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Abstract

A plane jet is a statistically two-dimensional flow, with the dominant flow in the stream-

wise (x ) direction, spread in the lateral (y) direction and zero entrainment in the spanwise

(z ) direction respectively (see Figure 1). A plane jet has several industrial applications,

mostly in engineering environments, although seldom is a jet issuing through a smooth

contoured nozzle encountered in real life. Notably, the Reynolds number and boundary

conditions between industrial and laboratory environments are different. In view of these,

it is important to establish effects of nozzle boundary conditions as well as the influence

of Reynolds number, on jet development. Such establishments are essential to gain an

insight into their mixing field, particularly relevant to engineering applications. To sat-

isfy this need, this thesis examines the influence of boundary conditions, especially those

associated with the formation of the jet and jet exit Reynolds number, on the flow field

of a turbulent plane air jet by measuring velocity with a hot wire anemometer. A sys-

tematic variation is performed, of the Reynolds number Re over the range 1,500≤Re ≤
16,500, the inner-wall nozzle contraction profile r∗ over the range 0≤ r* ≤ 3.60 and nozzle

aspect ratio AR over the range 15≤AR≤ 72 (see notation for symbols). An independent

assessment of the effect of sidewalls on a plane jet is also performed. Key outcomes are

as follows:

(1) Effects of Reynolds number Re

Both the mean and turbulence fields show significant dependence on Re. The nor-

malized initial mean velocity and turbulence intensity profiles are Re-dependent.

An increase in the thickness of boundary layer at the nozzle lip with a decrease

in Re is evident. This dependence appears to become negligible for Re≥ 10,000.

The centerline mean velocity decay and jet spreading rates are found to decrease as

Re is increased. Furthermore, the mean velocity field appears to remain sensitive

to Reynolds number at Re = 16,500. Unlike the mean velocity field, the turbu-

lent velocity field has a negligible Re-dependence for Re ≥ 10,000. An increase in

Reynolds number leads to an increase in the entrainment rate in the near field but a

reduced rate in the far field. The centerline skewness and the flatness factors show

a systematic dependence on Reynolds number too.
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(2) Effects of the inner-wall nozzle exit contraction profile r*

The inner-wall nozzle exit contraction profile r* influences the initial velocity and

turbulence intensity profiles. Saddle-backed mean velocity profiles are evident for

the sharp-edged orifice configuration (r* ' 0) and top hat profiles emerge when

r* ≥ 1.80. As r* is increased from 0 to 3.60, both the near and the far field decay

and the spreading rates of the plane jet are found to decrease. Hence, the sharp-

edged orifice-jet (r* ' 0) decays and spreads more rapidly than the jet through a

radially contoured configuration (r* ' 3.60). The asymptotic values of the center-

line turbulence intensity, skewness and flatness factors of the velocity fluctuations

increase as r* tends toward zero. The non-dimensional vortex shedding frequency

of StH ' 0.39, is higher for the sharp-edged orifice nozzle (r∗' 0), than for the

radially contoured (r∗' 3.60) nozzle whose StH ' 0.24. Thus, the vortex shedding

should be strongly dependent on flow geometry and on nozzle boundary conditions.

(3) Effects of nozzle aspect ratio AR

The initial velocity and turbulence intensity profiles are slightly dependent on nozzle

aspect ratio of the plane air jet. It is believed that a coupled influence of the

nozzle aspect ratio and sidewalls produce changes in the initial flow field. The

axial extent over which a statistically ‘two-dimensional’ flow is achieved, is found to

depend upon nozzle aspect ratio. This could be possibly due to the influence of the

evolving boundary layer on the sidewalls or due to increased three-dimensionality,

whose influence becomes significantly larger as nozzle aspect ratio is reduced. A

statistically two dimensional flow is only achieved over a very limited extent for AR

= 15. In the self-similar region, the rates of centreline velocity decay, spreading

of the mean velocity field and jet entrainment increase with an increase in nozzle

aspect ratio. An estimate of the ‘critical’ jet aspect ratio, where three-dimensional

effects first emerge and its axial location is made. Results show that the critical

aspect ratio increases with nozzle aspect ratio up to AR < 30. For AR≥ 30, the

critical aspect ratio based on jet half width, attains a constant value of about 0.15.

Thus, it appears that when the width of the flow approximately equals the spacing

between the sidewalls, the plane air jet undergoes a transition from 2-D to 3-D. A

distinct hump of the locally normalized turbulence intensity at an axial distance

between 10 to 12 nozzle widths downstream, characterizes the centerline turbulence

intensity for all nozzle aspect ratios. This hump is smaller when nozzle aspect ratio

is larger.

(4) Effects of the sidewalls
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A jet issuing from a nozzle of AR = 60 and measured at Re = 7,000 is tested with

sidewalls, i.e. plane-jet and without sidewalls, i.e. free-rectangular-jet. It is found

that the entire flow field behaves differently for the two cases. The initial velocity

profiles are top hat for both jets. The free rectangular jet decays and spreads more

rapidly in both the near and far field. It is found that the free rectangular jet behaves

statistically two-dimensional up to a shorter axial distance (x/H = 70) as opposed

to the plane jet whose two-dimensional region extends up to x/H = 160. Also

noted are that the axial extent of the two-dimensional region depends strongly on

nozzle aspect ratio. Beyond the 2-D region, the free rectangular jet tends to behave,

statistically, like a round jet. The locally normalized centerline turbulence intensity

also depend on sidewalls. Turbulence intensity for the plane jet asymptotes closer

to the nozzle (around x/H = 30) whereas for the free rectangular jet, turbulence

intensity varies as far downstream as x/H = 100, and then asymptotes. A constant

StH of 0.36 is found for the free rectangular jet whereas an StH of 0.22 is obtained

for the plane jet.

It is noted that the effects of jet exit Reynolds number, inner-wall nozzle exit contraction

profile, nozzle aspect ratio and sidewalls on the plane air jet are all non-negligible. The

effect of viscosity is expected to weaken with increased Reynolds number and this may

contribute to the downstream effects on the velocity field. Both the nozzle contraction

profile and nozzle aspect ratio provide different exit boundaries for the jet. Such bound-

ary conditions not only govern the formation of the initial jet but also its downstream

flow properties. Hence, the initial growth of the shear layers and the structures within

these layers are likely to evolve differently with different boundary conditions. Thus, the

interaction of the large-scale structures with the surroundings seems to depend on nozzle

boundary conditions and consequently, influences the downstream flow. In summary, the

present study supports the notion that the near and far fields of the plane jet are strongly

dependent on Reynolds number and boundary conditions. Therefore, the present thesis

contains immensely useful information that will be helpful for laboratory-based engineers

in selection of appropriate nozzle configurations for industrial applications.
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Nomenclature

0.1 Acronyms

H length of the short side of nozzle

w length of the long side of the nozzle

r contraction radius of the nozzle profile

AR nozzle aspect ratio, where AR = w/H

r∗ contraction ratio of the nozzle profile, where r∗ = r/H

lw length of the hot-wire sensor

dw diameter of the hot-wire sensor

Uo,b bulk mean velocity

Uo,c exit centerline mean velocity

Uc local centerline mean velocity

Um,c centerline mean velocity maximum

Uic,m centerline instantaneous velocity maximum

U mean velocity along lateral (y) direction

Ui instantaneous velocity

Un normalized mean velocity, where Un = U/Uc

Un,c normalized centerline mean velocity, where Un,c = Uc/Uo,c

Uco co-flow mean velocity

Re Reynolds number defined by Re = Uo,c H / ν

u fluctuating component in the streamwise (x ) direction, u = Ui - Uc

u
′

root-mean-square (rms) of u, such that u
′

= (< u2 >)1/2

u
′

c centerline rms, such that u
′

c = (< u2
c >)1/2

u
′

n normalized rms (turbulence intensity), where u
′

n = u
′

/Uc

u
′

n,c normalized centerline rms, (centerline turbulence intensity), where u
′

n,c = u
′

c/Uc

u
′

c,∞ asymptotic value of centerline turbulence intensity

u
′

c,maxmagnitude of the local maximum of turbulence intensity

Su centerline skewness factor, where Su = < u3 > /(< u2 >)3/2

Fu centerline flatness factor, where Fu = < u4 > /(< u2 >)2
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Sc,∞
u asymptotic value of centerline skewness factor

Smin
u minimum value of centerline skewness factor

Smax
u maximum value of centerline skewness factor

F c,∞
u asymptotic value of centerline flatness factor

Fmin
u minimum value of centerline flatness factor

Fmax
u maximum value of centerline flatness factor

xp jet potential core length

y0.5 velocity half-width of the jet, i.e. the y-location from the centerline, where U = 1
2
Uc

Ku decay rate of normalized centerline mean velocity

Ky jet spreading rate

d internal diameter of a round nozzle

x01 virtual origin from the normalized mean centerline velocity

x02 virtual origin from the normalized velocity half-widths

xm downstream distance at which a hump in turbulence intensity occurs

xm,∞ downstream distance at which the asymptotic value of turbulence intensity occurs

xp, maxmaximum downstream distance up to which the flow is planar

y
′

05/wcharacteristic jet aspect ratio, where y
′

0.5 is the velocity-half widths at xp, max.

Ro adjustable overheat resistance of the CTA

RT total resistance of the sensor and cables

AR laboratory room area in the same plane as the nozzle opening width H

An nozzle area

HR height of room

Hj height from the bottom of room up to the nozzle

∆ T time constant of the CTA system

fc optimum cut-off frequency of the CTA system

v fluctuating component in the spanwise (y) direction, v = Vi - Vc

w fluctuating component in the transverse (z ) direction, w = Wi - Wc

q turbulence kinetic energy, defined by q = 1
2
(u2 + v2 + w2)

qc,∞ far-field turbulent kinetic energy

StH Strouhal number for a plane jet, defined by StH = f H/Uo,b

Stp Strouhal number for a round jet, defined by Stp = fp D/Uo,b

m mass flux at any axial distance downstream from the nozzle exit

D geometric diameter of a round nozzle

De equivalent diameter of a round nozzle with the same exit area as a rectangular nozzle,

where De ' 1.13AR0.5 H
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0.2 Greek Symbols

ν kinematic viscosity of air, ν ' 1.47 × 10−5 m3s−1 at 25o ambient conditions

α overheat ratio of CTA system, usually ' 1.8

δ thickness of the boundary layer at the nozzle lip, δ '
y=∞
∫

y=0

(1 − U/Uo,c) dy

φu power spectrum of u where
∫

φu(f) df = u2

ε kinetic energy dissipation term, ε ' 15υ
〈

(du/dx)
2〉

τw viscous stress term,
(

τw = ρν ∂U
∂y

)

ρ density of test medium, for air ρ ' 1.2 kg m−3 at 25o ambient conditions

0.3 Some Special Terms

(1) Nozzle profile factor: denoted as r∗ and defined by r/H.

(2) Plane jet: a jet which issues through a rectangular nozzle with sidewalls.

(3) Quasi-plane jet: a jet which issues through a large aspect ratio rectangular nozzle

but no sidewalls.

(4) Round jet: a jet that issues through a round nozzle.

(5) Pipe jet: a jet through a long pipe.

0.4 Coordinate System

x axial (streamwise) coordinate

y lateral (transverse) coordinate

z spanwise coordinate
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Figure 1: The coordinate system used in the present study.
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