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Abstract

The research presented in this thesis focuses on the settlement prediction of shallow
foundations on cohesionless soils using artificial neural techniques. The problem of
estimating the settlement of shallow foundations on cohesionless soils is very complex

and not yet entirely understood. Over the years, many methods have been developed to
predict the settlement of shallow foundations on cohesionless soils. However, methods

for such predictions that have the required degree ofaccuracy and consistency have not
yet been developed. Accurate prediction of settlement is essential since settlement,

rather than bearing capacity, generally controls the design process of shallow
foundations. In this research, artihcial neural networks (ANNs) are used in an attempt

to obtain more accurate settlement prediction. ANNs are numerical modelling

techniques that are inspired by the functioning of the human brain and nerve system.

ANNs use the data alone to determine the structure of the model as well as the unknown
model parameters' ANNs have been applied successfully to many problems in the field
of geotechnical engineering and some of their applications are demonstrated in this
thesis.

A large database comprising a total of 189 case records is used to develop and verift the

ANN models. Five parameters are considered to have the most significant impact on

the settlement of shallow foundations on cohesionless soils and are thus used as the

ANN model inputs. These include the footing width, footing net applied pressure,

average SPT blow count over the depth of influence of the foundation, footing geometry

and footing embedment ratio. The model output is the average measured sefflement of
the foundation, considered in its final state. Two types of ANNs are used for the

development of ANN models. The first type is multi-layer perceptrons (MLps) that are

trained using the back-propagation algorithm, whereas the second type are B-spline

neurofuzzy networks that are trained with the adaptive spline modelling of observation

data (ASMOD) algorithm. In relation to the multi-layer perceptrons, the feasibility of
ANNs for predicting the settlement of shallow foundations on cohesionless soils is
investigated. A number of issues in relation to ANN construction, optimisation and

validation are also investigated and guidelines for improving ANN performance are

lv



Abstract v

developed. The issue of data division and its impact on ANN model performance is

investigated in some detail by examining four different data division methods, namely,

random data division; data division to ensure statistical consistency of the subsets

needed for ANN model development; data division using self-organising maps (SOMs)

and a new data division method using fuzzy clustering. The success or otherwise of

ANNs for settlement prediction of shallow foundations on cohesionless soils is

illustrated and compared with three of the most commonly used settlement prediction

methods. A hand-calculation design formula for settlement prediction of shallow

foundations on cohesionless soils that is based on a more accurate settlement prediction

from ANN model is presented. It was found that ANNs have the ability to predict the

settlement of shallow foundations on cohesionless soils with a high degree of accuracy

and ouþerform traditional methods. It was also found that the new data division

method that is based on fuz,zy clustering is suitable approach for data division. In

relation to the newofuzzy models, the ability of ANNs to provide a better understanding

of the relationship between settlement and the factors affecting settlement is

investigated. It was found that neurofuzzy networks have the abilþ to provide a

transparent understanding of the relationship between settlement and the factors

affecting it.

Settlement analysis is often affected by considerable levels of uncertainty that are

usually ignored by traditional methods. In this research, ANNs are linked with Monte

Carlo simulation to provide a stochastic solution for settlement prediction that takes into

account the uncertainties associated with settlement analysis. A set of stochastic design

charts that provide the designer with the level of risk associated with predicted

settlements are developed and provided.
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Chapter 1

Introduction

1.1 Introduction

The settlement of shallow foundations is usually divided into three components (Fang

1991): (a) immediate, or distortion, settlement, (b) consolidation settlement and (c)

secondary compression settlement. Immediate settlement occurs with load application

during, or immediately after, the erection of a structure. It is primarily a consoquence of

soil-grain distortion and reorientation. Consolidation settlement, on the other hand, is

time-dependent and generally takes months to years to occur and is due to the

dissipation of pore water pressure over time. Secondary compression settlement occurs

as a result of soil creep, which is viscous flow under loading with no changes in

effective stress. The total settlement of a foundation is the sum of the above three

components. For cohesionless soils, only the immediate settlement is of concem,

whereas consolidation and secondary compression settlements are the primary factors

associated with cohesive soils.

It is generally understood that sand deposits are much more heterogeneous than the clay

deposits and, as a result, differential settlements are likely to be higher in sand deposits

than in clay profiles (Maugeri et al. 1998). Because cohesionless soils exhibit high

degrees of permeability, settlement occurs in a short time; immediately after load

application (Coduto 1994). Such quick settlement causes relatively rapid deformation

of superstructures, which results in an inability to remedy damage and to avoid further

deformation. Furthermore, excessive settlement occasionally leads to structural failure

(Sowers 1970).

The two major criteria that control the design of shallow foundations are the bearing

capacity of the footing and settlement of the foundations. However, settlement usually

controls the design process, rather than bearing capacity, especially when the width of

footing exceeds 1 metre (3-4 ft) (Schmertmann 1970). As a consequence, settlement

1
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prediction is a major concern and is an essential criterion in the design process of
shallow foundations.

The prediction of settlement of shallow foundations on cohesionless soils is very
complex and not yet entirely understood. This can be attributed to the fact that
settlement is governed by many factors that are uncertain and diff,rcult to quanti$r.
Among these factors are the distribution of applied stress (Holzlohner 19g4), the stress-
strain properties of the soil, soil compressibility and the difficulty in obtaining
undisturbed samples of cohesionless soils (Moorhous e 1972) for laboratory testing.

The geotechnical literature contains many methods, both theoretical and experimental,
to predict settlement of shallow foundations on cohesionless soils. Due to the difficulty
of obtaining undisturbed samples for cohesionless soils, many settlement prediction
methods have focussed on correlations with in-sifu tests, such as the standard
penetration test (SPT), cone penetration test (CPT), dilatometer test, plate load test,
pressuremeter test and screw plate load test. However, most of the available methods
simpliff the problem by incorporating several assumptions associated with the factors
that affect settlement. Consequently, consistent and accurate prediction of settlement
has yet to be achieved by the use of a variety of methods ranging from purely empirical
to complex non-linear finite elements (Poulos lggg). Comparative sfudies of the
available methods (e.g' Jorden 1977; Jeyapalan and Boehm 1986; Gifford et al. l9g7;
Tan and Duncan 1991; Wahls 1997) indicate inconsistent prediction of the magnitude of
settlements' As a result, alternative methods are needed, which can overcome the
limitations of the existing methods and provide more accurate settlement prediction.

The intention of this study is to apply an alternative approach, which is based on the
data alone, in an attempt to obtain more accurate settlement prediction. The approach
has been successfully applied to many problems including those of a geotechnical
engineering nature and is known as artificial neural networks (ANNs). ANNs are a
form of artificial intelligence, which, by means of their architecture, attempt to simulate
the biological structure of the human brain and nervous system. ANNs have the ability
to model the non-linear relationship between a set of input variables and the
corresponding outputs without need for predefined mathematical equations. The ANN
modelling philosophy is similar to most available methods for settlement prediction in
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the sense that both are attempting to capture the relationship between a set of model

inputs and corresponding outputs. However, unlike most available methods, ANNs do

not need prior knowledge about the nature of the relationship between the model inputs

and corresponding ouþuts. ANNs use the data alone to determine the structure of the

model as well as the unknown model parameters. This enables ANNs to overcome the

limitations of the existing methods.

Settlement analysis, as in many geotechnical engineering problems, is affected by a

considerable level of uncertainty associated with the factors that influence settlement.

Most available methods for settlement prediction of shallow foundations on

cohesionless soils disregard this uncertainty in their analysis and simulation. In order to

provide practical design tools, ANNs will be linked with Monte Carlo simulation to

incorporate the uncertainties associated with the factors that affect settlement prediction.

Such a probabilistic approach is useful in the sense that it can overcome the limitations

of the deterministic techniques and provide the geotechnical practitioner with some

guidance about the level of risk (i.e. degree of uncertainty) that is associated with the

predicted settlement.

1.2 Objectives and Scope of the Research

The overall objectives ofthis research are:

l. To explore the use of ANN models for predicting the sefflement of shallow

foundations on cohesionless soils and to compare their perforrnance with some of

the most commonly used traditional methods;

2. To introduce new data division methods for use in the development and verification

of ANN models for settlement prediction;

3. To introduce a ne\ry validation approach for ANN models by carrying out a

parametric study with a set of hypothetical data;

3
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4' To provide a mathematical equation and produce a set of design charts for
settlement prediction of shallow foundations on cohesionless soils based on the
ANN technique;

5' To provide a better understanding of the relationships between the ANN model
inputs and outputs for settlement prediction in the form of a set of finzy rules by
applying the neurofuzzy technique;

6. To investigate the influence of including the uncertainty associated with the factors
affecting settlement on the magnitude of settlement prediction and to produce a set

of stochastic design charts for routine use in practice that provide the geotechnical
practitioner with some guidance regarding the level of risk associated with predicted
settlements; and

7 ' To assess the benefits and limitations of the proposed techniques as a practical tool
for settlement prediction in comparison with more traditional methods.

Original contributions provided in this thesis and research are detailed in $g.3.

1.3 Layout of the Thesis

In the following chapter (Chapter 2),the structure and operation of ANNs are described,

Categories for different classifications of ANNs are presented. Issues related to the
development of ANN models are demonstrated and discussed. In Chapter 3, the major
ANN applications in the field of geotechnical engineering are reviewed to illustrate the
relative success or otherwise of ANNs in this field.

In Chapter 4,the main causes of settlement of shallow foundations are presented and the
main factors that govem settlement prediction of shallow foundations on cohesionless

soils are discussed. The different methods of settlement prediction of shallow
foundations on cohesionless soils, are categorised and the more successful are
highlighted.
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In Chapter 5, the modelling methodology of multi-layer perceptrons that are trained

with the back-propagation algorithm for predicting the settlement of shallow

foundations on cohesionless soils is described and a method that tests the robustness of

ANN models is introduced. Different data division methods for the development of

ANN models are presented and a new approach for data division based on fiizzy

clustering is introduced and evaluated. The effect of input data transformation on the

performance of ANN models is examined. The relative importance of the factors

affecting settlement is investigated. A comparison of the results obtained using ANNs

and some of the most commonly used traditional methods is presented. A simple

practical equation and a series of design charts for settlement prediction, based on

ANNs, are developed.

In Chapter 6, the neurof'lzzy technique is applied to assist with providing a better

understanding of the relationships between settlements and the factors affecting them.

The technique helps to produce a set of luzzy rules that govem these relationships.

In Chapter 7, a practical stochastic approach is proposed for settlement prediction of

shallow foundations on cohesionless soils that includes the uncertainty associated with

the factors affecting settlement. The approach is based on linking the Monte Carlo

technique with predicted settlements from the ANN model developed in Chapter 5. The

results of the proposed stochastic approach are presented in the form of cumulative

probability distribution design charts from which the probability that certain settlement

predictions are exceeded can be readily obtained. The effect of varying the uncertainty

associated with the factors affecting settlement on the magnitude of predicted settlement

is examined. A set of stochastic design charts for settlement prediction are developed

and provided for routine use in practice.

In the final chapter (Chapter 8), the research work is summarised and conclusions are

presented. Recommendations for fufure work are also given.

5



Chapter 2

ArtifÏcial Neural Networks

2.1 Introduction

Artificial neural networks (ANNs) are a form of computing that attempt to simulate the
operation of the human brain and nervous system. Although the concept of artificial
neurons was first introduced in 1943 (McCulloch and Pitts lg43), research into
applications of ANNs has blossomed since the introduction of the back-propagation

training algorithm for feed-forward ANNs in 1986 (Rumelhart et al. 1gg6; Mcclelland
and Rumelhart 19sS). ANNs may thus be considered a relatively new tool in the field
of prediction and forecasting. Recently, ANNs have been applied successfully to a wide
range of areas including classification, estimation, prediction and functions synthesis
(Moselhi et al. 1992). Moreover, ANNs have also been used successfully in predicting
business failure, speech production and recognition, pattern recognition, medical
diagnosis and treatment, control problems (Fausett rgg4) and many fields of
engineering, including geotechnical engineering, as will be examined in Chapter 3.

ANNs learn 'by example' in which an actual measured set of input variables and the
corresponding outputs are presented to determine the rules that govern the relationship
between the variables. Consequently, ANNs are well suited to model complex
problems where the relationship between the variables is unknown (Hubick 1992) and
when nonJinearity is suspected (Maier 1995).

The aim of this chapter is to detail the more important features associated with ANNs
and particularly those aspects addressed in the present research. The chapter begins
with a brief description of natural neural networks and follows with an overview of the
structure and operation of ANNs. The classification of different ANN types is
presented and finally, the salient features of ANN model development are described and

discussed.

6
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2.2 Natural Neural Networks

The structure and operation of natural neural networks (Ì.ü.INÐ have been described by

many authors (e.g. Hertz et al. l99l; Zurada 1992; Masters 1993; Fausett 1994).

NNNs, of which the brain is an example, consist of billions of densely interconnected

nerve cells called neurons. Each neuron receives the combined output signals

(information) of many other neurons through synaptic gaps by input transmission paths

called dendrites (Figure 2.1). The transmitted signals are electrochemical, which means

that they are electronic impulses that transmit across the synaptic gaps to the dendrites

by means of a chemical process (Fausett 1994). Consequently, the connection between

neurons is chemical and the strength of this connection is modified by the action of the

chemical transmitters and as the brain learns. The dendrites collect the incoming signals

and send them to the cell body, or the soma, of the neuron. The soma sums the

incoming signals and, if the charge of these signals is strong enough, the neuron is

activated and produces an output signal; otherwise the neuron remains inactive. The

ouþut signal is then transmitted to the neighbouring neurons through an ouþut

structure called the axon. The axon of a neuron divides and connects to dendrites of the

neighbouring neurons through junctions called synapses. The way neural networks

receive, process and transmit the electrochemical signals, as well as the action of the

chemical transmitters, comprise the basic memory mechanism and communication

system of the human brain.

Axon from
Anothcr Neu¡on

7

S¡aptic
Gap

Synaptic

Dendritc of
Anothcr Ncu¡on

Dendritc of
AnothcrNcuro¡r

Gap

Axon from
Anothcr Ncr¡ron

Soma

Figure 2.1: Typical structure of biological neuron (Fausett 1994)
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2.3 structure and operation of Artificial Neural Networks

Artificial neural networks (Al'tNÐ attempt to mimic some of the behaviour of the basic
biological and chemical processes of NNNs. Many authors have described the structure
and operation of ANNs (e.g. Hecht-Nielsen 1990; Maren et al. 1990; Zurada 1992;
Fausett 1994; Ripley 1996). Briefly, ANNs consist of a number of artificial neurons
variously known as 'processing elements' (pEs), 'nodes, or ,units,, representing the
neurons in NNNs. Processing elements in ANNs are usually arranged in layers: an

input layer, an ouþut layer and one or more intermediate layers called hidden layers
(Figure 2.2).

f (tl
T

x
0

1
wlo

¡r /tv

x

a
Ouþut

Hidden
Welghb

lnpul Output
win Eþmenl

Bias (0¡)

FÍgure 2-2: Typical structure and operation of ANNs (Maier and Dandy 199s)

Each processing element in a specific layer is fully or partially connected to many other
processing elements via weighted connections. The weight in each connection
represents the synaptic strength in NNNs. The scalar weights determine the strength of
the connections between interconnected neurons. A zero weight refers to no connection
between two neurons and a negative weight refers to a prohibitive relationship. From
many other processing elements, an individual processing element receives its weighted
inputs, which are summed and a bias unit or threshold is added or subtracted. The bias

unit is used to scale the input to a useful range to improve the convergence properties of
the neural network. The result of this combined summation is passed through a transfer
function to produce the ouþut of the processing element. For node j, this process is

summarised in Equations 2.1 and,2.2 and illustrated in Figure2.2.
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I,=fr¡xi+0j summation
i=l

vj=f(Ii) transfer

Ij

ilj,

xi

e

!¡

f(r)

: the activation level of nodej;

: the connection weight between nodes i and j;
: the input from node i, i : 0, l, ..., fl)

: the threshold for nodej;

: the output ofnodej; and

: the transfer function.
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(2.r)

(2.2)

where:

The propagation of information in ANNs starts at the input layer where the input data

are presented. The inputs are weighted and received by each node in the next layer.

The weighted inputs are then summed and passed through a transfer function to produce

the nodal output, which is weighted and passed to processing elements in the next layer.

The network adjusts its weights on presentation of a set of training data and uses a

learning rule until it can find a set of weights that will produce the input-output mapping

that has the smallest possible error. The above process is known as 'learning' or

'training'.

Transfer functions

Transfer functions can take a variety of forms. The logistic sigmoid and hyperbolic

tangent transfer functions are the most common functions in neural networks (Fausett

lgg4). The logistic sigmoid function is usually used when the desired range of output

values is between 0 and l, whereas the hyperbolic tangent function is often used when

the desired range of output values is between -l and 1. The logistic sigmoid and

hyperbolic tangent transfer functions are shown in Figures 2.3 and2.4 and Equations

2.3 and 2.4, respecf.ively. Usually, the same transfer function is used for all processing

elements in a particular layer. The effect of using either the logistic sigmoid or
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hyperbolic tangent transfer functions in the hidden and output layers on the performance

of ANN models will be investigated in Chapter 5.

r(,)

4

2168

I6

Figure 2.3: The logistic sigmoid function (Maier 1995)

fG)

-4 -2

-l

Figure 2.42 The hyperbolic tangent function (Maier 1995)

Q.3)

(2.4)

Learning (training)

Learning or training is the process of adjusting the weights in accordance with a

learning rule and on the presentation of the training data. Learning in ANNs is usually
divided into supervised and unsupervised learning (Masters 1993). In supervised

leaming, the network is presented with a historical set of model inputs and the
corresponding (desired) ouþuts. The actual ouþut of the network is compared with the
desired output an{ an error is calculated. This error is used to adjust the connection
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weights between the model inputs and outputs to reduce the error between the historical

outputs and those predicted by the ANN. The number of training samples presented

between weight updates is called an epoch. The network may choose to be updated

after: each training record is presented; the entire set of training data is presented or a

certain number of training samples is presented.

In unsupervised learning, the network is only presented with the input stimuli and there

are no desired outputs. The network itself adjusts the connection weights according to

the input values. The idea of training in unsupervised networks is to cluster the input

records into classes of similar features. Unsupervised learning is similar to the way

learning takes place in the NNNs of the human brain.

2.4 Classification of Artificial Neural Networks

ANNs can be categorised on the basis of two major criteria: (i) the learning rule used

and (ii) the connections between processing elements. Based on learning rules, ANNs,

as mentioned above, can be divided into supervised and unsupervised networks. Two

examples of supervised networks are multiJayer perceptrons and neurofuzzy networks.

An example of an unsupervised network is the self-organising map. Based on

connections between processing elements, ANNs can be divided into feed-forward and

feedback networks. In feed-forward networks, the connections between processing

elements are in the forward direction only (Figure 2.5a). In feedback networks,

connections between processing elements are in both the forward and backward

directions (Figure 2.5b).

(a) Feed-forward network (b) Feedback network

Figure 2.5: Connections between PEs for different neural network types
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2.4.1 Multi-tayer Perceptrons

Multi-layer perceptrons (MLPs) belong to the class of supervised feed-forward
networks in which the processing elements are arranged in a multi-layered strucfure.
The topology and algorithm details of MLPs are discussed in many publications (e.g.
Hertz et al. L99l; Fausett 1994 Picton 1994; Ripley 1996). As mentioned previously,
the structure of MLPs consists of an input layer, one or more hidden layers and an
ouþut layer. The input from each processing element (PE) in the previous layer is
multiplied by a connection weight. These connection weights are adjustable and may
be likened to the coefficients in statistical models. At each pE, the weighted input
signals are summed and a bias or threshold value is added or subtracted. This combined
input is then passed through a non-linear transfer function (e.g. logistic sigmoid or
hyperbolic tangent transfer functions) to produce the ouþut of the pE. The ouþut of
one PE provides the input to the PEs in the next layer. This process was summarised
previously in Equations 2.1 and 2.2 and, ilrustrated inEigure 2.2.

The global error between the output predicted by the network and the actual desired
ouþut is calculated using an error function. The mean squared enor (MSE) function is
usually preferable for the following reasons (Masters 1993): (a) the subsequent

derivatives of this function are simple; (b) it gives more attention to large errors and (c)
it lies close to the heart of the normal distribution in which, if the errors can be assumed

to be normally distributed, minimising the MSE is optimal. Other measures can also be
used and these are discussed in $2.5.7.

As mentioned earlier, the objective of the learning process is to minimise the e11ors

befween the predicted and actual outputs. This minimisation process can be achieved
by the error function with respect to all variables in the neural network (e.g. connection
weights, network architecture, learning rate and threshold). For simplicity and since the
connection weights are the most influential variable, Rumelhart efal. (1936) proposed

the back-propagation algorithm in which the error function is minimised with respect to
the connection weights only. This error function is used in a backward manner to adjust
the weights. The weights between the hidden layer and the output layer are adjusted
first, followed by the weights between the hidden layer and the input layer. This
process is repeated, which propagates the error term needed for weight adjustment until
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the network can obtain a set of weights, which have the inpuVoutput mapping that has

the minimum error. Once the desired learning is achieved, the weights are fixed and the

neural network can be deployed and used in practice.

The back-propagation training algorithm uses a gradient descent technique to adjust the

weights. This process involves changing the weights from their initial random state by

an amount proportional to the partial derivative of the error function, E, with respect to

the given weight. For example, the error function, for node j, is calculated using the

following equation:

E
1

Z?t -d,)' (2.5)
2

where:

E : the global error function;

!¡ : the predicted output by the network; and

dj : the desired (historical or measured) actual output.

The global error functíon, E, is minimised by modiffing the weights using the gradient

descent rule as follows:

AELw..=-T 
^" Oril ¡i

Q.6)

where:

Aw¡t : weight increment from node I to nodei; and

q : learning rate, by which the size of the step taken along the error surface is

determined.

Equation (2.6) canbe further defined by the deltarule as follows

Lw¡i =eõ¡x, (2.7)
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where:

xi : input from node i, i: 0, l, ..., fli
ðj : error value between the predicted and desired output for nodej

If node 7 is in the output layer, õ, can be calculated by applying the delta rule, as

follows:

6, =(/¡ -d j)f'(I j) (2.8)

where:

"f'(I ¡) : the derivative of the activation function/with respect to the weighted sum of
inputs of node7.

If nodei is in the hidden layer, the generalised delta rule, proposed by Rumelhart et al.
(1986), can be used as illustrated in Equation 2.9 andFigure 2.6.

u, =[å õ'w'j lr '(1,) (2.e)
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Figure 2.6: Nodej in a hidden layer

The weights are then updated by adding the delta weight, Lw,,, to the corresponding

previous weight as follows:

wr,(n+I) = w¡i(n)+ Lw¡t (2.10)
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where:

w,{n) : the value of a weight from node I to nodej at step n (before adjustment); and

w,,(n+l): the value of the weight at step (n+l) (after adjustment).

The back-propagation algorithm is sensitive to the initial conditions, i.e. the initial

values of the weights, as a result of its gradient descent nature. For example, training

may start with a set of initial weights that are positioned in a flat region of the error

surface from which convergence becomes very slow (Hassoun 1995). Moreover,

training may start from an unfavourable position in weight space from which the

network may get stuck in a local minimum and cannot escape (Maier and Dandy 1998).

The effect of using different initial random starting positions in weight space on the

performance of ANN models will be investigated in Chapter 5.

There are two training modes for weights to be updated, on-line and batch modes. In

on-line mode, the weights are updated after each training case is presented. In batch

mode, the weights are not updated after each training case, rather, the weight change

çtw,) that is computed for each training case is accumulated to a certain epoch or until

all training cases are presented. The average weight changes are then computed and

used for weight updating. It has been suggested that on-line mode is better than batch

mode as the sequence of training cases presented to the network can be easily

randomised to avoid local minima (Zhang 1997). Consequently, on-line mode will be

adopted for all ANN models that will be developed later in this research.

The choice of the learning rate is critical and the optimum learning rate is usually

determined by trial-and-error. If the learning rate is selected to be small, convergence

will be achieved, however, it will be very slow. In addition, convergence will be

subject to the local minimum in the error surface that is closest to the random starting

position. On the other hand, if the learning rate is selected to be large, convergence will

never occur. Rumelhart et al. (1986) described a process to solve the above problem

without leading to oscillation. This process is simply to add a momentum term (p) to

the weight adjustment that is proportional to the amount of the previous weight change.

Once an adjustment is carried out, it is saved and used to modiff all subsequent weight

adjustments. This means that the weight change of the current step should carry some
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momentum of the weight change from the previous step. The modified adjustment
equations are as follows:

(2.11)

w,,(n + l) = w ¡t(n) + Lw,,(n + l) (2.t2)

A mornentum value of 0.9 is customarily set, for both on-line and batch training modes,
(Sarle 1994a). Ripley (1993) argued that it is often better to use momentum values of
0'99 or 0.999 for on-line training mode and a smaller value of 0.5 for batch training
mode' However, Sarle (1994a) argued that the best momentum can be determined by
trial-and-error. The effect of using several values of learning rates and momentum
terms will be investigated in Chapter 5.

There are several other algorithms for training MLPs that are described by Hertz et al.
(1991). Most of these algorithms are based on the assumption that the learning rate is
constant from one epoch to the next and from one weight to another. However, some
researchers (e.g. Chan and Fallside 1987; Jacobs 1988) challenged the above
assumption by proposing learning rules that use varying learning rates and provided
guidelines for learning rate update. This can decrease the number of cycles required for
training, however, it has been argued that the automatic methods of updating learning
rates have the risk of being happed in local minima (Mukherjee and Deshp ande 1997).

Despite the effectiveness of MLPs that are trained with the back-propagation algorithm
for solving many engineering problems, they suffer from a number of shortcomings.
MLPs trained with the back-propagation algorithm may be slow to converge
(Wasserman 1989; Vitela and Reifrnan lggT). This is attributed to the fact that these
networks rely on non-linear transfer functions for learning. If node activation is large,
nodal outputs may tend to get stuck in the flat spots at the extreme values of the transfer
functions as shown previously in Figures 2.3 and 2.4. The changes used to update the

AEnw,ln+ l) = -Tl * + ¡t\w.,,(n)
CJW.,' lt

and
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weights are a function of the derivative of the transfer functions. At the extreme values

of the transfer functions the derivative is near zero. ConsequentlY, verY small weight

changes can occur, resulting in a slow down in convergence. A number of ways are

proposed in the literature to solve this problem. For example, Fahlman (1988) proposed

adding a small, constant value to the derivative of the transfer function to prevent it

from becoming zero. Fahlman (1988) achieved a dramatic improvement in training

time by adding 0.1 to the derivative of the sigmoid transfer function. Another way to

solve the above problem is the adjustment of the transfer function so that it never drops

below a predefined level (Rojas 1996).

Another limitation of MLPs trained with the back-propagation algorithm is that when

the network tries to find the global minimum of the error surface, it can get trapped in a

local minimum. However, for many applications, local minima are not a significant

problem, as they occur relatively infrequently (V/eiss and Kulikowski 1991). Again,

there are several lilays proposed in the literature to escape local minima, including

increasing the learning rate, adding a momentum term, adding a small amount of

random noise to the input patterns to shake the network from the line of steepest

descent, adding more hidden nodes and relocating the network along the error surface

by randomising the initial weights and retraining (Sietsma and Dow 1988; Vitela and

Reifman 1997; Maier and Dandy 2000). The effect of some of these approaches on the

performance of ANN models will be investigated in Chapter 5.

Finally, feed-forward neural networks that are trained with the back-propagation

algorithm are often criticised for being black boxes. The knowledge acquired by these

networks during training is stored in their connection weights and bias values in a

complex manner that is often difficult to interpret (Touretzky and Pomerleau 1989;

Hegazy et aL 1994; Brown and Harris 1995; Shaopei and Boru 1998). Consequently,

the rules governing the relationships between the inpuloutput variables are difficult to

quantiff, especially for large networks that have a large number of PEs. As will be seen

in the following section, one way to overcome this problem is to use neurofuzzy

networks.

t7
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2.4,2 Neurofuzzy Networks

Neurofuzzy networks are modelling techniques that combine the explicit linguistic
knowledge representation of flr"y systems with the leaming power of MLps (Altrock
1995; Brown and Harris 1995). Neurofuzzy networks can be trained by processing data

samples to perform inpufouþut mappings, similar to the way MLps do, with the

additional benefit of being able to provide a set of production rules that describe the

model inpuloutput relationships and thus, they are more transparent (Brown and Harris
1994; Sayed and Razavi 2000). Neurofuzzy networks are new tools in the field of
geotechnical engineering and, as will be seen in Chapter 6,they can be used to provide a

beffer understanding of the relationships between ANN model inputs and ouþuts.

Neurofuzzy networks use the fuzzy logic system to store the knowledge acquired

between a set of input variable s (x,, x2, .. ., xn) and the corresponding output variable (y)

in a set of linguistic fuzzy rules that can be easily interpreted, such as:

IF (x, ß high AND x,is low) THEN @ is high), c = 0.9

where (c : 0.9) is the rule confidence which indicates the degree to which the above

rule has contributed to the ouþut. The concepf of fuzzy logic was introduced by Zadeh
(1965)- As part of any fuzzy logic system, two main components (i.e. fuzzy sets and

fa?zy rules) need to be determined. In order to determine the fury sets, linguistic
terms (e.g. small, medium and large) can be interpreted mathematically in the form of
membership functions, and model variables arefuzzified to be partial members of these

membership functions in the interval grade (0,1). This means that, for afuzzy set A, an

input variable x is fuzzified to be a partial member of the futzy set I by transforming it
into a degree of membership of function un(x) ofinterval (0,1). There are many forms

of membership functions including B-spline and Gaussian functions @rown and Harris
1994). Figure 2.7 is an example of B-spline basis functions of different order. For each

variable, the fuzzy sets overlap and cover the necessary range of variation for that

variable in a process calledfuzzificatìon. It should be noted that the model output of a
furry set is also fttzzy and, in order to obtain a real-valued ouþut, defuzzification is
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needed. The mean of maxima and centre of gravity are the most popular defivzification

algorithms (Brown and Harris 1994).

Order 1 Otto¡2 Order 3

0 0 0

lnÊJtl(frtt lnpul knot! ¡nÈ¡t lmoti

Figure 2.7: B-sptine fuzzy membership functions of different order

A typical structure of a neurofrtzzy network contains three layers: an input laye4 a

single hidden layer and an ouþut layer @rown and Harris 1994). The input layer

normalises the input space in a p-dimensional lattice (Figure 2.8). Each cell of the

lattice represents similar regions of the input space. The hidden layer consists of basis

functions (e.g. B-spline and Gaussian functions) which are defined on the lattice formed

by normalising the input space. The size, shape and overlap of the basis functions

determine the structure and complexity of the network. The output layer sums the

weighted ouþuts from the basis functions to produce the network output using Equation

(2.r3).

(2.t3)

1 I
1

w¿aiv t
j=l

where:

v
ai

wi

: model output;

: ouþut from thepth basis function; and

: connection weight associated with 4,.

This ouþut is compared with the actual measured output and a correction error (the

mean squared erîor, MSE, is usually used) is calculated. Using this error and

implementing a learning rule, the neurofuzry network adjusts its weights and

determines its fi;zzy parameters (i.e. fuzzy sets and frtzzy rules). The Least Mean
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Weight

Nor¡n¡lízed
inputspæ Bæis functions

tr'igure 2.8: Typical structure of a neurofuzzy network (Brown and Harris 1995)

Squared (LMS) and the Normalised Least Mean Squared (¡[I-MS) leaming algorithms
are generally used to update the weights (Brown and Harris lgg4). At time I and as part
of these algorithms, Equations 2.r4 and,2.r5, respectively, are used to adjust the
weights for the LMS and NLMS algorithms (Brown and Harris 1995):

w,(t) = w,(t -I) + qO,Ø - y(t))a,(t) Q.r4)

v

vcctor

Q.T5)

where:

: learning rate; and

: desired ouþut.

It should be noted that, when the output error is zero, the weights are not updated,

whereas if it is not zero, the weights are adjusted so as to reduce the output error. If the
basis functions have nonzero ouþuts in only a small part of the input space, then only
the numbers of weights that are contributing to the network output are updated during
training. Consequently, similar network inputs result in similar sets of nonzero basis

functions and therefore, the knowledge is stored locally in the network without
interfering with the knowledge that is stored in other regions of the network.

ry

,
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One major disadvantage of B-spline networks is that the number of basis functions (i.e.

fit?zy sets or membership functions) is exponentially dependent on the dimension of the

input space (Brown and Harris 1995). Consequently, the number of rules is also

exponentially dependent on the dimension of the input space, resulting in impractical

model representation. This problem has been termed the curse of dimensionality

@rown and Harris 1995). To illustrate this problem, consider afuzzy logic system that

has five input variables and that each input variable is presented over five-valued

membership functions. This fuzzy system will contain as many as (5s =3125) rules.

One useful approach for overcoming such problem is to use the analysis of variance

(ANOVA) representation (Brown and Harris 1995). ANOVA decomposes an 14-

dimensional function to a linear combination of a number of separate functions, as

follows (Brown and Harris 1995):

,r(x,,x¡) +... + .ft,r,..,,(x) (2.t6)

where fi represents a constant (the function bias); and the other terms represent the

univariate, bivariate and high-order subfunctions. In many situations, the majority of

high-order terms are zero or negligible, resulting in a limited number of subfunctions

(often called subnetworks) of much lower dimensions that approximate the network

inpuloutput mapping. It should be noted that each subnetwork in the ANOVA

description represents a neurofuzzy system of its own and the overall model output is

produced by summing outputs of all subnetworks. An example of ANOVA

decomposition for the problem of five input variables and five membership functions

for each of these is shown in Figure 2.9. The 5D function is decomposed into one lD

and two 2D subnetworks, resulting in 5,25 and25 fuzzy rules for the first, second and

third subnetwork, respectively. Consequently, the network with ANOVA

decomposition will produce an overall number of rules equal to 55 instead of 3125 fot

the non-decomposed network.

The adaptive spline modelling of observation data (ASMOD) proposed by Kavli (1993)

is an automatic algorithm for obtaining the optimal structure of B-spline neurofuzzy

networks. ASMOD has been found to perform well in a wide variety of modelling
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Figure 2.9: Allova decomposition of a neurofuzzy rule base

(Brown and Harris 1995)

problems (Brown and Harris 1994). The algorithm starts with a simple model (e.g. only
one variable with two membership functions) and iteratively refines the model structure
during training so as to gradually increase model capability until some stopping
criterion is met. Possible refinements include adding or deleting input variables,
increasing the number and dimension of an individual subnetwork by linking it to an
existing input, forming multi-variate subnetworks using ANOVA and changing the
number and spacing of the basis functions (i.e. the optimum partitioning of the input
space). Changing the order of B-spline functions for an individual input variable is also
a possible refinement; however, the order of B-spline functions has to be determined in
advance. It should be noted that higher order B-spline basis functions result in
smoother model ouþuts; however, it is likely to lead to data overfitting (Brown and
Harris 1994). Consequently, lower order basis functions are more desirable if they are

able to model the desired relationship with a satisfied accuracy (Maier et al. 2001). For
every refinement, the impact of network pruning is evaluated and the network that has

the simplest structure with the best performance is chosen. As part of ASMOD,
stopping criteria have to shike a balance between model performance and model size,
training data and model error. Examples of such measures are given by Brown and
Harris (1994), which include:

Bayesian Information Criterion (BIC): K = nln(MSE) + pln(n) (2.17)

fzt

frs

Xt

Xz

Xt

X.

Xt
a

Akaike's Information Criterion (AIC): K(ú) = nln(MSE)+ pø, ø > 0 (2.18)
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Final Prediction Error (FPE): K = nln(MSE). "r"(7À (2.te)

where K is the performance measure, p is the size of current model, MSE is the mean

square error and z is the number of data pairs used to train the network. The effect of

using the aforementioned stopping criteria on the performance of neurofuzzy networks

will be investigated in Chapter 6.

2.4.3 Self-Organising Maps

Self-organising maps (SOMs) belong to the genre of unsupervised neural networks and

were proposed and developed by Kohonen (1982). Unsupervised neural networks are

usually used for data clustering to optimise and identiff similarities associated with raw

data. SOMs will be used in Chapter 5 to cluster the data variables in order to divide the

data into their training, testing and validation subsets. The typical structure of SOMs

consists of two layers: an input layer and a Kohonen layer (Figure 2.10)'

Kohonen layer

Input layer

Figure 2.10: Typical structure of self-organising map

The Kohonen layer has a number of competitive processing elements (PEs) or rrodes

arranged in a one- or two-dimensional anay. The input from each node in the input
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layer (-r, for i : l, 2, ..., z) is fully connected to the Kohonen layer through connection

weights (wlfor i : 1,2, ..., m). At the beginning of the selÊorganising process, these

weights are randomly initialised. At each node in the Kohonen layer, the input (x) is
presented without providing the desired output, and a matching value is calculated.

This value is typically the Euclidean distance. For node 7 in the Kohonen layer, the
Euclidean distance (D) between the weights and the corresponding input values, is

given by Equation2.20.

D. i@,, - x,)',i : l, 2, ..., ffi
i=l

(2.20)

The node that has the minimum Euclidean value is declared the winner. That is, the
winner is the node whose weights are most similar to the input values. The weights of
the winning node and its neighbouring nodes, in terms of topology, are then updated to
match the input values more closely. The incremental weight update for node 7 is as

follows:

Lw¡t=r\(x,-w¡i) (2.2r)

where:

ry :learning rate.

At step n of the training, nodej can be updated as in Equation 2.10

The process is repeated by successively presenting new input data records to the model

and adjusting the connection weights until they remain unchanged. The result is a

topological map in which similar data records are clustered together. A full description

of the operation of self-organising maps is given by Kohonen(1997).
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2.5 l)evelopment of Artificial Neural Network Models

In order to improve performance, ANN models need to be developed in a systematic

manner. Such an approach needs to address major factors such as the determination of

adequate model inputs, data division and pre-processing, the choice of a suitable

network architecture, careful selection of some internal parameters that control the

optimisation method, the stopping criteria and model validation (Maier and Dandy

2000). These factors are explained and discussed below.

2.5.1 Determination of Model Inputs

An important step in developing ANN models is to select the model input variables that

have the most significant impact on model performance. A good subset of input

variables can substantially improve model performance. Presenting as large a number

of input variables as possible to ANN models usually increases network size, resulting

in a decrease in processing speed and a reduction in the efficiency of the network

(Lachtermacher and Fuller 1994). A number of techniques have been suggested in the

literature to assist with the selection of input variables. An approach that is usually

utilised in the field of geotechnical engineering is that a fixed number of input variables

can be used in advance and assumed to be the most effective input variables in relation

to the model ouþut variables. This approach will be adopted for the ANN models that

are developed in this research (see Chapter 5). Another approach used by some

researchers (e.g. Goh t994b; Najjar et al. L996; Ural and Saka 1998) is to train many

neural networks with different combinations of input variables and to select the network

that has the best performance. A step-wise technique described by Maier and Dandy

(2000) can also be used in which separate networks are trained, each using only one of

the available variables as model inputs. The network that performs the best is then

retained, combining the variable that resulted in the best performance with each of the

remaining variables. This process is repeated for an increasing number of input

variables, until the addition of any extra variable results in no improvement in model

performance. Another useful approach is to employ a genetic algorithm to search for

the best sets of input variables (NeuralWare 1997). For each possible set of input

variables chosen by the genetic algorithm, a neural network is trained and used to rank
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different subsets of possible inputs. A set of input variables derives its fitness from the
model error obtained based on those variables. The adaptive spline modelling of
observation data (ASMOD) algorithm proposed by Kavli (1993) is also a useful
technique that can be used for developing parsimonious neurofrrzzy networks by
automatically selecting a combinations of model input variables that have the most
sþificant impact on the ouþuts. The AsMoD algorithm will be adopted in Chapter 6
for the neurofuz4' models that are developed in this research.

2,5.2 Division of Data

ANNs are similar to conventional statistical models in the sense that model parameters
(e'g' connection weights) are adjusted in the model calibration phase (training) so as to
minimise the error between model ouþuts and the corresponding meÍìsured values for a
particular dat¿ set (the training set). ANNs perform best when they do not extrapolate
beyond the range of the data used for calibration @lood and Kart¿m lgg4;Minns and
Hall 1996; Tokar and Johnson rg99). Therefore, the purpose of ANNs is to non-
linearly interpolate (generalise) in high-dimensional space between the dat¿ used for
calibration. Unlike conventional statistical models, ANN models generally have a large
number of model parameters (connection weights) and can therefore overfit the training
data, especially if the training data are noisy. In other words, if the number of degrees
of freedom of the model is large compared with the number of data points used for
calibration, the model might no longer fit the general trend, as desired, but might learn
the idiosyncrasies of the particular data points used for calibration leading to
'memorßation', tather than'generalisation'. Consequently, a separate validation set is
needed to ensure that the model can generalise within the range of the data used for
calibration. It is common practice to divide the available data into two subsets; a
training set, to construct the neural network model, and an independent validation set to
estimate the model performance in a deployed environment (Twomey and Smith t997;
Maier and Dandy 2000). Usuall¡ two-thirds of the data are suggested for model
training (i.e. training and testing sets) and one-third for validation (Hamme,tstrom
1993)' A modification of the above data division method is cross-validation (Stone
1974) in which the data are be divided into three sets: training, testing and validation.
The training set is used to adjust the connection weights, whereas the testing set is used
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to check the performance of the model at various stages of training and to determine

when to stop training to avoid over-htting. The validation set is used to estimate the

performance of the trained network in the deployed environment. There are no

guidelines in the literature for the optimal proportion of the data to use for training,

testing and validation sets. In an attempt to determine an optimal proportion of the data,

the relationship between the proportion of the data used in each subset and ANN model

performance will be investigated in Chapter 5.

In many situations, the available data are small enough to be solely devoted to model

training and collecting any more data for validation is difficult. In this situation, the

leave-k-out method can be used (Masters 1993) which involves holding back a small

fraction of the data for validation and the rest of the data for training. After training, the

performance of the trained network has to be estimated with the aid of the validation set.

A different small subset of data is hetd back and the network is trained and tested again.

This process is repeated many times with different subsets until an optimal model can

be obtained from the use of all of the available data.

In the majority of ANN applications in geotechnical engineering, the data are divided

into their subsets on an arbitrary basis. However, recent studies have found that the way

the data are divided can have a significant impact on the results obtained (e.g. Tokar and

Johnson 1999). As ANNs have difficulty extrapolating beyond the range of the data

used for calibration, in order to develop the best ANN model, given the available data,

all of the patterns that are contained in the dat¿ need to be included in the calibration set.

For example, if the available data contain extreme data points that were excluded from

the calibration data set, the model cannot be expected to perform well, as the validation

data will test the model's extrapolation ability, and not its interpolation ability. If all of

the patterns that are contained in the available data are contained in the calibration set,

the toughest evaluation of the generalisation ability of the model is if all the patterns

(and not just a subset) are contained in the validation data. In addition, if cross-

validation is used as the stopping criterion (see $2.5.6), the results obtained using the

testing set have to be representative of those obtained using the training set, as the

testing set is used to decide when to stop training or for example which model

architecture or learning rate is optimal. Consequently, the statistical properties (e.g.

mean and standard deviation) of the various data subsets (e.g. training, testing and
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validation) need to be similar to ensure that each subset represents the same statistical
population (Masters 1993). If this is not the case, it may be difficult to judge the
validity of ANN models (Maier and Dandy 2000).

This fact has been recognised for some time (Masters 1993; ASCE 2000; Maier and
Dandy 2000), and several studies have used ad-hoc methods to ensure that the data used
for calibration and validation have the same statistical properties (Braddock et al. 199g;
Campolo etal. 1999; Tokar and Johnson 1999; Ray and Klindworth 2000). Masters
(1993) strongly confirms the above strategy of data division as he says ,,if our training
set ís not representative of the data on which the network will be tested, we will be

wasting our tíme". However, it was not until recently that systematic approaches for
data division have been proposed in the literature. Bowden et al. (2002) used a genetic
algorithm to minimise the difference between the means and standard deviations of the
data in the training, testing, and validation sets. While this approach ensures that the
statistical properties of the various data subsets are similar, there is still a need to choose
which proportion of the datato use for training, testing, and validation. Kocjancic and
Zupan (2000) and Bowden et al. (2002) used a selÊorganising map (SoM) to cluster
high-dimensional input and output data in two-dimensional space and divided the
available data so that values from each cluster are represented in the various data
subsets. This ensures that data in the different subsets are representative of each other
and has the additional advantage that there is no need to decide what percentage of the
data to use for training, testing and validation. The major shortcoming of this approach
is that there are no guidelines for determining the optimum size and shape of the SOM
(Cai et al. 1994; Giraudel and Lek 2001). This has the potential to have a significant
impact on the results obtained, as the underlying assumption of the approach is that the
data points in one cluster provide the same information in high-dimensional space.

However, if the SOM is too small, there may be significant intra-cluster variation.
Conversely, if the map is too large, too many clusters may contain single data points,

making it difflrcult to choose representative subsets.

In this research, a new data division approach is introduced and compared with existing
approaches. The new approach utilises a fuzzy clustering technique, which overcomes
the limitations of existing methods. Shi (2002) has recently used fuzzy clustering for
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the evaluation and validation of neural networks. However, thus far, fuzzy clustering

has not yet been used as a data division approach for ANNs.

2.5.3 DataPre-processing

Once the available data have been divided into their subsets (i.e. training, testing and

validation), it is important to pre-process the data in a suitable form before they are

applied to the ANN. Data pre-processing is necessary to ensure all variables receive

equal attention during the training process. Moreover, pre-processing usually speeds up

the learning process. Pre-processing can be in the form of data scaling, normalisation

and transformation (Masters 1993). Scaling the output data is essential, as they have to

be commensurate with the limits of the transfer functions used in the output layer (e.g.

between -1.0 to 1.0 for the tanh transfer function and 0.0 to 1.0 for the sigmoid transfer

function). Scaling the input data is not necessary but it is almost always recommended

(Masters 1993). In some cases, the input data need to be normally distributed in order

to obtain optimal results (Fortin et al. 1997). However, Burke and Ignizio (1992) stated

that the probability distribution of the input data does not have to be known.

Transforming the input data into some known forms (e.g. linear, log, exponential, etc.)

may be helpful to improve ANN performance. Shi (2000) showed that distribution

transformation of the input data to a uniform distribution improves network

performance by 50%. However, empirical hials (Faraway and Chatfield 1998) showed

that the model fits were the same, regardless of whether raw or transformed data were

used. The distribution transformation method proposed by Shi (2000) will be examined

in Chapter 5 in an attempt to improve the performance of ANN models.

2.5.4 Determination of Model Architecture

Determining the network architecture is one of the most important and diffrcult tasks in

ANN model development (Maier and Dandy 2000). It requires the selection of the

optimum number of layers and the number of nodes in each of these. There is no

unified theory for determination of an optimal ANN architecture. It is generally

achieved by fixing the number of layers and choosing the number of nodes in each
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layer. There are always two layers representing the input and output variables in any
neural network. It has been shown that one hidden layer is sufficient to approximate

any continuous function provided that sufficient connection weights are given (Cybenko
1989; Hornik et al. 1989). Hecht-Nielsen (19S9) provided a proof that asingle hidden
layer of neurons, operating a sigmoidal activation function, is sufficient to model any
solution surface of practical interest. To the contrary, Flood (1991) stated that there are

many solution surfaces that are extremely difficult to model using a sigmoidal network
using one hidden layer. In addition, some researchers (Flood and Kartam 1994; Sarle

I994b; Ripley 1996) stated that, the use of more than one hidden layer provides the

flexibility needed to model complex functions in many situations. Lapedes and Farber
(1988) provided more practical proof that two hidden layers are sufficient, and

according to Chester (1990), the first hidden layer is used to extract the local features of
the input patterns while the second hidden layer is useful to extract the global features

of the training patterns. However, Masters (1993) stated that using more than one

hidden layer often slows the training process dramatically and increases the chance of
getting trapped in local minima.

The number of nodes in the input and output layers are restricted by the number of
model inputs and ouþuts, respectively. There is no direct and precise way of
determining the best number of nodes in each hidden layer. A trial-and-effor procedure,

which is generally used in geotechnical engineering to determine the number and

connectivity of the hidden layer nodes, can be used. It has been shown in the literature
(e.g. Maren et al. 1990; Masters 1993; Rojas 1996) that neural networks with a large

number of free parameters (connection weights) are more subject to overfitting and poor
generalisation. Consequently, keeping the number of hidden nodes to a minimum,
provided that satisfactory perfoÍnance is achieved, is always better, as il (a) reduces

the computational time needed for training; (b) helps the network to achieve better
generalisation performance; (c) avoids the problem of overfitting and (d) allows the

trained network to be analysed more easily. For single hidden layer networks, there are

a number of rules-oÊthumb to obtain the best number of hidden layer nodes. One

approach is to assume the number of hidden nodes to be 75%o of the number of input
units (Salchenberger et al. 1992). Another approach suggests that the number of hidden
nodes should be between the average and the sum of the nodes in the input and output
layers (Berke and Hajela 1991). A third approach is to flrx an upper bound and work
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back from this bound. Hecht-Nielsen (1987) and Caudill (1988) suggested that upper

limit of the number of hidden nodes in a single layer network may be taken as (21+1),

where .I is the number of inputs. The best approach found by Nawari et al. (1999) is to

start with a small number of nodes and to slightly increase the number until no

significant improvement in model performance is achieved. Yu (1992) showed that the

error surface of a network with one hidden layer and (/-l) hidden nodes has no local

minima. For networks with two hidden layers, the geometric pyramíd rule described by

Nawari et al. (1999) can be used. The notion behind this method is that the number of

nodes in each layer follows a geometric progression of a pyramid shape, in which the

number of nodes decreases from the input layer towards the output layer. Kudrycki

(1938) found empirically that the optimum ratio of the first to second hidden layer

nodes is 3:1, even for high dimensional inputs.

Another way of determining the optimal number of hidden nodes that can result in good

model generalisation and avoid overfitting, is to relate the number of hidden nodes to

the number of available training samples. Masters (1993) stated "the only way to

prevent the network from learning unique characteristics of the training set, to the

detriment of learning universal characterístícs, is to flood it with so many examples that

it cannot possibly learn all of their idiosyncracíes". There are a number of rules-oÊ

thumb that have been suggested in the literature to relate the training samples to the

number of connection weights. For instance, Rogers and Dowla (1994) suggested that

the number of weights should not exceed the number of training samples. Masters

(1993) stated that the required minimum ratio of the number of training samples to the

number of connection weights should be 2 and, the minimum ratio of the optimum

training sample size to the number of connection weights should be 4. Hush and Horne

(1993) suggested that this ratio should be 10. Amari et al. (1997) demonstrated that if
this ratio is at least 30, overfitting does not occur.

More recently, a number of systematic approaches have been proposed to automatically

obtain the optimal network architecture. The adaptive method of architecture

determination, suggested by Ghaboussi and Sidarta (1998), is an example of the

automatic methods for obtaining the optimal network architecture that suggests starting

with an arbitrary, but small, number of nodes in the hidden layers. During training, and

as the network approaches its capacþ, new nodes are added to the hidden layers, and
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new connection weights are generated. Training is continued immediately after the new
hidden nodes are added to allow the new connection weights to acquire the portion of
the knowledge base which was not stored in the old connection weights. For this
process to be achieved, some haining is carried out with the new modifred connection

weights only, while the old connection weights are frozen. Additional cycles of training
are then carried out where all the connection weights are allowed to change. The above

steps are repeated and new hidden nodes are added as needed to the end ofthe training
process, in which the appropriate network architecture is automatically determined.

Pruning is another automatic approach to determine the optimal number of hidden
nodes. One such technique proposed by Kamin (1990) starts training a network that is
relatively large and later reduces the size of the network by removing the unnecessary

hidden nodes. Genetic algorithms provide evolutionary alternatives to obtain an

optimal neural network architecture that have been used successfully in many sifuations

(Miller et al. 1989). The adaptive spline modellíng of observation data (ASMOD)
(Kavli 1993) algorithm, is an automatic method for obtaining the optimal architecture of
B-spline neurofuzry networks, as shown in $2.4.2.

Cascade-Correlatíon (Fahlman and Lebiere 1990) is another automatic method to
obtain the optimal architecture of ANNs. Cascade-Correlation is a constructive method

that can be characterised by the following steps (Fahlman and Lebiere 1990). The

neural network is initially trained using Fahlman's quiclErop (Fahlman 19SS) algorithm

without hidden nodes and with direct connection between the input layer and the output

layer. Hidden nodes are added randomly one or a few at a time. New hidden nodes

receive connections from all previously established hidden nodes as well as from the

original inputs. At the time new hidden nodes are added to the network, their
connections with the inputs are frozen and only their output connections are trained

using the quíclqrop algorithm. This process is stopped when the model performance

shows no further improvement. Consequently, the architecture of ANN networks using

Cascade-Correlation is that the input nodes are connected to the output nodes and the

hidden nodes are connected to the input and ouþut nodes as well as other previously

established hidden nodes, as shown in Figure 2.l l.

The constructive nature of the Cascade-Correlation method means that the way in which

the hidden nodes are connected results in the addition of a new single-node layer to the
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Outputs
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tr'igure 2.11: ANN architecture with the Cascade-Correlation

@ahlman and Lebiere 1990)

network each time a new node is added. This is designed to result in the smallest

network that can adequately map the design input-ouþut relationship, which has a

number of advantages, including improved generalisation abilify (Castellano et al.

1997) and higher processing speed (Bebis and Georgiopoulos 1994).

It should be noted that Masters (1993) has argued that the automatic approaches for

obtaining optimal network architectures can be easily abused, as they do not directly

address the problem of overfitting. In an attempt to exploit the benefits of both the

automatic and manual approaches, the Cascade-Correlation and ad-hoc trial-and-error

methods will be examined for the development of ANN models in Chapter 5. On the

other hand, the ASMOD algorithm will be used for the development of the neurofi¡zzy

networks in Chapter 6.

2.5.5 Model Optimisation (Training)

The process of optimising the connection weights is known as 'training' or 'learning'.

This is equivalent to the parameter estimation phase in conventional statistical models.

The aim is to find a global solution to what is typically a highly non-linear optimisation

problem (White 1989). The method most commonly used for finding the optimum

weight combination of feed-forward neural networks is the back-propagation algorithm

(Rumelhart et al. 1986) which is based on first-order gradient descent. The use of
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global optimisation methods, such as simulated annealing and genetic algorithms, have
also been proposed (Hassoun 1995). The advantage of these methods is that they have
the abilþ to escape local minima in the error surface and, thus, produce optimal or near
optimal solutions. However, they also have a slow convergence rate. Ultimately, the
model performance criteria, which are problem specific, will dictate which training
algorithm is most appropriate. If training speed is not a major concern, there is no
reason why the back-propagation algorithm cannot be used successfully (Breiman
1994)- Consequently, the back-propagation algorithm will be used for optimising the
connection weights of the MLP models developed in Chapter 5. On the other hand, as

mentioned in $2.4.2, the weights of B-spline neurofuzzy networks are generally updated
using the Least Mean Squared or Normalised Least Mean Squared learning rules

@rown and Harris 1994), which will be used for the development of the neurofuzzy
models in Chapter 6.

2.5.6 Stopping Criteria

Stopping criteria are used to decide when to stop the training process. They determine
whether the model has been optimally or sub-optimally trained. Many approaches can
be used to determine when to stop training. Training can be stopped: after the
presentation of a fixed number of training records; when the training effor reaches a

sufficiently small value; or when no or slight changes in the training error occur.
However, the above examples of stopping criteria may lead to the model stopping
prematurely or over-training. As mentioned previously, the cross-validation technique
(Stone 1974) is an approach that can be used to overcome such problems. It is
considered to be the most valuable tool to onsure over-fitting does not occur (Smith
1993). Amari et al. (1997) suggested that there are clear benefits in using cross-

validation when limited data are available, as is the case for many real-life case sfudies.

The benefits of cross-validation are discussed further in Hassoun (1995). As mentioned
in $2.5'2, the cross-validation technique requires the data be divided into three sets;

training, testing and validation. The training set is used to adjust the connection
weights. The testing set measures the ability of the model to generalise, and the
performance of the model using this set is checked at many stages of the training
process and training is stopped when the error of the testing set starts to increase. The
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testing set is also used to determine the optimum number of hidden layer nodes and the

optimum values of the internal parameters (leaming rate, momentum term and initial

weights). The validation set is used to assess the model performance once training has

been accomplished. Model validation is discussed in more detail in the following

section. Cross-validation will be used for the development of all MLP models in this

research, as will be seen in Chapter 5. On the other hand, as mentioned in 52.4.2, B-

spline neurofuzzy networks use a number of different stopping criteria (e.g. Bayesian

Information Criterion, Akaike's Information Criterion and Final Prediction Error).

Unlike cross-validation, these stopping criteria require the data be divided into only two

sets; a training set, to construct the model; and an independent validation set, to test the

validþ of the model in the deployed environment. The basic notion of these stopping

criteria is that the model performance should balance the model complexity with the

amount of training data and model enor. The above stopping criteria will be

investigated for the development of the newofuzzy models in Chapter 6.

2.5.7 Model Validation

Once the training phase of the model has been successfully accomplished, the

performance of the trained model should be validated. The purpose of the model

validation phase is to ensure that the model has the ability to generalise within the limits

set by the training data in a robust fashion, rather than simply having memorised the

input-ouþut relationships that are coniained in the training data. The approach that is

generally adopted in the literature to achieve this is to test the performance of trained

ANNs on an independent validation set, which has not been used as part of the model

building process. If such performance is adequate, the model is deemed to be able to

generalise and is considered to be robust. In this thesis, an additional approach to test

the generalisation ability and robustness of ANN models will be proposed. The

proposed approach is suggested to complement the approach that is usually used in the

literature and will be presented in Chapter 5.

The coefficient of correlation, r, the root mean squared error, RMSE, and the mean

absolute etror, MAE, are the main criteria that are often used to evaluate the prediction

performance of ANN models. The coefficient of correlation is a measure that is used to
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determine the relative correlation and the goodness-of-fit between the predicted and
observed data and can be calculated as follows:
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: standard deviation of the desired output dr;

: mean of the model ouþutyr;

: mean of the desired output d.,; and

: number of data.

Smith (1936) suggested the following guide for values of lrl between 0.0 and 1.0:

o lrl > 0.8 strong correlation exists between two sets of variables;

. 0.2 < lrl < 0.8 correlation exists between the two sets of variables; and

o lrl < 0.2 weak correlation exists between the two sets of variables.

The RMSE is the most popular measure of error and has the advantage that large errors

receive much greater attention than small errors (Hecht-Nielsen 1990). RMSE is

calculated as follows:

a

RMSE:{:är,-d,),
I

Ì'
(2.28)

In contrast with RMSE, MAE eliminates the emphasis given to large errors. Both

RMSE and MAE are desirable when the evaluated output data are smooth or continuous

(Twomey and Smith 1997) and is calculated as follows:

(2.2e)

2.6 Summary

It has been demonstrated that ANNs are a form of artificial intelligence, which, by

means of their architecture, attempt to simulate the biological structure of the human

brain and nervous system. It is evident from this chapter that the ANN modelling

philosophy for prediction and forecasting is similar to that used in more conventional

statistical models. In both cases, the purpose of the model is to capture the relationship

::ät¡-d¡MAE
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between a set of model inputs and the corresponding ouþuts. To achieve this, it has
been shown that ANNs rely on the data alone to determine the structure and parameters
of the model. It has also been shown that the development of ANN models must
address several factors which include the determination of adequate model inputs, data
division and pre-processing, the choice of a suitable network architecture, careful
selection of some internal parameters, the stopping criteria and model validation. The
relative success of ANNs in the field of geotechnical engineering will be examined in
the following chapter.



Chapter 3

Artificial Neural Network Applications in
Geotechnical Engineenn

a

3.1 Introduction

The engineering properties of soil and rock exhibit uncertain behaviour lÌom one

location to another due to the complex and varied physical processes associated with the

formation of these materials (Jaksa 1995). This is in contrast to most other civil

engineering materials, such as steel, concrete and timber, which exhibit far greater

homogeneity and isotropy. In order to cope with the complexity of geotechnical

behaviour and the spatial variability of these materials, traditional forms of engineering

design models are justifiably simplified, An alternative approach, whichÌas shown

some promise in the f,reld of geotechnical engineering, is artificial neural networks

(ANNs).

Over the last few years, the use of ANNs has increased in many areas of engineering.

In particular, ANNs have been applied to many geotechnical engineering problems and

have demonstrated some degree of success. A review of the literature reveals that

ANNs have been used successfully in pile capacity prediction, predicting the settlement

of structures, modelling soil properties and behaviour, determination of liquefaction

potential, site characterisation, modelling earth retaining structures, evaluating stability

of slopes and the design of tunnels and underground openings. In the majority of these

applications, multi-layer perceptrons (MLPs) trained with the back-propagation

algorithm were used. The aim of this chapter is to provide an overyiew of most ANN

applications that have appeared to-date in geotechnical engineering to reveal the relative

success of ANNs in predicting various geotechnical engineering properties and

behaviour. It is not intended to cover every single application or scientific paper that

can be found in the literature. Rather, the intention is to provide a general overview of

some of the more relevant ANN applications in geotechnical engineering problems.

Some works are selected to be described in some detail while, others are acknowledged

for reference pulposes.

39
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3.2 PiIe Capacity

The prediction of the load capacþ, particularly that based on pile driving data, has been

examined by several ANN researchers. Goh (1994a;1995b) presented a neural network
to predict the triction capacity of piles in clays. The neural network was trained with
field data of actual case records. The model inputs were considered to be the pile
length, pile diameter, mean effective stress and the undrained shear strength. The skin
friction resistance was the only model output. The results obtained by utilising the
neural network were compared with the results obtained by the method of Semple and
Rigden (1986) and the p method (Burland lg73). The methods were compared using
regression analysis as well as the errorrate (Yeh et al. 1993) as shown in Table 3.1. It
is evident from Table 3.1 that the ANN model outperforms the conventional methods.

The study also pointed out that the main criticism of the ANN methodology is its
inability to trace and explain the logic it uses to arrive at the prediction.

Table 3.1: Summary of correlation coefficients and error rate for friction pile

capacity (Goh 1995b)

Method Coefficient of correlation, r Error rate (kPa)

Training Testing Training Testing
ANN 0.985 0.956 1.016 1.194

Semple and Rigden (1986) 0.976 0.885 1.3 18 1.894

B method 0.73r 0.704 4.824 3.096

Goh (1995a; I996b), soon after, developed another neural network to estimate the

ultimate load capacity of driven piles in cohesionless soils. In this study, the data used

were derived from the results of load tests on timber, precast concrete and steel piles

driven into sandy soils. The inputs to the ANN model that were found to be more

significant were the hammer weight, hammer drop, pile length, pile weight, pile cross

sectional area, pile set, pile modulus of elasticity and the hammer type. The model

ouþut was the pile load capacity. When the model was examined using a testing set, it
was observed that the neural network successfully modelled the pile load capacity. By
examining the connection weights, it was observed that the more important input factors

are the pile set, the hammer weight and the hammer type. The study compared the
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results of the ANNs with the following common formulae: Engineering News formula

(Wellington 1892), Hiley formula (Hiley 1922) and Janbu formula (Janbu 1953).

Regression analysis was carried out to obtain the coefficients of correlation, r, of the

predicted versus measured results for the ANNs and the traditional methods. Table 3.2

summarises the regression analysis results, which indicate that the neural network

predictions of the load capacity of driven piles were found to be significantly better than

those obtained using the other methods.

Table 3.2: Summary of regression analysis results of pile capacity prediction

(Goh 1995a)

Chan et al. (1995) developed a neural network as an alternative to the pile driving

formulae. The network was trained with the same input parameters listed in the

simplified Hiley formula (Broms and Lim 1988), including the elastic compression of

the pile and soil, the pile set and the driving energy delivered to the pile. The model

output considered was, again, the pile capacity. The desired ouþut value of the pile

capacity that was used in the training process was estimated by using the computer

algorithm CAPV/AP (Rausche et al. 1972) or the CASE method (Goble et al. 1975).

The root mean squared percentage etror, EN, of the neural network

)

(EN = É
-dj n where !¡ and d, are the network predicted output and thev

j=l dj

desired output, respectively) was 13.5% for the training set, and I2.0% for the testing

set, compared with the results of 15.7Yo in the training and testing sets for the simplified

Hiley formula.

Lee and Lee (1996) utilised ANNs to predict the ultimate bearing capacity of piles. The

problem was simulated using data obtained from model pile load tests using a

Method Coefficient of correlation, r

Training data Testing data

ANN 0.96 0.91

Engineering News 0.69 0.61

Hiley 0.48 0.76

Janbu 0.82 0.89
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calibration chamber and results of in-situ pile load tests. For the simulation using the
model pile load test data, the model inputs were the penetration depth ratio (i.e.
penetration depth of pile/pile diameter), the mean normal stress of the calibration
chamber and the number of blows. The ultimate bearing capacity was the model output.
The prediction of the ANN model showed a maximum error not greater than 20%o and
an average summed square error of less than 15%. For the simulation using the in-sifu
pile load test data, five input variables were used representing the penetration depth
ratio, the average standard penetration number along the pile shaft, the average standard
penetration number near the pile tip, pile set and hammer energy. The data were
arbitrarily partitioned into two parts, odd and even numbered sets and two neural
network models were developed. The results of these models \¡/ere compared with
Meyerhof s equation (Meyerhof lg76),based on the average standard penetration value.
Figure 3.1 shows the plots of the testing set results of the estimated versus measured
pile bearing capacity obtained from the neural network models and Meyerhofs
equation. The plots in Figure 3.1 show that the predicted values from the neural
networks matched the measured values much better than those obtained from
Meyerhofls equation.
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Figure 3.1: Testing results of predicted vs measured pile bearing capacity from
in-situ pile Ioad test (Lee and Lee 1996)

Abu-Kiefa (1993) introduced three ANN models (referred to in the paper as GRNNMI,
GRNNM2 and GRNNM3) to predict the capacity of driven piles in cohesionless soils.
The first model was developed to estimate the total pile capacity. The second model
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was employed to estimate the tip pile capacity, whereas the final model was used to

estimate the shaft pile capacity. In the first model, five variables were selected to be the

model inputs. These inputs were the angle of shear resistance of the soil around the

shaft, the angle of shear resistance at the tip of the pile, the effective overburden

pressure at the tip of the pile, pile length and the equivalent cross-sectional area of the

pile. The model, again, had one output representing the total pile capacity. In the

model used to evaluate the pile tip capacity, the above variables were also used. The

number of input variables used to predict the pile shaft capacity was four, representing

the average standard penetration number around the shaft, the angle of shear resistance

around the shaft, pile length and pile diameter. The results of the networks obtained in

this study were compared with four other empirical techniques. These techniques were

those proposed by Meyerhof (1976), Coyle and Castello (1981), the American

petroleum Institute (1984) and Randolph (1985). The results of the total pile capacity

prediction demonstrated high coefficients of determination (0.95) for all data records

obtained from the neural network model, while those for the other methods ranged

between 0.52 and 0.63. Figur es 3.2 to 3.4 show the measured versus predicted values of

all data records for the pile capacrty, tip pile capacity and shaft pile capacity,

respectively. It can be seen from these figures that the predictions of the ANNs produce

less scatter than the predictions of all other methods, and thus provide the best

prediction of pile load capacity, tip pile capacity and shaft pile capacity.

1000 2000 6000 7000
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Figure 3.2: Comparison of predicted and measured total pile capacity

(Äbu-Kiefa 1998)
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Teh et al' (1997) proposed a neural network for estimating the static pile capacity
determined from dynamic stress-wave data for precast reinforced concrete piles with a
square section' The networks were trained to associate the input stress-wave data with
capacities derived from the CAPWAP technique (Rausche et al. 1972). The study was
concerned with predicting the 'CAPWAP predicted capacity'rather than the true
bearing capacity of the pile. The neural network learned the training data set almost
perfectly for predicting the static total pile capacity with a root mean square error of less
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than 0.0003. The trained neural network was assessed for its abilþ to generalise by

means of a testing data set. Good prediction was obtained for seven out of ten piles as

shown in Figure 3.5.
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Figure 3.5: Static capacity predicted by CAPWAP and neural network for

testing set (Teh et aL 1997)

Another application of ANNs includes the prediction of axial and latetal load capacity

of steel H-piles, steel piles and prestressed and reinforced concrete piles by Nawari et al.

(1999). In this application, ANNs were found to be an accurate technique for the design

of pile foundations.

3.3 Settlement of Foundations

As mentioned previously, the design of foundations is generally controlled by the

criteria of bearing capacity and settlement, the latter often governing. The estimation of

the settlement of foundations is very complex, uncertain and not yet entirely

understood. This fact has encouraged some researchers to apply the ANN technique to

settlement prediction. Goh (1994a) developed a neural network for the prediction of

settlement of a vertically loaded pile foundation in a homogeneous soil stratum. The

input variables for the neural network consisted of the ratio of the elastic modulus of the
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pile to the shear modulus of the soil, pile length, pile load, shear modulus of the soil,
Poisson's ratio of the soil and radius of the pile. The ouþut variable was the pile
settlement' The desired ouþut that was used for the ANN model training was obtained
by means of hnite element and integral equation analyses developed by Randolph and
Wroth (1978)' A comparison of the theoretical and predicted settlements for the
training and testing sets is given in Figure 3.6. The results show that the neural
network was able to successfully model the settlement of pile foundations.

100

o.1

,0001

10

1

E
E
v
o
Eoc
E
=otr
Eo
Eo
oo

0.1 I to loo
settlement (theory) mm

Figure 3'6: Comparison of theoretical settlements and neural network predÍctions

(Goh 1994a)

Sivakugan et al. (1998) carried out a preliminary study on a small set of data to explore
the possibility of using neural networks to predict the settlement of shallow foundations
on sands' A neural network was trained with five inputs representing the net applied
pressure' average blow count from the standard penetration test, width of the
foundation, shape of the foundation and depth of the foundation. The ouþut was the
settlement of the foundation. u/ith the aid of Cascade-Correlation, a network with one
hidden layer and 11 hidden nodes was found optimal. The results obtained by the
neural network were compared with methods proposed by Terzaghi and peck (1967)
and Schmertmann (1970)' Based on the results obtained, it was shown that the
traditional methods of Terzaghi and Peck and Schmertmann overestimate the
settlementsbyabout2.2timesand3.4times,respectively,asshowninFigure3.T. 

In
contrast, the predictions using the ANN model were good (Figure 3.g). Using the same

1,000
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neural network features, Arnold (1999) extended the work done by Sivakugan et al.

(1993) with a database containing alarger number of data cases. His work, although

relatively superficial, found that the best network consisted of 18 hidden layer nodes

with correlation coefficients equal to 0.954, 0.955 and0.944 for the training, testing and

validation sets, respectively. It should be noted that 18 hidden layer nodes are

considered to be large for a network with 5 input variables, which may affect the

generalisation ability of the model, as discussed in $2.5.4.
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3.4 Soil Properties and Behaviour

Soil properties and behaviour is an area that has attracted many researchers to modelling
using ANNs' Developing engineering correlations between various soil parameters is
an issue discussed by Goh (1995a;1995c). Goh used neural networks to model the
correlation between the relative density and the cone resistance from the cone
penetration test (CPT), for both normally consolidated and overconsolidated sands.
Laboratory data, based on calibration chamber tests, were used to successfully train and
test the neural network model. The neural network model used the relative density and
the mean effective stress of soils as inputs and the CpT cone resistance as a single
output' The ANN model was found to give high coeffrcients of correlation of 0.97 and,
0'91 for the training and testing data, respectively, which indicated that the neural
network was successful in modelling the non-linear relationship between the CpT cone
resistance and the input parameters. Many other sfudies have successfully used ANNs
for modelling soil properties and behaviour, which, for brevity, are acknowledged for
reference purposes in the following paragraphs.

Ellis et al. (1995) developed an ANN model for sands based on grain size distribution
and stress history. Sidarta and Ghaboussi (1998) employed an ANN model within a
finite element analysis to extract the geomaterial constitutive behaviour from non-
uniform material tests. Penumadu and Jean-Lou (1997) used neural networks for
representing the behaviour of sand and clay soils. Ghaboussi and Sidarta (199g) used
neural networks to model both the drained and undrained behaviour of sandy soil
subjected to triaxial compression-type testing. Penumadu and, Zhao (lggg) also used
ANNs to model the stress-strain and volume change behaviour of sand and gravel under
drained triaxial compression test conditions. zht et al. (lggga; lggsb) used neural
networks for modelling the shearing behaviour of a fine-grained residual soil, dune sand
and Hawaiian volcanic soil' Cal (1995) used a neural network model to generate a
quantitative soil classification from three main factors (plastic index, liquid limit and
clay content). Najjar et al. (1996) showed that neural network-based models can be
used to accurately assess soil swelling, and that neural nefwork models can provide
significant improvements in prediction accuracy over statistical models. Romero and
Pamukcu (1996) showed that neural networks are able to effectively characterise and
estimate the shear modulus of granular materials. Agrawal et al. (1994), Gribb and

48
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Gribb (lgg4) and Najjar and Basheer (1996b) all used neural network approaches for

estimating the permeabilþ of clay liners. Basheer and Najjar (1995) and Najjar et al.

(1996) presented neural network approaches for soil compaction.

ANNs are also used successfully in other applications including: modelling the

mechanical behaviour of medium-to-fine sand (Ellis et al. 1992), modelling rate-

dependent behaviour of clay soils (Penumadu et al. 1994), simulating the uniaxial

stress-strain constitutive behaviour of fine-grained soils under both monotonic and

cyclic loading (Basheer 1998; Basheer and Najjar 1998), characterising the undrained

stress-strain response of Nevada sand subjected to both triaxial compression and

extension stress paths (Najjar and Ali 1999; Najjar et al. 1999), predicting the axial and

volumetric stress-strain behaviour of sand during loading, unloading and reloading (Zhu

and Zaman lgg/) and predicting the anisotropic stiffrress of granular materials from

standard repeated load triaxial tests (Tutumluer and Seyhan 1998).

3.5 Liquefaction

Liquefaction is a phenomenon which occurs mainly in loose and saturated sands as a

result of earthquakes. It causes the soil to lose its shear strength due to an increase in

pore water pressure, often resulting in large amounts of damage to most civil

engineering structures. Determination of liquefaction potential due to earthquakes is a

complex geotechnical engineering problem. Goh (1994b) used neural networks to

model the complex relationship between seismic and soil parameters in order to

investigate liquefaction potential. The neural network used in this work was trained

using case records from 13 earthquakes that occurred in Japan, United States and Pan-

America during the period 1891-1980. The étudy used eight input variables and a

single ouþut variable. The input variables were the SPT N-value, fines content, mean

grain size, total stress, effective stress, equivalent dynamic shear stress, earthquake

magnitude and the maximum horizontal acceleration at the ground surface. The output

was assigned a binary value of I for sites with extensive or moderate liquefaction, and a

value of 0 for sites with marginal or no liquefaction. The results obtained by the neural

network model were compared with those obtained using the method of Seed et al.

(1935). The study showed that the neural network gave correct predictions in 95% of
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cases' whereas the method of Seed et al. (1985) gave a success rate of g4yo. Goh
(1996a) also used neural networks to assess liquefaction potential from CpT resistance
data' The data records were taken for sites of sand and silty sand deposits in Japan,
China, United States and Romania, representing five earthquakes that occurred during
the period 1964-1983' A similar neural network modelling strategy, as used by Goh
(I994b), was used for this study and the results were compared with the method of
Shibata and Teparaksa (1988). The neural network showed a 94%o success rate, which
is equivalent to the same number of error predictions as the conventional method by
Shibata and Teparaksa (1988).

Two other papers (Najjar and Ali 1998; Ural and Saka 1998) also used CpT data to
evaluate soil liquefaction potential and resistance. Najjar and Ali (199g) used neural
networks to characterise the soil liquefaction resistance utilising field data sets
representing various earthquake sites from around the world. The ANN model that was
developed in this work was generated to produce a liquefaction potential assessment
chart that could be used by geotechnical engineers in liquefaction assessment. Ural and
Saka (1998) also used neural networks to analyse liquefaction. Comparisons between
the ANN approach and a simplified liquefaction procedure indicated a similar rate of
success for the neural network approach as for the conventional approach.

other applications of ANNs for liquefaction prediction include the prediction of
liquefaction resistance and potential (Juang and Chen Iggg), investigation of the
accuracy of liquefaction prediction of ANNs compared with fuzzy logic and statistical
approaches (Ali and Najjar 1998) and assessment of liquefaction potential using
standard penetration test results (Agrawal et al. 1997).

3.6 SiteCharacterisation

Site characterisation is an area concerned with the analysis and interpretation of
geotechnical site investigation data. Zhouand V/u (lgg4)used a neural network model
to characterise the spatial dishibution of rockhead elevations. The data used to train the
model were taken from seismic refraction surveys on more than l l km of transverse
lines. The network used the spatial position (x- and y-coordinate) and the surface
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elevation as inputs, and was used to estimate the rockhead elevation at that location as

the ouþut. The trained network was tested to estimate the rockhead elevations for all

locations within the area of investigation by producing a contour map. Results from the

neural network model compared well with similar contour maps generated using kriging

(Journel and Huijbregts 1978), with the additional benefit that neural networks do not

make assumptions or simpliff spatial variations.

A similar application relevant to ground water characterisation was described by

Basheer et al. (1996). Basheer ef al. (1996) indicated that neural networks can be used

to map and logically predict the variation of soil permeability in order to identiff

landfill boundaries and to construct a waste landfill. Rizzo et al. (1996) presented a new

site characterisation method called SCANN (Site Characterisation using Artificial

Neural Networks) that is based on the use of neural networks to map discrete spatially-

distributed fields. Other applications were presented by Najjar and Basheer (1996a) and

Rizzo and Dougherty Q99$.

3.7 Earth Retaining Structures

Goh et al. (1995) developed a neural network model to provide initial estimates of

maximum wall deflections for braced excavations in soft clay. The neural network was

used to synthesise data derived from finite element studies on braced excavations in

clay. The input parameters used in the model were the excavation width, soil

thickness/excavation width ratio, wall stiffrress, height of excavation, soil undrained

shear strength, undrained soil modulus/shear strength ratio and the unit weight of the

soil. The maximum wall deflection was the only output. Using regression analysis, the

scatter of the predicted neural network deflections relative to the deflections obtained

using the finite element method were assessed. The results produced high coefficients

of correlation for the training and testing data of 0.984 and 0.967 , respectively. Some

additional testing data from actual case records were also used to confirm the

performance of the trained neural network model. The agreement of the neural network

predicted and measured wall deflections was encouraging, as shown in Table 3.3. The

study intended to use the neural network model as a time-saving and user-friendly

alternative to the finite element method.



Case history Measured wall

deflection (mm)

Predicted wall

deflection (mm)
Laveder (Singapore) 32 3l
Laveder (Singapore) 36 28

Telecom (Singapore) 56-84 65

Vaterland 3 76 76
(NGr 1e62) tl4-140 107

San Francisco 2M0 59

(Mana 1977) 72-150 122
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Table 3.3: comparison of neural network and field measurements (Goh 1e9s)

3.8 Slope Stability

Ni et al' (1996) proposed a methodology of combining fuzzy sets theory with artificial
neural networks for evaluating the stability of slopes. In this approach, the input
parameters were gradient, horizontal profile, vertical profile, location, height, geological
origin, soil texture, depth of weathering, direction of slopes, vegetation, land use,
maximum daily precipitation and maximum hour precipitation. The output was the
slope failure potential. A number of hypothetical natural slopes were evaluated by both
neural networks and an analytical model, and the results of the neural network approach
were in good agreement when compared with those obtained by the analytical model.

3.9 Tunnels and Underground Openings

Shi et al' (1998) presented a study of neural networks for predicting settlements of
funnels. A general neural network model was trained and tested using data from the 6.5
km Brasilia Tunnel, Brazil. The study identified many factors to be used as the model
inputs and three settlement parameters as the model ouþuts. The input parameters were
the length of excavation from drive start, the depth of soil cover above tunnel crown, the
area of tunnel section, the delay for closing the invert, water level depth, the rate of
advance of excavation, construction method, the SPT mean blow count at the tunnel
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crown level, the SPT mean blow count at the tunnel spring-line level and the SPT mean

blow count at tunnel inverted arch level. The three ouþut parameters were the

settlement at the face passage, settlement at the invert closing and the final settlement

after stabilisation. The results showed that the neural network model could not achieve

an appropriate level of accuracy. To improve the prediction accuracy, the study

proposed a modular neural network model based on the concept of integrating multiple

neural network modules in one system, with each module being constrained to consider

one specific situation of a complicated real world problem. The modular concept

showed an improvement in terms of model convergence and prediction. The capability

to improve the models developed in this work was later extended by Shi (2000) by

applying input data transformation. This extended study indicated that distribution

transformation of the input variables reduced the prediction error by more than l3Yo.

Lee and Sterling (1992) developed a neural network for identification of probable

failure modes for underground openings from prior case history information. The study

used the knowledge obtained by the neural network to produce an assistance system for

the design of tunnels. Sterling and Lee (1992) used the neural network as part of a

knowledge-based expert system for assisting with tunnel design. Moon et al. (1995)

also used ANNs, integrated with an expert system, for the preliminary design of tunnels.

3.L0 Summary

It is evident from the review presented in this chapter that ANNs have been applied

successfully to many geotechnical engineering areas. This includes the prediction of

pile capacity, predicting the settlement of foundations, modelling soil properties and

behaviour, determination of liquefaction potential, site characterisation, modelling earth

retaining structures, evaluating slope stability and the design of tunnels and

underground openings. Perhaps the most successful and well-established applications

are the capacity prediction of driven piles, liquefaction and the prediction of soil

properties and behaviour. There are several areas in which the feasibility of ANNs has

yet to be tested, such as bearing capacþ prediction ofshallow foundations, capacþ of

bored piles, design of sheet pile walls and dewatering, among others. The feasibility of

ANNs for some other applications such as settlement of shallow foundations has been



54 chapter 3. Artificial Neural Network Applications in Geotechnical Engineeríng

tested in a preliminary fashion and has shown some degree of success. However, thus
far, a comprehensive study has yet to be achieved. The ANN models that have been

developed in the literature for settlement prediction of shallow foundations have been
built on either a limited number of data cases (e.g. Sivakugan et al. 199g) or have
suffered from the lack of a comprehensive procedure for testing their robustness and
generalisation ability (e.g. Arnold 1999). Consequently, these models need to be treated
with caution until the development of more well-established models, which will be one
of the main focuses of the present research,

Based on the results of the studies reviewed in this chapter, it is also evident that ANNs
perform better than, or as well as, the conventional methods used as a basis for
comparison in many situations, whereas they fail to perform well in a few. This is
implies that ANNs are a powerful and practical tool for solving many problems in the
flteld of geotechnical engineering. The predictions of ANN models developed in the
applications reviewed in this chapter were based on an assumption that the data used for
ANN model development are ideal (i.e. have no parameter uncertainty) and that the
model is a perfect predictor (i.e. has no model uncertainty). It may be possible to
achieve better predictions if these uncertainties are considered. In Chapter 7, the issue

of model and parameter uncertainties will be considered and discussed in detail for
settlement prediction of shallow foundations on cohesionless soils. In the following
chapter, the problem of settlement prediction of shallow foundations on cohesionless
soils will be discussed.



Chapter 4

Settlement of Shallow Foundations on
Cohesionless Soils

4.1 Introduction

This chapter provides a background to the settlement of foundations and focuses on the

settlement of shallow foundations on cohesionless soils. The major causes of settlement

of shallow foundations are presented and the factors affecting the settlement prediction

of shallow foundations are reviewed and discussed. In addition, the available methods

for settlement prediction of shallow foundations on cohesionless soils are categorised

and the more successful are described in more detail, with some discussion of their

relative advantages and disadvantages.

4.2 Causes of Settlement of Shallow Foundations

Settlement of shallow foundations may arise from a number of causes (Poulos 1975),

including:

1. Static loads imposed by the weight of structures;

Z. Dynamic loads produced by machinery, earthquakes, moving loads on roads or

airfield pavements;

3. Changes in moisture content from seasonal fluctuation in the water table, rainfall

and evaporation or the absorption of water by roots of large trees; or

4. The effects of nearby construction resulting from adjacent excavation, pile driving

and dewatering.

This chapter concentrates on settlement of shallow foundations on cohesionless soils

due to static loads only, as this is the focus of the research described in this thesis.

55
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4.3

chapter 4. serîlemenr of shallow Foundations on cohesionless soils

Factors Affecting Settlement of Shallow tr'oundations on Cohesionless Soils

A proper estimation of settlement of shallow foundations on cohesionless soils can be
obtained through a thorough understanding of the factors affecting settlement. Such
factors can be categorised as 'primary' and 'secondary' factors, which are discussed
below.

4.3,1 Primary Factors

In a statistical analysis carried out by Burland and Burbidge (19g5), for more than200
case records of settlement of shallow foundations on sands and gravels, three factors
were found to govem settlement prediction:

o Footing width, B;

o Footing net applied pressure, q; and,

. soil compressibility within the depth of influence of foundation.

This conclusion has also been recognised by most traditional methods for settlement
prediction of shallow foundations on cohesionless soils.

Soil compressibility within the depth of influence of a foundation requires the
assignment of a depth over which the compressibility of the soil beneath the footing
signif,rcantly influences the sefflement and the assignment of soil properties that can
accurately reflect this compressibility. There is no unanimous agreement in the
literature on the definition of the depth of influence of a foundation. For example,
Teruaghi and Peck (1948), Bazaraa (1967) and D'Appolonia et al. (196g) recommended
taking a depth of influence equal to the width of the footing, ^8. parry e97l) and
Schultze and Sherif (1973) took a depth of influence equal to 28 in their settlement
analyses. Schmefmann et al. (1978) considered a depth of influenc e of 28 for square

and circular tbotings and 48 for continuous footings. Gupta (1993) assumed this depth
to be 28 fot L/B < 3 and 4B for L/B > 3, where Z is the footing length. When the
average SPT blow count iy'decreases with depth, Burland and Burbidge (19g5) took this
depth to be equal to the lesser of 28 or the depth from the bottom of the footing to
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bedrock. On the other hand, when the blow count is constant or increasing with depth,

Burland and Burbidge (1985) considered a depth of influence of approximately Bo'?s. In

this research, the guidelines proposed by Burland and Burbidge (1985) are used for the

definition of the depth of influence, as most case records in the database used for the

purpose of this thesis were obtained from Burland and Burbidge (1985).

Determining an appropriate value of soil compressibility is the most difficult part of

settlement prediction (Sivakugan et al. 1998). Due to the difficulty in obtaining

undisturbed soil samples from cohesionless soils, soil compressibility is often obtained

from in-situ tests. Penetration tests such as the cone penetration test (CPT) and the

standard penetration test (SPT) are commonly used for estimating the compressibility of

soils. The CPT is one of the best available penetration methods for determining soil

compressibility and has the advantage of giving a continuous profile of soil strength

with penetration. The CPT is also rapid and inexpensive compared with other soil

profiling techniques (Orchant et al. 1987). However, the CPT suffers from a number of

shortcomings. It does not provide soil samples for visual inspection and, thus,

additional boreholes are necessary to correlate the penetration resistance with the soil

profile. Moreover, small variations in sand density and grain size often produce very

large changes in CPT penetration resistance, making it difficult to interpret the general

nature of the in-situ soil deposit (D'Appolonia and D'Appolonia 1970). In addition, in

dense and very dense soils, it is often difficult to push the penetrometer to the required

depth, which often needs substantial jacking reaction (Bazaraa 1967).

The SPT, on the other hand, is one of the most commonly used tests in practice for

measuring the compressibility of cohesionless soils (D'Appolonia and D'Appolonia

1970). The SPT has been used successfully for many years with thousands of

foundations and other structures (Gordon and Fletcher 1965). The SPT has the

advantage that it is often conducted as part of a routine subsurface exploration program,

which enables the visual inspection of soil samples. The SPT can also detect the

important variations in granular soil density and its procedure is simple, relatively

inexpensive and can be applied both below and above the water table with a reasonable

degree of accuracy. However, the SPT has also several notable disadvantages' The

SPT does not give a continuous soil profile and is notorious for its unreliability with

regard to the reflection of soil compressibility. The results of the SPT are also uncertain
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due to several factors associated with the test equipment and procedures (see Gordon
and Fletcher 1965; Wang and Lu lgS2).

It has been argued that the CPT gives a better indication of the soil properties than the
SPT' In fact, as time proceeds, the CPT is replacing the SpT as the industry standard.
Whilst the SPT is not the most accurate in-situ method for measuring soil
compressibility, it is used extensively worldwide and most available data sets in the
literafure include SPT measurements rather than more accurate estimates of soil
properties from the CPT' The performance of ANN models depends mainly on
collecting as much reliable data as possible. Consequently, the SpT is used as a
measure of soil compressibility for the development of the ANN models introduced in
this thesis. As a result, a brief description of the SPT test procedure is given below.

Standard Penetration Test (SpT)

The sPT is carried out using the following steps (standards Austraria 1993):

l' A vertical hole of at least 65 mm diameter is drilled to the depth at which the test is
to be conducted for the first time.

2. A split spoon sampler (Figure 4.1) is inserted into the hole via steel rods.
3' A 63'5 + 1 kg hammer, as shown in Figure 4.2, is raised a distance of 760 + 15

mm using a self-tripping mechanism and is allowed to fall freely due to lifting
winch inertia.

4' The process is repeated until the sampler penetrates the soil for a total distance of
450 mm.

5' The number of hammer blows required for each 150 mm interval is recorded.
6' The test is stopped if (i) a total of 30 blows causes less than 100 mm penetration at

any stage or (ii) there is no measurable penehation or the hammer bounces for 5

consecutive blows.

7 ' The blow counts for the last 300 mm of penetration are summed and the number of
blows of the standard penetration test ($ is computed, noting that the blow counts
for the first 150 mm are not used for computing N, as this soil is assumed to be
disturbed by the drilling process.
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8. The sampler is extracted and the soil sample is removed, inspected and placed in an

airtight container to maintain the sample moisture content, if required.

g. The hole is then drilled to the depth required for the next test and steps 2 to 8 are

repeated, as required.
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Figure 4.1: The split spoon sampler (Standards Australia 1993)
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dense, ftne or siþ sand beneath the water table is abnormally high if the measured
value of tú is greater than 15. This is due to the tendency of dense, fine or silty
submerged sand to dilate during shear in undrained conditions. Consequently,Terzaghi
and Peck (1943) recommended a correction for reducing the measured l/ values for
dense, fine or silty submerged sand when ¡r> r5 as follows:

N 
"o,,""t"d 

= l5 + 0.5(¡f - 15) (4.1)

The above proposal was confirmed by a study carried out by Bazaraa (1967) for a large
number of results of SPT tests within I m above and below the water table. In his
study, Bazataa (1967) concluded that the effect of submergence on very fine or silty
sand, in general, increases the number of blows of the SPT test. However, Bazaraa
(1967) established his conclusion for loose rather than dense sand. As a consequence,
Bazaraa (1967) proposed an alternative correction for the SpT blow count beneath the
water table in fine or silty sand as:

N 
"orr""t". 

= 0.6i/ (4.2)

Schultze and Menzenbach (1961) and Bazaraa (1967) have shown that medium to
coarse sand and gravel are not affected by submergence. Burland and Burbidge (19g5)
recommended no correction to l/be taken for submergence. However, for very hne and
silty sand below the water table, Burland and Burbidge (19s5) used the submergence

correction proposed by Terzaghi and Peck (1948) when ¡/ > 15. For soils consisting of
gravel or sandy gravel, Burland and Burbidge (1985) proposed a correction for i/ as

follows:

N"orr""t"d =1.25N (4.3)

Another factor that may affect the results of the SPT blow count is the influence of the
eflective overburden pressure, which is a measure of the confining pressure at the level
where the SPT is carried out. Many researchers (e.g. Sutherland 1963; Thorbum 1963;
Alpan lgl4)recommended that the SPT blow count should be corrected for overburden
pressure. Mansur and Kaufman (1958), Philox (1962) and Zolkov and Wiseman (1965)
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confirmed the substantial influence of overburden pressure on the penetration resistance

of the SPT. Gibbs and Holtz (1957) and Bazaraa (1967) developed SPT correction

charts for overburden pressure. On the other hand, Peck et al. (1974) suggested no

correction for overburden pressure should be applied unless footings are below 6 m or

above 2 m in depth. Burbidge (1932) suggested that overburden pressure is not usually

an important correction to the SPT blow counts of granular soils because the overburden

pressure is normally restored after the construction of foundations and before the

beginning of any settlement monitoring. Burland and Burbidge (1985) recommended

no correction to .ðy' be taken for overburden pressure. Since most case records in the

database used for the purpose of this thesis were obtained from Burland and Burbidge

(1985), the correction factors recommended by Burland and Burbidge (1985) were

applied.

4.3.2 SecondaryFactors

In addition to the three primary factors discussed in the previous section, there are many

other factors that contribute to a lesser degree to the settlement of shallow foundations

on cohesionless soils and, thus, can be considered as secondary factors. These factors

include:

. Depth of the water table beneath the foundation level;

o Time since load application;

o Footing geometry or shape (length-to-width), L /B;

o Depth of footing embedment, Dr(usually expressed as a ratio of B and known as the

footing embedment ratio); and

o Thickness of the soil layer beneath the foundation.

Burland and Burbidge (1985) stated that the depth of water table beneath the foundation

level has little influence on settlement. Meyerhof (1965) also concluded that the water

table is reflected in the measured blow count of the SPT. Consequently, the effect of

depth of water table can be ignored without any significant error to the settlement

prediction.
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Burland and Burbidge (19s5) also found that settlement of shallow foundations on sand
and gravels exhibit time-dependence. However, no distinct pattern emerged from their
statistical analysis in relation to the effect of time-dependence. Fang (1991) observed
that time-dependence for settlement of shallow foundations on cohesionless soils may
result from the consolidation of thin layers of silt and clay within sand or gravel soils
and, consequently, the impact of this factor is not recommended in the calculation of
settlement of foundations on cohesionless soils.

Amar and Baguelin (1984) concluded that foundation geometry, L /8, wasnot shown to
have any significant influence on settlement. On the other hand, Burland and Burbidge
(1985) concluded from their statistical study that there is a correlation between
settlement and' L /B of the foundation. However, they stated that the correction factor
fot L /B is quite small. Burbidge (1982) found that there is no significant difference
between the settlement of square, circular and continuous strip foundations having the
same width, B, on the same soil. Consoli et al. (1998) also demonstrated that the shape
of the loaded area does not influence initial soil compressibility.

In their study, Burland and Burbidge (1985) found that, for foundations with
Dr/B <3.3, there is no obvious correlation between settlement and depth of footing

embedment' This conclusion confirms the results obtained previously by D,Appolonia
et al' (1968) who found that, from the analysis of a number of results on a single site,
only l2Yo reduction in settlement occurred when Dr /B increases from 0.5 to 1.0.

Moreover, Christian and Carrier (1978) stated that the material above the foundation
level does not seem to contribute very significantly to the settlement behaviour.
Consequently, Christian and Carrier (1973) demonstrated that ignoring the depth of
footing embedment in calculating settlement gives reasonably satisfactory results,
especially when some other factors such as heterogeneity and non-linearity of the soil
are to be taken into consideration. The relative importance of the previous factors (main
and secondary) on settlement will be investigated in Chapter 5 by carrying out a
sensitivity analysis on the optimal ANN model.

In the present research and for the purpose of predicting the settlement of shallow
foundations on cohesionless soils using ANNs, the following aspects are considered.
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The depth of the water table and time-dependence are not included in the study as

proposed by Meyerhof (1965) and Fang (1991), respectively. There are also insuffrcient

data for the thickness of the soil layer in the database used in this research and thus it is

not considered in this work. The conclusion made by Burbidge (1982) that there is no

significant difference between the settlement of circular or square footings having the

same width, B, on the same soil is considered and thus L /B is assumed to equal unity

for circular footings. In the following section, three of the most commonly used

methods for settlement prediction of shallow foundations on cohesionless soils will be

described in some detail. These methods will be the basis of assessing the relative

performance of the ANN models. These include the methods proposed by Meyerhof

(1965), Schultze and Sherif (1973) and Schmertmann et al. (1978).

4.4 Methods of Settlement Prediction of Shallow Foundations

A remarkable number of methods for calculating settlement of shallow foundations on

cohesionless soils are available in the literature. Some methods are simple and direct

empirical correlations between field settlements and field tests such as the plate load,

standard penetration, cone penetration, dilatometer and pressuremeter tests. Other

methods apply the theory of elasticity with soil properties obtained from empirical

correlations with in-situ or laboratory tests. In accordance with Poulos (1999), the

available methods can be classified into three main categories (Table 4.1).

Table 4.12 Categories for classification of settlement methods (Poulos 1999)

Catesorv Characteristics Method of Darameter estimation

1 Empirical; not based on soil
mechanics principles

Simple in-situ or laboratory tests,

with correlations

2 Based on simplified theory or
charts; uses soil mechanics
principles; linear or non-linear
elastic, rigid or elasto-plastic soil
models

Routine; relevant in-situ or
laboratory tests; may require some
correlations

J Based on theory using site-
specific analysis; uses soil
mechanics principles, linear or
non-linear elastic, rigid plastic

Careful laboratory and/or in-situ
tests which follow the appropriate
stress paths
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It is extremely difficult and expensive to obtain relatively undisturbed samples from
cohesionless soils to represent the in-situ properties of such soils. As a result, methods
that use the results of field tests are much more common than those based on laboratory
tests. As previously mentioned in Chapter I, as yet, no universally accepted method
exists fbr predicting the settlement of shallow foundations on cohesionless soils. The
pu{pose of this section is not to summarise all the available methods that are found in
the literature, but, rather describe and discuss, in some detail, some of the most
commonly used, and more relevant ones. Among these, three are selected: Meyerhof
(1965); Schultze and Sherif (1973) and Schmertmann et al. (1978), for the following
feasons:

. They are in common use;

' They represent the chronological development of settlement prediction;

o Each of them falls into one or more of the categories of settlement classification
methods given in Table 4.1; and

o The database used later in this research contains most parameters required to
calculate the settlement by these methods, which is necessary for the purposes of
comparison with the techniques proposed in this thesis.

The finite element method (FEM) is one of the well-established techniques that might
be used for settlement prediction, as it has been used successfully for solving many
problems in the field of geotechnical engineering. FEM has the advantage of dealing
with complicated geometry and boundary conditions and non-linear stress-strain

behaviour of soil (Poulos 1975). However, it is not necessarily the case when it comes

to the settlement prediction of shallow foundations on cohesionless soils. The reason is
that the key to success of FEM lies mainly in an appropriate evaluation of the stress-

strain behaviour of soil (Poulos l99g), which is a diffrcult task in the case of
cohesionless soils (Moorhouse 1972), With regard to applying FEM for settlement
prediction of shallow foundation on cohesionless soils, Poulos (1999) stated that,,...the
more complex finite element methods appear to require far more development before
being able to be used with confidence". In addition, this method requires a greater

amount of soil data, as well as data that are costly to measure. Consequently, FEM will
not be used as a basis of comparison with ANNs in this research, primarily because

suffrcient data are unavailable.
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4.4.1 MeyerhoPs Method

Meyerhof (1965) suggested the following equations for estimating the settlement, S", of

shallow foundations on sand:

forB<4ft(1.2m) (4.4)

or

8q

¡ú
S"=

, -nq( n 
\'z' N \B+U

forB> aftQ.zm) (4.s)

s"

q

B

N

where

: calculated settlement (inch);

: footing net applied pressure (todff?);

: footing width (ft); and

: average SPT blow count to a depth of 2B below the foundation level

There is no overburden pressure correction for the average blow count, N, except for

dense submerged siþ sand when the minimum average blow count exceeds 15. The

corrected, N"oo""t"d, is given as:

N 
"orrect"d 

= 15 + 0.5(N - 15) (4.6)

Meyerhof also suggested no correction be made for the effect of the ground water table,

as its influence would be implicitly incorporated into the measured SPT results.

Meyerhofs method is simple to implement and has been one of the most popular

methods for calculating settlement of shallow foundations based on SPT data (Coduto

lgg4). However, the method tends to be conservative, as it overestimates the settlement

about 75%o of thetime (Coduto 1994).
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4.4.2 Schultze and Sherips Method

Shultze and Sherif (1973) proposed a procedure for settlement estimation based on
elastic theory. By applying a statistical analysis to settlements obtained from 4g
commercial and industrial structures, Schultze and,sherif (1973) proposed the following
equation:

,s =qFc 
JV'o'87 (l+o.4Dr lB) (4.1)

where:

s"

q

F

¡/

DJ"

B

: calculated settlement (cm);

: footing net applied pressure (kglcm,);
: settlement coefficient (obtained from a chart);
: average sPT blow count to a depth of 28 or thickness of the compressible

layer, whichever is the lesser;

: depth of footing embedment (cm); and

: footing width (cm);

Schultze and Sherif s method relies mainly on elastic theory. The limitation concerning
methods involving elastic theory is the diffrculty of evaluating the in-situ stress-strain
properties and that, in most cases, settlement is non-linear (Moorhous e 1972).

4.4.3 SchmertmannrsMethod

Schmertmann (1970) proposed a procedure for estimating the settlement of foundations

on granular soils, which was later updated by Schmertmann et al. (197g). The
procedure is based on the theory of elasticity, fïnite element analyses, observations from
field measurements and laboratory model studies. The method proposed that the
calculated settlement, S", at the surface of a profile for a granular mass, can be expressed

in terms of the vertical strain, er, as follows:
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S" = le,dz

@

z=O

(4.8)

The profile can be considered as consisting of a series of homogeneous sub-layers with

approximately constant values of cone resistance and N, and the settlement, S", can be

computed as:

S, =C,CrqZi=rft?1,*,
i=l .L s

(4.e)

in which:

S, : calculated settlement (m);

q : footing net applied pressure (kPa);

I" : strain influence factor (obtained from a chart);

E, : Young's modulus at the middle of the ith layer of thickness Az,(kPa);

Lr, : thickness of the ith layer (m); and

C, C, : correction factors for embedment and creep.

A chart was developed to obtain I, and correlations were suggested to obtain d from

the results of CPT and/or SPT tests. Schmertmann (1978) also suggested two correction

factors, Cr, Cr, which account for the effect of strain relief due to embedment and the

effect of time-dependence or creep, respectively. The chart, correction factors and other

details are given by Schmertmann (1970) and Schmertmann et al. (1978).

Schmertmann's method provides a more reliable method of estimating settlement of

shallow foundations on granular soils (Moorhouse 1972). This method is also popular,

useful and more precise than other methods (Coduto 1994). The reliability and

accuracy of these three methods will be examined later in this thesis and compared with

the model based on ANNs.
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4.5 Summary

It has been argued that there are three main factors affecting settlement of shallow

foundations on cohesionless soils that have more than marginal effects. These are the

footing width, B, footing net applied pressure, q, and soil compressibility, which can be

reflected by the average blow count from the standard penetration test (SPT). It has also

been shown that other factors affecting settlement, including depth of water table, time

dependence, footing geometry, L/8, and depth of footing embedment, D, are secondary

compared with the three main factors illustrated above. In the following chapter, the

use of multi-layer perceptrons (MLPs) that are trained with the back-propagation

algorithm will be examined for predicting settlement of shallow foundations on

cohesionless soils.



Chapter 5

Settlement Prediction by Multi-layer Perceptrons

5.1 Introduction

Over the years, many methods have been developed to predict the settlement of shallow

foundations on cohesionless soils, as discussed in Chapter 4. However, methods for

making such predictions with the required degree of accuracy and consistency have yet

to be developed. Accurate prediction of settlement is essential since settlement, rather

than bearing capacity, generally controls foundation design. In this chapter, artificial

neural networks (ANNs) are used in an attempt to obtain more accurate settlement

prediction. A large database of actual measured settlements is used to develop and

veriff the ANN models. As the prediction of settlement of shallow foundations on

cohesionless soils does not involve any time-related parameter components, feed-

forward multi-layer perceptrons (MLPs) are used. Feed-forward MLPs that are trained

with the back-propagation algorithm are the most commonly used neural network type

(Maren et al. 1990), as they have a high capability of data mapping (Hecht-Nielsen

1990). MLPs trained with the back-propagation algorithm have been applied

successfully to many geotechnical engineering problems (e.g. Goh 1994a, b; Najjar and

Basheer 1996a, b), and are thus used in this work.

The objectives of this chapter are to

l. Investigate the feasibilþ of the ANN technique for predicting the settlement of

shallow foundations on cohesionless soils.

2. Introduce a method of model validation that tests the robustness of the predictive

ability of ANN models.

3. Study the effect of ANN geometry and internal parameters on the performance of

ANN models.

4. Investigate the relationship between the statistical properties of the data subsets used

to develop ANN models and model performance.

5. Investigate the relationship between the proportion of the data in each of the subsets

used to develop ANN models and model performance.
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6' Investigate the use of different approaches for dividing the available data into the
subsets needed to develop ANN models and introduce and evaluate a new approach
for data division that is based onfuzzy clustering.

7 ' Examine the effect of data transformation on the performance of ANN models.
8' Provide information on the relative importance of the factors affecting the

settlement of shallow foundations on cohesionless soils.

9' Compare the performance of ANNs with some of the most commonly used
traditional methods.

l0' Provide a practical equation and a series of design charts for settlement prediction of
shallow foundations on cohesionless soils from the developed ANN model for
routine use in practice.

5.2 Development of ANN Models

The data used to calibrate and validate the neural network models are obtained from the
literature, and include field measurements of settlement of shallow foundations as well
as the corresponding information regarding the footings and soil. The data cover a wide
range of footing dimensions and cohesionless soil types and properties. The database
comprises a total of 189 individual cases; 125 cases were reported by Burland and
Burbidge (1985), 22 cases by Burbidge (1982), 5 cases by Bazaraa (1967) and 30 cases

by Wahls (1997). Another 4 cases are given by Briaud and Gibbens (1999), one case by
Picornell and Del Monte (198s) and 2 cases by Maugeri et al. (199g). Full details of the
database are given in Appendix A.

The steps for developing ANN models, as outlined by Maier and Dandy (2000) and
given in $2.5, are used as a guide in this work. These include the determination of
model inputs and outputs, division and pre-processing of the available data, the
determination of appropriate network architecture, optimisation of the connection
weights (training) and model validation. 'lwo PC-based commercial software systems
are used to simulate neural network operation. The first is NeuralW orks predict
Release 2.1 (NeuralWare 1997), which adopts the Cascade-Correlation algorithm to
automatically determine optimal network architecture. The second is Neuframe Version
4'0 (Neusciences 2000), in which optimal network architecture is determined by trial-
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and-error. ANN models that are developed using the aforementioned software systems

are described in detail below.

5.2.1 ANN Models Developed Using Predìct

a Model Inpuls und Outpuls

As discussed in Chapter 4, it is generally accepted that five parameters have the most

significant impact on the settlement of shallow foundations on cohesionless soils

@urland and Burbidge 1985), and are thus used as the ANN model inputs. These

include footing width (B), footing net applied pressure (q), the average SPT blow count

(N) over the depth of influence of the foundation, footing geometry (L/B) and footing

embedment rutio (Dr/B). The model output is the average measured settlement (,S,) of

the foundation, considered in its final state. A sensitivity analysis to investigate the

relative importance of the ANN model inputs will be explored in $5.5.

a Duta Dívísíon

The next step in the development of ANN models is dividing the available data into

their subsets. For reasons given in Chapter 2, cross-validation (Stone 1974) is used as

the stopping criteria in this research. Consequently, the data are randomly divided into

three sets: training, testing and validation, as is standard practice in the development of

ANN models in geotechnical engineering. In total, 80% of the data are used for training

and21%o are used for validation. The training datz arc further divided nto 70Yo for the

training set and 30o/o for the testing set. For reasons discussed in $2.5.2, the haining,

testing and validation sets are also divided in such a way that they are statistically

consistent and thus represent the same statistical population. In order to achieve this,

several random combinations of the training, testing and validation sets are tried until

three statistically consistent data sets are obtained. The statistics of the training, testing

and validation sets are shown in Table 5.1. The statistical parameters considered

include the mean, standard deviation, minimum, maximum and range. The relationship
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between the statistical properties of the data subsets, and the effect of the proportion of
the data used in each subset on model performance will be investigated in $5.3. The use
of different available data division methods for ANN models will also be investigated in
$5'3 and a new approach that is based on fuzzy clustering will also be introduced and
evaluated in this section.

Table 5.1: rnput and output statistics for the ANN moders

To examine how representative the training, testing and validation sets are with respect
to cach other, t- andF-tests are carried out. The /-test examines the null hypothesis of
no difference in the means of two data sets and the,F-test examines the null hypothesis
of no difference in the standard deviations of the two sets. For a given level of
significance, test statistics can be calculated to test the null hypotheses for the t- and, F-
tests, respectively. Traditionally, a level of significance equal to 0.05 is selected

Statistical parametersModel variables

and data sets Mean Std. Dev. Minimum Maximum Range

B m
set 8.3 9.8 0.8 60.0 59.2

T set 9.3 10.9 0.9 s5.0 54.1
Validation set 9.4 10.1 0.9 41.2 40.3

net
set 188.4 129.0 18.3 697.0 678.7

set 183.2 I18.7 25.0 584.0 s59.0
Validation set 187.9 114.6 33.0 575.0 542.0

SPT blowA N
set 24.6 t3.6 4.0 60.0 56.0

set 24.6 12.9 5.0 60.0 55.0
Validation set 24.3 14.t 4.0 55.0 51.0
F L/B

set 2.r r.7 1.0 10.5 9.5
set 2.3 t.9 1.0 9.9 8.9

Validation set 2.1 1.8 1.0 8.0 7.0
Footing ratio,tembedmen /B

set 0.52 0.57 0.0 3.4 3.4
set 0.49 0.52 0.0 3.0 3.0

Validation set 0.59 0.64 0.0 3.0 3.0
Measured settlement, (mm)

set 20.0 27.2 0.6 121.0 120.4
set 21.4 26.6 1.0 120.0 119.0

Validation set 20.4 25.2 1.3 120.0 118.7
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(Levine et al. 1999). Consequently, this level of significance is used in this research.

This means that there is a confidence level of 95% that the training, testing and

validation sets are statistically consistent. A detailed description ofthese tests is given

by Levine et al. (1999). The results of the /- and ,F'-tests are given in Table 5.2. These

results indicate that the training, testing and validation sets are generally representative

of a single population.

Table 5.2: Null hypothesis tests for the ANN input and output variables

Pre-processing of Dalaa

Once the available data have been divided into their subsets, the input and output

variables are pre-processed by scaling them to eliminate their dimension and to ensure

that all variables receive equal attention during training. Scaling has to be

Variable

and

data sets

f-value

Lower

critical

value

Upper

critical

value

,-test .F-value

Lower

critical

value

Upper

critical

value

F-lest

B

Testing 4.58 -1.97 1.97 Accept 0.81 0.59 1.87 Accept

Validation -0.61 -1.97 1.97 Accept 0.94 0.61 1.77 Accept

q

Testing 0.23 -1.97 1.97 Accept l.l8 0.59 1.87 Accept

Validation 0.02 -1.97 1.97 Accept 1.27 0.61 L7'l Accept

N

Testing 0.00 -1.97 1.97 Accept 1.1 I 0.59 r.87 Accept

Validation 0.11 -1.97 t.97 Accept 0.93 0.61 1.77 Accept

I"1B

Testing 4.64 -r.97 t.97 Accept 0.80 0.59 1.87 Accept

Validation 0.00 -1.97 r.97 Accept 0.89 0.61 t;77 Accept

Drß

Testing 0.31 -t.97 1.97 Accept L20 0.59 1.87 Accept

Validation 4.62 -r.97 1.97 Accept 0.79 0.61 1.77 Accept

,S

Testing 4.29 -r.97 1.97 Accept 1.05 0.s9 1.87 Accept

Validation -o.08 -r.97 1.97 Accept Lt7 0.61 1.77 Accept
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commensurate with the limits of the transfer functions used in the hidden and output
layers (i'e. -1.0 to 1.0 for tanh transfer function and 0.0 to 1.0 for sigmoid transfer
function). The simple linear mapping of the variables' practical extremes to the neural
network's practical extremes is adopted for scaling, as it is the most commonly used
method (Masters 1993). As part of this method, for each variable x with minimum and
maximum values of x,* artd x^*, respectively, the scaled value xn is calculated as

follows:

x, = (x - xr," ) /(x,nu* - r.in ) (s.l)

Transformation of the input data as a way of improving the performance of ANN
models will be examined in $5.4.

Model Archítecture, Optímisation and Stopping Criterìøa

As discussed in Chapter 2, one of the most important and difficult tasks in the
development of ANN models is determining the model architecture (i.e. the number and
connectivity of the hidden layer nodes). In order to obtain the optimum number of
hidden layer nodes, it is important to strike a balance between having sufhcient free
parameters (weights) to enable representation of the function to be approximated, and
not having too many so as to avoid overtraining. Overtraining is not an issue in this
study, as cross-validation is used as the stopping criterion. However, physical
interpretation of the model is important, and hence the smallest network that is able to
map the desired relationship should be used. In NeuralW'orks predict, the optimal
network architecture is found automatically with the aid of the Cascade-Co*elation
algorithm (see $2.5.4). The process of optimising the connection weights is applied
using the default parameters of the software and are given as follows:

Learning rate: 100 for the hidden layer and 0.01 for the output layer; and

Transfer function: tanh for the hidden and sigmoid for the output layer.

As Predíct uses an automatic method for finding the optimal network architecture, the
final network architecture obtained might be different for different models, even though
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the same data sets and learning parameters have been used. As a result, studying the

effect of changing the learning parameters on the performance of ANN models could be

misleading and was therefore not done when Predict was used. However, because

Neuframe requires a manual process for determining optimal network architecture and

internal parameters, the effect of varying ANN internal parameters and geometry on the

performance of ANN models was investigated ($5.2.2).

Model Vølìdation

Using the above method, a number of networks are developed and the structure and

performance results of the developed models are shown in Table 5.3. A code is used in

this chapter to identiff the names of the different models developed. The code consists

of two parts separated by a hyphen. The first part represents an abbreviation to the

current chapter. The second part begins with an abbreviation that denotes the software

used followed by the model number. Hence, for example, "CHPS-PDI" implies

Chapter 5, Predict Model No. 1.

It can be seen from Table 5.3 that the performance of the developed models is

quantified using three different measures; the coefficient of correlation (r), the root

mean squared enor (RMSE) and the mean absolute error (MAE), as discussed in ç2.5.7.

Three measures are used for assessing the models, including: (i) the performance of the

model on the testing set; (ii) the number of hidden nodes and (iii) the general

consistency of model performance on the validation set with those obtained on the

training and testing sets. Consequently, an ANN model is deemed to be optimal if the

model provides satisfactory performance on the testing set coupled with a small number

of hidden nodes and consistent performance on the validation set with that obtained on

the training and testing sets. It can be seen from Table 5.3 that model CHP5-PDI4

performs well, as it has a high coefficient of correlation and low RMSE and MAE

between the measured and predicted settlement on the testing set, coupled with a

smaller number of hidden nodes and consistent performance on the training, testing and

validation sets. The above results indicate that model CHP5-PD14 has the capability of

predicting the settlement of shallow foundations on cohesionless soils with a high

degree ofaccuracy and can thus be used as a practical tool for predictive pu{poses.



Model No. No.

hidden

nodes

Performance measures

Correlation coeffìcient, r RMSE (mm) MAE (mm)

T S v T S V T S V

CHP5-PDI 23 0.97 0.96 0.82 6.2 7.4 15.5 4.2 4.3 9.8

CHP5-PD2 3l 0.97 0.97 0.80 5.6 6.5 16.4 4.t 4.5 10.4

CHP5.PD3 35 0.98 0.96 0.81 4.5 7.6 l6.s J.J 5.1 9.7

CHP5-PD4 tl 0.97 0.9s 0.87 5.6 8.3 l3.l 4.0 5.5 9.8

CHP5-PD5 47 0.98 0.97 0.83 4.2 6.7 14.6 2.7 4.8 8.8

CHP5-PD6 42 0.98 0.97 0.84 4.4 6.1 14.0 3.1 3.9 9.0

CHP5-PD7 48 0.98 0.96 0.86 4.9 6.6 13.3 3.4 4.6 8.3

CHP5-PD8 20 0.98 0.96 0.86 3.9 7.4 14.0 2.4 4.9 8.2

CHP5-PD9 50 0.97 0.95 0.84 5.1 8.3 14.9 4.2 6.0 9.9

CHPs-PDlO 38 0.98 0.96 0.83 5.4 6.6 14.7 4.0 4.4 9.9

CHP5-PDI I 3l 0.98 0.97 0.85 5.2 6.4 13.6 3.8 4.5 8.3

CHPs-PD12 40 0.98 0.96 0.84 4.9 6.9 t4.2 J.O 5.1 9.7

CHP5-PDI3 39 0.98 0.9'7 0.87 4.7 6.3 12.9 3.4 3.9 8.3

CHPs-PDI4 0.92 0.92 , 0.88 I 1.5 I l.s 12.0 7.3 7.5 9.5

CHPs-PDI5 48 0.98 0.96 0.87 4.7 7.2 t2.s 3.2 4.',7 8.8

CHPs-PD16 44 0.98 0.96 0.86 5.0 7.1 12.8 3.6 5.3 8.9

CHP5-PDI7 23 0.97 0.96 0.86 6.2 7.0 13.7 4.2 5.2 9.9
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Table 5.3: Structure and performance of ANN models developed using Predict

T = training, S : testing and V: validation

In order to confirm the generalisation ability and robustness of model CHP5-PD14, an

additional validation approach is proposed. The approach suggests carrying out a
parametric study in which the response of the ANN model output to changes in its
inputs is investigated. All input variables, except one, are fixed to their mean values

used for training and a set of synthetic data, between the minimum and maximum

values used for model training, are generated for the input that is not set to a hxed

value, The synthetic data are generated by increasing their values in increments equal

to 5Yo of the total range between the minimum and maximum values. The response of

the model is then examined. This process is repeated using another input variable and

so on until the model response is tested for all input variables. The robustness of the

model can be determined by examining how well the predicted settlements are in

agreement with the known underlying physical process over a range of inputs.
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The above approach is applied to model CHP5-PDI4 and the results are shown in

Figure 5.1. It can be seen that some of the results obtained are contrary to what one

would expect based on the known physical behaviour of settlement of shallow

foundations on cohesionless soils. For example, in Figure 5.1(a), one would expect that

the predicted settlement would increase as footing width increases in a relatively

consistent and smooth fashion. In Figure 5.1 (c), one would expect that the predicted

settlement would decrease as the average SPT blow count increases. The model

behaviour displayed in Figure 5.1 (d) is also unexpected, as there is no obvious trend in

the relationship between predicted settlement and footing geometry. One would expect

that the predicted settlement would increase with an increase in footing geometry. In

addition, the odd shape of the curves is difficult to justiff from a physical perspective.
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Figure 5.1: Results of parametric study for Model CHP5-PD14
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The above results indicate that there may be some level of model overfitting, even
though cross-validation was adopted and an independent validation set was used.

Consequently, further work is needed to determine the cause of this behaviour. possible

factors affecting the generalisation ability and robustness of ANN models include the
number and type of connection weights, the degree of noise in the data and,the software
implementation used. These are investigated and discussed below.

Effect of Number ønd Type of Connection Weíghtsa

As mentioned in Chapter 2, one of the difficulties in using ANN models is that the
potential number of free model parameters (i.e. connection weights) is generally large
and there is therefore a danger of overfitting the training data. In other words, if the
number of degrees of freedom of the model is large compared with the number of data
points used for training, the model might no longer fit the general trend, as desired, but
might learn the idiosyncrasies of the particular data points used for training. In general,

one of two methods is used to overcome this problem. The first is to restrict the ratio of
the number of connection weights to the number of data points in the training set, and
several rules-oÊthumb have been given in Chapter 2 as a guide. The second approach
to avoiding overfitting is to use a non-convergent method (Finnhoff et al. 1993) in
which training is stopped early once the error in an independent test set starts to
increase. This method is described in Chapter 2 and is commonly called cross-

validation (Stone 1974).

As mentioned above, if the ratio of the number of connection weights to the number of
data samples in the training set is too large, the model might no longer be able to fit the
desired trends. This makes it difficult to interpret the physical meaning of the
relationship found by ANN models. In order to investigate the impact of reducing the

number of connection weights and thus reducing the ratio of the number of connection

weights to the number of data samples, more networks are trained eliminating the direct
connections between the input and output nodes but allowing the cascaded connections

between the new hidden nodes and previously established ones (see $2.5.4). The
strucfure and performance results of the developed models are given in Table 5.4. It can
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be seen that model cHp5-pD26 with 4 hidden layer nodes gives as good performance

as model cHp5_pD14, which has l1 hidden layer nodes. The result of the parametric

study for model CHP5-PD26 is given in Figure 5.2' As model CHP5-PD26 performs

well on an independent validation set (Table 5.4), one would expect that the model is

adequately trained so as to be used for predictive purposes' However, Figure 5'2 shows

that, although some improvement of model robustness has been achieved compared

with model CHP5-PD14 (see Figure 5.1), reducing the number of connection weights

does not completely remedy the problem. There are still some unexpected deviations in

the trends that relate predicted settlement to the footing width, average SPT blow count

and footing geometry, as shown in Figures 5'2 (a), (c) and (d)' respectively'

Table 5.4: Structure and performance of ANN models where direct connections

between the input and output nodes are prohibited and cascaded connections

between hidden nodes are permitted

T:training,S=testing and V: validation

Performance measures

MAE (mm)RMSE (mm)Correlation coefficient, r
vT SvT SVS

No.

hidden

Nodes T

ModelNo.

11.04.0 s.419.05.3 7.60.760.96t4 0.98CHPs.PD18
10.44.716.6 4.25.7 6.50.820.970.97t4CHP5-PDI9
9.84.9t4.l 4.15.5 6.70.850.960.9746CHP5-PD2O
o')5.014.2 2.43.8 6.90.840.9626 0.99CHP5-PD2I
10.84.816.0 2.53.6 6.90.830.9645 0.99CHP5-PD22
9.15.213.7 2.75.2 7.50.850.960.9828CHP5-PD23
9.47.5I 1.8 7.410.4 10.50.910.940.94llCHP5-PD24
8.84,913.6 3.8'1.90.85 5.80.950.9725CHP5-PD25

6.1 9.4t2.7 7.79.90.87 12.r.0.93

5.8 11t0.2 4.48.00.92 6.30.960.979CHP5-PD27
5.0 8.813.2 3.96.90.86 5.40.960.9826CHP5-PD28
8.2 I 1.915.9 8.6I 1.90;'19 t3,40.890.875CHP5-PD29

10.26.013.2 '7.0tl.2 9.90.850920.915CHP5-PD3O
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Figure 5.2: Results of parametric study for Model cHp5-pD26

In an attempt to reduce the number of connection weights even further, both the direct
connections between the input and output nodes and cascaded connections between
hidden nodes are removed. Consequently, only the direct connections between the
input layer nodes to the newly added hidden layer nodes and between hidden nodes to
the output layer nodes are allowed. By following this procedure, a number of networks
are developed and the strucfure and performance results of the developed models are
given in Table 5'5' It can be seen that model CHP5-PD43, with 4 hidden layer nodes,
performs well and its perfbrmance, without both the direct connections between the
input and output nodes and cascaded connections between hidden nodes, is similar to
previously developed models (i.e. models CHP5-PD 14 and.CHp5-pD26). It should be
noted that the ratio of the number of connection weights to the number of training

30
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samples for model CHP5-PD43, is approximately 1:5' This ratio is in accordance with

most ratios recommended by researchers in order to guarantee that overfitting does not

occur (Masters 1993; Rogers and Dowla lgg4). The result of the parametric study for

model CHp5-pD43 is shown in Figure 5.3. It can be seen that, in Figures 5.3 (a)' (c)

and (d), respectively, some unexpected trends are still obtained between the predicted

settlement and footing width, average SPT blow count and footing geometry' even

though the number of connection weights has been reduced fuither' Consequently' it

can be concluded that eliminating the cascaded connections does not improve model

robustness and that the model behaviour shown in Figure 5.1 does not appear to be

affected by the number of connection weights nor the type of connection between

nodes.

Table 5.5: Structure and performance of ANN models where both direct

connections between the input and output nodes and cascaded connections

between hidden nodes are prohibited

Performance measures

MAE (mm)RMSE (mm)Correlation coefficient, r
S Vv TT SVT S

No.

hidden

Nodes

Model No.

6.7 9.913.2 7.7t2.0 10.50.850.89 0.914CHP5-PD3I
4.6 9.914.4 5.17.4 6.80.840.96 0.9615CHP5-PD32
4.8 9.413.1 7.1I 1.3 7.60.860.91 0.9613CHP5-PD33
7.0 10.313.6 8.012.3 10.70.850.89 0.914CHP5-PD34
6.2 10.412.9 7.01 1.0 l0.l0.860.91 0.925CHP5-PD35
6.3 9.4t2.5 6.08.9 9.00.880.94 0.948CHP5-PD36
6.3 10.515.3 5.98.9 8,60,810.94 0.9515CHP5-PD37
7.5 1 1.55.78.9 10.4 14.60.840.94 0.924CHP5-PD38
5.8 8.75.5t0.2 ll,70.89 8.00.925 0.95CHP5-PD39
5.2 10.04.4'7 1 14.40.84 6.10.9s14 0.97CHP5-PD4O

5.1 8.76.39.4 l l.80.88 9.40.935 0.93CHP5-PD41
9.94.5 4.86.9 I 5.60.81 6.20.9620 0.97CHP5-PD42

6.7 9.77.313.20.860.92

9.24.4 5.06.6 t3.70.86 6.10.9630 0.97CHP5-PD44
6.7 10.47.610.5 13.60.85 11.90.915 0.89CHP5-PD45
7.3 12.58.6t3.2 10.6 17.60.750.914 0.87CHP5-PD46
4.5 9.514.l 3.54.9 6.70.850.98 0.9720CHP5-PD47
6.4 9.5t2.t 6.710.2 10.50.880.e2 0.914CHP5-PD48

T : training, S : testing and V: validation
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Figure 5.3: Results of parametric study for Model cHp5-pD43

a Effect of Data Noìse

In order to investigate the effect of clata noise on the robustness of ANN models, a clean
set of 500 data samples (see Appendix B) consisting of different combinations of B, q
and l/, is generated randomly from a uniform distribution. The corresponding
settlements are calculated using Meyerhofs equation for settlement prediction as

follows (Meyerhof 1965):

30
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o=#(rår)' (s.2)

where ^S": calculated settlement (mm), e : footing net applied pressure (kPa), N :

average SPT blow count and B: footing width (m). The ANN models are developed

using B, q and N as input variables and the calculated settlement from Equation 5.2 as

single output variable. The data are divided randomly into 300 cases for training, 100

for testing and 100 for validation and selected to be representative of the same statistical

population. The statistics and null hypothesis tests for the training, testing and

validation sets are shown in Tables 5.6 and 5.7, respectively. It can be seen that the

training, testing and validations sets are statistically consistent and thus representative

of the same statistical population.

Table 5.6: Input and output statistics for ANN models of synthetic clean data

Model variables

and data sets

Statistical parameters

Mean Std. Dev. Minimum Maximum Range

Footing width, B (m)

Training set 26.t 14.5 0.55 49.9 49.4

Testing set 26.1 t3.2 2.2 49.5 47.3

Validation set 28.4 13.6 2.1 49.6 47.5

Footing net applied pressure, q (kPa)

Training set 393.9 233.2 5.1 799.4 794.3

Testing set 416.7 242.2 14.9 795.7 780.8

Validation set 401.6 224.1 14.4 795.6 781.2

Average SPT blow count, N

Training set 31.7 16.5 5.1 59.8 54.7

Testing set 31.8 14.8 5.3 58.8 53.5

Validation set 31.0 15.8 5.2 59.3 54.r

Measured settlementr,S,, (mm)

Training set 36.9 44.9 0.11 267.9 267.8

Testing set 37.5 43.r 0.76 253.1 2s2.3

Validation set 39.4 47.6 0.83 252.1 251.3
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Table 5.7: Null hypothesis tests for ANN input and output variables of synthetic
clean data

A number of networks are developed using the clean data and the structure and

performance results of the developed models are shown in Table 5.8. As with the

models developed previously using the actual data, a code is used to identifiz the names

of the different models developed using the synthetic clean data. The code consists of
three parts separated by two hyphens. The first part represents an abbreviation to the

current chapter, the second represents the first letters of the term "s¡mthetic clean data"

and the third part represents the model number that uses Predict software. Hence, for
example, "CHP5-SCD-PD1" implies Chapter 5, synthetic clean data, Predict Model No.
l. It should be noted that models CHP5-SCD-PDI to CHp5-SCD-PD1O are trained

with the direct connections between the input and output nodes and cascaded

connections between hidden nodes, whereas models CHPS-SCD-PD11 to CHp5-SCD-

PD20 are trained without these connections. It can be seen from Table 5.8 that model

CHP5-SCD-PD6 with 7 hidden layer nodes and model CHP5-SCD-PD17 with 8 hidden

layer nodes perform well.

Variable

and

data sets

/-value

Lower

critical

value

Upper

critical

value

/-test F-value

Lower

critical

value

Upper

critical

value

F-lest

B

Testing 4.37 -1.97 1.97 Accept t.2l 0.73 1.39 Accept

Validation -1.39 -1.97 1.97 Accept l.t4 0.73 1.39 Accept

q

Testing -{.84 -1.97 1.97 Accept 0,93 0.73 1.39 Accept

Validation 4.29 -1.97 1.97 Accept 1.08 0.73 1.39 Accept

¡r
Testing -{.05 -1.97 1.97 Accept 1.24 0.73 1.39 Accept

Validation 0.37 -1.97 1.97 Accept 1.09 0.73 1.39 Accept

,S

Testing 4.12 -1.97 1.97 Accept 1.08 0.73 1.39 Accept

Validation 4.47 -t.97 1.97 Accept 0.89 0.73 1.39 Accept
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Table 5.8: Structure and performance of ANN models developed using Predíct and

synthetic clean data

T:training,S:testing and V: validation

The results of the parametric studies for models CHP5-SCD-PD6 and CHPs-SCD-

PD17 are shown in Figure 5.4, which also includes predictions from Meyerhofs

equation (Equation 5.2). It can be seen that both models (i.e. models CHP5-SCD-PD6

and CHpS-SCD-pD17) are able to produce similar predictions to those of Meyerhof s

equation and both models are able to reflect the underlying physical process of

settlement prediction and thus may be considered to be robust. However, the robustness

of these models is based on a set of clean data that cannot be replicated in reality.

In order to simulate real-world conditions, some noise is added to the settlements

calculated from Equation 5.2 for all 500 data samples. The noise is derived from a

normal distribution that has a mean value equal to zero and a standard deviation equal to

20yo of the calculated settlement. Details of the noisy data are given in Appendix B and

the statistics and null hypothesis tests for the input and output variables are given in

Tables 5.9 and 5.10, respectively.

Performance measures

MAE (mm)RMSE (mm)Correlation coefÍicient' r
T S vS vV TST

No.

hidden

nodes

Model No.

5.6 5.5 6.99.7 1 1.90.98 9.30.970.98t4CHP5-SCD-PDI
1.9 2.34.94,6 3.40,99 0.990.9918CHP5-SCD-PD2
3.4 3.55.5 3.35.5 5.40.99 0.990.99ilCHP5-SCD-PD3
5.0 4.6'7.9 4.06.5 9.80.97 0.980.9810CHP5-SCD-PD4
2.0 1.92.9 2.03.3 3.50.99 0.990.99l3CHP5-SCD-PDs
2.1 2.03.5 3.3 2.13.60.99 0.990.997CHP5-SCD-PD6
2,1 2.33.1 2.53.6 2.80.99 0.990.99l5CHP5-SCD-PD7
2.8 -)- I5.6 3.55.2 3.90.99 0.990.999CHP5-SCD-PD8
2.3 -t.J5.9 2.74.4 3.50.99 0.990.99t2CHP5-SCD-PDg
2.5 2.63.7 2.64.1 3.80.99 0.990.9915CHP5-SCD-PDlO
2.8 J.J6.9 3.25.9 5.40.990.99 0.99t2CHPs.SCD-PDlI
2.4 3.04.4 3.14.7 3.90.990.99 0.9915CHP5-SCD-PD12

3.86.7 3.4 4.05.9 7.60.990.99 0.99t8CHP5-SCD-PD13
2.94.3 3.1 3.24.4 4.40.990.99 0.99t2CHP5-SCD-PD14
2.33.3 2.7 2.24.2 3.40.990.99 0.99t4CHP5-SCD-PDI5

2. 1 3.65.5 a'l5.5 4.70.990.99 0.999CHP5-SCD-PDI6
2.r r.94.2 I3.4 .60.99 .990.99PD17CHP5
3.9 4.07.2 3.55.9 6.90.990.99 0.9910CHP5-SCD-PD18
3,3 3.55.2 3.34.9 4.60.990.99 0.99t4CHP5-SCD-PD19

J.J3.7 3.15.8 4.2 5.10.990.99 0.998CHP5-SCD-PD2O
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Model variables

and data sets

Statistical parameters

Mean Std. Dev. Minimum Maximum Range

Footins width, B (m)
Training set 26.1 t4.5 0.56 49.9 49.3

Testing set 26.7 t3.2 2.2 49.5 47.3

Validation set 28.4 13.6 2.1 49.6 47.5

tr'ooting net applied pressure' ¿ fkPa)

Training set 393.9 233.2 5.1 799.4 794.3

Testing set 416.7 242.2 14.9 795.7 780.8

Validation set 40t.6 224.1 t4.4 795.6 781.2

Average SPT blow count, N
Training set 3t.7 16.5 5.1 59.8 s4.7

Testins set 31.8 14.8 5.3 s8.8 53.s

Validation set 31.0 15.8 5.2 s9.3 s4.r

Measured settlement' S- (mm)

Training set 36.8 47.8 0.t2 430.3 430.2

Testing set 37.9 51.5 0.56 285.3 284.7

Validation set 42.2 s 8.5 0.45 361.1 360.7
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Table 5.9: Input and output statistics for ANN models of synthetic noisy data

Table 5.10: Null hypothesis tests for the ANN input and output variables of
synthetic noisy data

Training is repeated and a number of models are developed. The structure and

performance results of the developed models are shown in Table 5.11. Again, a code

similar to that used previously for identi$ing the names of the different models of

Variable

and

data sets

f-value

Lower

critical

value

Upper

critical

value

f-test .F-value

Lower

critical

value

Upper

critical

value

F-lesl

B
Testing 4.37 -1.97 r.97 Accept 1.20 0.73 1.39

Validation -1.39 -1.97 7.97 Accept t.t4 0.t3 1.39 Accept

g

Testins -0.84 -t.97 t.97 Accept 0.93 0.73 1.39

Validation 4.29 -1.97 1.97 AcceDt l.l0 0.73 t.39 Accept

N
Testine -0.05 -t.97 1.97 Accept |.24 0,73 1.39

Validation 0.37 -t.9'7 1.97 Accept L09 0,73 1.39 Accept

s_

Testine -0.1 9 -t.97 1.97 Accept 0.86 0.73 t.39

Validation 4.92 -1.97 t.97 Accept 0.67 0.73 1.39 Reiect
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synthetic clean data is also utilised except that the middle part of the previous code

(SCD) is replaced by (SND), which denotes the term "synthetic noisy data". It should

be noted that models CHP5-SND-PDI to CHPS-SND-PDIO are trained with direct

connections between the input and output nodes and cascaded connections between

hidden nodes, whereas models CHP5-SND-PDIl to CHP5-SND-PD20 are trained

without these connections. It can be seen from Table 5.11 that there are two models that

perform well with respect to the training, testing and validation data (i.e. models CHP5-

SND-PD4 and CHP5-SND-PDl4), with 6 and 7 hidden nodes, respectively. The results

of the parametric studies for models CHP5-SND-PD4 and CHP5-SND-PD14 are shown

in Figure 5.5. It can be seen that the behaviour of models CHP5-SND-PD4 and CHP5-

SND-PD14 is not robust, as some abnormal trends are obtained regardless of the type of
connection used. This tends to suggest that the behaviour shown in Figure 5.1 may be

due to the presence of noise in the data. However, the unexpected behaviour of the

ANN models trained with the noisy hypothetical data shown in Figure 5.5 may also be

due to the software used, the impact of which is investigated in the next section.

Table 5.11: Structure and performance of ANN models developed using Predíct for
synthetic noisy data

Model No. No.
hidden
nodes

Performance measures
Correlation coefficient. r RMSE (mm) MAE lmm)

T S v T S v T S v
CHP5-SND-PD1 l6 0.87 0.88 0.89 22.9 23.8 29.2 10.5 t2.9 t3.2
CHP5-SND-PD2 t2 0.87 0.88 0.87 22.9 24.4 29.7 10.9 13.3 13.7
CHP5-SND-PD3 t2 0.88 0.90 0.90 23.1 23.0 28,0 10.5 12.2 12.9

.'I CHPS.SND.PD4 , ,'0,gg . ,0.89 23.s ,24.1 29.3 to.7 12.5' 'l'3,1,
CHP5-SND-PD5 l9 0.87 0.89 0.91 23.8 24.4 29.1 ll.l 12.7 13.2
CHP5-SND-PD6 t4 0.88 0.90 0.92 23.6 23.8 29.4 tt.7 13.0 t4.2
CHP5-SND-PD7 t4 0.88 0.89 0.91 22.6 23.1 27.7 10.2 12.4 12.5
CHPs-SND-PD8 l5 0.87 0.90 0.90 23.3 23,2 29.3 10.6 t2.t 12.7
CHPs-SND-PDg t2 0.87 0.88 0,87 23.4 24.3 30.1 I 1.5 12.9 14.0

CHP5.SND-PDlO 36 0.88 0.90 0.90 23.0 22.6 27.1 10.9 12.5 t3.2
CHPs-SND-PDlI t6 0.87 0.88 0.89 22.9 23.8 29.2 10.5 12.9 13.2
CHPs-SND-PDI2 t2 0.87 0.88 0.87 22.9 24.4 29.7 10.9 13.3 13.7
CHP5-SND-PD13 0.87 0.86 0.85 22.9 25.6 31.8 ll.1 13.7 14.8

'CHPs-SND-PDl4 , . :.0.88 . 0.89 0.88 22.8 23.2 29.8 10.5 12.4 .13.5

CHPs-SND-PD15 t2 0.88 0.89 0.90 23.0 23.1 28.9 10.9 12.4 t2.9
CHPs-SND-PDI6 12 0.88 0.89 0.89 22.2 23.s 29.2 10.4 12.6 t3.2
CHP5-SND-PD17 l7 0.88 0.89 0.91 22.s 23.1 27.4 10.4 t2.3 12.2
CHP5-SND-PDI8 20 0.89 0.89 0.91 24.2 25.6 32.8 12.9 14.1 15.6
CHP5-SND-PD19 l5 0.87 0.88 0.88 22.9 24.r 30.3 10.8 13.0 t4.t
CHP5-SND-PD2O 8 0.86 0.87 0.86 24.5 25.6 31.7 I l.l 13.3 13.4

T : training, S = testing and V= validation
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a Effict of SofÍware Implementation

In order to investigate the effect of software implementation on the robustness of ANN
models, an altemative commercial software system Neuframeversion 4.0 (Neusciences
2000), is used' The ANN models that are developed using Neuframe are described in
the next section.

5.2.2 ANN Models Developed Using Neuframe

The model input and output variables, data subsets (i.e. training, testing and validation)
and data pre-processing used are the same as those used in the development of model
CHP5-PDI4 (see $5'2.1). As Neuframe Yersion 4.0 does not support an automatic
model-building procedure, the optimum network architecture is obtained using a trial-
and-error approach. As mentioned in Chapter 2, a neñork with one hidden layer can
approximate any continuous function, provided that sufficient connection weights are
used (Cybenko 1989; Hornik et al. 1989). Consequently, one hidden layer is used in
this research.

The general strategy adopted for finding the optimal network architecture and internal
parameters that control the training process is as follows. A number of trials are carried
out using the default parameters of the software used with one hidden layer and 1,2,3,
"', I I hidden layer nodes. It should be noted that I I is the upper limit for the number
of hidden layer nodes needed to map any continuous function for a network with 5
inputs, as discussed by Caudill (1988) and consequently, is used in this work. The
network that performs best with respect to the testing set is then retrained with different
combinations of momentum terms, learning rates and transfer functions in an attempt to
improve model performance. As discussed in Chapter 2, since the back-propagation
algorithm uses a first-order gradient descent technique to adjust the connection weights,
it may get trapped in a local minimum if the initial starting point in weight space is
unfavourable. Consequently, the model that has the optimum momenfum term, learning
rate and transfer functions is retrained a number of times with different initial weights
until no further improvement occurs.
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using the default parameters of the software, a number of networks with different

numbers of hidden layer nodes are developed and the results are shown graphically in

Figure 5.6 and summarised in Table 5.12. It can be seen from Figure 5.6 that the

number of hidden layer nodes has little impact on the predictive ability of the ANN

model. Even a network with only one hidden layer node is able to adequately map the

underlying relationship. For networks with larger numbers of hidden layer nodes, there

is no sign of overtraining, as evidenced by fairly consistent prediction elrors. This is to

be expected, as cross-validation is used as the stopping criterion. Figure 5'6 shows that

the network with 5 hidden layer nodes has the lowest prediction error. However, it is

believed that the network with 2 hidden layer nodes is considered optimal, as its

prediction error is not far from the network with 5 hidden layer nodes (the error

difference being only 0.17 mm) coupled with a smaller number of connection weights'

It can also be seen from Table 5.12 that the results obtained for model CHP5-NF2

during validation are generally consistent with those obtained during training and

testing, indicating that the model is able to generalise within the range of the data used

for training, and can thus be used for predictive purposes'

45678
No. hidden nodes

9 10 11

Figure 5.6: Performance of the ANN models developed using Neuframewith

different hidden laYer nodes

(Learning rate = 0.2 and momentum term = 0'8)
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Default
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functions

Table 5.12: Structure and performance of ANN models developed using Neuframe
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The effect of the internal parameters controlling the back-propagation algorithm (i.e.

momentum term and learning rate) on model performance is investigated for the model

with two hidden layer nodes (model CHP5-NF2) resulting in models CHP5-NF12 to

CHP5-NF30 (Table 5.12). The effect of the momentum term on model performance is

shown graphically in Figure 5.7. It can be seen that the performance of the ANN model

is relatively insensitive to momentum, particularly in the range 0.01 to 0.6. The best

prediction was obtained with a momentum value of 0.8.

/
# ì

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 'l

Momentum term

tr'igure 5.7: Effect of various momentum terms on ANIN performance

(Hidden nodes = 2 and learning rate = 0.2)

Figure 5.8 shows the effect of different learning rates on model performance. It can be

seen that the optimum learning rate was found to be 0.2. At smaller learning rates,

prediction effors were higher, probably as a result of the inability of the networks to

escape local minima in the error surface due to the small step sizes taken. At larger

learning rates, prediction effors increased slightly, possibly as a result of the pseudo-

random behaviour of the optimisation algorithm near the local minima in the error

surface due to the large step sizes taken in weight space (Maier and Dandy 1998).
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Y \

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I
Learning rate

Figure 5.8: Effect of various learning rates on A¡IN performance
(Hidden nodes :2 and momentum term = 0.g)

The effect of using differenttransfer functions is shown in Table 5.12 (models CHp5-
NF31 to CHP5-NF33). It can be seen that the performance of ANN models is
insensitive to transfer functions although a slightly better performance is obtained when
the tanh transfer function is used for the hidden layer and the sigmoid transfer function
is used for the output layer. The effect of different random starting positions in weight
space on prediction error was negligible for the model trained with 2 hidden layer
nodes, a momentum value of 0.8, a learning rate of 0.2, tanh transfer ft.lnction in the
hidden layer and sigmoid transfer function in the ouþut layer (i.e. model CHp5-NF2).
One possible reason for this is that the error surface in weight space is relatively
uncomplicated for the problem under consideration. In addition, as discussed above, by
using a leaming rate of 0.2, the model is likely to escape local minima in the error
surface during training.

The results of the parametric study that investigates the generalisation ability and
robustness of model CHP5-NF2 is shown in Figure 5.9. It can be see¡ that the
behaviour of model CHP5-NF2 is as expected, which indicates that the model may be

considered to be robust. For example, in Figures 5.9 (a), (b) and (d), respectively, there
is an increase in the predicted settlement as footing width, footing net applied pressure

and footing geometry increase, respectively. On the other hand, in Figures 5.9 (c) and
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(e), respectively, the predicted settlement decreases as the avetage SPT blow count and

footing embedment ratio increase, respectively'
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Figure 5.9: Results of parametric study for Model CHP5-NF2

In an attempt to further investigate the effect of the software used on the robustness of

ANN models, additional models are developed using Neuframe with the same 500 data

cases derived from Equation 5.2 fot both clean and noisy samples (i.e' the data used in

the development of models CHP5-SCD-PDI to CH5-SCD-PD2O and GHP5-SND-PDI

to CHp5-SND-PD20). The optimal network parameters that are used for developing

model CHP5-NF2 (i.e. leaming rate of 0.2, momentum term of 0'8, tanh transfer

ftinction in the hidden layer and sigmoid transfer function in the output layer) are

utilised and networks with 1,2,3,...,7 hidden layer nodes are trained, resulting in

30
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models CHP5-SCD-NFI to CHP5-SCD-NF7 for clean data and models CHps-sND-
NFl to CHPS-SND-NF7 for noisy data. The structure and performance results of the
developed models are given in Table 5.13. It can be seen that four hidden layer nodes

were optimal for both clean and noisy data (i.e. model CHP5-SCD-NF4 for clean data

and model CHP5-SND-NF4 for noisy data). The results of the parametric study for
models CHPs-SCD-NF4 and CHP5-SND-NF4 are shown in Figure 5.10. It can be seen

that regardless of whether the data are clean or noisy, the models obtained using
Neuframe succeed in interpreting the physical meaning of the settlement problem in a
robust fashion' It can also be seen that the models obtained are able to produce similar
predictions to those of Meyerhofs equation. This suggests that it is the software used,

rather than the degree of noise in the data, thatresults in the model behaviour exhibited
in Figure 5.1.

Table 5.13: Structure and performance of ANN models developed using Neuframe
of synthetic clean and noisy data

T : tlaiuirrg, S = testing and V= validation

It is evident from the previous analyses that model CHP5-NF2 is optimal and can be

used successfully as a robust ANN model for settlement prediction of shallow
foundations on cohesionless soils. The data used for the development of this model and

Performance measures
rCorrelation coefficien RMSE MAE

Model No. No.
hidden
nodes T S v T S v T S V

CHP5-SCD-NFI I 0.973 0.960 0.967 11.4 l 1.9 14.8 8.6 8.9 10.0

CHP5-SCD-NF2 2 0.991 0.988 0,991 6.1 7.2 6.s 3.9 4.2 4,1

CHP5-SCD-NF3 3 0.991 0.988 0.991 6.2 6.3 6.7 4.0 4.3 4.2
CHPs:SCD.NF4 4 0.997 0.996 0,998 3.4 3.4 4.1 2.0 2.8 2.0
CHP5-SCD-NF5 5 0.997 0,997 0.998 3.3 J.J 3.9 1.9 2.0 1.9

CHP5-SCD-NF6 6 0.997 0.997 0.998 J.J J.J 4.0 1.8 1.8 1.9

CHP5-SCD-NF7 7 0.997 0.997 0.998 3.5 3.6 4.4 2.0 2.1 2.1

CHP5-SND-NF1 1 0.877 0.867 0.894 24.0 24.4 32,7 13.4 t5.7 16.7

CHPs-SND-NF2 2 0.884 0.889 0.916 23.0 24.7 30.3 11.2 13.3 t3.9
CHP5-SND-NF3 J 0.885 0.890 0.918 23.0 24.s 30.1 tt.4 13.2 t4.l

4 0.889 ,0;916 23.6 10.5 12.8 12.5

CHPs-SND-NFs 5 0.886 0.889 0.914 22.2 23.6 26.3 10.5 12.6 12.4

CHP5-SND-NF6 6 0.886 0.889 0.91 5 22.5 24.1 29.2 10.7 13.0 13.4

CHP5-SND-NF7 7 0.886 0.889 0.913 22.3 23.6 26.4 10.6 12.8 12.6



Chapter 5. Settlement Prediction by Multi-layer Perceptrons

the predicted settlement obtained for the training, testing and validation sets are

summarised in Table 5.14.
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Table 5.14: Training' testing and validation data used for the ANN model

Input variables Output variable
Case

record B (m) q (kPa) N LIB Dtß ,S-(mm) d(mm)
1* 60 385 47 0.09 40 30. l
2'r 0.8 78 15 I 0.0 7 lt.2
a
J 2.1 697 50 1 0.7r 2.3 7.5
4 t4 18.32 15 1 6 I 0.18 4.2 I 9 I
5 2.5 284 60 3.8 1.2 I 6.7
6 2.8 142 4 5 0.36 97 60.3
7 t.2 250 25 10.6 0.25 10 10.5

8 0.9 300 20 I 3.44 6.7 7.4
9 25 70 6 I 0.04 1 2 I 102.5

10 1.2 150 45 I 0.5 0.6 6.2
1l 4.5 195 35 1.3 0.67 3.9 6.3
T2 5.5 93 35 2.9 0.52 6.5 6.2
13 4.3 I 6 I 20 1.6 0.49 5 8.2
t4 4.5 9l t2 6.8 0.6 11 16.7

15 l5 81 35 4.9 0.2 5.4 6.9
t6 4.9 188 20 1.59 0.47 15 8.8
t7 4 t45 20 t.6 0.5 7.4 7.9
l8 2.5 158 2t 5.24 0.0 rt.7 ,4il
l9 1.5 77 l3 1.0 0.8 2.1 7.8
20 6.0 190 7 1 0.0 74 64.6

2t 1.0 284 45 1.0 0.5 4.7 6.5
22 3.3 304 40 1.7 0.9 11.6 6.6
23* 12.2 130 t7 1.0 0.09 22 19.5

24 5.2 127.8 58 3.7 0.0 t7 6.3
25 3.8 90 t2 3.2 0.39 15.5 15,0
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Table 5.14: Train¡ng, testing and validation data used for the AI\IN model

(continued)

99

Case

record

Input variables Output variable

B (m) q (kPa) N L/B Dtß .S-(mm) So(mm)

26 6.7 113 2T 1.59 0.51 5.0 7.7

27* 27.4 t54 t7 1.0 0.0 100 72.3

28 25 75 6 1.0 0.11 87 101.1

29 1.2 199 7 1.0 0.17 13 38.5

30 4.3 702 20 1.6 0.49 7.1 7.5

31 21.7 148 30 1.0 0.14 19.8 9.7

32 5.2 95.8 42 5.3 0.44 9.9 6.t

33 1.0 220 34 1.0 0.0 3.6 6.6

34* 2.5 245 t6 1.0 0.0 l1 17.8

35 4.9 118.7 22 1.1 0.3 6.4 7.7

36 4.0 512 37 1.8 1.3 12.8 7.2

37 1.5 77 r3 1.0 0.8 1.3 7.8

38* 36.6 193 28 1.0 0.0 18.0 40.7

39 r4.s 74 6 4.4 0.07 75 90.7

40 30.2 386 l8 1.0 0.09 9t.6 98.0

4l 6.4 71.8 18 l.4s 0.23 6.6 9.7

42 4.1 125 20 I t.2 17.8 6.5

43 3.0 140 38 4.8 0.95 3.0 6.2

44 4.0 225 20 t.6 0.5 9.1 8.9

45 6.4 r50 20 1.6 0.5 14.5 8.5

46 4.3 t39 20 1.6 0.49 7.1 7.9

47 16.2 154 l6 r.6 0.29 15 26.8

48 4.9 123 20 t.6 0.47 6.6 7.9

49 1.2 300 50 1.0 0.42 4.5 6.6

50 4.9 107 20 1.6 0.47 3.6 7.7
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Table 5.14: Training, testing and validation data used for the ANN model

(continued)

Case

record

Input variables Output variable

B (m) q (kPa) N L/B Dtß S,, (mm) ,lo(mm)

51 22.s 22t 20 2.9 0.44 2t 29.6

52 2.5 576 l8 1.0 0.3 25 27.0

53 3.7 13s 20 1.0 r.4 10.1 6.4

54 22.4 64.0 6.0 3.8 0.04 70 102.9

55 4.9 t82 20 1.6 0.47 13.8 8.7

56 4.3 134 20 1.0 1.2 15.4 6.6

57 3.0 500 18 1.0 0.29 25 22.2

58 5.1 t14.9 42 4.6 0.35 5.8 6.1

59 4.9 97 20 1.6 0.47 4.3 7.7

60 4.3 150 20 r.6 0.49 6.8 8.0

6I 1.0 294 40 1.0 0.0 5.0 6.6

62* 22 79 2t 1.0 0.23 10.5 r7.3

63 5.2 134 22 1.0 0.96 t4.7 6.7

64 25 75 6 1.0 0.09 87 101.6

65* 33.5 1s6 t9 1.0 0.0 90 8l. t
66 t.2 215 l8 1.0 2.2 8.6 6.3

67 6.6 1 68 I 39 2.0 0.0 l5.s 6.5

68 4.3 t4s 20 t.6 0.49 11 8.0

69 5.2 153.2 44 3.7 0.0 8.9 6.3

70 4.9 t61.4 49 2.8 0.0 7.1 6.3

7t 22.4 75 6 3.8 0.04 92 103.4

72 5.0 181.9 24 r.7 0.5 I1.9 7.4

73 3.4 129 20 1.0 1.5 I 1.5 6.3

74 l1 120 24 3.0 0.45 19.6 8.3

75 20 85 5 1.0 0.15 116 95.5
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Table 5.14: Training, testing and validation data used for the AI\N model

(continued)
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Case

record

Input variables Output variable

a (m) q (kPa) N L/B D¡ß ^S,,(mm) Sr(mm)

76 2.6 147 t0 8.5 0.77 t2 21.2

77 4.0 507.5 32 1.8 1.3 11.9 7.3

78 4.5 304 40 1.5 0.67 18.3 6,7

79 t.2 268 8 1.0 0.75 12.7 19.2

80 3.7 215 20 1.59 0.49 l5 8.7

81 I a
J 1 47.6 25 1.8 0.23 3.6 8.0

g2* aa
JJ I9 1 34 1.0 0.16 43.8 t2.s

83 8.5 102.5 24 1.0 0.0 16.3 8.7

84 1.5 150 35 1.0 0.4 2.1 6.2

85* 1.0 247.5 l6 1.0 0.0 9.9 16.2

86 4.9 rt2 20 1.7 0.31 7.4 8.4

87 3.7 2t5 20 1.59 0.49 6.4 8.7

88 4.9 113 20 1.59 0.47 8.9 7.9

89 16 209 t4 2.7 0.46 18.6 38.3

90 22 82 2t 3.4 0.22 7.7 2t.7

9l 1.2 215 26 1.0 2.2 1.5 6.3

92* 10 240 60 1.0 0.15 7.0 6.7

93 t.4 230 25 1.0 2.1 3.9 6.3

94 4.3 134 20 t.6 0.49 t0.2 7.9

95 4.9 102 20 1.59 0.47 6.9 7.7

96 3.3 52 8 4.2 0.54 35 19.2

97 6 214.5 42 2.7 0.6 4.1 6.5

98 2.1 584 50 1.1 1.4 4.6 7.3

99 1.4 300 50 1.0 2.6 1.5 6.7

100 4.4 93 10 5.5 0.57 8.0 t9.9
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Table 5.14: Training, testing and validation data used for the ANN model

(continued)

Case

record

Input variables Output variable

B (m) q (kPa) N L/B Dî/B
^S, (mm) d(mm)

1 0 I r.6 250 25 7.9 0.25 9.3 9.4

102 4.9 199 20 1.6 0.47 tt.7 8.9

103 23.6 167 35 r.l4 0.13 15.4 8.4

104 1.5 666 18 1.0 0.5r 25.0 2s.7

105 3.3 52 8 4.2 0.54 20.0 19,2

106 2.5 284 60 3.8 1.2 3.0 6.7

107 t9 80 15 1.0 0.0 52.0 42.9

108 22.9 165 30 r.4 0.13 20.4 10.7

109 5.5 139 20 1.6 0.47 9.4 8.3

110 3.0 23r 20 r.6 0.5 8.1 8.7

1lr 3.7 290 20 1.59 0.49 rt.2 9.9

tt2 3.4 247 20 1.6 0.5 12.2 9.0

ll3 12.2 I 8 1 53 1.0 0.25 9.6 6.5

rt4 7.0 r77 22 t.6 0.5 8.3 8.2

115 5.6 r12 22 4.3 0.27 15.5 8.8

tl6 13 193 18 2.4 0.16 22 23.5

It7 3.3 98.6 7.0 4.4 0.61 37.1 24.3

118 1.2 320 25 1.0 0.0 2.8 9.2

119 25 63 6 1.0 0.08 84 101.3

120 13 193.8 l8 1.7 0.16 18.8 22.0

12t 4.6 It2 24 5.0 0.43 lt.2 7.4

122 6.r 155.6 38 5.0 0.25 16.8 6.5

r23 4.6 85.7 39 4.5 0.59 2l.t 6.1

t24 1.0 s64 45 1.0 0.5 4.4 7.3

125 5.8 72.8 I7 4.t 0.43 I 1.9 10.2
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Table 5.14: Training, testing and validation data used for the ANN model

(continued)
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Case

record

Input variables Output variable

B (m) q (kPa) N L/B Drß S-(mm) So(mm)

t26 4.6 113 20 1.6 0.5 5.1 7.7

t27 3.7 252 20 t.6 0.49 r6.s 9.3

t28 6,r t44.1 23 5.0 1.1 tt.7 6.8

129 3.7 139 20 1.6 0.49 7.4 7.8

130 7.0 r31.2 42.0 5.1 0.33 11.9 6.3

1 J 1 6.0 158 42 2.7 0.47 7.9 6.3

132 3.7 279 20 1.6 0.49 8.6 9.7

133 16 70 l2 1.3 0.09 90 45.1

134 6.0 r62 30 2.7 0.6 I1.0 6.6

13s 0.9 113 6 1.0 1.0 6.4 I1.6

136 3.4 81.4 34 6.7 0.0 10.7 6.5

t37 4.0 97 20 1.6 0.5 6.1 7.4

138 2.4 190 22 1.6 1.9 8.s 6.3

139 17.6 2t8 20 4.8 0.61 26 t9.4

140 4.3 177 20 t.6 0.49 8.1 8.3

I4 I 3.0 500 18 1.0 0.25 25.0 23.5

t42 1.5 150 50 1.0 0.4 1.0 6.2

143 55 233.6 60 1.8 0.18 25.0 7.9

t44 5.3 rzt t7 9.9 0.49 12.0 15.6

t45 1.0 196 25 1.0 3.0 6.0 6.2

146* 42.7 166 2t 1.0 0.0 80.0 96.5

147 20.0 85.0 5 1.0 0.15 81.0 95.4

148 0.9 300.0 30 1.0 1.3 4.0 6.5

149 20.0 145.0 7 1.0 0.0 120.0 98.5

150 3.5 25.0 t2 1.0 0.43 3.0 10.3
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Table 5.14: Training, testing and validation data used for the ANN model
(continued)

Input variables Output variable
Case

record B (m) q (kPa) N L/B Dtß S- (mm)
^lo(mm)

I 5 1 2.1 584.0 50 1.1 1.1 4.4 7.2
152* 24.4 120.0 27 1.0 0.0 14.3 14.8

153 1.2 215.0 29 1.0 2.2 2.5 6.2
154 9.0 115.0 11 8.0 0.5 25.0 38.4
155 4.6 I1il 43 3.5 0.0 23.9 6.2
156 3.6 304.0 40 1.8 0.83 13.3 6.6
r57 25.0 76.0 6 1.0 0.08 85.0 101.9
158 3.7 225.0 20 t.6 0.49 7.4 8.8
159 13.0 193.0 18 2.1 0.16 23.s 22.8
160 14.5 253.5 26 1.0 0.24 18.0 10.8

I 6 I 41.2 104.0 36 1.0 0.24 10.0 12.2

162 6.0 162.0 30 2.7 0.47 10.5 6.7
163 34.0 270.0 30 1.7 0.23 22.0 25.3

r64 3.3 99.0 4 4.4 0.30 37.0 55.9
r65 2s.0 86.0 6 1.0 0.10 120.0 102.0
t66 1.8 57s.0 50 1.6 0.83 2.7 7.2
t67 15.0 148.0 20 1.3 0.0 40.0 20.1

168 1.0 339.0 45 1.0 0.5 6.0 6.6

l69* 15.2 33.0 20 1.0 0.02 2.8 13.7

170 15.0 136.0 55 1.7 0.40 16.2 6.5
1 7 I 2.6 293.0 37 4.1 0.38 10.9 6.8
172 6.4 100.5 18 1.0 0.23 7.t 1 0 I
173 4.6 166.0 20 1.6 0.5 8.1 8.2

174 t.2 150.0 28 1.0 0.5 1.3 6.4
175 6.1 161.0 20 t.6 0.49 10.2 8.6
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Table 5.14: Training, testing and validation data used for the ANN model

(continued)

*Circular footings
Training data = I to l2l, Testing data:122 to 152 and Validation data: 153 to 189

5.3 Data Division for AflN Models

It is evident from Chapter 3 that ANNs have been applied to many geotechnical

engineering problems and have demonstrated some degree of success. In the majority

of these applications, data division is carried out on an arbitrary basis. However, as

mentioned in Chapter 2, the way the data are divided can have a significant impact on

the performance of ANN models. In this section, the issue of data division and its

impact on ANN model performance is investigated. Four data division methods are

tested: (i) random data division; (ii) data division to ensure statistical consistency of the

subsets needed for ANN model development; (iii) data division using self-organising

maps (SOMs); and (iv) a new data division method using fuzzy clustering. For the first

two methods, the relationship between the statistical properties of the training, testing

and validation sets and model performance is investigated. For the second method, the

effect of the proportion of data used for training, testing and validation on model

performance is also investigated. The last two methods are introduced as alternative

approaches for data division that (i) negate the need to choose which proportion of the

Case
record

Input variables Output variable
B (m) q (kPa) N I/B Drß S-(mm) ^S"(mm)

t76 3.0 230.8 50 J.J 1.0 2t.l 6.5

177 1.1 78.0 13 1.0 1.09 2.0 7.0

178 1.8 230.0 25 1.0 t.7 3.4 6.3

179 0.9 133.0 5 1.0 0.33 7.6 31.4

180 5.1 116.8 t9 3.1 0.24 19.3 10.2

181 0.9 300.0 20 1.0 r.33 2.7 6.9

t82 2.25 400.0 8 1.1 t.02 43.0 22.7

183 2.6 196.3 9 8.1 0.77 33.0 27.9

184 2.1 347.0 50 t.9 t.4 1.8 6.7

185 t4.5 74.0 6 4.4 0.07 74.0 90.7

186 25.5 175.0 2l 1.0 0.1 25.0 37.3

187 1.0 284.0 25 2.2 3.0 10.5 6.4

188 17.2 34.0 t7 2.5 0.27 3.6 19. I

189 18.3 41.0 20 1.0 0.02 4.8 17.2
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data to use for training, testing and validation and (ii) ensure that each of the subsets are

representative of the available data. The specific objectives of this section are:

l' To investigate the relationship between the statistical properties of the data subsets

used to develop ANN models and model performance;

2. To introduce a new approach to data division for ANNs based onfuzzy clustering;
3' To compare the performance of the new approach with that of three existing

approaches, including random data division, data division to ensure statistical
consistency between the various subsets and, data division using a SOM, although
the second and third of these have yet to be applied to geotechnical engineering;

4' To investigate the relationship between the proportion of the data in each of the
subsets used to develop ANN models and their performance, in relation to the data

division method that ensures statistical consistency between data sets; and

5' To investigate the impact of the number of data points used from each cluster for
training on model performance in relation to the SOM data division method.

In order to meet the objectives set out above, the four approaches to data division are

investigated below.

a Approach 1: Random

As mentioned in Chapter 2, a random approach is generally used in the field of
geotechnical engineering for dividing the available data into the subsets needed for
ANN model development, with no attention given to the statistical consistency of the
data subsets. As a result, the performance of the trained model on the validation data is

highly dependent on which data are contained in the validation set (e.g. whether the
validation set contains extreme data or not), making it impossible to assess the true
generalisation ability of the model within the domain of the available data. Another
shortcoming of this approach is that the proportion of the data to be used for training,
testing and validation needs to be chosen a priori by the modeller. However, there are

no firm guidelines in the literature to assist with this task, although, as mentioned in
Chapter 2, some rules-oÊthumb exist, such as using two thirds of the data for model

calibration (i.e. haining and testing) and one third for model validation.

106
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As part of this approach, the available 189 individual case records are randomly divided

into training, testing and validation subsets. In total, 80% of the data (i.e. I52

individual cases) are used for calibration and 20% of the data (i.e.37 individual cases)

are used for validation. The calibration data are further divided into 70Yo for training

(i.e. 106 individual cases) and30Yo for testing (i.e. 46 individual cases).

Approach 2: Statisticalþ Consistent

107

a

As mentioned in $5.2, part of this approach is to divide the data into their subsets in

such a way that the statistical properties of the training, testing and validation are as

close to each other as possible, and thus represent the same statistical population. The

major shortcoming of this approach is that it is based on trial-and-error and that the

proportion of the data to be used for training, testing and validation needs to be chosen

in advance by the modeller, as discussed previously.

As mentioned above, as part of this approach, the 189 individual case records are

divided into three statistically consistent subsets. In order to investigate the impact of

the proportion of the data used in the various subsets in relation to model performance

(see Objective 4), a number of different proportions of the available data ate used for

training, testing and validation. The different proportions investigated are summarised

in Table 5.15.

Table 5.15: Different proportions of data for training, testing and vaHdation

Yalidation set (%) Remaining data

Training set (%) Testing set (%)

10 70 30

80 20

90 10

20 70 30

80 20

90 10

30 70 30

80 20

90 10
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Approach 3: Self-organising map (SOM)

As mentioned in Chapter 2, selÊorganising maps belong to the class of unsupervised
neural networks, and can be used for data clustering. Once clustering has been
successfi'¡lly accomplished, samples are chosen from each cluster to form the training,
testing and validation sets. Different approaches for achieving this have been suggested
in the literature. Kocjancic and, zupan (2000) suggested using a fixed number of data
samples from each cluster to form the data subsets needed for ANN model
development' However, this still requires a subjective decision as to what proportion of
data points from each cluster to allocate to the different data subsets. Bowden et al.
(2002) suggested randomly selecting three samples from each cluster to form the ANN
data subsets; one for each of the training, testing and validation sets. In the instance
when a cluster contains two data records, one record is chosen for training and the other
is chosen for testing. If a cluster contains only one data record, this record is included
in the training set. This approach overcomes the problem of having to decide how
many data points from each cluster to allocate to the different data subsets. In addition,
this approach utilises the minimum number of data points for model development, thus
increasing computational efficiency. However, it is unclear if better model performance
could be achieved if all data points remaining in a cluster, after removal of the testing
and validation values, are used for training rather than just one data point from each
cluster' Although Bowden et al- (2002) conducted a preliminary investigation into this
issue and found that the inclusion of the additional training samples did not improve
model performance, further investigation into this matter is needed.

In summary, the SOM data division method has a number of advantages, including:

l' There is no need to decide which proportion of the data to use for training, testing
and validation.

2' The statistical properties of the training, testing and validation data are similar,
provided that intra-cluster variation is sufficiently small.

3' Information is provided about whether "outliers" (not necessarily in the statistical
sense) exist in the data set. For example, if a cluster contains only one data sample,
this sample should be included in the training set. If it were to be included in the
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validation set, the trained ANN model could not be expected to perform well, as the

validation data may fall outside the range of the training data.

The main disadvantage of this approach is that different parameters that control the

learning process in SOMs (i.e. learningrate, neighbourhood size and size and shape of

the map) have to be selected in advance. Moreover, as mentioned in Chapter 2, there

are no precise rules for the optimum choice of these parameters.

As part of this approach, the PC-based software Neuframe Version 4.0 (Neusciences

2000) is used to cluster the data using a SOM. The available data inputs (i.e. B, q, N,

L/B and Dr/B) and corresponding output (^S.) are presented to the SOM as inputs (Figure

5.11). As mentioned previously, there is no precise rule for determining the optimum

size of the map. Consequently, a number of map sizes are investigated, including 5 x 5,

6 x 6,7 x 7 and 8 x 8. For all map sizes, the default parameters (e.g. learning rate and

neighbourhood size) suggested in the software are used (Neusciences 2000) and training

is continued for 10,000 iterations, as the connection weights remain stable after this

point. A grid size of 8 x 8 is chosen as it ensures that the maximum number of clusters

are found from the training data (Bowden et al. 2002).

In order to investigate the impact of the number of data points used from each cluster

for training on model performance (see Objective 5), two diflerent options for choosing

training data from each cluster are adopted. As part of the first option, all data records

remaining after the selection of the testing and validation data are used for haining, As

a result, a total of I l0 records are used for training, 46 for testing and 33 for validation.

As part of the second option, only one data point from each cluster is chosen for

training. As a result, 54 records are used for training, 46 for testing and 33 for

validation, resulting in a reduction in the data used for training by approximately 50Yo.

Approach 4z Fuzzy Clusteringo

T\e fuzzy clustering algorithm attempts to minimise the following objective function

(Kaufman and Rousseeuw 1990):
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Kohonen layer

Inpuú layer

B q N UBDfB.S-

Figure 5.11: SOM for settlement data clustering
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where:

I - number of clusters;

dü : given distance between data point i andj; and,

u¡, : unknown membership function of data point i to cluster o.

The sum in the numerator ranges over all pairs of data points (ij), and the membership

functions are subject to the following constrains:

u,u)0 for i:I,...,p;D:1,...,1 (s.4)

teL¿i,i=l
)

I

T
u=l

C

Zr,, =l for i: l, .'.,P (5.5)
t)

The above constraints imply that memberships cannot be negative, and that each data

point has a constant total membership value, distributed over the clusters, normalised to

unity. For hard clustering, a data point is assigned to the cluster that has the largest

membership value.



Chapter 5. Settlement Prediction by Multi-layer Perceptrons 111

The basic notion of fuzzy clustering for data division is similar to that underlying the

SOM data division approach in the sense that both are used to cluster similar data

records together and once data are clustered, samples are chosen from the clusters to

form the training, testing and validation sets. However, fhe fuzzy clustering approach

has a number of features that enable it to overcome the shortcomings of the SOM data

division approach.

Firstþ, an anal¡ical procedure can be used to determine the optimum number of

clusters. This is achieved with the aid of the silhouette value s(i), which is a measure of

how well individual data points lie within the cluster they have been assigned to at the

end of the clustering process, and is given by (Kaufman and Rousseeuw 1990):

, !\ b(i) - a(i)
s(i)= 

^ 
,-1 (s(i)<I (s.6)

where:

a(i) : average dissimilarity of data point i to all other points in a cluster A; and

b(i) : the smallest average dissimilarity of data point I to all points in any cluster E

different fromA.

For an individual data record (l) in cluster A, if s(i) is close to 1, this implies that the

.,within" dissimilarity a(i) is smaller than the smallest "between" dissimilarity b(í), and

therefore data record i can be deemed to have a strong membership to cluster r4. By

calculating the average silhouette width s(/) for the entire data set for different numbers

of cluster, the optimum number of clusters can be determined by choosing the number

of clusters that maximises the value of f(f .

Secondly, guidelines can be developed to determine which data points from each cluster

should be used for training, testing and validation. Information about the degree of

membership each data point has to the cluster it has been assigned to can be used to

ensure that any significant intra-cluster variation is taken into account when assigning

data points to their respective subsets. As part of the data division approach introduced

in this research, it is suggested to rank the data points in each cluster in order of
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increasing membership value. Next, each data point is assigned to one of ten equally
spaced membership intervals (i.e. 0.0-0.1,0.14.2,..., 0.9-1.0) and one datapoint from
each membership interval is assigned to the testing set and another data point from that
interval is assigned to the validation set while the remaining data points from the same
interval are assigned to the training set. By using this approach, the best possible
representation of the available data is achieved in each of the three data subsets.

The detailed procedure for using fuzzy clustering for ANN data division introduced in
this research is as follows:

l ' An initial number of clusters, not less than two, is chosen (the initial number of
clusters can be assumed to be equal to 5%o of the availabre data);

2' ' The available data are clustered using the fuzzy clustering technique and the average
silhouette width r(f of the entire data set is calculated;

3' The number of clusters is increased by one and Step 2 is repeated until s(/)remains
constant or the number of clusters reaches 50% of the available data;

4' The number of clusters that result in the largest value of s(/) is considered optimum;
5' For the optimum number of clusters, the data records included in each cluster are

ranked according to their membership values in incremental intervals of 0.1 between
0.0 and 1.0 (i.e. 0.0{.1,0.14.2,..., 0.9_1.0); and

6' For each cluster and membership interval (e.g. cluster I and membership interval
0'0-{'1), two samples are chosen, one for the testing set and one forthe validation
set, and all remaining data samples are chosen for the training set. In the instance
when two records are obtained, one record is chosen for training and the other is
chosen for testing. If only one record is obtained, this record is included in the
training set.

As part of this method, the software FANNY (Kaufman and Rousseeuw 1990) is used
to cluster the data using furzy clustering. Using the procedure outlined above, 10 to 94
clusters are tried. The average silhouette width of the entire data s(/)is maximised

when 16 clusters are used and is equal to 0.3. The membership values obtained for all
data records are shown in Appendix c. using the procedure outlined previously,
samples are chosen for the training, testing and validation sets and as a result, a total of
143 datarecords are used for training,25 for testing and,2l for validation.
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o Results and Discussion

The statistics of the training, testing and validation sets obtained when the data are

divided in a purely random fashion (Approach 1) and where the statistics of the subsets

are taken into account (Approach 2), are shown in Tables 5.16 and 5.17, respectively. It

can be seen that when the data are divided in a purely random manner (Approach 1 -
Table 5.16), there are some inconsistencies in the statistics between the various data

subsets. This is confirmed by the results of the t- andF-tests (Table 5.18), which show

that the hypotheses are rejected for most of the testing and validation sets and

consequently, the data in the three subsets generally do not belong to the same statistical

population. However, it should be noted that this is not necessarily the case when the

dataarc divided in a random manner, as there are many different possible ways in u'hich

the data can be divided into training, testing and validation subsets. The results in Table

5.17 show that when the data are divided in a way that takes into account the statistical

properties of the various subsets (Approach 2), the statistics are in much better

agreement, as expected. This is conf,trmed by the outcomes of the t- and F-tests (Table

5.19), which show that the hypotheses are accepted for all of the testing and validation

sets and consequently, the training, testing and validation sets are generally

representative of each other.

The structure and performance results of the ANN models developed using the random

data division method are given in Table 5.20. It should be noted that these models are

developed using a learning rate of 0.2, momenfum term of 0.8, tanh transfer function in

the hidden layer and sigmoid transfer function in the output layer. It can be seen from

Table 5.20 that model CHP5-NF34 with one hidden layer node can be considered

optimal.

The performance of the optimum models developed using the data sets whose statistics

are shown in Tables 5.16 and 5.17 (i.e. models CHP5-NF34 and CHP5-NF2) are shown

in Table 5.21 (columns 2 and 3). It can be seen that there is a direct relationship

between the consistency in the statistics between training, testing and validation sets and

consistency in model performance. 'When the training, testing and validation data are

not representative of each other, there can be large discrepancies in the model

performance obtained using the training, testing and validation sets. Consequently, the
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results obtained using the validation set may not be truly representative of the
performance of the trained model, as the validation set may contain extreme data points

that were not used in the model calibration (training) phase. Consequently, the best

model given the available data has not been developed. Similarly, if the results

obtained using the testing set are not representative of those obtained using the training
set, training may be ceased at a sub-optimal time, or a sub-optimal network geometry or
learning rate or momentum value may be chosen. However, when the training, testing

and validation sets are representative of each other, the performance of the model on

each of the three subsets is very similar, indicating that the model has the ability to
interpolate within the extremes contained in the available data.

The model performances obtained when different proportions of the available data are

used for training, testing and validation, in conjunction with the data division method

which takes into account the statistical properties of the data (Approach2),are shown in
Table 5.22. It should be noted that these models are developed using two hidden layer

nodes, a learning rate of 0.2, momentum term of 0.8, tanh transfer function in the

hidden layer and sigmoid transfer function in the output layer. The statistics and null
hypothesis tests for the training, testing and validation sets are given in Appendices D
and E, respectively. A code is used to distinguish between the various proportions of
the available data used for training, testing and validation. The code consists of three

numbers' The first number represents the percentage of the data used in the validation

set, whereas the second two numbers, placed between brackets and separated by a

hyphen, are the percentages that divide the remaining data into training and testing sets,

respectively. It can be seen from Table 5.22 thatthere is no clear relationship between

the proportion of data used for haining, testing and validation and model performance.

The best result is obtained when 20% of the data are used for validation and the

remaining data are divided into 70o/o for training and 30Yo for testing (i.e. model CHp5-

ltIF2). The results in Table 5.22 also indicate that there can be significant variation in
the results obtained, depending on which proportion of the data is used for training,

testing and validation, even when the statistical properties of the data subsets are taken

into account. This may be due to the diffrculties in obtaining representative data sets for
some of the proportions for training, testing and validation investigated for the

particular data set used.
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Table 5.16: Input and output statistics obtained using random data division

115

Model variables
and data sets

Statistical parameters

Mean Std. Dev. Minimum Maximum Range

Footing width, B (m)

Training set 9.4 1 1.3 0.8 60.0 s9.2

Testing set 9.2 10.3 0.9 41.2 40.3

Validation set 6.1 4.3 2.25 25.5 23.25

Footing net applied pressure, q (kPa)

Training set r61.3 98.0 18.3 697.0 678.7

Testing set 267.2 tss.2 47.6 666.0 618.4

Validation set 161.2 101.5 71.8 507.6 435.7

Average SPT blow count, N

Training set 21.6 I r.8 4.0 60.0 56.0

Testing set 28.6 15.7 4.0 60.0 56.0

Validation set 27.8 13.4 7.0 s8.0 s 1.0

Footing geometryrL/B

Training set t.9 1.5 1.0 9.9 8.9

Testing set 1.9 1.9 1.0 10.5 9.5

Validation set 3.3 1.9 1.0 8.1 7.1

Footing embedment ratio, Dtß

Training set 0.s7 0.59 0.0 3.4 3.4

Testing set 0.52 0.64 0.0 3.0 3.0

Validation set 0.41 0.41 0.0 1.8 1.8

Measured settlement, S- (mm)

Training set 20.7 28.7 0.6 tzr.0 120.4

Testing set 23.0 30.5 1.8 r20.0 118.2

Validation set 1 6. I 9.7 4.1 43.0 38.9
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Table 5.17: Input and output statistics obtained using data division to ensure

statistical consistency

Statistical parametersModel variables

and data sets Mean Std. Dev. Minimum Maximum Range
tr'ooting width, B (m)

Training set 8.3 9.8 0.8 60.0 59.2

Testing set 9.3 10.9 0.9 55.0 54.t

Validation set 9.4 10.1 0.9 4r.2 40.3

net applied pressure, ø (kpa)Footing

Training set 188.4 129.0 18.3 697.0 678.7

Testing set 183.2 I18.7 25.0 584.0 559.0
Validation set 187.9 4.6ll 33.0 575.0 542.0

Average SPT blow count, N
Training set 24.6 t3.6 4.0 60.0 56.0

Testing set 24.6 12.9 5.0 60.0 5s.0
Validation set 24.3 I4. I 4.0 55.0 51.0
tr'ooting geometry, L/B

Training set 2.1 1.7 1.0 10.5 9.s

Testing set 2.3 1.9 1.0 9.9 8.9

Validation set 2.1 1.8 1.0 8.0 7.0

embedment ratio, D, ßFooting

Training set 0.52 0.57 0.0 3.4 3.4

Testing set 0.49 0.52 0.0 3.0 3.0

Validation set 0.59 0.64 0.0 3.0 3.0

Measured seftlement, S_ (mm)

Training set 20.0 27.2 0.6 121.0 120.4

Testing set 21.4 26.6 1.0 120.0 119.0

Validation set 20.4 2s.2 1.3 120.0 118.7
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Table 5.18: Null hypothesis tests for random data division

Table 5.19: Nutl hypothesis tests for data division to ensure statistical consistency

Variable
and

Data sets

/-value
Lower
critical
value

Upper
critical
value

/-test F-value
Lower
critical
value

Upper
critical
value

F-lest

B
Testing 0.10 -1.97 t.97 Accept t.20 0.59 1.87 Accept

Validation 1.70 -r.97 |.97 6.90 0.61 t.77

-5. l0 -1.97 1.97 0.39 0.s9 1.87 ect

Validation 0.00 -t.97 t.97 Accept 0.93 0.61 t.77

N
Testine -3.00 -1.97 t.9'7 Reiect 0.56 0.59 1.87

Validation --2.',l0 -1.97 1.97 Reiect 0.78 0.61 t.77 Accept

IJB
Testins 0.00 -7.9',7 r.97 Accept 0.62 0.s9 l.87

Validation -4.50 -t.97 r.97 0.62 0.61 t.77

D
0.47 -1.97 t.97 0.85 0.59 1.87

Validation 1.52 -r.97 1.9'l Accept 2.t0 0.61 t.77 Reiect

s
Testing -0.45 -1.97 r.97 Accept 0.89 0.59 1.87

Validation 0.95 -r.97 t.97 Accept 8.80 0.61 t.77 Reiect

Variable

and

data sets

/-value

Lower

critical

value

Upper

critical

value

t-test F-value

Lower

critical

value

Upper

critical

value

F-lest

B
Testing -0.58 -t.97 1.9'7 Accept 0.81 0.59 1.87 Accept

Validation -0.61 -t.97 1.97 0.94 0.61 1.77

0.23 -t.97 t.97 1.18 0.59 1.87

Validation 0.02 -t.97 1.97 Accept r.27 0.61 t.77 Accept

N
Testing 0.00 -1.97 t.97 Accept Lll 0.59 1.87

Validation 0.11 -1.97 1.97 Accept 0.93 0.61 t.77 Accept

I./B
Testing 4.64 -1.97 t.97 Accept 0.80 0.59 1.87

Validation 0.00 -t.97 t.97 0.89 0.61 t.77

D
T 0.31 -1.97 r.97 1.20 0.59 1.87

Validation -0.62 -1.97 t.9'l 0.79 0.61 1.77

s
-0.29 -1.9'l r.97 1.05 0.59 1.87

Validation -{.08 -r.97 1.97 Accept l.l7 0.61 L77
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Table 5.20: Structure and performance of ANN models using random data division

T: training, S : testing and V: validation

Table 5.21: Performance of ANN models using data subsets obtained for different
approaches of data division

Model No.

CHP5-NF35

No.

hidden

nodes

2

Performance measure

Correlation coefficient, r RMSE MAE

T

0.94s

S

0.834

T

9.34

S

17.12

V

10.85

S

12.42

v

8.97

CHP5-NF36 0.944 0.844 0.660 9.61 16.54 10.96 6.45 12.06 9.34

CHP5-NF37 4 0.94s 0.84s 0.65s 9.39 t6.47 r0.83 6.29 tI.96 9.17

CHP5-NF38 5 0.944 0.848 0.656 9.39 t6.27 10.75 6.26 11.82 9.08

CHPs-NF39 6 0.943 0.843 0.663 9.49 16.57 ll.t2 6.47 12.29 9.46

CHP5-NF4O 7 0.943 0.837 0.671 9.51 16.93 11.28 6.47 12.65 9.69

CHP5-NF4I 8 0.943 0.832 0.674 9.51 17.22 tl.43 6.49 12.91 9.77

CHP5-NF42 9 0.942 0.846 0.647 9.s9 16.48 10.97 6.49 12.23 9.l3
CHP5-NF43 l0 0.944 0.839 0.664 9.47 t6.79 11.24 6.4s t2.45 9.60

CHP5-NF44 ll 0.943 0.852 0.651 9.55 16.12 lt.02 6.53 I t.94 9.27

Performance measures

and data sets

Random

division

Statistical

division

SOM Fuzzy

clustering

Training

Correlation coefficient, r 0.944 0.930 0.890 0.9r2
RMSE (mm) 9.35 10.01 1 1.58 10.62

MAE (mm) 6.23 6.87 7.93 7.43

Testing

Correlation coefficient, r 0.845 0929 0.942 0.967

RMSE (mm) t6.39 t0.12 r0.43 10.48

MAE (mm) tI.94 6.43 7.98 6.92

Validation

Correlation coefficient, r 0.659 0.905 0.958 0.957

RMSE (mm) 10.57 II.O4 10.12 9.59

MAE (mm) 8.85 8.78 7.12 6.13
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Table 5.222 Performance of ANN models for different data proportions using

statistical data division approach

tt9

Model No. Data
proportions

and sets

Performance measures

Correlation
coefficient, r

RMSE (mm) MAE (mm)

CHP5-NF45 1

Training set 0.922 9.34 6.5s

Testing set 0.929 tt.34 7.3s

Validation set 0.861 17.08 9.49

1CHP5-NF46
Training set 0.939 9.26 6.63

Testing set 0.876 t3.82 7.96

Validation set 0.909 12.72 9.07

CHP5-NF47 I 1

Training set 0.934 9.25 6.04

Testing set 0.924 13.87 10.43

Validation set 0.849 18.35 9.95

20
set 0.930 10.01 6.87

CHP5-NF2

Testing set 0.929 TO.I2 6.43

Validation set 0.905 11.04 8.78

CHP5-NF48 20(80-20)
Training set 0.933 9.57 6.63

Testing set 0.929 10.96 6.94

Validation set 0.898 11.39 9.01

CHP5-NF49 0-1

Training set 0.918 t0.67 7.51

Testing set 0.945 10.46 6.89

Validation set 0.878 t2.s2 9.49

3CHP5-NF5O
Training set 0.920 11.01 7.88

Testing set 0.938 10.93 7.28

Validation set 0.903 r0.94 7.76

CHP5-NF51
Training set 0.926 10.68 7.12

Testing set 0.903 tr.52 7.7r

Validation set 0.887 1 1,55 7.83

CHP5-NF52 30 10

Training set 0.923 10.10 7.38

Testing set 0.835 16.33 10.78

Validation set 0920 10.80 7.s3
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The difficulties associated with deciding which proportion of the available data to use

for training, testing and validation can be overcome by using a SOM (Approach 3) or
fuzzy clustering (Approach 4) for obtaining appropriate data subsets. However, as

discussed previously, two different approaches for choosing the training data from the

clusters obtained for a SOM have been proposed in the literature, and are investigated

here. The statistics of the data used from clusters obtained using the two different
approaches of SOM are given in Tables 5.23 and 5.24, respectively, whereas the null
hypothesis tests are given in Tables 5.25 and 5.26, respectively. It can be seen that the

statistics of the data in each of the subsets obtained using the two approaches of SOM
are very close to each other (Tables 5.23 and 5.24). This is confirmed by the results of
and the t- and F-tests (Tables 5.25 and 5.26), which indicate that the three data sets in
Tables 5.23 and 5.24 may be considered to be representative of the same statistical

population. The performance of ANN models developed using the aforementioned

SOM approaches (model CHP5-NF53 and CHP5-NF54) is shown inTable 5.27. It
should be noted that these models are developed using two hidden layer nodes, a

learning rate of 0.2, momentum term of 0.8, tanh transfer function in the hidden layer
and sigmoid transfer function in the output layer. The results in Table 5.27 indicate that
it is better to use all of the data remaining after the testing and validation data have been

removed from each cluster for training, rather than choosing only one data point from
each cluster, as the RMSE in the testing set increases from 10.43 to 14.43 mmand the
MAE increases from 7.98 to 10.21 mm, when the additional training data arc discarded.

However, there is a slight decrease in the coefficient of correlation, r, from 0.942 to
0.928 when the additional training data are included. Consequently, the subsequent

discussion in relation to the SOM data division method (Approach 3) is restricted to the

case where all remaining data are used for training.

The statistics of the data in each of the subsets obtained using the fuzzy clustering
(Approach 4) data division method are shown in Table 5.28. The t- and F-tests (Table

5.29) of the data indicate that the three data sets may be considered to be representative

of each other' The performance of the ANN model (model CHP5-NF55) developed

using the fuzzy clustering data division method is shown in Table 5.30. It should be

noted that this model is developed using two hidden layer nodes, a learning rate of 0.2,

momentum term of 0.8, tanh transfer function in the hidden layer and sigmoid transfer
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function in the output layer. It can be seen from Table 5.30 that the model performs

well with respect to all data sets (i.e. training, testing and validation).

Table 5.23: Input and output statistics for the first approach of SOM data division

L2l

_a

Model variables

and data sets

Statistical parameters

Mean Std. Dev. Minimum Maximum Range

Footing width, B (m)

Training set 7.9 9.0 0.8 60.0 59.2

Testing set 10.8 I J I 0.9 55.0 54.1

Validation set 8.8 8.8 l.l 33.s 32.4

Footing net applied pressure' q (kPa)

Training set 184.6 119.0 18.3 697.0 678.7

Testing set 204.6 r33.9 s2.0 666.0 6t4.0

Validation set 170.8 t22.3 25.0 584.0 559.0

Average SPT blow count, N

Training set 24.0 12.8 4.0 60.0 56.0

Testing set 26.3 15.4 5.0 60.0 55.0

Validation set 24.0 13.0 6.0 50.0 44.0

tr'ooting geometry, L/B

Training set 2.1 t.7 1.0 10.5 9.5

Testing set 2.r t.9 1.0 9.9 8.9

Validation set 2.2 1.7 1.0 7.8 6.8

Footing embedment ratio, Dtß

Training set 0.s7 0.6 0.0 3.4 3.4

Testing set 0.49 0.5 0.0 2.1 2.1

Validation set 0.42 0.4 0.0 1.8 1.8

Measured settlement, .S,, (mm)

Training set 18.7 24.5 0.6 121.0 t20.4

Testing set 22.7 27.4 1.3 116.0 t14.7

Validation set 23.0 31.8 1.0 120.0 I19.0
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Table 5.24: rnput and output statistics for the second approach of soM data

division

Statistical parametersModel variables

and data sets Mean Std. Dev. Minimum Maximum Range
Footing width, S (m)

Training set 8.5 10.6 0.8 60.0 59.2

Testing set 10.8 I 3 I 0.9 55.0 54.1

Validation set 8.8 8.8 1.1 33.5 32.4

net applied pressure, q (kpa)Footing

Training set 185.2 123.2 18.3 697.0 678.7

Testing set 204.6 133.9 52.0 666.0 614.0

Validation set 170.8 122.3 25.0 584.0 559.0

Average SPT blow count, N
Training set 23.6 14.4 4.0 60.0 56.0
Testing set 26.3 15.4 5.0 60.0 55.0

Validation set 24.0 13.0 6.0 50.0 44.0
Footing geometry, L/B

Training set 2.t r.9 1.0 10.5 9.5

Testing set 2.1 1.9 1.0 9.9 8.9

Validation set 2.2 1.7 1.0 7.8 6.8

tr'ooting embedment ratio, Drß
Training set 0.s3 0.6s 0.0 3.4 3.4

Testing set 0.49 0.5 0.0 2.1 2.1

Validation set 0.42 0.43 0.0 1.8 1.8

Measured settlement, 
^S_ 

(mm)

Training set 22.1 29.9 0.6 121.0 120.4

Testing set 22.7 27.4 1.3 116.0 1t4.7
Validation set 23.0 31.8 1.0 r20.0 I19.0
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Table 5.25: Null hypothesis tests for the first approach of SOM data division

Table 5.26: Null hypothesis tests for the second approach of SOM data division

Variable

and

data sets

f-value

Lower

critical

value

Upper

critical

value

,-test F-value

Lower

critical

value

Upper

critical

value

F-tesl

B
Testing -1.64 -1.97 t.97 Accept 0.47 0.62 1.68 Reject

Validation -{.56 -t.97 r.97 1.05 0.59 1.84

4.92 -1.9'1 1.97 0.79 0.62 1.69

Validation 0.58 -t.97 1.97 Accept 0.95 0.59 1.83 Accept

N
Testine 4.96 -1.97 1.97 Accept 0.69 o.62 1.69

Validation 0.00 -t.97 1.97 Acceot 0.97 0.59 1.83 Accept

TIB
Testins 0.00 -t.97 1.97 Accept 0.80 0.62 1.69

Validation 4.29 -r.97 1.97 Accept 0.99 0.59 1.83 Accept

Drß
Testine 0.76 -t.97 1.97 Accept t.99 0.62 1.69

Validation 1.24 -1.97 L.97 Accept 2.28 0.59 1.83 Reiect

s_
Testing 4.92 -t.97 t.91 Accept 0.79 0.62 t.69

Validation -{.84 -1.97 1.97 Accept 0.59 0.59 1.83 Reiect

Variable

and

data sets

/-value

Lower

critical

value

Upper

critical

value

t-test lî-value

Lower

critical

value

Upper

critical

value

F-lest

Testing 4.97 -1.98 1.98 Accept 0.65 0.57 1.77 Accept

Validation 0.14 -1.98 1.98 t.45 0.57 1.77

-0.75 -1.98 1.98 0.85 0.57 1.77

Validation 0.53 -1.98 1.98 Accept 1.01 0.57 r.77 Accept

N
Testing -{.91 -1.98 1.98 Accept 0.87 0.57 1.77

Validation -{.13 -1.98 1.98 Accept t.22 0.57 r.77 Accept

I./B
Testing 0.00 -1.98 1.98 Accept 0.98 0.57 t.77

Validation 4.25 -1.98 1.98 Accept 1.25 0.57 1.77 Accept

Drß
Testine 0.35 -1.98 1.98 Accept 1.69 0.5'l 1.7'7

Validation 0.86 -1.98 1.98 Accept 2.30 0.57 1.77 Reiect

^ç

Testins -{.10 -1.98 1.98 Accept 1.19 0.57 1.77

Validation {.13 -1.98 1.98 Accept 0.88 0.57 1.77 Accept
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Table 5.27:Perrormance of ANN models usÍng different approaches of data
division for SOM

Table 5.28: rnput and output statistics obtained using fuzzyclustering

Performance measures SOM (first approach) SOM (second approach)
and data sets ModeI CHP5.NF53 Model CHP5-NF54

Correlation r 0.890 0.931
RMSE 11.58 r 1.80
MAE 7.93 9.19

Correlation r 0S42 0.928
RMSE (mm) 10.43 14.43
MAE mm 7.98 10.21
Validation
Correlation r 0.958 0.960
RMSE 10.t2 12.07
MAE mm 7.r2 9.32

Model variables
and data sets

Statistical
Mean Std. Dev. Minimum Maximum

B m
set 8.7 10.1 0.8 60.0 59.2

Testing set 8.6 10.1 1.0 42.7 41.7
Validation set 9.2 10.6 1.2 36.6 35.4

net
set 180.2 120.0 18.3 697.0 678.7

Testing set 209.4 134.4 64.0 584.0 520.0
Validation set 207.0 164.4 47.6 584.0 536.4
A SPT blow ¡r

set 24.6 t3.2 4.0 60.0 s6.0
Testing set 23.4 12.4 6.0 50.0 44.0
Validation set 25.5 16.8 5.0 60.0 55.0

L/B
set 2.2 1.9 1.0 10.5 9.5

Testing set 2.0 1.5 1.0 6.7 5.7
Validation set 1.7 1.1 1.0 5.2 4.2

embedment ratio, D
set 0.s4 0.61 0.0 3.4 3.4

Testing set 0.50 0.40 0.0 1,4 1.4
Validation set 0.50 0.51 0.0 2.1 2.1
Measured settlement, S_ (mm)

set 20.0 25.8 0.6 121.0 120.4
Testing set 21.5 26.5 2.1 87.0 84.9
Validation set 22.1 32.5 1.3 r20.0 I18.7



Variable

and

data sets

f-value

Lower

critical

value

Upper

critical

value

/-test F-value

Lower

critical

value

Upper

critical

value

F-test

B

Testing 0.05 -1.97 1.97 Accept 0.65 0.57 1.99 Accept

Validation 4.21 -1.97 1.97 Accept t.45 0.55 1.99 Accept

tI

Testing 1,10 -1.97 1.97 Accept 0.85 0.57 t.99 Accept

Validation {.91 -t.97 t.97 Accept l.0l 0.55 1.99 Reject

N

Testing 0.42 -1.97 1.9'l Accept 0.87 0.57 t.99 Accept

Validation -0.28 -t.97 1.97 Accept r.22 0.55 1.99 Accept

IlB
Testing 0.50 -1.97 1.9'l Accept 0.98 0.57 1.99 Accept

Validation l.l8 -r.97 1.97 Accept r.25 0.55 1.99 Reject

Dtß

Testing 0.32 -t.97 1.97 Accept 1.69 0.57 t.99 Reject

Validation 0.29 -t.97 r.97 Accept 2.30 0.5s 1.99 Accept

'S.

Testing 4.27 -1,97 1.97 Accept l.l9 0.57 t.99 Accept

Validation 4.34 -t.97 t.97 Accept 0.88 0.55 1.99 Accept
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Table 5.29: Null hypothesis tests for data division us¡ng fuzzy clustering

Table 5.30: performance of ANN model (Model CHP5-NF55) using ftizzy
clustering data division method

The success of the SOM and luzzy clustering data division methods is illustrated in

Table 5.21 (columns 4 and 5), which compares the predictive results obtained using the

125

Performance measure I)ata set

Training Testing Validation

Correlation coefficient, r 0.912 0.967 0.957

RMSE (mm) 10.62 10.48 9.59

MAE (mm) 7.43 6.92 6.13
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four different approaches to data division investigated. It can be seen that the results
obtained for the SoM (Approach 3) and fuzzy clustering (Approach 4) data division
methods are very close to those obtained for the statistically consistent data division
method (Approach 2) and significantly better than the results obtained for the purely
random data division method (Approach l). It should be noted that the results presented
for the data division method that takes into account the statistical properties of the
subsets (Approach 2) are for the proportion of training, testing and validation data that
gives the best results' Consequently, it appears as though the SOM and. fuzzy clustering
methods are suitable approaches for dividing data into training, testing and validation
subsets' However, as discussed previously, fuzzy clustering data division has the
advantage over SOM data division that an optimum number of clusters can be obtained
analytically and, consequently, the fiizzy clustering data division approach removes the
subjectivity associated with the soM data division method.

The results of a parametric study carried out to examine the robustness of the ANN
models developed using the three successful data division methods (i.e. Approaches 2, 3
and 4) are shown in Figure 5.12. It can be seen that there is a slight difference in
settlement prediction among the models developed using the three data division
methods. However, this is to be expected, as the optimisation of the three models is
based on different initial weights and calibration data sets. In general, the performance
of the three models is in good agreement and may be considered to be similar. The
direction of the trends illustrated in Figure 5.12 also indicates that the behaviour of the
models developed is similar to what one would expect based on a physical
understanding of settlement prediction. This indicates that the three models are robust
and could be used for predictive purposes with confidence.

It is evident from the previous data division analyses that the performance of the ANN
models developed using the three successful data division methods is very similar (see

Table 5.21). However, it is also evident that the performance of the model that used
data division method based on statistical consistency (model CHP5-NF2) is slightly
better. Consequently, this model (i.e. model CHP5-NF2) will be used for the remaining
analyses in this chapter and will henceforth be referred to as the ANN model.
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Figure 5.12: Results of parametric study of AIrIN models using data subsets

obtained for different approaches of data division

5.4 Data Transformation of ANN Model Inputs

The main purpose of data transformation is to modiff the distribution of the input

variables before they are applied to ANNs in order to provide a better mapping to the

ouþuts. It has been suggested that certain transformations of input variables may help

30
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Data divis ion by fury clustering
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to improve the performance of ANN models (Fortin et al. Iggl;shi 2000). However, it
has also been shown that input data transformation does not affect the performance of
the ANN models in any way (Faraway and Chatfield 1993).

Recently, Shi (2000) proposed a new data transformation method called distribution
transformation and found that the method reduced the prediction error for a cowboy hat
surface by 50%. Shi (2000) also found that the method succeeded in reducing the error
of predictions of settlement of tunnels by more than r3%. consequently, it is
worthwhile to apply the distribution transformation method to the ANN model
developed in this research. The method transforms a stream of random data distributed
in any range to uniformly distributed data points between 0.0 and 1.0. The method
requires a probability distribution function to be htted to each of the input variables and
by using the relationship between the probability distribution and cumulative
distribution functions, any distribution in any range can be transformed to a uniform
distribution between 0.0 and 1.0 (Shi 2000).

The ANN model (model CHP5-NF2) is redeveloped to incorporate the distribution
transformation of input variables. The network architecture and internal parameters are

maintained. For each input variable, the trainin g data set is used to obtain the
distribution transformation function. The software @Risk (palisade 2000) is used for
this purpose. For a set of data values, the software can define the probability
distribution function that best fits these values from 38 candidate distributions and
provides statistical parameters that describe the distribution. The theoretical
distributions that are found to best match the actual distribution of the available data for
the ANN model input variables are shown in Table 5.31.

Using the f,rtted distribution functions shown in Table 5.31, the original data are

transformed to uniformly distributed data points between 0.0 and 1.0. The ANN model
(model CHP5-NF2) is re-trained using the transformed data and the performance is
slrowtt in Table 5.32, which also includes the performance of the ANN model without
di stribution trans formation (i. e. linear transformation or scaling).



Input
variable

Fitted
distribution

Statistical parameters
([ I v x T

B Exponential N/A 7.5 N/A N/A N/A
q Inverse-gamma 5.1 963.7 N/A N/A N/A
¡\/ Loe-loeistic 3.7 26.6 -4.8 N/A N/A

L/B Exponential N/A 1.1 N/A N/A N/A
Dt/B Inverse-gaussian N/A N/A N/A 0.65 0.74
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q
p
v
x

),
N/A

Table 5.31: Fitted distributions of input variables for Model CHPS-NF2

: shape parameter for log-logistic distribution
: scale parameter for inverse-gamma or decay constant for exponential distributions
: location parameter for log-logistic distribution
: mean
: shape parameter for Inverse-gaussian distribution
: not applicable

Table 5.32: Performance of Model CHP5-NF2 using linear and dÍstribution

transformations of input variables

It can be seen from Table 5.32 that the performance of the ANN model on the training,

testing and validation sets is significantly worse when distribution transformation of the

input variables is used. This may be because of the distortion that might have occurred

to the original relationships between the ANN model inputs and the corresponding

output as a result of data transformation. This finding adds further weight to the

argument that data used by ANN models do not need to be transformed.

5.5 Sensitivity Analysis of the Al[N Model Inputs

In an attempt to identiff which of the input variables have the most significant impact

on settlement predictions, a sensitivity analysis is carried out on the ANN model (model

CHP5-NF2). A simple and innovative technique proposed by Garson (1991) is used to

interpret the relative importance of the input variables by examining the connection

weights of the trained network. For a network with one hidden layer, the technique

involves a process of partitioning the hidden output connection weights into

Performance
Measures

Linear transformation Distribution transformation
Training Testing Validation Traíning Testing Validation

r 0.930 0.929 0.905 0.722 0.832 0.616

RMSE (mm) 10.01 t0.12 11.04 20.14 15.51 22.23

MAE (mm) 6.87 6.43 8.78 13.75 10.89 t5.34
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components associated with each input node. For model CHp5-NF2, the method is
illustrated as follows. The model has five input nodes, two hidden nodes, and one
output node with connection weights as follows:

130

Hidden
nodes

Hidden 1

Hidden 2

(B)
0.227354

-2.442513

(q)
0.481161

-1.114891

(1Ð

0.229s93
4.239639

Weights

(/v)

0.166536
12.6s178

(1v)

0.224545
0.392698

(1Ð

0.617243

(L/B)

-0.017031
-0.498853

(D/B)
0.067341
2.500301

(E)
0.725351

-2.984t65

The computational process proposed by Garson (1991) is as follows:

l' For each hidden node i, obtain the products Pu (where 7 represents the column

number of the weights mentioned above) by multiplying the absolute value of the
hidden-output layer connection weight by the absolute value of the hidden-input
layer connection weight of each input variable j. As an example:

Pn = 0.227354x0.725351 = 0.164911 .

Hidden 1

Hidden 2

Hidden 1

Hidden 2

(B)
0.2223s5
0.226238

(q)
0.470582
0.103267

(L/B)
0.0123s3
1.488659

(L/B)
0.016656
0.046206

(L/B)

0.062863

(D/B)
0.048846
7.461311

(D/B)
0.065859
0.23t591

(D/B)
0.2974s1

(B) (q)
0.164911 0.349011
7.288861 3.327017

2' For each hidden node, divide Puby the sum of all input variables to obtain g¡. As

an example:

Ør : 0.1649 I | / (0.1649 I 1 + 0.3 49011 + 0. 1 6653 6 + 0.0123 53 + 0.048846 ) = 0.2223 5 S

3. For each input node, sum erto obtain {. A, an example:

St = 0.222355 + 0.226238 = 0.448593 .

(B) (q)
Sum 0.448593 0.573849

4' Divide S, by the sum for all input variables to get the relative importance of all

output weights attributed to the given input variable. As an example, the relative
importance for input node I is equal to:

(0.++ssl: x roo)/(0.448593 + 0.573849 + 0.617243+ 0.062863 + 0.297451) = 22.4yo
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Relative importance (%)

(B)

22.4

(q)

28.6
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(/v)

30.8

(L/B)
3.1

(D/B)
14.8

The results indicate that N has the most significant effect on the predicted settlement

followed by q and B, each with a relative importance of 30.8, 28.6 and 22.4yo,

respectively. The results also indicate that 4lB has a moderate impact on settlement

with a relative importance equals to l4.8o/o, while L/B has the smallest impact on

settlement with3.Io/o relative importance. The above results indicate that l/, q and B ate

the most important factors affecting settlement, whereas the effect of L/B andDrlB may

be considered secondary, which agrees well with the discussion in Chapter 4.

5.6 Comparison of ANN Model with Traditional Methods

Comparisons of the results of the validation set obtained using the ANN model (model

CHP5-NF2) and the three traditional methods described in Chapter 4 are carried out and

presented in Table 5.33 and Figure 5.13. Table 5.33 shows that the ANN method

performs better than the traditional methods for all three perforrnance measures

considered. The coefficient of correlation, i", the RMSE and MAE obtained using the

ANN model are:0.905, 11.04 mm and 8.78 mm, respectively. In contrast, these

measures range from 0.440 to 0.798, from 23.55 mm to 25.72 mm and from 11.81 mm

to 16.69 mm, respectively, when the traditional methods are used. Figure 5.13 shows

that the ANN model performs reasonably well for the full range of measured

settlements considered. In contrast, the traditional methods appear to work well only

for small settlements, in the range of l0 - 20 mm. The method of Schmertmann et al.

(1973) tends to overpredict larger settlements, the method of Schultze and Sherif (1973)

tends to severely underpredict larger settlements and the method of Meyerhof (1965)

appears to both over-and under-predict larger settlements, although all settlements in

excess of 60 mm are generally under-predicted. It is evident from the above results that

ANNs provide more accurate settlement predictions than the traditional methods which

indicates that ANNs succeeded to overcome the limitations discussed in Chapter 4 for

the traditional methods considered for comparison. This can be attributed to the fact

that ANNs are a data driven approach in which the data alone are used to capture the

relationship between settlements and the factors affecting them. This appears to result
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in a more reliable relationship between settlements and the factors affecting them,
especially when the theory that govems this relationship is uncertain.

Table 5.33: ANN and traditional methods for setflement prediction

Performance
measure

ANN Meyerhof
(196s)

Schultze and Sherif
(te73l

Schmertmann et aI.
(1e78)

r 0.905 0.440 0.729 0.798
RMSE 11.04 25.72 23.55 23.67
MAE 8.78 16.59 I 1.81 15.69
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5.7 ANN Model Equation and Design Charts

The small number of connection weights obtained for the optimal ANN model (model

CHP5-NF2) enables the network to be translated into a relatively simple formula. To

demonstrate this, the structure of the ANN model is shown in Figure 5.14, while its

connection weights and threshold levels are summarised in Table 5.34.

Ouþut layer

Dtß Hidden layer

Input layer

Figure 5.14: Structure of the ANIN optimal model

Table 5.34: weights and threshold levels for the AI\N optimal model

^Sr"

B

q

N

IlB

Hidden

layer

nodes

wr¡(weight from node i in the input layer to

nodej in the hidden layer )

Hidden layer

threshold

(0)
l. I i:2 i:3 i:4 i:5

l 6 0.227 0.481 0.229 -0.017 0.067 0.124

j:7 -2.442 -1.114 4.239 -0.498 2.500 0.1 88

Ouþut

layer

nodes

w;¡ (weight from node í in the hidden layer to

nodej in the output laYer )

Output layer

threshold

(0)i:6 i:7
j:8 0.725 -2.984 -0.312
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Using the connection weights and threshold levels shown in Table 5.34, thepredicted
settlement can be expressed as follows:

and

(s.7)

where:

xt = 0a + wu,B * wezQ + wurN + wuo(L / B) + wur(D, / B) (s.8)

xz = 0t + wrrB r yze + wrrN + wro(L / B) + wrr(D, / B) (s.e)

It should be noted that, before using Equations 5.8 and 5.9, allinput variables (i.e. B, q,
N, L/B and Dr/B) need to be scaled between 0.0 and I .0 using Equation 5. 1 and the data

ranges in the ANN model training (see Table 5.1). It should also be noted that the
predicted sefflement obtained from Equation 5.7 is scaled between 0.0 and 1.0 and in
order to obtain the actual value, this settlement has to be re-scaled using Equation 5.1

and the data ranges in Table 5.1. The procedure for scaling and substituting the values
of the weights and threshold levels from Table 5.34, Equations 5.7, 5.g and 5.9 can be
rewritten as follows:

So=0'6+ t20.4

l+ e(0.3t2-0.
725 tanh x1+2.984 tanh x2)

and

(s.10)

(s. I 1)
xr = 0.1+ tO-'þ.Sf +0.7q + 4.lN -t.8(Lt B)+19(D, / gl

r, = 1 0-' þ .7 - 4tB - I.6q + 7 5 N - 52(L / B) + 7 a0@, / B)f (s.r2)
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where:

Sp : predicted settlement (mm);

B : footing width (m);

q : footing net applied pressure (kPa);

¡/ : average SPT blow count;

L/B : footing geometry; and

Dr/B : footing embedment ratio.

It should be noted that Equation 5.10 is valid only for the ranges of values of B, q, N,

L/B and Df /B given in Table 5.1. This is due to the fact that ANNs perform best in

interpolation and not extrapolation (Flood and Kartam 1994; Minns and Hall 1996;

Tokar and Johnson 1999). An executable computer program of the optimal ANN model

is also provided for routine work in practice and the FORTRAN code for the program is

given in Appendix F.

A numerical example is provided to better explain the implementation of the settlement

formula. A rectangular footing whose dimensions are 2.5 x 4.0 m is founded at a depth

equal to 1.5 m below the ground surface. The soil beneath the footing is sand that

extends to a depth in excess of twice its width. The net applied load exerted on the

footing is 350 kPa and the average SPT blow count over a depth of twice its width is 16.

Solution:

Given the information provided,.B :25 m; L:4.0 m; q:350 kPa; N: 16 andDr:1.5

From Equation 5.11

m.

xr = 0.1+ro-,[:.s x2.5 +0.7 x350 + 4.rxr6- 1.8[#). tr[*)]

From Equation 5.12:

= 0.4286
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By substituting x, andx, in Equation 5.10, the predicted settlement can be obtained as

follows

', = ro-'[o .7 - 4rx2.5 -r.6 x 350 + 75 x 16 - sr(#). r-r(*)] : o rnno

120.4
So =0'6+

725 ønh0.4286+2.984 tanh 0.8990) =13.2mml + e(0.312-0.

In order to facilitate the ANN technique for settlement prediction of shallow
foundations on cohesionless soils, the information obtained from the ANN model is
translated into a set of design charts suitable for practical use in order to avoid computer
or hard calculations. This is carried out by entering synthetic data into the trained ANN
model such that the synthetic data lie within the ranges of the data used during the ANN
model development. A series of design charts are generated and are summarised in
Appendix G.

Figure 5. 15 is an illustrative example of the design charts obtained for L/B : 1.0 and D,
/B :0.0. It can be seen that, for each graph and at a certain footing net applied pressure,

settlement increases as the footing width increases, as expected. It can also be seen that,

for each graph and at a certain footing width, settlement increases as the footing net

applied pressure increases, also as expected. On the other hand, moving from one graph

to another and at the same footing width and footing net applied pressure, the settlement

decreases as the SPT blow count increases, again, as expected. These results add more

confirmation to the robustness and credibility of the ANN model tbr settlement

prediction. The design charts provide a simple and quick tool of estimating settlement

for general use in practice. However, when greater precision is required, the computer

model (Appendix F) or formula (Equations 5.10 to 5.r2) can be used.
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5.8 Srimmary and Conclusions

Multi-layer perceptrons (MLPs) trained with the back-propagation algorithm were used

to demonstrate the feasibility of employing artificial neural networks (AI.INÐ to predict
the settlement of shallow foundations on cohesionless soils. A database containing lg9
case records of actual field measurements for settlement of shallow foundations on
cohesionless soils was compiled and used for ANN model development and

verification' The use of parametric studies was presented as a way of testing the
generalisation ability and robustness of ANN models. The effect of the number and

type of connection weights, data noise and software implementation on the robustness

of ANN models was investigated. The effect of using various learning rates,

momentum terms, transfer functions and initial weights on the results of ANN models
was also investigated. The effect of various data division methods on the performance

of ANN models was examined and a new approach for data division was presented and

evaluated. The effect of data transformation of the input variables on the performance

of ANN models was also examined. A sensitivity analysis was carried out on the ANN
model to study the relative importance of the factors that affect settlement. The results
between the predicted and measured settlements obtained using ANNs were compared
with those obtained using the traditional methods. Finally, the ANN model was

translated into a relatively simple practical equation and a series of design charts from
which the settlement of shallow foundations on cohesionless soils can be easily

obtained.

The analyses carried out in this chapter have yielded the following results and

conclusions

l. ANNs have the ability to predict the sefflement of shallow foundations on

cohesionless soils with a high degree of accuracy for predicted settlements ranging
from 0.6 to 121.0 mm.

The results of the robustness studies carried out in this chapter lead to the following2

findings
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Good perfonnance of ANN models on training, testing and validation sets does

not guarantee the robustness of the predictive ability of the models over a range

of data similar to that used for training.

If cross-validation is used as the stopping criterion, reducing the number of ANN

connection weights or changing the type of connection between nodes (e.g'

cascaded and direct connections) does not appear to improve their robustness.

The results of the parametric study carried out on both noise-free and noisy

hypothetical data suggest that the degree of noise in the data used to calibrate

ANN models may affect their robustness. However, ANN models trained with

noisy hypothetical data using two different commercial software systems [i.e.

NeuralWorks Predict release 2.1 (NeuralWare 1997) and Neuframe vetsion 4.0

(Neusciences 2000)] lead to the following conclusion. ANN models developed

using Predict failed to interpret the underlying physical meaning of the

relationships between settlements and the factors affecting them, whereas ANN

models developed using Neuframe succeeded in interpreting these relationships.

This indicates that it is the software used, rather than the degree of noise in the

data, that affects ANN models robustness. As some geotechnical engineering

researchers have used, and continue to use Predict, one must question the validity

of the subsequent models.

It is recommended that the capability of the software used for developing ANN

models be considered carefully and that a parametric study, such as the one

presented in this chapter, be conducted in order to ensure that a model can be

used for predictive purposes with confidence.

a

a

o

a

3. The ANN models developed in this chapter to study the impact of the intemal

network parameters on model performance indicate that ANN performance is

relatively insensitive to the number of hidden layer nodes, momentum term or

transfer functions, On the other hand, the impact of the learning rate on model

predictions is more pronounced, with step sizes that are too small or too large

resulting in reduced model performance. Overall, the optimum model (model

CHp5-NF2) is obtained using 2 hidden layer nodes, a momentum term of 0.8,

learning rate of 0.2, tanh transfer function in the hidden layer and sigmoid transfer

function in the ouþut laYer.
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4' There is a direct relationship between the consistency of the statistics between the
training, testing and validation sets and the consistency in model performance.
Consequently, the statistical properties of the various data subsets should be taken
into account as part of any data division procedure to ensure that the best possible
model is developed, given the available data.

The proportion of the data used for training, testing and validation appears to have
an effect on model performance. However, there appears to be no clear relationship
between the proportion of the data used in each of the subsets and model
performance, although in the trials conducted, the optimal model performance was
obtained when 20Yo of the data are used for validation and 70% ofthe remaining
data were used for training and,30yo for testing.

6' The data division approaches using a soM and the proposed approach using fuzzy
clustering appear to be applicable, as they have a number of advantages, including:

o There is no need to decide which proportion of the available data to use for
training, testing and validation.

o The statistical properties of the resulting training, testing and validation data are
similar, provided that the clusters are small enough.

o Information is provided about where extreme values exist in the data set and
consequently, they can be included in the training set. If they were to be included
in the validation set, the trained ANN model could not be expected to perform
well, as the validation data would fall outside the range of the training data. A
potential disadvantage of the SoM approach is that the parameters that control
the learning process need to be selected, potentially affecting the results obtained.
This disadvantage is overcome using the fuz4t clustering technique.

7 ' The distribution transformation method for input variables does not appear to
improve the performance of ANN models.

8' The sensitivity analysis indicated that the SPT blow count, the footing net applied
pressure and the footing width are the most important factors affecting settlement,
each with a relative importance of 30.8, 28.6 and 22.4yo,respectively. The footing
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embedment ratio and the footing geometry have less impact on settlement with a

relative importance equal to 14.8 a¡d3.lo/o, respectively.

9. The ANN method ouþerforms the traditional methods considered for an

independent validation set with r: 0.905, +MSE : 11.04 mm and MAE: 8.78 mm,

while these measures were: r : 0.440,0.729 and 0.798; RMSE :25.72,23.55 and

23.67 mm and MAE : 16.59,11.81 and 15.69 mm when the method proposed by

Meyerhof (1965), Schuløe and Sherif (1973) and Schmertmann et al. (1978) are

used, respectively.

10. Due to its parsimonious nature, the ANN model was able to be translated into a

simple and practical formula from which settlement may be calculated, as shown in

Equation 5.10. In addition, the ANN model was translated into a computer program

(Appendix F) and a series of design charts (Appendix G), facilitating settlement

- prediction.

In the following chapter, neurofi.rzzy networks will be examined to investigate their

ability to predict settlement of shallow foundations on cohesionless soils and to assist

with providing a better understanding of the relationship between settlement and the

factors affecting it.
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Settlement Prediction Neu Networks

6.1 Introduction

As mentioned in Chapter 2, neurofuzzy networks can be trained to provide inpuloutput
data mappings and to extract knowledge regarding the relationships between model
inputs and the corresponding outputs. Neurofuzzy networks enable the knowledge that
has been learnt in the network to be expressed in the form of a fuzzy rule base. Ni et al.
(1996) have already applied a neurofi.lzzy network approach in geotechnical engineering
to the evaluation of slope failure potential. However, a review of the literature indicates
that neurofuz?r networks are new tools in the field of geotechnical engineering. In this
chapter, the feasibility of adopting neurofi.rz,zy networks for predicting the settlement of
shallow foundations on cohesionless soils is tested. In addition, the ability of
neurofuzzy networks to assist with providing a better understanding of the relationship
between settlement and the factors affecting settlement is investigated.

6.2 l)evelopment of Neurofuzry Models

The database used for the development of the multiJayer perceptron (MLp) models in
Chapter 5 is also used to develop the neurofuzzy models in this chapter. The type of
neurofuzzy network that is used in this work is the B-spline network trained with the
adaptive spline modelling of observation data (ASMOD) algorithm described in
Chapter 2. The software Neuframe Version 4.0 (Neusciences 2000) is used to simulate
B-spline newofuzzy network operation. The criteria adopted in Chapter 5 for choosing
the MLP model inputs and ouþuts are considered for the development of neurofuzzy
models in this chapter. As a consequence, five input variables are used as potential
newofuzzy model inputs. These include the footing width (.8), footing net applied
pressure (q), avetage SPT blow count (Àtr) as a measure of soil compressibility (or
density), footing geometry (L@ and footing embedment ratio (4/B). The only output

variable is the measured settlement (,s,). As mentioned in chapter 2, the ASM9D

t42
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algorithm automatically optimises model architecture and selects the input variables that

have the most significant impact on model ouþuts. The ASMOD algorithm also uses

stopping criteria [e.g. Bayesian Information Criterion (BIC), Akaike's Information

criteria (AIC) and Final Prediction Enor (FPE)I that require the data to be divided into

two sets. A training set to build the model and an independent validation set to test the

predictive ability of the model in real-world situations. The training and testing sets

used in Chapter 5 to develop the optimum MLP model (i.e. model CHP5-NF2) are

combined to form the training set for neurofuzzy networks, whereas the validation set is

kept the same and thus, a fair comparison between neurofuzzy and MLP models can be

carried out. Using this procedure,l52 (80%) of the available data records are used for

training and 37 (20%) are used for validation. In an attempt to obtain an optimum

neurofuzzy model, the BIC, AIC and FPE stopping criteria are examined and the results

are given below.

6.3 Results and Discussion

A summary of the structure of the neurofuzzy models developed in this chapter, and the

number of fuzzy rules produced for each model, is given in Table 6.1. The performance

results of the models obtained are given in Table 6.2. A code is used to identiff the

names of the different models developed. The code consists of two parts separated by a

hyphen. The first part is an abbreviation that denotes the current chapter, whereas the

second part is an abbreviation that denotes the stopping criterion used. It can be seen

from Table 6.1 that all models select only three input variables (i.e. B, q and N) as the

most significant inputs, whereas the footing geometry (L/B) and footing embedment

rutio (Dr/B) are not selected in any model. This is in agreement with the results of the

sensitivity analysis carried out in Chapter 5 on the optimum MLP model (model CI{P5-

l.l¡2). The sensitivity analysis in Chapter 5 indicated that B, q and N have the most

significant impact on settlement, Dr/B has a moderate impact on settlement and L/B has

the smallest impact on settlement. The neurofuzzy models obtained in this chapter are

assessed in terms of prediction accuracy, model parsimony and model transparency and

the optimum model is described in more detail in $6.4. The following conclusions can

t43

be drawn:
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Table 6.1: Summary of the neurofuzzy models developed

Table 6.2: Performance of the neurofuzry models developed

o In terms of prediction accuracy, all models are comparable, although model CHp6-
BIC performs slightly better than the other models with respect to the validation set

(Table 6.2).

o In terms of model parsimony, all models are comparable, even though model CI{p6-
AIC is found to be more parsimonious than the other models, as it has the lowest
number of connection weights (Table 6.1). This is because the AIC penalises

complex models.

o In terms of model transparency, models CHP6-BIC and CHp6-AIC are comparable,
even though model CHP6-AIC is found to be more transparent, as it describes the
relationship between model inputs and outputs using a smaller number of fuzzy rules
(Table 6.1). On the other hand, model CHP6-FPE is found to be the worst model in
terms of model transparency as it has the highest number of fuzzy rules (Table 6.1),
which is almost twice that obtained for models CHP6-BIC and CHp6-AIC. This is
because the FPE stopping criterion does not penalise larger models as much as the

BIC and AIC. The BIC and AIC stopping criteria penalise complex models to
ensure that more parsimonious models are choscn (Schwarz 197s).

It can be seen from Tables 6.1 and 6.2 that model CHP6-BIC is able to strike a balance

between model accuracy and model parsimony and transparency. In terms of model
accuracy' the performance of model CHP6-BIC is slightly better than the other models

Model No. No. of
significant

inputs

Significant
inputs

No. of
connection

weights

No. of fuzry
rules

CHP6-BIC a
J BrQ'N 8 10

CHP6-AIC J B'g'N 7 8
CHP6-FPE J B,q,N 8 l6

Performance measures
Correlation r RMSE mm MAE

Model No.

Validation Validation
CHP6-BIC 0.889 0.881 12.33 12.36 8.08 9.36
CHP6-AIC 0.879 0.863 t2.82 13.37 8.29 10.10
CHP6-FPE 0.910 0.875 I 1.16 13.00 6.82 9.49
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with respect to the validation set (Table 6.2). In terms of model parsimony and

transparency, model CHP6-BIC has as the same number of input variables as models

CHP6-AIC and CHP6-FPE combined, with a number of connection weights and fwzy

rules that are approximately equal to the average of those obtained for models CIIP6-

AIC and CHP6-FPE (Table 6.1). Overall, model CIIP6-BIC can be considered to be

optimal.

6.4 Description of the Optimum Neurofuzzy Model

A schematic view of the optimum neurofuzzy model (i.e. model CIIP6-BIC) is given in

Figure 6.1. It can be seen that the model uses only 3 of the 5 potential input variables as

the most significant inputs. The chosen inputs are the footing width (B/, footing net

applied pressure (q) and the average SPT blow count (iI) as a measure of soil density. It

can also be seen from Figure 6.1 that the model has one lD and one 2D subnetwork. In

each of the subnetworks obtained, triangular membership functions of order 2 are used

for all input variables, as shown in Figure 6.2. It can be seen from this figure that the

membership functions of .8, q and 
^S, 

are presented over a two-valued linguistic universe

(i.e. small and large for -8, light and heavy for q, and low and high fot S,). On the other

hand, the membership functions of the soil density, which is represented herein by the

average SPT blow count, lV, is presented over a four-valued linguistic universe (i.e.

loose, medium, dense and very dense). As a result, the frst subnetwork contains 8 rules

while the second subnetwork contains 2 rules, resulting in a model with 10 frùzzy rules,

as listed in Table 6.3. It should be noted that the number between brackets in Table 6.3

represents the rule confidence described in Chapter 2.

Subnetwort< 2 (lD)

B

q

N

'St

h4c4

mfr
Subnetwork I (2D)

DÔO(

DM

tr'igure 6.1: Schematic representation of the neurofuzry model
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Table 6.3:Fuzzy rules extracted by the neurofuzzy model

The fuz-zy rules in Table 6'3 arcconsidered to be a valuable source of information from
which knowledge about the relationships between settlement and the factors affecting
settlement can be extracted. The knowledge that can be derived from Table 6.3 is as
follows:
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High
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THEN aa

^s Lowls ,,"Settlement, OR(0.84) ,sSettlement, ts I(0. 6)2 IF .F
lsB"width,ooting ANDLarge ls"Soil" LooseTHEN
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ls"Settlement, HW .00)(l
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^S

ls"Settlement, Low ttOR(0.44)
,S ls"Settlement, High (0.s6)

5

" is High (0.04)

IF B'' IS"Footing width, Small AND "Soil" ls DenseTHEN .g ls"Settlement, Low OR(0.e6) "Settlement,
6

" is High (0.1 4)

IF B""Footing lswidrh, "Soil"ANDLarge ls DenseTHEN IS"Settlement, Low OR "s(0.86) ettlement,
7

v"ry
IF Bt'"Footing width, IS Snall AND "Soil" rs denset,THEN "Settlement, Lowts ( 00)

8

(0.13)ls

ooting v"ry
IF *F

B"width, ls ANDLarge "Soil" IS densettTHEN ls ttLow OR(0. "Settlement,
9

" is High (0.04)

rrFIF netooting applied pressure, lsq" Light
THEN .ç ls Low OR(0. e6)

2

l0

" is High (0.13 )

IF net"Footing applied pressure, ISq" Heavy
,,THEN

^s
ls Low OR(0. 87) "Settlement,
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Small footings are most likely to result tn low settlement regardless of the density of

the soil they are founded on (Rules 1,3,5 andT);

Large footings are most likely to be susceptible to hígh settlement when they are

founded on loose soils @ule 2), and they are most likely to result in low settlement

when they are founded on dense or very dense soils @ules 6 and 8); and

Large footings are equally likely to be susceptible to either low or high settlemenl

when they are founded on soils of medium density (Rule 4).

It can also be seen from Table 6.3 that Rules 9 and 10 seem to contradict what one

would expect based on the underlying physical meaning of the settlement probtem.

Rules 9 and l0 indicate that settlement is most likely tobe low regardless of whether the

applied load is light or heavy. The most likely reason for this is that the footings

contained in the database used were designed so that the applied load does not result in

high settlement or bearing capacþ failure. Another re¿lson is that there were

insufücient training data to cover the full range of possible high settlement conditions.

A review of the data used indicates that almost 90% of the data records have settlement

that is described to be low settlement, as categorised by the settlement membership

fi¡nctions of the neurofuzzy model. It should be noted that the Íange of applicability of

the fi,v,zy rules in Table 6.3 is a function of the quality of the data used in the model

calibration phase. Consequently, it is unlikely that these fuzzy rules provide a general

representation of the relationship between settlement and the factors aflecting it.

However, in general, the fi,nzy rules obtained are in agreement with what one would

expect based on the underþing physical meaning of the settlement problem. The above

results indicate that neuroû.rzzy networks have the abilþ to extract rules from data that

make physical sense, which may be used to gain wrderstanding in situations where data

are available but physical relationships are not well understood.

One advantage of neurofrvzy networks is that available engineering knowledge can be

incorporated into the trained network to optimise model performance and to enhance the

interpretation of a constructed model. In this \Morlq this is done by optimising the

membership functions of B and iV so as to include available geotechnical engineering

knowledge. The membership functions of B are optimised to be presented over a three-

valued linguistic universe (i.e. small, medium and large) so that small footings are

limited to footings of maximum width of 5 m (see Figure 6.3). On the other hand, the
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membership functions of Nare optimised to be presented over a four-valued linguistic
universe (i.e. loose, medium, dense and very dense) so that the classification of soil
density given by Teruagþi and Peck (194s) can be incorporated, as shown in Figure 6.3
and given in Table 6.4. It should be noted that the most probable values of i[ that are
incorporated in the membership functions for medium and dense soils are taken to be
equal to the average of the range given by Terzaghi and peck (lg4g). on the other
hand, the most probable values of llthat are incorporated in the membership functions
for loose and very dense soils are taken to be equal to the minimum and maximum
values ofìÍ, respectively, that are found in the database used. By doing this procedure,
model CIIP6-BIC is retrained and the performance results of the new model, referred to
as "optimised CHP6-BrC", is given in Table 6.5 together with the performance results
of model CHP6-Brc, and the fuzzy rules of the optimised cHp6-BIC model are listed
in Table 6'6. rt should be noted that this model agarnhas three inputs (i.e. B, q and N)
and the number of connection weights is equal to 9.
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Figure 6.3: optimised membership functions of the neurofuzzy moder

Table 6.4: Optimisation of membership functions of
classification of soil density of Terzaghi and

and Peck
Soil density Possible values of N

Most probable
the membership

value of .Àlincorporated in
functions of the neurofuzzy

model
Loose <10 4

Medium 10-30 20
Dense 30-50 40

dense >50 60
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Table 6.5: Performance of models CHP6-BIC and Optimised CHP6-BIC

Table 6.6:Fuz;zy rules extracted by the Optimised CHP6-BIC model

It can be seen from Table 6.5 that the new model (i.e. Optimised CHP6-BIC) performs

well and its performance is slightly better than the previously developed model (i.e.

model CHP6-BIC) with respect to the training and validation sets. It can also be seen

from Table 6.6 thatthe model has 14 fuzzy rules. The knowledge that can be extracted

from this model is as follows (Table 6.6):

t49

Model No. Performance measure

Correlation coeff., r RMSE (mm) MAE (mm)
Training Validation Training Validation Training Validation

Optimised
CHP6-BIC

0.893 0.892 t2.ll tt.74 7.87 8.93

CTIP6-BIC 0.889 0.881 12.33 12.36 8.08 9.36

Subnetwork
No.

Rule
No.

Rule

I I IF "Footing width, B" is 'Smal/ AND "Soil" is loose
THEN "Settlement, ,S " is Low (0.86) OR "Settlement, S-" is High (0.14\

2 IF "Footing width, B" is Medium AND "Soil" is Loose
THEN "Settlement, 5." is Low (0.64) OR "Settlement, S"is Hish (036)

J IF "Footing width, B" is Lørge AND "Soil" is Loose
THEN "Settlement, ,S." is /1lgå (1.00)

4 lF "Footing width, B" is Small AND "Soil" is Medium density
THEN "Settlement, S." is Low (0.91) OR "Settlement, S." is Hlgl¡ (0.09)

5 lF "Footing width,.B" is Medium AND "Soil" is Medium density
THEN "Settlement, s " is Low (0.90) OR "Settlement, S"is Hish (0.10)

6 lF "Footing width, B" is Large AND "Soil" is Medium density
THEN "Settlement, S," is Low (0.46) OR "Settlement, is High (0.54)

7 IF "Footing width, B" is ^Szøl/ AND "Soil" is Dense

THEN "Settlement, ,t is Low (0.94) OR "Settlement, " is High (0.06)

8 IF "Footing width,.B" is Medium AND "Soil" is Dense

THEN "Settlement, " is Low (0.89) OR "Settlement, " is High 11)

9 IF "Footing width, B" is Large AND "Soil" is Dense

THEN "Settlement, 1S Low ) OR "Settlement, ,s is High (0.16)

10 IF "Footing width, B" is ,Søal/ AND "Soil" is Yery Dense

THEN "Settlement, is low (1.00)

11 IF "Footing width, B" is Medium Al{D "Soil" is Very Dense

THEN "Settlement " is Low (0.90) OR "Settlement, " is fftþlr (0.10)

12 IF "Footing width, -8" is Large AND "Soil" is Very Dense

THEN "Settlement, .S ls Low (0.8 I ) OR "Settlement, IS Hish (0. 1e)

2 13 IF "Footing net applied pressufe, q" IS LiCht
THEN "Settlement, ,s

t, ls Low (0.8e) OR "Settlement, s ls High (0.tr)

t4 IF "Footing net applied pressure, q" is Heavy
THEN "Settlement, ,S" is Low (0.78) OR "Settlement, ^S"is Hish(0.22)
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Small footings are most likely to result in low settlement regardless of the density of
the soil they are founded on (Rules l, 4, 7 and l0);

Medium size footings are approximately equally likely to be susceptible to either
low ot high settlement when they are founded on loose soils (Rule 2), and,they are

most likely to result in low settlement when they are founded on medium, dense or
very dense soils (Rules 5,8 and 11);

Large footings are most likely to be susceptible to high settlement when they are

founded on loose soils (Rule 3), and they are most likely to result in low settlement
when they are founded on dense or very dense soils @ules 9 and l2); and

Large footings are equally likely to be susceptible to either low or high settlement
when they are founded on soils of medium density (Rule 6).

Also, Rules 13 and 14 again indicate that settlement is most likely to be low regardless

of whether the applied load is light or heavy,which contradicts what one would expect.
As mentioned previously, the most likely reason for this is that the footings contained in
the data set were designed so that the applied load does not result in high settlement and
that there were insufficient training data to cover the full range of possible high
settlement conditions. In general, the knowledge obøined in Table 6.6 is in agreement

with what one would expect, based on the underlying physical meaning of the
settlement problem, and are in agreement with the knowledge obtained previously from
model CHP6-BIC (Table 6.3). However, the fivza rules in Table 6.6 describe the
relationship between settlement and the factors affecting settlement in more rational
fashion. The above results suggest that it is beneficial to add available expertise to
neutofinzy models, as it can improve model performance and enhance the interpretation
of the constructed models.

In order to test the robustness of the neurofuzzy model (i.e. Optimised CFIp6-BIC), a

parametric study on the input variables is carried out, as suggested in $5.2.1, and the
results are presented in Figure 6.4. It can be seen from Figures 6.4 (a) and (b) that the
settlement increases as the footing width and footing net applied pressure increase. On
the other hand, Figure 6.a @) shows that the settlement decreases as the average SpT
blow count increases. These results indicate that the behaviour of the neurofuzzymodel
is similar to what one would expect based on the underlying physical sense of
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settlement prediction. Consequently, this model can be considered to be robust and

hence, can be used for settlement prediction.
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Figure 6.4: Robustness tests for the Optimised CHP6-BIC model

6.5 Comparison of the Neurofuzzy and MLP Models

A comparison between the optimum neurofuzzy model (i.e. Optimised CIIP6-BIC) and

the best back-propagation MLP model (i.e. model CHP5-NF2) is carried out in terms of

model accuracy, model parsimony and model transparency. A summary of the number

of inputs and connection weights used by each model is given in Table 6.7. The
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perfbrmance results of the two models with respect to the validation set are also given in
Table 6.7. In terms of model accuracy, it can be seen that the two models are

comparable, although the MLP model performs slightly better than the neurofuzzy
model' This suggests that the two models provide similar settlement prediction.
However, although the robustness tests carried out on the two models (Figure 6.5) show
that both models are robust, there is a marked difference in the predicted settlements

between the two models for a range of data similar to those used for model training. As
can be seen from Figure 6.5, the trends of the predicted settlement using the neurofuzzy
model are linear, whereas they are non-linear for the MLP model. One possible reason

for this behaviour is that optimisation of the neurofuzzy model is based on linear
membership functions of order 2, whereas it is based on non-linear transfer functions
(sigmoidal or tanh transfer functions) for the MLp model.

In order to investigate the aforementioned reason, an attempt to obtain a non:linoar
behaviour from the nevofilzzy model is carried out by retraining the Optimised CHp6-
BIC model with membership functions of order 3, and then comparing its robustness

behaviour with this of the MLP model, as shown in Figure 6.6. It can be seen that the
trends of the neutofiizzy model are changed to non-linear, which confirms the reason

proposed above. However, the unexpected deviations in the trends of the settlement
predicted by the retrained neurofuzzy model suggest that the model in not robust. One

would expect the settlement to increase with increase in footing width and footing net
applied pressure and that it decrease with the increasing average SpT blow count. It
seems that the robustness behaviour of the neurofuz,zy model shown in Figure 6.6 is a

result of data overfitting. As mentioned in Chapter 2, increasing the order of the
membership functions of the B-spline netxofuzzy models results in smoother model
ouþuts, but can lead to overfitting of the data (Brown and Harris lgg4).

Table 6.7: comparison between the neurofuzzy andMI,p models

Model
type

No. of
inputs

No. of
connection

weights

Model performance on the validation set
Correlation
coefficient, r

RMSE (mm) MAE (mm)

Neurofuzzy J 9 0.892 11.74 8.93
MLP 5 I2 0.905 11.04 8.78
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In order to further investigate the reason stated above, an attempt to obtain linear

behaviour from the MLP model is carried out by retraining model CHP5-NF2 using

linear transfer functions in the MLP hidden and output layers, and then comparing its

robustness behaviour with that of the Optimised CHP6-BIC model, as shown in Figure

6.7. Itcan be seen that the trends of the MLP model have changed to linear and that the

prediction of the MLP and neurofuzzy models becomes closer to each other, as shown

in Figures 6.7 (a) and (b). This confirms the reason proposed previously regarding the

difference in robustness behaviour between the neurofuzzy and MLP models. However,

as shown in Figure 6.7 (c), there still exists some unexpected deviation (negative

values) in the trend that relates the predicted settlement with the average SPT blow

count for the retrained MLP model, which suggests that the model is not robust. The

above results indicate that it is the functions used (i.e. membership basis functions for

the neurofuzzy model and the transfer functions for the MLP model) that result in the

difference in robustness behaviour between the neurofuzzy and MLP models shown in

Figure 6.5.

It is stilt necessary to decide which model to use as an optimum ANN model. The non-

linear robustness behaviour of the predicted settlement by the MLP model seems to be

more realistic, as it is unlikely that settlement is linear, which is confirmed by

traditional methods and underlying geotechnical engineering knowledge. In addition,

the more accurate performance of the MLP model, with respect to the validation set,

indicates that the MLP model can provide more accurate settlement predictions in real-

world situations. Consequently, the MLP model (i.e. model CHP5-NF2) developed in

Chapter 5 will be considered to be the best ANN model and hence will be used for the

analyses in the next chapter (Chapter 7).

In terms of model parsimony, the neurofuzzy model is found to be more parsimonious

than the back-propagation MLP model, as it has a smaller number of model inputs and

connection weights. In terms of model transparency, the neurofuzzy model is found to

provide a more explicit interpretation of the relationships between model inputs and the

corresponding output in the form of a set of linguistic fuzzy rules that describe the

model in a more transparent fashion (Table 6.6). However, as shown in Chapter 5, the

small number of hidden layer nodes of the back-propagation MLP model enabled the

translation of the model into a relatively simple equation that provides a valuable insight
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into the relationships between the model inputs and the conesponding outputs. For
large MLP models with a greater number of inputs and hidden layer nodes, a derivation
of such an equation could be difficult and consequently, the use of neurofuzzy models

would be better in such situations.
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6.6 Summary and Conclusions

B-spline networks trained with the ASMOD algorithm were used to demonstrate the

feasibility of neurofi.rzzy models to predict the settlement of shallow foundations on

cohesionless soils and to assist with providing a better understanding of the relationship

between settlement and the factors affecting it. The ASMOD is an algorithm that

automatically optimises model architecture and selects input variables that have the

most significant impact on settlement. Five potential input variables (i.e. B, q, N, L/B

and D, /B) were presented to the neuroñnzy models and settlement was the single

output. The sensitivrty of the neurofuzzy models to a number of stopping criteria, i.e.

Bayesian Information Criterion (BIC), Akaike's Information Criterion (AIC) and Final

Prediction Error (FPE), was investigated. The models were assessed in terms of

prediction accuracy, model parsimony and model transparency. The optimum

neurofiuzy model obtained was compared with the best back-propagation MLP model

obtained in Chapter 5.

This chapter has yielded the following results and conclusions:

1. Neurofuzzy models have the ability to accurately predict the settlement of shallow

foundations on cohesionless soils and are able to extract rules from the data that

make physical sense, which may be used to gain a better understanding in situations

where data are available but physical relationships are not well understood. In

addition, neurofuzry networks can be modified by incorporating available

engineering knowledge to improve model performance and enhance the

interpretation of the constructed model.

2. The footing width (B), footing net applied pressure (q) and average SPT blow count

(M) were found to be the most significant factors affecting settlement. This is in

agreement with the results of the sensitivity analysis carried out on the MLP model

in Chapter 5.

3. All neurofuzzy models were found to be comparable in terms of prediction

accuracy, even though the model that uses the BIC was found to perform marginally

better than the other models on an independent validation set.
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4' All neurofuzzy models were found to be comparable in terms of model parsimony,
even though the model that uses the AIC was found to be more parsimonious than
the other models with the lowest number of connection weights. This was attributed
to the fact that AIC penalises complex models.

5' The neurofuzzy models that use the BIC and AIC were found to be more transparent
than the model that uses the FpE, as they have fewer fuzry rules. This was
attributed to the fact that the BIC and AIC penalise complex models more.

6' The optimum neutofuzzy and MLP models were found to be comparable in terms of
model accuracy' although the MLP model was found to perform slightly better than
the neurofuzzy model

7. The optimum neurofuzzy model was found to be more parsimonious than the back-
propagation MLP with fewer model inputs and connection weights.

8. The optimum neurofuz4, model was found to be more transparent than the back-
propagation MLP model as it was able to describe the relationship between the
model inputs and corresponding output using a set of fr"ry rules. On the other, as

shown in Chapter 5, the MLP model was able to be translated into a relatively
simple equation that gives valuable insight into the relationships between the model
inputs and corresponding outputs.

In the following chapter, the use of stochastic simulation in the analysis of ANN
settlement prediction will be examined.



Chapter 7

Stochastic Analys is of Settlement Prediction

7.1 Introduction

Settlement prediction, as with many geotechnical engineering problems, is often

affected by a considerable level of uncertainty. Such uncertainty may produce an

unreliable estimation of the magnitude of settlement, while reliable settlement

prediction is essential for design pulposes. Uncertainty affecting settlement prediction

is generally caused by one or more of the following (Krizek et al. 1977; Cherubini and

Greco 1991):

1. Parameter uncertainty; and

2. Uncertainty associated with the model used for settlement prediction.

There are a number of major and minor factors that contribute to parameter uncertainty.

The major factors include (i) poor knowledge of soil properties and (ii) uncertainty in

forecasting the magnitude of the imposed loads. Uncertainty associated with poor

knowledge of the soil properties is due to the natural spatial variability of soil, which is

caused by variations in the mineral composition and characteristics of soil strata during

and after soil formation. It is also due to insufTicient description of soil characteristics

as a result of limited spatial sampling. Uncertainty associated with this source can also

be due to errors associated with the technique used to measure the actual soil properties.

Theoretically, the uncertainty associated with the loads acting on foundations can be

determined with an acceptable degree of accuracy (Greco and Cherubini 1993).

However, realistically, it is unlikely that an accu¡ate estimation of the magnitude of

design loads can be made and thus loads should be treated as random variables (Corotis

1972;Peir and Cornell l973;Melchers 1987).

The minor factors that contribute to parameter uncertainty include (i) footing

dimensions and (ii) footing embedment depth. These sources of parameter uncertainty

are due to discrepancies between footing dimensions or the footing embedment depth
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implemented on site and those that appear in construction drawings, as a result of
human error.

The second source of uncertainty is caused by the inherent error associated with the
modelling technique used to characterise settlement prediction and is usually called
model uncertainty (Frey 1993). This type of uncertainty is due to the simplified nature
of models that are used to describe soil behaviour, which are generally based on a
number of assumptions. Unfortr¡nately, model uncertainty is difficult to measure

physically and in most instances, the model used to describe a certain phenomenon is
assumed to be a perfect predictor (Fenton 2002). However, if sufficient measured and
predicted data arc available, then the overall uncertainty associated with the prediction
method used can be quantified. Consequently, the overall uncertainty associated with a
certain prediction method is the sum of the parameter and model uncertainties. This
type of uncertainty can be referred to as the prediction method uncertainty.

Most deterministic modelling methods for settlement prediction of shallow foundations

on cohesionless soils disregard the above uncertainties in their analysis and simulation.
Despite the relative advantage,that has been shown in Chapter 5, for the ANN approach
over traditional methods, it does not take into account the considerable level of
uncertainty that may affect the magnitude of the predicted settlement. ANNs, like more
traditional methods of settlement prediction, are based on deterministic approaches that
ignore the above uncertainty and thus provide single values of settlement with no
indication of the level of risk associated with these values. An altemative stochastic

approach is essential to provide more rational estimation of settlement. Stochastic

simulation has a significant benefit over deterministic methods in the sense that the
degree of risk (i.e. uncertainty) associated with the model output can be quantified
(Jaksa 1995; Barthur 1997; Whitman 2000). In this chapter, stochastic analysis is
applied to the ANN model in order to obtain a stochastic model of ANN sefflement
prediction of shallow foundations on granular soils. This chapter has three main
objectives. The first objective is to present and compare practical stochastic approaches

that incorporate parameter uncertainty and prediction method uncertainty in the analysis
of ANN settlement prediction of shallow foundations on cohesionless soils. The second

objective is to examine the effect of varying the parameter uncertainty on the magnitude

of the predicted settlement. Finally, and most significantly, the third objective is to
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develop and provide a set of stochastic design charts that are based on the ANN method

for routine use in practice. The charts are useful in the sense that they enable the

designer to make informed decisions regarding the level of risk associated with

predicted settlements and consequently provide a more realistic indication of what the

actual settlement might be. In order to demonstrate the first two objectives set out

above, a numerical example is provided.

7.2 Overview of Stochastic Settlement Prediction

Over the last decade, interest in applying more rational stochastic analyses in the field

of geotechnical engineering, rather than the less accurate traditional deterministic

solutions, has increased rapidly (see Tang 1993). For example, in the area of settlement

prediction of shallow foundations, Padilla and Vanmarcke (1974) developed a

stochastic approach for settlement prediction of a one-dimensional model based on a

first-order probabilistic description of loads and soil properties. Fraser and Wardle

(1975) used a first order probabilistic analysis to develop a model for the determination

of total and differential settlement of raft foundations resting on layered cross-

anisotropic elastic soils, taking into account the uncertainty associated with the imposed

loads and supporting soil modulus. Cherubini and Greco (1991) presented a

probabilistic approach for settlements predicted using the method proposed by Amold

(1930) to estimate the settlement of spread footings on sand, taking into account the

uncertainty associated with the reliability of the technique used for settlement

prediction. Brzakala and Pula (1996) also combined finite element analysis with

stochastic simulation to provide a probabilistic solution for the estimation of settlement

of shallow foundations, considering three basic sources of input parameter uncertainty:

random shape of the subsoil (location of an interface between two strata), random

material parameters and random loads. Fenton et al. (1996) estimated probabilistic

measures of total and differential settlement of spread footings on elastic soils using a

two-dimensional finite element model combined with Monte Carlo simulation, taking

into account the variability of the soil modulus of elasticity. Sivakugan and Johnson

(2002) applied probabilistic analysis to settlement prediction of four deterministic

haditional methods including the methods proposed by Terzaghi and Peck (1967),
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Schmertmann et al. (1978), Burland and Burbidge (19S5) and Berardi and Lancellotta
(1994), considering the prediction method uncertainty.

7.3 Basic Stattstical Definitions

When data are available, it is useful to quanti$, their statistical properties. The
following definitions are some of the most commonly used statistical parameters for
data presentation and are def,rned in many fundamental publications (e.g. Seber 1974;
Smith 1986; RaghaYatao 1988), and are described here as they form part of the analyses

that follow.

Mean (p): the mean is the average of the sample data (x' x2¡ ...t x,) of size n and is
o

a

a

O=

xiI
l=l

I
n

defined as:

(7.r)

Standard deviation (o): the standard deviation is a measure of deviation or spread

of the sample data about their mean and is defined as:

ls
n-r3

/ 
-. 

I

lxt - x)' (7.2)

Coefficient of variation (COV): the coefficient of variation is the expression of the

degree of spread of the data in terms of the mean. It is useful for comparing groups

with different means and is defined as:

COV =!
x

Graphical presentation of data: the histogram is the most common graphical

method for data presentation (Lee et al. l9g3). It is a grouping of data into

(7.3)

o
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categories of given numerical intervals showing the proportional frequency of

observations in each category. The hatched area in Figure 7.1 is an example of a

histogram representing the distribution of soil compaction data. The scaling

ordinates of the histogram are called the frequency distribution and can be obtained

by dividing the number of observed values within a specific interval by the total

number of observations.

Another method of data presentation is the probability distribution (usually referred

to as 'PDF' : probability density function), of which the solid line in Figure 7.1

provides an example. The PDF has the crucial property that the area under the curve

between any two values gives the probability of obtaining an observation between

those values. Another graphical method of data presentation is the cumulative

frequency distribution function, which calculates successive sums of frequencies up

to each interval point and connects these points. The dashed line and righthand

ordinate in Figure 7.2 provide an example of a cumulative frequency distribution

curve of the soil compaction data shown in Figure 7.1.

0.3
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Figure 7.1: Histogram and probability distribution for soil compaction data

(Lee et al. 1983)
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tr'igure 7.2: cumulative probability distribution of soil compaction data

(Lee et al. 1983)

7.4 Stochastic Analysis of Setflement prediction

Stochastic analysis is a procedure of handling mathematical problems where some of
the parameters are uncertain and thus can be presented as random variables (prekopa

1995). There are various stochastic approaches available for geotechnical engineering

applications. For models involving random input variables with known or assumed

probability distributions, Monte Carlo simulation can be used to estimate the probability
distribution of the model output. Monte Carlo simulation is the technique that will be

used to produce the stochastic solutions for settlement prediction given later and

consequently, it will be described briefly in this chapter.

Monte Carlo simulation attempts to generate a random set of values from known or
assumed probability distributions of some input variables involved in a certain problem

to determine the probability distribution of the ouþut variable. The steps in the Monte
carlo simulation, for a set of input variables (x1, x2, )c3, ..., x,) andthe corresponding

ouþut variabley, where, /:-f (xpx22 x3t ...,x,), are as follows:
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1. Values of each input variable (xp x2, x3t . . .s x) are generated randomly by knowing

or assuming their probability density function and statistical parameters (e.g. mean,

standard deviation);

2. Theouþutvariableyisobtainedfromitsdeterministicfunction, f:f@px2,x3,...,

xr);

3. The above steps are repeated, usually thousands of times; and

4. Finally, the ouþut values are used to obtain the mean, standard deviation and

probability density function from which the probability of occurrence or risk

associated with a certain prediction can be estimated.

Further details about the Monte Carlo technique are given by many authors (e.g.

Hammersley and Handscomb 1964; Rubinstein 1981; Ang and Tang 1984).

As mentioned earlier, this chapter applies stochastic simulation to ANNs in order to

incorporate parameter uncertainty (i.e. uncertainty associated with the model inputs as

soil properties and imposed loads) and prediction method uncertainty (i.e. parameter

uncertainty * uncertainty associated with the ANN modelling technique). The approach

used to obtain the uncert¿inties in settlement prediction associated with each of the two

types of uncertainty considered is given below.

7.4.1 Inclusion of parameter uncertainty

For an individual case of settlement prediction, the procedure for obtaining the

stochastic solution that incorporates the parameter uncertainty is as follows:

1 . The values of each input variable (i.e. B, Q, N, L/8, ry/B) are generated randomly by

knowing or assuming their probability densþ function (PDF) and any correlation

that exists between them;
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2. The deterministic predicted settlement is obtained from the best ANN model
obtained in this research (i.e. model CHp5-NF2);

3. The above two steps are repeated, thousands of times as part of Monte Carlo
simulation; and

4. Finally, the subsequent settlements are used to obtain the cumulative distribution
function (CDF) or to plot the cumulative probability distribution from which the
probability of non-exceedance (Prr), or level of risk, associated with a certain

prediction can be estimated.

Among the five inputs to the ANN model, two, the footing net applied pressure, q, and,

average SPT blow count, N, are likely to include more than marginal parameter

uncertainty, and thus, in this work, are assumed to be random variables. As mentioned

earlier, footing dimensions contribute to parameter uncertainty to a lesser degree and are

thus assumed to be deterministic for practical purposes. In addition, the input variable
of footing embedment depth, Dr, is also assumed to be deterministic. A number of
studies have attempted to characterise the uncertainty associated with q and ,lÍ, as

discussed below.

According to Melchers (1987), loads acting on structures can be divided into two broad

groups: natural loads (e.g. wind and earthquake) and human-imposed loads (e.g. dead

loads and live loads) and the magnitude of each varies with time and location.

Consequently, estimation of total loads imposes uncertainty. As a guide, Auvinet and

Rossa (1991) showed that the coefficient of variation, COV (i.e. standard

deviation/mean), of permanent loads for Mexico City buildings is g%. Melchers
(1987), stated that dead loads are commonly assumed to be closely approximated by a
normal dishibution with a cov of 5 to l0%o. Rao (1992) stated that dead loads are

usually described by a normal dishibution with COV of l0%. Krizek et al. (1977)

demonstrated that the uncertainty associated with the estimation of the total imposed

loads follows a nonnal dishibution and Fraser and Wardle (1975) illustrated that the

COV of the total imposed loads that can be encountered in practice is equal to l4%o.

Padilla and Vanmarcke (1974) also showed that, if dead and live loads were assumed to
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be stochastically independent, the resulting variability of their sum v/ould have a COV

of lïYo.

Uncertainty associated with the SPT blow count, N, as a measure of soil compressibilþ

is considerable due to the many factors that affect SPT results (Orchant et al. 1987).

Fletcher (1965) identified thirteen factors that affect the SPT and can be categorised into

the following two major groups: (i) equipment effects (e.g. hammer, hammer drop

system, drill rods, and sampler) and (ii) proceduraVoperator effects (e.g. height of

hammer drop, seating of the sampler, errors in counting blows, and cleaning of

borehole). Lee et al. (1983) reported that the uncertainty associated with the average

SPT blow count can be assumed to follow a normal distribution with COV ranges from

27 to 85%o and recommended a value equal to 30Yo.

7.4.2 fnclusion of prediction method uncertainty

The stochastic solution that incorporates the prediction method uncertainty is based on

an assumption that previous measured settlements of foundations may be employed to

predict the settlements of other foundations in similar conditions (Cherubini and Greco

1991). The uncertainty of the prediction method can be examined by calculating the

settlement ntio, k (Cherubini and Greco l99l; Sivakugan and Johnson2002), which is

defined as the ratio of the predicted settlement to the actual measured settlement. If a

set of predicted and measured settlements is available, the settlement ratios can be

calculated and used to obtain the PDF of k A Monte Carlo simulation can then be

conducted to estimate the uncertainty associated with the predicted settlements. The

detailed procedure is as follows:

1. The PDF of k is estimated using a set of predicted and measured settlements;

2. Random values of k arc generated from this PDF;

3. For each generated value of k, the deterministic sefflement is calculated using the

ANN model;
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4. From the definition of k, the deterministic predicted settlement is divided by the
generated random value of k in order to obtain the corresponding actual settlement;

5' Steps 2 to 4 are repeated for many iterations (Monte Carlo simulation); and

6. The settlements obtained as part of the Monte Carlo simulation are used to estimate

the CDF or to plot the cumulative probability distribution from which the

uncertainty or level of risk associated with a certain settlement prediction can be

estimated.

A number of studies have attempted to characterise the prediction method uncertainty.

For example, Greco and Cherubini (1993) demonstrated that the distribution of /r could
be approximated by a lognormal distribution for settlement predictions obtained from
the methods proposed by Arnold (1930) and Papadopoulos (lgg2). Sivakugan and

Johnson Q002) showed that k can be represented by beta distribution for settlements

predicted using four traditional methods (i.e. Tenaghi and Peck 196l; Schmertmann et

al. 1978; Burland and Burbidge 1985; Berardi and Lancellotta 1994). In this work, the

distribution of k is obtained using the 189 data records used in Chapter 5 for the

development of the ANN model, as shown later.

7.5 Numerical Example

In order to demonstrate the approach outlined in the previous section, the following
numerical example is examined, which is identical to the one presented in $5.7. A
rectangular footing whose dimensions are 2.5 x 4.0 m is founded at a depth equal to 1.5

m below the ground surface. The soil beneath the footing is sand that extends to a depth

in excess of twice its width. The net applied load exerted on the footing is 350 kpa and

the average SPT blow count is 16.
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7.5.1 Estimation of parameter uncertainty

The deterministic solution of settlement prediction is first obtained from the ANN

model in g5.2.2 (model CHP5-NF2) and is found to be 13.3 mm, as given previously in

$5.7. The statistical data representing the uncertainty associated with settlement

parameters are taken to be equal to those commonly encountered in practice and

recommended in the literafure, as described earlier, and are shown in Table 7.1. In

addition, the database used in Chapter 5 for the development of the ANN model is

utilised to determine the coefficient of correlation between the footing net applied

pressure, q, and average SPT blow count, N, which was found to equal 0.4.

Table 7.1. Statistics for parameter uncertainty used in the numerical example

N/A : not applicable

In order to apply the stochastic approach that incorporates parameter uncertainty, the

statistical data in Table 7.1 are used to generate sample values for q and N. These

values are generated so as to be within (i) the range of data that can be expected in

practical applications and (ii) the ranges of the input data used for training of the ANN

model. Again, the PC-based software @Risk (Palisade 2000) is used for this purpose.

The stochastic procedure outlined previously for incorporating parameter uncertainty is

applied until a convergence criterion is achieved. In order to determine whether

convergence has been achieved, the statistics describing the distribution of the predicted

settlements are calculated at fîxed numbers of simulations and compared with the same

statistics at previous simulations. Convergence is deemed to have occurred if the

change in the statistics describing the distribution of predicted settlement is 1oá or less.

It was found that 1,300 simulations are sufficient to achieve convergence. The

predicted settlements obtained for the 1,300 simulations are used to plot the cumulative

Settlement parameter Mean St. deviation cov (%) PDF

Footing width, B (m) 2.5 Deterministic deterministic N/A

Net applied footing load, q (kPa) 350 35 10 Normal

Average SPT blow count, N 16 4.8 30 Normal

Footing geometry, L/B 1.6 Deterministic deterministic N/A

Footing embedment ratio, Dr/B 0.6 Deterministic deterministic N/A
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probability distribution curve from which different probabilities of non-exceedance are

obtained. The results are shown in Figure 7.3 and are summarised in Table 7.2
(columns 1 and 3). The results shown in columns 2 and 4 of Table 7.2 will be

explained later in this section.
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Figure 7.3. cumulative probability distribution incorporating parameter
uncertainty for the numerical example

Table 7.2: Predicted settlements accounting for parameter uncertainty of different
q and Nfor the numerical example

It can be seen from Figure 7 .3 that there is a probability of approximately 50yo that the
settlement could be higher than the deterrninistic estimation of 13.3 mm. This result
indicates that the uncertainty associated with q and,ðr/ can considerably affect settlement
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and thus, should not be neglected in the analysis and simulation of settlement

prediction. In addition, there are probabilities of 75o/o, 80yo, 85yo,90o/o and 95o/o (i.e.

probability levels that may be needed for design pqposes) that the settlement will not

exceed 18.6,20.4,22.4,25.4 and 31.3 mm, respectively (Table7.2).

Once the stochastic simulation has been performed, a sensitivity analysis is carried out

to determine the relative impact of the input variables on the uncertainty associated with

predicted settlement. This is done by calculating the correlation coefficient between the

predicted settlements and the values generated for each input variable. The higher the

correlation between the input and settlement, the more significant the input is in

determining the stochastic predicted settlement. As expected, the results of the

sensitivity analysis show that the uncertainty associated with the average SPT blow

count has a considerable impact on the uncertainty associated with predicted settlement,

as it has a high correlation coefficient of -0.935. The negative sign of the correlation

coefficient indicates that, as expected, there is an inverse relationship between the

average SPT blow count and settlement prediction. On the other hand, the results show

that the uncertainty associated with the net applied footing load has a moderate impact

on the uncertainty associated with settlement prediction, as it has a correlation

coefflrcient of 0.169.

As discussed earlier, uncertainty estimation of q and N varies considerably (i.e. the

COV varies from 5 to l4Yo for q and from 27 to 85% for ÀI). Consequently, it is

worthwhile to carry out a parametric study to examine the effect of changing the COV

for q and N on the magnitude of settlement prediction for the numerical example. Using

the ANN-based stochastic approach that incorporates parameter uncertainty, two

different combinations of the values of the COV for q and N are examined. The

minimum values recommended in the literature for the COV of q and N (i.e. 5Yo for q

and 27Yo for N) are used for one trial and the maximum values (i.e. 14% fot q and 85%o

for Àl) are used for the other. The probability of non-exceedance for the predicted

settlement using the three different combinations of the COV for q and,ðú are shown in

Table7.2.

It can be seen from Table 7.2 that the predicted settlement becomes more conservative

as the COV for q and N increases. For example, if the probability of non-exceedance

t7r
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required in the design of a footing under consideration is 950lo, the predicted settlement

will not exceed 29.2 mm when the COVs for q and l/ are equal to 5 and 27yo,

respectively. In other words, there is a 5Yo chance that the predicted settlement will
exceed 29.2 mm when the COVs for q and,Nare equal to 5 and 2TYo,respectively.
However, to achieve the same level of risk, this settlement will exceed 31.3 mm when
the COVs fot q and, -ðy' are increased to l0 and 300/0, respectively. Moreover, for a level
of risk of 5Yo, the predicted settlement will exceed 42.6 mmwhen the COVs for q and N
are increased further to be equal to 14 and 85%o, respectively. The results jn Table 7.2

also illustrate that, to achieve a level of risk of only 5%o, the predicted settlement

obtained using the maximum combination of the COV for q and,,a/ (i.e. l4%o for q and
85% forÀf is approximately 45%o more than the predicted settlement obtained when the
minimum combination of the COV for q and l/ (i.e. SYo for q and 27%o for ÀI) is used.

This suggests that estimating the correct values of the uncertainty associated with q and

N is very important, as uneconomical design of footings results from increasing values
of the COVs for q and.l/.

7.5.2 Estimation of prediction method uncertainty

As discussed earlier, in order to obtain a stochastic solution for settlement prediction
that incorporates the prediction method uncertainty, the PDF of /c is needed. In this
researoh, the PDF of fr for the ANN method is obtained from the 189 data records that

are used in Chapter 5 for the development of the ANN model. The values of k are

found to fall within the range 0.3 to 10.4. The mean value of k is 1.4 andthe standard

deviation is 1.3' As mentioned above, the stochastic solution that incorporates the
prediction method uncertainty relies on the estimation of the PDF of k. Consequently,

false estimation of the PDF of fr will affect the final results of the stochastic predicted

settlements. If the data used to estimate the PDF of Ë contain outliers, the distribution

of k will be severely affected. As a result, it is necessary to exclude any possible

outliers from the data used to estimate the PDF of k. The box plot method (Kotzais et

al' 1990), as proposed by Cherubini (2000), is used for this purpose in this research. As
part of the method, the central tendency of k is indicated by the median, whereas its
spread is indicated by the lower (Q) andupper (Q) quartiles. Points whose values are
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either less than (Q,-ISIQD) or greater than (Qu+l.sIQD), where IQD is the

interquartile distance and is equal to (Qu- Q), arc considered to be outliers. Such a plot

is shown in Figure 7.4 for the available data. It can be seen that some points are greater

than (Qr+l.sIQD). Consequently, these data points may be considered to be outliers

and are omitted from the data used to estimate the PDF of k. The number of outliers are

found to be 20 out of 189 data records, resulting in 169 data records that are used to

estimate the PDF of k The software @Risk is again used to determine the PDF that

provides the best fit to the remaining 169 datapoints. As mentioned in Chapter 5, for a

given set of data values, @Risk can identi$ the probability distribution that best fits

these values from 38 candidate distributions and provides the statistical properties that

describe the distribution. The theoretical distribution that is found to best match the

actual distribution of kis the Weibull distribution @igure 7.5). The statistical properties

of the Weibull distribution obtained are given in Table 7.3. It can be seen that removing

the outliers from the analysis of k resulted in a reduction in the mean and standard

deviation of kfrom 1.4 and 1.3 to 1.06 and 0.53, respectively.

0 246810
¡1 = predicted settlemenUmeasured settlement

12
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0 0.5 .t 1.5 2 2.5 3

¡ = predicted sett./measured sett.

tr'igure 7.5: Weibull distribution of ft

Table 7.3: Weibutl distribution parameters of É

Statistical parameter Value of /c
(without outliers)

Value of /r
(with outliers)

Minimum 0.25 0.30
Maximum 2.80 10.4

Mean 1.06 1.40
Standard deviation 0.53 1.30

Shape parameter (o) 1.59 N/A
_.þale parameter (0) 0.91 N/A
N/A: not applicable

The numerical example is re-calculated using the procedure outlined previously for
incorporating prediction method uncertainty. The Monte Carlo simulation is repeated

1,400 times until a convergence limit equal to l%o is achieved. The settlements obtained

are used to plot the cumulative probability distribution curve from which different
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probabilities of non-exceedance or levels of risk for predicted settlement are obtained.

The results are summarised in Table 7.4 and shown in Figure 7.6, which also includes

the obtained by considering only the parameter uncertainty.

Table 7.4: Predicted settlements accounting for prediction method uncertainty for
the numerical examPle

Probability of occurrence (%o) Predicted settlement (mm)

75 15.4

80 16.1

85 17.0

90 18.0

95 t9.3
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Figure 7.6: Cumulative probability distribution incorporating parameter and

prediction method uncertainties for the numerical example

It can be seen from Table 7.4 and Figure 7.6 that the stochastic solution that

incorporates the prediction method uncertainty is less conservative than that obtained

when parameter uncertainty was considered. For example, there is a 5Yo level of risk

that the predicted settlement will exceed 19.3 mm when the stochastic solution that
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incorporates the prediction method uncertainty is used. However, to achieve the same
level of risk, this settlement will exceed 29.2 mm (for COVs of q and.l[ equal to 5 and
27yo),31.3 mm (for covs of q andlÍ equal to l0 and 30%), and 42.6 mm (for covs of
q and N equal to 14 and 85yo), respectively, when the stochastic solution that
incorporates the parameter uncertainty is used, resulting in an increase in the predicted
settlement of approximately 50Yo, 600/o and l20yo, respectively. This result is
surprising, as the solution that incorporates the prediction method uncertainty includes
both parameter and model uncertainties and would thus be expected to produce more
conservative results. This result may be attributed to the fact that the estimation
obtained from the literature related to parameter uncertainty (i.e. uncertainty associated

with q and Àl), is most likely to be conservative as a result of including the soil spatial
variation from one site to another in the evaluation of the COVs of q and, N. Even the
lower end of the variability of 4 andy'{appears to be conservative. Consequently, for an
individual case of settlement prediction, different results (Table 7.2) are most likely to
be obtained from different evaluators depending on how differently q and N are
evaluated. On the other hand, the statistical properties and distribution used to estimate
preciiction method uncertainty (i.e. uncertainty associated with k) arc based on actual
measured settlements.

The above results imply that collecting as much data as possible, which enables accurate

characterisation of parameter or prediction method uncertainties, is very important, as it
has significant implications on the design settlement obtained. The results also imply
that the stochastic solution using k is probably preferable, as it is easier to collect data

on actual and predicted settlements, which enables the uncertainty associated with fr to
be characterised, rather than data which enable the uncertainty associated with q and N
to be quantified. In addition, the stochastic approach using k already includes parameter

uncertainty, as it sums the model and parameter uncertainties.

7.6 Stochastic Settlement prediction Design Charts

The stochastic simulation that incorporates the prediction method uncertainty is used to
develop a generic set of stochastic design charts based on the ANN model for routine
use in practice. The procedure that is used to develop the charts is as follows:
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1. A random synthetic value of predicted settlement is generated between the ranges

used in Chapter 5 for the development of the ANN model;

2. The procedure for obtaining the corresponding PDF and CDF of predicted

settlements as a result of the uncertainties associated with the prediction method

outlined previously is aPPlied;

3. From the above PDF or CDF, the 75%o,80yo,85yo,90Yo, and 95o/o ptobabilities of

non-exceedance are determined;

4. Another random synthetic value of predicted settlement is generated by increasing

the value generated in Step I by 5% of the total range between the minimum and

maximum values used for the development of the ANN model;

5. Steps 2 to 4 are repeated until the maximum synthetic value of predicted settlement

is reached; and

6. For each probability level of non-exceedance, the synthetic deterministic settlements

are plotted against stochastic settlements and a set of design charts are obtained, as

shown inFigarc7.7.

For any individual case of settlement prediction within the ranges of the data used for

the ANN model development, the deterministic settlement can be obtained from the

ANN model and the corresponding stochastic settlement can be obtained readily from

Figure 7 .7, accounting for a certain desired probabilþ of non-exceedance. For

example, if the deterministic ANN model predicts a settlement of 22 mm and reliability

levels (i.e. probabilities of non-exceedance) of 90% and 95%o are required, the

corresponding design settlements are 30 mm and 32 mm, respectively.
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Figure 7.7: stochastic Al\N-based design charts for setflement prediction

7.7 Summary and Conclusions

Stochastic approaches that utilise the Monte Carlo technique were used to generate

stochastic settlement prediction of shallow foundations on granular soils from an

artificial neural network (AlttN) model. The proposed stochastic approaches

incorporate either parameter uncertainty or prediction method uncertainty (parameter
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uncertainty * model uncertainty) and enable the uncertainty associated with predicted

settlements to be quantified in the form of a cumulative probability distribution function

that provides the designer with the level of risk associated with exceeding a given

predicted settlement. A parametric study was also carried out to examine the effect of

varying the uncertainty associated with the factors affecting sefflement (i.e. coefficient

of variation, COV, for the imposed load, q, and soil property, Àl) on the uncertainty of

the predicted settlements. The proposed stochastic approaches compared were applied

to a numerical example of settlement prediction. A series of ANN-based design charts

that incorporate prediction method uncertainty were developed for routine use in

practice.

The results of the numerical example that incorporates parameter uncertainty indicated

that there was a probability of approximately 50o/o that the settlement could be higher

than the deterministic estimation with COVs of l0% and3}Y, for q and N, respectively.

The results also indicated that over the range of COVs for q and N suggested in the

literature, the design settlements ranged from 29.2 mm to 42.6 mm for a non-

exceedance probability of 95Yo. These results indicated that the uncertainties associated

with q and N can considerably affect settlement and thus, they should not be neglected

in the analysis and simulation of settlement prediction. This also implied that it is

important to collect suff,rcient data to characterise the uncertainty associated with q and

À/, as the results obtained were very sensitive to these variables. The ANN-based

stochastic approach that incorporates prediction method uncertainty resulted in less

conservative settlement prediction, despite the fact that this approach includes both

parameter and model uncertainties and thus would be expected to produce more

conservative results. This was attributed to the fact that parameter uncertainties were

obtained from a subjective evaluation of the COVs of q and N published in the

literature, which are likely to be conservative. On the contrary, prediction method

uncertainty (i.e. uncertainty associated with k) was obtained from measured data and not

from values published in the literature. Furthermore, it is easier to obtain data to

characterise the uncertainty associated with k than with q and N. Finally, the charts

developed in this work can be used to predict settlements for a certain desired reliability

level given the deterministic settlement predicted from the ANN model developed in

Chapter 5, which will be a useful tool in the design of shallow foundations on

cohesionless soils.
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8.1 General

Settlement analysis of shallow foundations on cohesionless soils, as with many
situations in geotechnical engineering, is a complex problem that is not well understood.
For most mathematical models that attempt to solve this problem, the lack of physical
understanding is usually supplemented by either simpli$ring the problem or
incorporating several assumptions into the models. Conventional mathematical models
for settlement prediction of shallow foundations on cohesionless soils rely on assuming
the form of the model in advance, and the unknown model parameters are determined
by minimising an error function between model predictions and the known measured
values' Consequently, prior knowledge regarding the relationship between model
inputs and the corresponding outputs is needed. In the case of settlement of shallow
foundations on cohesionless soils, such know{edge is noi yet entireiy understoocÍ.
Consequently, model performance may be potentially compromised, as the form of the
model chosen may be sup-optimal. In contrast, as shown in this thesis, artificial neural
networks (ANNs) use the data alone to determine the structure of the model as well as

the unknown model parameters. The ANN modelling philosophy is similar to most
available methods for setJlement prediction in the sense that both are atte¡rpting to
capture the relationship between a set of model inputs and their corresponding outputs.
However, unlike most available methods, ANNs do not need prior knowledge about the
nature of the relationship between model inputs and their corresponding outputs as

ANNs use the data alone to capture this relationship, as mentioned earlier. This is an

essential benefit that enables ANNs to overcome the limitations of existing methods.
Moreover, ANNs can always be updated to obtain better results by presenting new
calibration data recorcls, as they become available. One limitation of ANNs, however,
is that often the relationship between the input parameters and the output, are complex
and cannot be described in a tract¿ble fashion. In addition, the success of ANNs in
finding this relationship is not always guaranteed.

180
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In this research, the feasibility of using ANNs for predicting the settlement of shallow

foundations on cohesionless soils has been investigated. In the following, summary,

contributions of this thesis, recommendations for future work and the main conclusions

ofthis research are presented.

8.2 Summary

This study has investigated the feasibilþ of using artificial neural networks (ANNs) for

settlement prediction of shallow foundations on cohesionless soils. An ANN model,

which was found to ouþerform the most commonly used traditional methods, has been

developed for routine use in practice. In addition, stochastic analysis has been applied

to the ANN model and a set of stochastic design charts that incorporate the uncertainty

associated with the ANN method has been developed and provided.

Chapter 2 detailed the more important features associated with ANNs. These include

the structure and operation of ANNs, classification of different types of ANNs and

development of ANN models. For the structure and operation of ANNs, it was shown

that ANNs consist of a number of processing elements or nodes that are arranged in

layers: an input layer, an ouþut layer and one or more intermediate layers called hidden

layers. It was also shown that ANNs learn by presenting training data from which the

ANN network adjusts its weights until it can find a set of weights that produce the

optimum inpulouþut data mappings. In relation to the classification of ANNs, it was

shown that ANNs can be categorised on the basis of two major categories: (i) the

learning rule used and (ii) the connections between nodes. In relation to learning rules,

it was shown that ANNs can be divided into supervised and unsupervised networks. In

relation to connections between nodes, it was shown that ANNs can be divided into

feed-forward and feedback networks. For the development of ANNs, many factors that

affect the development of ANN models were addressed. These include the

determination of model inputs, division of data, data pre-processing, determination of

model architecture, model optimisation, stopping criteria and model validation.

Chapter 3 provided an overyiew of some of the more relevant ANN applications in

geotechnical engineering. These include prediction of pile capacity, predicting the
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settlement of foundations, modelling soil properties and behaviour, determination of
soil liquefaction, site characterisation, modelling earth retaining strucfures, evaluating
stability of slopes and design of tunnels and underground openings.

Chapter 4 discussed the causes of settlement of shallow foundations. The chapter
described the factors affecting settlement of shallow foundations on cohesionless soils,
which were divided into primary and secondary factors. The primary factors were the
footing width, footing net applied pressure and soil compressibility. The secondary
factors were the depth of the water table, time dependence, footing geometry, depth of
footing embedment and the thickness of the soil layer. This chapter also described and
discussed some of the most commonly used and more relevant methods for settlement
prediction of shallow foundations on cohesionless soils. These include the methods
proposed by Meyerhof (1965), Schultze and Sherif (1973) and Schmertmann et al.
(1e78).

Chapter 5 detailed the analysis of data and development of ANN models for settlement
preciiction of shaiiow tbundations on cohesionless soils. This chapter also presented a

comparison between the results obtained using ANN and traditional methods. The
analyses carried out in this chapter yielded the following results and conclusions:

ANNs have the ability to predict the settlement of shallow foundations on
cohesionless soils with a high degree of accuracy for predicted settlements ranging
from 0.6 to 121.0 mm.

Good performance of ANN models on training, testing and validation sets does not
guarantee the robustness of the predictive ability of the models over a range of data
similar to that used for training.

a

a If cross-validation is used as the stopping criterion, reducing the number of ANN
connection weights or changing the type of connection between nodes (e.g.

cascaded and direct connections) does not appear to improve ANN model
robustness.
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It is recommended that the capability of the software used for developing ANN

models be considered carefully and that a parametric study to check model

robustness be used in order to ensure that a model can be used for predictive

purposes with confidence.

The optimum model developed in this work was obtained using 2 hidden layer

nodes, a momentum term of 0.8, a learning rate of 0.2, the tanh transfer function in

the hidden layer and the sigmoid transfer function in the output layer.

There is a direct relationship between the consistency of the statistics between

training, testing and validation sets and the consistency in model performance.

Consequently, the statistical properties of the various data subsets should be taken

into account as part of any data division procedure to ensure that the best possible

model is developed, given the available data.

a The proportion of the data used for training, testing and validation appears to have

an effect on model performance. However, there appears to be no clear relationship

between the proportion of the data used in each of the subsets and model

performance, although in the trials conducted in this work, the optimal model

performance was obtained when 20o/o of the data were used for validation and70o/o

of the remaining data were used for training and30Yo for testing.

a The data division approach using a SOM and the new approach using fuzzy

clustering introduced in this research appear to be suitable methods of data division.

The distribution transformation method for input variables does not appear to

improve the performance of ANN models.

The SPT blow count, footing net applied pressure and footing width have the most

significant impact on settlement with relative importance levels equal to 30.8, 28.6

and 22.4Yo, respectively. On the other hand, the footing embedment ratio and

footing geometry have less impact on settlement with relative importance levels

equal to 14.8 and 3.1%o,rcspectively.

a

o

a
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The ANN method outperforms the traditional methods considered for an
independent validation set with r:0.905, RMSE = 11.04 mm and MAE: g.7g

mm, while these measures were: r : 0.440,0.729 and 0.79};RMSE = 25.72,23.s5
and23.67 mm and MAE: 16.59, ll.gl and 15.69 mm when the method proposed
by Meyerhof (1965), Schultze and Sherif (1973) and Schmerrmann et al. (197g),
respectively, are used.

The ANN model could be translated into a relatively simple and practical formula
from which settlement can be calculated as follows:

a

and

So =o'6+
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: predicted settlement (mm);

: footing width (m);

: net applied footing load (kpa);

: average SPT blow count;

: footing geometry; and

: footing embedment ratio.

a The ANN model could be used to getrerate a series of design charts (Appendix G)
from which sefflement can be obtained easily.

Chapter 6 detailed the development of neurofuzzy networks for settlement prediction of
shallow foundations on cohesionless soils. Neurofuzzy networks were used in this
chapter to investigate their capability for predicting the settlement of shallow
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foundations on cohesionless soils and to assist with providing a better understanding of

the relationship between settlement and the factors affecting it. The sensitivity of the

neurofuzzy models to a number of stopping criteria [i.e. Bayesian Information Criterion

(BIC), Akaike's Information Criterion (AIC) and Final Prediction Error (FPE)I was

investigated. The obtained models were assessed in terms of model accuracy, model

parsimony and model transparency. The optimum netxofuzzy model obtained was

compared with the best back-propagation MLP model obtained in Chapter 5. A number

of conclusions were derived from this chapter. These include:

Neurofuzzy models have the ability to accurately predict the settlement of shallow

foundations on cohesionless soils and are capable of extracting rules from the data

that make physical sense, which could be used to gain understanding in situations

where data are available but physical relationships are not well understood. In

addition, neurofuzzy networks can be modified by incorporating available

engineering knowledge to improve model performance and enhance the

interpretation of the constructed model.

a

o

a

The footing width, footing net applied pressure and average SPT blow count were

found to be the most significant factors affecting settlement. This is in agreement

with the results found in Chapter 5.

All neurofuzzy models were found to be comparable in terms of prediction

accuracy, even though the model that uses the FPE was found to perform

marginally better than the other models.

All neurofuzzy models were found to be comparable in terms of model parsimony,

even though the model that uses the AIC was found to be more parsimonious than

the other models with the lowest number of connection weights.

The neurofuzzy models that use the BIC and AIC were found to be comparable in

terms of model transparency and more transparent than the model that uses the

FpE, as they have fewer number of fuzzy rules. This was attributed to the faú that

the BIC and AIC penalise complex models to a greater extent'

a
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The optimum neurofuzzy and MLP models were found to be comparable in terms
of model accuracy, although the MLP model was found to perform slightly better
than the neurofinzy model.

The optimum neurofuzzy model was found to be more parsimonious than the back-
propagation MLP with fewer model inputs and connection weights.

The optimum neurofuzzy model was found to be more transparent than the back-
propagation MLP model as it was able to describe the relationship between the
model inputs and corresponding output using a set of fuzzy rules.

Finally, Chapter 7 examined the use of stochastic simulation in the analysis of ANN
settlement prediction and produced a set of stochastic design charts for routine use in
practice' It was found that the stochastic analysis was essential to incorporate the
uncertainties associated with the predicted settlements. It was also found that the charts
developed are a useful tool for the design of shallow foundations on cohesionless soils,
as they provide the designer with the level of risk associated with predicted settlements
and thus can give a more realistic indication of what the actual settlement might be.

8.3 Original Contributions of the Research

To the author's best knowledge, this thesis has made the following original
contributions:

1' The suitability of using two different types of artificial neural networks (ANNs), i.e.
multi-layer perceptrons (MLP) hained with the back-propagation algorithm and B-
spline neurofizzy networks trained with the adaptive spline modelling of
observation data (ASMOD) algorithm, for predicting the settlement of shallow
foundations on cohesionless soils has been assessed.

2' New guidelines to assist in the development of ANN models have been provided
and in particular, information is given on:
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. How to test the robustness of ANN models. This is a new test that has never

before been proposed in any field of ANN application.

o How to test the capability of the software used for developing ANN models.

o The effect of using different internal network parameters on ANN model

performance, including the number of hidden layer nodes, leaming tate,

momentum term and transfer function.

o The effect of the statistical consistency of the training, testing and validation data

sets on ANN model performance.

o The effect of the proportion of the data used for training, testing and validation on

ANN model performance.

o Four different methods for ANN data division, including random data division,

data division to ensure statistical consistency of the subsets needed for ANN

model development, data division using self-organising maps (SOMs) and a new

data division method using fuzzy clustering. The second and third data division

methods have been used to a limited extent in water engineering but never in

geotechnical engineering, whereas the fourth method (îurzy clustering) has never

before been applied to the development of ANN models in any field.

. The effect of the distribution transformation method for input variables on ANN

model performance.

o How to test the relative importance of ANN model inputs using sensitivity

analysis.

3. An ANN model that has been found to outperform the most commonly used

traditional methods for settlement prediction of shallow foundations on cohesionless

soils has been developed and a database that contains a total of 189 case records of

measured settlements has been provided.

4. A simple and practical formula that is based on the ANN model for settlement

prediction of shallow foundations on cohesionless soils has been introduced and a

series of design charts that are based on the ANN model for settlement prediction

have been generated.

187
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5' It has been shown that neurofuzzy networks can be used to extract rules from data
that make physical sense, which could be used to gain understanding in situations
where data are available but physical relationships are not well understood. In
addition, it has also been shown that neuro frrzzy networks can be modiflred by
incorporating available expertise to improve model performance and enhance the
interpretation of constructed model.

6' It has been demonstrated that ANNs can be used to provide valuable information
about the relationship between model inputs and their corresponding outputs in the
form of a relatively simple equation (in case of the back-propagation MLp) or a set
of fuzzy rules (in case of neurofuzry networks), and thus ANNs do not have to be
treated as a"black boxes".

7 ' The effect of the parameter uncertainty and prediction method uncertainty in the
analysis of ANN settlement prediction of shallow foundations on cohesionless soils
has been investigated, which, until now, has never been applied to ANN models in
geotechnicai engineering. In addition, the effect of varying the amount of the
parameter uncertainty on the magnitude of the predicted settlement has been
investigated.

8' A set of useful stochastic design charts that are based on the ANN method has been
developed and provided for routine use in practice.

8.4 Recommendations for Future Work

Despite the good performance of ANNs in this work and in many situations in
geotechnical engineering, they suffer from a number of shortcomings, notably, the
lack of theory to help with theil development, the fact that success in finding a good
solution is usually obtained by trial-and-effor and their limited ability to explain the
way they use the available information to arrive at such solutions. Consequently,
there is a need for a comprehensive set of guidelines to assist in the development of
ANNs, even though, this thesis has provided a significant contribution in this regard.

I
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There is also a need for more future research into methods that provide a

comprehensive explanation of how ANNs arrive at a prediction.

2. The guidelines proposed in this research for the development of ANN models need

to be applied to other case studies to investigate whether they can be considered as

generic or whether they are specific only to the case study considered in this thesis.

3. The ANN model developed in this research is based on 189 data records and is

suitable for use in an interpolative sense within the range of the data used for model

calibration. Consequently, like all empirical models, the range of applicability of

the developed ANN model is constrained by the data used in the model calibration

phase. In order to update the model and make it more accurate in the future, it is

desirable to include additional data so that the model can accurately predicts

settlements across a wider fange of footing sizes and soil conditions.

4. Although the ANN model developed in this research was found to outperform all of

the traditional methods for settlement prediction examined, it is based on in-situ

measurements of soil compressibility that use the SPT. Whilst the SPT is not the

most accurate in-situ method for soil compressibility, a model based on the CPT, for

example, is likely to produce even better predictions. However, before such a model

can be developed, it is necessary to obtain an extensive set of CPT-based data and

corresponding settlement measurements. At present, in the published literature,

such data are very limited indeed.

8.5 Conclusions

From the analyses presented in this thesis, it can be concluded that:

o Artificial neural networks (ANNs) have the abitity to predict the settlement of

shallow foundations on cohesionless soil with a high level of accuracy and

ouþerform the most commonly used traditional methods.
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o The new proposed approach for data division that is based oî finzy clustering
appears to be applicable and provides a useful contribution

ANN models.

to the development of

o ANNs need not to be treated as a "black boxes" as it has been demonstrated that
ANNs can be translated into a relatively simple equation (in the case of the back-
propagation MLP model) or a set of fuzzy rules (in the case of neurofuzzy networks)
that give valuable information regarding the relationships between the model inputs
and their corresponding ouþuts.

o The stochastic analysis for ANN models proposed in this study allows the level of
risk associated with predicted settlement to be quantified in the form of a set of
stochastic design charts that provide the designer with more rational settlement
prediction. The charts developed in this work can be used to predict settlements for a
desired reliability level given the deterministic settlement predicted from the ANN
model' This will be a useful tool in the design of shallow foundations on
cohesionless soils.
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3.2

3.2

32

32

3.2

Fmdt¡g
embcdment

deptù
(m)

2.3

23

23

23

23

2.6

3

3.2

3.4

3.5

0

0

0

9.7

1.5

5

5

0

0

1.5

5

5

5

5

5

Avcrage
SP'T
bloç
cou¡t

m
m
20

20

20

20

N
20

2l
x2

2t

l9

t7

60

t2

2t

2t

l6

l6

12

24

22

20

20

20

Foodng
net

epplied

PñessuFe
lkPrì
l13

t23

182

188

t99

r39

r6l

150

u3

tn
t6
l5ó

l54

233.6

?s

82

79

245

2475

70

t20

134

134

125

135

Foot¡ng
hngth
(n)

7-8

?-8

7.8

?.8

7.8

8.8

9.8

10.2

10.7

tt-2

l0l
35

?5

20.5

33.4

5.2

4.3

4.1

3.7

Footing
wHû

(m)

4-9

4.9

4.9

4.9

4.9

5.5

6.r

6.4

6i
7

4L7

335

27-4

55

35

22

22

2-5

I

t6

ll
s-2

4.3

4.1

3.7

Csse
Nc

51

52

53

v
55

56

57

58

59

60

6l

62

63

&
65

6
67

68

69

70

7t

72

73

74

75
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Reference

Burland and

Burland and

Budand and

Burland and (r
Burland and

Burland and 985)
Burland and

Burland and

Burland and

Burland and

Burland and

Bu¡land qnd Burbidge (1935)

Burland and 1985)
12.8 Burland and
45 Burland and
1.5 Burland and
4 Burland and

6.7 Burland and e85)
2.? Burland and (1e85)
ll Burland and (
2 Burland and (l

Burland and (l
1.3 Burland and (l

Meesurcd
settlei¡ent

(mm)

I1.5

2.t

I
1.3

0.6

a',

23.s

18.8

3-6

2S

1.5

8.ó

22

4.8

2-8

2.1

Shrcturc

Building

Tcst footings

Test footings

Tcst footings

Test footings

Multi sorcy officc block

Multi stoæy officc block

Multi sorey officc block

Su¡dcnt cente

Platc load tesrs

Platr load lcsts

Platc lo¿d tests

32 Storcy building

Tank

Tank

12 Sorcy owerblock

Plate load tcsts

Plate load tests

Plat€ load tcsts

Platê load tcsts

Plate load tcsts

Bridge

Factory buildiDg

Factory building

Factory building

SoIl density

mcdiur¡r dcnsc

dense

very dcnse

densc

very dlcnse

mcdiu¡n densc

rnedium densc

medium dense

nrcdium dense

densc

dense

r¡edium dense

dcnse

medium dcnse

medium dcnsc

densc

very dense

very dense

dense

r¡edium dense

rnedium densc

loose

loose

medium dense

medium densc

Sotl type

rnedium sand

nrcdiumsand

mcdium sand

¡¡rcdium sand

nrcdium sand

fine to qrsc sand

finc !o coa$c sånd

finc to qxme ssnd

sand/gravcl

sand with gra.vel

sand with gravcl

sand with gravel

medium sand

silty fine sand

silty fine sand

sandy gra.vcl

sand/gravel

sand/gravel

sand/gravel

sand/gravel

sand/gravel

silty sand

sandy gravcl

sandy gravel

sandy gravcl

Itrlck
of
sdl

l¡ycr
l¡nì
t2.5

>3

>3

>3

>3

t92
19.2

t9.2

t6.7

>20

>?n

>20

>27

>8.9

>8.9

7

4.1

6.1

6.t

3.4

7.t

Deptù
of

w¡t¿t
tabl€
ln)
3.2

>3

>3

>3

>3

0

0

0

0

>?5

>2-S

>25

{.9
r.8

1.8

5.6

dry

l5
3.t

0.9

1.8

-t. I
1.5

1.5

1.5

Fmdlg
cmb€dE€nt

depth
(n)

5

0.6

0.6

0.6

0-6

2.t

2.t

2.t

4.6

2.6

2.6

2.6

7.9

0.3

0.3

5

0.5

t-2

3.1

1.2

2-7

t.2

t.2

t.2

Avenge
SPT
bloç
count

n
35

5{)

28

45

l8

l8

l8

t7

29

26

t8

30

20

20

37

50

50

30

20

20

t2

l3

l3

r3

Foodng
Det

rpplied
P¡essÛrc

¿kPeì

t29

r50

r50

l5()

rl)
193

193

193.8

34

2t5

2t5

2t5

270

4t

33

512

300

300

3m

300

300

9l

78

77

77

Footing
lctrgù
(n)

3.4

l5
1.5

1.2

l-2

3rJ
27.4

22.5

43.3

1.2

1.2

t.2

57

7

t.2

l-4

0.9

0.9

0.9

30.5

1.1

1.5

1.5

FooÉng
rldü
(n)

3.1

l5
l5
t2
t-2

l3

t3

l3

t7-2

t.2

t.2

1.2

v
¡ 8-3

15.2

4

t.2

1.4

0.9

0.9

0.9

4.5

l.l
15

1.5

C¡sê
No.

76

n
78

79

80

8l
82

83

84

85

t6

87

88

89

90

9l

92

93

94

95

96

97

98

99

100

b.J
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\
N
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\
Þ
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Rdcrcoce

Burland and Burbidge (1985)

Burland and Burbidge (1985)

Burland and

Burland and

Burland and 985)

Burland and (1

Burland and

Burland and 1985)

Burland and (

Burland and (

Burland and Burbidge (lgtl)-
Burland and Burbidgr!!!!|-
Burland and Burbidge (1985)

Burland and (1

Burland and

Burland and (

Burland and

Burland and (1

Burland and (1

t982\

Burland and (

Burland and (

Burland and

Burland and Burbidse (1985)

Mesred
scüleocnt

(mm)

3-4

3.9

r0.5

3.9

5.4

9.3

l0

5

11.6

13.3

18.3

m.4

r9.8

6

3.6

4.4

6

4.7

2.8

9.6

2l

7

l16

8l

Strrct¡üe

Various stn¡ca¡rcs

Væio¡s srucores

Various stnrctures

Va¡ious sm¡ctu¡es

Various stn¡ci¡fËs

Va¡ious stn¡ctucs

Va¡ious sm¡cn¡¡es

Va¡io¡s strri¡¡cs

Va¡ious stucturcs

Various sm¡c¡¡¡cs

vefious sûl¡ctu¡es

Various structu¡es

Building

Building

Building

Tcst footings

Tcst footings

Tcst footings

Tcst footinç

Platc load t€sts

Bridge

25 Storcy building

Sorage lank

Building

Soil densiþ

dcose

mediumdcnsc

mediumdensc

mcdiumdensc

densc

dense

densc

mcdiun dênse

¡¡cdium densc

mediumdensc

¡¡cdium dense

nriium densc

dense

dcnsc

medium dense

dense

vcry døtsc

rnedium dcnsc

medium densc

densc

very densc

¡ncdium densc

very densc

very loose

vcry loosc

So¡t type

finc to r¡cdium sand

firc to ¡¡cdium sand

finc o medium sand

fine o modium sand

fine o rrcdium sand

fi¡c to ncdium sard

finc to mcdium sand

fi¡€ to rricdium sand

fine o medium sand

fine to r¡cdium sand

finc to mcdium sand

fi¡e o nrcdium sand

fi¡c o ¡nedium sa¡d

ñnc to mcdium s¡nd

fine !o nrcdium sand

finc sand

finc sand

compactcd moist sand

conpacted moist sand

sand/gravcl

coarsc sald with g¡avcl

fi¡c coa¡sc sand

¡¡cdium sand

siþ finc sand

silty ñnc sand

Tb¡dL
of

soll
l¡ter
lmì
>25

>25

>25

>25

>25

>15

>E
>25

>25

>25

>25

>25

>25

>25

>25

>32

>ï)
12

32

45

Dcpth
of

rlter
t¡blc
lm)
È3

G3

o-3

0-3

(l3

G3

2.6

2i
3

ù3

ù3

ù3
G3

È3

ù3

>2

>2

0

0

I
-25

l0
I

I

Fæting
embedmer¡t

dePûh
(m)

3

3

3

3

3

1

0.4

0.3

0

3

3

3

3

3

3

0

0.5

0.5

0.5

0

3

l0
1.5

3

3

Avcrrgc
SPT
blow
cor¡nt

35

25

25

25

35

35

25

25

Æ

40

/()

4
30

30

25

74

45

45

45

25

53

20

@

5

5

Foodng
net

applted
Prrssu¡e

lkPr)
t67

2n
230

2U

195

8l

250

2ñ
294

3M

3{X

304

165

148

196

z¿0

5g
339

2U

320

l8l
221

2Æ

85

85

Foottng
hngth

(m)

26.9

r.E

1.4

2.2

5J

72-9

rL6
t2.7

I

5.7

6.3

ó.8

32.6

22.2

I
I
I

I

I

t.2

12-2

65

20

20

Foor¡nB
rüfh

(m)

23ß

1.8

1.4

I

4.5

l5

1.6

t2
t

33

3.6

4.5

22.9

2t.7

I

I
I

I
I

1.2

12.2

225

lo
20

20

C¡se
No.

l0l
tvz

103

tot
105

l(b

to7

108

109

lt0
lll
tt2
lr3
tt4
l15

ll6
tt7
118

ll9
t20

t2t
tx¿

t23

r24

tzs
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Referænce

Burland and

Burland and

Burland and

Burland and

Burland and (
Budand and

Burland and (r
Burland and

Burland and

Burbidge (1982)

Burland and

Burland and (
Burland and I
Budand and (1e85)!4U¡sríg

Burland and Burbidge (1935)
4.6 Burland and (
1.8 Burland and (

91.6 Burland and
74 Burland and
t20 Burland and (l
97 Burland and I
37 Burland and 985)
3.6 et al.
4.2 et al. 1998)

(25 Briaud and Gibbens

Measured
settlement

(mm)

l0
7.6

6.4

l3

12.7

26

r8.ó

IE

43.8

16.2

r0.9

14.3

4.4

2.3

2.7

SFuCurr

Multi storcy building

PlatE load t sts

Plate load tests

Platc load tcsts

Platc load tasts

30 Storcy building

20 Storey building

Boilcrhousc

Reactor building

22 Storcy building

Building

Stcel oil tr¡k
Machinc hall

Machine hall

Machine hall

Machinc hdl

Machinc hall

5 Storey building

Tcst footings

Embankncnt

Bridgc

Bridgc

Residcntial building

Rcsideotial building

Tesr footings

Soit denstÇ

dense

vcry loose

very loose

vcry loosc

very loosc

mcdium dense

mediumdensc

mcdiumdensc

dense

vcry densc

dense

dense

vcry dense

very dense

very densc

very densc

very dense

mcdium dense

vcry loosc

loosc

very loose

veq¡ loose

mcdium dense

SoiI type

sandygravel

firc ssnd

fmc sand

finc sand

finc sand

sand/gravcl

sand/gravcl

sand/gravcl

sand/gravel

sand/gravcl

sand/gravcl

sand

sand

sand

send

sa¡d

sând

finc coa¡sc sand

fi¡c sar¡d

fine sand

finc sand

ñnc sand

gravcly sand

gravcly sand

silty firrc sand

It¡clç
oi

soil
layer
fn)
t3

>37

>23

2t.6

82

5.1

z¿3

r8

IE

t0

l0

9.94

Depth
of

w¡tcr
l¡ble
lml
-5.5

dccp

doep

dcep

dccp

-2.2

-l.E

7.5

-2.5

l5

65

0.9

0.9

4.5

0

4.t4

Footing
embedment

depth
(m)

l0
03

0.9

o.2

09

to.7

7.3

3.5

5.3

6

I
o

2.4

1.5

1.5

3

3

2.7

0

0

I

I

3

2.5

o.762

Avenge
SPT
blow
cor¡trt

36

5

6

7

8

20

t4

x5

34

55

37

27

50

50

50

50

50

l8

7

7

4

4

2s

l5

l8

Footing
net

spptld
pnesturc

ftPa)
104

133

113

t99

268

2t8

2W

253l

I9t

136

293

120

5U

6n
575

584

y7

386

190

t45

t42

99

47.6

18.32

ffi

Footir4
lcqgth

(m)

41.2

0.9

0.9

t.2

l2
u
43

t4.5

26

10.7

2.1

2.1

2.8

2.4

4.t

30.8

6

20

l4

14.5

23.9

22.6

1.5

Food¡tr
çidúh

(m)

4t.2

0.9

0.9

t2
t,2

t7.6

t6

t4.5

33

l5

2.6

24.4

2-t

2.1

t.8

2-l

2.t

30.2

6

20

z8

3.3

l3.t

l4
IJ

Crse
No.

t26

t27

t28

IE
lï)
l3l
t32

133

t34

135

l3ó

t37

138

139

t&
t4l
t42

143

14
t45

t6
tn
r48

149

150

l\)
s
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N
s
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Rdercnce

Briaud and Gibbens (199)
Briaud and Gibbens (1999)

Picornell and del Monte (1988)

Wahls (1997)

Wahls (1997)

Wahls (1

Wahls (lÐ7)
wahls (197)
Wahls

S/atrls

Wahls (1997)

wahls (1997)

Wahls (1

Wahls I
Wahls I
Watrls

Wahls I
Wahls

Wahls

Wahls I
16.8 V/ahls 1997\
155 Wahls 1997)
7-t Wahls

Wahts (1997)I1.9

Me¡surcd
sctf¡ement

(mn)

25

25

Æ

E.9

t7

23.9

19.3

l5-5

10.?

l5J
7.1

6.6

7.4

6.4

I l.?

5.8

tt.2

2t.t

16.3

tL.7

Struclure

Tcst footings

Tcst footings

Tcst footings

Loed tcst

Bridge

Bridgc

Bridgc

B¡idgc

Bridgc

Bridgc

Bridgc

Bridge

Bridge

Bridgc

Bridgc

Bridgc

Bridgc

Bridgc

Bridge

Bridg.e

Bridgc

Bridgc

Bridgc

Bridgc

Soll density

medium densc

mcdium dcnse

mcdium densc

loosê 10 medium

Soll typc

silty finc sand

silty fine sard

silty fine saod

-silty 
gravcUsiltY salú

sand

sand

send

sand

sard

send

sand

sand

sa¡rd

s¡nd

sand

sand

sand

sand

sand

sand

sand

sand

sa¡d

sand

sand

thldg
o[

so¡l
l¡ycr
lm)
9.94

9.94

9.8

>30

Depû
of

rvster
t¡bh
lm)
4.14

4-t4

4

l.l
33

3.7

3S

4

21

9.4

52
3A

3.4

5.2

52

EJ

4.9

4.4

3.4

t3A

6.1

1.8

52

0.9

5

Fmdng
cmbcdmc¡t

depúh
(n)

Q.162

o;t62

0.8E9

0

0

0

0

1.2

l5
0

1.5

l5
r5
1.5

1.5

0

1.8

,,

2.7

0

6-7

l5
0

0

2.5

Avenge
SPT
blow
count

l8

t8

l8

20

44

58

43

l9

t2

34

22

l8

l8

20

22

2L

42

24

39

24

23

3E

39

49

24

Fmd¡g
n€t

qplied
PñElIil¡¡e

lkP¡)
576

500

5@

148

t53.2

tn.t
lll.l
I16.8

90

81.4

t12

1005

71.8

tt2
I18.7

r58

I14.9

lt2
85.7

tu2.5

t44.1

155.6

ró8.1

161.4

181.9

Foo6ng
lcnglh

(m)

25

t
3

20

t9.4

r9.4

16

l6

t25
22:l

24.r

6.4

9-3

82

5.6

13.1

23.4

23.2

m-s

t.5

N.7

30.7

r3.5

13.6

8.5

Fooda
çtdth

(m)

23

3

3

l5

s.2

5.2

4.6

5.1

3.8

3A

5.6

6.4

6A

49

4.9

25

5.1

4.6

4.6

8.5

6.1

6"1

6.6

4.9

5

Cese
No.

15l

t52

153

t54

155

156

r57

r58

r59

160

l6l
162

163

164

165

166

t67

168

169

170

tll
l't2

t73

r74

t75
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Rcfere¡ce

Wahls (1997)

Wahls (r9e7)
Wahts (1997)

Wahls(lD7)
Wahls (1997)
Wahls (199Ð
Wahls (197)
Wahls (t997)
Wahls (1997)

Bazaraa (1967)

Bazaraz(1967)
Bazaraa(1967)

Baz.ana(1967)
Bazaraa(1967)

Meesured
settlement

(mm)

37-t

2t.t

ll.9
33

ll.9
7.9

4.t

ll.9
9.9

25

8.5

l5

43

25

Skr¡ch¡e

Bridgc

Brfulgc

Bridgc

Bridgc

Bridge

Bridge

Bridgc

Bridgc

Bridge

l8 Storcy building

l1 Storcy building

2l Sørcy building

Boilcr and slrop

Regenerator

Soi¡ dcodfy

medium densc

mcdiumdcnsc

Soil type

sand

sand

sand

sand

sa¡d

sand

sand

sand

sand

firrc/nædium claycy sald

claycy sand

finc to n¡edium sand

sand

frne grcy sand

ltHc
of

soil
l¡ycr
(m)

>15

15.5

t2

1.84

8.7

IÞpah
of

r¡ter
t¡blc
lm)
2

4.5

2

2

u.6
1.7

25

l2
l2
0

2.5

0.6

25

0

Foottng
cmbedment

depth
(n)

2

3

2S

2

5

2.8

3.6

L3

2.3

4.5

4.5

4-8

2.3

255

Averag!
SPT
blor
count

't

50

t7

9

32

42

42

42

42

ll
2:2

t6

8

2t

Footir¡g
trct

rpp[ed
prlssrc

ftPel
9E,6

230,.8

72.8

196.3

5gÌ5
158

2145

t3t.2

9s.8

il5
190

tt4
4m

175

Foodog
length

(m)

145

t0

24

2t

7

l6

l6

x
28

72
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Appendix B

Database Used for Synthetic Clean and Noisy

Data

Case No.
Input variables Output variable

B (m) c (kPa) N S. (mm)
(clean)

d (nm)
(noisv)

1 0.6 6.8 5.1 1.1 1.3

2 26.0 t4t.5 50.5 5.4 3.6

J 5.4 t56.2 20.4 t3.7 12.4

4 2t.l 709.8 24.5 56.2 51.4

5 2t.l 42.8 42.2 1.9 2.2

6 28.1 639.4 7.0 177.0 t52.9

7 10,6 3 19.1 37.1 t6.2 t7.0

8 5.0 731.0 45.4 28.6 21.3

9 18.2 295.6 25.s 22.4 37.s

10 J.J 547.7 2t.9 42.1 40.1

1l 7.1 103.9 I 1.3 16.8 28.2

12 43.6 699.6 53.2 25.9 23.5

13 39.6 118.1 32.1 7.2 8.1

t4 3.3 59.0 9.2 10.7 12.3

l5 20.2 604.2 10.9 107.1 t06.7

16 38.9 669.0 54.1 24.3 t5.7

t7 23.1 79.7 45.1 3.4 J.J

18 2t.5 442.0 42.0 20.4 23.2

l9 32.6 610.7 53.0 22.6 22.3

20 46.6 778.5 5.7 267.9 284.0

2l 6.6 6s7.4 33.4 35.9 41.0

22 35.0 515.8 37.3 2't.t 22.4

23 t2.5 13t.7 9.1 27.3 35.0

24 46.5 290.7 48.3 11.8 tt.2
25 1.4 729.2 49.1 20.5 20.4

26 2t.0 76.7 47.0 3.1 4.2

27 19.5 s49.4 59.1 18.0 t9.l
28 5.2 86.0 10.9 t4.l 15.9

29 t7.6 765.3 36.1 40.9 35.9

30 10.7 362.9 43.r 15.9 13.3

3l 49.s 143.0 24.6 11.4 t2.3

32 23.6 608.0 7.6 154.5 t87.7

33 14.2 106.2 58.7 3.4 3.4

34 2r.0 788.7 35.5 43.1 40.7

35 46.3 12.0 r0.0 2.3 1.9

36 12.5 134.6 9.5 26.9 42.9

37 17.7 381.3 37.9 19.4 20.0

38 28.2 319.2 17.6 35.3 37,3

39 38.9 50.3 23.5 4.2 3.5

40 39.1 269.1 53.s 9.8 3.1

2t7
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Case No. , (m) ø (kPa) ¡/
variable

S. (mm)
(clean)

d (mm)

4t 32.5 480.0 3s.0 26.8 36.3
42 l9.l 331.6 29.4 21.8 15.0
43 40.4 797.2 15.2 103.2 116.8
44 17.s 87.7 52.5 3.2 2.4
45 35.8 692.9 5.8 233.0 198.1
46 38.6 639.4 50.4 24.9 13.5
47 13.7 359. r 39.3 17.4 12.7
48 40.5 307.1 57.3 10.5 19.2
49 27.2 642.9 8.5 147.3 191.9
50 20.7 630.0 14.0 87.4 56.7
5l 35.2 636.7 53.8 23.2 12.0
52 18.3 206.0 12.9 30.6 49.6
53 29.9 672.2 9.5 137.4 164.2
54 14.7 372.5 40.0 17.8 12.0
55 2t.r 124.9 53.6 4.5 3.7
56 36.3 639.9 52.9 23.t 20.9
57 l4.t 49.4 50.9 1.8 2,0
58 0.55 131.0 22.3 5.1 6.3
59 38.2 242.6 5l,0 9.3 5.4
60 47.3 655.3 42.9 30.1 29.8
6t 34.3 73.6 3 1.8 4.5 5.3
62 2.6 295.9 42.8 ll.l 4.3
63 l9.t 73.8 48.8 2.9 1.2
64 13.3 247.1 24.2 19.s 17.4
65 7.4 670.4 34.3 36.1 12.0
66 44.0 t67.1 34.0 9.6 3.5
67 4.1 1t6.9 16.3 12.4 5.8
68 4.3 739.2 47.3 27.3 36.8
69 t7.4 144.5 5.5 50.5 40.8
70 5.8 782.6 s 1.6 27.4 32.6
7t 25.4 258.3 12.3 40.9 5l.3
72 31.9 229.1 56.0 8.0 7.4
73 28.3 201.4 56.2 7.0 5.1
74 23.5 686.3 18.6 71.7 87.2
75 12.6 642.7 24.7 49.6 56.2
76 ls.6 219.4 17.8 23.6 3 r.3
77 41.3 460.7 22.6 40.0 37.0
78 48.6 163.8 28.4 I1.3 12.6
79 25.9 196.7 58.2 6.6 6.4
80 7.3 208.1 25.5 r5.0 5.3
81 20.8 475.1 47.4 19.4 30.7
82 49.3 453.8 12.8 69.8 12.2
83 5.6 682.s 38.0 32.3 36.2
84 31.8 336.6 16.0 41.2 4t.t
85 33.0 631.6 55,5 22.3 27.t
86 23.4 745.0 26.8 54.0 76.8
87 37.4 702.6 5.5 250.5 30.3
88 15.5 790.0 41.9 36.2 50.2
89 2t.3 73.9 46.3 3.1 2.9
90 9.9 136.0 12.6 20.2 8.2
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Case No.
Input varÍables

a (m) q (kPa) N S. (mm)

lclean)
d (mm)
(noisY)

9l 26.7 253.1 10.1 48.9 38.0

92 1.6 559.9 25.4 31.6 35.0

93 6.2 514.3 t4.l 66.2 66.0

94 14.1 212.6 18.5 22.0 2r.7

95 27.8 24"1.8 8.1 59.4 49.3

96 3',t.0 t64.6 41.4 7.8 7.7

97 37.5 556.1 40.1 27.2 23.2

98 34.9 3t5.7 9.7 63.5 43.2

99 21.5 117.8 52.2 4.3 6.0

100 26.4 601.6 58.7 20.0 23.9

101 41.9 527.4 31.2 33.2 37.5

r02 7.1 233.2 29.1 14.7 12.8

103 4l;7 t70.9 37.1 9.0 1 1.1

104 28.1 74r.8 2r.l 68.5 106;l

105 32,1 61.5 32.6 3.6 5.1

106 48.2 5.0 6.9 t.4 1.5

107 38.9 684.9 56.3 23.9 28.3

r08 1.6 545.2 23.4 33.2 40.1

109 28.5 473.9 38.6 24.0 26.0

ll0 29.0 444.4 34.1 25.5 16.0

111 33.2 444.1 29.3 29.7 43.6

Lt2 23.2 384.5 32.2 23.2 30.1

113 t2.2 532.1 9.8 t02,s t14.4

1t4 45.1 424.s 13.4 62.1 40.0

115 44.1 208.7 39.7 10.3 9.4

116 31.6 673.8 7.9 167.3 t96.3

TT7 1.3 53.5 r0.7 6.6 13.3

118 18.5 97.9 52.8 3.5 6.6

119 3.9 309.8 43.3 t2.3 12.6

120 20.2 39.4 42.7 r.7 1.0

t2r 25.5 721.4 2r.2 66.3 38.5

t22 4.1 534.4 t9.2 48.2 52.6

t23 33.3 246.5 56.9 8.5 9.8

124 33.9 206.8 50.8 7.9 9.5

125 42.6 269.8 49.8 10.6 11.5

126 26.t 198.5 58.2 6.6 2.1

127 46.6 606.8 36.9 32.3 7.85

t28 46.3 733.s s4.8 26.4 34.1

129 14.4 433.4 48.8 17.0 t4.9

130 28.1 217.6 s8.7 7.2 7.6

131 7.5 84.0 8.1 19.1 18.4

132 17.4 507.6 55.7 17.6 33.8

133 40.3 166.0 38.0 8.6 6.9

134 49.0 576.5 30.0 37.8 35.6

135 49.7 630.6 36.8 33.7 45.s

t36 6.0 273.0 3s.8 13.8 t0.2

t37 22.4 90.9 47.s 3.7 3.9

138 21.2 780.1 34.1 44.4 43.4

139 0.9 5.5 59.5 0.1 0.1

140 46.0 43.6 14.6 5.8 6.9
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Case No. B (m) c (kPa) N
variable

,S- (mm)
(clean)

d (mm)

t4t 46.0 20.6 I1.5 3.5 2.7
142 44.9 635.3 42:l 29.3 42.9
143 0.9 658.0 39.9 18.4 25.5
144 6.5 774.5 49.7 28.4 33.3
145 lt.4 403.s 48.0 15.9 20.0
146 40. I 382.3 13,I 57.3 8s.6
147 17.r 688.1 26.0 51.0 61.2
148 34.4 177.4 46.1 7.5 3.6
149 45.3 667.2 46.7 28.1 27.9
150 26.7 597.4 57.7 20.2 22.4l5l 0.9 s96.6 31.4 27.3 14.3152 20.4 792.0 36.7 41.8 38.0
153 31.0 544.2 45.6 23.3 21.3
154 32.7 303.0 10.3 57.2 64.7
155 20.s 310.7 24.9 24.1 20.8
156 20.3 326.1 27.3 23.1 24.2
157 31.9 529.2 42.s 24.3 I 8.1
1s8 39.5 66.0 25.0 5.1 8.7
159 35.3 322.7 10.2 61.9 59.0
160 25.4 662.0 13.2 97.8 163.8l6l 47.9 401.2 7.0 1r 1.9 101.6
162 4.0 570.t 24.2 40.7 45.8
163 33.6 507.1 37.6 26.4 30.4
164 22.6 771.2 31.3 47.8 4't.7
165 37.4 702.7 5.4 252.8 163.s
166 20.0 264.5 19.2 26.6 25.8
167 49.9 119.7 20.9 lt.2 12.8
168 25.9 394.5 30.6 25.1 24.9
169 28.9 543.8 47.9 22.2 23.s
170 14.6 63.0 52.3 2.3 2.6t7t 4t.7 493:7 26.8 36.2 29.9
172 29.t 401.0 27.9 28.0 3s.9
173 19.9 600.3 r0.8 107.7 101.6
174 33.2 412.0 24.9 32.4 32.3
175 31.9 420.3 27.5 29.9 40.0
176 '7.0 446.5 s8.7 t3.9 14.9
t77 29.7 697.3 13.2 103.0 I16.5
178 12.4 291.6 31.3 17.7 15.5
179 3.2 4t.t 6.9 9.9 8.3
180 15.2 5r5.3 59.2 16.7 18.0
181 5,2 52.9 6.3 14.8 18.0t82 4s.7 161.5 31.3 10.1 l0.t
183 48.2 57.7 t4.2 7.9 7.5
184 18.2 606.9 t3.6 86.3 72.2
185 43.3 703.0 54.0 25.6 40.8
186 41.7 133.1 31.9 8.2 8.4
187 14.8 160.9 10.6 29.0 30.6
188 43.1 380.6 9.5 78.s 66.1
189 37.2 717 .t 7,6 183.4 58.0
190 25.9 r49.1 51.6 5.6 7.6
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Case No.
Input variables variable

B (m) q (kPa) N S. (mm)

lclean)
d (mm)
(noisy)

191 42.0 182.0 38.3 9.3 6.4

t92 40.1 173.8 39.2 8.7 9.8

193 1.8 781.8 55.9 20.6 t5;7

194 37.2 605.0 47.t 25.2 21.4

195 36.8 711.1 7.2 191.7 t04.4

t96 45.7 438.9 14.7 58.7 43.0

t97 34.8 425.6 25.0 33.4 60.9

198 26.4 656.1 tt.2 114.3 148.9

199 32.1 325.6 14.2 44.8 29.1

200 31.9 218.2 54.5 't.8 4.0

20r 33.3 307.6 10.3 58.2 94.t

202 46.1 594.5 35.8 32.7 39.0

203 2t.l 485.8 48.5 19.4 13.0

204 36.8 447.0 25.8 34.0 28.5

205 1.6 3s8.3 52.6 9.7 8.6

206 49.7 767.0 55.7 27.2 30.5

207 20.5 132.5 55.3 4.6 5.6

208 8.1 779.6 48.7 29.7 17.3

209 30.8 655.3 6.2 206.9 204.8

2to 34.3 241.2 55.0 8.6 10.1

2ll 45.2 585.4 35.5 32.4 t2.7

212 6.1 498.2 11.9 7s.6 32.6

213 44.0 387.0 9.4 80.7 72.2

214 43.5 409.8 13.1 6t.4 20.5

215 6.3 392.9 52.1 13.7 5.0

216 48.3 t49.1 26.8 10.9 5.2

2t7 20.1 r97.4 9.7 39.2 52.8

218 21.6 45.1 42.0 2.0 1.6

2t9 6.7 729.9 43.3 30.8 36.8

220 43.6 ts6.4 33.0 9.3 tt.7

221 48.9 84.7 17.2 9.7 9.0

222 26.s 508.6 45.6 2t;l 16.0

223 5.0 201.4 27.1 t3.2 16.1

224 40.7 213.4 44.1 9.5 t0.7

225 38.3 531.2 35;l 29.2 38.7

226 49.2 472.9 15.5 60.0 s5.4

227 t7.4 442.2 46.6 18.3 20.4

228 48.5 470.8 16.0 57.8 56.7

229 10.9 629.2 24.7 48. l 17.0

230 46.7 451.9 15.5 57.5 90.9

231 24.6 575.3 57.1 19.6 3.4

232 0.8 37t.7 s5.3 7.4 8.3

233 18.8 83.7 50.4 3.2 3.2

234 29.8 469.6 36.6 25.1 31.2

235 tt.2 330.6 38.0 16.4 23.4

236 t4.2 128.8 6.8 36.1 4.3

237 t9.6 446.3 44.8 19.3 26.7

238 21.9 34.4 40.1 1.6 1.5

239 48.0 22r.0 37.0 11.7 4.8

240 25.4 693.4 I'1,5 '77.2 60.0
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Case No. B (m) c (kPa) ¡/ S- (mm)
(clean)

d (mm)

241 29.2 537.6 46.7 22.5 25.0
242 25.0 444.0 38.5 22.s 22.4243 2.0 290.9 42.8 10.3 10.2244 47.t 55.0 15.0 7.2 5.924s 4.9 49t.9 12.3 70.6 70.4246 8.4 303.9 37.5 15.0 12.8
247 22.1 146.6 55.5 5.1 3.4248 29.4 8.7 28,3 0.6 0.8249 19.8 635.5 15.7 78.5 93.8250 8.2 183.6 21.0 16.2 18.225t 1.0 192.5 30.3 7.5 6.5252 20.3 557.2 59,3 18.2 22.4253 34.2 94.0 34.8 5.3 8.22s4 3.7 t36.9 19.6 l1.9 16.62s5 49.8 422.2 7.9 105.4 114.6256 9.5 60.4 57.6 1.9

257 24.3 4t9.0 35.8 22.8 27.5258 6.4 448.9 59.8 13.7 t4.92s9 39.2 664.3 53. I 24.6 t5.4260 0.5 559.s 26.6 17.7 26.0
261 19.9 49.0 44.4 2.1 2.7262 29.4 464.2 36.3 24.9 27.8263 45.0 220.7 40.3 t0.7 6.9264 40.8 612.9 44.2 27.2 24.8265 19.8 797.0 38.0 40.6 47.6266 23.9 292.7 18.7 30.4 6t.6267 48.3 799.4 6.8 232.1 430.3268 13.4 51 1.9 5,7 170.2 174.2269 29.3 251.9 7.t 69.2 39.8270 46.0 249.9 43.2 11.3 6.6
271 36.6 342.1 lt.4 58.6 63.9
272 8.2 622.7 26.8 43.2 50.2
273 4t.t 33.2 18.8 3.4 4.1
274 47.4 442.t t3.2 65.6 71.0
275 43.3 730.0 57.7 24.9 8.1
276 37.5 232.3 50.3 9.0 2.2
277 4.8 606.1 28.3 37.9 49.0
278 47.6 121.8 23.7 l0.l 8.8
279 33.4 273.2 5.5 97.2 102.9
280 11.8 701.4 33.7 39.5 38.1
281 3.2 668.9 38.8 28.8 55.4
282 32.4 22.3 26.9 1.6 1.3
283 16.0 326.r 32.1 19.5 18.4
284 29.0 425.0 3 1.3 26.s 35.7
285 36.0 443.3 26.t 33.3 24.7
286 38.t 138.2 35.8 7.5 7.9
287 43.5 115.5 27.5 8.2 8.1
288 ll.l 509.9 8.0 120.0 128.2
289 26.t 643.4 9.8 128. I 151.3
290 19.0 137.2 57.6 4.6 3.5
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Case No.
Input variables variable

ß (m) c (kPa) N S" (mm)
(clean)

d (mm)
(noisy)

29r 31.4 378.2 22.2 33.3 48.9

292 27.5 720.7 18.9 74.5 103.0

293 43.3 426.7 t5;l 53.4 62.6

294 42.5 436.8 18.0 47.7 60.0

295 1.0 228.6 35.2 7.9 I1.9

296 4s.0 625.2 41.2 29.8 35.8

297 22.5 415.8 37.3 2t.7 10.5

298 32.1 791.9 23.6 65.6 65.2

299 33.9 700.5 9.0 152.7 169.8

300 44.5 s99.6 38.3 30.8 20;l

301 12.7 s78.7 15.8 69.8 63.4

302 40.1 791.3 t4.7 r05.8 96.8

303 45.9 t76.9 33.3 10.4 11.8

304 37.4 132.9 36.7 7.1 6.1

305 34.4 644.6 55.7 22.7 23.8

306 11.6 696.8 JJ.J 39.7 29.5

307 6.2 717.4 42.2 30.9 5 1.8

308 32.5 14.9 25.7 1.1 1.0

309 38.2 794.3 t7.2 90.5 151 .5

310 41.1 663.5 50.9 25.6 23.3

311 16.7 161.9 8.6 36.2 40;7

312 28.6 283.4 12.2 45.3 52.0

313 31 .5 762.7 20.3 73.6 73.3

314 2t.4 749.3 29.7 49.0 31.7

315 34.8 150.2 41.9 7.0 6.8

3t6 34.3 514.5 37.8 26.7 30.3

317 24.6 656.8 13.3 96.2 95.2

318 35.3 548.4 41.5 25.9 27.5

319 40.3 167.4 38.1 8.6 9.8

320 43.4 692.8 s2.4 26.0 21.5

32t 12.7 36.1 50.6 1.3 1.7

322 44.1 61.4 19.2 6.2 5.9

323 36.1 597.3 47.3 24.8 24.7

324 15.6 498.2 s6.3 r7.0 22.7

325 39.4 r49.7 36.7 8.0 8.5

326 25.4 635.6 9.4 130.9 148.0

327 37.r 795.6 18.6 84.0 '73.7

328 38.2 17.5 19.7 t.7 t.4

329 14.9 312.2 31.4 19.0 20.5

330 4.3 435.0 5.2 t44.9 t'76.t

331 32.5 59.7 32.0 3.6 3.6

332 26.3 5t3.2 46.s 21.5 20.3

333 27.4 466.7 38.9 23.4 19.6

334 41.6 762.6 9.0 165.3 262.9

33s 25;7 226.4 7.5 58.3 60.3

336 28.0 305.1 15.9 37.4 39.4

337 28.6 t22.8 45.0 5.3 4.4

338 20.8 203.9 9.9 39.8 12.5

339 38.8 285.1 56.1 10.0 13.5

340 45.9 300.5 50.4 tt.7 8.1
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Case No.
variables

B (m) c (kPa) N
variable

S. (mm)
(clean)

d (nm)
(noisv)

341 27.1 152.2 s0.7 5.8 6.6
342 37.5 70.4 27.9 4.9 3.7
343 36.9 2r.t 21.8 t.9 1.6
344 46.4 7tt.3 51.6 27.2 14.8
345 19.3 15.9 40.6 0.7 0.5
346 46.s 496.9 21.9 44.7 81.5
347 4.7 696.9 41.0 30.0 39.1
348 8.4 313.5 38.8 r5.0 9.7
349 46.2 84.9 20.2 8.2 4.2
3s0 15.9 33s.2 33.s 19.2 31.1
351 34.3 693.8 7.6 177.7 212.2
352 38.0 459.9 26.2 34.5 23.2
3s3 4.1 37.4 5.4 I1.9 10.0
354 34.2 74.0 32.1 4.5 4.0
355 10.3 372.4 44.8 15.6 17.6
3s6 7.0 s53.5 18.s s4.8 66.7
357 42.2 6t1.9 42.s 28.3 l6.s
358 36.9 2s7.9 54.5 9.3 9.2
3s9 39.3 553.2 37.6 28.9 34.2
360 27.9 709.4 16.9 82.0 32.2
361 35.8 491.8 33.1 29.2 12.5
362 34.0 199.0 49.6 7.8 7.0
363 22.9 120.2 51.0 4.5 1.5
364 34.t 697.0 8.3 163.3 60. l
365 8.9 371.8 46.3 15.0 7.t
366 8.9 585.0 20.8 52.6 70.8
367 14.2 221.3 19.6 2t.5 17.4
368 26.8 555.6 51.9 20.9 24.9
369 44.2 4r7.4 13.4 61.2 76.7
370 25.0 468.0 41.7 21.8 20.4
37t 6.1 682.4 37.4 33.1 24.4
372 49.5 719.7 49.4 28.7 34.9
3'.'t3 18.8 781.6 37.0 40.8 46.3
374 6.3 185.8 23.4 14.4 19.1
375 48.7 86.5 17.6 9.6 8.9
376 15.0 687.3 28.2 46.7 52.2
377 30.8 135.8 44.3 6.0 5.8
378 25.6 701.5 18.3 74.5 26.4
379 35.5 240.5 53.5 8.8 13.9
380 30.3 427.9 30.3 27.6 4.8
381 24.6 289.0 17.4 32.2 36.1
382 23.4 577.9 58.8 19.1 19.0
383 8.6 245.2 29.t 15.7 19.5
384 8.2 3 83.1 48.6 14.6 20.8
385 21.8 721.4 25.4 55.1 6.6
386 3s.9 152.1 40.9 7.3 l0.l
387 24.0 766.4 29.t 5t.2 48.5
388 2.2 281.4 4t.2 10.6 4.3
389 13.3 648.3 24.7 50.0 38.9
390 7.0 613.0 26.8 42.0 46.6
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Case No.
InDut variables

a (m) c (kPa) N S. (mm)
(clean)

d (mm)
(noisy)

391 31.4 542.7 45.0 23.6 23.5

392 4.9 570.5 23.3 43.4 42.9

393 26.7 388.9 28.9 26.2 21.8

394 12.t 389.7 45.3 16.3 16.3

395 47.7 162.6 29.2 10.9 9.3

396 2.1 328.2 47.8 10.5 7.2

397 18.1 575.9 9.3 118.6 t63.3

398 t9.7 406.0 39.1 20.1 24.0

399 38.6 712.4 5.5 253.0 285.3

400 14.0 226.1 20.5 21.0 18.4

401 4;t 521.7 16.8 54.8 67.5

402 19.4 733.1 29.6 47.9 74.5

403 34.6 401.1 2r.8 36.0 50.4

404 22.9 431.0 39.0 2t.5 23.3

405 37.3 635.5 51.3 24.3 28.8

406 36.s 194.8 46.2 8.2 10.0

40'l 4s.9 615.0 38.9 3l.l 33.9

408 t5.4 428.8 47.0 17.5 11.0

409 JJ.J 668.6 5.3 245.7 361.0

410 20.7 538.8 56.3 18.5 24.t

411 3.5 657.7 36.8 30.3 33.8

4r2 38.3 196.3 44.3 8.7 5.6

413 8.9 271.7 32.4 15.6 14.2

4t4 2t.5 492.5 49.0 19.s 22.9

4t5 34.5 s't1.5 46.3 24.4 49.6

4t6 49.6 164.3 27.4 11.8 21.9

4r7 39.3 795.6 t6.2 96.2 98.5

418 42.r 396.8 12.8 60.7 34.9

419 12.6 84.8 57.5 2.8 1.6

420 9.5 r94.5 2t.l t7.2 18.8

421 39.2 509.7 3 1.8 31.5 36.6

422 34.6 351.7 t4.9 46.r 55.1

423 26.2 240.2 8.8 52.8 57.r

424 41.6 576.r 38.2 29.6 9.6

425 29.7 456.3 34.9 25.5 6.2

426 23.0 642.7 13. l 95.1 123.1

427 14.9 684.6 27.9 47.0 4t.3

428 2t.l 497.0 50.1 t9.2 20.3

429 42.9 392.2 tt.4 67.8 65.3

430 22.9 100.2 48.2 4.0 7.7

431 t6.2 684.9 26.6 49.6 40.2

432 2.2 t73.9 26.4 10.2 9.6

433 32.8 447.5 30.3 28.9 39.0

434 43.7 367.6 't.0 t02.2 76.0

435 t1.r 740.2 33.2 42.9 45.0

436 3.0 506.2 16.5 50.7 49.6

437 33.9 672.7 5.2 252.1 269.4

438 38.7 599.1 44.6 26.4 3r.2

439 11.1 300.8 34.1 t6.7 12.9

440 t2.7 79.1 56.6 2.6 3.9



226 Appendix B. Database Usedþr Synthetic Clean and Noisy Data

variableCase No. ¿ (m) c GPa) jV

clean

.S. (mm) d (mm)

441 44.6 s88.7 36.7 31.6 43.7442 39.6 103.8 30.2 6,7 7.9443 46.3 272.4 46.1 I 1.6 14.6444 27.8 7 s.5 39.3 J.t 5.6445 25.2 451.8 39.3 22.4 26.9446 43.8 6l 1.8 7 29.s 14.3447 24.1 290.8 18.3 30.9 30.7448 226.1 43.9 t0.l tt.2449 3l 781.0 22.6 67.7 45.6450 40.8 238.2 47.4 9.8 8.9451 24.4 23s.3 t0.2 44.6 40.8452 333.2 6.1 lt.7 13.2453 34.9 273.2 58.8 9.1 7.8454 40.7 236.s 47.3 9.8 10.3
455 26.0 736.8 22.9 62.8 7456 45.3 37.t 14.6 5.0 8.4
45 38.8 575.3 41.3 27.4 26.1458 47.4 717.3 5 1.3 27.5 46.1459 44.3 221.s 41.2 10.5 9.6460 40.7 23t.7 46.6 9.7 I r.0461 48.3 550 27.2 39.8 45.7462 37.4 63.7 27.0 4.6 4.6463 2.1 739.4 49.7 23.0 14.8464 36,7 387.0 17.5 43.3 42.0
465 5.4 430.3 s8,3 13.2 15.0466 34.2 453.8 29.6 30.1 29.7467 8.8 241.r 28.4 15.8 16.8468 34.4 749.7 I .J 95.8 109.5
469 35.7 88.6 32.3 5.3 4.4470 43.1 37.t 17.0 4.2 5.5471 15.3 247.4 22.0 21.5 20.3
472 4.6 501.5 l4.t 62.4 62.3
473 34.9 684.5 5.7 234.4 313.3474 35.7 410.5 2t 9 36.7 39.t47s 18.3 216.1 14.3 29.1 32.9476 2.0 50.0 9.4 8.1 7.t477 26.7 278.8 t3.7 39.7 33.4478 44.8 400.4 10.3 76.0 82.0
479 26.8 395.5 29.7 31.6
480 48.3 12t 22.9 10.4 10.4
481 2s.3 627.5 8.4 144.3 136.3
482 15.2 26.1 46.s 1.0 0.9
483 22.6 368.0 30.6 23.3 37.l484 32.7 266.1 5.2 98.8 t02.2
485 40.8 637.0 47.6 26.3 27.7
486 15.t 756.8 37.0 39.3 33. l
487 21.8 763.2 3l.l 47.6 15.0
488 5.0 574.8 23.7 43.1 58.3
489 49.6 56.0 12.4 8.8 6.1
490 l 1.8 497.3 5.5 171.7 194.3



Appendix B. Dqtabase Usedfor Synthetic Clean qnd Noisy Data

Training: I to 300, testing:301 to 400 and validation:401 to 500

227

Case No.
Input variables Outnut variable

B (m) q (kPa) N S- (mm)
(clean)

d (mm)
(noisv)

491 22.1 115.8 51.3 4.3 J.J

492 18.6 473.4 49.5 18.4 15.7

493 25.3 14.3 33.6 0.8 0.4

494 3.2 419.3 s9.3 11.8 8.6

495 40.7 706.0 57.2 24.2 44.2

496 31.5 55.0 32.4 3.3 4.3

497 48.6 r34.1 24.4 10.8 7.0

498 21.3 608.4 10.2 115.0 s9.4

499 29.4 252.7 7.1 69.3 tt2.t
500 20.8 494.0 50.0 19.1 22.9



Appendix C

Mernbership values of Fuzzv clustering

NUMBER OF CLUSTERS 16*********************

EIJZZY CLUSTERING
****************

1 2 3 4

0.0387 0.0594 0.1201
0.3835 0.0046 0.0110
0.0423 0.2320 0.0668
0.1,440 0.0128 0.0266
0.0228 0.0154 0.2149
0.0591 0.0125 0.0328
0.0176 0.0085 0.0684
0.0170 0.0128 0.2850
0.0699 C.0134 0.0286
0.0381 0.0056 0.0176
0.0241 0.0066 0.0278
0.7461 0.0050 0.0121
0.0281 0.0047 0.015s
0.2044 0.0045 0.0113
0.1943 0.0061 0.0148
0.0222 0.0054 o-0217
0.0304 0.003? 0.0113
0.0271 0.0043 0.0140
0.3780 0.0049 0.0117

6 1 o 9 10 11

0. 06st 0. 0525 O. 0713 0. 0514
0.0244 0.0423 0.0777 0.0457
0.0536 0.0489 0.055s 0.0485
0.0469 0.0641 0.0376 0.0674

0.0129
0.0519
0.7234
0.0529
0.0397
0.0378
0.1137

020 0 -0'746 0.080?
459 0.1459 0.0248 0.1525
715 0 .1489 0.0343 0.1343
255 0 .0436 0.01-87 0.0470

5 t2 13 74 15 16tJ
N)
oo 001 0.t208

002 0.0111
003 0.0669
004 0.0266
005 0.2135
006 0.0328
007 0.0689
008 0.2882
009 0.0287
010 0.017'7
011_ 0 .0219
0I2 0.0721
013 0.0156
014 0.011_3
015 0.0148
016 0.0212
017 0.0113
018 0.0140
019 0.071_7

0.0438 0.0s11
0.1028 0.04s7
0.0450 0.0483
0.0957 0.0612
0.0276 0.03s8
0.0731
0.0224
0.0203
0.0702
0.0648

0.044L
0.1004
0.0452
0.0959
0 .027 I
0 .07 42
0.022'7
0.0205
0.0709
0.0656
0.0362
0.r.485
0.0502
0.1442
0.r273
0.0338
0.0619
0.0502
0.0986

0.0441
0.1003
0.0452
0.0959
0 .021 9
0 .07 44
0 .0221
0.020s
0.0710
0.0656
0.0362
0.I419
0.0502
0.1436
0.1.277
0.0338
0.0619
0.0502
0.0984

0.0364 0.0825 0.0526 o.0655
0.0301 0.0146 0.0419 o.O24O
U

0
0

0
U

0

0

0

0

0

U

U

.0406 0. C586

.0752 0.0328
0.0489
0.0643
0.0375
0.0801
0.0338
0.027I
0.0610
0.1320
0. 0737

0.0536
0.0463
0.0564
0.0691
0.0658
0.0407
0.0491
0.0631
0.7727

0.0802
0.0317
0.0259
0.0623
0.1.260
0.06s3
0.0643
0 -1,295
0.0559
0.0624
0.0662
0.1618
0.1383

0.0360
0.0807
0.0319
0.0267
0.0626
0.7242
0.0656
0.0641_
0.1266
0.0s57
0.0624
0.0664

.0192 0.0993

.0843 0.0444

.0145 0.3700

.0147 0.0810

.2262 0.0354

.0206 0.0269

.0774 A.0562

0.0500r52

0

0

0

0

.2

.U

.0

.0

30
60
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0
ô

0
n

0
n

0

. 0s57 0 .037 4

.0699 0.0804
0641. 0.0337

.0402 0.02'7I

.049'7 0.061_3
-0647 0.1,297
1682 0.0121
0303 0.0587

.0811 0.]-474

.0269 0.0508
0329 0.0579

0.0211
0.0392
0.0188
0 .0231

.029

.016

.030

.0356

.1541

.0494

.1508

.7295

.0332

.0612

.0493

0 .0371 0.0195 0. os?
0.016
0.015
0.016
0.030

.0170 0.0581 0.0297

.0258 0 .1,464 0.0787
.0264
.0324
.2054
.0446
.0692
.0257

.042

.017

.023

.075

.749

.154

60
90
10

00
60
50
30

20
40
80
10
40
20.0154 0.043 1008 0.0470



020 0.0406
02r 0.2680
022 0.3507
023 0.0119
024 0.0187
025 0.01-l-5
026 0.0096
027 0.0358
028 0.0060
029 0.0292
030 0.0093
03L 0 .oLq'l
032 0.0141
033 0.0397
034 0.0505
035 0.0100
036 0.0756
037 0.0L20
038 0.0322
039 0.0178
040 0.1,L02
041 0.0122
042 0.0106
043 0.0140
044 0.0337
045 0.01-17
046 0.0109
047 0.0145
048 0.0105
049 0.3097
050 0.0097
051 0.0434
052 0.0500
053 0.01-07
054 0.0197
055 0.0202
056 0.0107

0 .0214
0.0175
0.1256
0.1066
0.0562
0.0745
0 .07 91
0.01.62
0.0611
0.0577
0.1348
0.0715
0.0439
0.0282
0.0913
0.0433
0.0478
0.0737
0.0520
0.0s29
0.0472
0.1151
0.r_379
0.0335
0.1563
0.1600
0.1369
0.1066
0.0233
0.0651-
0.0497
0.0321
0. r.534
0.0562
0 .0'7 82
0.1490

0.04200.01210.04050.04240.06280.08050.09970.0557
0.01120.01150.21070.01460.09350.02810.04480.0209
0.01150.009]-0.36.170.0]-010.04980.01830.02.700.0138
0.04620.00420.01190.02340.01760.10790.03900.1058
0.0580 0.0066 0.0187 0.030? 0.0263 o '1-025 0 ' 0s16 0 ' 0944

0.2045 0.0046 0.01-14 0.0327 0.0155 o ' 0506 0 '0261 0 ' 1483

0.06660.00360.00950.01910.0]-350.06370.02620.1890
0.05520.01330.03570.0?560.04830.08050.07430.0690
0.02010.00270.00600.80190.00770.0]-560.01150.0198
0.02520.00700.02970.01880.06390.06.740.].7310.0355
0.].0520.00360.00930.02130.0]-280.05060.02350.2003
0.03480.00470.01460.02:-20.02270.13800.05860.0641
0.12000.00560.014]-0.03240.01900.06510.03330.1459
0.02070.00?40.03950.01580.10810.04790.].1870.0278
0.0]-540.00700.050]-0.01260.43750.03020.06200.0197
0.05700.00360.01000.01900.0]-430.0.76.70.02890.1650
0.03560.21180.07550.03350.05950.04410.05]-10.0389
0.36860.00500.01190.03070.01580.04400.02560.1019
0.03060.00820.032]-0.02360.05860.08120.L4200.0434
0.07140.00780.01770.35550.02290.04980.03490.0681
0.04040.06020.11000.03950.08230.05430.06690.0456
0.37250.00510.01.270.03420.01590.04350.025.70.0995
0.048?0.00380.01060.02090.01550.09530.03310.L296
0.03930.00460.01390.01910.02080.73220.04190.0756
o.0!620.00600.03350.01270.12500.03640.09610.0216
0.02.790.00370.0]-1?0.01-590.01.860.15760.05130.0540
0.0342 0.0037 0.01-09 o.0l-63 0.0166 o'1362 0'0396 0'0742

0.03120.00450.01440.01900.02320.14400.06560.0564
0.05210.00380.01050.019]-0.01520.08860.03160.1428
0.01530.01170.31880.01320.06400.02440.03580.0183
0.08570.003?0.00970.02040.01350.05670.02530.1951
0.02380.00850.04320.01940'11410.05410.13600.0318
0.027!0.41520.05000.02590.04]-60.03260.03690.0293
0.03710.00360.01060.01?10.0]-600.12580.03690.0864
0.08450.00880.01970.28.t60.02510.05380.03790.0756
0.02400.00530.02010.01670.03840.09050.17890.0368
0.03800.003?0.01060.0]-820.01600.L2250.03680.0903

o.0999 0.0805 0.0754 0.07?5 0.0566 0 ' 0567

0.0442 0.0287 0.0607 0.0275 0.0211- 0 '02]-]-
0.026'7 0.0183 0.0343 0-0176 0-0139 0'0139
0.0401 0.1083 0.0234 o-t224 0-L062 0'1061
0.0521 0.7026 0.0341- o-L062 0-0952 0'0952
0.0272 o.0511 0.0190 0.0561 0.1'421 0 '1422
0.0268 0.0643 0.0173 0.0?34 0.L725 0 ' 1707

0.0751 0.0808 0.0561 0.0803 0.0701- 0'0't02
0.0116 0.ol-57 0.0089 o-0162 0-0201 0'0201
0.1669 0.0668 0.L224 0.0614 0.0361 0 ' 0361

o.o24o 0.051-1 o.oL62 0.0573 0-r't99 0'r'779
0.0604 0.1360 0.0318 0 - 1328 0.0653 0 ' 0654

0.0340 0.0657 0.0236 o -071-4 0 -1'425 0 '142r
0.1138 0.0476 0.2686 o-0442 0-0282 0'0282
0.0602 o. o30l- 0.1283 0.0284 0.0199 0 ' 0199

o.o2g6 0.07?3 0.0186 0.0893 0.1-553 0'1541
0.0509 0-0441 0.0542 0.0435 0-0391 0'0391
0.0261- 0.0444 0.0190 0.0478 0.0997 0 ' 0996

o.!412 0.0805 0.0900 o -07 42 0.0442 0 ' 0443

0.0354 0.0502 0.0266 O -0522 0.0689 0 ' 0690

0.0666 0.0543 0.0718 0.0532 0.0460 0 ' 0460

o.0261 0.0439 0.0191 o-0472 0-0980 0'0978
0.0339 0.0959 o.O2o4 0.11-19 0.!27 6 0 'r27r
o.o4g2 o.l-305 0.0287 o -1342 0.07 62 0 '0162
0.0916 0.0362 0.3800 0.0337 0 -0219 0 '0219
o.o52g 0.1527 0.0267 o - 1491 0.0s49 0 ' 0550

0.0407 0.1343 0.0229 0-1504 0-0'746 0'0745
0.0676 0.l-407 0.0336 0.1-337 0.0574 0 ' 0575

0.0324 0.0891 0.0200 0.1-036 0-L3'14 0'1366
0.03s4 0.0243 0.0455 o -0234 0.0185 0 ' 01-8s

0.0258 0.05?2 o.o\12 0.0644 0 - 1761- 0 'r'7 42

0.1308 0.0s38 o.r766 0-O50l- o.0323 0'0324
0.0368 0.0326 0.0386 o-0322 0.0294 0'0295
0.0379 0.1249 o.O2t7 o-1449 0.0865 0'0864
0.0384 0.0542 0.0292 0.0565 0.0764 0 ' 0765

0.1800 0.0888 o.0687 0.0783 0.0375 0'0375
0.03?8 o.!220 0.0216 o-]-4]-7 0-0906 0'0905
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057
058
0s9
060
061
062
063
064
065
066
067
068
069
070
0'71
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

0.082't
0.0137
0.0103
0.0722
0.3431
0.0L42
0.0r_05
0.0060
0 . 0345
0.0315
0.0190

.0109

0.0379
0.0708
0.1451
0.0290
0. 0118
0.2249
0.0373
0.0201

0 -2746
0.0051
0.0041
0.0039
0.0086
0.0059
0.0036
0 -002'7

0.0826
0.0137
0.0103
0.0122
0 - 3s28
0.0r_41_
0.0105
0.0060

0.0359
0.0254
0.0239
0.0156
0.0101
0.0413
0.0171
0.8019

0.0647
0.0792
0.0141
0.0193
0.0582
0. 0t 87
0 . 0157
0.0077

0.0418
0.1316
0.1,637
0.0560
0.0t44
0.7224
0.0895
0.020I
0. 0700
0 .0262
0.0482
0.0608
0.0593
0.0568
0.0403
0 .03'7 4
0.1106
0 .1,434
0.0706
0.0686
0.0400
0.0173
0 .0289
0.0264
0.1036
0.0494
0.1757
0.060s
0.0200
0 .r166
0.0254
0.1759
0.0320
0.7262
0 .027 5

0.0366
0.0238

0.0536 0.0124 0.0344 0.0686 0.0475
0.0190 0.0063 0.0313 0.0145 o.0901
0.0289 0.0054 0.0189 0.0190 0.0317
0.0294 0.0036 0.01_09 0.0155 0.0170

0.0474 0.0s51_ 0.0415
0.0841 0.0369 0.1346
0.0508 0.0250 0.7192
0.1554 0.0s18 0.05s2
0.0792 0.0292 0.0L42
0.0542 0.0310 0.]-243
0.1239 0.0362 0.0893
0.0156 0.0115 0.0198
0.0830 0.0764 0.0687
0.0459 0.1337 0.0258
0.1300 0.1014 0.0472
0.1516 0.0437 0.0600
0.141 5 0.0650 0.0s83
0 .L21'7 0 .0822 0. 0s58
0.0319 0.0238 0.0398
0.0919 0.771r 0.0367
0.1.074 0.0343 0.1-122
0.0838 0.0314 0.1,477
0.0616 0.0493 0.0697
0.1339 0.0ss3 0.0678
0.0452 0.0524 0.0397
0.0228 0.0336 0.0171
0.0404 0.0690 0.028s
0.0466 0.1437 0.0259
0.0596 0.0393 0.1038
0.0838 0.1230 0.0484
0.0542 0.0248 0.1902
0.1461 0.0571 0.0597
0.0300 0.0598 0.01 97
0.0600 0.0241 0.1984
0.0446 0.1314 0.0250
0.0613 0.0248 0.1965
0.0576 0.1,7L1 0.031_5
0.0546 0.0307 0.1288
0.0479 0.1285 0.0217
0.0s48 0.0955 0.0361
0.0383 0.0908 0.0234

0.0465 0.0550 0.0474 0.0586 0.0466 0.0418
0.0936 0.0377 0.0846 0.0246 o.0926 0.7320
0.0572 0.0255 0.0514 0.01 75 0.0s69 0.1651
0.1546 0.0534 0.1504 o.O2-78 0.t472 0.0560
0.0184 0.0288 0.0792 0.0384
0.0588 0.0315 0.0547 0.0221
0.1511 0.0373 0.7234 0.0272

0.01_85 0.0r44
0.0589 0.1225
0.t434 0.0896

0.0162 0.0116 0.0157 0.0089 o.0162 0.0201
0.0818 0.0772 0.0832 0.0s61 0.0824 0.0699
0.041_8 0.1266 0.0455 0.2933 0.0427 0.0262
0.1111 0.1042 0.1267 0.0493 0.1108 0.0481
0.1.646 0.0450 0.1476 o-0240 0.7547 0.0608
0.1302 0.0669 0.1384 0.0365 0.1285 0.0593
0.1148 0.0842 0.1253 0.0472 0.Lt44 0.0567
0.0330 0.0241. 0.0321 0.018s 0.0331 0.0403
0.0789 0.1784 0.0901 0.0689 0.0791 o.O3l 4
0.1318 0.0352 0.1075 o.O2og 0.7263 0.1109
0.0989 0.0322 0.0845 0.0198 0.0971 o.r44o
0.0629 0.0499 0.0619 o.0393 0.0632 0.070s
0.1395 0.0568 0.1319 0.0312 0.1349 0.0686
0.0444 0.0523 0.0452 0.055? 0.0445 0.0400
0.021.8 0.0333 0.0228 0.0424 o.O22o 0.0173
0.0384 0.0678 0.0404 0.1028 0.0386 0.0288
0.0424 0- 1357 0.0462 0.2696 0.0421 0.0264
0.0631 0.0398 0.0600 0.0306 0.0632 0.1036
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r_ 68
t69
170
r7 ).

1,7 2
]-73
r74
175
L76
r17
178
t'7 9
r_80
181
r82
183
184
r.85
186
187
r.8 8
189

0.2071
0.0239
0.0r-85
0.3418
0.0096
0.0167
0.0138
0.01-47
0.0629
0.0r-17
0.0423
0.oL42
0.0101-
0.2838
0.121,6
0.03L2
0.78'72
0.0180
0.0227
0.2520
0 .0237
0.0222

0.02'1L
0.1662
0.0498
0.0118
0.1169
0.0277
0.0319
0.0273
0.0262
0.3701
0.0179
0.0508
0.0s97
0.0174
0.0383
0.0285
0.0297
0.0735
0.0308
0.0176
0 .167 4

0.1802

0-0290
0.0111-
0.0063
0.0085
0.0037
0.0049
0.0044
0.0044
0.0106
0.0049
0.0070
0.00s0
0.0037
0.0131
0.0675
0.0078
0 .0341
0.0079
0.0064
0.0115
0.0110
0 .0101

0.2083
0.0238
0.0184
0.3493
0.0096
0.0166
0.0137
0 . 0147
0.0626
0.011-7
0.0420
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0.0101
0.2806
0.72L3
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0.1875
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0.0221

0.0247
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0.0228
0.0150
0.0685
0.06s1
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0.0298
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0.0r.32
0.0285
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0.0r.5s
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0 -0232
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0,0296
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0.02'77
0.0516
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SILHOUETTES************
FOR THE ENTIRE DATA SET' THE AVERAGE SILHOUETTE WIDÎH IS O.3O

CLOSEST HARD CLUSTERING***********************
FOR THTS HARD CÍ,USTERTNG, TT TURNS OUT THÂT
ONT,Y THE FIRST 13 CIUSTERS ARE NONEMPTY.

CLUSTER NUMBER SIZE OBJECTS

1

2
I 001

22 002
090
188
003
166
005
156
006
133
007
010
084
174
01L
159
012
074
737
017
016
020
021
033
r_3 9

008 040 L't_1_ r32
004 014 015 019
096 100 105 123
189
036 052 057 0t1 098 104 L24 r4t 75\

02r 022 049 061
168 171 184

078 099 106 118 148

064 0'77 075 107 119
185
r01 LL2 721 :-60 763
04'7 060 061 069 010
734 I42 1,62 767 ]-73

0'1,6 029 038 089 702 776 120 138 l_45

r8l. 782 78't
025 037 041 062 081
I25 136 750 1.69 7'7'1

3

4

5

6
1

11

t4

76

10
22

t2

29

18

034 019 085 092

009 028 039 054
]-47 L49 157 165

013 018 031 04s
103 108 122 1,31.
115

8

9
183
026 03
083 08
144 15

10

04
11

302
410
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q
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0
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4

9
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5 5 072 2 I13 14 140 186
65 746
44 051 066 08
43 r.53 158 17

48 050 058 059
71 I2I 126 735
64 1.12 780
56 063 068 073
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87 091 093 097 110
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Appendix D

Statistics for Different Proportions of Data Sets

10(70-30)

Model variables
and data sets Mean Std. Dev. Min.

tttçfçr !

Max. Range

Footing width, B (m)

Training set 8.8 10.8 0.8 60.0 59.2

Testing set 8.8 8.8 1.0 42.7 41.7

Validation set 7.8 9.2 1.0 34.0 33.0

Footing net apPlied Pressure' q (kPa)

Training set 185.5 r 18,3 18.3 697.0 678.6

Testing set r92.5 1 28.1 33.0 584.0 551.0

Validation set 182.2 r45.3 64.0 666.0 602.0

Average SPT blow count, N

Training set 25.3 t4.l 4.0 60.0 56.0

Testing set 24.0 12.4 4.0 50.0 46.0

Validation set 21.2 12.5 5.0 45.0 40.0

Footing geometrY, L/B

Training set 2.1 1.8 1.0 10.5 9.5

Testing set 2.3 1.6 1.0 8.0 7.0

Validation set 2.3 1.9 1.0 7.9 6.8

Footing embedment ratio, 4/B
Training set 0.53 0.58 0.0 3.4 3.4

Testing set 0.54 0.63 0.0 3.0 3.0

Validation set 0.46 0.31 0.04 1.09 1.05

Measured settlement, S. (mm)

Training set 18.9 24.1 0.6 121.0 r20.4

Testing set 2r.8 29.0 1.5 120.0 118.5

Validation set 25.8 34.4 1.3 116.0 t14.7

235



236 Appendix D. Statßtics for Different proportions of Data Sets

10(80-20)

Model variables
and data sets

Statistical meters
Mean Std. Dev. Min. Max. Range

Footing width, B (m)

Training set 8.8 10.3 0.8 60.0 59.2

Testing set 7.7 9.0 0.9 41.2 40.3

Validation set 10.0 I l.l 1.0 34.0 33.0
Footing net applied pressure, q (kpa)

Training set 185.6 t20.6 18.3 697.0 678.7

Testing set 179.6 123.6 s2.0 584.0 532.0

Validation set 210.6 143.8 25.0 576.0 551.0
Average SPT blow count, N
Training set 24.7 13.4 4.0 60.0 56.0
Testing set 24.1 12.5 6.0 50.0 44.0
Validation set 24.1 16.4 6.0 60.0 54.0
Footing geometry, L/B

Training set 2.r t.7 1.0 10.5 9.5

Testing set 2.3 r.6 1.0 6.7 5.6

Validation set 2.5 2.r 1.0 8.0 7.0
Footing embedment ratio, Dr/B

Training set 0.53 0.58 0.0 3.4 3.4
Testing set 0.s4 0.55 0.0 3.0 3.0

Validation set 0.49 0.60 0.0 2.6 2.6

Measured settlement, 
^S_ 

(mm)

Training set 20.3 27.1 0.6 t21.0 t20.4
Testing set 20.4 26.5 1.3 100.0 98.7

Validation set 21.3 23.9 1.5 92.0 90.s



Appendix D. Statßticsþr Dffirent Proportions of Datø Sets

10(e0-10)

237

Model variables
and data sets Mean Std. Dev. Min.

ulç]çr ù

Max. Range

Footing width, B (m)

Training set 8.4 9.7 0.8 60.0 59.2

Testing set 9.1 9.3 0.9 33.0 32.1

Validation set 10.9 13.8 1.0 55.0 s4.0

Footing net aPPlied Pressure' q (kPa)

Training set 185.1 trg.2 18.3 697.0 678.7

Testing set 198.3 r42.7 34.0 584.0 550.0

Validation set r92.4 142.2 41.0 666.0 625.0

Average SPT blow count, N

Training set 24.9 13.9 4.0 60.0 56.0

Testing set 22.7 12.5 6.0 50.0 44.0

Validation set 23.r 1 1.5 7.0 60.0 53.0

Footing geometrY, L/B

Training set 2.3 1.9 1.0 10.5 9.5

Testing set t.6 0.9 1.0 4.1 3.1

Validation set t.7 1.1 1.0 5.0 4.0

F ooting embedment ratio, Dtß

Training set 0.53 0.58 0.0 3.4 3.4

Testing set 0.50 0.45 0.0 1.4 1.4

Validation set 0.52 0.66 0.0 3.0 3.0

Measured settlement, ^S- 
(mm)

Training set t9.6 25.6 0.6 r2t.0 t20.4

Testing set 22.9 29.3 2.7 120.0 tt7.3

Validation set 24.8 31.9 1.3 100.0 98.7



238 Appendix D. Statßticsþr Dffirent proportions of Daîa Sets

20(80-20)

Model variables
and data sets

Statistical
Mean Std. Dev. Min. Max. Range

Footing width, B (m)

Training set 8.4 9.6 0.8 60.0 59.2

Testing set 9.2 12.3 0.9 55.0 54.t
Validation set 9.4 I 0 I 0.9 41.2 40.3

Footing net applied pressure, q (kpa)

Training set 186.5 123.5 18.3 697.0 678.7

Testing set 188.0 t35.7 25.0 584.0 559.0

Validation set 187.9 T14.6 33.0 575.0 542.0

Average SPT blow count, N
Training set 24.2 13.3 4.0 60.0 56.0

Testing set 26.1 13.8 5.0 60.0 55.0

Validation set 24.3 14.1 4.0 55.0 5 1.0

Footing geometry, L/B

Training set 2.r r.7 1.0 r 0.5 9.5

Testing set 2.4 2.1 1.0 9.9 8.9

Validation set 2.1 1.8 1.0 8.0 7.0

Footing embedment ratio, Dr/B

Training set 0.49 0.5s 0.0 3.4 3.4

Testing set 0.58 0.61 0.0 3.0 3.0

Validation set 0.59 0.64 0.0 3.0 3.0

Measured settlementr,S. (mm)

Training set 20.1 26.5 0.6 121.0 t20.4

Testing set 21.4 29.2 1.0 r20.0 119.0

Validation set 20.4 25.2 1.3 120.0 I18.7



Appendix D. Statßticsþr Different Proportíons of Data Sets

20(e0-10)

239

Model variables
and data sets Mean Std. Dev. Min.

LtlçtEt rt

Max. Range

Footing width, B (m)

Training set 9.0 10.8 0.8 60.0 59.2

Testing set 8.7 9.8 0.9 55.0 54.r

Validation set 7.8 7.7 1.0 33.0 32.0

Footing net apPlied Pressure, q (kPa)

Training set 184.4 I24 I 18.3 697.0 678.7

Testing set t79.7 116.9 25.0 666.0 641.0

Validation set 190.8 120.3 41.0 584.0 543.0

Average SPT blow count, N

Training set 25.0 13.8 4.0 60.0 56.0

Testing set 24.3 I 3 I 5.0 60.0 55.0

Validation set 24.2 13.3 4.0 60.0 56.0

F'ooting geometrY, L/B

Training set 2.2 1.9 1.0 10.5 9.5

Testing set 2.1 r.7 1.0 9.9 8.9

Validation set 2.2 1.5 1.0 6.7 5.7

Footing embedment ratio, Dtß

Training set 0.53 0.56 0.0 3.4 3.4

Testing set 0.51 0.52 0.0 3.0 3.0

Validation set 0.56 0.63 0.0 3.0 3.0

Measured settlementr,S- (mm)

Training set t9.6 26.4 0.6 t21.0 120.4

Testing set t9.3 25.0 1.0 120.0 119.0

Validation set 20.8 25.2 1.3 120.0 118.7



240 Appendix D. Statßticsfor Dffirent proportions of Data Sets

30(70-30)

Model variables
and data sets

Statistical arameters
Mean Std. Dev. Min. Max. Range

tr'ooting width, A (m)

Training set 7.9 9.9 0.8 60.0 59.2
Testing set 9.3 10.2 0.9 42.7 41.8
Validation set 9.6 10.4 0.9 55.0 54.1

Footing net applied pressure, q (kpa)

Training set 180.4 tt7.7 18.3 697.0 678.7
Testing set 188.3 126.3 63.0 666.0 603.0
Validation set 196.9 131.0 34.0 584.0 550.0
Average SPT blow count, N
Training set 24.2 I4. 1 4.0 60.0 56.0
Testing set 24.9 13.4 5.0 5s.0 50.0
Validation set 24.8 12.6 4.0 60.0 56.0
Footing geometry, L/B

Training set 2.r 1.7 1.0 10.5 9.5
Testing set 2.2 2.1 1.0 9.9 8.9

Validation set 2.1 1.6 1.0 8.4 7.4
Footing embedment ratio, Drß
Training set 0.57 0.65 0.0 3.4 3.4
Testing set 0.50 0.56 0.0 2.6 2.6
Validation set 0.48 0.4s 0.0 2.1 2.1

.Measured settlement, 
^S,, 

(mm)

Training set 20.3 28.1 0.6 12t.0 120.4

Testing set 21.5 26.1 1.0 91.6 90.6

Validation set 19.7 24.7 1.3 I16.0 1t4.7



Appendix D. Statislics for Different Proportions of Data Sets

30(80-20)
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Model variables
and data sets Mean Std. Dev. Min.

lltçfçr !

Max. Range

Footing width, B (m)

Training set 8.2 10.3 0.8 60.0 59.2

Testing set 9.0 9.0 0.9 33.0 32.1

Validation set 9.6 10.4 0.9 55.0 54.1

Footing net aPPlied Pressure' { (kPa)

Training set r79.9 118.8 18.3 697.0 678.7

Testing set 194.0 125.9 75.0 666.0 591.0

Validation set 196.9 131.0 34.0 584.0 550.0

.Average SPT blow count, N

Training set 24.7 14.0 4.0 60.0 56.0

Testing set 23.3 13.4 5.0 s5.0 50.0

Validation set 24.8 12.6 4.0 60.0 56.0

Footing geometrY,,L/B

Training set 2.1 t.7 1.0 10.5 9.5

Testing set 2.2 2.2 1.0 9.9 8.9

Validation set 2.1 1.6 1.0 8.5 7.5

Footing embedment ratio, Dtß

Training set 0.55 0.63 0.0 3.4 3.4

Testing set 0.53 0.59 0.0 2.6 2.6

Validation set 0.48 0.45 0.0 2.t 2.1

Measured settlementr,S- (mm)

Training set 20.3 28.0 0.6 121.0 120.4

Testing set 22.1 25.6 1.5 91.6 90.1

Validation set t9.7 24.7 1.3 116.0 t14.7
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30(e0-10)

Appendix D. Statisticsþr Dffirent proportions of Data Sets

Model variables
and data sets

Statistical
Mean Std. Dev. Min. Max. Range

F'ooting width, B (m)

Training set 9.2 t0.7 0.8 60.0 59.2

Testing set 7.7 7.9 r.2 30.2 29.0
Validation set 8.0 9.3 0.9 42.7 41.8
tr'ooting net applied pressure, q (kpa)

Training set I 73 I 104.6 18.3 697.0 678.7

Testing set r57.6 94.6 70.0 386.0 316.0
Validation set 222.8 t55.2 41.0 666.0 625.0

Average SPT blow count, N
Training set 25.1 t4,5 4.0 60.0 56.0
Testing set 20.4 12.3 4.0 50.0 46.0

Validation set 24.2 l 1.3 5.0 50.0 45.0

tr'ooting geometry, L/B

Training set 2.3 1.9 1.0 10.5 9.5

Testing set 2.3 1.9 1.0 6.8 5.8

Validation set 1.8 1.3 1.0 7.9 6.9

tr'ooting embedment ratio, Drß
Training set 0.54 0.64 0.0 3.4 3.4

Testing set 0.47 0.40 0.1 1.2 1.1

Validation set 0.52 0.45 0.0 2.1 2.1

Measured settlement,,S, (mm)

Training set 19.4 25.7 0.6 121.0 120.4

Testing set 25.8 30. I 2.1 91.6 89.s

Validation set 2r.3 27.7 3.6 r20.0 116.4



Appendix E

Nult Hypothesis Tests for Different Proportions

of Data Sets

10(70-30)

Variable
and

data sets
/-value

Lower
critical
value

Upper
critical
value

/-test .F-value
Lower
critical
value

Upper
critical
value

F-lesl

B

Testing 0.00 -r.97 t.97 Accept 1.51 0.64 1.64 Accept

0.38 -1.97 1.97 1.37 0.53 2.26 ect
Validation
tI

4.34 -1.97 r.97 0.85 0.64 1.64

Validation 0.11 -1.97 1.97 0.66 0.53 2.26

N
0.57 -r.9'7 t.97 1.29 0.64 1.64

Validation 1.19 -1.97 t.97 1.27 0.s3 2.26

I./B

Testing -{.68 -r.97 t.97 Accept t.26 0.64 r.64

Validation -4.45 -r.97 I 0.89 0.53 2.26

D
-{.10 I I 0.85 0.64 1.64

Validation 0.51 -1.97 t.97 3.50 0.s3 2.26

.s

4.67 -1.97 r.97 0.69 0.64 1.64

Validation -1.09 -1.97 t.97 Accept 0,49 0.53 2.26

243



244 Appendix E' Null Hypothesís Testsfor Dffirent Proportions of rraining, Testing and Validation

10(80-20)

10(e0-10)

Variable
and

data sets
/-value

Lower
critical
value

Upper
critical
value

/-test ,F-value
Lower
critical
value

Upper
critical
value F-tesl

B

Testing 0.57 -1.97 r.97 Accept l.3l 0.61 1.81 Accept
Validation 4.47 -t.97 1.97 0.86 0.s4 2.24
q

0.26 -1.97 1.97 0.95 0.61 1.81
Validation -0.83 -t.97 1.97 0.70 0.54 2.24¡r

0.24 -1.97 I.97 Ll5 0.61 1.81
Validation 0.18 -1.97 1.97 0.67 0.54 2.24I./B

4.62 -1.97 1.97 1.13 0.61 l.8l
Validation -{.93 -1.97 1.97 0.65 0.54 2.24D

-0.09 -1.97 t.97 l.l l 0.61 l.8l
Validation 0.28 -l t.97 0.93 0.s4 2.24
^s

4.02 -1.97 L97 1.05 0.61 l.8l
Validation -0.1 5 -1.97 1.97 1.29 0.54 2.24

Variable
and

data sets
/-value

Lower
critical
value

Upper
critical
value

/-test F-value
Lower
critical
value

Upper
critical
value F-test

B

Testing -{.28 -1.97 1.97 Accept 1.09 0.53 2.37 Accept
Validation -1.0 -1.97 1.97 0.49 0.s4 2.24 ectq

4.42 -1.97 1.97 0.69 0.s3 2.37
Validation 4.24 -1.97 t.97 0.70 0.54 2.24N

0.62 -1.97 t.97 t.24 0.53 2.37
Validation 0.54 -1.97 L97 t.46 0.54 2.24IlB
T 1.49 -1.97 1.97 4.46 0.s3 2.37
Validation L35 -1.97 t.97 2.98 0.54 2.24
D

0.21 -1.97 1.97 1.66 0.53 2.37
Validation 0.07 -t.97 1.97 0.77 0.54 2.24

4.49 -1.97 1.97 0.76 0.53 2.37
Validation -{.81 -1.97 1.97 0.64 0.54 2.24



Appendix E. Null Hypothesß Testsþr Dffirent Proportions of Training, Testing and validation

20(80-20)

2o(eo-10)

245

Variable
and

data sets
f-value

Lower
critical
value

Upper
critical
value

f-test .F-value
Lower
critical
value

Upper
critical
value

F-tesl

B

Testing -0.39 -t.97 1.97 Accept 0.61 0.59 1.87 Accept

Validation -{.54 -r.97 1.97 Accept 0.90 0.61 t.77 Accept

q

-o.05 -t.97 t.97 0.83 0.59 1.87

Validation -{.06 -r.97 t.97 Accept 1.16 0.61 1.77

N
4.70 -t.97 t.97 0.93 0.s9 1.87

Validation -o.04 -t.97 r.97 Accept 0.89 0.61 1.77

I./B

Testing -0.83 -t.97 r.97 Accept 0.6s 0.59 1.87

Validation 0.0 -t.97 1.97 0.89 0.61 t.77

D
4.79 -t.97 t.97 0.81 0.59 1.87

Validation -0.93 -r.97 r.97 0.74 0.61 t.77

s
4.24 -r.97 1.97 0.82 0.59 1.87

Validation --0.06 -t.97 r.97 Accept 1.1 I 0.61 1.7'l

Variable
and

data sets

f-value
Lower
critical
value

Upper
critical
value

f-test F-value
Lower
critical
value

Upper
critical
value

F-lesl

B

Testing 0.10 -t.97 1.97 Accept t.2l 0.51 2.54 Accept

Validation 0.63 -1.97 t.97 t.96 0.62 t.76

q

0.14 -t.97 1.97 1.13 0.51 2.s4

Validation -o.28 -1.97 r.97 1.06 0.62 t;t6

N

T 0.19 -1.97 r.97 1.11 0.51 2.54

Validation 0.32 -t.97 1.97 Accept 1.08 0.62 t.76

UB

Testing 0.19 -r.97 t.97 Accept 1.25 0.51 2.54

Validation 0.0 -1.97 t.97 r.60 0.62 t.76

D
0.13 -t.97 r.97 1.l6 0.s l 2.54

Validation -o.28 -r.97 1.97 0.t9 0.62 t.76

'S. 2.540.04 -1.97 t.97 t.t2 0.5r

Validation 4.25 -1.97 t.97 Accept 1.09 0.62 1.76
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30(70-30)

30(80-20)

Variable
and

data sets
/-value

Lower
critical
value

Upper
critical
value

/-test .F-value
Lower
critical
value

Upper
critical
value F-test

B

Testing 4.74 -1.9'1 1.97 Accept 0.94 0.60 1.76 Accept
Validation -{.99 -1.97 1.97 0.91 0.63 1.63
tI

-0.35 -1.97 1.97 0.87 0.60 1.76
Validation 4.79 -1.97 1.97 0.81 0.63 1.63¡/

4.27 -1.97 1.97 l.l I 0.60 1.76
Validation 4.26 -1.97 1.97 1.25 0. 1.63IlB
T 4.29 -1.97 r.97 0.6s 0.60 1.76
Validation 0.0 -1.97 1.97 l.l3 0.63 1.63
D

0.51 -1.97 1.97 l 35 0.60 1.76
Validation 0.91 -1.97 1.97 0.63 t.63

4.23 -1.97 t.97 t.l6 0.60 1.76
Validation 0.13 -1.97 r.97 Accept 1.29 0.63 1.63 Accept

Variable
and

data sets
/-value

Lower
critical
value

Upper
critical
value

/-test -F-value
Lower
critÍcaI
value

Upper
crÍtical
value F4est

B

Testing 4.37 -t.97 1.97 Accept l.3l 0.57 1.97 Accept
Validation 4.82 -1.97 1.97 0.98 0.64 1.62
q

4.54 -1.97 t.97 0.89 0.57 1.97
Validation -{.84 -1.97 1.97 0.82 0.64 1.62
N

0.47 -1.97 1.97 1.09 0.57 1.97
Validation -{.04 -1.97 1.97 1.23 0.64 1.62
LlB

4.26 -t.97 t.97 0.59 0.s7 1.97
Validation 0.0 -1.97 t.97 l. l3 0.64 1.62
D

0.14 -1.97 1.97 l.t4 0.s7 1.97
Validation 0.74 -t.97 1.97 1.96 0.64 t.62
^s

-o.30 -1.97 1.97 l l9 0.57 1.97
Validation 0.14 -1.97 1.97 Accept 1.29 0.64 t.62 Accept
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30(e0-10)

F-lest

Upper
critical
value

Lower
critical
value

/-test F-value
Upper
critical
value

Lower
critical
value

l-value
Variable

and
data sets

B
Accept2.790.49Accept 1.83r.97-t.970.49Testing

I0.641.32-t.97 r.970.73Validation
q

2.790.491.22t.97-r.970.51
1.600.640.45ectr.97-1.97-2,sValidation

N
2.791.39t.97-r.97l.l2
1.600.641.65r.97-r.970.41Validation

UB
0.49 2.791.01.97-t.970.00
0.64 1.602.131.97-r.971.79Validation

D
2.790.492.56-t.97 1.970.39
1.600.642.0t.970.21 -t.97Validation

2.790.490.731.97-r.97-{.84
1.600.640.86t.97-t.97-o.45Validation



Appendix F

FORTRAI{ Code for the AI\N Modet

THIS PROGRAM CALCULATES SETTLEMENT OF SHALLOW FOUNDATÌONS
ON COHESTONLESS SOIIS USING ARTTFTCIAL NEURAL NETWORKS

c
C

c
c
c
c
c
c
(-

B-FOOTING WIDTH (m)
q-FOOTING NET APPLIED PRESSURE (kpa)
N-AVERAGE SPT BLOW COUNT
LB-FOOTING GEOMETRY (LENGTH/WTDTH)
Df-FoorrNG EMBEDMENT RATro (FouNDATroN DEprH/FooTrNG i/ürDTH)
S-PREDICTED SETTLEMENT (nun)

REAL B, B1, g, g1 , N, N1/ LB, LBI-, Df / Df l_, SM/ SM1
REAL H1 ,H2 ,YI, Y2, SUMM
CHARACTER*20 NAME
VüRITE(*r*)tEnter data from screen or file
READ(*,5)NAME
FORMAT (A20)
IF ( (NAME .EQ. 's') .oR. (NAME .EQ. 's')
WRITE (*, *)'Footing width (m)='
READ(*, *)B
WRITE (*. *) 'Footing net applied pressure (kpa) ='READ(*,*)g
WRITE(*.*)'Average SpT blow count :l
READ(*,*)N
I'{RITE (*, *) 'Footing geometry =r
READ(*,*)LB
WRITE (*, *)'Footing embedment ratio :r
READ (*, *) Df
B1: (B-0 .8) /s9.2
q1: (q-l-8 .32) / 67I .68
Nl: (N-4 ) /s 6
¡31: (LB-1 .0) /9. s833
Df1: (Df-0) /3.4444
H1= (0.12418158) + (0. 22735420*81) + (0.48116106*q1) + (0. 22959290*Nr)

"- ( 0 . 01703092*rB1) + (0 . 06?34 087*Df1 )
H2: (0 . 188L722 4) - (2 . 4 4251,320*81 ) - ( 1 . 1 1 4 I 90 6 2* q,7) + ( 4 . 23 g 639 97 *N1 

)*- (0. 49885305*LB1) + (2 . 50030115*Df1)
Y1:TANH (H1)
Y2=TANH (H2)
suMM: (-0.3127 4397) + (0. 7253518I*yrl _ (2
sM1:l-l (1+EXP (-suu'{) )
SM= (SM1*120.4) +0.6
hIRrrE (*,400) sM

400 FORMAT ( ' Settlement :', Fl_O.2, ' mm')
ELSE
CALL TRY
END TF
END

c--------
SUBROUTTNE TRY
DTMENSTON SUM (500) / S1 (500) , s (500) , y1 (500) , y2 (500)

5

(s/F) ?'

) THEN

984764'7 2*Y2)

248
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1-0

DTMENSTON H1 (500) , H2 (500) , R (500,5) , RN (500,5)
CHARACTER*20 FITIN, FILOUT
V{RITE(*r*)'Enter the number of case records =t
READ(*,*)N
WRITE(*,*)'Enter the name of input file :'
READ ( *, 1O ) FTLIN
V{RITE(*r*)'Enter the name of output fife ='
READ (*, L0) FrI,our
FORMAT (420)
OPEN (UNIT:1, FILE:FILIN' STATUS:' OLD' )

OPEN (UNIT=2, FILE:FILOUT, STATUS: I NEW' )

DO 20 I=1rN
READ (1' *) (R(I, J)'.J:1' 5)
CONTINUE
DO 50 I:1rN
RN (I, 1) = (R(I' 1) -0 .81 /59.2
RN (I' 2) = (R(I,2) -18 .32, /678.68
RN(I,3):(R G'3)-41 /56
RN(I, 4) : (R(r, 4) -1 .0\ /9. 5833
RN (I,5) = (R(I,5) -0 -0) /3.4444
CONTINUE
DO 60 I:1,N
H1 ( r ) : (O . t24L8l-58 ) + (O . 227 35420*RN ( I, 1 ) ) + ( 0 . 4811 610 6*RN (f ' 2) I

*+ (0 . 22g592g0*RN (r, 3) ) - (0 . 01703092*RN (r, 4 ) ) + (0' 06734087*RN (r' 5) )

H2 (r): (o.188L1-224) - (2.4425!320*RN (I,1) ) - (1. L14I9062*RN (I'2) )

*+ (4. 23g63997*RN (I,3) ) - (0.49885305*RN (I,4) ) + (2.50030115*RN (I' 5) )

CONT]NUE
DO ?0 I:1,N
Y1(I) =rANH (H1 (I) )

Y2 (Il =TANH (H2 (l) )

CONTINUE
DO 80 I=1rN
sUM(I):(-0.31214397)+(0.7253518].*Y].(I))_(2.984L6412*Y2(I))
s1 (r):1/ (I-+EXP (-suM(r) ) )
s (r) = (s1 (I) *t20.4) +0.6
CONTINUE
Í0RITE (2 | ]-5)
FORMAT(6X''FOOÎ ."3X, 'APP. , ,.7X, 'SPT-N, ,6X, 'GEOMETRY, '2X" EMBED' I

* ,3x, I SETTLEMENT | 
)

I,fRrrE (2,251
FORMê,T (6X, rWrDlHr r 3x' TPRESs .' tL6x, rRATro" 5X, rRATIOr )

lfRrTE (2,351
FORMAT (6X, I (m) 'r 5X, I (kPa) t 

' 
38X' I (mm) r 

)

.TillT11:ll----- --:--;-----
DO 90 I:1'N
WRITE (2 ,200) (R (I, ,t) , J:t,5 ) ' 

S ( I )

FORMAT(6F10.2)
CONTINUE
RETURN
END

20
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80
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Appendix G. ANN-Based Design Charts
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. LlB = 2.0, Dr/B :0.0
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Appendix G. ANN-Based Design Charts
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L/B = 5.0, D¡B = ¡.9
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Appendix G. ANN-Based Design Charts
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Appendix G. ANN-Based Design Chqrts
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Appendix G. ANN'Based Design Charts

. L/B = 2.0, DF = 2.0
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Appendix G. ANN-Based Design Charts

. L/B = 10.0, DF =2.0
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Appendix G. ANN-Based Design Charts
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Appendix G. ANN-Based Design Charts

UB=5.0, D,lB=3.0 and N=20

120

^ 110

100

90

80

70
60

50

40

30

20
'10

0

E
E

co
Eo
o
tt,
!to
o
Eo
o.

051015 20 25 30 35 40 45 50 55 60

Footing width (m)

120

^ 110

UB=5.0, QIB=3.0 and N=25

-q=!Q 

fttu

- 

q=100 kPa

q=200 kPa

q=300 kPa

q=500 kPa

q=700 kPa

.::-
I-

o 5 10 15 20 25 30 35 40 45 50 55 60

Footing width (m)

UB=5.0, D,lB=3.0 and N=30

----l

-q=lQ 

lP¡

-q=100 

kPa

----q=200kPa
q=300 kPa

q=500 kPa

q=700 kPa

É
o 5 10 15 20 25 30 35 40 45 50 55 60

Footing width (m)

E roo
ÈY90

5Bo
È70oE60
f, 50

r40
E30
820
Ë10

0

120

ç. 110

E r00

le0
6soE70o860
Eso
840
830
820
Ë10

0

-q=!Q 

fttu

-q='lQQ 

fttu

q=200 kPa

q=300 kPa

q=500 kPa

q=700 klà

-



294
Appendix G. ANN-Based Design Charts

UB=5.0, Q/B=3.0 and N=40
120

= 110

E 100

;e0
580
F70
E60f, so

840
Ë30
820
Èt 'lo

0

120

=. 110

= 100E;so
6Bo

E60f, so

840
Ë30
820
È10

0

120

= 110
L: 100t
;e0
5Bo
+a r)u

f, so

840
.E 30

820
È10

0

-q=lQ 

fttu

-q=100 

kPa

q=200 kÈ
q=300 kPa

-'-'- q=500 kPa

q=700 kPa

0 5 10 15 20 25 30 35 40 45 50 55 60

Footing width (m)

UB=5.0, D, /B=3.0 and N=S0

- 

q=20 kPa

_ q=100 kPa

q=200 kPa

q=300 kPa

q=500 kPa

q=700 kFà

0 5 10 15 20 25 30 35 40 45 50 55 60

Footing width (m)

UB=5.0, D, /B=3.0 and N=60

-q=20 

kll¡

-q=100 

kÈ

----9=200kPa
q=300 kÞ
q=500 kPa

q=700 kFà

0 5 l0 15 20 25 30 35 40 45 50 55 60

Footing width (m)



295
Appendix G. ANN-Based Design Charls

. L/B = 10.0, Dr/B = 3.0

120

^ 110

100

90

80

70
60

50
40

30
20

10

0

120

110

100

90
80

70
60

50

40

30

20

10

0

UB=10.0, D, /B=3.0 and N=5

-q=lQ 

fttu

- 

q=l 00 kPa

q=200 kPa

q=300 kll¡

q=500 kPa

q=700 kPa

,--'t
/-,

I a

¿
t

' -:-¿ ' ,--¿

-o 5 10 15 20 25 30 35 40 45 50 55 60

Footing width (m)

UB=10.0, D,/B=3.0 and N=10

-q=!Q 

fttu

- 

q=100 kPa

q=200 kPa

q=300 kPa

q=500 kPa

q=700 kPa

a
t

t
J

¡

L-

o s 10 15 20 25 30 35 40 45 50 55 60

Footing width (m)

UB=10.0, D,lB=3.0 and N=í5

-q=!Q 

lP¡

-q=100 

kpa

q=200 kPa

q=300 kPa

q=500 kPa

q=700 kPa
/ a

t

/-.
'l) - '=

=-
o 5 10 15 20 25 30 35 40 45 50 55 60

Footing width (m)

E
E

tro
Eo
Eo
an

ï,o
o
Eo
È

E
E

tro
Eo

o
tt,
!,o
.9tto
q.

120

^ 110

E roo
È
;e0
6BoE70oã60
Esorr 40
0,

830
820
Èio

0



296
Appendix G. ANN-Based Design Chqrts
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