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A triangular coastal element developed for use
in finite difference tidal models
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Abstract

In numerical models of environmental flows it is often necessary to
implement impermeable boundaries of complicated shape. For exam-
ple, when modelling the spread of pollutants in streams, the dispersion
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of contaminants in lakes and estuaries or the final coastal destination
of an oil spill, the land-water boundary is not simply defined. Cur-
rently such boundaries are best represented using Finite Element (fe)
techniques. However fe techniques are both computationally expen-
sive and difficult to implement. As a result Finite Difference Methods
(fdms) on rectangular grids have traditionally been used to model
environmental flows.

In this paper a triangular boundary element for finite difference
models of tidal flows in coastal regions, which improves boundary res-
olution while maintaining computational efficiency, is developed and
tested. Numerical predictions using the new approach are compared
with predictions obtained using the traditional stepped boundary and
an analytic solution for depth-integrated flow in an idealised estuary.
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1 Introduction

In standard finite difference tidal models, such as those developed in [2]–[5],
the region of interest is covered by a grid leading to a set of grid elements
consisting of two types, land and water elements. The actual coastline must
then be approximated as the boundary between regions containing land and
regions containing water. An example of such a grid is shown in Figure 1.
This model approximation of northern Spencer Gulf appears to reasonably
represent the actual coastline. Certainly, it allows recognition of the region
of interest. However, modelling the coast in such a manner does have draw-
backs.

The discretized coastline can sometimes be a poor approximation to the
real thing. In particular, stretches of coast which run at an angle of approxi-
mately 45◦ to the grid are poorly represented. The coastline in the south-east
corner of the northern Spencer Gulf region is an example of this. It contains
a number of 90◦ corners where modelled results, particularly velocities, will
be noticeably affected. While currents are expected to run parallel to the
coast, velocities will zig-zag in an attempt to follow the modelled coastline.
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Figure 1: A standard finite difference computational boundary for the
northern Spencer Gulf region.
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One application which relies heavily on the accuracy of the coastline is
oil spill tracking. If the modelled coastline consists of a large number of 90◦

corners, the oil may end up trapped in the artificial bays. A more realistic
smooth coastline would allow the oil to move along the boundaries.

The ideal method of increasing the accuracy of the coastline would require
minimal increases in computer resources. This would suggest a method which
is only employed around coastal areas, but at the same time it must not
complicate calculations. The method introduced in this paper allows the
addition of four new coastal elements to complement the land and water
elements used in standard models. These elements will contain half land and
half water, with the coast running diagonally from one corner of the grid box
to the opposite corner.

Figure 2 shows the grid representation of the northern Spencer Gulf region
when these triangular elements are used. The model coastline is a much
better approximation of the actual coast, particularly those stretches of coast
which run at a sharp angle to the grid. However, for these elements to be
used, a technique for incorporating them in the same manner as sea elements
must be developed.
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Figure 2: The triangulated computational boundary for the northern
Spencer Gulf region.
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2 Mathematical formulation

The test case used to illustrate the effectiveness of the triangular elements
considers tidal oscillations in a semi-infinite rectangular constant depth bay.
The 2-D linearized depth-integrated equations of mass and momentum con-
servation, namely,
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are used to describe the behaviour of the surface elevation and currents. Here
t is time in seconds (s), x and y are the cartesian spatial coordinates in the
plane of mean sea level (msl), measured in meters (m), h is the depth of the
sea bed below msl (a constant depth of 20 m is considered), ζ is the surface
elevation (m) above msl, U and V are the depth-integrated components of
fluid velocity (m2s−1) in the x and y directions, f is the Coriolis parameter,
taken as −8.37 × 10−5 s−1 (corresponding to a latitude of 35◦ South), g is
the gravitational acceleration, 9.81 ms−2, and C is the coefficient of linear
friction, a constant 0.00025 s−1 over the entire bay.

The fluid starts from rest, that is ζ = U = V = 0 at time t = 0, and
velocities perpendicular to the coastal boundary are zero for time t > 0.
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Finally all elevations on or outside the open boundary are specified at each
time level.

3 Numerical procedure

Equations (1–3) are approximately solved using fdms with computations
performed on an Arakawa C grid (see [1]). Figure 3 shows the (j, k)-th grid-
box with the variables ζ , U and V defined at the indicated positions. The
depths h are specified at the ζ points and f and C are considered constant.

The relationships between the scripted variables and their continuous
counterparts are

hj,k = h(j∆x, k∆y),

ζn
j,k = ζ(j∆x, k∆y, n∆t),

Un
j,k = U ((j + 1/2)∆x, k∆y, n∆t) ,

V n
j,k = V (j∆x, (k + 1/2)∆y, n∆t) .

The formulae used to numerically integrate (1–3) from time level n to
n + 1 at the ζ , U and V points inside the bay are:
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Figure 3: Position and variables within the (j, k)-th grid box.
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+ f∆t(V n
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where rx = ∆t/∆x and ry = ∆t/∆y. This system of equations has been
shown to be von Neumann stable provided
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,

1
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}
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where A = (∆x)−2 + (∆y)−2 and D = (C2 + f 2)/C (see [6]).

4 Incorporating triangular coastal elements

The method used to incorporate triangular elements into the numerical model
is now described. The standard elements used in finite difference tidal models
are those made up wholly of land and wholly of water. These elements will
still make up the majority of the grid, but four new triangular elements, with
the coast running from one corner to the opposite corner, will be introduced.

Allocation of element types to grid boxes is performed using a coastline
fitting subroutine in the program. Using bathymetric data and present sea
level as the sole inputs, the coastline fitter considers which of the four types of
triangular elements would exist in every grid box before determining whether
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the element is land, water or triangular, from the present sea level. This
automated process replaces the manual allocation of elements traditionally
performed by eye and removes much of the manual labour involved in the
usual initialisation of the model.

The process by which the triangular land elements are handled within the
numerical model must meet several requirements. For example, the equations
of fluid motion must be satisfied in a manner consistent with the layout of
the triangular elements. The ideal technique would be one that satisfies
the physical properties expected of a triangular land element, and preferably
makes use of the same finite difference formulae being used for the open water
elements.

One physical property which must be satisfied is the impermeability of the
coastal boundary running through the centre of each triangular element. This
requires that there be no flow perpendicular to the boundary, which means
the flow velocity at the centre of each triangular element must be tangential
to this boundary. A simple reflection about the diagonal boundary is used to
satisfy this property. This is illustrated in Figure 4 for a north-east triangular
land element with sides ∆x = ∆y.

The inflow through the southern side of the grid box (Vsouth) is reflected
about the coastline to give an equal inflow (Vsouth) through the eastern side.
Similarly an inflow of Uwest is forced through the northern side of the grid
box. Thus if the (j, k)-th grid box contains a north-east triangular element
the formulae Un

j,k = −V n
j,k−1 and V n

j,k = −Un
j−1,k would be applied at the end
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Vsouth

= Uwest

Uwest = Vsouth

Figure 4: Velocity reflection in a square north-east triangular land element.
A velocity equal to Uwest is directed through the northern side and one equal
to Vsouth through the eastern side to create a streamline along the modelled
coastline.
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of each time step.

Importantly, this reflection process does not complicate the numerical
procedure. In particular, Equation (4) can still be applied without modifica-
tion. The only extra computations involved in modelling triangular elements
entail copying some data from one array position to another at each time
level. Compared with the number of operations carried out at each iteration
for the finite difference formulae the additional time required for this process
is insignificant.

5 Testing the model

Verification of results is an essential part in the development of any numerical
model. In this section the theory developed thus far, and the computer
code used to implement this theory, is tested using an analytic solution of
Equations (1–3). Also, by computing differences between modelled results
and exact analytic values, quantitative comparisons between the standard
and triangulated models can be made.

The solution used to verify the model was developed in [7] for tidal prop-
agation in a constant depth semi-infinite rectangular bay. A 60km section
of a 40km wide bay, closed at the west end and open at the east end was
considered and the response of this bay to an inward travelling semi-diurnal
wave was studied. The grid spacings used in the numerical model were
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∆x = ∆y = 2km while a time increment of ∆t = 30s was chosen to satisfy
condition (7).

In order to test the influence of triangular elements the bay was rotated
anticlockwise from θ = 0◦ to θ = 90◦ at 5◦ increments. For every angle ap-
proximate coastlines, generated with and without triangular elements, were
developed and simulations were run. Rotating the bay allowed the formation
of triangular elements which were not present when the bay was aligned with
the gridlines. The midpoint at the eastern end of the bay was chosen as the
origin of rotation, allowing perfect boundary representation for the bay to be
generated when θ = 0◦ and θ = 90◦.

The model was run for a warm-up period of one tide cycle before dif-
ferences were calculated. Outside the test area analytic values for surface
elevations were used to avoid the introduction of further errors. Over the
second wave period the root mean square (rms) errors for both surface ele-
vation and velocity magnitude were calculated by comparing modelled and
analytic values at every ζ point inside the test area for every iteration. The
rms analytic values were also calculated over this time period allowing per-
centage errors to be obtained. The difference between the modelled results
and the analytic solution for the various bays are shown in Figure 5.

It is clear from the graph that the relative errors are far greater for the
velocities than for the water height, as is often the case in numerical tidal
models. More importantly, the modelled velocities and elevations are consis-
tently more accurate when triangular elements are used.
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Figure 5: rms errors for surface elevation and velocity magnitude with (4)
and without (2) triangular elements.
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The improved accuracy for the velocities is particularly significant. Over
the 19 orientations an average rms error of 5.5% is obtained using trian-
gular elements, compared with 10.3% for the standard elements. This is a
significant improvement since the only reduction in errors is due to improved
accuracy of the coastline. The improvement is especially remarkable when
one considers the small fraction of triangular elements introduced. For ex-
ample, when the angle of rotation is 35◦, the rms errors for the velocity
magnitude obtained using triangular and standard elements are 6.9% and
13.7% respectively. Thus a reduction of approximately 50% in rms error is
obtained by changing only 35 (5.8%) of the 600 element types inside the test
area.

6 Conclusion

A triangular coastal element for use in finite difference tidal models has been
described and a method for implementing them has been presented. Without
significantly increasing program run time the introduction of these elements
has markedly improved the accuracy of results, as demonstrated by a simple
test case. The simplicity of their modelling allows the same finite difference
formulae to be used for both triangular and water elements and the reflection
procedure may be implemented as a module at the end of each iteration.

In future research the present model will be modified to include forcing
from meteorological terms, and non-linear advection terms will be added to
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the governing equations. The inclusion of open sea boundary conditions will
also be addressed.
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