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Cost Calculation and Prediction in Adult Intensive Care:
A Ground-up Utilization Study
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SUMMARY

The ability of various proxy cost measures, including therapeutic activity scores (TISS and Omega) and cumulative
daily severity of illness scores, to predict individual ICU patient costs was assessed in a prospective “ground-up”
utilization costing study over a six month period in 1991.

Daily activity (TISS and Omega scores) and utilization in consecutive admissions to three adult university
associated ICUs was recorded by dedicated data collectors. Cost prediction used linear regression with determination
(80%) and validation (20%) data sets. The cohort, 1333 patients, had a mean (SD) age 57.5 (19.4) years, (41%
female) and admission APACHE III score of 58 (27). ICU length of stay and mortality were 3.9 (6.1) days and
17.6% respectively. Mean total TISS and Omega scores were 117 (157) and 72 (113) respectively. Mean patient costs
per ICU episode (1991 $AUS) were $6801 (310311), with median costs of $2534, range $106 to $95,602. Dominant
cost fractions were nursing 43.3% and overheads 16.9%. Inflation adjusted year 2002 (mean) costs were $9343
(8 AUS). Total costs in survivors were predicted by Omega score, summed APACHE 111 score and ICU length of stay;
determination R’, 0.91; validation 0.88. Omega was the preferred activity score. Without the Omega score, predictors
were age, summed APACHE III score and ICU length of stay, determination R? 0.73; validation 0.73. In non-
survivors, predictors were age and ICU length of stay (plus interaction), and Omega score (determination R? 0.97;

validation 0.91).

Patient costs may be predicted by a combination of ICU activity indices and severity scores.
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Analysis of cost data collected in the ICU has been
beset by a number of distinctive problems: methodo-
logical study differences'; differing methods of cost-
ing®, patient specific and non-specific, “top-down”
and “bottom-up” costing; the ambiguous relation
between costs and proxy variables, such as activity
indices (Therapeutic Intervention Scoring System
(TISS)’, the Omega score*’) and hospital length of
stay’; and particular modelling difficulties’, the dis-
tinct skewed distribution of the cost variable?, the lack
of a standard variable set compared with mortality
algorithms’, and the variably low multivariable
predictive power of the developed models'".
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Studies have looked at the predictive ability of the
TISS and Omega scores with respect to ICU patient
costs, with varying results>'*"?. Similarly, the cor-
relation of costs with severity of illness scores, in
particular the APACHE II score, has also been incon-
sistent, but confounded by the restriction of measure-
ment of the score to day of ICU admission”". The
purpose of this study was to assess the ability of proxy
cost measures, TISS and Omega scores and, in par-
ticular, cumulative daily severity of illness scores and
ventilation days, to predict individual patient costs,
derived from a “ground-up” utilization study.

METHODS
Costing Methodology

Cost data for ICU patient stay, including all related
management activity, but excluding costs associated
with provision of services external to the ICU, was
generated from a nine-month study (1991) in three
South Australian adult ICUs, using dedicated unit
data collectors, recording daily activity (TISS, 1983
version 3 and Omega scores) and utilization. The
source of the data was from a South Australian
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Health Commission study conducted by the South
Australian Intensive Care Costing and Casemix Study
Group (report by KPMG Peat Marwick, Manage-
ment Consultants, dated March 1994); components
of this data have been previously used to report cost-
ing of specific ICU interventions'’. The specific
utilization elements were:

Drugs: Data on actual drug usage, including
parenterally administered fluids were collected daily.

Procedural: Medical and surgical supplies, all
medical and surgical supplies were identified and
recorded, by procedure or by individual item.

Pathology costs: All pathology tests consumed were
recorded by individual patient and costed using the
current Commonwealth Government of Australia
Benefits Schedule reimbursement rates.

Radiology costs: These were recorded by indi-
vidual patient and costed using procedure costs
developed by the South Australian Government
Health Commission.

Physiotherapy costs: Each physiotherapy interven-
tion was recorded by individual patient and costed
using a standard unit of time.

Nursing staff costs: Nursing salary and wage costs
were derived using actual minutes of nursing time for
each ICU patient day (time spent on educational
activities was excluded), standard nursing practice
was 1-1 nurse patient ratio.

Medical staff costs: Medical salary costs were allo-
cated to patients on the basis of days of ICU stay
(time spent on educational activities was excluded),
all medical staff were “full-time”.

Overhead costs: Overhead costs attributable to
the operation of each ICU were derived using the
Yale DRG costing methodology”, and allocated to
patients on the basis of ICU length of stay.

Other costs: These were the residual costs reported
in the ICU cost centre that remained unallocated to
patients (such as administration, repairs and main-
tenance, orderlies salaries and wages, linen and
domestic supplies) and were allocated to patients on
the basis of ICU length of stay.

Re-admissions were included in the study and each
stay was costed individually. Total costs (1991 $AUS)
were computed as the sum of various cost fractions:
(i) medication and procedural, (ii) nursing, physio-
therapy and medical, (iii) radiology and pathology,
(iv) overhead and other. Individual (patient) day
costs were not available for analysis. Similarly, TISS
and Omega score are presented as total scores per
patient ICU episode.

Additional patient data recorded included:

Demographics: Age, gender, ethnicity, comor-

bidities consistent with the APACHE III algorithm’.

ICU stay variables: Patient source, admission diag-
nosis and principal physiological system dysfunction
on admission, ventilatory status, cardiorespiratory
(heart and respiratory rate, systolic and diastolic
blood pressure), arterial blood gas (pH, PaO,, PaCO,)
and biochemical variables such that a daily APACHE
III score could be computed for the first 8 days of
ICU admission or until death or ICU discharge, ICU
length of stay and outcome.

Hospital stay variables: Treating hospital, principal
DRG, hospital length of stay and outcome.

Daily patient APACHE 1II scores were (raw)
summed over the first 8 days or until discharge or
death, to yield a “summed APACHE III score”. Two
extreme (cost) outliers (ICU costs >$AUS100,000)
were omitted in analysis.

Statistical Analysis

Variables are reported as mean (SD) unless other-
wise indicated. Interval data were analysed by t-test,
and categorical data by Fisher exact test, where
appropriate. Stata® statistical software (Version 8.0;
2003. Stata Corp, College Station, TX) was used.

Ordinary least squares regression (OLS) was used
to predict costs in the untransformed (raw) form’.
Analysis was divided into two parts, the prediction of
total costs and non-overhead costs (that is total costs-
overhead costs), on the basis that the independent
variables used in analysis reflected (intrinsic) ICU
activity'. Separate regression analyses were formed
for ICU survivors and non-survivors'®. Predictive
equations were generated on a determination set
(random sample of 80% of data, for both survivors
and non-survivors) and validated upon a validation
set (20% of data). As the survivor set was larger than
the non-survivor, random sampling for determina-
tion/validation sets in the survivor subset reflected the
proportional contribution of each of the three hospi-
tals to that data set. The distribution of total costs was
displayed using a kernel density plot” and graphical
relationships between costs and potential predictor
variables were rendered with the “lowess” smoothing
technique® (details of these techniques are provid-
ed in the Appendix, section 1).

The selection of final predictor variables from
an initial ensemble of potential predictors (n=15)
was accomplished by minimization of the Akaike
information criterion (a function of the model likeli-
hood and number of covariates®) to yield a parsi-
monious final model(s). Non-linearity of covariate
effect was determined using (parametric) fractional
polynomials, which are flexible extensions of conven-
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tional polynomials®. Details of selection processes
between non-nested, competing models is also pro-
vided in the Appendix, Section 1. Final model perfor-
mance was assessed by R? and, for the validation set,
the R? was computed as the square of the correlation
of cost and the predicted (cost) variable.

Predictive equations were determined for:

(a) total and non-overhead costs using all potential
predictors, including TISS and Omega scores and
raw-summed ventilated-days and APACHE III
scores over the first 8 ICU days or until death
or ICU discharge. The expectation was that the
inclusion of one of the activity scores would yield
high R? on the basis of their correlation with costs

(b) total and non-overhead costs using all potential
predictors, but excluding TISS and/or Omega
scores.

The relevance of the study for contemporary (year
2002) ICU costing was maintained by adjusting the
cost estimates upwards by various inflation estima-
tors, the details of which are given in the Appendix,
Section 2.

RESULTS

The cohort consisted of 1333 patients of mean
(SD) age 57.4 (19.6) years with 59% male; ICU and

hospital mortalities were 17.6% and 27.5% respec-
tively. On the first day of ICU admission, 57% were
ventilated and the APACHE III score was 58 (27).
Further patient characterization, including costs, is
seen in Table 1 for all patients and survivors versus
non-survivors. Classification of the most represented
(n=18) DRGs, covering 50% of the patients is given
in the Appendix, Section 3, Table Al. Mean patient
costs per ICU episode were $AUS 6801 (year 1991)
and $AUS 9343 (year 2002). The total cost distribu-
tion, with a table-insert revealing cost decomposition
for the years 1991 and 2002, is shown in Figure 1. The
majority of the cost data, as shown, was within the
sharp peak of the curve (25th percentile=$1609 and
75th percentile=$7186); nursing salary and wages
and overheads were the two dominant fractions of
total costs. Both total and non-overhead costs ex-
hibited marked kurtosis and skewness (P=0.001)
and the variance differed significantly (P=0.0001)
between survivors and non-survivors. Routine trans-
formations of both cost variables did not produce
normality, and log transformation did not stabilise
the variance with respect to survivors/non-survivors.
For ICU survivors and non-survivors, a significant dif-
ference existed between the means of the continuous
variables: age, total and non-overhead costs, [CU and

0.00016
0.00014
Mean SD Per cent Mean Per cent
0.00012
1991 1991 1991 2002 2002
0.0001 Physiotherapy 55 96 0.81 73 0.78
S Other 161 259 2.36 251 2.69
Ty
@ 0.00008 Radiology 308 462 4.53 480 5.14
é} Drug 407 1226 5.98 635 6.80
U 00006 Pathology 445 666 6.54 694 743
Medical 653 1107 9.60 836 8.95
Procedural 677 1320 9.95 867 9.28
000004 Overhead 1152 1716 16.93 1532 16.40
Nursing 2944 4596 43.29 3974 42.54
0.00002 Total 6801 10311 10000 9343 100.00
0
0 20000 40000 60000 80000 100000
Total Costs

FIGURE 1: Kernel density plot of total costs. Vertical axis, density; horizontal axis, costs in 1991 $AUS. Insert shows cost fractions for: 1991,
mean, SD and per cent of total for each component. 2002, mean and per cent costs per component.
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TABLE 1

Patient variables, mean(SD) or counts unless otherwise indicated for ICU survivors and non-survivors

Variable Total Survivors Non-Survivors
n 1333 1099 234
Total costs 6801 (10311) 6230 (9383) 9485 (13567)
#3025 (106-95602) #2965 (106-95602) #3692 (132-83085)
Costs: no overhead 5649 (8653) 5141 (7803) 8034 (11581)
#2534 (73-81518) #2432 (73-81518) *3124 (128-70957)
ICU LOS (days) 2.9((6.1) ) 3.? (5.7)) 5.? (7.6))
2 (0.5-67 2 (0.5-67 2 (0.5-55
Hospital LOS (days) 20.3((23.0) ) 22.6((24.0) ) 9.5((13.0) )
*14 (0.5-248 *16 (0.5-248 *4 (0.5-84
Total TISS score 117 (157) 104 (137) 179 (218)
*63 (6-1433) *58 (6-1433) *92 (16-1428)
Total Omega score 72 (113) 62 (97) 123 (160)
*37 (4-1153) *32 (4-1121) *61 (14-1153)
Age 57.5 (19.4) 56.3 (19.6) 63.3 (17.7)
APACHE III: day 1 58 (27) 51(23) 90 (26)
Ventilation: summed days 1.7 (2.2) 1.4 (2.0) 29 (2.7)
APACHE III: summed 168 (170) 145 (148) 275 (217)
Hospital (patient number)
1 494 417 77
2 301 257 44
3 538 425 113
Patient subsets:
Ethnicity 51 40 11
(Non Caucasian)
Readmissions 61 50 11
Elective surgery 268 257 11
Emergency surgery 267 218 49
Non-surgical 798 624 174
Trauma 119 106 13
COPD 15 14 1
Chronic dialysis 13 11 2
AIDS 3 3 0
Leukemia 20 12 8
Lymphoma 10 5 5
Immunosuppression 82 73 9
Metastatic carcinoma 38 26 12
Cirrhosis 32 25 7
Hepatic failure 8 6 2

*Median (range). LOS: length of stay. Total costs: costs in 1991 Australian dollars. AIDS: history of AIDS. Immunosuppression: immuno-

suppression by therapy. Trauma: blunt and penetrating trauma.

hospital length of stay, total TISS and Omega scores,
APACHE III (1st day and summed) and ventilation
days (Table 1, Hotelling’s T-squared test, P=0.0001).
Again, routine transformations did not resolve the
non-normality of the above variables (Shapiro-Wilk
test, P=0.0001).

Demographic data (age, gender, admission APACHE
III score and length of stay) per total cost decile
is seen in Table 2. Significant incremental trends
(non-parametric trend test across ordered groups;
P=0.01) across the deciles of costs were seen for
admission APACHE I1II score, length of stay (ICU
and hospital) and cost per day (computed, per
patient, as total cost/ICU length of stay). Signifi-
cant correlations (Bonferroni adjusted) were seen

between costs and the proxy variables: TISS and
Omega scores, ICU length of stay, summed APACHE
I1I score and ventilation days (Table 3). Relationships
between total costs and key proxy variables (Omega
and TISS scores, ICU length of stay, summed ventila-
tion days and summed APACHE III scores) are seen
in Figure 2 using “lowess” plots. Generally linear
or mild curvilinear univariate relationships are seen,
except for summed APACHE III score in non-
survivors, where a plateau for costs was seen at high
summed APACHE III scores. However, this plateau
appeared to be a function of the four extreme
summed APACHE III scores (>800); deletion of
these scores in the lowess plot produced a linear
relationship.

Anaesthesia and Intensive Care, Vol. 32, No. 6, December 2004
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FIGURE 2: Smoothed “lowess” plot revealing relationship between total costs and key predictors, for survivors and non-survivors. Top panel,
left to right: Omega score, TISS score, ICU length of stay. Bottom panel, left to right: summed ventilated days, summed APACHE III score.

Demographic data across total cost deciles (mean (SD))

TABLE 2

Cost deciles ~ Min tot cost Max tot cost ~ Cost/day™* Age Gender Adm APIIT* ICU LOS* Hosp LOS*
(n=) $ $ $ years % males days days

134 106 1049 1031 (505) 56 (21) 0.51 54 (34) 0.9 (1.1) 10.3 (19.6)
133 1052 1430 1446 (592) 54 (21) 0.55 47 (26) 1.3 (2.9) 13.7 (15.5)
133 1436 1788 1642 (538) 59 (18) 0.57 48 (25) 1.3 (1.6) 17.1 (19.2)
133 1801 2360 1975 (640) 58 (19) 0.66 57 (31) 1.2 (0.7) 12.0 (11.2)
134 2364 3024 1997 (865) 56 (20) 0.58 57 (27) 1.7 (1.3) 16.2 (18.1)
133 3041 4083 2026 (848) 59 (19) 0.62 59 (28) 20(11) 16.4 (14.4)
134 4084 5795 2088 (1560) 62 (18) 0.56 61 (24) 3.0 (1.8) 24.0 (28.3)
133 5801 9421 2304 (2663) 58 (20) 0.62 62 (22) 4.4 (1.6) 26.9 (22.7)
133 9424 16532 3014 (3953) 56 (19) 0.59 64 (25) 6.5(2.7) 23.8 (18.3)
133 16600 95602 3456 (5698) 59 (18) 0.66 67 (23) 17.0 (11.2) 42.5 (33.8)

Cost decile: deciles of total cost. Min tot cost: minimum total cost for the decile. Max tot cost: maximum total cost for the decile. Adm
APIIIL: admission APACHE III score. ICU LOS: ICU length of stay. Hosp LOS: Hospital length of stay.
*Significant (P=0.01) increment across cost deciles.

Anaesthesia and Intensive Care, Vol. 32, No. 6, December 2004
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TABLE 3

Costs, age and proxy variable correlations: all data

Total Nvh Costs Age Omega TISS ICU LOS APIIIrs Vdaysrs ICU surv
Total 1.000
Nvh Costs 0.999 1.000
P 0.0001
Age 0.016 0.014 1.000
P 1.0000 1.0000
Omega 0.930 0.928 0.015 1.000
P 0.0001 0.0001 1.0000
TISS 0.921 0.918 0.033 0.901 1.000
P 0.0001 0.0001 1.0000 0.0001
ICU LOS 0.876 0.872 0.033 0.810 0.786 1.000
P 0.0001 0.0001 1.0000 0.0001 0.0001
APIIIrs 0.675 0.676 0.175 0.627 0.672 0.696 1.000
P 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Vdaysrs 0.643 0.642 0.023 0.644 0.660 0.676 0.804 1.000
P 0.0001 0.0001 1.0000 0.0001 0.0001 0.0001 0.0001
ICU surv 0.120 0.127 0.137 0.205 0.183 0.103 0.291 0.247 1.000
P 0.001 0.0004 0.0001 0.0001 0.0001 0.006 0.0001 0.0001

Total: total costs. NvhCosts: No overhead costs. Omega: Omega score. TISS: TISS score. ICU LOS: ICU length of stay (days). APIIIrs:
APACHE III score summed over 8 days. Vdaysrs: Ventilated days, summed over 8 days. ICU surv: ICU outcome (binary variable).

Variables predicting total costs in ICU survivors
and in non-survivors are seen in Tables 4 and 5
respectively. These variables were a combination of
age, Omega score, ICU length of stay, summed
APACHE I1I score and summed ventilation days. No
significant colinearity was demonstrated. For models
where activity indices (TISS and Omega scores) were
considered, a significant advantage of the Omega
score was apparent (P=0.0001). Non-linear effects
were demonstrated in:

(a) survivors for the Omega score (with respect to
total costs) and ICU length of stay (total and non-
overhead costs)

(b) non-survivors for summed ventilated days and
ICU length of stay (total and non-overhead
costs).

These effects were, however, of mild degree and
poor performance was demonstrated for models with
non-linear terms with respect to validation R?, except
for survivors where the Omega score was not con-
sidered. Here a fractional polynomial was used to
model ICU length of stay (Table 4, model (ii)); the
functional form of this fractional polynomial is seen
in Appendix, Section 4 as Figure Al. A significant
interaction between age and ICU length of stay (both
modelled linearly) was included in the final model for
non-survivors (Table 5, model(i)). In survivors (Table
4), predictive performance in the determination and
validation sets was impressive with the full ensemble
of predictors but declined when the Omega score was
not considered. In non-survivors (Table 5), predictive
performance was consistent across models.

No difference existed in model performances (R?)
when non-overhead costs were substituted for total
costs (data not shown). The significant covariates, not
surprisingly, differed somewhat, although the Omega
score was still the preferred ICU activity index.

In survivors, summed ventilation days was not a
predictor.

In non-survivors, when the Omega score was not
considered, neither age nor the age-ICU length of
stay interactions were significant. Summed APACHE
III score was a significant predictor (B (SE): 14.57
(3.35), P=0.0001) as was its interaction with age
(B (SE): -0.203 (0.042), P=0.0001).

DISCUSSION

Three important aspects of the general problem of
costs analysis have been illuminated by the above
results: calculation of costs and their fractions,
the use of proxy and transformed variables in cost
analysis and appropriate predictive models.

Cost Calculation

The methodology in the current paper was con-
sonant with recent recommendations for the conduct
of “bottom-up” prospective studies>**. The frac-
tionation of costs was also comparable, in particular
the dominant nursing salary/wages component at
approximately 40%"'**. However, major variances in
other cost components have been found in the com-
parator literature®. For example: “room” costs were
reported at 52% of total in two recent charge based
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TABLE 4

Parameters and performance indices of cost predictive models: ICU survivors

Model (i) Total costs (ii) Total costs

Variable Coefficient SE P Coefficient SE P

Age -16.6 8.81 0.05

Omega score 77.61 1.77 0.0001 Not considered

APIIIrs 5.12 0.92 0.0001 11.33 1.96 0.0001

ICUlos 239.14 34.70 0.0001 6904.45* 576.19 0.0001
-2776.1* 402.03 0.0001

_cons -135.60 132.12 0.31 5325.58 169.41 0.001

R2_det (n=877) 0.91 0.73

R2 val (n=222) 0.88 0.73

Model: (i) all potential predictors considered, (ii) all potential predictors considered, except activity indices (TISS or Omega score).
Ventdayrs: summed ventilation days. APIIIrs: summed APACHE III score. ICU LOS: ICU length of stay in days. R _det: R? in
determination set. R2 val: R2 in validation set.

*Fractional polynomial describing the variable effect, with powers 2,2

TABLE 5

Parameters and performance indices of predictive models: ICU non-survivors

Model (i) Total costs (ii) Total costs

Variable Coefficient SE P Coefficient SE P
Age 26.71 11.00 0.02 -28.79 15.0 0.05
Omega score 55.89 3.30 0.0001 Not considered

Ventdayrs 294.56 142.85 0.04
ICU LOS 1422.3 128.1 0.0001 1697.3 62.3 0.0001
Interaction

Age*ICU LOS -9.49 1.69 0.0001

_cons 2923.9 735.4 0.0001 1627 1050 0.12
R2 det (n=186) 0.97 0.91

R2 val (n=48) 0.91 0.89

Model: (i) all potential predictors considered, (ii) all potential predictors considered, except activity indices (TISS or Omega score).
Ventdayrs: summed ventilation days. ICU LOS: ICU length of stay in days.Interaction: interactions between variables, modelled linearly.

R2_det: R? in determination set. RZ_val: R? in validation set.

studies, these included pharmacy and “supply” costs
in one study” but not in the other®. Laboratory
and radiology costs have varied from 22 to 25% in
both charge® and cost based studies” to 8 to 16% in
activity based studies'”, including the current.

Cost Predictor Variables

A wide variety of variables, some of which are cost-
proxies, have been shown to predict costs, however
calculated. When potential predictors are restricted
to patient demographic data (for example, age and
gender) and first day ICU admission variables (for
example, type of surgery and acute physiology score),
the R* for multivariable OLS is low; for example,
0.13". Such was the case in this study with an R*=0.09
for OLS predicting total costs in ICU survivors, with
predictors age, gender and admission APACHE III
score (data not shown). The proxy variables ICU
length of stay, TISS and Omega scores, all had cost

Anaesthesia and Intensive Care, Vol. 32, No. 6, December 2004

correlations of 0.85 (Table 3), similar to results from
other adult ICU studies>**, but not uniformly*. The
latter inconsistency provoked editorial comment"
with respect to the lack of correlation, in a paediatric
environment, between TISS scores and costs.

This reported lack of correlation between activity
and cost is somewhat perplexing. The study in ques-
tion, by de Keizer et al’, used regression models
based upon the assessment of a limited number
of patient admissions (n=33) during a calibration
period, to estimate physician and nurse activity-time
and medication use. The authors, defending their
methodology, noted that the basic unit of measure-
ment was resolved to a ten-minute activity period,
which, expanding over patient days, yield approxi-
mately 300,000 counts as a seeming stable calibration
base. However, in the formal OLS calibration equa-
tions, the unit of consideration was patient day and
these days were considered as being independent,
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which ignored the clustering effect of days in patients,
and furthermore, no validation set was utilized. That
conventional step-wise techniques used in the study
prevented “over”’-estimation is also a questionable
claim, given the recent critiques of this technique, and
the assurance of “acceptable reliability” belies the
known optimism of “determination” regressions®.

Of interest in the current study was the superior
predictive ability of the Omega score compared with
TISS. Few reports have looked at the comparative
predictive efficacy of therapeutic activity scores.
Where this has occurred, in the assessment of risk
factors for nosocomial infection, both indices
performed similarly, although no formal statistical
comparison was undertaken®. A similar situation
pertains to the optimal severity of illness score.
APACHE III", APACHE II'**, SAPS II* and MPM*
have all been used singularly to “predict” or adjust for
costs (or charges). Some evidence, albeit in non-ICU
patients, suggests that differential performance may
exist®.

Due to its labour-intense character, ground-up
utilization studies appear non-sustainable in the long
term™*. As collection of therapeutic activity scores
(TISS and Omega) may not be routine, evidence was
sought for the efficacy of more accessible predictive
indices, such as the (raw) summed ventilator days and
APACHE 111 scores, both of which had high correla-
tion ( 0.63) with costs. Somewhat surprisingly, age as
an independent predictor, had a negative 3 coeffi-
cient in both survivors and non-survivors, although
the effect was modest given the range of age (16-96
years) and the scalar quantity of the coefficient
(-16.6 and -28.79), relatively small compared with
other covariates.

Predictive Models

Although the cost variables (total and non-overhead
costs) demonstrated non-normality, OLS regression
with the dependent variable un-transformed was
used, after the recommendations of Diehr et al’, as
the focus of this study was to predict individual
patient dollar costs. In the complete data set, OLS
regression of total cost against: ICU length of stay,
Omega score, summed APACHE III score and venti-
lated days, and ICU outcome, found all predictors
significant at P=0.0001 with an R? of 0.91. Siegel et
al* similarly found that survival was the “most im-
portant” determinant of hospital costs in a trauma
centre, but survival was not a predictor in multi-
variable, as opposed to univariate, analysis in the
paediatric study of Chalom et al® In the current
study, survivors and non-survivors had significantly

different variances of the cost variables. As pointed
out by Clarke and Ryan®, using an outcome variable
(ICU survival) as an independent variable to pre-
dict an alternate outcome (in this case, cost) is
problematic. Thus survivors and non-survivors were
considered separately; this point is further expanded
in the Appendix, Section 5.

The poor predictive capability (in the validation
sets) of the non-linear modelling of covariates (see
Results, above) was undoubtedly due to the effect in
the determination set of outlying data points in the
skewed covariates (Omega score, ICU length of
stay and summed ventilated days) unduly influencing
the degree (of non-linearity) of the fractional
polynomials. A similar influence was noted in the
“lowess” plot of total costs against summed APACHE
III score in non-survivors (see Figure 2 and Results,
above), albeit the APACHE III score was not a
significant predictor for total costs in non-survivors.

The predictive performance of the multivariable
equations for total (and non-overhead) costs in sur-
vivors without the Omega score (validation R?=0.73)
was acceptable, but obviously suffered from the
exclusion of a covariate highly correlated with cost.
The reasons for the improved performance of the
non-Omega score regressions in NON-survivors were
not immediately apparent, but the data-set size was
probably a factor. When non-overhead costs were
considered in non-survivors, the summed APACHE
III score became an additional significant predictor
(compared with total costs; see Results, above), but
performance was not enhanced. The actual com-
ponents of direct (fixed and variable) and indirect
ICU costs vary within the reports in literature®>*, as
pointed out above.

Critique of Methodology

Although systematic inflation adjustment was able
to generate calendar year 2002 costs and cost frac-
tions (Figure 1), these estimates may be biased due to
changes in the structure of care and case-mix that
occurred during the period 1991 to 2002. In par-
ticular, cost composition may have shifted due to, for
example, modification of the staffing profile, in treat-
ment regimens and pathology-radiology utilization.
Similarly, independent predictor variables may also
have shown temporal change; most likely a decrease
in ICU length of stay and an increase in age profile
and severity of illness. Such changes may not have
maintained the predictive performance advantage of
the Omega system with respect to TISS, as found in
this study. New simplified utilization/activity indices,
TISS-28%, and Nursing Activities Score®, may now be
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more cost-effective” for routine collection and would
be appropriate candidate predictors of total costs.

Thus the import of the present study is methodo-
logical, to the extent that what has been demon-
strated is the ability of “simple” indices, length of stay
and (summed) severity of illness scores, to predict
total ICU costs. Moreover, these indices retained
predictive ability in the validation sets. An approach
to modelling these predictors was also developed,
with importance given to the elucidation of non-
linear covariate effect and interactions and the
appropriate analysis of the survivor and non-survivor
subsets. The robustness of the above models to dif-
ferent formulations of total costs” and combinations
of costs fractions approximating “direct” ICU activity
is obviously an empirical question in need of further
investigation.
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APPENDIX

Section 1

A kernel density plot is a modification of the
simplest density estimator, the histogram. Densities
are the continuous analogues of proportions (form-
ally, they are derivatives of the cumulative distribu-
tion function, so that areas under the density function
read off as probabilities™. The data is divided into
intervals (which may overlap) and estimates of the
density at the interval centres are produced; the
“kernel” is the function (a number are available)
which weights the observations by the distance from
the centre of the interval.

“Lowess” is a scatter plot smoothing technique (of
y on x) which uses locally weighted regression to sum-
marize the middle of the distribution of a dependent
variable (for example, cost=y) for each value of an
independent variable (for example, Omega score=
x). Lowess plots effectively let the data “speak for
itself”".

Selection between non-nested models was deter-
mined by the J and Cox-Pesaran tests and the BIC
score (Bayesian information criterion, a likelihood-
based method of choosing a model, similar to AIC;
critical difference=10 and model with lower value
preferred)”. Nested models are those in which co-

variates in one model form a subset of the covariates
in a larger model and formal goodness-of-fit to the
data can be compared using standard tests. In the
present context, two competing models predicting
costs with covariates, say: (i) Omega score, ICU
length of stay and age versus (ii) TISS score, venti-
lated days and summed APACHE III score as a frac-
tional polynomial, would be considered non-nested.

Section 2

The relevance of the study for contemporary (year
2002) ICU costing was maintained by adjusting the
cost estimates upwards by various inflation estima-
tors, based upon: (i) South Australian public sector
wage rises for the period 31/08/1991-01/10/2002 for
a Professional Service Officer (PSO1 6th year of ex-
perience), (ii) Australian Bureau of Statistics Con-
sumer price index, subset Health, subset Hospital and
medical services for the period Sept quarter 1991
to December quarter 2002, (iii) South Australian
public sector wage rises for the period 07/09/1991-
01/01/2002 for a Medical consultant classification
MD-2 8th year of experience, (iv) South Australian
public sector wage rises for the period 06/08/1991-
01/10/2002 for a registered nurse classification RN-1
8th year of experience. The inflation factors were:
Physiotherapy (1.33), Other (1.56), Radiology (1.56),
Drug (1.56), Pathology (1.56), Medical (1.28),
Procedural (1.28), Overhead (1.33), Nursing (1.35).

Section 3

Table Al. Top 18 DRGs

DRG % of total
Major vascular surgery 7.13
Extensive surgery unrelated to principal diagnosis 4.28
Gastric surgery 3.98
Uncomplicated Self poisoning 3.83
Small and large bowel surgery 3.53
Craniotomy 3.45
Craniotomy for trauma 3.45
Acute heart failure and shock 2.78
Complicated self poisoning 2.70
Circulatory disorders with MI 2.18
COPD 2.03
Pulmonary oedema and respiratory failure 1.88
Major head and neck procedures 1.65
Cardiac arrest 1.65
Pneumonia with complications 1.58
Extracranial vascular procedures 1.35
Other surgical procedures for injuries 1.35
Circulatory disorders 1.28

DRG classification from the Health Care Financing DRG
listing provided by the Healthcare Cost and Utilization Project*!.
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Section 4
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FIGURE Al: Functional form of the 2,2 fractional polynomial relating Total costs to ICU length of stay in survivors (Table 4, model ii).
Horizontal axis, length of stay in days. Vertical axis, total costs ($ Australian). Solid line, fitted values plus weighted residuals adjusted for
other covariates. Shaded area, 95% CI of fitted values. Solid circles, individual data points.
Added note: fractional polynomials, are extensions of the conventional polynomial, allowing unique and repeated powers of a (positive)
continuous variable, the powers being (-2, -1, -0.5, 0, 0.5, 1, 2, 3) and the power 0=logarithm. Thus a 2,2 fractional polynomial has the
general form: Bo+1x24Pox2log x, where P is the intercept and x, the continuous covariate.

Section 5

The question of whether data can be pooled (in this
case, consideration of survivors and non-survivors)
together within the same regression equation is sub-
ject to formal testing by the Chow test”, which
assesses the equality of sets of coefficients estimated
over two sets of linear regressions (survivors and non-
survivors). A significant Chow test indicates the in-
appropriateness of combining the regressions (that is,
pooling survivors and non-survivors). In the current
study, the Chow test was highly significant, P=0.0001.
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