge (1985)
123 10 - 240 60 L5 10 12 medium sand very dense Storage tank 7 Burland and Burbidge (1985)
124 20 20 85 5 3 -1 32 silty fine sand very loose Building 116 Burland and Burbidge (1985)
125 20 20 85 5 -1 45 silty fine sand very loose Building 81 Burland and Burbidge (1985)
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Case| Footing | Footing | Footing | Average | Footing Depth | Thick. Soil type Soil density Structure Measured Reference
No. | width | length net SPT | embedment | of of settiement
(m) (m) applied blow depth water | soil (mm)
pressure | count (m) table | layer
(kPa) (m) | (m
126 | 41.2 41.2 104 36 10 -5.5 13 sandy gravel dense Multi storey building 10 Burland and Burbidge (1985)
127 09 09 133 5 03 deep - fine sand very loose Plate load tests 7.6 Burland and Burbidge (1985)
128 0.9 0.9 113 6 0.9 deep - fine sand very loose Plate load tests 64 Burland and Burbidge (1985)
129 12 1.2 199 7 02 deep | - fine sand very loose Plate load tests 13 Burland and Burbidge (1985)
130 1.2 12 268 8 09 deep - fine sand very loose Plate load tests 12.7 Burland and Burbidge (1985)
131 176 84 218 20 10.7 22 | >37 sand/gravel medium dense 30 Storey building 26 Burland and Burbidge (1985)
132 16 43 209 14 7.3 -1.8 | >23 sand/grave! medium dense 20 Storey building 18.6 Burland and Burbidge (1985)
133 | 145 14.5 2535 26 35 75 | 216 sand/gravel medium dense Boiler house 18 Burland and Burbidge (1985)
134 33 - 191 34 53 -2.5 82 sand/gravel dense Reactor building 438 Burland and Burbidge (1985)
135 15 26 136 55 6 1.5 - sand/gravel very dense 22 Storey building 16.2 Burbidge (1982)
136 | 26 10.7 293 37 1 - 5.1 sand/gravel dense Building 109 Burland and Burbidge (1985)
137 244 - 120 27 0 - - sand dense Steel oil tank 14.3 Burland and Bm-bidge (1985)
138 2.1 24 584 50 24 - - sand very dense Machine hall 44 Burland and Burbidge (1985)
139 21 2.1 697 50 15 - - sand very dense Machine hatl 23 Burland and Burbidge (1985)
140 1.8 28 575 50 15 - - sand very dense Machine hall 2.7 Burland and Burbidge (1985)
141 21 24 584 50 3 - - sand very dense Machine hall 4.6 Burland and Burbidge (1985)
142 21 41 347 50 3 @ s sand very dense Machine hall 18 Burland and Burbidge (1985)
143 | 302 30.8 386 18 2.7 6.5 23 fine coarse sand medium dense § Storey building 91.6 Burland and Burbidge (1985)
144 6 6 190 7 0 0.9 18 fine sand very loose Test footings 74 Burland and Burbidge (1985)
145 20 20 145 7 0 0.9 18 fine sand loose Embankment 120 Burland and Burbidge (1985)
146 2.8 14 142 4 1 B 10 fine sand very loose Bridge 97 Burland and Burbidge (1985)
147 33 14.5 9 4 1 - 10 fine sand very loose Bridge 37 Burland and Burbidge (1985)
148 | 131 239 47.6 25 3 05 - gravely sand Residential building 36 Maugeri et al. (1998)
149 14 2.6 18.32 15 25 0 - gravely sand - Residential building 42 Maugeri et al. (1998)
150 1.5 1.5 666 18 0.762 4.14 | 994 silty fine sand medium dense Test footings 25 Briaud and Gibbens (1999)

1414

SI2PO NNV 241 40f pasy) aspqoip( 'y xipuaddy



Case| Footing | Footing | Footing | Average | Footing | Depth | Thick. Soll type Soil density Structure Messured Reference

No. | width | length net SPT | embedment | of of settlement

{m) (m) applied | blow depth water | soil (mm)
pressure | count (m) table | layer
(kPa) (m) | (m)

151 25 2.5 576 18 0.762 4.14 | 994 silty fine sand medium dense Test footings 25 Briaud and Gibbens (1999)
152 3 500 18 0.762 4.14 | 994 silty fine sand medium dense Test footings 25 Briaud and Gibbens (1999)
153 3 500 18 0.889 4 9.8 silty fine sand medium dense Test footings 25 Briaud and Gibbens (1999)
154 15 20 148 20 0 1.1 >30 silty gravelisilty sand | loose to medium Load test 40 Picomell and del Monte (1988)
155| 52 19.4 153.2 44 0 3.1 - sand . Bridge 89 Wahls (1997)

156 52 19.4 1278 58 0 37 B sand a Bridge 17 Wahls (1997)

157 46 16 111 43 0 35 - sand - Bridge 239 Wahls (1997)

158] 5.1 16 11638 19 12 4 - sand - Bridge 193 Wahls (1997)

159 | 38 12.5 9% 12 15 2.7 S sand - Bridge 155 Wahls (1997)

160 34 227 81.4 34 0 9.4 - sand " Bridge 107 Wahls (1997)

161 56 24.1 112 22 1.5 52 - sand - Bridge 15.5 Wahls (1997)

162| 64 6.4 100.5 18 1.5 34 - sand . Bridge 7.1 Wahls (1997)

163| 64 93 71.8 18 1.5 34 - sand - Bridge 6.6 Wahls (1997)

164| 49 8.2 112 20 15 52 - sand - Bridge 74 Wahls (1997)

165| 49 5.6 1187 2 15 52 - sand - Bridge 6.4 Wahls (1997)

166 25 13.1 158 21 0 8.5 - sand - Bridge 11.7 Wahls (1997)

167| 5.1 234 1149 42 18 49 - sand = Bridge 58 Wahls (1997)

168| 4.6 232 112 24 2 44 - sand - Bridge 112 Wahls (1997)

169 | 46 20.5 85.7 39 21 3.4 - sand - Bridge 211 Wahls (1997)

170| 85 8.5 1025 24 0 134 - sand - Bridge 163 Wahls (1997)

171] 61 30.7 144.1 23 6.7 6.7 : sand R Bridge 1.7 Wahls (1997)

1712} 61 30.7 155.6 38 15 1.8 = sand - Bridge 168 Wahls (1997)

173| 6.6 13.5 168.1 39 0 52 - sand - Bridge 155 Wahls (1997)

174 49 136 161.4 49 0 09 - sand - Bridge 7.1 Wahls (1997)

175 S 85 181.9 24 25 5 - sand - Bridge 119 Wahls (1997)
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Case| Footing | Footing | Footing | Average Footing Depth | Thick. Soil type Soil density Structure Measured Reference
No. | width | length net SPT | embedment | of of settlement
(m) (m) | applied | blow depth water | soil (mm)
pressure | count (m) table | layer
(kPa) (m) (m)
176 33 14.5 98.6 7 2 - sand - Bridge 371 Wahls (1997)
177 3 10 230.8 50 45 - sand - Bridge 211 Wahls (1997)
178| 5.8 24 72.8 17 25 2 - sand = Bridge 1.9 Wahls (1997)
179 | 26 21 196.3 9 2 - sand - Bridge 33 Wahis (1997)
180 4 7 507.5 32 11.6 - sand - Bridge 11.9 Wahls (1997)
181 6 16 158 42 2.8 17 - sand - Bridge 79 Wabhls ( 1 99‘7)
182 6 16 2145 42 3.6 25 - sand - Bridge 4.1 Wahls (1997)
183 7 36 131.2 42 23 12 - sand - Bridge 11.9 Wahls (1997)
184 52 28 95.8 42 23 12 - sand - Bridge 99 Wahls (1997)
185 9 72 115 11 45 0 >15 |fine/medium clayey sand| medium dense 18 Storey building 25 Bazaraa ( 1967)
186 24 39 190 22 4.5 25 15.5 clayey sand medium dense 11 Storey building 85 Bazaraa (1967)
187 16.2 25.2 154 16 48 0.6 12 fine to medium sand - 2] Storey building 15 Bazaraa (1967)
188 | 2.25 24 400 8 23 25 1.84 sand - Boiler and shop 43 Bazaraa (1967)
189 | 255 25.5 175 21 255 0 8.7 fine grey sand - Regenerator 25 Bazaraa (1967)
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Appendix B

Database Used for Synthetic Clean and Noisy

Data
Input variables Output variable
Case No. B (m) q (kPa) N S, (mm) S, (mm)
(clean) (noisy)
1 0.6 6.8 5.1 1.1 1.3
2 26.0 141.5 50.5 54 3.6
3 54 156.2 20.4 13.7 12.4
4 21.1 709.8 24.5 56.2 51.4
5 21.1 42.8 42.2 1.9 2.2
6 28.1 639.4 7.0 177.0 152.9
7 10.6 319.1 37.1 16.2 17.0
8 5.0 731.0 45.4 28.6 21.3
9 18.2 295.6 25.5 22.4 37.5
10 3.3 547.7 21.9 42.1 40.1
11 7.1 103.9 11.3 16.8 28.2
12 43.6 699.6 53.2 25.9 23.5
13 39.6 118.1 32.1 7.2 8.1
14 33 59.0 9.2 10.7 12.3
15 20.2 604.2 10.9 107.1 106.7
16 38.9 669.0 54.1 24.3 15.7
17 23.1 79.7 45.1 34 3.3
18 21.5 442.0 42.0 20.4 23.2
19 32.6 610.7 53.0 22.6 22.3
20 46.6 778.5 5.7 267.9 284.0
21 6.6 657.4 334 35.9 41.0
22 35.0 515.8 37.3 27.1 224
23 12.5 131.7 9.1 27.3 35.0
24 46.5 290.7 48.3 11.8 11.2
25 1.4 729.2 49.1 20.5 20.4
26 21.0 76.7 47.0 3.1 4.2
27 19.5 549.4 59.1 18.0 19.1
28 5.2 86.0 10.9 14.1 15.9
29 17.6 765.3 36.1 40.9 35.9
30 10.7 362.9 43.1 15.9 13.3
31 49.5 143.0 24.6 114 12.3
32 23.6 608.0 7.6 154.5 187.7
33 14.2 106.2 58.7 34 34
34 21.0 788.7 35.5 43.1 40.7
35 46.3 12.0 10.0 2.3 1.9
36 12.5 134.6 9.5 26.9 42.9
37 17.7 381.3 37.9 19.4 20.0
38 28.2 319.2 17.6 353 37.3
39 38.9 50.3 23.5 42 3.5
40 39.1 269.1 53.5 9.8 3.1
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Appendix B. Database Used for Synthetic Clean and Noisy Data

Input variables Output variable
Case No. B (m) q (kPa) N S, (mm) §, (mm)
(clean) (noisy)

41 32.5 480.0 35.0 26.8 36.3
42 19.1 331.6 29.4 21.8 15.0
43 40.4 797.2 15.2 103.2 116.8
44 17.5 87.7 52.5 32 2.4
45 35.8 692.9 5.8 233.0 198.1
46 38.6 639.4 50.4 24.9 13.5
47 13.7 359.1 39.3 17.4 12.7
48 40.5 307.1 57.3 10.5 19.2
49 27.2 642.9 8.5 147.3 191.9
50 20.7 630.0 14.0 87.4 56.7
51 35.2 636.7 53.8 23.2 12.0
52 18.3 206.0 12.9 30.6 49.6
53 29.9 672.2 9.5 137.4 164.2
54 14.7 372.5 40.0 17.8 12.0
55 21.1 124.9 53.6 4.5 3.7
56 36.3 639.9 52.9 23.7 20.9
57 14.1 494 50.9 1.8 2.0
58 0.55 131.0 22.3 5.1 6.3
59 38.2 242.6 51.0 9.3 5.4
60 473 655.3 42.9 30.1 29.8
61 343 73.6 31.8 4.5 53
62 2.6 295.9 42.8 11.1 4.3
63 19.1 73.8 48.8 2.9 1.2
64 13.3 247.1 24.2 19.5 17.4
65 7.4 670.4 343 36.1 12.0
66 44.0 167.1 34.0 9.6 3.5
67 4.1 116.9 16.3 12.4 5.8
68 4.3 739.2 47.3 27.3 36.8
69 17.4 144.5 5.5 50.5 40.8
70 5.8 782.6 51.6 27.4 32.6
71 25.4 258.3 12.3 40.9 51.3
72 319 229.1 56.0 8.0 7.4
73 28.3 201.4 56.2 7.0 5.1
74 23.5 686.3 18.6 71.7 87.2
75 12.6 642.7 24.7 49.6 56.2
76 15.6 219.4 17.8 23.6 31.3
77 41.3 460.7 22.6 40.0 37.0
78 48.6 163.8 28.4 11.3 12.6
79 25.9 196.7 58.2 6.6 6.4
80 7.3 208.1 25.5 15.0 5.3
81 20.8 475.1 474 19.4 30.7
82 49.3 453.8 12.8 69.8 12.2
83 5.6 682.5 38.0 32.3 36.2
84 31.8 336.6 16.0 41.2 41.1
85 33.0 631.6 55.5 22.3 27.7
86 23.4 745.0 26.8 54.0 76.8
87 374 702.6 5.5 250.5 30.3
88 15.5 790.0 41.9 36.2 50.2
89 21.3 73.9 46.3 3.1 2.9
90 9.9 136.0 12.6 20.2 8.2
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Input variables Qutput variable
Case No. B (m) q (kPa) N S, (mm) S, (mm)
(clean) (noisy)
91 26.7 253.1 10.1 48.9 38.0
92 1.6 559.9 254 31.6 35.0
93 6.2 514.3 14.1 66.2 66.0
94 14.1 212.6 18.5 22.0 217
95 27.8 247.8 8.1 59.4 49.3
96 37.0 164.6 41.4 7.8 7.7
97 37.5 556.1 40.1 27.2 23.2
98 34.9 315.7 9.7 63.5 43.2
99 21.5 117.8 52.2 4.3 6.0
100 26.4 601.6 58.7 20.0 23.9
101 41.9 527.4 31.2 33.2 37.5
102 7.1 233.2 29.1 14.7 12.8
103 41.7 170.9 37.1 9.0 11.1
104 28.1 741.8 21.1 68.5 106.7
105 32.1 61.5 32.6 3.6 5.1
106 48.2 5.0 6.9 1.4 1.5
107 38.9 684.9 56.3 23.9 28.3
108 1.6 545.2 23.4 33.2 40.1
109 28.5 473.9 38.6 24.0 26.0
110 29.0 444 .4 34.1 25.5 16.0
111 33.2 444.1 29.3 29.7 43.6
112 23.2 384.5 32.2 23.2 30.1
113 12.2 532.1 9.8 102.5 114.4
114 45.1 424.5 13.4 62.1 40.0
115 44.1 208.7 39.7 10.3 9.4
116 31.6 673.8 7.9 167.3 196.3
117 1.3 53.5 10.7 6.6 13.3
118 18.5 97.9 52.8 3.5 6.6
119 3.9 309.8 43.3 12.3 12.6
120 20.2 39.4 42.7 1.7 1.0
121 25.5 7214 21.2 66.3 38.5
122 4.1 534.4 19.2 48.2 52.6
123 333 246.5 56.9 8.5 9.8
124 339 206.8 50.8 7.9 9.5
125 42.6 269.8 49.8 10.6 11.5
126 26.1 198.5 58.2 6.6 2.1
127 46.6 606.8 36.9 323 7.85
128 46.3 733.5 54.8 26.4 34.1
129 14.4 433.4 48.8 17.0 14.9
130 28.1 217.6 58.7 7.2 7.6
131 1.5 84.0 8.1 19.1 18.4
132 17.4 507.6 55.7 17.6 33.8
133 40.3 166.0 38.0 8.6 6.9
134 49.0 576.5 30.0 37.8 35.6
135 49.7 630.6 36.8 33.7 45.5
136 6.0 273.0 35.8 13.8 10.2
137 224 90.9 47.5 3.7 3.9
138 21.2 780.1 34.1 44.4 434
139 0.9 5.5 59.5 0.1 0.1
140 46.0 43.6 14.6 5.8 6.9
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Input variables Output variable
Case No. B (m) q (kPa) N S _(mm) §, (mm)
(clean) (noisy)
141 46.0 20.6 11.5 3.5 2.7
142 44.9 635.3 427 29.3 42.9
143 0.9 658.0 39.9 18.4 25.5
144 6.5 774.5 49.7 28.4 33.3
145 114 403.5 48.0 ~ 159 20.0
146 40.1 382.3 13.1 57.3 85.6
147 17.1 688.1 26.0 51.0 61.2
148 34.4 177.4 46.1 7.5 3.6
149 45.3 667.2 46.7 28.1 279
150 26.7 597.4 57.7 20.2 22.4
151 0.9 596.6 314 21.3 14.3
152 20.4 792.0 36.7 41.8 38.0
153 31.0 544.2 45.6 23.3 21.3
154 32.7 303.0 10.3 57.2 64.7
155 20.5 310.7 24.9 24.1 20.8
156 20.3 326.1 27.3 23.1 24.2
157 31.9 529.2 42.5 24.3 18.1
158 39.5 66.0 25.0 5.1 8.7
159 35.3 322.7 10.2 61.9 59.0
160 254 662.0 13.2 97.8 163.8
161 47.9 401.2 7.0 111.9 101.6
162 4.0 570.1 24.2 40.7 45.8
163 33.6 507.1 37.6 26.4 30.4
164 22.6 771.2 31.3 47.8 47.7
165 374 702.7 5.4 252.8 163.5
166 20.0 264.5 19.2 26.6 25.8
167 49.9 119.7 20.9 11.2 12.8
168 25.9 394.5 30.6 25.1 24.9
169 28.9 543.8 47.9 22.2 23.5
170 14.6 63.0 52.3 2.3 2.6
171 41.7 493.7 26.8 36.2 29.9
172 29.1 401.0 27.9 28.0 35.9
173 19.9 600.3 10.8 107.7 101.6
174 33.2 412.0 24.9 324 323
175 31.9 420.3 27.5 29.9 40.0
176 7.0 446.5 58.7 13.9 14.9
177 29.7 697.3 13.2 103.0 116.5
178 12.4 291.6 31.3 17.7 15.5
179 3.2 41.1 6.9 9.9 8.3
180 15.2 515.3 59.2 16.7 18.0
181 5.2 52.9 6.3 14.8 18.0
182 45.7 161.5 31.3 10.1 10.1
183 48.2 57.7 14.2 7.9 7.5
184 18.2 606.9 13.6 86.3 72.2
185 43.3 703.0 54.0 25.6 40.8
186 41.7 133.1 31.9 8.2 8.4
187 14.8 160.9 10.6 29.0 30.6
188 43.1 380.6 9.5 78.5 66.1
189 37.2 717.1 7.6 183.4 58.0
190 25.9 149.1 51.6 5.6 7.6
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Input variables Qutput variable
Case No. B (m) q (kPa) N S, (mm) S, (mm)
(clean) (noisy)
191 42.0 182.0 38.3 9.3 6.4
192 40.1 173.8 39.2 8.7 9.8
193 1.8 781.8 55.9 20.6 15.7
194 37.2 605.0 47.1 25.2 21.4
195 36.8 711.1 7.2 191.7 104.4
196 45.7 438.9 14.7 58.7 43.0
197 34.8 425.6 25.0 334 60.9
198 26.4 656.1 11.2 114.3 148.9
199 32.1 325.6 14.2 44.8 29.1
200 31.9 218.2 54.5 7.8 4.0
201 333 307.6 10.3 58.2 94.1
202 46.1 594.5 35.8 32.7 39.0
203 21.1 485.8 48.5 19.4 13.0
204 36.8 447.0 25.8 34.0 28.5
205 1.6 358.3 52.6 9.7 8.6
206 49.7 767.0 55.7 27.2 30.5
207 20.5 132.5 55.3 4.6 5.6
208 8.1 779.6 48.7 29.7 17.3
209 30.8 655.3 6.2 206.9 204.8
210 34.3 241.2 55.0 8.6 10.1
211 45.2 5854 35.5 324 12.7
212 6.1 498.2 11.9 75.6 32.6
213 44.0 387.0 9.4 80.7 72.2
214 43.5 409.8 13.1 61.4 20.5
215 6.3 392.9 52.1 13.7 5.0
216 48.3 149.1 26.8 10.9 52
217 20.1 197.4 9.7 39.2 52.8
218 21.6 45.1 42.0 2.0 1.6
219 6.7 729.9 433 30.8 36.8
220 43.6 156.4 33.0 9.3 11.7
221 48.9 84.7 17.2 9.7 9.0
222 26.5 508.6 45.6 21.7 16.0
223 5.0 201.4 27.1 13.2 16.1
224 40.7 213.4 44.1 9.5 10.7
225 383 531.2 35.7 29.2 38.7
226 49.2 4729 15.5 60.0 554
227 17.4 442.2 46.6 18.3 20.4
228 48.5 470.8 16.0 57.8 56.7
229 10.9 629.2 24.7 48.1 17.0
230 46.7 451.9 15.5 57.5 90.9
231 24.6 575.3 57.1 19.6 3.4
232 0.8 371.7 55.3 7.4 8.3
233 18.8 83.7 50.4 32 3.2
234 29.8 469.6 36.6 25.1 31.2
235 11.2 330.6 38.0 16.4 23.4
236 14.2 128.8 6.8 36.1 4.3
237 19.6 446.3 44.8 19.3 26.7
238 21.9 344 40.1 1.6 1.5
239 48.0 221.0 37.0 11.7 4.8
240 25.4 693.4 17.5 77.2 60.0
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Input variables Qutput variable
Case No. B (m) q (kPa) N S (mm) §, (mm)
(clean) (noisy)

241 29.2 537.6 46.7 22.5 25.0
242 25.0 444.0 38.5 22.5 224
243 2.0 290.9 42.8 10.3 10.2
244 47.1 55.0 15.0 7.2 5.9
245 4.9 491.9 12.3 70.6 70.4
246 8.4 303.9 37.5 15.0 12.8
247 22.1 146.6 55.5 5.1 34
248 29.4 8.7 28.3 0.6 0.8
249 19.8 635.5 15.7 78.5 93.8
250 8.2 183.6 21.0 16.2 18.2
251 1.0 192.5 30.3 7.5 6.5
252 20.3 557.2 59.3 18.2 22.4
253 34.2 94.0 34.8 5.3 8.2
254 3.7 136.9 19.6 11.9 16.6
255 49.8 422.2 7.9 105.4 114.6
256 9.5 60.4 57.6 1.9 2.3
257 243 419.0 35.8 22.8 27.5
258 6.4 448.9 59.8 13.7 14.9
259 39.2 664.3 53.1 24.6 15.4
260 0.5 559.5 26.6 17.7 26.0
261 19.9 49.0 44.4 2.1 2.7
262 29.4 464.2 36.3 24.9 27.8
263 45.0 220.7 40.3 10.7 6.9
264 40.8 612.9 44.2 27.2 24.8
265 19.8 797.0 38.0 40.6 47.6
266 23.9 292.7 18.7 30.4 61.6
267 48.3 799.4 6.8 232.1 430.3
268 13.4 511.9 5.7 170.2 174.2
269 29.3 251.9 7.1 69.2 39.8
270 46.0 249.9 43.2 11.3 6.6
271 36.6 342.1 11.4 58.6 63.9
272 8.2 622.7 26.8 43.2 50.2
273 41.1 33.2 18.8 3.4 4.1
274 47.4 442.1 13.2 65.6 71.0
275 43.3 730.0 57.7 24.9 8.1
276 37.5 232.3 50.3 9.0 2.2
277 4.8 606.1 28.3 37.9 49.0
278 47.6 121.8 23.7 10.1 8.8
279 33.4 273.2 5.5 97.2 102.9
280 11.8 701.4 33.7 39.5 38.1
281 3.2 668.9 38.8 28.8 55.4
282 324 22.3 26.9 1.6 1.3
283 16.0 326.1 32.1 19.5 18.4
284 29.0 425.0 31.3 26.5 35.7
285 36.0 443.3 26.1 33.3 24.7
286 38.7 138.2 35.8 7.5 7.9
287 43.5 115.5 27.5 8.2 8.1
288 11.1 509.9 8.0 120.0 128.2
289 26.1 643.4 9.8 128.1 151.3
290 19.0 137.2 57.6 4.6 3.5
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Input variables Output variable
Case No. B (m) q (kPa) N S, (mm) Sp (mm)
(clean) (noisy)

291 314 378.2 22.2 33.3 48.9
292 27.5 720.7 18.9 74.5 103.0
293 43.3 426.7 15.7 53.4 62.6
294 42.5 436.8 18.0 47.7 60.0
295 1.0 228.6 35.2 7.9 11.9
296 45.0 625.2 41.2 29.8 35.8
297 22.5 415.8 373 21.7 10.5
298 32.1 791.9 23.6 65.6 65.2
299 33.9 700.5 9.0 152.7 169.8
300 44.5 599.6 38.3 30.8 20.7
301 12.7 578.7 15.8 69.8 63.4
302 40.1 791.3 14.7 105.8 96.8
303 45.9 176.9 33.3 10.4 11.8
304 374 132.9 36.7 7.1 6.1
305 34.4 644.6 55.7 22.7 23.8
306 11.6 696.8 33.3 39.7 29.5
307 6.2 7174 42.2 30.9 51.8
308 32.5 14.9 25.7 1.1 1.0
309 38.2 794.3 17.2 90.5 151.5
310 41.1 663.5 50.9 25.6 23.3
311 16.7 161.9 8.6 36.2 40.7
312 28.6 283.4 12.2 45.3 52.0
313 31.5 762.7 20.3 73.6 73.3
314 21.4 749.3 29.7 49.0 31.7
315 34.8 150.2 41.9 7.0 6.8
316 34.3 514.5 37.8 26.7 30.3
317 24.6 656.8 13.3 96.2 95.2
318 353 548.4 41.5 25.9 27.5
319 40.3 167.4 38.1 8.6 9.8
320 43.4 692.8 52.4 26.0 21.5
321 12.7 36.1 50.6 1.3 1.7
322 44.1 61.4 19.2 6.2 5.9
323 36.1 5973 47.3 24.8 24.7
324 15.6 498.2 56.3 17.0 22.7
325 394 149.7 36.7 8.0 8.5
326 254 635.6 9.4 130.9 148.0
327 37.1 795.6 18.6 84.0 73.7
328 38.2 17.5 19.7 1.7 1.4
329 14.9 3122 314 19.0 20.5
330 4.3 435.0 5.2 144.9 176.1
331 32.5 59.7 32.0 3.6 3.6
332 26.3 513.2 46.5 21.5 20.3
333 274 466.7 38.9 23.4 19.6
334 41.6 762.6 9.0 165.3 262.9
335 25.7 226.4 7.5 58.3 60.3
336 28.0 305.1 15.9 37.4 39.4
337 28.6 122.8 45.0 53 4.4
338 20.8 203.9 9.9 39.8 12.5
339 38.8 285.1 56.1 10.0 13.5
340 45.9 300.5 50.4 11.7 8.1
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Input variables Output variable
Case No. B (m) q (kPa) N S, (mm) §, (mm)
(clean) (noisy)

341 27.1 152.2 50.7 5.8 6.6
342 37.5 70.4 27.9 4.9 3.7
343 36.9 21.7 21.8 1.9 1.6
344 46.4 711.3 51.6 27.2 14.8
345 19.3 15.9 40.6 0.7 0.5
346 46.5 496.9 21.9 44.7 81.5
347 4.7 696.9 41.0 30.0 39.1
348 8.4 313.5 38.8 15.0 9.7
349 46.2 84.9 20.2 8.2 4.2
350 15.9 335.2 33.5 19.2 31.1
351 34.3 693.8 7.6 177.7 212.2
352 38.0 459.9 26.2 34.5 23.2
353 4.1 37.4 54 11.9 10.0
354 34.2 74.0 32.1 4.5 4.0
355 10.3 372.4 44.8 15.6 17.6
356 7.0 553.5 18.5 54.8 66.7
357 42.2 611.9 42.5 28.3 16.5
358 36.9 257.9 54.5 9.3 9.2
359 39.3 553.2 37.6 28.9 34.2
360 27.9 709.4 16.9 82.0 32.2
361 35.8 491.8 33.1 29.2 12.5
362 34.0 199.0 49.6 7.8 7.0
363 22.9 120.2 51.0 4.5 1.5
364 34.1 697.0 8.3 163.3 60.1
365 8.9 371.8 46.3 15.0 7.1
366 8.9 585.0 20.8 52.6 70.8
367 14.2 221.3 19.6 21.5 17.4
368 26.8 555.6 51.9 20.9 24.9
369 44.2 417.4 13.4 61.2 76.7
370 25.0 468.0 41.7 21.8 20.4
371 6.1 682.4 374 33.1 24.4
372 49.5 719.7 49.4 28.7 34.9
373 18.8 781.6 37.0 40.8 46.3
374 6.3 185.8 234 14.4 19.1
375 48.7 86.5 17.6 9.6 8.9
376 15.0 687.3 28.2 46.7 52.2
377 30.8 135.8 443 6.0 5.8
378 25.6 701.5 18.3 74.5 26.4
379 35.5 240.5 53.5 8.8 13.9
380 30.3 427.9 30.3 27.6 4.8
381 24.6 289.0 17.4 32.2 36.1
382 234 577.9 58.8 19.1 19.0
383 8.6 245.2 29.1 15.7 19.5
384 8.2 383.1 48.6 14.6 20.8
385 21.8 721.4 25.4 55.1 6.6
386 35.9 152.1 40.9 7.3 10.1
387 24.0 766.4 29.1 51.2 48.5
388 2.2 281.4 41.2 10.6 4.3
389 13.3 648.3 24.7 50.0 38.9
390 7.0 613.0 26.8 42.0 46.6
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Input variables Qutput variable
Case No. B (m) q (kPa) N S_ (mm) S, (mm)
(clean) (noisy)
391 314 542.7 45.0 23.6 23.5
392 4.9 570.5 23.3 434 429
393 26.7 388.9 28.9 26.2 21.8
394 12.1 389.7 45.3 16.3 16.3
395 47.7 162.6 29.2 10.9 9.3
396 2.1 328.2 47.8 10.5 7.2
397 18.1 575.9 9.3 118.6 163.3
398 19.7 406.0 39.1 20.1 24.0
399 38.6 712.4 5.5 253.0 285.3
400 14.0 226.1 20.5 21.0 18.4
401 4.7 521.7 16.8 54.8 67.5
402 19.4 733.1 29.6 479 74.5
403 34.6 401.1 21.8 36.0 50.4
404 22.9 431.0 39.0 21.5 233
405 37.3 635.5 51.3 24.3 28.8
406 36.5 194.8 46.2 8.2 10.0
407 45.9 615.0 38.9 31.1 33.9
408 15.4 428.8 47.0 17.5 11.0
409 333 668.6 5.3 245.7 361.0
410 20.7 538.8 56.3 18.5 24.1
411 3.5 657.7 36.8 30.3 33.8
412 38.3 196.3 44.3 8.7 5.6
413 8.9 271.7 32.4 15.6 14.2
414 21.5 492.5 49.0 19.5 22.9
415 34.5 571.5 46.3 24.4 49.6
416 49.6 164.3 27.4 11.8 219
417 39.3 795.6 16.2 96.2 98.5
418 42.1 396.8 12.8 60.7 349
419 12.6 84.8 57.5 2.8 1.6
420 9.5 194.5 21.1 17.2 18.8
421 39.2 509.7 31.8 31.5 36.6
422 34.6 351.7 14.9 46.1 55.1
423 26.2 240.2 8.8 52.8 57.1
424 41.6 576.1 38.2 29.6 9.6
425 29.7 456.3 34.9 25.5 6.2
426 23.0 642.7 13.1 95.1 123.1
427 14.9 684.6 27.9 47.0 413
428 21.1 497.0 50.1 19.2 20.3
429 42.9 392.2 11.4 67.8 65.3
430 22.9 100.2 48.2 4.0 7.7
431 16.2 684.9 26.6 49.6 40.2
432 22 173.9 26.4 10.2 9.6
433 32.8 447.5 30.3 28.9 39.0
434 43.7 367.6 7.0 102.2 76.0
435 17.1 740.2 33.2 429 45.0
436 3.0 506.2 16.5 50.7 49.6
437 33.9 672.7 5.2 252.1 269.4
438 38.7 599.1 44.6 26.4 31.2
439 11.1 300.8 34.1 16.7 12.9
440 12.7 79.1 56.6 2.6 3.9
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Input variables Qutput variable
Case No. B (m) q (kPa) N S (mm) S, (mm)
(clean) (noisy)

441 44.6 588.7 36.7 31.6 43.7
442 39.6 103.8 30.2 6.7 7.9
443 46.3 2724 46.1 11.6 14.6
444 27.8 75.5 39.3 3.7 5.6
445 25.2 451.8 39.3 22.4 26.9
446 43.8 611.8 40.7 29.5 14.3
447 24.1 290.8 18.3 30.9 30.7
448 42.5 226.1 43.9 10.1 11.2
449 31.7 781.0 22.6 67.7 45.6
450 40.8 238.2 474 9.8 8.9
451 244 235.3 10.2 44.6 40.8
452 44.8 333.2 56.1 11.7 13.2
453 349 273.2 58.8 9.1 7.8
454 40.7 236.5 47.3 9.8 10.3
455 26.0 736.8 22.9 62.8 46.7
456 45.3 37.1 14.6 5.0 8.4
457 38.8 575.3 41.3 27.4 26.1
458 47.4 717.3 51.3 27.5 46.1
459 44.3 221.5 41.2 10.5 9.6
460 40.7 231.7 46.6 9.7 11.0
461 48.3 550.0 27.2 39.8 45.7
462 374 63.7 27.0 4.6 4.6
463 2.1 739.4 49.7 23.0 14.8
464 36.7 387.0 17.5 43.3 42.0
465 5.4 430.3 58.3 13.2 15.0
466 34.2 453.8 29.6 30.1 29.7
467 8.8 241.1 28.4 15.8 16.8
468 34.4 749.7 15.3 95.8 109.5
469 35.7 88.6 323 53 4.4
470 43.1 37.1 17.0 4.2 5.5
471 15.3 247.4 22.0 21.5 20.3
472 4.6 501.5 14.1 62.4 62.3
473 34.9 684.5 5.7 2344 313.3
474 35.7 410.5 21.9 36.7 39.1
475 18.3 216.1 14.3 29.1 32.9
476 2.0 50.0 9.4 8.1 7.1
477 26.7 278.8 13.7 39.7 33.4
478 44.8 400.4 10.3 76.0 82.0
479 26.8 395.5 29.7 26.0 31.6
480 48.3 121.6 22.9 10.4 10.4
481 25.3 627.5 8.4 144.3 136.3
482 15.2 26.1 46.5 1.0 0.9
483 22.6 368.0 30.6 23.3 37.1
484 32,7 266.1 5.2 98.8 102.2
485 40.8 637.0 47.6 26.3 27.7
486 15.7 756.8 37.0 39.3 33.1
487 21.8 763.2 31.1 47.6 15.0
488 5.0 574.8 23.7 43.1 58.3
489 49.6 56.0 12.4 8.8 6.1
490 11.8 497.3 5.5 171.7 194.3
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Input variables QOutput variable
Case No. B (m) g (kPa) N S_ (mm) S, (mm)
(clean) (noisy)
491 22.1 115.8 51.3 4.3 33
492 18.6 473.4 49.5 18.4 15.7
493 25.3 14.3 33.6 0.8 0.4
494 3.2 4193 59.3 11.8 8.6
495 40.7 706.0 57.2 24.2 44.2
496 31.5 55.0 324 3.3 4.3
497 48.6 134.1 24.4 10.8 7.0
498 21.3 608.4 10.2 115.0 59.4
499 29.4 252.7 7.1 69.3 112.1
500 20.8 494.0 50.0 19.1 22.9

Training = 1 to 300, testing = 301 to 400 and validation = 401 to 500
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Membership Values of Fuzzy Clustering
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NUMBER OF CLUSTERS 16
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FUZZY CLUSTERING

FThhk kA kkkhkkkd ok *k Kk

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019

OOOOOOOOOOOOOOOOOOO

.1208
.0111
.0669
.0266
.2135
.0328
.0689
.2882
.0287
.0177
.0279
.0127
.0156
.0113
.0148
.0212
.0113
.0140
.0117

OOOOOOOOOOOOOOOOOOO

.0387
.3835
.0423
.1440
.0228
.0591
.0176
.0170
.0699
.0381
.0247
.1461
.0287
.2044
.1943
.0222
.0304
.0277
.3780

OOOOOOOOOOOOOOOOOOO

.0594
.0046
.2320
.0128
.0154
.0125
.0085
.0128
.0134
.0056
.0066
.0050
.0047
.0045
.0061
.0054
.0037
.0043
.0049

OOOOOOOOOOOOOOOOOOO

.1207
.0110
.0668
.0266
L2149
.0328
.0684
.2850
.0286
.0176
.0278
.0127
.0155
.0113
.0148
.0211
.0113
.0140
.0117

OOOOOOOOOOOOOOOOOOO

.0364
.0301
.0406
.0752
.0192
.0843
.0145
.0147
.2262
.0206
.0174
.0296
.0169
.0301
.0377
.0160
.0156
.0165
.0303

OOOOOOOOQOOOOOOOOOO

.0825
.0146
.C586
.0328
.0993
.0444
.3700
.0810
.0354
.0269
.0562
.0170
.0258
.0152
.0195
.0423
.0176
.0230
.0154

0.
.0419
.0489
.0643
.0375
.0801
.0338
.0271
.0610
.1320
.0737
.0581
.1464
.0502
.0574
.0758
.1497
.1544
.0432

OOOOOOOOOOOOOOOOOO

0526

OOOOOOOOOOOOOOOOOOO

.0655
.0240
.0536
.0463
.0564
.0691
.0658
.0407
.0491
.0631
.1721
.0297
.0787
.0264
.0324
.2054
.0446
.0692
.0251

OOOOOOOOOOOOOOOOOOO

.0438
.1028
.0450
.0957
.0276
.0731
.0224
.0203
.0702
.0648
.0356
.1541
.0494
.1508
.1295
.0332
.0612
.0493
.1008

OOOOOOOOOOOOOOOOOOO

10

.0511
.0457
.0483
.0672
.0358
.0802
.0317
.0259
.0623
.1260
.0653
.0643
.1295
.0559
.0624
.0662
.1618
.1383
.0470

OOOOOOOOOOOOOOOOOOO

11

.0651
.0244
.0536
.0469
.0557
.0699
.0641
.0402
.0497
.0647
.1682
.0303
.0811
.0269
.0329
.2020
.0459
.0715
.0255

OOOOOOOOOOOOOOOOOOO

12

.0525
.0423
.0489
.0647
.0374
.0804
.0337
.0271
.0613
.1297
.0727
.0587
.1414
.0508
.0579
.0746
.1459
.1489
.0436

OOOOOOOOOOOOOOOOOOO

13

.0713
L0177
.0555
.0376
.0729
.0519
.1234
.0529
.0397
.0378
.1137
.0211
.0392
.0188
.0237
.0807
.0248
.0343
.0187

0.
.0457
.0485
.0674
.0360
.0807
.0319
.0261
.0626
.1242
.0656
.0641
.1266
.0557
.0624
.0664
.1525
.1343
.0470

OOOOOOOOOOOOOOOOOO

14

0514

OOOOOOOOOOOOOOOOOOO

15

.0441
.1004
.0452
.0959
.0278
.0742
.0227
.0205
.0709
.0656
.0362
.1485
.0502
.1442
.1273
.0338
.0619
.0502
.0986

OOOOOOOOOOOOOOOOOOO

16

.0441
.1003
.0452
.03858
.0279
.0744
.0227
.0205
.0710
.0656
.0362
.1479
.0502
.1436
.1271
.0338
.0619
.0502
.0984



020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
0z1
052
053
054
055
056

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.04086
.2680
.3507
.0119
.0187
.0115
.0096
.0358
.0060
.0292
.0093
.0147
.0141
.0397
.0505
.0100
.0756
.0120
.0322
.0178
.1102
.0122
.0106
.0140
.0337
.0117
.0109
.0145
.0105
.3097
.0097
.0434
.0500
.0107
.0197
.0202
.0107

OODDDOOOOCOOOODOODODOOOOODOODOODOOOOO

.0420
.0172
.0115
.0462
.0580
.2045
.0666
.0552
.0201
.0252
.1052
.0348
.1200
.0207
.0154
.0570
.0356
.3686
.0306
.0714
.0404
L3725
.0487
.0393
.0le62
.0279
.0342
.0312
.0521
.0153
.0857
.0238
.0271
.0371
.0845
.0240
.0380

OODDODOODOOOC}DOOOOOODGOOC‘JOOOOODOC}DOOD

.0121
.0115
.0091
.0042
.0066
.00486
.0036
.0133
.0027
.0070
.0036
.0047
.0056
.0074
.0070
.0036
.2718
.0050
.0082
.0078
.0602
.0051
.0038
.004e
.0060
.0037
.0037
.0045
.0038
.0117
.0037
.0085
.4752
.0036
.0088
.0053
.0037

0.0405
0.2701
0.3677
0.0119
0.0187
0.0114
0.0095
0.0357
0.0060
0.0281
0.0093
0.0146
0.0141
0.039%5
0.0501
0.0100
0.0755
0.011¢9
0.0321
0.0177
0.1100
0.0121
0.0106
0.0138
0.0335
0.0117
0.0109
0.0144
0.0105
0.3188
0.0097
0.0432
0.0500
0.0106
0.0197
0.0201
0.0106

0.0424
0.0146
0.0101
0.0234
0.0307
0.0327
0.0191
0.0756
0.8019
0.0188
0.0213
0.0212
0.0324
0.0158
0.0126
0.0190
0.0335
0.0307
0.0236
0.3555
0.0395
0.0342
0.020%
0.0191
0.0127
0.0158
0.0163
0.0190
0.0191
0.0132
0.0204
0.0194
0.0259
0.0171
0.2876
0.0167
0.0182

0.0628 0.0805
0.0287
0.0183
0.

0.08935
0.0498
0.0176
0.0263
0.0155
0.0135
0.0483
0.0077
0.0639
0.0128
0.0227
0.0190
0.1081
0.4375
0.0143
0.0585
0.0158
0.0586
0.0229
0.0823
0.0159
0.0155
0.0208
0.1250
0.0186
0.0166
0.0232
0.0152
0.0640
0.0135
0.1141
0.0416
0.0160
0.0251
0.0384
0.0160

0
0
0
0
0
0
0
0
0
0
0
0
0
(0]
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

.
.

.
.
.
.
.
.

.
.
.
.
.
.
-
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1079
1025
0506
0637
0805
0156
0674
0506
1380
0651
0479
0302
0767
0441
0440
0812
0498
0543
0435
0953
1322
0364
1576
1362
1440
0886
0244
0567
0541
0326
1258
0538
0905

0.1225

DDODODOOOODOOOOOOOOOODOOOOODDOODDODOD

.0997
.0448
.0270
.0390
.0516
.0267
.0262
.0743
.0115
L1731
.0235
.0586
.0333
.1187
.0620
.0289
.0511
.0256
.1420
.0349
.0669
.0257
.0331
.0479
.0961
.0513
.0396
.0656
.0316
.0358
.0253
.1360
.0369
.0369
.0379
.1789
.0368

.0557
.0209
.0138
.1058
.0944
.1483
.18%0
.0690
.0198
.0355
.2003
.0641
.1458%
.0278
.0197
.1650
.0389
.1019
.0434
.0681
.0456
.0995
.1296
.0756
.0216
.0540
.0742
.0564
.1428
.0183
.1951
.0318
.0293
.0864
.0756
.0368
.0903

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0770
.0274
.0175
.1256
.1066
.0562
.0745
.0797
.0162
.0611
.0577
.1348
.0715
.043%
.0282
.0913
.0433
.0478
L0737
.0520
.0529
.0472
.1151
L1379
.0335
.1563
.1600
.1369
.1066
.0233
.0651
.0497
.0321
.1534
.0562
.0782
.1490

.0999
.0442
.0267
.0401
.0527
.0272
.0268
.0751
.011e
.1669
.0240
.0604
.0340
.1138
.0602
.0296
.0509
.0261
.1412
.0354
.0666
.0261
.0339
.0492
.0916
.0529
.0407
.0676
.0324
.0354
.0258
.1308
.0368
.0379
.0384
.1800
.0378

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0805
.0287
.0183
.1083
.1026
.0511
.0643
.0808
.0157
.0668
.0511
.1360
.0657
.0476
.0301
.0773
.0441
.0444
.0805
.0502
.0543
.0439
.095%
.1305
.0362
.1527
.1343
.1407
.0891
.0243
.0572
.0538
.0326
.1249
.0542
.0888
.1220

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0754
.0607
.0343
.0234
.0341
.0190
.0173
.0561
.0088
.1224
.0162
.0318
.0236
.2686
.1283
.0186
.0542
.0190
.0900
.0266
.0718
.0191
.0204
.0287
.3800
.0267
.0229
.0336
.0200
.0455
.0172
.1766
.0386
.0217
.0292
.0687
.0216

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0775
.0275
.0176
.1224
.1062
.0561
.0734
.0803
.0162
.0614
.0573
.1328
.0714
.0442
.0284
.0893
.0435
.0478
.0742
.0522
.0532
.0472
L1119
.1342
.0337
.1491
.1504
.1337
.1036
.0234
.0644
.0501
.0322
.1449
.0565
.0783
.1417

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0566
.0211
.0139
.1062
.0952
.1427
L1725
.0701
.0201
.0361
.1799
.0653
.1425
.0282
.0199
.1553
.0391
.0997
.0442
.0689
.0460
.0980
L1276
.0762
.0219
.0549
.0746
.0574
.1374
.0185
.1761
.0323
.0294
.0865
.0764
.0375
.0906

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0567
.0211
.0139
.1061
.0952
.1422
.1707
.0702
.0201
.0361
L1779
.0654
.1421
.0282
.0199
.1541
.0391
.0896
.0443
.0690
.0460
.0978
L1271
.0762
.0219
.0550
.0745
.0575
.1366
.0185
L1742
.0324
.0295
.0864
.0765
.0375
.0905
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057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0827
.0137
.0103
.0122
.3437
.0142
.0105
.0060
.0345
.0315
.0190
.0109
.0164
.0205
.0127
.0202
.0106
.0106
.0277
.0142
.0781
.3199
.1249
.031e
.0206
.0351
.0097
.0146
.0542
.0091
.0307
.0090
.0325
.0139
.0337
.0819
.0422

0.0379
0.0708
0.1451
.0290
.0118
.2249
.0373
.0201
.0536
.0190
.0289
.0294
.0336
.0346
.0400
.0239
.0437
.0550
.0670
.0362
.0363
.0144
.0231
.0190
.1982
.0346
.0970
.0330
.0155
.0666
.0184
.0638
.0228
.2155
.0200
.0283
.0178

OOOOOOOOOOOOOOOOOOOOO

SEciReNoNoloNoNoNoloNoNe)

o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.2146
.0051
.0041
.0039
.0086
.0059
.0036
.0027
.0124
.0063
.0054
.0036
.0051
.0061
.0057
.0053
.0037
.0038
.0125
.0046
.2527
.0113
.0131
.0063
.0093
.0094
.0037
.0046
.0072
.0034
.0061
.0034
.0071
.0057
.0067
.0128
.0070

o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0826
.0137
.0103
.0122
.3528
.0141
.0105
.0060
.0344
.0313
.0189
.0109
.0164
.0204
.0126
.0201
.0106
.0106
.0276
.0142
.0780
.3299
.1236
.0315
.0206
.0350
.0097
.0145
.0538
.0091
.0305
.0090
.0323
.0138
.0335
.0817
.0419

o

OOC)OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0359
.0254
.0239
.0156
.0101
.0413
.0177
.8019
.0686
.0145
.0190
.0155
.0193
.0211
.5962
.0164
.0186
.0228
.2315
.0200
.0342
.0126
.0196
.0148
.0587
.0299
.0245
.0175
.0127
.0188
.0140
.0188
.0179
.0383
.0149
.0228
.0139

o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0647
.0192
.0141
.0193
.0582
.0187
.0157
.0077
.0475
.0901
.0317
.0170
.0254
.0322
.0161
.0382
.0156
.0152
.0347
.0223
.0612
.G615
.2121
.0912
.0261
.0591
.0134
.0226
.4438
.0128
.0876
.0127
.0791
.0184
.0903
.1313
.1531

o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0474
.0841
.0508
.1554
.0192
.0542
.1239
.0156
.0830
.0459
.1300
.1516
.1415
.1277
.0319
.0919
.1074
.0838
.0616
.1339
.0452
.0228
.0404
.0466
.0596
.0838
.0542
.1461
.0300
.0600
.0446
.0613
.0576
.0546
.0479
.0548
.0383

[e=NeNeNoNole)

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0551
.0369
.0250
.0518
.0292
.0310
.0362
.0115
.0764
.1337
.1014
.0437
.0650
.0822
.0238
L1771
.0343
.0314

0493

.0553
.0524
.0336
.0690
.1437
.0393
.1230
.0248
.0571
.0598
.0247
.1314
.024s8
L1717
.0307
.1285
.0955
.0908

o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0415
.1346
.1792
.0552
.0142
.1243
.0893
.0198
.0687
.0258
.0472
.0600
.0583
.0558
.0398
.0367
.1122
.1471
.0697
.0678
.0397
.0171
.0285
.0259
.1038
.0484
.1902
.0597
.0197
.1984
.0250
.1965
.0315
.1288
.0271
.0361
.0234

o o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0465
.0936
.0572
.1546
.0184
.0588
.1511
.0162
.0818
.0418
L1111
.1646
.1302
.1148
.0330
.0789
.1318
.0989
.0629
.1395
.0444
.0218
.0384
.0424
.0631
.0773
.0617
.1398
.0281
.0702
.0406
.0722
.0523
.0595
.0437
.0513
.0355

o O

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0550
.0377
.0255
.0534
.0288
.0315
.0373
.0116
.0772
.1266
.1042
.0450
.0669
.0842
.0241
.1784
.0352
.0322
.0499
.0568
.0523
.0333
.0678
.1357
.0398
.1232
.0253
.0587
.0582
.0253
.1244
.0254
.1635
.0313
.1227
.0939
.0874

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC)OO

.0474
.0846
.0514
.1504
.0192
.0547
.1234
.0157
.0832
.0455
.1267
.1476
.1384
.1253
.0321
.0901
.1075
.0845
.0619
.1319
.0452
.0228
.0404
.0462
.0600
.0834
.0548
.1424
.0299
.0606
.0443
.0e19
.0572
.0551
.0476
.0546
.0381

o O

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0586
.0246
.0175
.0278
.0384
.0227
.0212
.0089
.0561
.2933
.0493
.0240
.0365
.0472
.0185
.0689
.0209
.0198
.0393
.0312
.0557
.0424
.1028
.2696
.0306
.0809
.0168
.0323
.1188
.0164
.3107
.0164
.1577
.0224
.2845
.1304
.3173

o o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0466
.0926
.0569
.1472
.0185
.0589
.1434
.0162
.0824
.0421
.1108
.1547
.1285
.1144
.0331
.0791
.1263
.0971
.0632
.1349
.0445
.0220
.0386
.0427
.0632
.0780
.0614
.1361
.0283
.0692
.0409
.0710
.0527
.0595
.0440
.0517
.0357

o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0418
.1320
.1651
.0560
.0144
.1225
.0896
.0201
.0699
.0262
.0481
.0608
.0583
.0567
.0403
.0374
.1109
.1440
.0705
.0686
.0400
.0173
.0288
.0264
.1036
.0493
1771
.0604
.0200
.1788
.0254
.1780
.0320
.1264
.0275
.0365
.0237

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0418
.1316
.1637
.0560
.0144
.1224
.0895
.0201
.0700
.0262
.0482
.0608
.0583
.0568
.0403
.0374
.1106
.1434
.0706
.0686
.0400
.0173
.0289
.0264
.1036
.0494
.1757
.0605
.0200
.1766
.0254
.1759
.0320
.1262
.0275
.0366
.0238
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094
095
095
097
098
093
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0106
.0093
.0207
.0412
.0127
.3018
.0115
.0651
.0247
.0200
.0649
.0196
.2153
.0189
.0188
.0106
.0412
.2620
.0480
.0286
.0196
.0092
.0236
.0155
.2560
.0175
.0233
.0091
.0151
.0149
.0280
.0122
.0096
.0647
.0107
.0109
.0138

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0379
.1052
.1637
.0242
.0069
.0161
.1871
.0165
.0207
.0312
.0399
.2008
.0226
.1127
.0310
.0332
.0173
L0177
.0135
.0326
.0257
.0652
.0226
.1086
.0213
.0618
.0219
.0653
.0301
.1522
.0148
.3556
.0670
.01e61
.0293
.0342
.0469

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0036
.0036
.0093
.0082
.8666
.0123
.0046
.0079
.0057
.0058
.2670
.0087
.0152
.0080
.0056
.0035
.0068
.0123
.0063
.0077
.0053
.0034
.0058
.0061
.0192
.0079
.0057
.0034
.0047
.0061
.7107
.0051
.0036
.0078
.0035
.0037
.0048

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0106
.0093
.0207
.0411
.0126
.3092
.0115
.0646
.0246
.0199
.0649
.0185
.2168
.0188
.0188

0106

.0410
.2585
.0477
.0285
.0195
.0091
.0235
.0155
.2560
.0174
.0232
.0091
.0151
.0149
.0280
.0121
.0096
.0642
.0107
.0109
.0137

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0173 0.0158
.0212 0.0128
.0906 0.0264
.0182 0.05940
.0066 0.0105
.0138 0.0666
.0292 0.0156
.0135 0.4052
.0153 0.0554
.0209 0.0330
.0384 0.0564
.0686 0.0250
.0191 0.0992
.1287 0.0247
.0212 0.0311
.0161 0.01lel
.0137 0.1855
.0153 0.1031
.0111 0.5028
.0225 0.0479
.0171 0.0357
.0206 0.0129
.0172 0.0485
.0565 0.0212
.0186 0.0777
.4281 0.0220
.0165 0.0485
.0194 0.0128
.0184 0.0240
.0425 0.0198
.0140 0.0230
.0365 0.0159
.0192 0.0135
.0134 0.4272
.0154 0.0166
.0163 0.0166
.0222 0.0200

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.1232
.0506
.0604
.0578
.0083
.0255
.0520
.0316
.0603
.1240
.0465
.0581
.0372
.0638
L1275
L1377
.0370
.0292
.0264
.0983
.1064
.0618
.0694
.0679
.0324
.0441
.0673
.0615
.1490
.0611
.0179
.0442
.0636
.0306
.1520
.1365
.1153

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0363
.0235
.0401
.1341
.0094
.0374
.0271
.0619
.2098
.0999
.0513
.0380
.0560
.0402
.0959
.0388
.0893
.045¢6
.0538
.1198
.1490
.0252
.2065
.0373
.0459
.0324
.2123
.0250
.0671
.0335
.0203
.0259
.0262
.0597
.0424
.0396
.0432

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0901
.2007
.1023
.0328
.0075
.0192
.1541
.0209
.0296
.0504
.0425
.1038
.0273
.1039
.0509
.0731
.0227
.0214
.0173
.0480
.0404
.1913
.0330
.1304
.0251
.0577
.0319
.1941
.0533
.1352
.0160
.1032
.1894
.0204
.0607
.0741
.0949

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.1509
.0576
.0640
.0527
.0082
.0245
.0578
.0296
.0537
.1091
.0459
.0618
.0355
.0679
.1127
.1627
.0343
.0279
.0247
.0879
.0911
.0724
.0616
.0743
.0312
.0457
.0596
.0719
.1337
.0665
.0176
.0480
.0743
.0288
.1651
.1600
.1253

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0373
.0240
.0406
.1299
.0093
.0370
.0276
.0604
.1985
.1025
.0512
.0385
.0553
.0408
.0985
.0399
.0859
.0450
.0524
.1209
.1516
.0257
.2002
.0379
.0455
.0328
.2046
.0255
.0691
.0341
.0203
.0263
.0268
.0583
.0437
.0407
.0443

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.1224
.0511
.0609
.0574
.0083
.0255
.0525
.0315
.0596
.1217
.0465
.0586
.0371
.0644
.1251
.1356
.0369
.0291

0263

.0971
.1040
.0624
.0686
.0686
.0324
.0444
.0665
.0621
.1450
.0617
.0179
.0447
.0641
.0305
.1481
.1344
.1150

OO0 O0O0OO0ODOO0OODOOOOO0

OO0 O0O0OO0DODO0DO0ODODOODOODOOOOOOO

.0215
.0lel
.0309
.1890
.00098
.0476
.0193
.1190
L1277
.0498
.0532
.0294
.0725

0295

.0465
.0222
.3079
.0615
.1097
.0741

0614

.0165
.0901
.0260
.0565
.0253
.0936
.0165
.0349
.0241
.0213
.0192
.0174
.1080
.0233
.0229
.0267

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.1426
.0572
.0641
.0531
.0082
.0246
.0576
.0299
.0540
.1090
.0460
.0619
.0357
.0681
L1126
.1526
.0345
.0280
.0249
.0884
.0910
.0714
.0620
.0742
.0314
.0459
.0600
.0709
.1318
.0665
L0177
.0480
.0730
.0290
.1555
.1502
.1230

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0901
.1798
.1026
.0333
.0075
.0194
.1466
.0212
.0301
.0514
.0427
.1038
.0276
.1048
.0519
.0737
.0230
.0217
.0175
.0488
.0411
L1773
.0336
.1300
.0253
.0584
.0325
L1777
.0543
.1336
.0161
.1016
L1724
.0206
.0615
.0746
.0954

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0899
L1779
.1027
.0333
.0075
.0194
.1458
.0212
.0302
.0515
.0427
.1038
.0276
.1049
.0520
.0736
.0230
.0217
.0175
.0489
.0412

1756

.0337
.1300
.0253
.0584
.0325
.1758
.0544
.1334
.0161
.1015
.1705
.0207
.0615
.0745
.0954
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131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161l
162
163
164
165
166
167

o O o

OOOOOOOOOC)OOOOOOOOOOOOOOOOOOOOOOOO

.0169
.2032
.0170
.0150
.0125
.013¢
.0101
.0227
.0406
.0199
.0827
.0193
.0716
.0108
.0258
.0358
.0173
.3398
.0378
.0255
.0126
.0131
.0343
.0124
.0144
.3462
.0076
.0337
.0241
.0855
.0185
.0150
.1321
.0159
.0290
.0146
.0182

[eNeoNe!

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0315
.0199
.0568
.0267
.0816
.2067
.1441
.0228
.0236
.0262
.0379
.0404
.0357
.0563
.0227
.0500
.0602
.0127
.0591
.1537
.0069
.0620
.0202
.0711
.0758
.0119
.0258
.0162
.0230
.0204
.0925
.0267
.0264
.1076
.0674
.0079
.CG416

OOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOO

.0051
.0125
.0076
.0045
.0047
.0057
.0040
.0056
.0082
.0054
.2146
.0061
.0158
.0039
.0061
.0122
.0074
.0096
.0151
.0121
.8667
.0047
.0068
.0046
.0054
.0094
.0034
.0060
.0060
.0101
.0072
.0045

0154

.0063
.0132
.8478
.0060

o oo

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0169
.2006
.0170
.0149
.0125
.0139
.0101
.0226
.0404
.0198
.0826
.0192
.0714
.0108
.0256
.0357
.0172
.3413
.0377
.0255
.0126
.0130
.0341
.0124
.0144
.3623
.0076
.0335
.0240
.0849
.0185
.0150
.1315
.0159
.0290
.0146
.0181

oo oo

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0186
.0170
.4480
.0163
.0257
.0368
.0237
.0160
.0194
.0173
.0359
.0222
.0307
.0212
.0162
.0572
.3954
.0109
.0928
.0713
.0066
.0267
.0151
.0310
.0327
.0104
.7468
.0127
.0177
.0172
.0413
.0163
.0230
.0576
.2139
.0075
.0313

o

.0268
.1510
.0215
.0248
.0177
.0184
.0137
.0459
.1049
.0363
.0647
.0290
.0953
.0156
.0546
.0504
.0224
.0599
.0488
.0316
.0105
.0186
.0906
.0176
.0199
.0515
.0097
.1237
.0492
.2838
.0250
.0249
.1461
.0217
.0362
0.0121
0.0279

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

o o

OOOOC)OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.1426
.0339
.0432
sPI=51SH;
.0725
.0552
.0500
.0744
.0552
.1057
.0473
.1256
.0648
.0839
.0675
.0843
.0483
.0203
.0757
.0636
.0083
.0893
.0485
.0768
.0809
.0189
.0200
.0363
.0702
.0387
.0786
.1529
.0458
.0687
.0630
.0095
.1175

O O o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0728
.0555
.0319
.0801
.0335
.0307
.0245
.1984
.1445
.1474
.0551
.0656
.0963
.0319
.1912
.0828
.0345
.0304
.0694
.0451
.0094
.0377
.1297
.0344
.0377
.0279
.0146
.0947
.2024
.0741
.0442
.0801
.0753
.0381
.0511
.0107
.0667

o O

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0537
.0243
.0551
.0461
.1532
.1316
.1821
.0336
.0319
.0410
.0415
.0667
.0450
.1476
.0327
.0653
.0618
.0152
.0697
.0973
.0075
.1284
.0273
.1452
.1325
.0142
.0255
.0216
.0336
.0258
L1172
.0462
.0325
.1280
.0703
.0085
.0710

o o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.1268
.0323
.0447
.1292
.0824
.0601
.0563
.0653
.0506
.0912
.0465
.1202
.0613
.0992
.0600
.0823
.0502
.0195
.0755
.0666
.0082
.1004
.0443
.0875
.0891
.0181
.0207
.0334
.0624
.0363
.0840
.1292
.0435
.0750
.0642
.0093
.1169

O OO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0749
.0547
.0322
.0826
.0342
.0312
.0249
.1938
.1391
.1496
.0550
.0671
.0956
.0326
.1843
.0836
.0350
.0301
.0700
.0456
.0093
.0385
.1240
.0351
.0385
.0276
.0147
.0906
.1966
.0725
.0449
.0825
.0742
.0388
.0516
.0107
.0683

OOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

.1390
.0339
.0435
.1473
.0730
.0557
.0505
.0733
.0549
.1034
.0474
.1239
.0647
.0844
.0667
.0845
.0486
.0203
.0760
.0640
.0083
.089¢9
.0482
.0775
.0815
.0189
.0201
.0361
.0695
.0386
.0791
.1472

0458

.0693
.0633
.0095
.1170

O O

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0394
.0796
.0248
.0380
.0226
.0224
.0171
.0918
.1704
.0622
.0586
.0404
.0990
.0203
.1195
.0601
.0261
.039%6
.0550
.0364
.0098
.0241
.2770
.0224
.0253
.0354
.0112
.3840
.0900
.1234
.0310
.0381
.0987
.0267
.0408
.0112
.0379

o

.1255
.0325
.0449
.1272
.0813
.0601
.0560
.0657
.0511
.0911
.0466
.1191
.0618
.0969
.0604
.0829
.0504
.0196
.0759
.0667
.0082
.0992
.0446
.0865
.0887
.0183
.0208
.0337
.0629
.0366
.0839
L1272
.0438
.0748
.0645
.0093
0.1164

o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

o O

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.0546
.0246
.0558
.0470
.1467
.1290
.1672
.0341
.0324
.0417
.0418
.0675
.0456
.1427
.0332
.0664
.0626
.0154
.0707
.0974
.0075
.1273
.0277
.1429
.1318
.0144
.0258
.0219
.0342
.0261
L1171
.0471
.0329
.1278
.0712
.0085
.0725

ool oNeNoNoNoel

[SheloleNoNoNoNoNoloNoRe e

o o

[ ]

=NeNoloNoNoNoNeNoNolelole

.0547
.0247
.0559
.0471
.1459
.1288
.1657
.0342
.0325
.0418
.0418
.0676
.0456
.1419
.0333
.0666
.0627
.0154
.0709
.0974
.0075
.1271
.0278
.1426
.1316
.0144
.0259
.0219
.0343
.0262
.1170
.0471
.0330
.1278
.0713
.0085
.0726

[AX4
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168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

OOOOOOOOOOOOOOOOOOOOOO

.2077
.0239
.0185
.3418
.0096
.0167
.0138
.0147
.0629
.0117
.0423
.0142
.0101
.2838
.1216
.0312
.1872
.0180
.0227
.2520
.0237
.0222

OO 0000000000 DOOOOOOOOO

.0271
.1662
.0498
.0118
.1169
.0277
.0319
.0273
.0262
.3701
.0178
.0508
.0597
.0174
.0383
.0285
.0297
.0735
.0308
.0176
.1674
.1802

OOOOOOOOOOOOOOOOOOOOOO

.0290
.0111
.0063
.0085
.0037
.0049
.0044
.0044
.0106
.0049
.0070
.0050
.0037
.0131
.0675
.0078
.0341
.0079
.0064
.0115
.0110
.0101

OOOOOOOOOOOOOOOOOOOOOO

.2083
.0238
.0184
.3493
.0096
.0lee
.0137
.0147
.0626
.0117
.0420
.0142
.0101
.2806
L1213
.0311
.1875
.0180
.0226
.2492
.0236
.0221

OOOOOOOOOOOOOOOOOOOOOO

.0241
.0679
.0280
.0102
.0224
.0172
.0167
.0165
.0213
.0301
.0140
.0234
.0226
.0150
.0360
.0230
.0263
.3410
.0228
.0150
.0685
.0651

el =NeR=-RekeReReR-ReReNoNoNoNoNaNollolojalle e

.0811
.0298
.0266
.0613
.0132
.0285
.0215
.0245
.1338
.0155
.1626
.0212
.0144
.0822
.0825
.0627
.0827
.0232
.0393
.1161
.0296
.0279

OOOOOOOOOOOOOOOOOOOOOO

0.
0.
.0296
.0239
.0967
.0554
.0784
.1082
.0253
.0908
.0453
.0290
.0415
.0642
.1557
.0570
.0355
.1264
.0470
.0431
.0413

COO0OO0O0O0ODO0OOO0OO0OO0ODODOOO00OOOO

.0398 0.0538
.0626
L1122
.0193
.0505
.1377
.1486
.1508
.0548
.0437
.0385
.1078
.0739
.0277
.0516
.0745
.0429
.0508
.1048
.0294
.0624
.0612

0433
0555

OOOOOOOOOOOOOOOOOOOOOO

.0315
.0995
.0837
.0143
.1944
.0463
.0587
.0475
.0342
.1028
.0235
.0993
.1650
.0208
.0432
.0404
.0343
.0699
.0475
.0213
.0996
.1016

OOOOOOOOOOOOOOOOOOOOOO

.0385
.0657
.1139
.0185
.0572
.1187
.1446
.1318
.0509
.0475
.0356
.1211
.0871
.0265
.0503
.0681
.0415
.0531
.0937
.0280
.0655
.0645

OOOOOOOOOOOOOOOOOOOOOO

.0534
.0438
.0568
.0293
.0244
.0992
.0569
.0807
.105%
.0257
.0876
.0463
.0296
.0410
.0639
L1531
.0566
.0360
.1283
.0464
.0436
.0418

OOOOOOOOOOOOOOOOOOOOOO

.0398
.0630
L1119
.0193
.0510
.1334
.1444
. 1455
.0546
.0441
.0383
.1075
.0746
.0277
.0516
.0740
.0429
.0512
.1035
.0294
.0628
.0616

OOOOOOOOOOOOOOOOOOOOOO

.0635
.0345
.0352
.0392
.0165
.0448
.0310
.0373
.1534
.0187
.3163
.0283
.0186
.0541
.0705
.0991
.0663
.0271
.0602
.0656
.0343
.0325

OOOOOOOOOOOOOOOOOOOOOO

.0387
.0658
.1134
.0186
.0568
L1172
.1396
.1290
.0513
.0474
.0359
.1178
.0856
.0267
.0505
.0686
.0417
.0533
.0941
.0282
.0656
.0646

0.0318
0.0996
0.0848
0.0144
0.1759
0.0472
0.0594
0.0484
0.0347
0.1005
0.0238
0.0990
0.1584
0.0210
0.0435
0.0411
0.0346
0.0707
0.0485
0.0216
0.0997
0.1016

0.0318
0.0996
0.0849
0.0144
0.1741
0.0472
0.0594
0.0485
0.0347
0.1003
0.0238
0.0988
0.1575
0.0210
0.0436
0.0411
0.0346
0.0708
0.0486
0.0216
0.0998
0.1017
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SILHOUETTES

*hkkkkkkkkkkk

FOR THE ENTIRZ DATA SET, THE AVERAGE SILHOUETTE WIDTH IS

CLOSEST HARD CLUSTERING

Fhkhkhkkhkkhkhkdhkhkrhkhkkhkkdd

FOR THIS HARD CLUSTERING, IT TURNS OUT THAT

ONLY THE FIRST

CLUSTER NUMBER

1
2

10

11
12
13

13 CLUSTERS ARE NONEMPTY.

SIZE

8

22

11

14

16

10

22

12

29

18

[e o]

OBJECTS

001
002
090
188
003
le6
005
156
006
133
007
010
084
174
011
159
012
074
137
017
076
020
027
033
139

008
004
096
189
036

021
168
009
147
034
013
103
175
016
183
026
083
144
023
094
055
065
044
143

040
014
100

052

022
171
028
149
079
018
108

029

030
086
152
024
109
072
146
051
153

111
015
105

057

049
184
039
157
085
031
122

038

032
088
154
043
128
082

066
158

132
019
123

077

061

054
165
092
045
131

089

035
095
155
046
129
113

080
176

181
025
125

098

078

064
185
101
047
134

102

042
115
lel
053
130
114

087
178

182
037
136

104
099
071
112
060
142
116
048
117
le4
056
170
140

091

187
041
150

124
106
075
127
067
162
120
050
121
172
063
179
186

093

0.

30

062
169

141
118
107
160
069
167
138
058
126

180
068

097

081
177

151
148
119
163
070
173
145

059
135

073

110

1474
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Appendix D

Statistics for Different Proportions of Data Sets

10(70-30)

Model variables Statistical parameters

and data sets Mean Std. Dev. Min. Max. Range
Footing width, B (m)
Training set 8.8 10.8 0.8 60.0 59.2
Testing set 8.8 8.8 1.0 42.7 41.7
Validation set 7.8 9.2 1.0 34.0 33.0
Footing net applied pressure, ¢ (kPa)
Training set 185.5 118.3 18.3 697.0 678.6
Testing set 192.5 128.1 33.0 584.0 551.0
Validation set 182.2 1453 64.0 666.0 602.0
Average SPT blow count, NV
Training set 25.3; 14.1 4.0 60.0 56.0
Testing set 24.0 124 4.0 50.0 46.0
Validation set 21.2 12.5 5.0 45.0 40.0
Footing geometry, L/B
Training set 2.1 1.8 1.0 10.5 9.5
Testing set 23 1.6 1.0 8.0 7.0
Validation set 23 1.9 1.0 7.9 6.8
Footing embedment ratio, D,/B
Training set 0.53 0.58 0.0 3.4 3.4
Testing set 0.54 0.63 0.0 3.0 3.0
Validation set 0.46 0.31 0.04 1.09 1.05
Measured settlement, S,, (mm)
Training set 18.9 24.1 0.6 121.0 120.4
Testing set 21.8 29.0 1.5 120.0 118.5
Validation set 25.8 344 1.3 116.0 114.7

235




236 Appendix D. Statistics for Different Proportions of Data Sets

10(80-20)

Model variables Statistical parameters

and data sets Mean Std. Dev. Min. Max. Range
Footing width, B (m)
Training set 8.8 10.3 0.8 60.0 59.2
Testing set 7.7 9.0 0.9 41.2 40.3
Validation set 10.0 1.1 1.0 34.0 33.0
Footing net applied pressure, ¢ (kPa)
Training set 185.6 120.6 18.3 697.0 678.7
Testing set 179.6 123.6 52.0 584.0 532.0
Validation set 210.6 143.8 25.0 576.0 551.0
Average SPT blow count, N
Training set 24.7 13.4 4.0 60.0 56.0
Testing set 24.1 12.5 6.0 50.0 44.0
Validation set 24.1 16.4 6.0 60.0 54.0
Footing geometry, L/B
Training set 2.1 1.7 1.0 10.5 9.5
Testing set 23 1.6 1.0 6.7 5.6
Validation set 2.5 2.1 1.0 8.0 7.0

Footing embedment ratio, D,/B

Training set 0.53 0.58 0.0 34 34
Testing set 0.54 0.55 0.0 3.0 3.0
Validation set 0.49 0.60 0.0 2.6 2.6

Measured settlement, S,, (mm)

Training set 20.3 27.1 0.6 121.0 120.4
Testing set 20.4 26.5 1.3 100.0 98.7
Validation set 21.3 239 1.5 92.0 90.5
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10(90-10)

Model variables Statistical parameters

and data sets Mean Std. Dev. Min. Max. Range
Footing width, B (m)
Training set 8.4 9.7 0.8 60.0 59.2
Testing set 9.1 93 0.9 33.0 321
Validation set 10.9 13.8 1.0 55.0 54.0
Footing net applied pressure, 4 (kPa)
Training set 185.1 119.2 18.3 697.0 678.7
Testing set 198.3 142.7 34.0 584.0 550.0
Validation set 192.4 142.2 41.0 666.0 625.0
Average SPT blow count, N
Training set 24.9 13.9 4.0 60.0 56.0
Testing set 22.7 12.5 6.0 50.0 44.0
Validation set 23.1 11.5 7.0 60.0 53.0
Footing geometry, L/B
Training set 23 1.9 1.0 10.5 9.5
Testing set 1.6 0.9 1.0 4.1 3.1
Validation set 1.7 1.1 1.0 5.0 4.0
Footing embedment ratio, D,/B
Training set 0.53 0.58 0.0 3.4 34
Testing set 0.50 0.45 0.0 14 14
Validation set 0.52 0.66 0.0 3.0 3.0
Measured settlement, S,, (mm)
Training set 19.6 25.6 0.6 121.0 120.4
Testing set 22.9 29.3 2.7 120.0 117.3
Validation set 24.8 319 1.3 100.0 98.7
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20(80-20)
Model variables Statistical parameters
and data sets Mean Std. Dev. Min. Max. Range

Footing width, B (m)

Training set 8.4 9.6 0.8 60.0 59.2
Testing set 9.2 12.3 0.9 55.0 54.1
Validation set 9.4 10.1 0.9 41.2 40.3

Footing net applied pressure, ¢ (kPa)

Training set 186.5 123.5 18.3 697.0 678.7
Testing set 188.0 135.7 25.0 584.0 559.0
Validation set 187.9 114.6 33.0 575.0 542.0
Average SPT blow count, N

Training set 24.2 13.3 4.0 60.0 56.0
Testing set 26.1 13.8 5.0 60.0 55.0
Validation set 243 14.1 4.0 55.0 51.0
Footing geometry, L/B

Training set 2.1 1.7 1.0 10.5 9.5
Testing set 24 2.1 1.0 9.9 8.9
Validation set 2.1 1.8 1.0 8.0 7.0

Footing embedment ratio, D./B

Training set 0.49 0.55 0.0 34 34
Testing set 0.58 0.61 0.0 3.0 3.0
Validation set 0.59 0.64 0.0 3.0 3.0

Measured settlement, S,, (mm)

Training set 20.1 26.5 0.6 121.0 120.4
Testing set 214 29.2 1.0 120.0 119.0
Validation set 20.4 252 1.3 120.0 118.7
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20(90-10)

Model variables Statistical parameters

and data sets Mean Std. Dev. Min. Max. Range
Footing width, B (m)
Training set 9.0 10.8 0.8 60.0 59.2
Testing set 8.7 9.8 0.9 55.0 54.1
Validation set 7.8 7.7 1.0 33.0 32.0
Footing net applied pressure, g (kPa)
Training set 184.4 124.1 18.3 697.0 678.7
Testing set 179.7 116.9 25.0 666.0 641.0
Validation set 190.8 120.3 41.0 584.0 543.0
Average SPT blow count, N
Training set 25.0 13.8 4.0 60.0 56.0
Testing set 243 13.1 5.0 60.0 55.0
Validation set 24.2 13.3 4.0 60.0 56.0
Footing geometry, L/B
Training set 22 1.9 1.0 10.5 9.5
Testing set 2.1 1.7 1.0 9.9 8.9
Validation set 22 1.5 1.0 6.7 5.7
Footing embedment ratio, D,/B
Training set 0.53 0.56 0.0 3.4 3.4
Testing set 0.51 0.52 0.0 3.0 3.0
Validation set 0.56 0.63 0.0 3.0 3.0
Measured settlement, S, (mm)
Training set 19.6 26.4 0.6 121.0 120.4
Testing set 19.3 25.0 1.0 120.0 119.0
Validation set 20.8 25.2 1.3 120.0 118.7
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30(70-30)

Model variables Statistical parameters

and data sets Mean Std. Dev. Min. Max. Range
Footing width, B (m)
Training set 7.9 9.9 0.8 60.0 59.2
Testing set 9.3 10.2 0.9 42.7 41.8
Validation set 9.6 10.4 0.9 55.0 54.1
Footing net applied pressure, q (kPa)
Training set 180.4 117.7 18.3 697.0 678.7
Testing set 188.3 126.3 63.0 666.0 603.0
Validation set 196.9 131.0 34.0 584.0 550.0
Average SPT blow count, N
Training set 242 14.1 4.0 60.0 56.0
Testing set 24.9 13.4 5.0 55.0 50.0
Validation set 24.8 12.6 4.0 60.0 56.0
Footing geometry, L/B
Training set 2.1 1.7 1.0 10.5 9.5
Testing set 22 2.1 1.0 9.9 8.9
Validation set 2.1 1.6 1.0 8.4 7.4

Footing embedment ratio, D,/B

Training set 0.57 0.65 0.0 34 34
Testing set 0.50 0.56 0.0 2.6 2.6
Validation set 0.48 0.45 0.0 2.1 2.1

Measured settlement, S,, (mm)

Training set 20.3 28.1 0.6 121.0 120.4
Testing set 21.5 26.1 1.0 91.6 90.6
Validation set 19.7 24.7 1.3 116.0 114.7
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30(80-20)

Model variables Statistical parameters

and data sets Mean Std. Dev. Min. Max. Range
Footing width, B (m)
Training set 8.2 10.3 0.8 60.0 59.2
Testing set 9.0 9.0 0.9 33.0 32.1
Validation set 9.6 10.4 0.9 55.0 54.1
Footing net applied pressure, ¢ (kPa)
Training set 179.9 118.8 18.3 697.0 678.7
Testing set 194.0 125.9 75.0 666.0 591.0
Validation set 196.9 131.0 34.0 584.0 550.0
Average SPT blow count, N
Training set 24.7 14.0 4.0 60.0 56.0
Testing set 233 13.4 5.0 55.0 50.0
Validation set 24.8 12.6 4.0 60.0 56.0
Footing geometry, L/B
Training set 2.1 1.7 1.0 10.5 9.5
Testing set 22 2.2 1.0 9.9 8.9
Validation set 2.1 1.6 1.0 8.5 7.5
Footing embedment ratio, D,/B
Training set 0.55 0.63 0.0 34 3.4
Testing set 0.53 0.59 0.0 2.6 2.6
Validation set 0.48 0.45 0.0 2.1 2.1
Measured settlement, S, (mm)
Training set 20.3 28.0 0.6 121.0 120.4
Testing set 22.1 25.6 1.5 91.6 90.1
Validation set 19.7 24.7 1.3 116.0 114.7
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30(90-10)

Model variables Statistical parameters

and data sets Mean Std. Deyv. Min. Max. Range
Footing width, B (m)
Training set 9.2 10.7 0.8 60.0 59.2
Testing set 7.7 7.9 1.2 30.2 29.0
Validation set 8.0 9.3 0.9 42.7 41.8
Footing net applied pressure, q (kPa)
Training set 173.1 104.6 18.3 697.0 678.7
Testing set 157.6 94.6 70.0 386.0 316.0
Validation set 222.8 155.2 41.0 666.0 625.0
Average SPT blow count, N
Training set 25.1 14.5 4.0 60.0 56.0
Testing set 20.4 12.3 4.0 50.0 46.0
Validation set 24.2 11.3 5.0 50.0 45.0
Footing geometry, L/B
Training set 23 1.9 1.0 10.5 9.5
Testing set 23 1.9 1.0 6.8 5.8
Validation set 1.8 1.3 1.0 7.9 6.9

Footing embedment ratio, D./B

Training set 0.54 0.64 0.0 3.4 34
Testing set 0.47 0.40 0.1 1.2 1.1
Validation set 0.52 0.45 0.0 2.1 2.1

Measured settlement, S,, (mm)

Training set 19.4 25.7 0.6 121.0 120.4
Testing set 25.8 30.1 2.1 91.6 89.5
Validation set 21.3 27.7 3.6 120.0 116.4




Appendix E

Null Hypothesis Tests for Different Proportions

of Data Sets
10(70-30)
Variable Lower Upper Lower | Upper
and t-value | critical | ecritical t-test F-value | critical | critical
F-test
data sets value value value value

B
Testing 0.00 -1.97 1.97 Accept 1.51 0.64 1.64 Accept
Validation 0.38 -1.97 1.97 Accept 1.37 0.53 2.26 Reject
q
Testing —0.34 -1.97 1.97 Accept 0.85 0.64 1.64 Accept
Validation 0.11 -1.97 1.97 Accept 0.66 0.53 2.26 Accept
N
Testing 0.57 -1.97 1.97 Accept 1.29 0.64 1.64 Accept
Validation 1.19 -1.97 1.97 Accept 1.27 0.53 2.26 Accept
L/B
Testing —0.68 -1.97 1.97 Accept 1.26 0.64 1.64 Accept
Validation | -0.45 -1.97 1.97 Accept 0.89 0.53 2.26 Accepl
D,/B
Testing —0.10 -1.97 1.97 Accept 0.85 0.64 1.64 Accept
Validation 0.51 -1.97 1.97 Accept 3.50 0.53 2.26 Reject
SMI
Testing —0.67 -1.97 1.97 Accept 0.69 0.64 1.64 Accept
Validation | -1.09 -1.97 1.97 Accept 0.49 0.53 2.26 Reject
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10(80-20)
Variable Lower Upper Lower | Upper
and t-value | critical | critical t-test F-value | critical | critical
F-test
data sets value value value value
B
Testing 0.57 -1.97 1.97 Accept 1.31 0.61 1.81 Accept
Validation | —0.47 -1.97 1.97 Accept 0.86 0.54 2.24 Accept
q
Testing 0.26 -1.97 1.97 Accept 0.95 0.61 1.81 Acceplt
Validation | —0.83 -1.97 1.97 Accept 0.70 0.54 2.24 Accept
N
Testing 0.24 -1.97 1.97 Accept 1.15 0.61 1.81 Accept
Validation 0.18 -1.97 1.97 Accept 0.67 0.54 2.24 Accept
L/B
Testing —0.62 -1.97 1.97 Accept 1.13 0.61 1.81 Accept
Validation | —0.93 —~1.97 1.97 Accepl 0.65 0.54 2.24 Accept
D./B
Testing -0.09 -1.97 1.97 Accept 1.11 0.61 1.81 Accept
Validation 0.28 -1.97 1.97 Accept 0.93 0.54 2.24 Accept
SM
Testing —0.02 -1.97 1.97 Accept 1.05 0.61 1.81 Accept
Validation | —0.15 -1.97 1.97 Accept 1.29 0.54 2.24 Accept
10(90-10)
Variable Lower Upper Lower | Upper
and t-value | critical | critical t-test F-value | critical | critical
F-test
data sets value value value value
B
Testing —0.28 -1.97 1.97 Accept 1.09 0.53 2.37 Accept
Validation -1.0 -1.97 1.97 Accept 0.49 0.54 2.24 Reject
q
Testing —0.42 -1.97 1.97 Accept 0.69 0.53 2.37 Accept
Validation —0.24 -1.97 1.97 Accept 0.70 0.54 2.24 Accept
N
Testing 0.62 -1.97 1.97 Accept 1.24 0.53 2.37 Accept
Validation 0.54 -1.97 1.97 Accept 1.46 0.54 2.24 Accept
L/B
Testing 1.49 —1.97 1.97 Accept 4.46 0.53 237 Reject
Validation 1.35 -1.97 1.97 Accept 2.98 0.54 2.24 Reject
D,/B
Testing 0.21 -1.97 1.97 Accept 1.66 0.53 2.37 Accept
Validation 0.07 -1.97 1.97 Accept 0.77 0.54 2.24 Accept
Sm
Testing —0.49 -1.97 1.97 Accept 0.76 0.53 2.37 Accept
Validation | —0.81 -1.97 1.97 Accept 0.64 0.54 2.24 Accept
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20(80-20)
Variable Lower Upper Lower | Upper
and t-value | critical | critical t-test F-value | critical | critical
F-test
data sets value value value value
B
Testing -0.39 -1.97 1.97 Accept 0.61 0.59 1.87 Accept
Validation —0.54 -1.97 1.97 Accept 0.90 0.61 1.77 Accept
q
Testing -0.05 -1.97 1.97 Accept 0.83 0.59 1.87 Accept
Validation | —0.06 —-1.97 1.97 Accept 1.16 0.61 1.77 Accept
N
Testing | 070 | -1.97 1.97 Accept 0.93 0.59 1.87 Accept
Validation | -0.04 -1.97 1.97 Accept 0.89 0.61 1.77 Accept
L/B
Testing —-0.83 -1.97 1.97 Accept 0.65 0.59 1.87 Accept
Validation 0.0 -1.97 1.97 Accept 0.89 0.61 1.77 Accept
D /B
Testing, —0.79 -1.97 1.97 Accept 0.81 0.59 1.87 Accept
Validation | —0.93 -1.97 1.97 Accept 0.74 0.61 1.77 Accept
SM
Testing —0.24 -1.97 1.97 Accept 0.82 0.59 1.87 Accept
Validation | -0.06 -1.97 1.97 Accept 1.11 0.61 1.77 Accept
20(90-10)
Variable Lower Upper Lower | Upper
and t-value | critical | critical t-test F-value | critical | critical
F-test
data sets value value value value
B
Testing 0.10 -1.97 1.97 Accept 1.21 0.51 2.54 Accept
Validation 0.63 -1.97 1.97 Accept 1.96 0.62 1.76 Accept
q
Testing 0.14 -1.97 1.97 Accept 1.13 0.51 2.54 Accept
Validation | -0.28 -1.97 1.97 Accept 1.06 0.62 1.76 Accept
N
Testing 0.19 —-1.97 1.97 Accept 1.11 0.51 2.54 Accept
Validation 0.32 -1.97 1.97 Accept 1.08 0.62 1.76 Accept
L/B
Testing 0.19 -1.97 1.97 Accept 1.25 0.51 2.54 Accept
Validation 0.0 -1.97 1.97 Accept 1.60 0.62 1.76 Accept
D,/B
Testing 0.13 -1.97 1.97 Accept 1.16 0.51 2.54 Accept
Validation -0.28 -1.97 1.97 Accept 0.79 0.62 1.76 Accept
sm
(Testing__|_004 | —197 | 197 | Accept | 1.12 051 | 2.54 | Accept
Validation | —0.25 -1.97 1.97 Accept 1.09 0.62 1.76 Accept
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30(70-30)
Variable Lower Upper Lower | Upper
and t-value | critical | critical t-test F-value | critical | critical
F-test
data sets value value value value
B
Testing —0.74 -1.97 1.97 Accept 0.94 0.60 1.76 Accept
Validation —0.99 —-1.97 1.97 Accept 0.91 0.63 1.63 Accept
q
Testing -0.35 -1.97 1.97 Accept 0.87 0.60 1.76 Accept
Validation | —0.79 -1.97 1.97 Accept 0.81 0.63 1.63 Accept
N
Testing —0.27 -1.97 1.97 Accept 1.11 0.60 1.76 Accept
Validation —-0.26 -1.97 1.97 Accept 1.25 0.63 1.63 Accept
L/B
Testing —0.29 -1.97 1.97 Accept 0.65 0.60 1.76 Accept
Validation 0.0 -1.97 1.97 Accept 1.13 0.63 1.63 Accept
D,/B
Testing 0.51 -1.97 1.97 Accepl 1.35 0.60 1.76 Accept
Validation 0.91 —-1.97 1.97 Accept 2.06 0.63 1.63 Reject
Sil'l
Testing —0.23 -1.97 1.97 Accepl 1.16 0.60 1.76 Accept
Validation 0.13 —1.97 1.97 Accept 1.29 0.63 1.63 Accept
30(80-20)
Variable Lower Upper Lower | Upper
and t-value | critical | critical t-test F-value | critical | critical
F-test
data sets value value value value
B
Testing —0.37 -1.97 1.97 Accept 1.31 0.57 1.97 Accept
Validation | -0.82 -1.97 1.97 Accept 0.98 0.64 1.62 Accept
q
Testing —0.54 —1.97 1.97 Accept 0.89 0.57 1.97 Accept
Validation | —0.84 -1.97 1.97 Accept 0.82 0.64 1.62 Accept
N
Testing 0.47 -1.97 1.97 Accept 1.09 0.57 1.97 Accept
Validation | -0.04 -1.97 1.97 Accept 1.23 0.64 1.62 Accept
L/B
Testing -0.26 -1.97 1.97 Accept 0.59 0.57 1.97 Accept
Validation 0.0 -1.97 1.97 Accept 1.13 0.64 1.62 Accept
D./B
Testing 0.14 -1.97 1.97 Accept 1.14 0.57 1.97 Accept
Validation 0.74 -1.97 1.97 Accept 1.96 0.64 1.62 Reject
SM‘
Testing —0.30 —1.97 1.97 Accept 1.19 0.57 1.97 Accept
Validation 0.14 —1.97 1.97 Accept 1.29 0.64 1.62 Accept
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30(90-10)
Variable Lower | Upper Lower | Upper
and t-value | critical | critical t-test F-value | critical | critical
F-test
data sets value value value value
B
Testing 0.49 -1.97 1.97 Accept 1.83 0.49 2.79 Accept
Validation 0.73 -1.97 1.97 Accept 1.32 0.64 1.60 Accept
q
Testing 0.51 -1.97 1.97 Accept 1.22 0.49 2.79 Accept
Validation -2.5 -1.97 1.97 Reject 0.45 0.64 1.60 Reject
N
Testing, 1.12 -1.97 1.97 Accept 1.39 0.49 2.79 Accept
Validation 0.41 -1.97 1.97 Accept 1.65 0.64 1.60 Accept
L/B
Testing 0.00 -1.97 1.97 Accept 1.0 0.49 2.79 Accept
Validation 1.79 -1.97 1.97 Accept 2.13 0.64 1.60 Accept
D /B
Testing 0.39 -1.97 1.97 Accept 2.56 0.49 2.79 Accept
Validation 0.21 -1.97 1.97 Accept 2.0 0.64 1.60 Reject
S
| Testing 084 | -1.97 197 | Accept | 0.73 049 | 279 | Accept
Validation | -0.45 -1.97 1.97 Accept 0.86 0.64 1.60 Accept




Appendix F

FORTRAN Code for the ANN Model

C THIS PROGRAM CALCULATES SETTLEMENT OF SHALLOW FOUNDATIONS

C ON COHESIONLESS SOILS USING ARTIFICIAL NEURAL NETWORKS

e e e e e e e e e e e e e e S e e e e e et e
C B-FOOTING WIDTH (m)

C q-FOOTING NET APPLIED PRESSURE (kPa)

C N-AVERAGE SPT BLOW COUNT

C LB-FOOTING GEOMETRY (LENGTH/WIDTH)

& Df-FOOTING EMBEDMENT RATIO (FOUNDATION DEPTH/FOOTING WIDTH)

C S-PREDICTED SETTLEMENT (mm)

REAL B,B1,q,ql,N,N1,LB,LB1,Df,Df1, SM, SM1
REAL H1,H2,Y1,Y2, SUMM
CHARACTER*20 NAME
WRITE (*, *) 'Enter data from screen or file (S/F) 2!
READ (*, 5) NAME
5 FORMAT (A20)
IF ( (NAME .EQ. 'S') .OR. (NAME .EQ. 's') )} THEN
WRITE (*, *) "Footing width (m)="
READ (*, *)B
WRITE (*, *) 'Footing net applied pressure (kPa)="'
READ (*, *) g
WRITE (*, *) 'Average SPT blow count ='
READ (*, *)N
WRITE (*, *) 'Footing geometry ="'
READ (*, *) LB
WRITE (*, *) 'Footing embedment ratio ='
READ (*, *) Df
B1=(B-0.8)/59.2
ql=(g-18.32)/678.68
N1l=(N-4) /56
LB1=(LB-1.0)/9.5833
Df1=(Df-0)/3.4444
H1=(0.12418158)+(O.22735420*B1)+(0.48116106*q1)+(0.22959290*N1)
*-(0.01703092*LB1)+(0.06734087*Df1)
H2=(0.18811224)-(2.44251320*B1)—(1.11489062*q1)+(4.23963997*N1)
*-(0.49885305*LB1) +(2.50030115*Df1)
Y1=TANH (H1)
Y2=TANH (H2)
SUMM=(—O.31274397)+(O.72535181*Y1)—(2.98416472*Y2)
SM1=1/ (1+EXP (-SUMM) )
SM=(SM1*120.4)+0.6
WRITE (*,400)SM
400 FORMAT (' Settlement =',F10.2,"' mm")
ELSE
CALL TRY
END IF
END

SUBROUTINE TRY
DIMENSION SUM(500),81(500),5(500),Y1(500),Y2(500)
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DIMENSION H1 (500),H2(500),R(500,5),RN(500,5)
CHARACTER*20 FILIN,FILOUT
WRITE (*, *) '"Enter the number of case records ='
READ (*,*)N
WRITE (*, *) 'Enter the name of input file ="
READ(*,10) FILIN
WRITE (*, *) '"Enter the name of output file ="'
READ (*,10) FILOUT
10 FORMAT (A20)
OPEN(UNIT=1,FILE=FILIN,STATUS='OLD')
OPEN(UNIT=2,FILE=FILOUT,STATUS='NEW')
DO 20 I=1,N
READ(1,*) (R(I,d),J=1,5)
20 CONTINUE
DO 50 I=1,N
RN(I,1)=(R(I,1)-0.8)/59.2
RN(I,2)=(R(I,2)-18.32)/678.68
RN(I,3)=(R(I,3)-4)/56
RN(I,4)=(R(I,4)-1.0)/9.5833
RN (I,5)=(R(I,5)-0.0)/3.4444
50 CONTINUE
DO 60 I=1,N
Hl(I)=(0.12418158)+(0.22735420*RN(I,1))+(0.48116106*RN(I,2))
*+(0.22959290*RN(I,3))—(0.01703092*RN(I,4))+(0.06734087*RN(I,5))
H2(I)=(0.18811224)—(2.44251320*RN(I,1))—(1.11489062*RN(I,2))
*+(4.23963997*RN(I,3))—(0.49885305*RN(I,4))+(2.50030115*RN(I,5))
60 CONTINUE
DO 70 I=1,N
Y1 (I)=TANH(H1(I))
Y2 (I)=TANH(H2(I))
70 CONTINUE
DO 80 I=1,N
SUM(I)=(-0.31274397)+(0.72535181*Y1(I))—(2.98416472*Y2(I))
S1(I)=1/(1+EXP(-SUM(I)))
S(I)=(S1(1)*120.4)+0.6
80 CONTINUE
WRITE(2,15)
15 FORMAT(GX,'FOOT.‘,3X,'APP.',7X,'SPT—N‘,6X,‘GEOMETRY',ZX,'EMBED.'
*,3x,'SETTLEMENT')
WRITE (2,25)
25 FORMAT(GX,'WIDTH‘,3X,'PRESS.',16X,'RATIO',5X,'RATIO')
WRITE (2, 35)
35 FORMAT(GX,'(m)',SX,'(kPa)',38X,'(mm)')
WRITE (2, *) ' —————=m=———mm = —=— === oo oo oooo——o oo mmmo

DO 90 I=1,N

WRITE(2,200) (R(I,J),J=1,5),S(I)
200 FORMAT (6F10.2)
90 CONTINUE

RETURN

END
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Appendix G. ANN-Based Design Charts
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