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Filters are commonly used in sound reproduction and communication systems as a means of
compensating for the response of the electro-acoustic plant. Two commonly used filter designs in the
field of acoustics are the time reversal filter and the Tikhonov inverse filter, In this paper the
influence of transducer sensitivities on the performance of these filters is examined, It is shown that
the sensitivity of the transducers can negatively affect the performance of the resulting filter. To
compensate for the decrease in. performance, diagonal preconditioning can be implemented in the
system. It is shown that by using diagonal matrices, which minimize the condition number of the
system, the loss in performance arising from unbalanced sensitivities is minimized. This paper
proposes an algorithm to find such a set of diagonal matrices and results are presented showing the

improvements in performance arising from the modified filter design. © 2006 Acoustical Society of

America. [DOL 10.1121/1.2139069]

- PACS number(s): 43.60.Pt, 43.60.—c, 43.38.Md [TDM]

I. INTRODUCTION

~The control of transmissions through electro-acoustic
systems has been an active topic of research for many years.
Transmission through a system generally involyes the design
of a filter that manipulates input signals, -such that when the
output signals from the filter are transmitted through the
physical system, the input signals are reproduced at the re-
ceiver. The design of such a filtering system depends on the
type of physical system. The types of physical systems ex-
amined in this paper are multi-channel linear time-invariant
(LTI) systems. Various designs of such filters exist for multi-
channel LTI systems, Of particular, interest in this work is
* that of designing a filter from measured impulse response
functions (IRFs) of the system., 1-5 Two such filter designs are
"time reversal filters and Tikhonov inverse filters, When de-
signing such filters, it is important to understand the influ-
ences various components of the system have on the result-
ing filter. A typical system contains a set of sensitivities for
the transmitting and receiving elements, In this paper, it is
shown that the choice of transducer sensitivity has a.consid-
erable influence on the resulting filters. This paper examines
this influence for both time reversal and Tikhonov inverse
filter designs, An algorithm is then given that generates more
appropriate transducer sensitivities, and results are presented
showing the improvement to the system performance.

Il. BACKGROUND THEORY

The design of the multi-channel filter discussed in this
paper is based on the system presented in Fig. 1, This figure
shows input signals, u(z), transformed by the filter, A(z), to
produce a set of signals, d(z), that are desired to be replicated
by the signals, w(z), being the output of the electro-acoustic
system denoted by C(z). In order to achieve this, a filter H(z)
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is designed based on C(z) and A(z). In general, the transfer
matrix A(z) is a delay [i.e., A(z)=z"I]. This problem can be
expressed as

w(z) = C(2)v(2) 1 7 (1)
with the objective that )
w(z) = A(;)u(z) . 2)

Tn order to achieve this objective, a filter H(z) is de-

“signed that relates w(z) to u(z) according to

" w(z) = C(2)H(z)u(z). (3)

A solution to achieving this objective proposed by Kirkeby
et al." solved the problem by minimizing the cost function

J(z) = eT(z"l)e(z) + kv (Z)v(z). ”(4)

The filter that minimizes this function is given by [Ref.

_ 6, Eq. (8)]

H() = (€7 )CE + ) T HAR), g

where k is a weighﬁng term used to limit the energy of 'the
transducer signal v(z). The solution given in Eq. (5) requires
the calculation of the matrix, '
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FIG. 1. Generic inverse filter system schematic (Ref. 6, Fig. 1).
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(CTzHC() +kD)ICT (). (6)

| This matrix was observed by Elliot er al® to be the
~ Tikhonov inverse of the matrix C(z), and will hereafter be
~ called the Tikhonov inverse filter (TIF). An extensive discus-
~ gion of the Tikhonov inverse of a matrix can be found in Ref.
9. This paper will be devoted to the filter designed when
A(9)=L ‘
’ Kirkeby er al.® showed that an increase in k results in an
 increase in the decay rate of the poles in the filter. By setting
~ k appropriately, the length of the filters (the time at which the
impulse response of the system has decayed to below the
noise floor), could be reduced to fit within a finite number of
points, Ngpr. The calculation of the filter was then possible in
the frequency domain using the fast Fourier transform (FFT)
without the problem of wraparound occurring when perform-
ing the inverse FFT. Calculation of the filter by this tech-
nique proved to be considerably faster than equivalent calcu-
lations performed using time domain techniques. The
calculations performed in the frequency domain are given by

H,(0,) = (C™(0)C(w) + kD' CH(wy), (7)

frequency domain representation of the system and
Tikhonov inverse filter, respectively.

When implementing a filter design, the entire electro-
acoustic system often includes sensitivities for the transmit-
ting and receiving elements. By denoting the transmitter and
receiver sensitivities as a;, i [1,N] and B;, j e [1,M], re-
spectively, the transfer matrix of the system with the sensi-
tivities included can be expressed as

Cg(ﬂw) _ B2 0
0 0 Bu
o 0 0
xCllt B w0
o 0 e
= BC(w)a. (8)

A question raised by this form is: What influence do the
sensitivities have on the resulting filters? This paper aims to
address this question whereby it will be shown that the se-
‘yl‘ection of @ and B to achieve the smallest condition number
r C,(w) also decreases the high regularization that results
om a poor choice of sensitivities.

. In single-channel systems, the coherence between the
input and the output of the system is maximized by setting
the sensitivity of the transmitters to the maximum possible to
duce the noise from the electro-acoustic portion of the sys-
m, typically the largest source of noise in an acoustic sys-
m. With a multi-channel time reversal or Tikhonov inverse
ter design, the level of the input signals to the electro-
oustic system is actually determined by the filter design
at is developed considering both the channel and the sen-
tivities. If the sensitivities for each channel are set to their

Acoust. Soc. Am., Vol. 119, No. 1, January 2006

where C(w,), i €[1,Ngpr] and Hy(w,), i € [1,Ngpr] are the

maximum based purely on maximizing the coherence be-
tween the input and output of the electro-acoustic system,
this does not directly correspond to maximizing the coher-
ence between the input and output of the entire system in-
corporating the inverse filter, the sensitivities, and the
electro-acoustic system. The algorithm presented in this pa-
per will produce the optimal set of sensitivities that provide
the most balanced coherence for all channels.

lil. INFLUENCE OF DIAGONAL PRECONDITIONING
ON THE PERFORMANCE OF THE TIKHONOV
REGULARIZED INVERSE FILTER

A. An “equally responsive system”

The influence of diagonal preconditioning on the
Tikhonov inverse filter for the conditions k=0, and & tending
toward infinity, shall be examined. The examination shall be
performed for a system C(w) that is “equally responsive.” A
system shall be defined to be “equally responsive” when a
signal transmitted from each input results in a similar level
of excitation at the receivers.

When k=0 (i.e., no regularization) the filter created us-
ing Eq. (5) is found to be

H(w) = (aC™(w) BBC(w) @) aCH(w) B
= a7 /(C(w) B2C(w)) "' CH(w) B. )

If B=I (i.e., equal receiver sensitivities), then Eq. (9) shows
that the signal amplitude for transmitter i will be scaled by
1/ ;. The filter will thus create a set of signals that generates
a higher signal level for the weaker transmitter. It then fol-
lows that the dynamic range will be fully used only for the
output channel with the smallest sensitivity (assuming all the
transducers have the same input dynamic range). When the
matrix C is square, Eq. (9) can be reduced to

H= o' (CHw)C(o)) ' CH(w) B, (10)

showing that a similar attenuation is applied to the input
signal according to the choice of receiver sensitivities, 5.

- When regularization is included, it can be noted from
Eq. (7) that as k is increased, (C?Cg+kl)‘1 tends toward
(1/k)X and, as a result, the resulting filter approaches

H() = 7 Cw) an

=%aCH(w)ﬁ; ‘ (12)

which can be observed to be a scaled version of the fre-
quency domain representation of the multi-channel time re-
versal filter.'®'? This filter design results in the signal to
transducer i being scaled by «;, and the signal transmitted to
receiver j being scaled by B;. It then follows that the dy-
namic range will only be fully used for the output channel
with the largest sensitivity.

It has been shown that at the two extremities of k=0 and
k—oo [denoted hereafter as inverse filtering (IF) and time
reversal filtering (TRF)], the full dynamic range of the trans-
ducer will only be effectively used if the transducer sensitivi-
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ties are equal for an “equally responsive system.” It can then
be noted that if the system is not equally responsive (i.e.,
positioning a microphone close to a pressure node), it would
be desirable to find an alternative set of sensitivities that
would transform the total system into an equally responsive
system.

B. Influence of diagonal preconditioning on the total
system

With reference to Fig. 1, the total system transfer func-
tion, being the combination of the filter and the system, is
given by

T(w) = C(w)H(w). (13)
The influence that the transducer sensitivities have on the

total system for IF and TRF can be observed by inserting

Eqgs. (9) and (12) into Eq. (13). The system transfer functions
for IF and TRF are given by

Tr=BCaHr = BCa((aCBBCa)'aCip) =1 (14)
and

Tre = BCaHy = BCa(aCH B)

N C1i
=B 2o culley e 1B,
(15)
respectively, and the matrix
Cui
ca |l€y; en v ] (16)

is the transfer matrix due to the ith transmitter. It is thus
observed that the variation of the transducer sensitivities
have no influence on the total response for an IF but consid-
erable influence on the TRE.

Considering that CHC is diagonally dominant,'> Eq. (15)
shows that the transducer sensitivities 8 result in the signal
at the jth receiver being scaled by 82, and the sensitivities a
result in the scaling of the ith transfer matrix by 7. Since the
Tikhonov inverse filter has a nonzero regularization param-
eter, it is considered reasonable to assume that the transmis-
sion channels would also be unequally scaled.

C. Examination of the transfer matrix according to
the singular values

In this section, the influence of the transducer sensitivi-
ties on the TIF will be examined according to the singular
values decomposition (SVD) of the system matrix, given by

: N
C(0) =U(0)2(@) V() = X ou(w)vi(w),  (17)
i=1
where U(w) and V(w) are unitary matrices, 3(w) is a diag-
onal matrix of singular values, oy, i €[1,N], and u,(w) and

vi(w) are the corresponding basis vectors within the unitary
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matrices. The inverse filter with no regularization can then
be expressed as
N H
vi{w)u (w)
Hip(w) = V(0)2 ()0 w) = 2 ———— (18)

i=1 i
and the addition of the regularization results in the filter
Hrpr(w) = V(@) Zpp(0) UT(w)

ul <ﬁ)mm¢w>
(7

where the subscript TIF denotes Tikhonov inverse filter. In
subsequent equations the frequency dependence (w) is im-
plied, but not shown. In Eqg. (19) it can be seen that the
magnitude of k compared to a% [the singular values of
C(w)CH(w)] determines the effectiveness of the “basis vec-
tor coupling” between u; and vl-.14 Basis vector coupling is
physically described as follows: u; is considered similar to a
mode shape that, when excited, results in an excitation of the
receivers with a phase and amplitude, v;, scaled according to
the coupling factor of ;.
When the sensitivities are included, the filter becomes

, (19)

g;

C,=pUxVia (20)
=Ug3,Vy, (1)

where Ug,Vg, and Eg are the unitary and singular matrices of
the new system. The basis vector coupling matrices, uia-iv?,
have been converted to ,Bu,-(riviHa. Since the set of vectors,
Pu;, i e[1,M] and av,, i € [1,N] (being the transformation
of the original basis vectors); cannot be simply scaled to
form another orthonormal set, it can be concluded that there
is no trivial solution to relate the singular values of C to that
of C,.

In this work, the goal is to determine a new set of sen-
sitivities that reduce the regularization that results from a
poor choice of sensitivities. Given a fixed regularization pa-
rameter, k, Eq. (19) shows that to reduce the effect of the
regularization on the singular values, sensitivities should be
chosen that result in the largest singular values possible. This
strategy by itself is unrealistic since the problem is uncon-
strained since @ and B can be chosen to scale the singular
values by any desired amount, x, by using a set of scaling
matrices,

B=1. (22)

It can further be shown using Eq. (19) that the change 1
regularization that results from the equal scaling of the sei-
sitivities by x can equivalently be achieved by selecting a
different regularization parameter, k' =x’k. Thus, the objec-
tive of adjusting the sensitivities should not be to scale Fhe
singular values, but to minimize the condition number, being
the ratio of the largest singular value to the smallest singula!
value.

a=xI,

D. Diagonal preconditioning

In Secs. Il B and I C, two optimization techniqueﬁ
have been proposed, the former to achieve an equally respo
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sive system and the latter to reduce the condition number of
the matrix. In the former technique, the transducer sensitivi-
ties are chosen such that every input signal to the system
excites the outputs of the system with the same magnitude.
This can be expressed as

|ﬂcael|2 = \ﬁCae2|2= = IBCdele,

where |-|, is the norm-2 (or Euclidean length) of a vector,
and the vectors ey, ...,ey are the standard basis vectors for
Ry- This condition can be achieved by setting

(23)

(24)

Ej]‘/:lllcijl“

By using this scaling, the resulting filters will equalize
the signals transmitted, but not the signals received. In order
to achieve equal signal levels at the receivers, a further con-
dition can be imposed: for a simultaneous unit input on all
the channels, the energy at each output is to be equal. To
achieve this, a set of diagonal matrices, @ and 3, are chosen
such that

=ri=- = Fyps (25)
1
=BCa (26)
1
A soluti(;n that achieves this is 7
CY] =1 N
27)
1
S
Eﬁ1|cij]2

When the conditions in Egs. (24) and (27) are met, the
system responds equally, and thus Tikhonov inverse filtering
can be found to effectively use the full dynamic range of all
the transducers within the system.

In Sec. II C it was shown that a suitable choice of di-
agonal matrices was the set that minimized the condition
numbers of the system. Van der Sluis™ discussed that mini-
mization of the condition number could not be expected to
be easily achieved, however it was shown in Ref. 15, Theo-
rem 3.5, that the condition number of the mairix aC was
upper bounded to be a factor of \/Z from the minimum when
all the rows have equal two-norms, and the condition number
of CB was upper bounded to be a factor of Vi from the
minimum when all the columns have equal two-norms for an
m X n matrix. From Eqgs. (24) and (27), the diagonal matrices
that best use the dynamic range of the transducers also re-
sults in a matrix of equal two-norm of both the-row and
Columns. Thus the design techniques presented in Secs. Il B
and ITI C have the same solution, being that of diagonal ma-
trices that result in C having rows and columns of equal
two-norm.
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Finding a set of diagonal matrices that achieve equal
two-norms of both the columns and rows simultaneously is a
nontr1v1a1 problem. In order to approximate such a condition,
Ruiz'® showed that an algorithm involving the iterative ap-
plication of Egs. (24) and (27) converges to a set of diagonal
matrices that results in equal two-norms of both row and
columns of the combined matrices. A variation of the algo-
rithm by Ruiz'® is proposed and used hereafter to calculate
an optimal set of diagonal matrices:

Algorithm 1.

CO_ C, B(O) =1,

for £=0,1,2,..., until convergence do

Dy, =diag(V[r]) et s
D = diag(V]el],) o,

~ —1 A~ -1
C(k+1) = DR C(k)DC ,

a0 =1

ﬁ(k+1) — B(k)D}_Ql ,

where rgk)

and %)= a®DZ!,

are the ith row and jth column of the
matrix é(k), respectively. For the experimental results given
in Sec. 1V, it was found that adequate convergence of the
algorithm was reached after 20 iterations.

and c(.k)

E. Preconditioning within the controller

So far the implementation of sensitivity compensation
has only been discussed with respect to scaling within the
analog domain. In this section the concept of scaling the
signal within the digital domain will be presented. To de-
velop a filter for use in the digital domain, it is observed that

the filter, Hg, is designed such that
[BCalH, =1 (28)

where the square brackets have been included to define the
analog domain. It then follows that

B 'BCaH,= B,
(29)
[ClaH B=1.

Thus an inverse filter for use in the digital domain is given
by

Schematic Representation | Equation Representation

Inverse Filter D/A System System Inverse Filter
1 : ]
(a) [Hp(2)| |1Cn(2) (Cp) H{C:}
| S—
@
1
® 1Co(2) () et {B,Coa} 5,
| S
© Ho(z) (6:C0)  H{B,Coao}
@ (B:Crerg) o H{C} 55

FIG. 2. Diagonal preconditioning systems: (a) no diagonal preconditioning,
(b) digital preconditioning, (c) analog precond1t10n1ng, and (d) scaled ver-
sion of the Tikhonov inverse filter.
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FIG. 3. The impulse responses c,,(n) of the system (replica of Ref. 7, Fig. 3)
showing the response amplitudes versus sample, n. In this figure, the sub-
figure at row i, column j corresponds to the IRF of the channel between
transmitter j and receiver i.

Higirm = ol B = a((BCa)(BCa) + ) (BCa)" B
= (CHBC + ka™?)ICH B2 (30)

The digital and analog implementations are shown in
Figs. 2(b) and 2(c). When applying diagonal preconditioning
in the analog domain, @ and B are chosen to transform the
system C,(z) into an equally responsive system such that the
" signals at the input and output of the system have relatively
equal amplitudes. However, if the scaling is performed
within the digital domain, the amplitude of the signals at the
D/A and A/D converters are

31)

sp/a(2) = av(z)

and

sap(@) = B'w(2), (32)

respectively, showing that the filter does not make effective
use of the D/A and A/D converters. Thus the only benefit to
using diagonal preconditioning in the digital domain is to
reduce the unequal regularization on the singular values that
results from a poor choice of sensitivities.

IV. AN EXAMPLE ANALYSIS.

In this section, a simulation will be used to demonstrate
the concept of diagonal preconditioning. The simulation used
is a replica of that performed by Kirkeby et al.” in which a
filtering system is designed that utilizes four speakers to gen-
erate a set of desired signals at four points surrounding a
dummy head. For a detailed overview of the physical con-
figuration, see Ref. 7. The simulation utilizes transfer func-
tions created by Gardner and Martin'” which are freely avail-
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FIG. 4. The impulse responses c(n). In these figures, the subplot at row i,
column j corresponds to the IRF of the channel between transmitter j and
receiver i. (a) Poorly scaled system, C,. (b) Poorly scaled system after
application of gain compensation, 8,C,e.

able for download from the MIT Media Laboratory website
(World Wide Web Address: http:/sound.media.mit.edu/
KEMAR html). The impulse responses that describe the sys-
tem are shown in Fig. 3. It should be observed that due to
symmetry in the experiment, the impulse response matrix
can be written in the form

c1(n) c(n)  c3(n) cq(n)
Cz(”) c1(n) c4(n) 03(”)
- 33)
CO=| ) ) oW aw |
ce(n) cs(n) cg(n) c7(n)

It can be observed from Fig. 3 that the energies of ¢1();
c3(n), cs(n), and c4(n) are relatively equal, and similarly the
energies of c,(n), c4(n), cg(n), and cg(n) are relatively equal.
From this it can be concluded that the norm-2 of the rows

TABLE I. Energy within the rows and columns of the transfer matrices.

System Rows Columns
Poor scaled system (cp [0.70 044 0.77 1.00]T [0.24 0.81 1.00 0.86]
Compensated (B8,Cpex,) [1.00 0098 1.00 0.98]° [0.98 1.00 0.98 1.00]
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G. 5. The singular values of C(a)) (a) Poorly scaled system, C,. (b)
orly scaled system after application of gain compensation, BC,a.

d columns of this matrix are likely to be fairly similar, and

ce of diagonal preconditioning, a set of gains will be used
cause the system to be poorly scaled, and then, to demon-
ate the proposed technique, a set of gains will be calcu-
lated using Algorithm 1 to compensate for the poor scaling.
The set of gains arbitrarily chosen to create a system
with a poor choice of sensitivities is glven by

thus the system is equally responsive. To examine the influ- -
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FIG. 6. Optimal values of & and B with respect to frequency, calculated
using the preconditioning algorithm; X[, "t Xgy mrme X3, - - -X4, Where
x=a and B, respectively. (a) Poorly scaled system, C,. (b) Poorly scaled
system after application of gain compensation, B:Coa.

 other elements. A set of compensating gains was then calcu-
flated by applying Algorithm 1 to the system energy matnx

\/2 chn) \/2 ciy(n) \/2 cl(n) -
\/E u (n) \/ E" c5o(n) \/ E" 23(n)

\/E n ctaln)
\/ En c§4(n) v

1.00 0 0 0
0 0.50 0 0
a,=
0 0 1.00 0
0 0 0 1.00 |
_ - (34)
0.25 0 0 0
0 ‘1.00 0 0
B=1 o 0 1.00 0
0 0 0 100
with the resulting IRFs shown in Fig. 4(a). This system will

‘be denoted as C,, where the subscript p denotes poorly
Scaled. The scaling introduced physically corresponds to
_transmitter 2 having half the sensitivity of the other transmit-
ters and receiver 1 having a sensitivity a quarter that of the
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V2,40 VEdm 3 dw

VS, |

The resulting compensation gains are

1.06
0
0
0

0Q

3.30

Bg=
0

0
1.85
0
0

0
0.96
0
0

0
0
0.99
0

0
0
0.79
0

0.93

Va0 2 am \Z, dm

\/ E ., ciy(n)

(35)

(36)
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preconditioning, H{C,}. (b) Digital preconditioning, a;H[{,Bngafg}ﬂ;.

& H{C}B;".

_Figure 4(b) shows the IRFs of the system after sensitiv-
ity compensation has been applied (i.e., the application of
a,a, and BB to the initial system.) Table I shows the en-
ergy within the rows and columns of both systems, normal-
ized such that the largest energy level is unity. As the energy
within each row and each column for the sensitivity-
compensated system are of similar magnitude (in contrast to
that of the poorly scaled system), the algorithm is thus ob-
served to work as desired.

The singular values of the two systems as a function of
frequency are shown in Fig. 5. It can be observed in this
figure that when the system is poorly scaled, the spread of
the singular values is much larger than that obtained when
compensation gains are used.

Figure 6 shows the sensitivities, @ and B, that would
result in the optimal scaling for each particular frequency. It
can be observed that with gain compensation, the spread of
these curves is reduced. If the system is to be used for band-
limited operation, then in practice a choice of sensitivities
would be found by averaging the a and B over the desired
bandwidth of operation.

In Sec. IIL E it was shown that diagonal preconditioning
could be performed in either the digital or analog domain. To
understand the results obtained using diagonal precondition-
ing, various forms of diagonal preconditioning shall be ex-
amined, and these are illustrated in Fig. 2. In order to com-
pare the performance of the filter with and without diagonal
preconditioning, the system that the filters are compensating
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(c) Analog preconditioning, H{B,C,a,}. (d) No preconditioning, scaled

for should be identical. Figure 2 shows that when diagonal
preconditioning is implemented in the digital domain [Fig.
2(b)], the system being compensated is the same as that for
the implementation without preconditioning [Fig. 2(a)].
However, when diagonal preconditioning is implemented in
the analog domain [Fig. 2(c)], the system being compensated
is different. In order to have a benchmark against which the
performance of the analog implementation can be compared,
a new filter has been introduced, being the Tikhonov inverse
filter formed from the system with no preconditioning scaled
for a system with poor sensitivities using the same method
and assumptions used to obtain Eq. (30). This filter is shown
in Fig. 2(d).

The singular value curves of the filters presented in Fig.
2 are shown in Fig. 7. These curves represent the “basis
vector coupling” discussed in Sec. III C. Figures 7(a) and
7(b) show the singular values of the filters that are designed
to compensate for the coupling in Fig. 5(a), while Fig. 7(c)
and 7(d) show the singular values of the filters designed t0
compensate for the coupling represented in Fig. 5(b).

Figures 7(a) and 7(c) show that the filters do not have
any singular values that exceed 15 dB. This limit can be
explained with reference to Egs. (18) and (19) where regt
larization changes the singular value from 1/0; to arl (0f
+k)o,. A plot of these functions is given in Fig. 8 for k
=0.008. In this figure, the regularization is observed to limit
the singular value to 15 dB. In the Appendix it is shown that
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501 T * T T ' ' no longer limited at 15 dB, but rather a regularization is

o . | evident that takes into account the poor choice of sensitivi-

hNE ties in the system.
. 30F RN 1 Figures 7(b) and 7(d) show the singular value curves of
% N the filter designed for a system with appropriately chosen

sensitivities for the transducers. Comparing these two filters,
it can be observed that the filter designed using poor sensi-
tivities [Fig. 7(d)] has been regularized considerably com-
pared to the filter designed for a correctly scaled system [Fig.
7(b)]. This regularization is visible on the lowest curve above
15 kHz, where such heavy regularization is unwarranted.
Figure 9 shows the resulting IRFs of the filter when the
filters are normalized such that the largest peak is 1. By

Amplitude | 20\«

-20 -10 0

-3%5 20 30

20 log. (%) 10 20 implementing diagonal preconditioning in the analog domain
-~ o [Fig. 9(c)], the amplitude of the IRFs are fairly similar, re-
FIG. 8. Influence of regularization of singular values; - - - y=1/x, sulting in better use of the dynamic range of the transducers,

whereas when diagonal preconditioning is implemented in
the digital domain, the magnitude of the IRFs suffer as they
are required to compensate for the poor sensitivities given by
Eq. (34). Figure 9(d) shows the system response obtained
when the filter is designed using poor sensitivities and scaled
to be implemented for a system with a better choice of sen-
sitivities. The filter is observed to make poor use of the chan-
nels compared to the filter [Fig. 9(c)] designed with correct

y=x*/(x?+0.008)x.

for a regularization parameter of k, the maximum singular
value possible is 1/ 24k, obtained when o;=+k. When o; is
greater than Vk, the singular values of the filter can be ob-
served to mirror about 1/2+k as in Fig. 8. This limit is shown
in Fig. 7 and is labeled the singular value limit. Comparing
Figs. 7(a) and 7(b), it is observed that the singular values are
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FIG. 9. The impulse responses of the filters for k=0.008. The unit on the x axis is samples. In these figures, the subplot at row i, column j corresponds to the
IRF of the filter between virtual source j and transmitter i. These impulse responses have been normalized such that the largest peak value of each filter is =1.
a) No preconditioning, H{C,}. (b) Digital preconditioning, a;]H[{Bngag}Bg '. (c) Analog preconditioning, H{B,C,a,}. (d) No preconditioning, scaled
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FIG. 10. The impulse responses of the complete system for k=0.008. The unit on the x axis is samples. In this figure, the subplot at row I, column j
corresponds to the IRF of the entire system between virtual source j and receiver i. (a) No preconditioning, H{C,}. (b) Digital preconditioning,
a;H{,Bngarg}B;. (c) Analog preconditioning, H{8,C,a}. (d) No preconditioning, scaled a;‘H{Cp}ﬁ;.

sensitivities. Applying scaling to compensate for transducer
sensitivities is thus not as effective as setting the transducer
sensitivities to the optimal values.

Figure 10 shows the IRFs of the entire system from the
desired signal, u(z), to the received signal, w(z), using the
filters shown in Fig. 9. In Fig. 10(a) it is observed that be-
cause of the effort required to transmit to receiver 1 the regu-
larization has reduced the quality of the response and also
the level of the signal received. When the sensitivities ob-
tained using Algorithm 1 are used [Figs. 10(b) and 10(c)], it
is observed that the magnitude of the pulse and the quality
are much more similar over all the channels. The implemen-
tation of diagonal preconditioning in the digital domain [Fig.
10(b)] is shown to have a better response across all receivers
at the cost of reducing the signal level. Figure 10(d) shows
the system response obtained when the filter is designed us-
ing poor sensitivities and scaled to be implemented for a
system with a better choice of sensitivities. It can be ob-
served that the performance of this filter is much worse than
that given in Fig. 10(c), being the filter designed for the
properly scaled system.

Figure 11 shows the frequency response functions
(FRFs) of the entire system from the desired signal to be
received, u(z), to the actual signal received, w(z), using the
filters shown in Figs. 9(a) and 9(c). The system response of
Figs. 9(b) and 9(d) have not been included, as they have very
similar spectra to the filters shown in Figs. 9(c) and 9(a),
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respectively. Comparing Figs. 11(a) and 11(b), the frequency
response at the first receiver is noticeably improved with
little change observed in the cross-talk cancellation, observ-
able in the off-diagonal FRFs.

V. CONCLUSION

In this paper it has been demonstrated that the choice of
sensitivities used within the amplifying stages of an acoustic
system can have a significant influence on the performance
of a filter designed using the Tikhonov inverse filtering
method. An algorithm has been presented that generates a set
of gains that can compensate for poorly selected receiver and
transmitter sensitivities. It has been shown that improve-
ments in performance can be obtained by using the compen-
sated sensitivities.
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APPENDIX: MAXIMUM SINGULAR VALUE OF A
TIKHONOV INVERSE FILTER

In Sec. ITI C it was shown that the addition of TikhonoY
regularization changes the singular values of the filter from
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L (A1)
. O

OE= m (AZ)

igure 8 shows a plot of these two functions when k&
0.008. In this figure, the singular values are observed to
‘be limited to 15 dB. The maximum singular value for any
k can be found by determining o when (8/d0,)opp=0,
where

. Acoust. Soc. Am., Vol. 119, No. 1, January 2006

d 1 202 (0P +k)-207 (A3)
— e = —_ =
do; 1 (a2+k) (0F+k? (P +K)>
Setting (9/ do;) opp=0,
(07 +k) - 207 =0,
(Ad)
g;= \/%
Inserting o; into Eq. (A2), we obtain
1
OTIF= "7 A5
0 (A5)
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