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Abstract

In this paper we describe the relationship between characters of finitely generated
torsion-free nilpotent groups of class 2 and their completions. In particular we give
a detailed description of this connection for the discrete Heisenberg group.

1. Introduction

We consider a discrete group G which is nilpotent, finitely generated and torsion-
free. If G̃ is the Mal’cev completion of G, the theory of characters of G̃ is well
understood [6]. How then do we relate the character theory of G to that of G̃ with
the aim of finding a simple description of the characters of G? In fact, the situation
is not simple even in the case whenG has nilpotence class 2 since not all characters of
G extend to those of G̃ nor do all characters of G̃ restrict to those of G. To be specific
this paper is concerned with comparing the characters of the discrete Heisenberg
group

G �


1 m p
0 1 n
0 0 1

 : m, n, p ∈ Z


with those of its completion

G̃ �


1 a c
0 1 b
0 0 1

 : a, b, c ∈ Q

 .

In Section 2, we cover all basic concepts, notation and relatedmatters. In Section 3,
we give some important facts related to the so-called AIC groups of [3]. Next in
Section 4 we introduce the concept of an induced trace of a discrete countable

† On leave from The Department of Mathematics, Bandung Intitute of Technology, Jl.Ganesha
10, Bandung 40132, Indonesia.
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nilpotent group of class 2. In Section 5, we develop the main theory in which we
deal with a discrete group G which is of class 2, finitely generated and torsion-free.
Finally, in Section 6, using the main theorem in Section 5, we describe some relations
between characters of the discrete Heisenberg group and those of its completion.
All groups in this paper are assumed to be discrete and countable.

2. Notation, terminology and related matters

For subsets A and B of a group G we write [A, B] to denote the group generated
by elements of the form [a, b]�a−1b−1ab, a ∈ A, b ∈ B. We write Z(G) and 1G

respectively to be the centre and the identity element of G. If G/B is a quotient
group, we write Z(G/B) for the centre of G/B, and Z(G/B)�{x ∈ G : [x, G] ⊆ B},
where [x, G]�{[x, g] : g ∈ G}. We shall write ψ|A to denote the restriction of ψ to a
set A, and B(G) for the set of all bounded complex functions on G. If G is an abelian
group, Ĝ is the dual of G, that is, the set of all complex homomorphisms from G to
the unit circle.
We recall that a group G is nilpotent if its upper central series defined by

Z1(G)�Z(G), and Zk+1(G)�{x ∈ G : [x, G] ⊆ Zk(G)} for k ∈ {1, 2, . . .}, termin-
ates after a finite number of steps in G.
A groupG is called complete if, for every integer n�0 and every a ∈ G, the equation

xn = a has a unique solution. It is known that every torsion-free nilpotent group can
be embedded in a complete torsion-free nilpotent group ([4, page 18]). A minimal
complete torsion-free nilpotent group containing a given torsion-free nilpotent group
G is termed a Mal’cev completion of G (it is unique up to isomorphism), or shortly
a completion of G, and denoted by G̃. In fact, any element of G̃ is an element some
power of which lies in G ([11, page 256]).
Assume now that the group G is discrete. A positive definite function ϕ:G→C

satisfying ϕ(g1g2) =ϕ(g2g1) for all g1, g2 ∈ G (ϕ is central) and ϕ(1G) = 1 is called a
trace of G. The set Tr(G) of all traces of G equipped with the pointwise topology is
a compact convex set. The extreme points of this set (i.e. those f which cannot be
written as a convex combination of two different traces) are called characters of G.
We denote the set of all characters of G by Ch(G). A character ϕ ∈ G is said to be
faithful if k(ϕ)�{x ∈ G :ϕ(x) = 1}= (1G).
If ϕ is a faithful character of G then, for all g ∈G, h∈Z(G), ϕ(gh) =ϕ(g)ϕ(h).

Notice that, if ϕ is a character of G, then ϕ with ϕ(g)�ϕ(g), where g�gk(ϕ),
defines a character of G/k(ϕ). If g ∈G and h∈Z(G/k(ϕ)), then ϕ(gh) =ϕ(g)ϕ(h),
and therefore ϕ(gh) =ϕ(g)ϕ(h).
For a groupG, letGf be the normal subgroup consisting of all elements with finite

conjugacy classes, that is the set of all x such that xG�{g−1xg : g ∈G} is finite. Then,
G is said to be flat if, for every x∈Gf , xG is a coset of some subgroup ofG. The group
is termed a group with absolutely idempotent characters (AIC) if, for every character
ϕ of G we have |ϕ|2 ≡ |ϕ|, that is |ϕ(g)|=1 or |ϕ(g)|=0 for all g ([3, page 182]). (This
is equivalent to saying that for every character ϕ of G, ϕ ≡ 0 off Z(G/k(ϕ)).) It is
straightforward to see that every nilpotent group of class 2 is AIC, and it is well
known that every complete nilpotent group is AIC ([5, theorem 4.2]).
Let H be a normal subgroup of a group G. Suppose that G acts on Tr(H) by

conjugation, that is, if g ∈G and ϕ∈Tr(H), g ·ϕ�ϕg where ϕg(h)�ϕ(g−1hg), h∈H.
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A trace ϕ∈Tr(H) is called G-invariant if ϕg =ϕ for all g ∈G. It is well known that, if
ϕ is anG-invariant trace ofH, then ϕ onG with ϕ|H =ϕ and ϕ is 0 offH, is a trace of
G (see [16]), and therefore it is easy to show that ϕ extends to some character ofG. If
H is not necessarily normal and NG(H) is its normalizer in G, for a character ϕ ofH,
we write Stabϕ(G) for the stabilizer of ϕ inG, that is Stabϕ(G)�{g ∈NG(H) :ϕg =ϕ}.

3. Some facts about AIC nilpotent groups

The AIC groups appear to be the most tractable non-abelian nilpotent groups from
the point of view of character theory. Here we give some facts about these groups.
We shall use them in the sequel.

Fact 3·1. Let G be a nilpotent group. Then G is AIC if and only if, for all ϕ∈Tr(G),
if |ϕ| ≡ 1 on Z(G/k(ϕ)), then ϕ ≡ 0 off Z(G/k(ϕ)).

Proof. The part (⇐) is obvious. We show the part (⇒). Let ϕ∈Tr(G). Without loss
of generality we can assume that ϕ is faithful. Note that Tr(G) is metrizable since G
is countable. By Choquet’s theorem ([13, page 19]),

ϕ=
∫

Ch(G)

ψ dµ(ψ) (3·1)

where µ is a probability measure on Ch(G). Suppose that |ϕ| ≡ 1 on Z(G). From
(3·1) we note that

ϕ|Z(G) =
∫

Ch(G)

ψ|Z(G) dµ(ψ).

Since ϕ is extremal on Z(G), it follows from [13, proposition 1·4] that

supp(µ) ⊆ {ψ ∈ Ch(G) :ψ|Z(G) = ϕ|Z(G)}.

Now let ψ ∈Ch(G) such that ψ|Z(G) =ϕ|Z(G). As ϕ is faithful, we have k(ψ) �
Z(G) = (1G). Since G is nilpotent, it follows that k(ψ) = (1G), and hence ψ≡ 0 off
Z(G) because G is AIC. Hence ϕ ≡ 0 off Z(G).

Proposition 3·2. LetG be a group andϕ∈Tr(G). Consider the following statements :
(i) ϕ is a character of G;
(ii) |ϕ| ≡ 1 on Z(G/k(ϕ));
(iii) ϕ is a homomorphism on Z(G/k(ϕ)).

Then (ii) and (iii) are equivalent, and (i) implies (ii). If G is an AIC nilpotent group,
then all statements are equivalent.

Proof. The equivalence between (ii) and (iii) is obvious. The fact that (i) implies
(ii) is also obvious. Suppose that ϕ satisfies condition (ii). By Fact 3·1, ϕ≡ 0 off
Z(G/k(ϕ)). But then the argument in the proof of Fact 3·1 also shows that ϕ is a
character of G since it follows from ϕ=

∫
Ch(G) ψ dµ(ψ) that ϕ=ψ for some ψ ∈Ch(G).

Thus (i) holds.

The following proposition characterizes the elements of Ch(G) when G is AIC and
nilpotent.
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Proposition 3·3. Let G be an AIC nilpotent group. Then a complex function ϕ is a
character of G if and only if there exists a normal subgroup B � G and faithful character
(injective homomorphism) χ on Z(G/B) such that

ϕ(g) =
{

χ(g) if g ∈Z(G/B)
0 otherwise.

Proof. The part (⇒) is obvious. For the part (⇐), since ϕ is a trace of G, then it is
a character by Proposition 3·2.

Proposition 3·4. Let H be a nilpotent group and N be a subgroup. Let ψ be a
character of H, and ϕ�ψ|N . Suppose that N is AIC. Then ϕ is a character of N if and
only if Z(N/k(ϕ)) ⊆ Z(H/k(ψ)).

Proof. The part (⇐) follows from Proposition 3·2 since ϕ is a homomorphism
on Z(N/k(ϕ)). For the part (⇒), suppose on the contrary that there exists an
x∈Z(N/k(ϕ)) \ Z(H/k(ψ)). By Proposition 3·2, |ϕ(x)|= |ψ(x)|=1. This contradicts
the fact that |ψ(x)| < 1 ([5, proposition 2.6]).

Corollary 3·5. Let G be a torsion-free nilpotent group. Then, every character of G

extends to a character of GZ̃(G). If G is AIC, every character of GZ̃(G) restricts to a
character of G.

Proof. The first statement is straightforward, while the second one follows from
Proposition 3·4.

4. The induced trace of a nilpotent group of class 2

Let N be a normal subgroup of a nilpotent groupH of class 2. We discuss here the
concept of an induced trace of H by a trace of N . This clearly has connections with
induced representations. However, for simplicity, we ignore the connections here.

Proposition 4·1. Let H be a group and N be a subgroup (which is not necessarily
normal in H). Let ϕ be a trace of N . Suppose that, for all x∈H, we define ψx on H by

ψx(h)�

{
ϕ(h−1xh) if h−1xh ∈ N

0 otherwise.

If M is an invariant mean on B(G), then φ with

φ(x)�M (ψx), x ∈ H

is a trace.

Proof. We shall show first that φ is positive definite. Since for α1, α2, . . . , αn ∈C,
h1, h2, . . . , hn ∈H we have

n∑
i,j=1

αiαjM
(
ψhi h

−1
j
)
=M

(
n∑

i,j=1

αiαjψ
hi h

−1
j

)
,

it suffices to show that
∑n

i,j=1 αiαjψ
hi h

−1
j � 0. Let x∈H, and gi�x−1hi for every

i ∈ {1, 2, . . . , n}. Let Nx1, Nx2, . . . , Nxn0 be different right cosets of N such that
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�n
i=1Ngi = �n0

i=1Nxi. Let for every k ∈ {1, 2, . . . , n0}, Sk�{g1, g2, . . . , gn}�Nxk, and
write Sk = {gk,i : i = 1, 2, . . . , |Sk|}. Since ψhi h

−1
j (x) = 0 if gig

−1
j � N , we have

n∑
i,j=1

αiαjψ
hi h

−1
j (x) =

n0∑
k=1

∑
gk ,i ,gk ,j ∈Sk

αk,iαk,jϕ
(
gk,ig

−1
k,j

)
.

But for every k∈{1, 2, . . . , n0} and i∈{1, 2, . . . , |Sk|}, gk,i =wk,ixk for some wk,i ∈N ,
so that gk,ig

−1
k,j =wk,iw

−1
k,j . Therefore

n∑
i,j=1

αiαjψ
hi h

−1
j (x) =

n0∑
k=1

∑
i,j∈{1,2,...,|Sk |}

αk,iαk,jϕ
(
wk,iw

−1
k,j

)
� 0

as ϕ is a positive definite function on N .
We shall next show that φ is central. Fix x, y ∈G. Let yψ

x be the left translation
of ψx by y. Let h be an arbitrary element of H. If h−1(yxy−1)h∈N , then

yψ
x(h) = ψx(y−1h) =ϕ((y−1h)−1xy−1h)

= ϕ(h−1(yxy−1)h) =ψyxy−1

(h).

If h−1(yxy−1)h � N then

yψ
x(h) =ψx(y−1h) = 0=ψyxy−1

(h).

Therefore,

φ(yxy−1) =M
(
ψyxy−1)

=M (yψx) =M (ψx) =φ(x)

for all x, y ∈H.

We need the following two facts.

Fact 4·2. ([8, page 38]). Let G be a topological group and f be a continuous function
in B(G). If f is weakly almost periodic, then all invariant means on B(G) agree at f .

Fact 4·3. ([14, theorem 3.1]). Let G be a topological group. Then a continuous
function f ∈B(G) is weakly almost periodic if and only if limi limj f (xiyj) and
limj limi f (xiyj) are equal whenever they both exist.

We also recall that every nilpotent group G has an invariant mean on B(G) ([7,
page 517]).

Proposition 4·4. Let H be a nilpotent group of class 2, N � H and ϕ∈Tr(N ). Sup-
pose that for all x∈H, ψx is as in Proposition 4·1. Then all invariant means on B(H)
agree on ψx.

Proof. In view of Fact 4·2, we shall show that, for all x∈H, ψx is weakly almost
periodic, and for this wewill employ Fact 4·3. Suppose now that there exists sequences
(hi) and (gj) in H such that limi limj ψx

hi
(gj) and limj limi ψx

hi
(gj) both exist. We will

show that they are the same. It is enough to consider this for x∈N . Then we have

ψx(higj) = ϕ
(
g−1

j h−1
i xhigj

)
= ϕ
(
g−1

j x[x, hi]gj

)
= ϕ
(
g−1

j xgj[x, hi]
)

= ϕ
(
g−1

j xgj

)
ψ([x, hi]),
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so that, since limj ψx(higj) exists, we have

lim
i
lim

j
ψx(higj) = lim

i
lim

j
ϕ
(
g−1

j xgj

)
ϕ([x, hi])

= lim
i

(
ϕ([x, hi]) lim

j
ϕ
(
g−1

j xgj

))
=
(
lim

i
ϕ([x, hi])

)(
lim

j
ϕ
(
g−1

j xgj

))
.

We also have the same limit for limj limi ψx(higj).

We now have the following definition.

Definition 4·5. Let N , H and ϕ be as in Proposition 4·4. An induced trace ϕ ↑H
N

of H by ϕ is defined by

ϕ ↑H
N (x)�M (ψx), x∈H

where M is an invariant mean on B(H).

We next consider the following lemma whose proof is a simple modification of that
of [9, theorem 18.10].

Lemma 4·6. Let G be a countable group. Suppose that S is a subspace of B(G) on
which all left invariant means of B(G) agree. If M is a left invariant mean of B(G),
then there exists an increasing sequence (Un) of finite subsets of G with �∞

n=1Un =G and

M (f ) = lim
n→∞

1
|Un|

∑
g∈Un

f (g)

for all f ∈S.

Theorem 4·7. Let H be a discrete, countable, nilpotent group of class 2. Let N � H
and ϕ∈Tr(N ). Then

ϕ ↑H
N (x) =

{
ϕ(x) ifx ∈ A(ϕ;N, H)

0 otherwise

where A(ϕ;N, H)�{x∈N :ϕ([x, h]) = 1, ∀h∈H}.

Proof. Since N � H, ψx =0 if x � N . We now consider the value of ϕ ↑H
N on N .

By Lemma 4·6, there exists an increasing sequence (Fn) of finite subsets of H with
�∞

n=1Fn = H such that for all x∈H,

ϕ ↑H
N (x) = lim

n→∞

1
|Fn|

∑
h∈Fn

ψx(h).

If h∈H, then ϕh with ϕh(x)�ϕ([x, h]), x∈N , is a complex homomorphism on the
abelian group N/[N, G]. Since

ψx(h) = ϕ(h−1xh) =ϕ(x[x, h]) =ϕ(x)ϕ([x, h]),

we have

ϕ ↑H
N (x) =ϕ(x) lim

n→∞

1
|Fn|

∑
h∈Fn

ϕh(x).
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As H is discrete, Γ�Cl{ϕh :h∈H} is a compact group, and

lim
n→∞

1
|Fn|

∑
h∈Fn

ϕh(x) =
∫
Γ
γ(x) dµΓ(γ)

where µΓ is the normalized Haar measure on Γ. Now let

A(ϕ;N, H)�{x ∈ N : γ(x) = 1,∀γ ∈ Γ}.

If x∈A(ϕ;N, H), then clearly
∫
Γ γ(x)dµΓ(γ) = 1. If x � A(ψ;N, H), then γ0(x)�1 for

some γ0 ∈Γ, and ∫
Γ
γ(x)dµΓ(γ) = γ0(x)

∫
Γ
γ−1
0 (x)γ(x) dµΓ(γ)

so that
∫
Γ γ(x) dµΓ(γ) = 0. Therefore we find that, for x∈N ,

ϕ ↑H
N (x) =

{
ϕ(x) if x ∈ A(ϕ;N, H)

0 otherwise

where A(ϕ;N, H) is given by

A(ϕ;N, H) = {x ∈ N :ϕ([x, h]) = 1,∀h ∈ H}.

5. The main results

We recall that all groups we are considering here are assumed to be discrete and
countable.

Theorem 5·1. Let H be a nilpotent group of class 2, N � H and ϕ∈Ch(N ). Then,
ϕ ↑H

N is a character of H if and only if, for all x � N , there exists some h∈H such that

[x, h]∈N and ϕ([x, h])�1. (5·2)

Proof. Let ϕ ↑H
N be a character of H. By Proposition 3·3, there exists a subgroup

B �H such that Z(H/B)⊆A(ϕ;N, H)⊆N , and for x∈Z(H/B), ϕ(x) = 1 if and only
if x∈B. Now let x � N . Then there exists an h0 ∈H such that [x, h0] � B. Since
[x, ho]∈Z(H/B), [x, h0]∈N and ϕ([x, h0])�1, so that the condition (5·2) holds.
Suppose, conversely, that the condition (5·2) is satisfied. Set B�k(ϕ) � A(ϕ;N, H).
If h∈H, b∈B, then

ϕ(h−1bh) = ϕ(b[b, h]) = ϕ(b)ϕ([b, h]) = 1.

As A(ϕ;N, H) � H, it follows that B � H. If x ∈ A(ϕ;N, H), then

[x, H] ⊆ k(ϕ) � A(ϕ;N, H) = B,

so that A(ϕ;N, H) ⊆ Z(H/B). Let x∈Z(H/B), that is ϕ([x, h]) = 1 for all h∈H.
Then, it follows from condition (5.2) that x∈N , and hence x∈A(ϕ;N, H). Therefore
A(ϕ;N, H) =Z(H/B). Now we notice that A(ϕ;N, H) ⊆ Z(N/k(ϕ)), so that ϕ is a
complex homomorphism on Z(H/B) satisfying, for x∈Z(H/B), ϕ(x) = 1 if and only
if x∈B. Hence ϕ ↑H

N is a character.

Lemma 5·2. Let S be a nilpotent group and A � S such that [S, S]⊆A. Let ϕ1,
ϕ2 ∈Ch(S) with ϕ1 and ϕ2 agreeing on A. Then there exists γ ∈ (S/A)̂ such that
ϕ1 = γϕ2.
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Proof. This is an immediate consequence of [5, lemma 2.2].

Lemma 5·3. LetH be a nilpotent group of class 2 andN �H. Let ϕ∈Ch(N ), and write
Sϕ for Stabϕ(H). Then, for every ψ ∈Ch(Sϕ) such that ψ|N =ϕ, ψ ↑H

Sϕ
is a character

of H.

Proof. If x � Sϕ, then there exists n∈N such that ϕ(x−1nx)�ϕ(n), that is
ϕ([x, n])�1 or ψ([x, n])�1. Thus, according to Theorem 5·1, ϕ ↑H

Sϕ
is a character.

In view of Lemma 5·3, we have a map s:ϕ 	→ s(ϕ), where

s(ϕ)�{φ ∈ Ch(H) :φ = ψ ↑H
Sϕ
for some ψ ∈ Ch(Sϕ) with ψ|N = ϕ}.

Then we have the following lemma.

Lemma 5·4. For all φ∈Ch(H), φ∈ s(ϕ) for some ϕ∈Ch(N ).

Proof. Let φ∈Ch(H). We will set ϕ∈Ch(N ) and ψ ∈Ch(Sϕ) such that ψ|N =ϕ
and φ=ψ ↑H

Sϕ
. Let N1 be the subgroup generated by Z(H/k(φ)) and N . Let ϕ1 be

a character of N1 which extends φ1�φ|Z(H/k(φ)). We shall show that ϕ�ϕ1|N is a
character ofN . By Proposition 3·4, it suffices to show thatZ(N/k(ϕ)) ⊆ Z(N1/k(ϕ1)).
Let x∈Z(N/k(ϕ)). Let g�

∏
�ini, where

∏
is a finite product, �i ∈Z(H/k(φ)) and

ni ∈N. Then we have

ϕ1([x, g]) = ϕ1

(
[x,
∏

�ini]
)

=
∏

ϕ1([x, �i])ϕ1([x, ni])

=
∏

φ([x, �i])ϕ([x, ni])

= 1.

Thus x∈Z(N1/k(ϕ1)), and we have proved that ϕ is a character of N . Now let
g ∈Z(H/k(φ)) and x∈N . Then [g, x]∈N � k(ϕ1) ⊆ k(ϕ), so that

ϕ(g−1xg) = ϕ(x[x, g]) =ϕ(x)ϕ([x, g]) =ϕ(x).

Thus Z(H/k(φ)) ⊆ Sϕ, and hence N1 ⊆ Sϕ. Observe that N1 �Sϕ. We shall now show
that ϕ1 is Sϕ-invariant. Let g ∈Sϕ and x�

∏
�ini ∈N1, where

∏
is a finite product,

�i ∈Z(H/k(φ)) and ni ∈N . Notice that Z(H/k(φ)) ⊆ Z(N1/k(ϕ1)) and [N1, H] ⊆
Z(N1). Thus we note that

ϕ1(x) =
∏

ϕ1(�i)ϕ1
(∏

ni

)
and

ϕ1([x, g]) =
∏

ϕ1([�i, g])
∏

ϕ1([ni, g]) =
∏

ϕ1([ni, g]).
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Hence we have

ϕ1(g−1xg) = ϕ1(x)ϕ1([x, g])

=
∏

ϕ1(�i)ϕ1
(∏

ni

)∏
ϕ1([ni, g])

=
∏

ϕ1(�i)ϕ1
(∏

ni[ni, g]
)

=
∏

ϕ1(�i)ϕ1
(
g−1
(∏

ni

)
g
)

=
∏

ϕ1(�i)ϕ1
(∏

ni

)
= ϕ1(x),

which shows that ϕ1 is Sϕ-invariant. Let ψ be a character of Sϕ which extends ϕ1.
Since ϕ and φ agree on Z(H/k(φ)) and [H, H] ⊆ Z(H/k(φ)), we observe that

A(ψ;Sϕ, H) = {x ∈ Sϕ :ψ([x, H]) = (1)} = Z(H/k(φ)).

Therefore φ=ψ ↑H
Sϕ

∈ s(ϕ).

Let H be a nilpotent group of class 2, and N � H such that [H, H] ⊆ N . Let s be
the map defined earlier, and for ψ ∈Ch(N ), let

s((N/[H, H])̂ψ)� ⋃
γ∈(N/[H,H])̂ s(γψ).

Then s defines a map from (N/[H, H])̂−orbits of Ch(N ) onto
D�{s((N/[H, H])̂ψ) :ψ ∈ Ch(N )}.

Theorem 5·5. For such N and H, we have the following facts.
(i) The map s is a 1-1 correspondence, and D is a decomposition of Ch(H).
(ii) For every ϕ∈Ch(N ) such that {x∈H :ϕ([x, H]) = (1)}= [H, H], s(ϕ) is a

singleton, that is s(ϕ) = {ϕ↑H
N}. Moreover, if ϕ1 = γϕ2 for some γ ∈ (N/[H, H])̂,

then s(ϕ1) = s(ϕ2).

(In caseZ(H)⊆N , the theorem also works if we replace the group [H, H] withZ(H).)

Proof. We shall show (i). Let ϕ1 and ϕ2 be characters of N such that

s((N/[H, H])̂ϕ1) � s((N/[H, H])̂ϕ2)��.

Then s(γ1ϕ1) � s(γ2ϕ2)� � for some γ1, γ2 ∈ (N/[H, H])̂. Suppose that ψ1 ↑H
Sγ1ϕ 1

=
ψ2 ↑H

Sγ2ϕ 2
for some ψ1 ∈Ch(Sϕ1 ) and ψ2 ∈Ch(Sϕ2 ) with ψ1|N = γ1ϕ1 and ψ2|N = γ2ϕ2.

Since [H, H] ⊆ N , ψ1 and ψ2 agree on [H, H], so that γ1ϕ1 and γ2ϕ2 agree on [H, H].
Hence, by Lemma 5·2, there exists γ ∈ (N/[H, H])̂such that γ1ϕ1 = γγ1ϕ2. Thus
(N/[H, H])̂ϕ1 = (N/[H, H])̂ϕ2. We conclude that all elements in D are mutually
disjoint sets and s is a 1-1 correspondence. By Lemma 5·4, D is a decomposition of
Ch(H).
We shall now show (ii). Let ϕ∈Ch(N ). Since all ψ′s, where ψ ∈Ch(Sϕ) and

ψ|N = ϕ, agree on [H, H]⊆N , it follows that all A(ψ;Sϕ, H)′s are the same, that is
{x∈Sϕ :ϕ([x, H]) = (1)}. According to the given condition, this common set is con-
tained in N , and hence equal to {x∈N :ϕ([x, H]) = (1)}=A(ϕ;N, H). Thus s(ϕ) has
exactly one element, that is ϕ ↑H

N . If ϕ1 = γϕ2 for some such γ, since ϕ1 and ϕ2 agree
on [H, H], it is clear that s(ϕ1) = s(ϕ2).
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Let G be a finitely generated, torsion-free, nilpotent group of class 2, and G̃ be its
completion. It is important to note thatZ(G̃) = Z̃(G) ([12, theorem 1]).We abbreviate
for Z(G) and Z(G̃) respectively as Z and Z̃. We then have the following notation and
facts for the next theorem:

Ch1(G)�{ϕ ∈ Ch(G) :ϕ(Z) = (1)},
Ch2(G)�{ϕ ∈ Ch(G) :ϕ(Z)�(1)},
Ch1(GZ̃)�{ψ ∈ Ch(GZ̃) :ψ(Z̃) = (1)},
Ch2(GZ̃)�{ψ ∈ Ch(GZ̃) :ψ(Z)�(1)},
Ch′2(GZ̃)�{ψ ∈ Ch(GZ̃) :ψ(Z̃)�(1), ψ(Z) = (1)},
Ch1(G̃)�{φ ∈ Ch(G̃) :φ(Z̃) = (1)},
Ch2(G̃)�{φ ∈ Ch(G̃) :φ(Z)�(1)},
Ch′2(G̃)�{φ ∈ Ch(G̃) :φ(Z̃)�(1), φ(Z) = (1)}.

Fact 5·6. Let G be a torsion-free, nilpotent group of class 2.
(i) Every character in Ch1(G) extends uniquely to a character in Ch1(GZ̃), and every
character in Ch1(GZ̃) extends to a character in Ch1(G̃).

(ii) Every character in Ch2(G) extends to a character in Ch2(GZ̃).
(iii) Every character in Ch1(GZ̃) (resp. Ch2(GZ̃)) restricts to a character in Ch1(G)

(resp. Ch2(G)), and every character in Ch1(G̃) restricts to a character in Ch1(GZ̃).

Proof. For the first part of (i), let ϕ∈Ch1(G). Define ϕ with ϕ(gz)�ϕ(g), g ∈G,
z ∈ Z̃. If g1, g2 ∈G, z1, z2 ∈ Z̃ such that g1z1 = g2z2, then g−1

2 g1 = z2z
−1
1 ∈ Z̃�G=Z, so

that ϕ(g−1
2 g1) =ϕ(z2z−1

1 ) = 1, and hence ϕ(g1z1) =ϕ(g2z2) as ϕ is a homomorphism.We
see therefore that ϕ is a well defined homomorphism on Z(GZ̃/k(ϕ)) =GZ̃, so that ϕ
is a character in Ch1(GZ̃) which extends ϕ. This ϕ is unique, for if ψ ∈Ch1(GZ̃) such
that ψ|G =ϕ, then ψ = γϕ for some γ ∈ (GZ̃/G)̂by Lemma 5·2, and hence γ|Z̃ ≡ 1,
which implies γ ≡ 1. For the second part of (i), let ψ ∈Ch1(GZ̃). As ψ(Z̃) = (1), ψ is
G̃-invariant, so that by Fact 3·2, this extends to some character of G̃. Part (ii) follows
immediately from the first part of Corollary 3·5. The first part of (iii) follows from
the second part of Corollary 3·5, while the second part is obvious according to Propo-
sition 3·4, for if φ∈Ch1(G̃) and ψ�φ|GZ̃ , then Z(GZ̃/k(ψ)) ⊆ G̃=Z(G̃/k(φ)).

Let s1, s1 and D1 be the maps s, s and decomposition D defined earlier, where, at
this point N andH are G and GZ̃ respectively, and instead of the (G/[G, G])̂-orbits
we rather consider the (G/Z)̂-orbits (see the comment following Theorem 5·5). Also,
let s2, s2 and D2 be the same maps and the decomposition, with N =GZ̃ and H = G̃,
where we consider the (GZ̃/Z̃)̂-orbits instead of the (GZ̃/[G, G])̂-orbits. We now
define a (GZ̃/G)̂ � −action on D2 as follows. If δ ∈ (GZ̃/G)̂ and ψ ∈Ch(GZ̃),

δ � s2((GZ̃/Z̃)̂ψ)�s2((GZ̃/Z̃)̂δψ).
Consider Ch(G) decomposed into Ch1(G) and Ch2(G); Ch(GZ̃) into Ch1(GZ̃),

Ch2(GZ̃) and Ch′2(GZ̃); Ch(G̃) by Ch1(G̃), Ch2(G̃) and Ch
′
2(G̃). Since every ψ ∈Ch(GZ̃)

and φ∈ s(ψ) agree on Z̃, we have ψ ∈Ch1(GZ̃) if and only if s(ψ)⊆Ch1(G̃), and
ψ ∈Ch2(GZ̃) (resp. Ch′2(GZ̃)) if and only if s(ψ)⊆Ch2(G̃) (resp. Ch′2(G̃)). Let D1,1

and D1,2 denote the images of s1 restricted to (G/Z) −̂orbits of Ch1(G) and Ch2(G)
respectively. Let D2,1 and D2,2 denote the images of s2 restricted to (GZ̃/Z̃) −̂orbits
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of Ch1(GZ̃) � Ch′2(GZ̃) and Ch2(GZ̃) respectively. Notice that {D1,1, D1,2} and
{D2,1, D2,2} decompose D1 and D2 respectively.
For each ϕ∈Ch1(G) (resp. Ch2(G)) we shall fix ϕ as a representative of those

members of Ch1(GZ̃) (resp. Ch2(GZ̃)) which extend ϕ. Also, for each ψ ∈Ch1(GZ̃) we
shall fix ψ as a representative of those members of Ch1(G̃) which extend ψ.

Theorem 5·7. Let G be a finitely generated, torsion-free, nilpotent group of class 2,
and let G̃ be its completion. Then we have the following correspondences.
(i) There is a 1-1 correspondence between Ch1(G) and the (G̃/GZ̃) −̂orbit space of
Ch1(G̃) according to the map

ϕ 	−→ (G̃/GZ̃ )̂ ϕ

where ϕ is a representative of those members of Ch1(G̃) which extend ϕ.
(ii) Suppose that G satisfies [x, G̃] = Z̃ for all x � Z̃. Then there is a 1-1 correspond-

ence between the (GZ̃/Z̃) −̂orbit space of Ch(G) and the (GZ̃/G)̂ �−orbit space
of {Ch1(G̃)} � Ch′2(G̃) � Ch2(G̃). Specifically:
(a) the (GZ̃/Z̃) −̂orbit space of Ch1(G), which is the singleton {Ch1(G)}, corres-

ponds with the (GZ̃/G)̂ � −orbit space of {Ch1(G̃)} � Ch′2(G̃), which is the
singleton {{Ch1(G̃)} � Ch′2(G̃)}; and

(b) the (GZ̃/Z̃) −̂orbit space of Ch2(G) corresponds in a 1-1 way with the
(GZ̃/G)̂ � −orbit space of Ch2(G̃) according to the map

(GZ̃/Z̃)̂ϕ 	−→ (GZ̃/G)̂� s2(ϕ).

Proof. We shall first show (i). By the first part of each Fact 5·6(i) and Fact 5·6(iii),
the map ϕ 	→ ϕ is a 1-1 correspondence between Ch1(G) and Ch1(GZ̃). Noting the
second part of Fact 5·6(i), we have a map r :ψ 	→ r(ψ), ψ ∈Ch1(GZ̃), with

r(ψ)�{φ∈Ch1(G̃) :φ|GZ̃ = ψ},

that is, by Lemma 5·2, r(ψ) = (G̃/GZ̃)̂ψ. Clearly, this map is injective. It follows
from the second part of Fact 5·6(iii) that this map is a surjection from Ch1(GZ̃) onto
(G̃/GZ̃)̂-orbits of Ch1(G̃), and hence (i) follows.
We shall now show (ii). Suppose that G satisfies [x, G̃] = Z̃ for all x � Z̃. Then we

notice that for all ψ ∈Ch2(GZ̃)�Ch′2(GZ̃),

{x∈ G̃ :ψ([x, G̃]) = (1)} = [G̃, G̃] = Z̃,

and by Theorem 5·5(ii), s2(ψ) is a singleton, so that we can identify it as an element of
Ch2(G̃)�Ch

′
2(G̃). For convenience, we first show part (b). Consider the dual (GZ̃/Z̃)̂

of GZ̃/Z̃ =G/(G � Z̃) =G/Z which acts both on Ch2(G) and Ch2(GZ̃). First note
that we have a 1-1 map from (GZ̃/Z̃) -̂orbits of Ch2(G) onto D1,2, with

(GZ̃/Z̃)̂ϕ 	−→ s1((GZ̃/Z̃)̂ϕ) = (GZ̃/G)̂(GZ̃/Z̃)̂ϕ.

(The equality follows immediately from Fact 5·6(ii), the definition of s and
Lemma 5·2.) Let {ϕα}α∈Λ be a set of all representatives of (GZ̃/Z̃)̂-orbits of Ch2(G).
For every α∈Λ, let ϕα denote a representative of the characters in Ch2(GZ̃) which
extend ϕα. Then we notice that

D1,2 = {(GZ̃/G)̂(GZ̃/Z̃)̂ϕα :α∈Λ}
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which is a decomposition of Ch2(GZ̃). Next, we also have a 1-1 map from (GZ̃/Z̃) -̂
orbits of Ch2(GZ̃) onto D2,2 = Ch2(G̃), with

(GZ̃/Z̃)̂ψ 	−→ s2((GZ̃/Z̃)̂ψ) = s2(ψ).

(The equality follows from Theorem 5·5(ii).) Then the relation

(GZ̃/G)̂(GZ̃/Z̃)̂ϕ = (GZ̃/Z̃)̂(GZ̃/G)̂ϕ 	−→ s2((GZ̃/G)̂ϕ) = (GZ̃/G)̂� s2(ϕ)

defines a map σ from D1,2 onto (GZ̃/G) �̂-orbits Ch2(G̃). Hence the map σ ◦ s1 is the
desired 1-1 correspondence for part (b).
For part (a), let us fix ϕ0 ∈Ch1(G). SinceGZ̃/Z̃ =G/Z, it follows that (GZ̃/Z̃ )̂ ϕ0 =

Ch1(G). Then we have the following association:

Ch1(G) = (GZ̃/Z̃)̂ϕ0 	−→ s1((GZ̃/Z̃)̂ϕ0) = (GZ̃/G)̂(GZ̃/Z̃)̂ϕ0.
(The equality follows immediately from Fact 5·6(i), the definition of s and
Lemma 5·2.) Here, {(GZ̃/G)̂(GZ̃/Z̃)̂ϕ0}=D1,1 = {Ch1(GZ̃) � Ch′2(GZ̃)}. We also
have amap from (GZ̃/Z̃ )̂ -orbits of Ch1(GZ̃)�Ch′2(GZ̃) ontoD2,1 = {Ch1(G̃)}�Ch′2(G̃),
with

(GZ̃/Z̃)̂ψ 	−→ s2((GZ̃/Z̃)̂ψ),
where s2((GZ̃/Z̃ )̂ ψ), by Fact 5·6(i) and Lemma 5·2, is equal to Ch1(G̃) if ψ ∈Ch1(GZ̃)
(since (GZ̃/Z̃)̂ψ =Ch1(GZ̃)), and equal to s2(ψ) (which is a singleton in Ch

′
2(G̃)) if

ψ ∈Ch′2(GZ̃). Then we have a map τ from D1,1 onto (GZ̃/G)̂�-orbits of {Ch1(G̃)} �
Ch′2(G̃), with

(GZ̃/G)̂(GZ̃/Z̃)̂ϕ0 	−→ {Ch1(G̃)} �

 ⋃
δ ∈ (GZ̃/G)̂\ {1(G Z̃ /G ) ̂ }

s2(δϕ0)


= {Ch1(G̃)} � Ch′2(G̃)

= (GZ̃/G)̂� {Ch1(G̃)}.

Thus, the map τ ◦ s2 is the desired map for part (a).

6. Characters of the discrete Heisenberg group and of its completion

Consider the discrete Heisenberg group G, that is

G =


1 m p
0 1 n
0 0 1

 :m, n, p ∈ Z

 .

This is finitely generated, torsion-free and nilpotent of class 2. Then the completion
G̃ of G is

G̃ =


1 a c
0 1 b
0 0 1

 : a, b, c ∈ Q

 .

That G arises (implicitly or explicitly) in various situations in analysis. It effect-
ively gives rise to the irrational rotation C∗-algebras ([15]). In fact these are quotient
algebras of the C∗-group algebra of G. Its completion G̃ is the rational Heisenberg
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group. Whereas the character theory of G is complicated by subgroups of finite in-
dex (in Z but then also in G), no such subgroups exist in G̃ and so the character
theory of the rational Heisenberg group is in principal much simpler. Of course the
dual of Q is involved in the description of Ch(G̃) and this complicates it but this
object is just another abelian compact group. Thus to understand the relationship
between the “simpler” character theory of the rational Heisenberg group and the
more complicated theory of the integer Heisenberg group helps elucidate the latter.
For that G, we shall look at the characters in both Ch(G) and Ch(G̃) and the rela-

tion between them. Since Ch(G) =Prim(C∗(G)) and Ch(G̃) =Prim(C∗(G̃)) (see [3, 5]),
we also have the same relationship between primitive ideals of C∗(G) and C∗(G̃) as
between the characters of these two groups.
We first consider the following fact.

Fact 6·1. Let G be a torsion-free nilpotent group with centre of rank 1.
(i) If ϕ is a character of G, then k(ϕ) = (1G) if and only if Z(G/k(ϕ)) =Z(G).
(ii) If ϕ̃ is a character of G̃, then either Z(G̃/k(ϕ̃)) =Z(G̃) or k(ϕ̃) ⊇ Z(G̃).

Proof. For (i), the part (⇒) is obvious. For the part (⇐), let k(ϕ)� (1G). Choose
some x0 ∈Z2(G) \ Z(G). Since k(ϕ) � Z(G) is of finite index in Z(G), there exists a
positive integer n such that[

xn
0 , g
]
= [x0, g]n ∈ k(ϕ) � Z(G)

for all g ∈G. This implies xn
0 ∈Z(G/k(ϕ)) for some n. Since G is torsion-free, so is

Z2(G)/Z(G) (see Warfield [17, 2.2]), so that xn
0 � Z(G). Hence Z(G/k(ϕ)) ⊃ Z(G).

For (ii), suppose that Z(G̃) ⊂ Z(G̃/k(ϕ̃)). As G̃/k(ϕ̃) is nilpotent, we have

Z(G̃/k(ϕ̃)) � Z2(G̃) ⊃ Z(G̃).

Now choose y0 ∈ (Z(G̃/k(ϕ̃))�Z2(G̃))\Z(G̃). Then there exists g ∈ G̃ such that
[y0, g]�1G. As Z(G) is of rank 1, let Z(G) = (z0). Since [y0, g]∈Z(G̃), it follows
that [y0, g]n ∈Z(G) for some n, so that [y0, g]n = zk

0 for some k�0. Writing g = yk for
some y ∈ G̃, we have

[y0, y]nk = [y0, yk]n = zk
0 .

Since G is torsion-free, [y0, y]n = z0. Now let z ∈Z(G̃). Then z� = zm
0 for some � and

m� 0. Writing ym =u� for some u∈ G̃, we have

z� = [y0, y]nm = [y0, ym]n = [y0, u�]n = [y0, u]�n.

Thus, z = [y0, u]n = [y0, un] as G is torsion-free. This shows that Z(G̃) ⊆ [y0, G̃]. Since
y0 ∈Z(G̃/k(ϕ̃), we have Z(G̃) ⊆ k(ϕ̃).

Fact 6·1 is helpful in reducing the computation of characters of torsion-free nilpo-
tent groups with centre of rank 1. The characters of the discrete Heisenberg group G
are well understood ([2, 10]), so are the characters of G̃ (see [1, example 2·4]). With
the aid of Fact 6·1 and Proposition 3·3, we can also find the characters of both G
and G̃.
A faithful character ϕ of G is of the form

ϕ(m, n, p) =
{

e2πiγ0p if m = n = 0
0 otherwise
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where γ0 is an irrational number mod Z; while a non-faithful character ϕ of G is of
the form

ϕ(m, n, p) =

{
e2πi
(

α m
q +β n

q +γ0p
)

if m, n∈ qZ, p∈Z

0 otherwise

where α, β, γ0 are real numbers mod Z, γ0 = s/q for some s, q ∈Z with (s, q) = 1.
Let Q̂ be the dual of the rationals Q. (See [9, 25.4], for the dual of Q.) Then a

character ϕ̃ of G̃ is of the form

ϕ̃(a, b, c) =
{

δ(c) if a = b = 0

0 otherwise

for some δ ∈Q̂; or
ϕ̃(a, b, c) = δ1(a)δ2(b)

for some δ1, δ2 ∈Q .̂
Using Theorem 5·7, we shall now see how characters of G correspond to those of

G̃. We write the following for convenience:

Ch1(G) = {(α, β, 0)n :α, β ∈R/Z}

and

Ch2(G) = {(α, β, γ)n :α, β ∈R/Z, γ ∈Q/Z, γ � Z}
� {(0, 0, γ)f : γ ∈ (R/Z) \ (Q/Z)}.

A triple with a subscript ’n’ indicates that this is non-faithful, and that with a
subscript ’f ’ indicates that this is faithful. Now let (Q̂)1 be the subset ofQ̂consisting
the faithful elements. Let (Q̂)2 be the subset of Q̂ containing every non-faithful
element such that the restriction to Z is not equal to 1, and (Q̂)3 be the subset of
Q̂containing every non-faithful element such that the restriction to Z is equal to 1.
Then we note that

Ch1(G̃) = Q̂× Q̂× (θ),
Ch2(G̃) = ((θ)× (θ)× (Q̂)1) � ((θ)× (θ)× (Q̂)2),

and

Ch′2(G̃) = (θ)× (θ)× ((Q̂)3\(θ))
where Ch1(G̃), Ch2(G̃), Ch

′
2(G̃) are notation defined earlier, and θ is the trivial homo-

morphism in Q .̂ By Theorem 5·7(i), all characters in Ch1(G) correspond in a 1-1 way
to all ((Q/Z)̂× (Q/Z)̂× (θ))-orbits of Ch1(G̃) according to the map

(α, β, 0)n 	−→ ((Q/Z)̂× (Q/Z)̂× (θ))(α, β, 0).

By Theorem 5·7(ii)(a), (Ẑ × Ẑ × (θ))-orbits of Ch1(G) (which is the single orbit
{Ch1(G)}) corresponds to ((θ)× (θ)× (Q/Z)̂)-orbits of {Ch1(G̃)} � Ch′2(G̃) (which is
the single orbit {{Ch1(G̃)} � Ch′2(G̃)}) according to the map

(R/Z × R/Z × (0))n 	−→ {Q̂× Q̂× (θ)} � (θ)× (θ)× ((Q/Z)̂\{θ}).
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By Theorem 5·7(ii)(b), all (Ẑ × Ẑ × (θ))-orbits of Ch2(G) correspond in a 1-1 way to
all ((θ)× (θ)× (Q/Z)̂)-orbits of Ch2(G̃) according to the map
(Ẑ × Ẑ × (θ))(α, β, γ)n = (R/Z × R/Z × {γ})n 	−→ (θ)× (θ)× (Q/Z)̂� s((α, β, γ))

and

(Ẑ × Ẑ × (θ))(0, 0, γ)f = ((θ)× (θ)× {γ})f 	−→ (θ)× (θ)× (Q/Z)̂� s((0, 0, γ)).
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