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Abstract— Recently, mutual information (MI) has become
widely recognized as a statistical measure of dependence that
is suitable for applications where data are non-Gaussian, or
where the dependency between variables is non-linear. However,
a significant disadvantage of this measure is the inability
to define an analytical expression for the distribution of MI
estimators, which are based upon a finite dataset. This paper
deals specifically with a popular kernel density based estimator,
for which the distribution is determined empirically using
Monte Carlo simulation. The application of the critical values of
MI derived from this distribution to a test for independence is
demonstrated within the context of a benchmark input variable
selection problem.

I. INTRODUCTION

The identification of dependency within data is central
to many algorithms used in a wide range of data analysis
applications including function approximation, time-series
analysis, and data mining. These applications often consider
datasets where the variables are discrete, or where the
structure of the dependency is potentially non-linear. In such
cases, many conventional algorithms, in which correlation
forms the basis for measuring dependence, fail to perform
well because of a failure to identify, or accurately quantify,
the dependency within the data. This is mostly due to the
underlying assumptions that the data are Gaussian (i.e. con-
tinuous and normally distributed), and that the dependency
between variables is linearly structured. Furthermore, corre-
lation is not invariant under transformations of the data and
these algorithms are therefore sensitive to any preprocessing
that may alter the apparent dependency.

Recently, mutual information (MI) has gained recognition
as a more suitable measure of dependence for applications
that consider either discrete variables or potentially non-
linear dependency. In contrast to correlation, MI is defined
for both continuous and discrete distributions, and makes
no assumptions regarding the structure of the dependency.
Subsequently, a number of algorithms have been developed
in which MI forms the underlying dependency measure.
However, although MI can be considered an “ideal” measure
from a theoretical perspective, a key practical shortcoming is
that it is impossible to find an exact analytical expression for
the distribution of a finite-sample estimate. The MI estimator
is a stochastic measure of dependence and an understanding
of the distribution is essential for formulating confidence
bounds on sample-based estimates, which are needed to make
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a rigorous assessment of an observed degree of dependence
in a particular case [1].

Several methods for approximating the distribution of MI
have been defined in the case of discrete variables [2]–[5].
However, no equivalent expressions have been reported for
continuous estimators. In the case of continuous estimators,
practitioners have used Monte Carlo simulation (MCS) to
estimate the distribution [6]–[8]. However, this can signif-
icantly increase the computational time of algorithms, par-
ticularly where multiple dependence tests are implemented.
One proposed benchmarking methodology for kernel-density
based estimators presents a possible alternative solution to
this problem that could potentially improve the efficiency of
algorithms, by providing a set of critical values [8] that could
be used each time in place of MCS.

This paper describes the use of the benchmarking tech-
nique in [8] to obtain critical values for a popular MI esti-
mator. The remainder of this paper is structured as follows:
Section II provides some preliminary discussion of a popular
kernel-density based estimator of mutual information, and
highlights current methods for determining the distribution
of MI estimators. Section III presents the methodology and
results of a MCS undertaken in order to obtain critical values
of the estimator described in Section II. In Section IV, the
practical use of the critical values is demonstrated within
the context of an input variable selection problem. Finally,
concluding remarks are made in Section V.

II. PRELIMINARIES

A. Estimation of Mutual Information

The MI between two random variables X and Y is
defined as the net reduction in the uncertainty (or, entropy)
surrounding the outcome of a given observation (x, y). Based
on this formal definition, an indirect expression for MI is
given in terms of the entropy, H , as [9]

I(X;Y ) = H(X) + H(Y )−H(X, Y ) (1)

where I in (1) denotes the mutual information. Substitution
of Shannon’s formula for entropy [10] into (1) and rearrange-
ment results in the following expression

I(X;Y ) =
∫∫

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
dxdy (2)

where I is a direct function of the marginal probability
density functions (pdfs) pX(x) and pY (y); and of the joint
pdf pXY (x, y). Both equations (1) and (2) will yield the
“true” value of mutual information. However, for two prac-
tical reasons an estimator, Î , is usually constructed. First,



in real-world circumstances the pdfs are often unknown and
the “true” probabilities are replaced with density estimates.
Second, the required integrations are numerically approxi-
mated as the summation of density estimates over a sample
of observations. Consequently, a direct estimator for MI is
given by

Î(X;Y ) =
n∑

i=1

log
fXY (xi, yi)

fX(xi)fY (yi)
. (3)

where fX(xi), fY (yi) and fXY (xi, yi) denote the point
estimates of the pdfs based on n sample observations. The
base of the logarithm in (3) dictates the units of I . In this
paper, the natural logarithm is assumed, and hence all values
of mutual information reported have units of nats. Note
that use of the binary logarithm is often reported elsewhere,
which yields information in bits.

The MI estimator is therefore characterized by the density
estimation technique. Non-parametric estimators (i.e. that
use non-parametric density estimation) are preferred due
to increased robustness, and one popular implementation is
based on kernel density estimation (KDE). The histogram is
also often used, in particular for discrete variables (e.g. in the
case of classification datasets). However, for applications that
consider continuous variables, KDE provides a more accurate
density estimate [11], [12].

Based on the Gaussian kernel, a frequently adopted esti-
mator for the pdf of a given sample of data is given by the
expression

f(x) =
1

n
√

2πhd |Σ|

n∑
i=1

exp− (x− xi)T Σ(x− xi)
2h2

(4)

where f(x) is the estimate of the pdf at x based on the
set of samples {x1, . . . xn}; d denotes the dimensions of the
variable X; Σ is the sample covariance matrix; and h is the
kernel bandwidth, or smoothing parameter.

Selection of an appropriate bandwidth is an important
consideration for KDE, more so than the choice of kernel
function itself [11]. Methods for selecting an optimal kernel
bandwidth include cross-validation and plug-in bandwidth
selections, which require some additional computation. How-
ever, for reasons of efficiency, [6], [13], [14] adopt the
Gaussian reference bandwidth, which is given according to
the Normal reference rule (or, Scott’s rule) [12]

h =
(

1
d + 2

)1/(d+4)

σ̂n−1/(d+4) (5)

where σ̂ is the standard deviation of the sample data.

B. Distribution of Mutual Information

Applications dealing with dependence within data gener-
ally consider one of two cases: (1) whether one observed
degree of dependence is greater than another, or (2) whether
an observed degree of dependence is significantly greater
than zero. In the case of stochastic measures of dependency,
such as in the case of the MI estimator described, these cases
must be considered within a statistical context [1]. Hence,

knowledge of the distribution of the estimator is required in
order to establish confidence bounds on estimates for a given
sample, and to determine the critical values of the estimator.
However, unlike the linear correlation coefficient, where the
distribution of a sample-estimate follows a t-distribution, an
equivalent analytical expression for f(Î) cannot be derived
for the expression in (2) [5].

In [3], the distribution of discrete non-parametric MI esti-
mators is considered to be the result of several contributing
factors, which are:

1) sample variance;
2) sample bias;
3) discretization (quantization) bias; and
4) finite-histogram bias.

Following this, [3] describes a number of statistical meth-
ods for estimating the mean and variance of discrete (i.e.
histogram-based) MI estimators. Alternatively, expressions
for computing the mean, variance and conditional distribution
p(I|n) have been derived using the assumption of a prior
distribution over the point density estimates [2], [4]. An
expression for the distribution of MI has also been described
based on a second-order Taylor series expansion of the
discrete MI estimator [5].

In the case of KDE-based MI estimators, a similar as-
sessment of the sources of bias and variance could be made
considering the properties of the KDE approach (i.e. choice
of bandwidth and finite-number kernels). However direct ex-
pressions for distribution parameters have not been derived.
Hence, practitioners must resort to MCS in order to estimate
f(Î), such as in [8] and [6]. MCS is a powerful method, since
no assumptions regarding the distribution of the data are
required. However, a large number of simulations (> 1000)
are required to estimate the distribution accurately. This is
of concern, since the kernel-density estimator is O{n2} and
therefore analysis times can quickly become infeasible for
large datasets. For example, only 100 Monte Carlo replicates
were used in [6] to estimate the 95th percentile MI, in order
to maintain feasible run-times. Yet, with such a small number
of replicates, this measure would be expected to exhibit
significant variance.

Applications such as the one described in [6] are an
example of an MI-based test for independence. In such cases,
a possible means of avoiding the need to undertake MCS
for each test is described in [8], where the distribution of
a kernel-based estimator ŝp was examined for a number of
time-series models. In this study, the distributions of esti-
mates of ŝp obtained for lags of each model are benchmarked
against the MI distribution for corresponding lags of a white-
noise series, y = εt, from which critical values of ŝp are
inferred. Using this same approach, the distribution for the
kernel density implementation of Î could be derived and
critical values obtained, thus allowing faster implementation
of MI based tests for independence in algorithms such as
that of [6]. In determining the critical values using this
methodology, the effect of dependence on the distribution
of MI is neglected. However, [7] observed that the variance



in the MI estimator was reduced for increasingly correlated
variables. Hence, the critical values obtained as part of this
study would represent a worst-case set of confidence bounds
on the MI estimated for any two variables.

III. DETERMINING CRITICAL VALUES OF MUTUAL
INFORMATION

A. Methodology

In this study, MCS was used to empirically determine the
distribution for the MI estimator described in Section II for a
bivariate dataset comprising i.i.d Gaussian white-noise data,
with sample size n ranging from 50 to 5000 samples, in
order to obtain a set of critical values that could be used for
testing for independence based on MI.

For each sample size, a series εy ∼ N(0, 1) was generated
first and the marginal pdf fεy

estimated. A total of 100 000
independent replicates of series εx ∼ N(0, 1) were gener-
ated, independent of εy . For each instance of εx the pdfs fεx

and fεxεy
were estimated and Î(εx, εy) subsequently evalu-

ated. The critical values of the distribution of MI were then
obtained from distribution formed by all computed values of
Î . Code for this study was developed in C++ and compiled
for Unix, with the Box-Muller transformation implemented
for Gaussian pseudo-random number generation.

B. Approximate Distribution of Mutual Information

Although the intended purpose of generating the data
was to extract critical values of the estimator, it is worth
highlighting some features of the distribution, which are
in good agreement with previous studies reported in the
literature (see [4], for example) and thus provides verification
of the simulation methodology and gives confidence in the
critical values obtained. Figure 1 shows the pdf of Î for the
case n = 500, using the data generated by MCS. First, the
empirical distribution is bounded by the condition I > 0,
which agrees with the “true” mutual information. Second,
the distribution about the mean is approximately Gaussian,
which corresponds to the expected asymptotic behavior of
the estimator for an infinite sample. Finally, it is observed
that the distribution is skewed above the mean, indicating a
tendency to over-estimate the MI.

C. Critical Values

Critical values of the MI estimator were obtained using the
empirical distributions obtained for each sample size. These
are summarized in Table I, which reports the mean, 90th,
95th, and 99th percentile MI corresponding to the sample
size, n. Figure 2, which graphically represents the tabulated
data, more clearly indicates the finite-sample behavior of the
MI estimator. Both the bias and variance of the estimator
decrease monotonically with increasing sample size. This
also provides some useful information as to the expected
accuracy of an MI estimate for a given sample size.
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Fig. 1. Approximate pdf for the MI estimator, n = 500
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Fig. 2. Finite-sample behavior of the MI estimator

IV. EXAMPLE APPLICATION

The problem of input variable selection provides an ex-
ample of how the critical values in Table I can be used
to improve the performance of algorithms, where a test for
independence is required based on the MI estimator described
in Section II. Considering a set C = X1, . . . Xd, which com-
prises all potential input variables, or candidates, for a model
of some response variable Y , the input variable selection
problem is defined as the task of appropriately selecting a
subset of C that contains the minimum number variables
required to achieve full mapping of Y [15]. This problem
(also referred to as feature selection when constructing
classifiers) has relevance to non-parametric regression and
time-series model development, where popular techniques
such as artificial neural networks (ANNs) are employed to
map complex relationships based on a training dataset.

A. Selection Algorithm

The input selection algorithm used in this study was a
forward selection filter originally proposed by Sharma [6]
for determining the optimal inputs to models of hydrological



TABLE I
CRITICAL VALUES OF THE KDE-BASED MUTUAL INFORMATION ESTIMATOR

n Ī I0.90 I0.95 I0.99 n Ī I0.90 I0.95 I0.99 n Ī I0.90 I0.95 I0.99

50 0.1323 0.1990 0.2224 0.2705 180 0.0798 0.1072 0.1166 0.1356 600 0.0473 0.0589 0.0627 0.0702

60 0.1236 0.1825 0.2031 0.2452 200 0.0763 0.1019 0.1103 0.1276 700 0.0441 0.0544 0.0578 0.0644

70 0.1166 0.1694 0.1879 0.2254 220 0.0735 0.0975 0.1055 0.1215 800 0.0415 0.0509 0.0539 0.0597

80 0.1106 0.1592 0.1756 0.2091 240 0.0707 0.0932 0.1005 0.1158 900 0.0393 0.0479 0.0507 0.0563

90 0.1057 0.1506 0.1657 0.1973 260 0.0682 0.0894 0.0965 0.1108 1000 0.0375 0.0455 0.0481 0.0531

100 0.1013 0.1429 0.1572 0.1858 280 0.0661 0.0862 0.0928 0.1062 2000 0.0270 0.0318 0.0333 0.0361

120 0.0943 0.1309 0.1434 0.1688 300 0.0642 0.0834 0.0896 0.1022 3000 0.0222 0.0257 0.0268 0.0289

140 0.0883 0.1211 0.1321 0.1546 400 0.0567 0.0724 0.0775 0.0876 4000 0.0192 0.0221 0.0230 0.0247

160 0.0839 0.1138 0.1237 0.1444 500 0.0513 0.0646 0.0689 0.0775 5000 0.0172 0.0196 0.0204 0.0218
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Fig. 3. PMI-based selection of inputs for the non-linear ADD10 model based on a 500-sample dataset

time-series. The algorithm, which is based upon measuring
the partial mutual information (PMI) of candidates, proceeds
broadly as follows:

1: Initialize Z → φ
2: while C 6= φ do
3: Find s = arg maxj Î(Xj ;Y |Z)
4: if Î(Xs;Y |Z) > 0 then
5: Z → Z ∪Xs

6: C → C \Xs

7: else
8: break
9: end if

10: end while
11: return Z

where Z denotes the subset of selected candidates; and
Î(Xj ;Y |Z) denotes the PMI for candidate Xj (a more
detailed description of the implementation of this algorithm
can be found in [6] or [14]). An important feature of the

algorithm is the test for independence, which forms the
basis for the stopping criterion. The test adopts the 95th

percentile of the distribution of I(Xs;Y |Z) as the critical
value. In order to approximate the distribution, MCS is used
in [6] during each iteration, where I(X;Y |Z) is evaluated
for 100 random permutations of the series Xs. In this
study, the stopping criterion was modified by using the 95th

percentile from Table I as the critical value, thus removing
the requirement for MCS at each iteration.

B. Dataset
A 500-sample dataset was generated by the ADD10 model,

which is recommended as a model for benchmarking non-
parametric regression techniques [16]. The ADD10 model is
described by the function:

y = 5
(
2 sin(πx1x2) + 4(x3 − 0.5)2 + 2x4 + x5

)
+ ε (6)

where ε ∼ N(0, 1) and x1, . . . , x5 ∼ U [0, 1] are the uncor-
related input variables. The ADD10 model also includes an



additional five uncorrelated noise variables x6, . . . , x10 ∼
U [0, 1], which represent irrelevant candidate inputs. This
benchmarking methodology is therefore consistent with pre-
vious studies undertaken by [6]–[8], in which MI was used
to determine the importance of variables for a number of
non-linear data generating models.

C. Selection Results

Figure 3 shows the profile of the candidate set during
the six iterations of the forward selection algorithm required
to select the input set for the ADD10 model based on the
500-sample dataset. The PMI for each of the candidates Xj

is indicated by the gray-shaded vertical bars, with the bar
corresponding to the selected input shaded in dark gray. The
dashed line indicates the 95th percentile MI critical value of
0.069 obtained from Table I, which was used as the basis
for testing independence. The solid line indicates the 95th

percentile obtained by MCS after each iteration.
The selected inputs (in order of selection) were X4, X2,

X1, X5 and X3, which indicates that the algorithm success-
fully specified the correct set of inputs for the ADD10 model.
Figure 3(f) indicates clearly that, after the fifth iteration, none
of the remaining candidates were significantly relevant and
the selection was stopped. Hence, this result verifies that
an accurate test for independence was achieved using the
empirically derived critical values. In contrast, had Sharma’s
stopping criterion been used, the model would have been
over-specified by at least one variable (and potentially more)
since the critical value determined by MCS during the sixth
iteration was too low, as also indicated in Figure 3(f).

A further comparison, between the accuracy of Sharma’s
MCS-based stopping criterion and the proposed stopping
criterion, based on the critical values in Table I, showed
an improvement in the accuracy of the forward selection
algorithm. This was observed when the selection algorithm
was applied to a number of independently generated datasets.
The variability of the 95th percentile MI stopping criterion,
based on the permutation test performed after each iteration,
led to inconsistent selections. The algorithm tended to over-
specify the input set by including additional noise variables.
In contrast, the stopping criterion based on the critical values
selected the correct set of inputs each time.

Also, a significant reduction in the computational effort
was achieved using the critical values from Table I. This is
clearly indicated in Figure 4, which shows a comparison be-
tween cumulative run-time after each iteration of the forward
selection algorithm, based on MI evaluations, with the test
for independence implemented with and without MCS after
each iteration. In the case of the small ADD10 dataset, MCS
accounted for approximately 90% of the computation during
each iteration. Given the difference in both accuracy and
efficiency, there is a clear advantage to be gained by using
critical values obtained by the benchmarking methodology
presented in this paper.
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V. CONCLUDING REMARKS

The motivation for this study was to formulate an efficient
means of testing the independence of an estimate returned
by a popular kernel-density based implementation of MI. In
applications where this estimator is used as a dependency
measure, such as in input variable selection algorithms,
knowledge of the distribution of the finite-sample estimate
of MI is paramount. Although analytical expressions to
approximate the distribution of discrete MI estimators have
been developed, to the authors’ knowledge, a permutation test
is the only method that has been reported for determining the
distribution of the kernel density-based estimator.

This study has provided an alternative solution to the
computationally intensive permutation test, by using a one-
off MCS to determine a set of benchmark critical values
of the MI estimator based on the analysis of white-noise
data. The test for independence based on the critical values
obtained has been verified within the context of a benchmark
input selection problem, and was found to yield more accu-
rate selections, but more importantly provide a significant
reduction in the computational effort required.
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