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ABSTRACT

This thesis is concerned with fundamental algorithms for estimating parameters of

geometric models that are particularly relevant to computer vision. A general frame-

work is considered which accommodates several important problems involving estima-

tion in a maximum likelihood setting. By considering a special form of a commonly

used cost function, a new, iterative, estimation method is evolved. This method is

subsequently expanded to enable incorporation of a so-called ancillary constraint. An

important feature of these methods is that they can serve as a basis for conducting

theoretical comparison of various estimation approaches.

Two specific applications are considered: conic fitting, and estimation of the funda-

mental matrix (a matrix arising in stereo vision). In the case of conic fitting, uncon-

strained methods are first treated. The problem of producing ellipse-specific estimates

is subsequently tackled. For the problem of estimating the fundamental matrix, the

new constrained method is applied to generate an estimate which satisfies the neces-

sary rank-two constraint. Other constrained and unconstrained methods are compared

within this context. For both of these example problems, the unconstrained and con-

strained methods are shown to perform with high accuracy and efficiency.

The value of incorporating covariance information characterising the uncertainty of

measured image point locations within the estimation process is also explored. Co-

variance matrices associated with data points are modelled, then an empirical study

is made of the conditions under which covariance information enables generation of

improved parameter estimates. Under the assumption that covariance information is,

in itself, subject to estimation error, tests are undertaken to determine the effect of im-

precise information upon the quality of parameter estimates. Finally, these results are

carried over to experiments to assess the value of covariance information in estimating

the fundamental matrix from real images. The use of such information is shown to be

of potential benefit when the measurement process of image features is considered.
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Chapter 1

INTRODUCTION

1.1 Preface

This thesis is concerned with fundamental algorithms for estimating parameters of geo-

metric models particularly relevant to computer vision. Parameter estimation for vision

applications is not straightforward and many methods and techniques exist to deal with

this task. This thesis describes new ways to estimate parameters together with a frame-

work for estimation. This enables existing and new estimation methods to be seen, and

understood, from a unified viewpoint.

Meaningful interpretation of images — a broad goal of computer vision — requires

processing vast amounts of raw data. In order to obtain sensible and usable output,

the information contained in input data must often be reduced to a small number of

key parameters. These parameters encapsulate properties of a higher level entity of

relevance. In this work, the entities will relate to the geometry of image formating,

requiring an imposition of a specific mathematical model dictated by this underlying

geometry. The model employed will have associated parameters, which are related to

input data derived from one or more images. The task is to estimate these parameters

from given data.

A large body of work in classical statistics (summarised extensively by Kendall [35])

exists in regard to parameter estimation. The computer vision experience is somewhat

unusual when compared with this conventional statistical estimation theory because of

the non-standard method of ‘measuring’ data through image acquisition. In a broad

sense, one goal of classical statistics is to estimate parameters given multiple samples

of a random variable. In computer vision an image is taken in an instant, and thus for

many problems there is in effect only a single sample of various random variables. In

this context, estimation can become a moving target – each new measurement changes

the parametric model increasing its dimensionality (by adding so-called nuisance pa-
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rameters). It is critical then to tease out the complex relationship between parameters,

measured data, and the underlying model.

Over the last 15 years, significant progress has been made towards understanding

the geometry behind the image formation process. This was related with the devel-

opment of parametric models describing the geometry. The key question is to devise

practical methods for estimating parameters based on data points derived from images.

This thesis presents such an estimation problem and treats existing and newly proposed

estimation methods within a common context.

Following the terminology of Zhang [68], the parameter estimation problem can be

broken down into four categories:

• Modelling: Choosing an overall mathematical model describing the data at hand

and explaining the relationship to underlying geometry. The specifics of the model

are embodied by model parameters. Additionally, any such model should mitigate

the deleterious effects of the errors inherent in measured data.

• Criterion: Choosing a particular cost function to minimise. In many respects this

is the most challenging of problems, as a priori there can be no definitive way of

determining the “best” cost function.

• Estimation: Given a specific cost function, how is its minimiser found?

• Design and implementation: For a given minimisation method, an efficient and

accurate means must be chosen for its implementation. Care must be taken to

ensure minimal corruption due to numerical instability and roundoff. As well,

efficiency of computation plays a significant rôle in this regard.

This thesis focuses on the middle two categories: criterion and estimation. All existing

methods discussed are provided in the context of an explicit cost function that is to be

minimised – something not always present in the original derivations. Furthermore,

general optimisation methods are compared to those designed with specific knowledge

of the cost function form.

1.2 Outline of contribution

This thesis presents a fairly general and unified approach to the problem of parameter

estimation in computer vision. With an explicitly defined model, existing and new
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methods are analysed within a consistent context. A new estimator is presented which

is simply expressed, efficient, and easy to implement. As important vision problems

involve constraints on parameters, the topic of constrained estimation is also given

prominence, with a constrained version of the new estimator also developed.

Unconstrained and constrained estimation methods are applied to two example

problems: conic section fitting and estimating the fundamental matrix. These meth-

ods are seen to be accurate and efficient when compared to existing methods.

Additionally the topic of covariance matrices, and their use as input to estimation

methods, is explored. Although many estimators are able to utilise covariance infor-

mation as input, this is often ignored and the identity matrix is taken as a default

covariance matrix. Chapter 6 presents results of novel experiments conducted with the

use of non-identity covariance matrices. These help elucidate in which circumstances

the incorporation of covariance information is useful.

The first part of this thesis deals with the underlying theory of parameter estimation,

specifically related to a mathematical model appropriate for computer vision. This

section describes a consistent framework whereby many different estimators may be

compared. The second half demonstrate how general techniques may be applied to

specific vision problems.

In the initial theoretical section a parametric model is defined with its associated as-

sumptions about parameters, data, and their organisation. Built on this is a description

of the estimation process defined explicitly using cost functions. Increasingly sophisti-

cated cost functions are defined, culminating with a maximum likelihood cost function,

and an approximated maximum likelihood cost function. Following the definition of

these cost functions, the next chapter looks at how respective minimisers may be iso-

lated. A variational argument is used to derive a new method. This method is upgraded

to take into account an ancillary constraint.

Following the theoretical material, an application of various estimation techniques

is presented in the context of conic (and, later, ellipse specific) fitting. Several existing

methods, which are either unconstrained (and estimate general conics), or have an

ellipse specific constraint imposed are described. Based on the theory developed in

previous sections, some of these methods can be further extended. Experiments are

shown, with specific emphasis not only on the accuracy of estimators, but also on their

computational efficiency.

The next application considered is that of estimating the fundamental matrix. Again,
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existing estimators are presented, and, building on the theory developed, new methods

are put forward. Experimental results are presented in a similar way to those for conic

fitting. In particular, the constrained estimator is put to use, accounting for the so-called

rank-two constraint.

A chapter is devoted to the issue of using covariance matrices as input to the esti-

mation process. In this case, input data points are assumed to come equipped with a

characterisation of data uncertainties. Several key synthetic experiments are performed

to highlight how information about uncertainties may help, or hinder the estimation

process. These ideas are applied to example real stereo image pairs.

The final chapter is a review of all of the material presented. Several areas for

further work, including possible extensions of the model, are discussed.



Chapter 2

PROBLEM FORMULATION

This chapter describes groundwork necessary for discussing parameter estimation.

It starts with an explicit definition of a parametric model where all specific assumptions

are laid bare. These include how data are considered, what the noise affecting the data

is, and what constraints are placed on the model’s parameters. Within the parametric

model specified, a least squares approach to estimation is then discussed. The total least

squares method is explored in some detail, as it is an example of a simple non-iterative

estimation technique. After considering questions of orthogonal projection, a maximum

likelihood formulation is introduced. It is demonstrated that the maximum likelihood

form is difficult to work with because of its reliance on “nuisance” parameters. Finally,

guided by the work of Sampson, an approximated maximum likelihood form is derived

which makes no explicit use of nuisance parameters.

2.1 Parametric model

A parametric model can be set up to describe the relationships between image “tokens”.

These relationships reflect a particular geometric property of interest. Image tokens,

for example the locations of a 2-D points on an image, are taken as data and are rep-

resented by a vector x = [x1, . . . , xk]
>. A parametric model relates these data vectors

with a vector of parameters θ = [θ1, . . . , θl]
>. The length of θ may exceed the number

of the underlying degrees of freedom in the geometric situation at hand.

Such a parametric model may be described by an associated principal constraint

equation

f (θ,x) = 0. (2.1)

Here, f is a non-linear vector function withm components. The equation is described as

a ‘constraint’ because, for a given data vector, the possible values of parameter vectors

are constrained to those which satisfy the equation.
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A fundamental aspect of these problems is that, for an arbitrary set of data, contam-

inated by noise, there is unlikely to be a single θ for which the constraint equation will

hold for all elements of data. And even if such a value of θ existed, it would be too

dependent on noise to be useful.

2.2 Specialisations

To facilitate analysis and tractability, some specialisations are necessarily applied to the

general model.

Model order

Some problems lend themselves to being naturally described by a parametric model

for which the range space of the principal constraint function f has dimension greater

than one. Such models are termed multi-objective models. By expressing the individual

elements of f in the constraint equation

f(θ,x) =


f1(θ,x)

f2(θ,x)
...

 =


0

0
...

 ,
the equation is formed as a collection of scalar functions, all of which must be satis-

fied for a valid parameter vector. The first simplification imposed is to adopt a single

objective model, which has only one scalar-valued constraint function. Several impor-

tant computer vision problems are naturally described with a single objective principal

constraint function. This restriction has the advantage of simplifying the analysis and

necessary derivations. Once the theory for single objective problems is elaborated, the

multi-objective case can be developed via analogy.

Non-linearity

The constraint function f is non-linear in general. There are three possible ways for this

function to be non-linear: it can be non-linear in x but linear in θ, it can be non-linear

in θ but linear in x, or it can be non-linear in both x and θ. The rest of this thesis will

consider only the first case: models which are non-linear in the data and linear in the

parameters. For such models, it is possible to write the principal constraint function as

f(θ,x) = θ>u(x) = 0. (2.2)



Chapter 2 – Problem Formulation 7

The function u(x), which encapsulates the non-linearity in the data, is termed a carrier

function. It is sometimes abbreviated as ux. (This ‘function-argument-as-subscript’

notation is used throughout the thesis; for example, a matrix M(θ) which is a function

of θ may be interchangeably written as Mθ.)

The carrier u(x) = [u1(x), . . . , ul(x)]> is a vector with the data point transformed

so that: firstly, each component ui(x) is quadratic in the compound vector [x>, 1]>, and

secondly the last component ul(x) is equal to one.

Noise model

Each data point xi can be thought of as a perturbation from some ideal value xi, where

xi = xi + δxi
. (2.3)

Each ideal point will satisfy the principal constraint, with θ>u(xi) = 0 for all i, for

a common value of θ. The set of all consistent points is said to lie on a consistency

manifold defined as

Mθ =
{
x | θ>u(x) = 0

}
. (2.4)

The next assumption applied is that the distributions of the perturbations are Gaus-

sian and that the noise affecting each element of data is independent of the noise con-

taminating all other data points and is also independent of the value of xi. The noise

depends only on a k × k covariance matrix Λxi
. The associated probability density

function (p.d.f.) for these perturbations is therefore given by

p(δx | Λx) =
1√

(2π)k|Λx|
exp

(
−δ>xΛ−1

x δx

2

)
, (2.5)

where |Λx| denotes the determinant of Λx. The relationship between x, x, and Λx is

shown in Fig. 2.1.

Ancillary constraint

The principal constraint (Eq. (2.2)) describes a system whereby any parameter vectors

are compared to given data points. For many relevant problems an additional ancillary

constraint of the parameter vector is required. Such a constraint is completely inde-

pendent of any data points. Regardless of the parameters which may be the best fit to
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xi

Mθxi

Λxi

Figure 2.1: A consistent point lying on the manifold of all consistent points for a given
θ. The ellipse represents a level-set of the p.d.f. of the perturbations dictated by the
particular covariance matrix

given data, this ancillary constraint dictates a form to which the parameter vector must

conform. Such a constraint is described by the ancillary constraint equation,

ψ(θ) = 0, (2.6)

where ψ is a non-linear, scalar valued function of the parameter vector θ only. In many

cases, the ancillary constraint can be described by using a homogeneous function of

degree κ, that has the property

ψ(λθ) = λκψ(θ), λ 6= 0. (2.7)

2.3 Example problem: (simple) parabola estimation

A simple example of an estimation problem of the above form is that of fitting a

parabola to points on a plane. In this model the data elements are taken as 2-D planar

points, and the parameters will describe a simple parabola. Such a parabola can be

described by the quadratic equation

y = αx2 + βx+ γ. (2.8)

This problem may be posed in the form of the model defined above by writing the

basic parabola equation in a homogeneous form

ax2 + bx+ cy + d = 0. (2.9)
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In this case, each element of data is a simple vector xi = [xi, yi]
>. By assigning θ =

[a, b, c, d]> and adopting the carrier function u(x) = [x2, x, y, 1]>, Eq. (2.9) may be

written as per Eq. (2.2): θ>u(x) = 0. Note that for a given parameter vector θ, the

equation will describe the same parabola when multiplied by a non-zero scalar. An

example parabola, with associated data and consistent points is shown in Fig. 2.2.

These forms of data and carriers provide a simple example that is used to illustrate

properties of carrier vectors in subsequent sections. A more general version of this

problem, fitting conic sections to data points, is the topic of Chapter 4. Estimation

problems arising from stereo vision are also readily amenable to this form. The task

of finding the fundamental matrix is examined in Chapter 5. A different but related

problem of estimating a differential fundamental matrix [6], can additionally be posed in

the above form [3]. Kanatani and Ohta show that employing an ordinary fundamental

matrix is superior to using the differential form [31], and so estimation of this latter

form is not considered further in this thesis.

!10 !8 !6 !4 !2 0 2 4 6 8 10
0
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xi

xi

Mθ

x

y

Figure 2.2: A consistency manifold corresponding to θ = [1, 2,−3, 4], with sample true
points and noisy data points

2.4 Least squares fitting

A classical means of solving fitting or regression problems is to use (ordinary) least

squares. The ordinary least squares method (OLS) assumes that there are some non-
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random explanatory variables, and associated (measured) ‘noisy’ response variables. In

many kinds of experimentation this is exactly the case. For example, if measurements

are made at certain time intervals, the only source of error might be the quantity mea-

sured, and not the independent variable of the time at which the measurements were

taken.

In the simplest case of line fitting, given an explanatory variable xi, the correspond-

ing point on a line is

ȳi = αxi + β, (2.10)

where α and β are parameters describing the line. Each response variable yi is a mea-

surement of ȳi corrupted by δyi
:

yi = ȳi + δyi
. (2.11)

Substituting Eq. (2.10) into Eq. (2.11) and adopting a vector form yields

yi =
[
x 1

] [α
β

]
+ δyi

= v(xi)
>ρ + δyi

, (2.12)

where ρ = [α, β]> and v(x) = [x, 1]>. Eq. (2.12) describes the relationship for each

measurement. All of the measurements may be combined into a single matrix equation

y = V ρ + δ, (2.13)

with y = [y1, . . . , yn]
> encapsulating all of the y measurements, and similarly δ =

[δy1 , . . . , δyn ] representing the errors due to noise. The classical method for determining

an estimate ρ̂OLS is to use the Moore-Penrose inverse (sometimes called the pseudo-

inverse) [4], whereby

ρ̂OLS = (V >V )−1V >y. (2.14)

Typically in computer vision applications all variables (generally describing the lo-

cation of image feature points) are contaminated by noise. Therefore, as there is no

distinction made between explanatory and response variables, an alternative method

which imposes no distinction between variables must be considered.

2.4.1 Total least squares

The OLS method minimises the vertical distances from measured data points to a line.

The adopted noise model from Sect. 2.2 has all measured variables perturbed by noise.
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Hence an orthogonal distance minimisation is more appropriate. Fig. 2.3 shows an

example of distances minimised.

The line equation y = αx+ β is retained, and now both x and y are perturbed with

noise, with

yi = ȳi + δi and xi = x̄i + εi. (2.15)

The orthogonal distance between a line represented by α, β and a general point

(xi, yi) is given by

d⊥i =
|yi − (αxi + β)|√

1 + α2
. (2.16)

A line may be fit to a set of data points by minimising the sum of these squared dis-

tances. A natural cost function based on these orthogonal distances is

J⊥(α, β) =
n∑
i=1

(d⊥i )2 =
n∑
i=1

|yi − (αxi + β)|2

1 + α2
(2.17)

At the minimiser,

[∂αJ⊥] =
−2

1 + α2

n∑
i=1

(
yi − (αxi + β)

)
= 0 . (2.18)

Solving for β,

β = ỹ − αx̃, (2.19)

where

x̃ =
1

n

n∑
i=1

xi and ỹ =
1

n

n∑
i=1

yi.

Substituting the value of β into Eq. (2.17) yields

J⊥ =
n∑
i=1

|(yi − ỹ) + α(xi − x̃)|2

1 + α2
. (2.20)

Adopting a vector form, with x̃ = [x̃, ỹ]>, x = [xi, yi]
>, and η = [α, 1]>, gives

J⊥ =
n∑
i=1

|η>(xi − x̃)|2

‖η‖2
. (2.21)

Minimising J⊥ with respect to η will produce an estimate of α. This can be substituted

back into Eq. (2.19) in order to obtain an estimate of β, and hence the line.

As this strategy considers all variables undergoing noisy perturbation, it is referred

to as total least squares (TLS) [19, 65]. The TLS estimate can be shown to be optimal

when the noise effecting each data point is Gaussian, and independent of every other

data point.
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Moving beyond straight-line fitting, the TLS method can be used as inspiration to de-

fine an estimator for the general problem described in the previous section. Eq. (2.21)

is adapted to define a TLS cost function

JTLS(θ; x1, . . . ,xn) =
∑
i

|θ>u(xi)|2

‖θ‖2
, (2.22)

with an associated estimate

θ̂TLS = arg min
θ
JTLS(θ; x1, . . . ,xn).

The most significant change is that the term (xi− x̃) has been replaced with carrier vec-

tors, which involve non-linear transformations of the data points. This has implications

for the assumptions of the TLS cost function and is explored in Sect. 2.4.4. Zhang [68],

is one of many authors who saliently point out that there is no a priori justification for

using the algebraic distance |θ>u(x)| apart from convenience and ease of implementa-

tion. Later sections will examine estimators which have firmer roots in the underlying

geometry of the model at hand.

Minimising JTLS amounts to minimising the sum of squared residuals of the alge-

braic constraint function defined in Eq. (2.2), subject to the constraint ‖θ‖2 = 1. It

is possible to contemplate minimising the squared residuals subject to a different con-

straint on θ, which would yield a different estimatior which is yet still based on al-

gebraic least squares. The TLS estimator can therefore be considered part of a family

of ‘algebraic least squares’ estimators which act to minimise algebraic residuals under

some given constraint on the paramater values.

The details of how a minimiser of JTLS may be sought will prove useful for the

derivation of more sophisticated methods described later.

2.4.2 Finding the TLS estimate

The squared sum of algebraic residuals may be written in matrix form as∑
i

|θ>u(xi)|2 = θ>
(∑

i

u(xi)u(xi)
>
)
θ

= θ>U>U θ

= θ>S θ, (2.23)
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Figure 2.3: Ordinary least squares errors (left), and orthogonal distance errors (right).
The errors in the OLS case are dependent on the position and orientation of the model.
They become particularly unstable as the line tends to parallel with the y−axis

with the design matrix taken as

U =


u(x1)

>

...

u(xn)
>

 , (2.24)

and the scatter matrix S given by S = U>U .

The solution to the constrained problem, minimising θ>S θ subject to ‖θ‖2 = 1,

may be determined via the method of Lagrange multipliers [2, §17.6]. This technique

relies on that, at the minimiser, the gradient of the objective function is perpendicular

to the surface described by the constraint. Thus, at the minimiser the gradient of the

objective function and the gradient of the constraint function have the same direction,

and so one is a scalar multiple of the other. This (a priori unknown) scalar multiple is

the Lagrange multiplier and is denoted λ. Applied to the TLS estimator, the estimate

θ̂TLS is characterised by[
∂θ

(
θ>S θ

)]
θ=θ̂TLS

= λ
[
∂θ

(
θ>θ − 1

)]
θ=θ̂TLS

. (2.25)

Differentiating with respect to θ yields

2U>Uθ = 2λθ, (2.26)

or equivalently

Sθ = λθ. (2.27)
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Therefore the Lagrange multiplier λ is an eigenvalue of S, and the required minimiser

is the associated eigenvector. As S is an l× l matrix, there will be potentially l different

eigenvalue/eigenvector pairs to choose from. So which to choose? By pre-multiplying

Eq. (2.27) by θ> and dividing by θ>θ,

λ =
θ>S θ

θ>θ
= JTLS(θ). (2.28)

As the eigenvalue is directly related to the cost function value, and the minimum value

of JTLS is required, the solution θ̂TLS is the eigenvector associated with the smallest

eigenvalue of S.

The appropriate eigenvector of the scatter matrix S may be found by performing

a singular value decomposition (SVD) of the design matrix U . This is desirable as it

improves the numerical conditioning: the scatter matrix has condition number given

by the square of that of the design matrix. The SVD approach, using only the design

matrix that is computed directly from the data, avoids the computation of the less

conditioned scatter matrix.

The matrix U may be decomposed as

U = JDK>, (2.29)

with J and K orthogonal (J>J = K>K = I), and D = diag(σ1, . . . , σl). The diagonal

elements of D are called the singular values of U .

The SVD and its usefulness in many applications (including in relation to least

squares estimation) is described by Golub & van Loan [19, §2.5.3] and Kalman [27]

among others. Practical information is given by Press et al in Numerical Recipes [52,

§2.6] and Lancaster and Tismenetsky [36, §5.7].

Substituting the SVD form (Eq. (2.29)) for S gives

S = U>U = KD2K>, (2.30)

with D2 = D>D = diag(σ2
1, . . . , σ

2
n), the diagonal matrix with the squares of the singu-

lar values. Pre-multiplying by K> yields

K>S = D2K>,

and as S is symmetric, then

(SK)> = D2K>.
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Hence

SK = (D2K>)>. (2.31)

Denoting ki the ith column of K, K = [k1 | . . . | kl]. In view of the diagonal nature of

D, Eq. (2.31) can be written as a system of equations

Ski = σ2
i ki, for i = 1, . . . , l. (2.32)

It follows that the TLS estimate is given by the column ki associated with the smallest

σ2
i . If the SVD is defined such that the diagonal matrix D has the singular values in

decreasing order (which is quite often the case), the estimate θ̂TLS can simply be taken

as the right-most column kl.

2.4.3 Generalised TLS

Leedan and Meer [37] describe a generalised total least squares (GTLS) estimator that

utilises a common covariance for the carriers Λu. It is expressed as the minimiser of

JGTLS(θ,x1, . . . ,xn) =
θ>S θ

θ>Λuθ
. (2.33)

Like standard TLS, the estimate θ̂GTLS may also be expressed in closed form, in this

case requiring a generalised eigendecomposition of (S,Λu). A short iterative algorithm

is used to compute an estimate Λ̂u of Λu. With Λ̂u replacing Λu, the GTLS solution

may be found directly as the generalised eigenvector corresponding to the smallest

generalised eigenvalue of

Sθ = λΛ̂uθ.

2.4.4 Orthogonality and optimality

The “orthogonality” of the TLS method is not a straightforward issue. In the case of line

fitting, shown in Fig. 2.3, the TLS method seeks an estimate which minimises the sum

of orthogonal distances from the data points to the line.

In the presence of carriers, the TLS seeks to minimise the orthogonal distance be-

tween the transformed data points u(x1), . . . ,u(xn) and candidate hyperplanes of the

form {z | θ>z = 0}. For example, for parabola fitting (Sect. 2.3), the TLS estimate

finds an estimate which is minimum in four dimensional algebraic space and not in the

2-D space in which the problem is posed (and data measured).
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This problem is highlighted by further statistical analysis. The TLS method can be

considered (in some sense) an optimal estimator given the assumption that the data

points are identically and independently distributed [65]. In this case, however, the

‘data’ are the carrier vectors uxi
, not the raw data vectors xi. Recall that each ele-

ment of data is a random perturbation from an underlying true value, and that these

perturbations are sampled from a Gaussian distribution:

xi = xi + ∆xi ∆xi ∼ N(0,Λxi
).

Under this model, the noise effecting each element of data is independent of all of the

other elements and of the exact value of the data point itself. However, the same is not

true for the carrier vectors uxi
. It can be shown that there are dependencies in each

value of uxi
based on the value of xi.

Consider a first order Taylor expansion of uxi
around the true carrier uxi

as follows

uxi
≈ uxi

+ [∂xu(x)] (xi − xi), (2.34)

with ∂xu(x) denoting the Jacobian of the carrier function. Using the above approxima-

tion, then

uxi
− uxi

≈ uxi
+ [∂xu(x)] (xi − xi)− uxi

= [∂xu(x)] (xi − xi) . (2.35)

The covariance of the carrier is given by

Λuxi
= E

[
(uxi

− uxi
) (uxi

− uxi
)>
]

≈ E
[(

[∂xu(x)] (xi − xi)
)(

[∂xu(x)] (xi − xi)
)>]

≈ [∂xu(x)] E
[
(xi − xi)(xi − xi)

>
]
[∂xu(x)]>

≈ [∂xu(x)]Λxi
[∂xu(x)]> . (2.36)

In the canonical case, with Λx1 = · · · = Λxn = I, the covariances of the carriers will

have explicit data dependencies, because

Λuxi
= [∂xu(x)] [∂xu(x)]> 6= I.

In the case of the parabola fitting example from Sec. 2.3, the Jacobian is

[∂xu(x)] =


2x 0

1 0

0 1

0 0

 ,
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and therefore the covariance of the carrier is

Λuxi
=


4x2 2x 0 0

2x 1 0 0

0 0 1 0

0 0 0 0

 .

It is clear that the distribution of each uxi
is not identical, but rather data dependent.

Using a second order Taylor expansion, it can be shown that the expected value of uxi

does not vanish, but rather has a non-zero value which is dependent on the data [41].

This means that the underlying assumption of the TLS method, to the effect that data

are independent, is not true in the case of problems requiring non-linear carriers. Of

course the TLS algorithm may still be applied, but optimality will be lost.

An alternative method may be adopted where a cost function is defined using a more

geometrically meaningful quantity to minimise than algebraic residuals. The key is to

consider orthogonal distances in the original data space, appealing to the geometry of

the problem at hand.

2.5 Maximum likelihood

A classical statistical estimation method is maximum likelihood (ML). It is well studied

and in many cases may be proved optimal in some sense. In this section an ML estimator

is derived suitable for the problem specified in earlier sections. A likelihood function

may be determined which specifies the likelihood of a set of model parameters given

the observed data, and the ML estimate is one which maximises this likelihood function.

In practice, once the likelihood function is formed its logarithm (times −1) is taken and

then minimised (as this is often simpler).

2.5.1 ML cost function

Maximum likelihood theory when applied to computer vision departs from classical ML

(such as that studied in [35]) because no repeated measurements of a random variable

are available. Rather, the necessary model requires a set of random variables, each for

any particular element of data. We assume that each datum xi is a sample of a Gaussian

random variable Xi with mean xi and covariance Λxi
. Further adding to the model is



Chapter 2 – Problem Formulation 18

a relationship between each xi so that the principal constraint Eq. (2.2) is satisfied

θ>u(x1) = . . . = θ>u(xn) = 0, (2.37)

for some particular θ. All of the model parameters may be combined in a larger state

vector

η = (θ; x1, . . . ,xn;Λx1 , . . . ,Λxn) (2.38)

The model parameters are ‘driven’ in a sense by the choice of the Xi. The observed

data, under this model, will have come from some underlying true set of random vari-

ables X∗
i , but of course these may never be known exactly. What is required is a means

to estimate them as accurately as possible. The ML philosophy is to “choose the param-

eters which most likely account for the measured data”. So the ML estimate is taken as

the maximiser of the conditional probability

η̂ML = max
η

p(x1, . . . ,xn|η). (2.39)

Each data point is a sample of a Gaussian random variable, having a probability density

function

p(xi | η) =
1√

(2π)k|Λxi
|
exp

(
−1

2
(xi − xi)

>Λ−1
xi

(xi − xi)

)
, (2.40)

and as these are separate random variables, each p.d.f. is independent of the others,

therefore

p(x1, . . . ,xn | η) =
n∏
i=1

p(xi | η)

= (2π)−kn/2
n∏
i=1

|Λxi
|−1/2 × exp

{
−1

2

n∑
i=1

(xi − xi)
>Λ−1

xi
(xi − xi)

}
.

(2.41)

In order to enhance the tractability of the model, the covariance matrices of each

Xi are not treated as unknown parameters. Instead, they are assumed to be known a

priori, and may be considered an input to the estimation process together with noisy

data points. The topic of covariance matrices, and their use as input, is explored further

in Chapter 6. Because covariances are no longer part of η, then the coefficient in front

of the exponent in Eq. (2.40) is not a function of η and may be ignored in maximisation.

Equivalent to maximising the likelihood is minimising the log-likelihood. Therefore the

ML cost function, given by

JML(η; x1, . . . ,xn) =
n∑
i=1

(xi − xi)
>Λ−1

xi
(xi − xi), (2.42)
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is the sum of squares of Mahalanobis distances between each data point and the closest

ideal point.

2.5.2 Nuisance parameters

The ML cost function is unwieldy because η increases in size for every new data point

added. Each new measurement xi requires a corresponding xi to be added to the

parameter vector. The model parameters may be thought of as comprising principal

parameters θ, which are of ultimate interest, and nuisance parameters (x1, . . . ,xn), only

of intermediate use and not required as final output. The minimisation of JML is at

best a complex problem, at worst intractable. It must be considered with a specific

knowledge of the problem at hand. A serious stumbling block is the large space of the

parameters due to the presence of nuisance parameters.

As highlighted in Eq. (2.37), each xi is not arbitrary, but tied to a particular value

of θ. It is therefore possible to contemplate splitting the minimisation of JML into two

stages. One, in which for each fixed θ the xi are subject to minimisation alone. And

the other, where the values of JML at the minimisers from the first step are minimised

over varying θ. These stages are shown in Fig. 2.4.

An alternative approach is to eliminate the nuisance parameters from the cost func-

tion, and hence minimisation may proceeded directly over values of θ.

xi

Mθ Mθ Mθ′

xi

Figure 2.4: Minimising JML as a two stage process
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!

u(x) = k}

xi

xi

Figure 2.5: Sampson’s approximated distance d2 and the true ML distance d1

2.6 Sampson’s approximation

One of the disadvantages of the ML cost function is that the number of parameters

increases as the number of data points grows larger. Although it is possible to form

an estimator using the full ML cost function, it must be done in a problem dependent

manner. The high dimensionality of the minimisation required by this so-called direct

approach means that, at the very least, finding the minimiser of the ML cost function is

computationally very expensive.

An alternative tactic is to adopt a so-called reduced approach. Here, a new cost func-

tion is used which is expressed only in terms of the actual parameters to be estimated.

In deriving such a cost function, it is necessary to introduce approximations.

To derive an approximated maximum likelihood (AML) cost function, consider a first

order Taylor expansion of the principal constraint (Eq. (2.2)) about x:

f(x,θ) ' f(x,θ) + [∂xf(x,θ)] (x− x)

= f(x,θ) + ‖x− x‖ ‖ [∂xf(x,θ)] ‖ cosα (2.43)

where α is the angle between the vectors (x− x) and [∂xf(x,θ)]>. Sampson’s assump-

tion is that the gradient is the same at x and x, which means that α = 0 (see Fig. 2.5).

By definition, f(x,θ) = 0, which leads to a first order approximation to the geometric

residual

‖x− x‖ ' f(x,θ)

‖∇xf(x,θ)‖
. (2.44)

Using this idea, an AML cost function can be fleshed out in more detail. In the next

section, an AML cost function is derived which incorporates data covariance matrices.
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2.6.1 Derivation of a reduced cost function

The ML cost function, although not directly operating on θ, may be written as JML(θ) =∑
i J

i
ML, with J iML = (xi − xi)

>Λ−1
xi

(xi − xi). The function is to be minimised subject

to the system of constraints θ>u(xi) = 0. Using a Lagrange multiplier approach, the

gradients of these two functions are proportional:[
∂xJ

i
ML(θ)

]>
= λi

[
∂x(θ>u(xi))

]>
= λi [∂xu(xi)]

> θ. (2.45)

The function J iML is easily differentiated, with

∂y[(xi − y)>Λ−1
xi

(xi − y)]> = −2Λ−1(x− y).

So Eq. (2.45) may be rewritten

Λ−1(x− x) = λ [∂xu(x)]> θ, (2.46)

with the i indices omitted, the covariance matrix Λxi
contracted to Λ for clarity, and

the −2 factor absorbed into a ‘new’ λ. Multiplying both sides by Λ
1
2 gives

Λ− 1
2 (x− x) = λΛ

1
2 [∂xu(x)]> θ.

Note that Λ− 1
2 = Λ

1
2Λ−1, the inverse of Λ

1
2 . Solving for λ gives

λ =
Λ− 1

2 (x− x)

Λ
1
2 [∂xu(x)]> θ

,

and therefore

λ2 =
(x− x)>Λ−1(x− x)

θ> [∂xu(x)]Λ [∂xu(x)]> θ
. (2.47)

Returning to Eq. (2.46), this time multiplying both sides by (x− x)> gives

(x− x)>Λ−1(x− x) = λ(x− x)> [∂xu(x)]> θ. (2.48)

To proceed with a derivation of a reduced system, an approximation must be employed.

Consider a first-order Taylor expansion of u(x)− u(x) about x,

u(x)− u(x) ≈ [∂xu(x)] (x− x).
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By adopting this approximation as an equality, it is possible to proceed with the deriva-

tion. Pre-multiplying both sides by θ yields the equation

θ> [∂xu(x)] (x− x) = θ>(u(x)− u(x))

= θ>u(x)− θ>u(x),

as, by definition, θ>u(x) = 0, the above reduces to

θ> [∂xu(x)] (x− x) = θ>u(x). (2.49)

Substituting this result into Eq. (2.48) leaves

(x− x)>Λ−1(x− x) = λθ>u(x).

Squaring both sides, [
(x− x)>Λ−1(x− x)

]2
= λ2θ>u(x)u(x)>θ,

and substituting for λ2 from Eq. (2.47), then[
(x− x)>Λ−1(x− x)

]2
=

(x− x)>Λ−1(x− x) θ>u(x)u(x)>θ

θ> [∂xu(x)]Λ [∂xu(x)]> θ
.

On dividing both sides by (x− x)>Λ−1(x− x), the final approximated cost function is

obtained in the form

J iML(η) = (xi − xi)
>Λ−1

xi
(xi − xi) =

θ>u(xi)u(xi)
>θ

θ> [∂xu(xi)]Λxi
[∂xu(xi)]

> θ
.

The second approximation employed above replaces the ∂xu(xi) gradients at the (un-

known) true point, with ∂xu(xi), the gradients around the measured points, which are

easily computed.

This leads to a reduced cost function

JAML(θ,x1, . . . ,xn) =
n∑
i=1

θ>u(xi)u(xi)
>θ

θ> [∂xu(xi)]Λxi
[∂xu(xi)]

> θ
. (2.50)

This cost function may be written more compactly as

JAML(θ) =
n∑
i=1

θ>Ai θ

θ>Bi θ
, (2.51)

with Ai = u(xi)u(xi)
> and Bi = [∂xu(xi)]Λxi

[∂xu(xi)]
>.

The minimiser of JAML is called the approximated maximum likelihood (AML) esti-

mate and is denoted θ̂AML.
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2.6.2 Alternative derivation of the approximated ML cost function

An alternative derivation of JAML relates to the non uniform distribution of the carriers

ux. As shown in Sect. 2.4.4, algebraic based estimators are unsatisfactory because the

carriers are not identically distributed and, as a result, the covariances of algebraic

residuals are data dependent. A possible method of correction therefore is to divide

the algebraic residuals by their respective covariances in an attempt to provide an even

weighting for each residual. Doing this leads to a gradient weighted (GW) cost function

JGW(θ; x1, . . . ,xn) =
n∑
i=1

θ>u(xi)u(xi)
>θ

Cov[θ>u(xi)]
. (2.52)

Using the form of the carrier covariance from Eq. (2.36), the above generic cost function

may be expressed as

JGW(θ; x1, . . . ,xn) =
n∑
i=1

θ>u(xi)u(xi)
>θ

θ>Λu(xi) θ

=
n∑
i=1

θ>u(xi)u(xi)
>θ

θ> [∂xu(xi)]Λxi
[∂xu(xi)]

> θ
. (2.53)

This form is precisely the same as that of JAML given in Eq. (2.50). The equivalence of

the two forms is not coincidental given that both methods employ a Taylor expansion

in their derivation.

This dual motivation, leading to equivalent cost functions, means that the terms

“gradient weighted” and “approximated maximum likelihood” in this case describe

identical cost functions.

This approach yields a cost function which is determined in terms of the necessary

parameters only. Its advantage is that the form is generic and applies to any problem

which conforms to the original parameter model specification. It is possible, however, to

consider the issue of eliminating nuisance parameters by considering the specific form

of an estimation problem at hand. In the case of optical flow estimation, for example,

Ohta [48] shows how an estimator can be built which eliminates nuisance parameters

by assuming they conform to a particular statistical distribution.

Unlike the estimate θ̂TLS (Sect. 2.4.2), the estimate θ̂AML does not admit a closed-

form expression. Hence, an iterative algorithm must be employed to minimise JAML,

obviously involving greater complexity and computational cost. Several algorithms are

presented in the next chapter which aim to minimise JAML. They take advantage of
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the specific form of the cost function and, because of this, offer significant efficiency

advantages over general minimisation techniques.



Chapter 3

COST FUNCTION MINIMISATION

This chapter presents methods for finding the minimiser of a cost function. General

methods capable of working with more or less arbitrary cost functions are described.

Next, to account for the special nature of the model defined in the previous chapter

more specific methods are derived which act specifically on JAML. In the first instance,

the ancillary constraint is not considered: the methods aim to find a minimiser with no

restriction on the parameter space. This deficiency is addressed in a subsequent section

where a constrained method is derived.

3.1 General methods

A global minimiser θ̂g of a function J(θ) will satisfy J(θ̂g) ≤ J(θ) for all values of θ.

Finding such a global minimiser is often an arduous task, depending heavily on the

specific form of the cost function. A realistic, tractable alternative often employed is to

find a local minimum θ̂l. Giving an initial starting point θ0, the local minima satisfies

J(θ̂l) ≤ J(θ) (3.1)

for all values of θ in a neighbourhood of θ̂l that contains θ0. The initial estimate θ0

allows the reduction of the search space to a small region around θ0.

There are many strategies for computing minimisers of cost functions. These in-

clude the so-called Monte Carlo methods, such as simulated annealing and genetic

programming [18, §13.3 & §13.4] that are robust to deal with unstable or very ‘rough’

cost functions. They typically involve significant overhead. In this thesis such meth-

ods will not be considered, rather iterative methods which are geared for finding local

minimisers of more tolerable cost functions will be pursued.

It should be noted that, for a general non-linear cost function, some form of itera-

tive method is required. Only a very restricted class of cost functions, generally deriving

from models in which the parameters and data interact linearly, may have their min-

imisers computed directly. The TLS method is one such non-iterative method, in the
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sense that the solution is computed directly by performing a single SVD of the design

matrix. As highlighted in Sect. 2.4.4, the TLS method is only optimal for purely linear

situations.

An iterative optimisation algorithm searching for a local minimum seeks to produce,

given a current guess θc of the solution, a “better” guess θ+. Of course, there must also

be some mechanism whereby the iterations are stopped, and the final θ+ is taken as

the minimum. Such stopping conditions will be discussed after the different algorithms

have been presented. Different schemes for computing an updated estimate of the

solution can be divided into two categories: those which make use of the gradient of

the cost function, and those that do not.

3.1.1 Direct search

Direct search methods do not utilise the gradient of the cost function. They are useful

when the cost function is not smooth and potentially contains discontinuities, or when

the cost function is not readily differentiable or computing numerical gradients is con-

sidered too computationally expensive. One such example may be the case where J(θ)

itself is the result of a minimisation.

A widely used direct search method is Nelder-Mead [45], also known as downhill

simplex, or the Amoeba method [52, §10.4]. This method works by employing a simplex

for which the cost function is evaluated at each vertex. A series of rules are specified as

to how to update the vertices of the simplex at each iteration.

The main deficiency of the Nelder-Mead algorithm is that it has poor convergence

properties [43]. Other problems include the tendency to get ‘stuck’ too easily in non-

optimal (local) minima, and the need for many more iterations than gradient based

methods.

3.1.2 Gradient-based methods

When the first derivative of the cost function is known a priori, or can be calculated

numerically, then this gradient information may be used by so-called gradient based

methods.

A first order gradient method is gradient descent (sometimes known as steepest de-

scent). Quite simply this method specifies that a step should be taken along the steepest
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gradient at the current estimate. So, given a current guess θc, the next guess is

θ+ = θc − k [∂θJ(θc)]
> , (3.2)

with k a (relatively small) constant. To analyse how θ+ improves on θc, consider a first

order Taylor expansion of J(θ) around θc:

J(θ+) ≈ J(θc) + (θ+ − θc) [∂θJ(θc)] . (3.3)

Substituting the updated θ+ from Eq. (3.2) gives a new value of the cost function

J(θ+) = J(θc)− k‖ [∂θJ(θ)]θc
‖2, (3.4)

which is an improvement, with J(θ+) < J(θc), as long as k is small enough to make the

Taylor approximation meaningful. In general, the gradient descent method does not

have very good convergence properties, even in the case of a smooth and well behaved

cost function [34, §3.2.2].

Gauss-Newton, a second-order method, is another method which incorporates gra-

dients. The cost function is approximated with a second order Taylor expansion

J(θ+) = J(θc) + (θ+ − θc) [∂θJ(θc)] + (θ+ − θc)
>HJ (θ+ − θc), (3.5)

where HJ is the Hessian matrix of the cost function J evaluated at θc. Differentiating

with respect to θ+ gives

[∂θJ(θ+)] = [∂θJ(θc)] + HJ(θ+ − θc). (3.6)

The necessary condition of the minimiser is that the gradient of the cost function should

vanish at that point. So, substituting [∂θJ(θ+)] = 0 into the above equation yields the

identity

(θ+ − θc) = H−1
J [∂θJ(θc)] . (3.7)

The update θ+ is then given by θ+ = θc + H−1
J [∂θJ(θc)]. For such a step to make

sense the Hessian must be positive semi-definite, and unfortunately this is not always

the case. In fact, it is quite common for the Hessian to be rank deficient at points

close to the minimiser. A number of variations on the Gauss-Newton method, known as

quasi-Newton methods, use more sophisticated expressions in place of HJ in Eq. (3.7)

[52]. These clever constructions of replacements for HJ permit avoiding problems with

singularities.
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Both first order and second order gradient methods are almost always preferable to

direct searching as long as gradient information is readily available. The performance

of the Gauss-Newton methods depends on how well the surface of the cost function is

approximated by its second-order Taylor expansion (Eq. (3.5)).

3.1.3 Least squares

An important special case of optimisation problems is the least squares cost function of

the form

J(θ) =
1

2

∑
i

r2
i (θ) =

r(θ)>r(θ)

2
, (3.8)

where r = [r1(θ), . . . , rn(θ)]> is a vector of residuals. This cost function may be min-

imised using second order gradient methods because it is possible to analytically derive

the Jacobian and Hessian of the cost function J . From Eq. (3.8), the Jacobian is

[∂θJ(θ)] = r(θ)> [∂θr(θ)] . (3.9)

Note that the term [∂θr(θ)] is a Jacobian matrix (as r is itself a vector), as opposed to

[∂θJ(θ)] which is a vector. Differentiating again, the Hessian is

HJ =
[
∂2

θθJ(θ)
]

= [∂θr(θ)] [∂θr(θ)]> +
∑
i

ri(θ)Hri . (3.10)

The right-most second order term is usually discarded from the form of the Hessian,

and a simplified version

HJ ≈ [∂θr(θ)] [∂θr(θ)]> (3.11)

is used. Apart from being expensive to compute, the second order term may in fact

cause de-stabilisation in subsequent minimisation [52, §15.5].

The least squares problem may be solved using gradient based methods described

above. For gradient descent, the Jacobian of Eq. (3.9) is used, and for Gauss-Newton,

the Hessian of Eq. (3.11) is taken. Because of the poor convergence properties of

the gradient descent method, the Gauss-Newton method is preferable except when the

solution of Eq. (3.7) yields an updated estimate which increases the cost function value.

If this happens, gradient descent can be employed ensuring that the cost function value

will decrease. A sophisticated algorithm which can dynamically “swap” between these

two modes of operation is the Levenberg-Marquardt method.
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Levenberg-Marquardt

The Levenberg-Marquardt method (LM) is a hybrid of the Gauss-Newton inverse Hessian

method and the method of gradient descent. It aims to include the best attributes

of both methods by favouring Gauss-Newton when the Hessian is reliable enough to

facilitate rapid convergence, and switching to gradient descent when the Gauss-Newton

method might go astray. The underlying insight is to replace the ordinary Hessian

matrix used in step Eq. (3.11), adding an extra diagonal weight, yielding

(θc − θ+) = (HJ + υI)−1 [∂θJ(θc)] . (3.12)

The parameter υ controls the behaviour of the update. When υ is very small, the RHS

of the equation reduces to the inverse Hessian of the Gauss-Newton. However, when

υ is large, then the identity matrix causes the diagonal elements to dominate HJ , and

the equation tends to

(θc − θ+) = υI [∂θJ(θc)] , (3.13)

which is precisely the gradient descent update of Eq. (3.2). Therefore, by varying υ

before an iteration, this method can in essence ‘switch’ between descent and Gauss-

Newton.

The main ‘tweaking’ in the L-M algorithm is to specify how υ is updated from itera-

tion to iteration. The basic form of the L-M algorithm is given in Alg. 3.1, which is an

outline of a commonly used update method [52]. The Gauss-Newton step is deemed

to be useful when successive estimates are produced with a lower cost function value.

While this is happening, the factor υ is reduced more and more, causing the algorithm

to rely increasingly on the Hessian information and become more like Gauss-Newton.

When successive estimates produce higher values of the cost function, then the Hessian

information is deemed to be less reliable, and υ is increased. This causes the algorithm

to fall back to taking steps more resembling gradient descent.

In Alg. 3.1, a simple multiply- and divide-by ten rule is used to increase and decrease

υ. Other, more complicated, schemes for updating υ exist that rely, for example, on

polynomial interpolation of each ri(θ) [26, p. 2–24].

Levenberg-Marquardt is widely regarded as the best optimisation method to use for

least squares-type problems. It is used extensively in computer vision [23, App. 4]
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Algorithm 3.1 (L-M) Computes the minimiser θ̂LM of a least squares cost func-

tion J(θ) = 1
2
r(θ)>r(θ) using the Levenberg-Marquardt method.

1. Choose an initial estimate θ0 and set υ to a small value, typically k = 10−3.

2. Using θc, compute the Hessian HJ as per Eq. (3.11), and hence solve

Eq.(3.12) yielding θ+.

3. Find the cost function value at θ+: J(θ+) = 1
2
r(θ+)>r(θ+).

4. If J(θ+) < J(θc), then update υ = υ/10, and set θc = θ+.

5. Otherwise, retain θc and set υ to 10υ.

6. If the decrease in the cost function falls below a threshold, then terminate

and take θ̂LM = θ+; otherwise go to step 2.

Minimising JAML using L-M

It is straightforward to use the L-M algorithm to find a minimiser of JAML(θ; x1, . . . ,xn).

All that is necessary is to represent JAML as a sum of squared residuals. This is achieved

by taking

r(θ) =

√θ>A1 θ

θ>B1 θ
, . . . ,

√
θ>An θ

θ>Bn θ

> . (3.14)

3.2 AML Specific methods

Each minimisation method described above applies to increasingly specialised cost func-

tions. Indeed, the direct search methods require only function evaluations, but gradient

based methods require the additional calculation of the Jacobian, and potentially the

Hessian. Further still, least squares methods require the cost function to be of the form

as per Eq. (3.8). Cost functions of more special form are amenable to better optimisa-

tion methods in terms of convergence, accuracy, and tolerance of poor starting initial

solutions.

The process of refining the optimisation methods can be extended to cope specif-
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ically with JAML. The LM method is generally favoured when applied to the general

least squares problems. But methods even more specific, described in this section, can

have extra advantages. Usually it is increased efficiency – reducing the computation

time required to find an estimate – but also may be the reduced sensitivity to the initial

seed, and better convergence.

3.2.1 Eigenfit: Taubin’s meta-approximation

Taubin [59] proposed an approximation to the ML cost function (with identity covari-

ances, Λxi
= I)

J∗ML =
n∑
i=1

(xi − xi)
> (xi − xi) ≈ JTAU(θ) =

∑n
i=1 θ>u(xi)u(xi)

>θ

n−1
∑n

i=1 θ> [∂xu(xi)] [∂xu(xi)]
> θ

.

(3.15)

The cost function JTAU can be thought of as a second tier approximation to JML, as it

is an approximation of JAML which itself is an approximation to JML. Specifically, the

standing approximation

JML(θ) =
n∑
i=1

(xi − xi)
>Λ−1

xi
(xi − xi) ≈ JAML(θ) =

n∑
i=1

θ>Ai θ

θ>Bi θ
, (3.16)

is replaced with the approximation

JAML(θ) =
n∑
i=1

θ>Ai θ

θ>Bi θ
≈ JTAU(θ) =

n∑
i=1

θ>Ai θ

θ>T θ
, (3.17)

where

T =
1

n

n∑
i=1

Bi. (3.18)

The variable denominator in each summand of JAML is replaced in JTAU simply by the

‘average’ denominator value θ>T θ. Recall that S = U>U =
∑n

i=1 Ai, so JTAU may be

written

JTAU(θ) =
θ>S θ

θ>T θ
. (3.19)

With λ = JTAU(θ), Eq. (3.19) may be written as

Sθ = λTθ . (3.20)

Hence the minimiser of JTAU can be found by solving a generalised eigenvalue prob-

lem: θ̂TAU will be the generalised eigenvector associated with the smallest generalised
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eigenvalue. Because the solution may be found directly in this way, this method was

originally termed “eigenfit”, although it is also referred to simply as Taubin’s method.

Taubin’s original method involved using θ̂TAU as an initial value for a subsequent

Levenberg-Marquardt minimisation of a first-order approximation to JML (with identity

covariance matrices). A later extension to this work incorporated a second order ap-

proximation to JML [60]. However, the significance here is that of the approximated

function JTAU leading to the direct solution. The estimate θ̂TAU may of course be used

as an input to any iterative algorithm.

The accuracy of Taubin’s approximation, compared for example to JAML, is de-

termined by the variation in each of the denominators (θ>Bi θ). If this variation is

minimal then the average θ>T θ will be a reasonable replacement in the sum. As

Bi = [∂xu(xi)]Λxi
[∂xu(xi)]

>, variation will depend in part on the inhomogeneity of

the set of covariances {Λxi
}. Of course in the case where Λxi

= I the covariance ma-

trices will provide no variation at all. This leaves the other source of variation in the

gradient [∂xu(xi)]. The quality of the Taubin approximation therefore will depend on

the amount of curvature in the manifold Mθ.

Fitzgibbon [15] (among others) points out that the Taubin method may be consid-

ered a member of the algebraic estimator family (Sect. 2.4.1). The Taubin estimate

minimises the sum of squared algebraic residuals under the constraint ‖Tθ‖2 = 1.

3.2.2 Iteratively re-weighted least squares

In addition to his ‘approximated distance’, Sampson also put forward a algorithm for

its minimisation, which has come to be known as iteratively re-weighted least squares

(IRWLS) [56]. The difficulty in finding a closed form for θ̂AML is that θ appears in both

the numerator and denominator of JAML (Eq. (2.51)). The IRWLS method overcomes

this problem by breaking the minimisation into two steps. Firstly, a fixed value θ = θ#
0

is taken in the denominators (θ>Bi θ). Now, only minimising over the numerators

leaves a modified cost function

JSMP(θ,θ#) =
n∑
i=1

θ>Ai θ

θ#
0

>
Bi θ

#
0

= θ>

(
n∑
i=1

(θ#
0

>
Bi θ

#
0 )−1Ai

)
θ

= θ>Mθ#
0

θ, (3.21)
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with

M ξ =
∑
i

1

(ξ>Biξ)
Ai. (3.22)

The minimiser of JSMP(θ,θ#) is sought with respect to θ (subject to ‖θ‖2 = 1) and θ# is

kept fixed. The above cost function is identical in form to the TLS cost function, with S

replaced by Mθ. The same analysis applies leading to the analogous characterisation of

the minimiser as the eigenvector of Mθ associated with the smallest eigenvalue. Such

a solution may now be used to determine a new θ#
1 , which can then be used to compute

new denominators (re-weighting). The process may be repeated until convergence and

is described in algorithm 3.2.

The IRWLS has a fundamental problem in that it does not act to compute a min-

imiser of JAML(θ). It will be shown in a subsequent section why this is the case. The

theoretical limitation of this method is borne out in a later section.

Algorithm 3.2 (IRWLS) Computes the IRWLS estimate θ̂IRWLS

1. Choose an initial estimate θ0 = θ̂TLS and set k = 0

2. Compute Mθk
as per Eq. (3.22)

3. Take θk+1 as the eigenvector of Mθk
associated with the smallest eigenvalue

4. If ‖θk − θk+1‖ > ε then increment k and go back to step 2. Otherwise,

terminate and set the estimate θ̂IRWLS = θk+1

3.2.3 Fundamental numerical scheme

The IRWLS algorithm was inspired directly from the specific form of JAML. Unfortu-

nately this algorithm exhibits significant bias. An alternative approach is to start not

with the cost function, but with an equation characterising the minimiser.

An obvious condition satisfied by a minimiser of JAML is that the first derivative

vector of JAML must vanish when evaluated at θ̂AML, namely[
∂θJAML(θ)

]>
θ=θ̂AML

= 0. (3.23)
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Of course, this equation is satisfied not only at θ = θ̂AML, but also at any local minima or

maxima of JAML. An implicit assumption therefore is that an initial estimate produced

using TLS (or some other more sophisticated method) will be good enough that the

nearest point satisfying Eq. (3.23) will be the global minimiser.

The Jacobian of JAML may be computed analytically. To simplify matters, JAML is

written as

JAML(θ) =
n∑
i=1

ai(θ)

bi(θ)
, (3.24)

where ai(θ) = θ>Ai θ, and bi(θ) = θ>Bi θ. A vectorised form of the ‘quotient rule’ of

differentiation,

∂θ

(
a(θ)

b(θ)

)
=

[∂θa(θ)] b(θ)− [∂θb(θ)] a(θ)

b(θ)2
, (3.25)

may be used to construct a closed form for the Jacobian. Substituting the identities

[∂θa(θ)]> = 2Ai θ and [∂θb(θ)]> = 2Bi θ, (3.26)

into Eq. (3.25) yields[
∂θJAML(θ)

]>
=
∑
i

2Aiθ(θ>Bi θ)− 2Biθ(θ>Ai θ)

(θ>Bi θ)2

= 2

[
n∑
i=1

(
Ai

θ>Bi θ
− Bi(θ

>Ai θ)

(θ>Bi θ)2

)]
θ (3.27)

with

Xθ =
n∑
i=1

1

θ>Bi θ
Ai −

n∑
i=1

(θ>Ai θ)

(θ>Bi θ)2
Bi, (3.28)

Eq. (3.27) can be written [
∂θJAML(θ)

]>
= 2Xθ θ. (3.29)

That the Jacobian of JAML may be ‘factored’ in this way is crucial for the subsequent

development of a minimisation algorithm. The above equation, called the variational

equation, combined with the criterion of Eq. (3.23) means that the minimiser must

satisfy

X θ̂AML
θ̂AML = 0. (3.30)

The simple form of Eq. (3.30) suggests an iterative algorithm for finding θ̂AML. A

vector θ will satisfy Eq. (3.30) if and only if it lies in the null space of Xθ. Hence,

if θ1 is an initial guess at the minimiser, then an improved guess θ2 can be taken as

the vector in the eigenspace of Xθ1 which most closely approximates the null space
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of Xθ. This will be the eigenvector of Xθ1 associated with the eigenvalue closest to

zero. This process can now be repeated, whereby a new factor matrix Xθ2 may be

computed and used to generate a new estimate θ3, and so on. This algorithm is termed

the fundamental numerical scheme (FNS) and is described specifically by Algorithm 3.3.

Algorithm 3.3 (FNS) Computes an estimate θ̂FNS of the minimiser of JAML

1. Choose an initial estimate θ0 and set k = 0.

2. Compute Xθk
as per Eq. (3.28).

3. Take θk+1 as the eigenvector of Xθk
associated with the eigenvalue closest

to zero.

4. If ‖θk−θk+1‖ > εθ and |JAML(θk)−JAML(θk+1)| > εJ then increment k and

go back to step 2. Otherwise, terminate and set the estimate θ̂FNS = θk+1.

3.2.4 Iterative issues

For methods which require iteration, care needs to be taken at each end of the process:

choosing an initial value to start, or seed, the method, and determining when to cease

iterating.

Seeds

Although not completely necessary, a non-iterative method should ideally be used to

generate a seed for any subsequent iterative algorithm. It is possible though to contem-

plate a sequence of methods where the output of one (faster but not quite as accurate)

method is used to generate a seed for a second, slower but more accurate algorithm.

When choosing a method to seed FNS, there is primarily a choice between using

an algebraic least squares method, for example TLS, or using Taubin’s method. Ex-

periments show that, for data contaminated with a very high level of noise, TLS will

generate particularly bad estimates. When FNS is seeded with these estimates, the

subsequent iterates may converge to a (distant) local minimum, or diverge completely.
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Therefore, it is generally safest to initialise FNS with the Taubin estimate. Computa-

tionally, finding θ̂TAU is more or less on par with a single iteration of FNS – certainly

not a significant overhead.

Termination

Choosing when to stop an iterative algorithm also requires some thought. It is not

desirable to stop too early, or to iterate for too long. Generally, one stopping condition

is to cease iterating when ‖θ̂k − θ̂k−1‖ < εθ, for some small εθ. Additionally, a “safe-

guard” maximum number of iterations has been set, which will usually be reached in

the event that the algorithm fails to converge at all. As the goal of iterative algorithms

is to minimise a particular cost function, a second criteria for convergence, and hence

stopping condition, is when successive estimates have small change in their cost function

value. In the FNS case, we wish to stop when |JAML(θi)−JAML(θi−1)| < εJ . Again, there

is a trade-off with computational cost, as more effort is required to explicitly compute

the value of JAML – for both estimates – at each iteration. However, an optimisation

may be applied reducing the overhead of computing a value of JAML at each iteration.

Of course JAML(θi) only need be computed once as its value can be stored for the next

iteration (when JAML(θi−1) is required). Furthermore, at each iteration of the FNS

algorithm, the matrix Xθi
must be computed. As seen in Eq. (3.32), Xθ = Mθ −Rθ,

where Mθ is defined as

Mθ =
∑
i

Ai

θ>Bi θ
.

As JAML(θ) =
∑

i (θ
>Ai θ)(θ>Bi θ)−1, then its value for the ith estimate can be com-

puted as

JAML(θi) = θ>i Mθi
θi, (3.31)

which requires only minimal overhead because Mθi
has been computed anyway as a

necessary part of the FNS iteration.

The stopping condition used is determined by a choice of three variables: the safe

guard maximum number of iterations, the tolerance for difference in successive θk, and

the tolerance for difference in the successive values of the cost function.
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3.2.5 Bias in IRWLS estimator

The FNS and IRWLS algorithms appear similar, with one difference being the matrices

involved: Mθ for IRWLS, and Xθ for FNS. Examination of the form of Xθ, given in

Eq. (3.28), shows that it is the sum of two matrices, the first of which is actually Mθ,

the IRWLS matrix. So

Xθ = Mθ −Rθ, (3.32)

with Mθ given in Eq. (3.22), and

Rθ =
n∑
i=1

(θ>Ai θ)

(θ>Bi θ)2
Bi. (3.33)

At each step of the IRWLS algorithm, θ>k+1Mθk
θk+1 = 0 is minimised (subject to

‖θk+1‖2 = 1) using an eigendecomposition

Mθk
θk+1 = λθk+1.

As λ = JSMP(θk,θk+1) which is similar to Eq. (2.28),

Mθk
θk+1 = JSMP(θk,θk+1) θk+1.

Upon convergence, the estimate θ̂IRWLS = θ∞ = limk→∞ θk will satisfy the identity

Mθ∞θ∞ = JSMP(θ∞,θ∞) θ∞. (3.34)

Given that JSMP(θ,θ) = JAML(θ), then the estimate θ̂IRWLS will satisfy(
Mθ − JAML(θ)I

)
θ = 0. (3.35)

This equation is different from the variational equation, Eq. (3.30). Hence the θ̂IRWLS

does not minimise JAML.

3.3 Incorporating the ancillary constraint

All of the estimation methods presented so far take no account of the ancillary con-

straint. In general they will return an estimate which does not satisfy the ancillary

constraint. There are two ways to remedy this: one is to perform some kind of correc-

tion on an unconstrained estimate, and the other is to modify the estimation method

itself to ensure that a constrained estimate is always returned. Each of these is now

examined.
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3.3.1 Reparameterisation

One way of obtaining a final estimate consistent with the ancillary constraint is to

reparameterise the problem so that under the new parameterisation, the constraint is

always satisfied. Obviously such a parameterisation must be chosen specifically for each

kind of problem. Usually there is not a unique candidate for a new parameterisation.

With the new parameterisation adopted, the minimiser of JAML (or other problem

specific cost function) may be found by using for example Levenberg-Marquardt. Given

a modified parameter space, none of the other minimisation methods described above

may be used as the problem is no longer linear in the new parameters. Usually these

methods can be quite complex and sometimes it is not easy to come up with a pa-

rameterisation that will work in the entire search space. In the cases where multiple

parameterisations are possible, it is sometimes necessary to change the parameterisa-

tion during the minimisation.

Because of the inherent problem dependent nature of the reparameterisation method,

specific ways of doing this are described later for each geometric problem.

3.3.2 Post-correction

Rather than completely changing the model to incorporate the ancillary constraint, it

is possible instead to adopt a two step procedure. First, the unconstrained estimate is

computed. The original estimate is then modified (or corrected) so that it satisfies the

constraint. There are several possibilities for these so-called post-correction methods,

both non-iterative and iterative.

Kanatani was the first to propose an iterative scheme [29, Chap. 5]. The idea is to

find the new constrained estimate which is closest to the original unconstrained one.

Closest here refers to minimising the Mahalanobis distance, where the covariance used

is of the original estimate. Various modifications of this scheme are possible, depending

on which specific form of the covariance matrix is chosen.

3.4 Direct constrained estimation

Reparameterisations techniques must be applied specifically for each problem form un-

der consideration. Additionally, there is unlikely to be a unique parameterisation for a

given problem, which means it may not be obvious a priori which one to choose. Once
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JAML(θ)

θi

ψ(θ) = 0

θ2

θ1

θ̂
u

Figure 3.1: Correcting an unconstrained estimate. A ‘slice’ of the JAML surface is shown
superimposed with the curve ψ(θ) = 0. Even though θ2 may be close to the uncon-
strained minimiser θ̂

u
it has a higher cost function value than θ1 which is a preferable

choice

reparameterised, the minimisation must proceed using a general (relatively inefficient)

minimiser such as Levenberg-Marquardt, as methods such as FNS will not apply to a

parameterisation that fails to conform to the linear form of Eq. (2.2).

The post correction method alleviates both of these problems. It is (more or less)

generally applicable using the generic equations of Sect. 3.3.2. In terms of efficiency, an

unconstrained solution may be computed using FNS, and the correction itself iterative,

typically requiring just two or three iterations. However, the very nature of post correc-

tion leaves open the question of whether the optimum solution is attained. Imagine for

a given cost function there is an unconstrained minimiser θ̂
u

minimising a cost function

J(θ), and close to θ̂
u

there are θ1 and θ2 both satisfying ψ(θ1) = ψ(θ2) = 0 and with

J(θ1) < J(θ2). The ideal choice as a constrained estimate is θ1. It is possible that the

post correction method may choose θ2, particularly if it is the case that θ2 is closer in

some sense to θ̂
u

than θ1. This situation is shown in Fig . 3.1.

An alternative method would be desirable which considers the constraint from the

outset, rather than tacking it on at the end similar to post correction. To maintain a just-

iterative method the goal is to find a method similar to FNS where Xθ is replaced with

a different matrix built incorporating the constraint. This method is termed constrained

FNS (CFNS).



Chapter 3 – Cost Function Minimisation 40

3.4.1 Preliminary method

Minimising JAML subject to ψ(θ) = 0 may be written as a system incorporating a La-

grange multiplier. The required solution θ̂AML satisfies

[∂θJAML(θ)]>θ=θ̂AML
+ λ [∂θψ(θ)]>θ=θ̂AML

= 0 (3.36)

ψ(θ̂AML) = 0. (3.37)

The key to progressing with the development of a constrained version of FNS is re-

placing the general constraint function with one that is so-called k-homogeneous (see

Eq. (2.7)). It turns out that for several common problems, the associated ancillary con-

straint can be written in this form. Differentiating the identity ψ(ρθ) = ρkψ(θ) with

respect to ρ gives

[∂θψ(ρθ)] θ = kρk−1ψ(θ), (3.38)

and setting ρ = 1 leaves the identity

ψ(θ) = k−1 [∂θψ(θ)] θ. (3.39)

By setting dθ = [∂θψ(θ)]> /2 (and omitting the specification θ = θ̂AML) the system may

be written as
1

2
[∂θJAML(θ)]> + λdθ = 0 ,

d>θ θ = 0.

As shown in Sect. 3.2.3, the Jacobian of JAML(θ) may be factorised and written [∂θJAML(θ)]> =

2Xθ θ. Substituting this into the above system gives

Xθθ + λdθ = 0 , (3.40)

d>θ θ = 0, (3.41)

which can be written as a single matrix equation[
Xθ dθ

d>θ 0

][
θ

λ

]
= Yθ η = 0. (3.42)

Eq. (3.42) has a similar form to the original variational equation, Eq. (3.29), sug-

gesting a revised algorithm in which Xθ is replaced with Y θ. However, Y θ is an

(l + 1)× (l + 1) matrix (θ is an l−vector), meaning this new scheme would potentially

operate in a higher dimensionality than “ordinary” FNS. In subsequent implementation,

it turned out that a FNS scheme using Y θ was not convergent. As an initial remedy, a

further update is sought where a matrix of the same order of θ is devised.
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3.4.2 Revised method

The first step in deriving such a “same order” matrix is to solve for the Lagrange multi-

plier by multiplying both sides of Eq. (3.40) by d>θ ,

d>θ Xθθ + λd>θ dθ = 0, (3.43)

so that

λ = ‖dθ‖−2d>θ Xθθ. (3.44)

Substituting this into Eq. (3.40) gives(
Xθ − ‖dθ‖−2dθd

>
θ Xθ

)
θ = (Xθ −DθXθ) θ = (I −Dθ)Xθ θ = 0, (3.45)

with Dθ = ‖dθ‖−2dθd
>
θ . Now, considering

Dθ θ = ‖dθ‖−2dθd
>
θ θ = 0 (3.46)

(substituting Eq. (3.41)), it is clear that (I−Dθ)θ = θ. Combining this with Eq. (3.45),

and including a factor of ‖θ‖2 to compensate for Xθ being homogeneous of degree −2,

yields [
‖θ‖2

(
(I −Dθ)Xθ(I −Dθ)

)
+ Dθ

]
θ = Y ′

θ θ = 0, (3.47)

This equation is equivalent to the original system comprising Eq. (3.36) and Eq. (3.37).

The matrix Y ′
θ has size l × l which is the same order as the θ.

Again this equation suggests the adoption of a new FNS-like method where, in this

case, Y ′
θ is substituted for Xθ. However, again, such a method fails to converge.

It is not always the case that equations of the form of Eq. (3.27), or Eq. (3.47),

will lead to convergent iterative algorithms. The mapping of a particular matrix to its

eigenvector corresponding to the eigenvalue closest to zero is a complicated function,

not expressible in closed form. Therefore the convergent properties of any method are

difficult to consider directly. In the case of Eq. (3.47) it is possible to consider a family

of equivalent equations of the form (Y ′
θ + Nθ) θ = 0 where Nθ is a symmetric matrix

such that Nθ θ = 0 for all θ 6= 0 and that the function θ 7→ Nθ is homogeneous of

degree 0.

Considering this, a new matrix Zθ is sought such that the equation Zθ θ = 0 is

equivalent to Eq. (3.47). Firstly, necessary terms are given. The Hessian matrix of the

AML cost function is written HJ = [∂2
θθJAML(θ)] and the Hessian matrix of the ancillary

constraint function is written Hψ = [∂2
θθψ(θ)]. Additionally, for each i from 1 to l,
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define ei as the basis vector which has its ith element equal to one, and all others zero.

Expansive calculation shows that HJ may be written in terms of the matrices Ai and

Bi as

HJ = 2 (Xθ − Tθ) , (3.48)

where

Tθ =
n∑
i=1

2

(θ>Bi θ)2

[
Ai θθ>Bi + Bi θθ>Ai − 2

θ>Ai θ

θ>Bi θ
Bi θθ>Bi

]
. (3.49)

Using the above, a replacement matrix Z can be defined as Zθ = Z
(1)
θ + Z

(2)
θ + Z

(3)
θ

where

Z
(1)
θ = (I −Dθ)HJ (2θθ> − ‖θ‖2I) , (3.50)

Z
(2)
θ =

‖θ‖2

‖dθ‖2

[ l∑
i=1

(
Hψeid

>
θ + dθe

>
i Hψ

)
Xθ θe>i − 2‖dθ‖−2dθd

>
θ Xθ θd>θ Hψ

]
, (3.51)

Z
(3)
θ =

κ

‖dθ‖2

[
ψ(θ)

4
Hψ + dθd

>
θ − ψ(θ)

2
‖dθ‖−2dθd

>
θ Hψ

]
. (3.52)

The form of Zθ arises through algebraic manipulations only, there is no geometric in-

terpretation to its form. Neither does the use of individual matrices, Z
(1)
θ ,Z

(2)
θ , and Z

(3)
θ

have any significance – they are used merely to break up a long expression. Note that

Z
(1)
θ θ = ‖θ‖2(I −Dθ)Xθ(I −Dθ),

Z
(2)
θ θ = 0,

Z
(3)
θ θ = Dθ θ.

Therefore the equation Zθ θ = 0 is equivalent to
[
‖θ‖2

(
(I −Dθ)Xθ(I −Dθ)

)
+ Dθ

]
θ =

Y ′
θ θ = 0, as intended.

Unlike the matrices Xθ and Y ′
θ, the above form for Zθ is not symmetric. However,

an equation equivalent to Zθθ = 0 is[
Z>

θ Zθ

]
θ = 0 (3.53)

where Z>
θ Zθ is a symmetric matrix. A constrained estimation algorithm may then

be expressed with the original, unconstrained, matrix Xθ replaced with Z>
θ Zθ. A

constrained version of the FNS algorithm, termed CFNS, is defined by replacing the

matrix Xθ with Zθ in Alg. 3.3.
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3.5 Summary

A parametric model was defined in which a principal constraint equation related param-

eters and data points. The function was defined to be linear in parameters, although

non-linear in data points. The model of noise adopted was that of Gaussian perturba-

tions from unknown ideal data points. Therefore, for each new data point added, an

associated nuisance parameter must be incorporated to the overall model.

By considering purely algebraic residuals, a family of methods, known as algebraic

least squares, can be be derived which estimate parameters minimising by the sum of

squared residuals subject to a particular constraint. These methods are not generally

satisfactory in general because they exhibit a statistical bias.

Using a ML cost function, an optimal estimator, under the defined parametric model,

is

θ̂ML = arg min
n∑
i=1

(xi − xi)
>Λ−1

xi
(xi − xi).

In practice this cost function is very difficult to minimise because of the presence of

nuisance parameters, the xi. At best, progress can be made only for each individual

problem. The ML cost function may be approximated by one that eliminates the nui-

sance parameters and depends only on the parameter vector of interest, θ. Following

the method of Sampson, such a cost function is defined as

θ̂AML = arg min
n∑
i=1

θ>Ai θ

θ>Bi θ
.

The iteratively re-weighted least squares algorithm attempts to minimise this cost

function, but it has an identifiable theoretical bias. A more effective means of minimis-

ing JAML can be found by considering that the gradient must vanish at the minimiser.

By directly computing the gradient, a variational equation is formed

[∂θJAML(θ)]>θ=θ̂ALS
= 2Xθθ = 0 .

Because [∂θJAML]> factorises in this particular way, a simple iterative algorithm is sug-

gested. Here, a new estimate θi+1 is generated by finding the eigenvector of Xθi
corre-

sponding to the eigenvalue closest to zero.

The ordinary FNS algorithm does not take into account any ancillary constraint im-

posed on the parameters. However, it can be ‘upgraded’ to incorporate such a constraint

by replacing X with a different matrix. This new matrix is derived by making a basic
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assumption on the form of the constraint, namely that it must be k-homogeneous. Var-

ious manipulations of an initial form lead to the eventual description of a constrained

estimation method, CFNS.

The following two chapters explore the application of these estimation methods to

the problems of conic fitting and fundamental matrix estimation.



Chapter 4

APPLICATION I: CONIC FITTING

In this chapter estimation methods are applied to the task of fitting a conic section

– an ellipse, parabola, or hyperbola – to planar data points. After considering this

general problem of conic fitting, the harder problem of specifically fitting an ellipse is

addressed. FNS is compared to several well known conic and ellipse fitting methods.

Experiments show not only the efficacy of the FNS, but also highlights practicalities of

the estimation process.

Ellipse estimation, or in general conic fitting, is a fundamental task in so-called

‘early’ image analysis, enabling a significant amount of raw information encoded in an

image to be represented by a small number of parameters. It is an image analysis task

with many applications. The perspective projection of a circle is an ellipse, hence ellipse

fitting is used in many applications where calibration circles are included in a scene to

be imaged. Later analysis can be performed whereby the centre points of estimated

ellipses can be used for calibration and other higher-level analysis. Conic fitting is also

applied to many other areas: describing raster images using ‘vector’ primitives [49] and

interpreting results from physics experiments [33] are but two examples.

Putting into practice estimation theory of the previous chapters via the simply vi-

sualised problem of 2-D ellipse fitting can be useful for other related estimation tasks,

because the parameters estimated have an easy 2-D visualisation. It is straightforward

to directly draw an estimated conic and data points, therefore obtaining an immediate

visual sense of the quality of the estimate. Such a visualisation is more difficult for

higher order problems where the quantity estimated must first be manipulated, often

non-trivially, to be rendered.

Methods used for estimating ellipses, or fitting conics, may be partitioned into two

categories: model based and least-squares methods. The model based methods choose

an estimate by considering a specific geometric model applied to a large set of data.

Typically these methods deal with data which is very noisy, and sometimes they may

need to estimate more than one conic for a given set of data. Often, data is parti-
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tioned and multiple candidate solutions are chosen. Such methods are often based on

a Kalman filter [51] or a Hough transform [53]. Using a Hough transform to estimate

ellipses involves large state spaces which can lead to prohibitive time and space re-

quirements. Many methods exploit gradient information or geometric properties [38]

to reduce the size of the state space. More recently, evolutionary strategies such as

genetic algorithms have been applied to further improve performance and tractability

of the Hough transform method [33,67].

Model based methods are ‘big stick’ techniques which have significant performance

implications. Indeed, some of these methods measure execution time in hours [33].

Alternative methods, using least squares minimisation, are the subject of the rest of this

chapter.

Least squares methods aim to fit a single conic section to a given set of input data

points. A parametric model of a conic is given and used to define a residual func-

tion comparing a candidate curve with the data. Minimisation of the squared sum of

residuals yields a unique estimate. In the following chapter, the parametric model of

Chapter 2 is adopted, where there is no assumption made of the distribution of the

set of ideal data points. Newsam and Redding [46] show that in some specific cases,

assuming a distribution of ideal data points is advantageous.
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Figure 4.1: Several ellipses estimated from a set of points
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Figure 4.2: An example of an ellipse, parabola, and hyperbola which have been esti-
mated given the same sample set of data points

4.1 Problem form

The general equation describing a conic section is

ax2 + bxy + cy2 + dx+ ey + f = 0. (4.1)

As this equation is linear in parameters and quadratic in data it can be expressed as per

Eq. (2.2), θ>u(x) = 0. The parameter vector is simply taken to be θ = [a, b, c, d, e, f ]>,

and the carrier vector is

u(x) =
[
x2, xy, y2, x, y, 1

]>
, (4.2)

with each data point represented by the data vector x = [x, y]>.

The conic equation may also be equivalently expressed in matrix form. Eq. (4.1)

can be written

m>Qm = 0, (4.3)

with m = [x, y, 1]> and

Q(θ) =


a b/2 d/2

b/2 c e/2

d/2 e/2 f

 . (4.4)

This general conic equation describes a curve which may be a parabola, hyperbola,

or an ellipse. For Eq. (4.3) to specify an ellipse the discriminant ∆ = b2 − 4ac must be

negative. For ∆ = 0 the conic section is a parabola, and for ∆ > 0 it is a hyperbola.

Fig. 4.1 shows several different conics estimated given a set of points. The three forms

possible are shown in Fig. 4.2, where an ellipse, parabola, and hyperbola have been fit

to the same data points.
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The general conic fitting problem involves estimating coefficients of Eq. (4.1) (the

elements of the parameter vector θ) given a set of planar data points. Depending on

the data points and the method of generating an estimate, any type of conic section

may result. A more specific problem is that of (constrained) ellipse fitting, where the

best ellipse fitting the data points is sought. In this case, an ancillary constraint must

be imposed, either directly through the specific design of an estimator, or as a post

correction where a non-ellipse estimate generated from a general method is ‘upgraded’

to an ellipse.

Firstly, the general conic fitting problem is considered. Later, ellipse fitting is ex-

plored with the imposition of an additional constraint.

4.2 Unconstrained estimation

Least squares conic fitting methods can be divided into two classes: algebraic and geo-

metric. The algebraic methods generate solutions which minimise the sum of squares

of residuals of the (algebraic) conic equation. As described in Sect. 2.4.1, the algebraic

quantities are used typically because solutions are easily found through algebraic ma-

nipulation and not because they have any relationship to the underlying geometry of

the problem. In contrast, geometric algorithms aim to minimise a quantity which has

geometrical significance. However, geometrically inspired quantities are more difficult

to compute.

As the problem form is exactly that of Chapter 2, all of the methods described pre-

viously can be applied directly to conic fitting.

4.2.1 Applying algebraic least squares

The family of algebraic methods, which minimise the squares of the residuals of the

conic equation (Eq. (4.1)), can be applied to conic fitting by simply adopting the carrier

form of Eq. (4.2). These methods minimise a cost function whose general form is

JALG(θ; x1, . . . ,xn) =
|θ>u(x)|2

θ>C θ
. (4.5)

The TLS method (Sect. 2.4.1), corresponds to the choice C = I, applying an effec-

tive normalisation of a2 + · · ·+ f 2 = 1. As shown in that section, the estimate θ̂TLS can
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be found by taking a SVD of the design matrix

U =


u(x1)

>

...

u(xn)
>

 .
Other normalisations can be applied by choosing, a potentially rank deficient, form of

C. Such normalisations are designed by considering the form of Eq. (4.1) and hence

are directly applicable to conic fitting.

Bookstein’s normalisation

Bookstein [5] proposed the normalisation a2 + 1
2
b2 + c2 = 1, corresponding to a choice

of C = diag(1, 1
2
, 1, 0, 0, 0). Estimates produced under this normalisation are invariant

to Euclidean transformations to the data points. This normalisation is conic invariant

which means that minimising algebraic residuals subject to this constraint will produce

a consistent estimate regardless of arbitrary Euclidean transformations of the data. Es-

timates produced by the TLS normalisation do not have this property. Rather, TLS

estimates will depend on the exact position and scale of the data points. This artifact

is shown in Fig. 4.3. In the figure, a TLS estimate is produced given some example

data points. Then a common Euclidean transformation is applied to the estimate and

the data. A new TLS estimate is produced for the transformed data, and is shown su-

perimposed on the transformed original estimate. The transformed estimate does not

coincide with the estimate generated from the transformed data points. In the case of

estimation under the Bookstein constraint, shown below, the transformed original esti-

mate and the estimate generated from the transformed data are seen to be the same.

For TLS normalisation, the minimiser may be found directly through an eigensystem

(Sect. 2.4.2). Bookstein shows how a similar system can be derived for his invariant

normalisation, and the solution found using an eigendecomposition. Gander et al [17]

describe how a more efficient and numerically sound SVD can be used to find the

Bookstein estimate.

Other normalisations

Several other normalisations have been employed. Notably

• a+ c = 1, and
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Figure 4.3: Above: A set of data points and associated TLS estimate is shown on the
left. The points were transformed by applying a translation of [170, 5]>, a rotation of 35o,
and scaling by a factor of 1.6. A newly estimated TLS estimate is shown, along with the
same transformations applied to the original estimate. Below: The Bookstein method
is used in place of TLS and the newly estimated ellipse coincides with the transformed
original
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• f = 1

These have been used for example by Rosin [54, 55], and Ellis et al [9] among

others. The case of a + c = 1 is invariant to Euclidean transformations of the data for

ellipses only. Estimates may be computed under these normalisations by performing a

SVD whose precise form is determined by algebraic manipulation similar to that used

in the case of the Bookstein constraint [68].

4.2.2 Geometric interpretation for bias in algebraic methods

Under the assumption that each element of data is affected by the same level of noise,

a cost function should provide equal weights to each residual. But in the case of the

residuals of the conic equation, data points contribute unequal weightings. This varied

contribution was first described Cooper and Yalabik [8]. Zhang describes a geometric

interpretation of why this is the case [68].

Fig. 4.4 shows a ‘canonical’ ellipse: its centre is at the origin, and the major and

minor axes are aligned to the coordinate axis. In this special case, the conic equation is

reduced to

ax2 + cy2 + f = 0. (4.6)

For a data point xi = [xi, yi]
>, define x̃i = [x̃i, ỹi]

> as the point on the line joining xi

to the origin which intersects the circumference of the ellipse (see Fig. 4.4). Assuming

this line makes an angle γ with the x−axis, then cot γ = x̃i/ỹi = xi/yi and so xi =

x̃i(yi/ỹi). The algebraic residual of the point xi is

f(θ; xi) = ax2
i + cy2

i + f

= a

(
x̃2
i

(
y2
i

ỹ2
i

))
+ cy2

i + f

=
y2
i

ỹ2
i

(
ax̃2

i + cỹ2
i

)
+ f

=
y2
i

ỹ2
i

(
ax̃2

i + cỹ2
i + f

)
− y2

i

ỹ2
f + f

= −f
(
y2
i

ỹ2
i

− 1

)
(as ax̃2

i + cỹ2
i + f = 0). (4.7)

Again, considering the angle γ, leads to the identities ỹi = ei sin γ and yi = (ei+di) sin γ.

Substituting them into Eq. (4.7) yields the relationship

f(θ; xi) ∝
(
di + ei
ei

)2

− 1,
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!

γ

Figure 4.4: Bookstein geometry

where the algebraic residual of a point is related to the ratio of the distances di and

ei. At points of high curvature, ei will be proportionately larger and hence |f(θ; xi)|
will be smaller. For low curvature, the reverse is true. Therefore, points close to low

curvature sections will contribute more to the cost function of sum of squared residuals.

Consequently, any algebraic method will tend to produce estimates which exhibit lower

total curvature. This is a geometric interpretation of the uneven weighting effecting

algebraic residuals.

4.2.3 Estimation methods

All of the geometric estimation methods from Chapter 3 can be directly applied to

conic fitting. In addition to adopting the carrier vector of Eq. (4.2), the gradient vector

is taken as

∂xu(x) =

[
2x y 0 1 0 0

0 x 2y 0 1 0

]>
. (4.8)

Geometric methods used in the experiments are:

• TAU: Taubin’s meta-approximation method (Sect. 3.2.1)

• FNS: The fundamental numerical scheme (Sect. 3.2.3),

• LM-A: Direct Levenberg-Marquardt minimisation of JAML (Sect. 3.1.3). The MAT-

LAB optimisation function lsqnonlin, an implementation of the LM algorithm,
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was used.

Algebraic methods used are:

• TLS: Total least squares, and

• BOOK: Bookstein’s method.

Both of these methods use a SVD in their implementation. The MATLAB SVD imple-

mentation was used in the subsequent testing.

4.3 Conic fitting experiments

For the following experiments estimators are tested using synthetic data generated us-

ing a ‘default’ true ellipse. This ellipse, part of a 400 × 600 pixel image, is centred at

(200, 150), has a major axis of 300, a minor axis of 200, and is rotated (anti-clockwise)

by 0.4 radians. The true ellipse is denoted θ∗. A set of 30 points is selected along each of

two arcs covering the highest and lowest curvature portion of the default ellipse. Each

arc has length equal to one third of the perimeter. The data set covering the high cur-

vature portion is labelled ‘A’, and the data set on the lowest curvature section is labelled

‘B’. In each case, underlying true data points are distributed evenly around the arc. The

default ellipse, and the true data points for each data set, are shown in Fig. 4.5.

Noisy data points are generated by perturbing each true data point with Gaussian

noise. For these experiments only homogeneous and isotropic noise is used; all covari-

ance matrices are taken as Λxi
= σI for i = 1 . . . n. Fig. 4.6 shows some example data

sets for increasing noise levels.

Given noisy data, each method will produce its own estimate. These estimates can

be visualised by rendering the conic section they describe. In addition, error measures

are employed to discriminate carious estimates.

4.3.1 Error measures

Choosing an error measure for the purpose of discerning estimates must be done with

care. It is not always apparent what is a good measure to choose, and it is important to

be careful to understand the implications of a particular choice. Particularly sensitive

are those measures which are directly related to estimation methods.
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• The first error measure used to compare estimates is JAML(θ̂, {xi}). This error

measure will permit checking whether FNS minimises the cost function that it

was designed to minimise. Using this measure, the convergence and correctness

of the FNS can be compared directly with LM-A.

• Another potential error measure is the true maximum likelihood cost function,

JML(θ̂, {xi}). This function is the sum of squared distances between data points

and the corresponding closest points on the conic represented by θ̂. This measure

is useful as it allows a comparison between the real ML cost function and its

approximated form, the AML cost function.

The above error measures are based solely on the estimate and the given data. If the

data has been generated synthetically by adding random perturbations to underlying

ideal values {x∗i }, then the following alternative measures can be used:

• ‖θ̂ − θ∗‖. This measure has the property that it will vanish in the case that the

estimate is perfect, θ̂ = θ∗. However, this measure uses the values of θ directly,

which are the algebraic coefficients of the conic equation. This is an undesirable

property as these values have no significant geometric meaning.

• J∗ML(θ̂) =
∑n

i=1 ‖xθ̂
i − x∗i ‖2, where xθ̂

i denotes the orthogonal projection of the

data point xi onto the estimated conic θ̂ and x∗i is the ideal data point. This error

measure also has the property of vanishing when θ̂ = θ∗.

4.3.2 Minimising the AML cost function

The first set of experiments relate to FNS and the way it minimises the AML cost func-

tion. Firstly, the actual minimisation process with use of FNS is addressed. Fig. 4.7

shows the JAML values of the current estimate after each iteration of the FNS algo-

rithm. In these examples FNS was seeded with θ̂TLS. The value of JAML(θ̂TAU) is shown

for reference. The sequence of estimates is not always decreasing in terms of JAML val-

ues, and several examples of this can be seen. Fig. 4.8 shows the conic represented by

the estimate after each iteration of FNS.

Based on the analysis of the above results, the following values were determined to

use as stopping condition tolerances:
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Figure 4.5: An example of an underlying ‘true’ ellipse with 30 true data points dis-
tributed along its arc length. Data set A (left) and B(right)
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Figure 4.6: Above: noisy data for data set A, with σ = 5.0 pixels (left), and σ = 10
pixels (right). Below: noisy data for data set ‘B’ with σ = 10 pixels
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Figure 4.7: Examples of convergence of FNS for σ = 7.0 using data set A. On occasion,
early iterations see an initial increase in the value of JAML

• εθ = 1.0× 10−5 for the difference between successive estimates, and

• εJ = 1.0× 10−2 for the difference between successive values of JAML.

The same values were used when running FNS and LM-A, to enable sensible compar-

ison. In addition, for both methods a “safety” maximum number of iterations was

adopted. For FNS, this was taken as 40. For LM-A, which often requires significantly

more iterations to converge, the value was set to 200.

It is clear that, in the above examples, only a small number of iterations are required

for convergence of the FNS algorithm. Figure 4.9 shows the average number of iter-

ations, averaged over 200 trials, required for convergence for increasing amounts of

noise added to the data points. The results were obtained by performing the following

procedure:
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Figure 4.8: Individual FNS iterations shown for set A (left), and set B (right)
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Figure 4.9: Average number of iterations required for convergence of FNS for increasing
noise

1. Start with a given set of true data

2. Iterate over noise levels σ = 1.0 → 10.0. For each noise level:

(a) repeat 200 times:

i. generate a new set of noisy data

ii. compute the FNS estimate and count the number of iterations required

(b) compute the average number of iterations

Although the number of iterations required steadily increases for higher noise, over-

all very few iterations are typically required for convergence.

If, instead of choosing data along an arc along the highest curvature part of the el-

lipse (data set A), data along the flattest part (data set B) are chosen, then the minimi-

sation task becomes more difficult especially for higher levels of noise. The convergence

of the FNS algorithm is shown in this case in Figure 4.10. Here, the benefit of seeding

with the Taubin estimate is clear. Because the TLS estimate is so poor, seeding FNS with

this estimate causes, in some cases, wild fluctuations before eventual convergence. If
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Meth. σ = 2 4 6 8 10

LM-A 0.724 0.953 2.17 1.53 3.175

FNS 0.066 0.095 0.153 0.163 0.188

Table 4.1: Average execution time for LM and FNS (in seconds) when using data set B.
Values were obtained using the cputime function in MATLAB

the noise level is lifted higher still, the algorithm is shown to diverge, or converge to a

non-local minimum.

4.3.3 Comparing LM-A to FNS

It is evident that FNS typically converges rapidly to a solution. The question remains

as to whether it converges to the ‘right’ place. To check this, FNS estimates can be

compared to those generated using Levenberg-Marquardt directly minimising JAML, the

LM-A method. Experiments were conducted as follows. Random noise, with σ = 7.0,

was added to a set of canonical points 200 times. Each time, an FNS, LM-A, and TLS

estimate was generated with its JAML value recorded. Fig. 4.11 shows histograms of

these values.

Both methods were seeded with the Taubin estimate. They also had the same values

for the stopping tolerances. Figure 4.12 shows the percentage difference between the

JAML values for the FNS and TAU estimates, for both data sets. Most differences are

within the stopping tolerance of 10−3. In the case of data set B however, there are a

handful of cases where the FNS and LM-A estimate differer by as much as 4%.

The difference in execution times between the two methods is shown in Table 4.1.

Clearly, the FNS method requires significantly less execution time than LM-A.

facilities

The form of the JAML cost function is shown in Figures 4.13. There are six graphs,

one for each element of θ. Each graph is produced by evaluating a specially constructed

parameter vector θP . For the jth graph, the elements of θP are defined as

θi,P =

θ̂i,FNS + kθ̂i,TLS if i = j

θ̂i,FNS otherwise.

The graph shows the values of JAML(θP ) as k goes from −1 to 1.
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Figure 4.10: Using data set B and adding noise of σ = 10. The top graphs show conver-
gence when FNS was seeded with BOOK. The bottom graphs show the improvement in
convergence when FNS was seeded with TAU
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Figure 4.11: A histogram of JAML values for FNS, LM-A, and TLS estimators for 200
trials, where σ = 7.0. The average value is shown as a legend for each histogram
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for each of 200 trials. The noise level was taken as σ = 10.0 and data set A (upper) and
B (lower) were both used. A positive value indicates that the FNS estimate has a lower
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Figure 4.13: Slices of JAML generated for σ = 7.0
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4.4 Ellipse fitting

The problem of ellipse fitting is now considered. Here, an ellipse is sought that best

fits a given data set even though a different kind of conic section may best fit that data.

This is a common problem, particularly when it is known that the data points have been

derived from an ellipse. The problem is somewhat ill-posed. Note , for example, that

when the data points lie on a straight line, no finite ellipse fits them best.

4.4.1 Ellipse gold standard

An ellipse “gold standard” (GS) estimator directly minimises the ML cost function. It

ensures that any estimate produced is an ellipse. This is achieved by adopting an ellipse-

specific geometric re-parameterisation. The algebraic coefficients in θ are replaced with

the geometric parameters

g =
[
cx, cy, ra, rb, γ

]>
, (4.9)

where (cx, cy) is the centre of the ellipse, ra and rb are the major and minor axes respec-

tively, and γ is the angle of rotation between the ellipse’s major axis and the x−axis

(See Fig. 4.14).

Expressed in terms of the above parameterisation, the conic equation, Eq. (4.1), is

(x cos γ + y sin γ − cx cos γ − cy sin γ)2

r2
a

+
(−x sin γ + y cos γ + cx sin γ − cy cos γ)2

r2
b

− 1 = 0 (4.10)

Noise is assumed to be homogeneous and isotropic so that for a given ellipse g and

data point xi, xg
i denotes the the point on the ellipse closest in Euclidean distance to xi.

Geometrically, xg
i is the point on the ellipse such that the line joining xi and the ellipse

is orthogonal to the tangent. The next section gives details of how xg
i can be directly

computed given xi and g.

The estimate is defined as

ĝGS = arg min
g
JML(g; x1, . . . ,xn) =

∑
i

(
xi − xg

i

)>(
xi − xg

i

)
. (4.11)

This cost function can be minimised by using, for example, the Levenberg-Marquardt

method (Sect. 3.1.3). Because at every iteration a fourth order polynomial needs to be

solved, for each data point, the GS method is computationally very expensive.
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Given an estimated ellipse represented in the geometric parameterisation by ĝ, an

equivalent algebraic parameterisation may be computed directly. Let

R =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 and T =


1 0 −cx
0 1 −cy
0 0 1

 .

And let

Q = (RT )>


r−1
a 0 0

0 r−1
b 0

0 0 −1

 (RT ) . (4.12)

Then the algebraic parameters are obtained from Q from the formula

θ̂ = [q1,1, 2q1,2, q2,2, 2q1,3, 2q3,2, q3,3]
> . (4.13)

(cx, cy)
ra

rb

γ

x

y

Figure 4.14: Geometric parameterisation of an ellipse

4.4.2 Finding the closest point

The problem of finding the closest point is much easier to deal with for a canonical

ellipse, which is centred at the origin and has major and minor axes aligned with the

coordinate axes. Such an ellipse is described by the equation (x/a)2 + (y/b)2 − 1 = 0

(for a 6= 0 and b 6= 0). In terms of the general conic equation, the parameter vector is
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θ = [1/a2, 0, 1/b2, 0, 0,−1]>. The problem now is to find the closest point on this ellipse

to an arbitrary point p = [u, v]>. It may be phrased as a constrained minimisation

problem: minimise f(x, y) = (x−u)2+(y−v)2 subject to g(x, y) = (x/a)2+(y/b)2−1 = 0.

By using the method of Lagrange multipliers, this problem reduces to solving the system[
2x− 2u

2y − 2v

]
= λ

[
2x/a2

2y/b2

]
(4.14)

for some scalar λ. In terms of x and y the above system is the same as to the equations

x = a2u/(λ + a2) and y = b2v/(λ + b2). Substituting these values back into the original

ellipse equation gives (
au

λ+ a2

)2

+

(
bv

λ+ b2

)2

= 1.

Multiplying through by both denominators leads to a fourth order polynomial paramet-

ric equation

p(λ) = (λ+ a2)2(λ+ b2)2 − a2u2(λ+ b)2 − b2v2(λ+ a2)2

= λ4 +
(
2b2 + 2a2

)
λ3 +

(
a4 + b4 + 4a2b2 − a2u2 − b2v2

)
λ2+(

2a2b4 + 2a4b2 − 2u2a2b2 − 2b2a2v2
)
λ+

(
a4b4 − u2a2b4 − b2v2a4

)
= 0. (4.15)

The largest real root λ̂ of p(λ) represents the closest point on the ellipse. The coordi-

nates (x, y) of the closest point may be found by substituting λ̂ back into Eq. (4.14).

It is possible to use a specific method based on Newton’s algorithm to find the largest

root; however, a generic numerical polynomial root solver works well in practice.

That the polynomial p(λ) is fourth order, and so has four potential solutions, makes

sense geometrically. Given an arbitrary point, there can be up to four places on an

ellipse at which the line joining that point to the ellipse is perpendicular to the ellipse

itself. For example, if the point is the centre of the ellipse, then the lines joining that

point with the ellipse along the major and minor axis will intersect the ellipse at four

points. These four potential solutions correspond to the four (potentially real) roots of

p(λ).

This technique is easily adopted to a general ellipse: shift a given point appropri-

ately, find the closest point on the canonical ellipse, then back-transform to obtain the

closest point for the original ellipse. To improve numerical conditioning in the case

of large values of ra and rb, the major and minor axes of the ellipse should be scaled

so that the larger is equal to one. This should be done in addition to the translation

applied to centre the ellipse at the origin.



Chapter 4 – Application I: Conic Fitting 66

4.5 Algebraic constrained ellipse fitting

The method of Fitzgibbon et al [15] is an important ellipse fitting algorithm, because it

was the first to combine the properties of being computationally efficient and capable of

producing estimates that are always ellipses. This method is non iterative, whereby the

solution is found using a single generalised eigendecomposition. Because this method

is non-iterative, it is a good choice for an initial input into more complicated iterative

methods, especially those which require an ellipse rather than a general conic.

The Fitzgibbon method is based on algebraic least squares, and as such exhibits

significant bias in certain cases. The bias is most obvious when the data points are

random perturbations of real points confined to a subsection of half or less of the arc of

an ellipse.

4.5.1 Finding the Fitzgibbon estimate

As described in earlier sections, when minimising JLS(θ) some additional constraint

must be imposed on θ. The key idea underlying the Fitzgibbon method is to use this

parametric constraint to impose the ellipse constraint. The general ellipse constraint is

defined by the inequality b2 − 4ac < 0, a form not particularly amenable to inclusion

into a direct method. Fortunately, as the conic equation is homogeneous, any scalar

multiple of θ will represent the same conic; thus the scale of the constraint may be

chosen arbitrarily. For example,

4ac− b2 = 1. (4.16)

This equality is quadratic in θ, and can be written in matrix form as θ>F θ = 1, with

F =

[
F ′ 03×3

03×3 03×3

]
, and F ′ =


0 0 2

0 −1 0

2 0 0

 . (4.17)

The estimate is defined as the minimiser of JLS(θ) under the constraint θ>F θ = 1.

In exactly the same way as the TLS method *(Sect. 2.4.1), a Lagrange multiplier may

be introduced, yielding [
∂θJLS(θ)

]>
− λ

[
∂θ(θ

>F θ − 1)
]>

= 0 ,

or [
∂θ(θ

>S θ)
]>
− λ

[
∂θ(θ

>F θ − 1)
]>

= 0 ,
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or

2Sθ − 2λFθ = 0 . (4.18)

Using this result, the required estimate must satisfy the system

Sθ = λFθ , (4.19)

θ>F θ = 1 . (4.20)

Fitzgibbon et al show that the solution to the above system can be found by taking

a generalised eigendecomposition of S and F . The estimate takes the form of the

generalised eigenvector associated with the only positive generalised eigenvalue.

Algorithm 4.1 (FITZ) Computes the Fitzgibbon ‘direct ellipse’ estimate θ̂FITZ

1. Compute the design matrix U as per Eq. (4.2.1) and then take S = U>U .

2. Using F defined in Eq. (4.17), determine the generalised eigenvalues and

associated eigenvectors (λi, ξi) from the generalised eigenproblem Sθ =

λFθ.

3. Choose the estimate θ̂FITZ = ξi as the generalised eigenvector corresponding

to the only positive generalised eigenvalue λi.

4.5.2 Numerical considerations

One remaining problem of the above method is that while extremely noisy data sets

yield good results, perfect (or near perfect) data sets fail to yield a sensible result.

When there is low noise, |θ>u(xi)| will be small for each xi, and so will θ>S θ. Thus

for low noise, S will be close to singular and this can cause numerical instability for

the generalised eigendecomposition. Haĺı̌r and Flusser [21] proposed a partitioning

method to mitigate these numerical problems. The idea is to split U up and solve a

modified, non-degenerate, form of Eq. (4.19) with S replaced by a matrix of reduced

dimension.

A generalised eigenproblem involving potentially singular matrices is replaced with

a lower dimensionality problem (with full rank matrices), and the ‘extra bits’ are able

to be found in closed form as a post process.
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Figure 4.15: The Fitzgibbon method fits an ellipse to data, no matter how “un-elliptical”
are the given data points

The design matrix is split in two matrices

U =
[
U 1 U 2

]
with

U 1 =


x2

1 x1y1 y2
1

...

x2
n xnyn y2

n

 , U 2 =


x1 y1 1

...

xn yn 1

 . (4.21)

The scatter matrix is segmented as

S = D>D =

[
U>

1 U 1 U>
1 U 2

U>
2 U 1 U>

2 U 2

]
=

[
S1 S2

S>
2 S3

]
. (4.22)

Using these segmented forms, the eigenproblem of Eq. (4.19) is written as[
S1 S2

S>
2 S3

][
b1

b2

]
= λ

[
F ′ 0

0 0

][
b1

b2

]
(4.23)

with the parameter vector θ = [b>1 , b
>
2 ]>. An equivalent system is

S1b1 + S2b2 = λF ′b1 , (4.24)

S>
2 b1 + S3b2 = 0. (4.25)

The matrix S3 is exactly the scatter matrix for fitting a straight line through the data

points. It will only be singular when all of the points lie on a line, which is a degenerate
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case for ellipse fitting. In the non degenerate case, S3 will have full rank and may be

safely inverted. Solving for b2 yields

b2 = −S−1
3 S>

2 b1. (4.26)

Substituting this back into Eq. (4.24) yields

S1b1 + S2

(
−S−1

3 S>
2 b1

)
= λF ′b1,

and, upon simplification, (
S1 − S2S

−1
3 S>

2

)
b1 = λF ′b1.

This is a ‘reduced’ generalised eigenproblem Mb1 = λF ′b1 with

M = S1 − S2S
−1
3 S>

2 , (4.27)

that may be solved analogously to the full sized system yielding b̂1.

With an estimated value in b̂1, the remaining half of the parameters are found di-

rectly via

b̂2 = −S−1
3 S>

2 b̂1,

resulting in the solution θ̂ = [b̂
>
1 b̂

>
2 ]>.

Haĺı̌r’s partitioning only mitigates the specific problem of numerical stability in the

case of low (or no) noise, and does nothing to address the inherent bias. In practice, this

numerical conditioning is improved, but not completely avoided, by pre-normalising

the input data. The implementation publicly released by Fitzgibbon1 included data

normalisation (unlike the original published version).

Haĺı̌r later expanded on this original partitioning work and presented a method

based on M-estimators to attempt a reduction in the bias [20]. This approach, in manip-

ulating and choosing a subset of the data, also fails to address the underlying statistical

bias involved in using an ‘algebraic’ least squares cost function.

4.6 Applying an ellipse-specific correction

The Fitzgibbon method sets out to estimate an ellipse by minimising JLS subject to

a quadratic ellipse constraint θ>Fθ = 1. It is possible to consider minimising JAML,

1Available from: http://www.robots.ox.ac.uk/∼awf/ellipse/
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Algorithm 4.2 (HAL) Computes the Fitzgibbon ‘direct ellipse’ avoiding a numer-

ical instability

1. Compute U 1 and U 2 as given in Eq. (4.21) and then take S1,S2,S3 as per

Eq. (4.22).

2. With F ′ as defined in Eq. (4.17) determine the three eigenvalue/eigenvector

pairs (λi, ξi) of the equation[
F ′−1(S1 − S2S

−1
3 S>

2 )
]
b1 = λb1 .

3. Determine the constraint value

ξ>i F ′ξi

for each i = 1, 2, 3, and set b̂1 = ξi, the only ξi for which the above con-

straint value is positive.

4. Compute b̂2 = −S−1
3 S>

2 b̂1 and the estimate θ̂HAL = [b̂
>
1 , b̂

>
2 ]>.



Chapter 4 – Application I: Conic Fitting 71

rather than JLS, under the same (ellipse-specific) constraint. The key to progressing is

the factorisation (described in Sec. 3.2.3)[
∂θJAML(θ)

]>
= 2Xθ θ. (4.28)

The original Lagrange system of Eq. (4.18) is updated to[
∂θJAML(θ)

]>
− λ

[
∂θ(θ

>F θ − 1)
]>

= 0, (4.29)

whereby the factor matrix is substituted for the gradient of JAML giving a new system

Xθ θ = λFθ , (4.30)

θ>F θ = 1. (4.31)

Given a specific matrix Xθ, an ellipse estimate may be sought as for the original Fitzgib-

bon (or Haĺı̌r) method.

Solving the above system is not as straightforward as the original case, for two

reasons. Firstly, while S can purely be determined from the input data, the matrix Xθ

is a function of θ. Secondly, unlike S, Xθ is not positive semi-definite. The system may

be solved by considering the Haĺı̌r decomposition (described in the previous section).

Because an initial solution is already required, this method can be thought of as

applying a ‘correction’ to an existing estimate. The technique is summarised in Alg. 4.3.

Examples of how it may be used to correct a hyperbolic solution to an ellipse are shown

in Fig. 4.16. In this figure, data set B, with σ = 10.0, was used to generate noisy

data. Cases where the FNS estimate was a hyperbola were then selected. By applying

Alg. 4.3, these estimates were corrected to produce ellipses. Generally, the corrected

ellipses were closer to the ideal underlying ellipse than the Fitzgibbon estimates. This

algorithm was successful mainly because the noisy points conformed to the adopted

model. When the noise level is too high, or the points are simply too un-elliptical, then

the COR method breaks down and no estimate can be produced.

4.7 Seeding the gold standard method

The GS method has one significant limitation in that it requires an initial value for

a seed. As seen in unconstrained experiments, there is advantage in using a method

based on AML, for example TAU, to seed LM minimisation of the JAML cost function.

The GS method requires an ellipse to be used as a seed. However, in general the TAU
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Algorithm 4.3 (COR) Computes a ‘direct-ML’ ellipse estimate θ̂COR

1. Compute the FNS estimate θ̂0 = θ̂FNS

2. If (θ̂
>
0 F θ̂0) > 0 (the FNS estimate is already an ellipse), then set θ̂COR = θ̂0

and finish.

3. Otherwise, compute X(θ) from Eq. (3.28).

4. Follow Alg. 4.2 (HAL) with S replaced by Xθ.

estimate will not be an ellipse, and so in general it may not be able to be used as a seed.

In these cases, an alternative is to use the FITZ estimate. However, the significant bias

in the FITZ estimate will at best cause the LM method to take a very large number of

iterations, but often will prevent it from converging to the correct solution. When the

COR estimate can be found, it can be used to seed the GS method. As it exhibits much

less bias, it enables the GS method to converge with significantly less iterations.
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Figure 4.16: Examples of cases where the FNS method produces a hyperbola as its
estimate. The COR estimate is shown, along with the underlying ideal ellipse along
which the idea data points were generated



Chapter 5

APPLICATION II: FUNDAMENTAL MATRIX ESTIMATION

Stereo vision is a special case of multiple view geometry, where two images of a

particular scene are available. Adding views can facilitate recovery of additional in-

formation, usually depth, from images. This chapter is concerned with estimation of

the so-called fundamental matrix which is related to stereo vision. The fundamental

matrix encodes key information about the internal configuration of cameras, and their

external geometric relationship to each other. It has uses in aiding (dense) feature

matching [70], motion segmentation [66], new view synthesis [7], video synchronisa-

tion [50], and initialisation of structure recovery algorithms [64], among many others.

General estimation methods described in previous chapters are placed in the context

of existing well known methods of fundamental matrix estimation. The FNS and CFNS

methods are applied, with CFNS taking into consideration a special constraint required

of fundamental matrix estimates.

5.1 Epipolar geometry and the fundamental matrix

Under a pinhole camera model [12, §3], a homogeneous 3-D point M = (X, Y, Z,W )

is projected onto an image plane to give an image point m = [mx,my, 1]. For a second

image, the same 3-D point will project to m′ = [m′
x,m

′
y, 1]. The pair of image points m

and m′ are said to be corresponding points as they are both projections of the same 3-D

point M .

Each point Mi in a set of n 3-D points will project to mi and m′
i in the left and right

images respectively. The epipolar constraint involves a 3× 3 matrix F so that

m′>
i F mi = 0 (5.1)

holds for all i = 1 . . . n. The matrix F = [fij] is termed the fundamental matrix, and

is rank-two, and defined only up to a scale factor. When the optical centres of the left

and right cameras coincide, there is only pure rotation and no translation between the
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M = [X,Y, Z,W ]

m m
′

e e
′

!

!
′

C C ′

Figure 5.1: Epipolar geometry

two images. This is a degeneracy as regards the epipolar geometry and a fundamental

matrix ceases to make sense. In this situation, a homography matrix can be used to

relate the two images instead [13, §1.9] [28]. Often, in the case when little is known

about underlying geometry of cameras, a first step is to analyse the available data

to determine whether a fundamental matrix or homography is more appropriate to

estimate [30, 61]. For the purposes of this chapter, however, this problem is ignored

and only fundamental matrix estimation is considered.

The epipolar equation can be written in the (general) form of Eq. (2.2), θ>u(x) = 0,

by letting x = [mx,my,m
′
x,m

′
y]
>, θ = [f11, f12, . . . , f33]

>, and taking

u(x) = [mxm
′
x,mym

′
x,m

′
x,mxm

′
y,mym

′
y,m

′
y,mx,my, 1]>. (5.2)

The ancillary constraint, |F | = 0, is expressed explicitly as

ψ(θ) = θ1(θ5θ9 − θ6θ8) + θ2(θ3θ7 − θ1θ9) + θ3(θ4θ8 − θ3θ5). (5.3)

This constraint function is homogeneous of degree 3: ψ(λθ) = λ3ψ(θ). These forms

can be conveniently expressed using a vectorisation operator defined as follows. If

A = [a1 . . .am] is an n × m matrix with ai as its ith column vector (of length n),

then vec (A) = [a>1 . . .a
>
m]> is defined as the column vector of length mn composed as

the concatenation of all A’s column vectors. Using this operator, the definition of the

parameter vector and carrier vector are now straightforward:

θ = vec
(
F>), and u(x) = vec

(
mm′>).

As shown in Fig. 5.1, each point in one image has a corresponding epipolar line in

the other. For a given left-image point mi, its associated epipolar line is `i = F>m′
i.
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A right-image point m′
i has an associated epipolar line `′i = Fmi. The epipoles are

the points of intersection with the image planes and the line joining the optical centres

of both cameras. They are found as the left and right null spaces of the fundamental

matrix.

Given a pair of stereo images, estimating the fundamental matrix requires first that

a set of data points be extracted from the images. This is in itself a very challenging

task as points from the left and right images which correspond to the same 3-D point

must be unambiguously determined. It is known as the correspondence problem and the

pairs of corresponding points are sometimes called matching points. For the purpose of

this chapter, however, the correspondence problem will not be addressed. Rather it will

be assumed that reliable data is available, and the second step, estimating the epipolar

geometry given the matching points, will be considered.

Many methods have been put forward for estimating the fundamental matrix. The

simplest techniques are direct, finding an estimate without recourse to an iteration

procedure. More sophisticated methods use iteration as a means to obtain a more

accurate solution. Within the category of iterative methods, there is variation as to

the level of computation involved. Several reviews of existing methods are available

[40] [16] . Additionally, when estimating the fundamental matrix, often there can

be mis-matched points present in the data. The assumption of Gaussianity of noise is

then violated, as mismatched points will be perturbed from ideal points by a potentially

very large number of pixels. To deal with this situation, so-called robust methods have

been developed [57, 63, 70]. Such methods are not considered in this chapter, rather

estimation is considered in the absence of outliers.

5.2 Non-iterative methods

Direct methods for computing the fundamental matrix can be useful, for example, to

obtain a starting value for an iterative method. Several of the following methods do not

take into account the ancillary constraint that any estimated fundamental matrix must

have rank-two. This deficiency is addressed in a subsequent section.

5.2.1 The eight-point algorithm

The eight-point algorithm for estimating the essential matrix, a matrix closely related

to the fundamental matrix, was first proposed by Longuet-Higgins [39]. This method
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is essentially the application of linear total least squares (Sect. 2.4.1) to estimating pa-

rameters arising from an equation very similar to Eq. (5.1). The eight-point algorithm

is so named because there must be at least eight elements of data (pairs of correspond-

ing points) for a (unique) estimate to be found (up to a arbitrary scale factor). Of

course, if there are more than eight points, then the estimate minimising the total least

squares cost function is obtained. The design matrix is computed using u(xi), and the

eight-point (TLS) estimate is found by taking a SVD of this design matrix.

In the seminal paper “In defence of the eight-point algorithm” [24], Hartley shows

that the performance of the eight-point algorithm may be significantly improved if the

input data points are normalised by scaling prior to taking the SVD of the design matrix.

This method has been widely adopted as a reasonable accurate and very fast method

for computing the fundamental matrix. It is not immediately clear however why the

somewhat ad-hoc step of prior normalisation of the data improves results. The Hartley

normalised method is now summarised.

The carrier vector u(x) has some elements which are quadratic in the elements of

x, some linear, and its last element equal to 1. As the values comprising x are im-

age coordinates, usually measured in pixels, their values can easily be 1000 or greater.

Therefore, some elements of the design matrix can be of order 106 while others are of

order one. Hence, the design matrix has poor numerical conditioning. The modified

condition number of the design matrix in the form of the ratio of the largest to second

smallest eigenvalues will tend to be large, a situation which leads to the smallest eigen-

vector being less stable. Any small perturbation in the values of the design matrix can

lead to significant changes of this eigenvector, causing instability in the estimate which

is taken as an eigenvector.

Hartley’s normalisation method seeks to scale the data so that the image points are

centred at the origin, and the mean distance of points from the origin is
√

2. The aim is

to “even up” the scales of the elements of the carriers (and the design matrix which is

composed of the carriers). This specification forms a “canonical basis” whereby the nu-

merical conditioning can be much improved, and affords greater stability to the eigen-

vectors of the design matrix. Transformation matrices T and T ′ are sought to transform

the image points within the left and right images respectively. The transformed points

are taken as m̃i = Tmi and m̃′
i = T ′m′

i. These transformed points have elements

m̃i = [m̃x,i, m̃y,i, 1] and m̃′
i = [m̃′

x,i, m̃
′
y,i, 1], with the transformed data point taken as

x̃i = [m̃x,i, m̃y,i, m̃
′
x,i, m̃

′
y,i]. The transformed data points are used to form a design ma-
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trix,

Ũ =


u(x̃1)

>

...

u(x̃n)
>

 , (5.4)

and by performing an SVD of Ũ , a “transformed” estimate ̂̃F TLS can be found. By

substituting the transformed points into Eq. (5.1), the equality m′>F m = m̃′>F̃ m̃

will hold if F̃ = T ′−>F T−1. Therefore, the normalised Hartley estimate F̂ HRT is taken

as

F̂ HRT = T ′> ̂̃F TLS T . (5.5)

The transformation specified involves a translation of each point and a scaling. The

centroids of the left and right sets of image points are involved in the scaling, and are

defined by

m̌ =
1

n

n∑
i=1

mi and m̌′ =
1

n

n∑
i=1

m′
i. (5.6)

The image points can be centred around the origin by subtracting the appropriate cen-

troid from each data point. The centred points are then scaled. The scaling factors are

defined as follows,

s =

(
1

2n

n∑
i=1

‖mi − m̌‖2

)1/2

and s′ =

(
1

2n

n∑
i=1

‖m′
i − m̌′‖2

)1/2

. (5.7)

The appropriate transformation matrices are defined in terms of these values, as fol-

lows:

T =


s−1 0 −s−1m̌x

0 s−1 −s−1m̌y

0 0 1

 , (5.8)

and

T ′ =


s′−1 0 −s′−1m̌′

x

0 s′−1 −s′−1m̌′
y

0 0 1

 . (5.9)

The normalised algorithm, whereby data points are transformed, an estimate pro-

duced, then back points are back-transformed, can be applied with not just TLS, but

any estimator. This process will provide only numerical stability to estimators which

are invariant to transformations of data points. However, as shown in Sect. 2.4.4 and

Fig. 4.3, the TLS method is not invariant to uniform scaling of the data. Therefore,



Chapter 5 – Application II: fundamental matrix estimation 79

applying the Hartley algorithm not only changes numerical conditioning but also the

underlying associated cost function. Even on a computer capable of infinite precision

calculations, the TLS estimate computed using un-normalised data would not produce

an estimate the same as that of the Hartley normalisation method.

In upcoming experiments, the label for Hartley’s normalisation method is HRT.

5.2.2 Taubin’s method

The method of Taubin (Sect. 3.2.1) may be directly applied to estimating the fundamen-

tal matrix. Again, the specific fundamental matrix carrier form is directly used. As for

conic fitting experiments, the label for Taubin’s method is again TAU. The appropriate

gradient matrix is

[∂xu(x)] =



m′
x 0 mx 0

0 m′
x my 0

0 0 1 0

m′
y 0 0 mx

0 m′
y 0 my

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 0



. (5.10)

5.2.3 Invariant Fitting

For the conic fitting problem, there are several normalisations proposed as an alterna-

tive to TLS’s θ>θ = 1. Bookstein in particular proposes a particular normalisation which

is invariant to Euclidean transformations of the data points. Torr and Fitzgibbon [63]

show that it is possible to apply this idea to estimating the fundamental matrix. It turns

out that there is a natural normalisation that can be applied, leading to an non-iterative

estimator which, while still algebraic in nature, leads to estimates which are invariant

to an Euclidean transformation of the data points.

5.3 Iterative methods

Iterative methods for estimating the fundamental matrix aim for greater accuracy than

those methods which compute their estimate directly. When describing an iterative
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method, three factors must be considered. Firstly, what is the cost function? Secondly,

how is the cost function to be minimised? And, thirdly, how will the ancillary, rank-two,

constraint be enforced? The third point will be discussed later. Next, the first two points

are addressed.

5.3.1 Cost functions

The (full) maximum likelihood cost function is regarded as an optimal cost function (in

some sense). In the fundamental matrix case, it has a direct geometric interpretation

of minimising the sum of squared distances between each data point and the closest

consistent point:

JML(F ) =
n∑
i=1

d(mi,mi)
2 + d(m′

i,m
′
i)

2 (5.11)

The pair of consistent points (mi,m
′
i) is determined as a function of F , and so min-

imising this cost function requires minimising over a significant number of parameters.

Shortly, the gold standard algorithm is described which can minimise this cost function.

A ‘reduced’ cost function, which depends on the elements of the fundamental ma-

trix, can be used instead. Such a cost function is the sum of distances from data points

to epipolar lines. If covariance information is available then this cost function is taken

as the sum of Mahalanobis from every data point to the epipolar line derived from the

candidate fundamental matrix and its corresponding point in the other image. If covari-

ance information is unavailable, then the simple Euclidean distance can be taken. This

cost function can be explicitly written in terms of the data and a candidate fundamental

matrix as

JEPL(F ) =
n∑
i=1

(
d(mi, `i)

2 + d(m′
i, `

′
i)

2
)

=
n∑
i=1

(
1

m>
i F>Λm′

i
Fmi

+
1

m′>
i F>Λmi

Fm′
i

)(
m′>

i F mi

)2
. (5.12)

(If covariance matrices are unavailable, then the default matrices Λ = diag (1, 1, 0) can

be taken.)

Another reduced cost function is JAML, the approximated ML cost function. It can

also be expressed directly in terms of a fundamental matrix and matching points,

JAML(F ) =
n∑
i=1

1

(m>
i F>Λm′

i
Fmi) + (m′>

i F>Λmi
Fm′

i)

(
m′>

i F mi

)2
. (5.13)
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This form of JAML is very similar to that of JEPL above, and so both cost functions

exhibit similar characteristics. It can be expected that θ̂AML will be very close to θ̂EPL for

example. The approximated maximum likelihood cost function is found to be (slightly)

superior in comparative testing by Zhang [69] and others [13].

As seen in Chapter 3, the Levernberg Maquardt method, or FNS, can be employed

to find a minimiser of JAML. In upcoming experiments, these methods are designated

LM-A and FNS, respectively. The cost function JEPL cannot be minimised using FNS

as it does not satisfy its assumptions. It can be minimised by using LM, but because of

the similarity with the AML cost function, it was not included in experiments. Finding

a minimiser of the full ML cost function requires that the geometry of the problem be

employed. Such a method is called the “gold standard” and is summarised next.

5.3.2 Gold standard method

The Gold Standard (GS) method is so named because it is the method against which

all others are typically compared. It directly minimises the maximum likelihood cost

function, rather than an approximation or other algebraic entity. Therefore, under the

given assumptions of Gaussian noise, it can be regarded as optimal. The GS method

for estimating the fundamental matrix is an example of the general vision technique

known as “bundle adjustment” which is applicable to an arbitrary number of images.

The GS method uses a purely geometric parameterisation: a stereo scene is rep-

resented by a 3 × 4 projection matrix for the left and right cameras, and a 3-D point

for every pair of corresponding image points. The cost function is evaluated by pro-

jecting the 3-D point onto each image, and measuring the distance to the data point.

The projection matrices and 3-D points are adjusted so as to minimise the sum of the

reprojection disparities. Given an initial estimate of the fundamental matrix an initial

values of the two projection matrices can be computed directly. Initial 3-D points can be

computed via triangulation of the data points also using the initial fundamental matrix

estimate [25].

The number of parameters involved in minimisation is ostensively 24 + 3n, a signifi-

cant enlargement of the nine required thus far. Without loss of generality, it is possible

to implicitly define the first projection matrix, reducing the number of parameters re-

quired. And as projection matrices are defined only up to an unknown scale, this leaves

only 11 + 3n required parameters. Nevertheless, the key inhibiting factor is that it is

a function of n. The enlarged number of parameters causes an extra computational
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burden to the LM algorithm, where the main problem is the requirement that the Jaco-

bian matrix be inverted for each iteration. As such an inversion is typically O(n3), the

computational requirements increase rapidly for even modest values of n. It is possible

to take advantage of the special form of the Jacobian to provide a much more efficient

inversion [23,64], but nonetheless, the gold standard algorithm is still computationally

intensive.

5.4 Experiments part I: Unconstrained estimation

Our first set of experiments for estimating the fundamental matrix disregard the an-

cillary rank-two constraint. The initial goal is to first ascertain that, for example, the

FNS method is correctly minimising the AML cost function. Later, in the second part of

experiments, the ancillary constraint is adopted.

5.4.1 Experimental setup

The experiments in the section are performed with synthetically generated data. This

data are created by devising a stereo configuration, then generating a left and right

projection matrices corresponding to synthetic cameras in the configuration. Then, 50

random 3-D points are generated (in the field of view of both cameras) and projected

on to the left and right images yielding “true” corresponding points.

Two slightly different stereo configurations were used, labelled ‘A’ and ‘B’. Configu-

ration B is adopted as a more challenging geometric configuration, and uses a smaller

baseline with less rotation of the cameras. Both configurations use non-coplanar op-

tical axes. For both configurations, slightly different internal camera parameters were

used. The method for generating the data and configurations was adapted from that of

Torr [62]. The data points were projected to images which were of size 512×512 pixels.

The underlying ‘true’ data points, and the associated epipoles, for each configuration

are shown in Fig. 5.2.

Synthetic data is generated by taking the underlying ‘true’ points and perturbing

each image point by adding to it random Gaussian noise. This noise is controlled by a

single scalar, σ, the standard deviation of the noise added. With noisy data generated

in this way, different estimation methods can be used to estimate an estimate of the

fundamental matrix. To compare estimates, “geometric” error measures, such as JML,
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Figure 5.2: Synthetic stereo data generated from configurations A (top) and B (bot-
tom). Left and right image data points, and their correspondences, are shown. Addi-
tionally, the position of epipoles is shown for reference (as an asterix)

cannot be applied as these estimates are not true fundamental matrices – they may not

be rank-two. Instead, only general measures such as JAML are employed.

5.4.2 Experiments

To estimate the (unconstrained) fundamental matrix, the FNS method was employed

in a similar manner to that for estimating conic sections. It was seeded with the TAU

estimate, F̂ TAU, and the stopping conditions were kept identical. The only difference

in implementation was to replace the carrier function u relevant to conics (Eq. (4.2))

with that relevant to the fundamental matrix (Eq. (5.2), and to adopt the appropriate

gradient as given by Eq. (5.10). A similar testing strategy was adopted too. For each of

the configurations, the following procedure was performed:

• for a level of noise σ ranging from 1–10, repeat 200 times:

– generate random data by perturbing the pure data by Gaussian noise (with

standard deviation σ)
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– compute an estimated fundamental matrix using the TLS, HRT, FNS, and

LM-A methods

– record the number of iterations FNS took for convergence, and the value of

JAML of each estimate

Fig. 5.3 shows the average number of iterations required for convergence of the

FNS method. It is seen that configuration B requires significantly more work than

configuration A, particularly when the noise level is greater than seven pixels.

Histograms of cost function values are shown in Fig. 5.5. These results come from

configuration B, and are at the highest noise level used of ten pixels. It is seen that the

FNS and LM-A methods have estimates with the lowest values. This is to be expected

as this is precisely the cost function they aim to minimise. As was found for experi-

ments with estimating conic sections, the FNS method executes in a fraction of the time

required for Levenberg-Maquardt.

The TLS results are not shown, because they have cost function values that are an

order of magnitude higher. As expected, the TAU estimates are slightly inferior as TAU

minimises an approximation to JAML only. What is surprising from these results is how

good the HRT estimates are as compared to the those of the iterative methods. By

applying scaling to the data, the HRT method used total least squares to generate esti-

mates which have improved from off the scale (TLS with no normalisation) to having

cost function values almost as good as the iterative FNS and LM-A.

Adopting the method described in Sect. 4.3.3, slices of the cost function JAML are

shown in Fig. 5.4. As compared to the conic fitting problem, these slices show a more

regular cost function shape. These slices are drawn using estimates produced using

configuration B and σ = 10. They are centred on the FNS estimate, and the range is

determined using the HRT method.

In summary, these results show that:

• FNS can be used to estimate the fundamental matrix, although for some configu-

rations it make take more than ten iterations on average to converge.

• The FNS method and LM-A method do not always produce identical estimates.

On average they are the same, but occasionally one method or the other may fail

to just quite find the minimum.
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Figure 5.3: Average number of iterations required to compute FNS estimates

• The algebraic based HRT method produces estimates almost as good as the itera-

tive and geometric based methods, even for more ‘difficult’ geometric configura-

tions.

The reason for the excellent performance of the algebraic based HRT method is

explored in the next section.

5.5 Rationalisation of Hartley normalisation

The Hartley normalisation method, when transforming the data, does more than pro-

viding additional numerical conditioning to the matrices involved in the estimation

process. It changes the estimation process itself, so that the associated cost function is

different for the normalised method than the ordinary un-normalised one. The chang-

ing of the underlying cost function turns out to be the reason for the significant im-

provement in performance of the normalised method.

The un-normalised TLS method minimises the JTLS cost function given in Eq. (2.22).

In terms of the fundamental matrix, F , the function is

JTLS(F ) =

∑n
i=1 |m′>

i F mi|2

‖F ‖
F

.

Following the Hartley algorithm, however, will result in an estimate which minimises

the modified cost function

JHRT(F ) =

∑n
i=1 |m′>

i F mi|2

‖T ′>F T ‖
F

. (5.14)
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Figure 5.4: Slices of JAML generated for σ = 10.0 for configuration A (above) and
configuration B (below). The bounding estimate is HRT as the TLS estimates were too
poor
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Since the normalised and un-normalised fundamental matrices satisfy the identity m′>F m =

m̃′>F̃ m̃, it follows that

JHRT(F ; x1, . . . ,xn) =

∑n
i=1 |m̃

′>
i F̃ m̃i|2

‖F̃ ‖
F

= JTLS(F̃ ; x̃1, . . . , x̃n). (5.15)

This cost function can be written in terms of θ by using the identity ‖T ′>F T ‖
F

=

θ>C θ, where C is given by

C = T ′−1T ′−> ⊗ T−1T−>. (5.16)

Therefore, the normalised cost function is

JHRT(θ; x1, . . . ,xn) =
θ>S θ

θ>C θ
. (5.17)

The minimiser may be determined directly from this cost function by solving the gen-

eralised eigenvalue problem

Sθ = λCθ . (5.18)

The estimate θ̂HRT is the generalised eigenvector corresponding to the smallest gener-

alised eigenvalue. The TLS estimate is found via a SVD on the matrix U instead of an

eigendecomposition of the numerically poorer conditioned S. The same idea can be

applied when solving the above system, using a generalised singular value decompo-

sition (GSVD) of the pair of matrices (U ,E), where S = U>U and C = E>E . The

matrix U is formed directly from the carriers, as per Eq. (2.24). The decomposition of

C can be computed analytically based on Eq. (5.16). It is taken as E = T ′−1⊗ T−1.

By inspecting Eq. (5.17), it can be seen that the cost function JHRT bears a resem-

blance to the cost function underlying the method of Taubin (see Sect. 3.2.1). Each is

in the form of a Rayleigh quotient, having both numerator and denominator quadratic

in θ. Indeed, the two cost functions differ only in the form of the matrix appearing in

the denominator. When expanded, the matrix appearing in JHRT has a similar form to

that of the matrix involved in the Taubin cost function.

Earlier it was shown that the Taubin cost function can be regarded as an approxima-

tion to JAML, where the denominator matrices Bi are replaced with an average matrix.

In so far as the Hartley cost function resembles that of Taubin, it may be regarded

as closer in nature to the geometrically derived cost function JAML rather than to the

purely algebraic cost function JTLS.
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Figure 5.7: This figure shows two copies of a zoomed in portion of one image in a stereo
pair. For the left image, an unconstrained fundamental matrix has been estimated from
manually matched data points, and epipolar lines rendered. A fundamental matrix
satisfying the rank-two constraint was used for the right image. The unconstrained
estimate can still be used to compute epipolar lines, however they do not intersect at a
common point (the epipole)

5.6 Incorporating the rank-two constraint

So far, the requirement that a fundamental matrix estimate be rank-two has been ig-

nored. In this section, estimation of a rank-two matrix is considered. An unconstrained

(full rank) estimate cannot be used as it is not consistent with the underlying epipolar

geometry. For example, Fig. 5.7 (left) shows epipolar lines generated for a uncon-

strained estimate. As the matrix is not rank-two the epipolar lines do not intersect in

a single point, the epipole. This is remedied in Fig. 5.7 (right) where epipolar lines

corresponding to a rank-two fundamental matrix are shown. As discussed in Sect. 3.3,

there are two courses of action available to produce estimates which satisfy an ancil-

lary constraint. The estimation method itself can be modified to ensure the constraint

is intrinsically satisfied, or an unconstrained estimate can be ‘post-corrected’. Each of

these ideas is applied specifically to the fundamental matrix problem.

5.6.1 Post correction

To use methods which do not consider the constraint, the ancillary constraint must be

enforced as a post-process whereby the unconstrained estimate is corrected after it has

been found. As with finding the estimates themselves, there are two ways of performing

this correction: direct and iterative. The direct method seeks a rank-two estimate F̂ c
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which minimises the distance ‖F̂ − F̂ c‖. The minimiser can be easily found by firstly

performing an SVD of F̂ = J diag(σ1, σ2, σ3)K
>, with σ1 ≥ σ2 ≥ σ3. The corrected

estimate is then taken as F̂ c = J diag(σ1, σ2, 0)K>. It can be proven that this SVD

approach does in fact minimise the required Euclidean distance [70].

A more sophisticated correction method involves finding the minimiser of the Ma-

halanobis distance (θ̂ − θ̂c)
>Λ−1

θ̂
(θ̂ − θ̂c). Unfortunately, no direct method is able to

compute the minimiser of such a distance, so an iterative method must be used. Matei

and Meer [42] phrase the correction problem as an analogy to the original estimation

problem. They seek a minimiser of (θ̂ − θ̂c)
>Λ−1

θ̂
(θ̂ − θ̂c) subject to Fe = 0.

An alternative approach was originally proposed by Kanatani [29, Chap. 5]. An sim-

ple iterative algorithm is employed to find the corrected estimate minimising the above

Mahalanobis distance. Starting with the unconstrained estimate as θ0, each successive

estimate is taken as

θk+1 = θk −
(
[∂θψ(θk)] R

−
θk

[∂θψ(θ)]>
)−1

ψ(θk)R
−
θk

[∂θψ(θk)]
> , (5.19)

where Rθ = QθM
−
θ Qθ. The matrix Mθ is given in Eq. (3.22), and Qθ = I−‖θ‖−2θθ>.

The matrix Rθ can be computed once, from the unconstrained estimate, or re-computed

at every iteration. Typically only a small number of iterations (sometimes as few as one

or two) are necessary.

5.6.2 Parameterisation

The fundamental matrix has nine elements but only seven degrees of freedom. This is

shown via a simple counting argument; there are nine elements of the matrix, subtract-

ing one for the scale indeterminacy, and subtracting another one because the matrix

must be rank-two, leaves seven. Generally, when minimising a cost function, for exam-

ple by using Levenberg-Marquardt, it is possible to minimise only over seven parameters

rather than nine. A particular parameterisation may be chosen whereby any values of

the seven free parameters will correspond to a fundamental matrix which is guaran-

teed to be rank-two. One such parameterisation is described by Zhang and Loop [71].

Their method is not altogether straightforward however because the parameterisation

is not unique – a family of parameterisations are defined which depend on the specific

data values and underlying epipolar geometry. As the epipolar geometry is unknown

before estimation (it is what is being sought), an artifact of this method is that it may be

necessary to change parameterisations part-way through the LM minimisation process.
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It is not possible to adopt such a parameterisation of the fundamental matrix for use

with FNS. This is because such a re-parameterisation necessitates a non-linear transfor-

mation of parameters which is inconsistent with the form on of Eq. (2.2), the principal

constraint. Therefore, to use FNS for the estimation of the fundamental matrix, direct

or iterative correction must be applied. The CFNS method, of section 3.4, however can

be used directly.

5.6.3 CFNS

As an alternative to these methods, CFNS can be used to estimate a fundamental matrix

directly. The method outlined in Sect. 3.4 can be employed to directly compute an

estimate which minimises JAML while satisfying the ancillary, rank-two, constraint. The

rank-two constraint is cubic in the elements of the fundamental matrix (indeed it is

occasionally referred to as the cubic constraint), therefore when computing the relevant

matrices the value κ = 3 is taken.

5.7 Experiments part II: Constrained estimation

This section presents results of tests conducted to evaluate the performance of CFNS

as a method for estimating the fundamental matrix. The same experimental setup was

used as in the previous, unconstrained, experiments. Only results for the more challeng-

ing configuration B are given, although similar results were obtained for configuration

A. For these experiments, the following estimation methods were used: TLS, HRT, FNS,

CFNS, and GS. Not all of these methods produce a constrained estimate, in which case

a post correction is applied as the final step. This post-correction was applied to HRT

and TLS. The suffix “++” designates that an iterative correction (see Sect. 5.6.1) was

used, followed by SVD – to make entirely sure the constraint was satisfied. This was

applied to FNS. The remaining methods, CFNS, and GS, produce constrained estimates

by design, so no post-constraining was necessary.

The first experiment investigated the effectiveness of CFNS as a means of finding

constrained estimates. Fig. 5.8 (left) shows average (absolute) values of the ancillary

constraint function |ψ| for estimates of CFNS and FNS under increasing levels of noise.

While the (unconstrained) FNS estimates have non-zero values of the constraint, CFNS

produces estimates which in fact do satisfy the constraint – even for increasing levels of
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noise. The respective average values of JAML are shown in Fig. 5.8 (right), where the

small trade-off required to satisfy the ancillary constraint is apparent.

Fig. 5.9 shows histograms of JAML values for estimates, all of which satisfy the

rank-two constraint. On average, the JAML values of the CFNS estimates are lower

than the JAML values of the FNS++ estimates. Also apparent is the difference between

FNS+ and FNS++ estimates, with the iterative correction leading to JAML values lower

than those generated by the direct, SVD, correction. Fig. 5.10 contains histograms of

reprojection errors to ideal data points. The results show that in almost all cases the

CFNS and FNS++ methods produce estimates which are indistinguishable from the GS

estimates – at a much reduced computational cost.

Left epipoles for each of the HRT+, TLS+, FNS++ and CFNS estimates are shown

in Fig. 5.11. The reduction in the bias is evident between the un-normalised TLS and

the normalised HRT.
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Chapter 6

COVARIANCE MATRICES

In the earlier description of the ML cost function (Sect. 2.5.1) , the covariance of

each of the introduced random variables, of which each data point is a sample, were as-

sumed either to be known, or set to a ‘default’ identity matrix. In almost all derivations

of ML estimators used in computer vision, the above is the end of the story: covari-

ance matrices appear as part of the Mahalanobis distance, or as an element of a ML

cost function, but then are quickly assumed to be identity matrices, and forgotten. In

this chapter the idea of using non-default covariance matrices as input to the estimation

process is explored.

The chapter is divided into two parts: one deals with synthetic data, and the other

real data. Using synthetic experiments it is possible to observe the effect of covariance

information on estimators as precise control over the data and noise is available. A

useful geometric parameterisation of a covariance matrix is presented and used in sub-

sequent experiments where an estimator is given different input covariance matrices to

those to generate the initial noisy data. Experiments involving real images show how

covariance information might be obtained and used in epipolar geometry estimation.

Several experiments are employed to ascertain the usefulness of this approach.

6.1 Covariance matrices

6.1.1 Single data point

A measured point x = (x, y) is a random perturbation from an underlying true point x.

Under the ordinary model

x = x + ∆x, ∆x ∼ N(0,Λx),

where ∆x = (∆x,∆y) is the perturbation and N(0,Λx) is the bivariate Gaussian dis-

tribution with mean 0 and covariance Λx. The individual components are defined
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specifically by

E [∆x] = E [∆y] = 0 , (6.1)

Λx = E
[
(∆x)(∆x)>

]
=

[
E [(∆x)2] E [∆x∆y]

E [∆y∆x] E [(∆y)2]

]
. (6.2)

In the case where x and y are uncorrelated, the covariance matrix will take the form

Λx =

[
σ2
x 0

0 σ2
y

]
. (6.3)

If σx = σy, then the covariance matrix is called isotropic, and the probability density

function (p.d.f.) is symmetric with circular level sets. If σx 6= σy, then the covariance

matrix is anisotropic, and the p.d.f. will have elliptical level sets (see Figure 6.1).

A canonical parameterisation of a covariance matrix as per Eq. (6.3) is

Λx = α

[
β 0

0 1− β

]
, (6.4)

where α = σ2
x + σ2

y is the scale, and β = σ2
x/(σ

2
x + σ2

y) is the eccentricity.

The most general case is where there is some correlation between x and y. In this

case, the covariance matrix may be written

Λx = αRγ

[
β 0

0 1− β

]
R>
γ , (6.5)

where

Rγ =

[
cos γ − sin γ

sin γ cos γ

]
(6.6)

is a rotation matrix parameterised by an angle of (anti-clockwise) rotation γ. In this

case, the level sets of the associated p.d.f. will still be ellipses, now rotated by the angle

γ. The scale of a covariance, α, must be greater than zero. The eccentricity must lie in

the range 1
2
≤ β ≤ 1, and the angle of rotation is restricted to 0 ≤ γ < π.

This parameterisation describes the geometry of the ellipses which are the level sets

of the p.d.f.. The representation of a covariance matrix as (α, β, γ) will be useful in later

synthetic experiments.
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Figure 6.1: The level sets of a bivariate Gaussian p.d.f., characterised by a specific
covariance matrix, are ellipses
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   (c)(b)(a) (d)

Figure 6.2: Different types of noise models: (a) isotropic homogeneous, (b) isotropic
inhomogeneous, (c) anisotropic homogeneous, (d) anisotropic inhomogeneous

6.1.2 Collection of data

A collection of data points may be classified according to the type of associated covari-

ance matrices. There are four categories:

• Homogeneous isotropic describes a model of measurement error in which all items

of data are assumed to have the same, isotropic, distribution. An example is

shown in Fig. 6.2(a). Covariance matrices in this case are called identity covari-

ances, as they are all a common scalar multiple of the identity matrix.

• Inhomogeneous isotropic is a generalisation of the above category, where the noise

is isotropic but the standard deviation may change from point to point. An exam-

ple is shown in Fig. 6.2(b). Each covariance matrix is a (different) multiple of the

identity matrix.

• Homogeneous anisotropic noise is shown in Fig. 6.2(c). Each covariance matrix

has the same scale, but describes anisotropic noise.

• Inhomogeneous anisotropic is the most general case. As shown in Fig. 6.2(d), the

scale and orientation of each covariance matrix may vary.

6.2 Experimental setup

The overall aim of these experiments is to understand how covariance information ef-

fects the estimation process. Firstly, several synthetic experiments are performed, so
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that control can be exercised over the noise conditions. Synthetic testing is similar

to that in previous applications chapters, except the process of adding noise is more

involved. In addition to generating true data points, a covariance matrix is also gener-

ated, which is associated with each data point. Noisy data points are then generated

consistent with these covariance matrices.

6.2.1 Estimation methods

To judge the effect of incorporating covariance information on estimation, several of

the estimation methods used so far were employed. Methods capable of incorporating

covariance information were run in two modes: ordinary and default (“starred”). For

ordinary operation, the noisy data with available covariance information is supplied

to the method. In default mode, the noisy data and identity covariance matrices only

are supplied, regardless of whether non-default covariance information was used to

generate the data. In this mode, we therefore test the use of default covariance matrices

applied to the general problem.

6.2.2 Generating true and perturbed data

For estimating the fundamental matrix, the synthetic true data was created in the same

way as in previous experiments. A stereo configuration, with non co-planar optical axes,

and slightly differing left and right camera intrinsic parameters was fixed. A set of 50

randomly chosen 3-D points were then projected onto the images so as to generate

many pairs of corresponding points (m∗,m′∗), where, again, m ≡ [mx,my, 1]> is a

homogeneous point. Alternatively, image points (m∗,m′∗) are described as (p∗,p′∗)

such that p = [mx,my]
> and p′ = [m′

x,m
′
y]
>.

Although the method for determining ideal points (and noisy points) is set, what

is left open is how to choose the associated covariance matrix for each image point.

By adopting the component parameterisation of a covariance matrix, how these covari-

ances are chosen can be described in terms of their component parameters. With an

average level of noise denoted as σ, a covariance matrix is found by

• choosing a random scale, such that α conforms to the uniform distribution U (0, 2σ),

• choosing a random skew, such that β ∼ U (1
2
, 1), and

• choosing a random rotation γ ∼ U (0, π).



Chapter 6 – Covariance matrices 101

Since trΛp∗ = α and E [α] = σ, it follows that E [trΛp∗ ] = σ, giving the statistical

interpretation of the assumed level of noise.

Given a true point p∗ and an associated covariance matrix Λp∗, a noisy point p

consistent with Λp∗ was obtained by adding a vector ∆p to p∗. The vector ∆p was

generated using the following algorithm:

1. Find a matrix V such that Λp∗ = V V T ; this can be done by performing, say,

Cholesky decomposition of Λp∗ [10, §3.2.2]. Note that the Cholesky decomposi-

tion of A determines a matrix C such that C>C = A. Therefore, V is simply

derived from the Cholesky decomposition of Λ>
p∗.

2. Generate a random vector r (of length two), with each component drawn in-

dependently from the Gaussian distribution with zero mean and unit standard

deviation.

3. Set ∆p = V r.

The perturbation ∆p has the required properties of mean 0 and covariance Λp∗, since

E [∆p] = E [V r] = V E [r] = 0,

E
[
(∆p)(∆p)T

]
= E

[
(V r)(V r)T

]
= E

[
V (rrT )V T

]
= V E

[
rrT

]
V T

= V V T = Λp∗ .

Finally, each p was associated with a covariance matrix Λp, which was taken to be Λp∗.

6.3 Experiments with synthetic data

To provide a point of reference, firstly tests were conducted in estimating the funda-

mental matrix from noisy data, with the use of perfect, underlying, covariances. The

procedure for generating noise was that given above. Each test involved randomly

choosing 50 pairs of true corresponding points, and generating an associated covariance

matrix for each point as described in Sect. 6.2.2. These covariances were anisotropic

and inhomogeneous, and parameterised by a (common) average level of noise. For

each true point, a noisy point was randomly chosen consistent with the corresponding

covariance matrix, as described above. Four methods, namely FNS, and FNS*, and
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TAU, and TAU* were then employed to estimate the fundamental matrix from the noisy

points. In the case of FNS, the associated covariance matrices were taken into account.

An error measure was computed for each estimate. This measure was the sum of the

Euclidean distances of the underlying true points (in both images) to the epipolar lines

derived from the estimated fundamental matrix. This measure was chosen for two rea-

sons. Firstly, it has the property that it vanishes when the estimate coincides with truth.

Secondly, it can be computed based on an unconstrained estimate. The purpose of these

experiments was to find out how covariance information can effect unconstrained esti-

mation, hence enforcing the rank-two constraint was left aside.

The mean value of the error for each of the estimation methods was computed over

200 repetitions. The entire process was performed for an average noise level σ ranging

from 2.0 to 10.0 in steps of 2.0. The results are presented in Fig. 6.3. This figure shows

that there is a clear ordering to the quality of the estimates. Unsurprisingly, the FNS es-

timate have the lowest epipolar error, as they rely on additional covariance information.

Note that there is little difference between TAU and TAU*. This is because the approx-

imation “averages” out the variation in the denominator of JAML which is contributed

to from varying covariance matrices. The results show that there is significant benefit

of incorporating covariance information when using FNS. However, any improvements

are predicated on two factors, namely that

• the distributions of each individual data points are considerably varied, and

• it is possible to supply exact covariance information to an estimator.

The assumption in Sect. 6.1.2, to the effect that the component parameters α, β, and

γ are distributed uniformly, means that a highly skewed covariance is as likely as an

isotropic one. If such variation in the covariances associated with each point was re-

duced, it would be expected, heuristically, that the benefits of using covariances would

be less. In practice, it is almost impossible to have the exact covariance information for

each data point.

In the next sections, these issues are addressed by conducting further experiments.

Firstly, the distribution of the component parameters is addressed. Secondly, experi-

ments are performed where the estimators are given some, but not all, of the available

covariance information.
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Figure 6.3: Average values of epipolar error for estimates produces with various meth-
ods

6.3.1 Varying the spread of covariances

A new experiment was carried out in which the level of anisotropicity and inhomogene-

ity was controlled. This was done by introducing the parameter 0 ≤ ρ ≤ 1 to capture

the ‘spread’ of the skew and scale parameters. Fixing the level of noise, variation of

skew was set to conform to

β ∼ U (
1

2
(1− ρ),

1

2
(1 + ρ))

and variation of scale was set to conform to

α ∼ U (σ(1− ρ), σ(1 + ρ)).

The following tests were performed:

• Skew was selected as above, and scale was kept constant, corresponding to ho-

mogeneous anisotropic noise.

• Scale was selected as above, and skew was set to 1/2. This corresponds to inho-

mogeneous isotropic noise.
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• Both parameters were selected as above. This corresponds to inhomogeneous

anisotropic noise.

The testing regimen as above was repeated, although TAU was discarded with TLS was

incorporated to obtain a sense of scale. The results are presented in Figure 6.4. As ρ

increases, the error of the estimate generated using covariance matrices reduces. Under

these circumstances, the improvement is more marked for the scale parameter than the

skew parameter. For a given average level of noise, estimates obtained via FNS improve

with increased diversity of covariance. Note that the average error for the two methods

not using covariances remains constant, since the average level of noise remains con-

stant. This is interesting in itself, because as ρ increases, the covariances generated are

different, and hence noisy points generated will be differently distributed. For ρ = 0

there will be (in the third case of choosing both scale and skew) isotropic and homoge-

neous noise. As ρ increases the covariances are becoming more and more anisotropic

and inhomogeneous. However, if the average level of noise is kept fixed, the FNS* and

TLS methods produce estimates which, on average, have the same error.

6.3.2 Partially correct covariances

In practice noisy data points are measured, not the true underlying values, and so it

is not possible to measure exactly the covariances driving the noise in the data. The

next experiments aim to see how some loss of covariance information can effect the

quality of estimates. Tests are conducted where a modified version of the real covari-

ance matrices used to generate noisy points are supplied to estimators. True underlying

covariance matrices are associated with each true point, and are used to generate noisy

data. Then, a different kind of ‘noise’ is added to the covariance matrices themselves.

The noisy data and noisy covariance matrices are then passed to an estimator.

The true covariance matrices were perturbed by multiplying each of their underlying

component parameters by a random factor (α, β, γ) 7→ (k1α, k2β, k3γ), where k1, k2, k3

are chosen independently from the Gaussian distribution with mean of one, and stan-

dard deviation τ . In this way, the level of noise added to the covariances was controlled

by the deviation τ . It should be noted that whenever the multiplication of the param-

eter caused it to exit the range specified in Sect. 6.2.2, it was clipped at the maximum

or minimum appropriately. In particular, the new scale k1α was kept to a maximum of

2σ to ensure the average level of noise was at least similar to that used originally.
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The algorithm can be summarised as follows:

1. Generate synthetic true data.

2. Generate random covariance matrices as per Sect. 6.2.2, with a fixed average

noise level.

3. Perturb data in accordance with the covariance matrices to obtain noisy data.

4. Create a new set of covariance matrices by adding noise to the original matrices.

5. Compare estimates obtained by supplying identity, true, and noisy covariance ma-

trices.

Again, these steps were repeated 200 times to obtain an average error for the three

estimation methods. Unlike the first experiments, where the level of noise added to the

data was varied, in these experiments the average level of noise added to the data was

held constant. What was varied was the level of noise added to the covariance matrices.

Data points, along with these noisy covariance matrices, were used to generate an

estimate using the FNS method. This was labelled FNS-n.

Figure 6.5 highlights the roughly linear increase in error of FNS estimates as the

supplied covariance information becomes less accurate. In these experiments, we see

that the FNS-n estimates are superior to FNS* esimates when τ < 0.3 pixels. Hence

using (noisy) covariances offer advantage over identity defaults up to that tolerance.

For higher values of τ , the FNS-n estimate is worse than that of FNS*, so a better

estimate is produced by ignoring any covariance information available (and falling back

on identity defaults).

6.4 Considering real images

The problem now considered is to apply some of this knowledge to the task of incorpo-

rating covariance information when estimating the fundamental matrix from a pair of

real images.

A key observation when dealing with covariance matrices associated with data points,

for example those extracted from images, is that the error associated with their mea-

surement is generated through a particular measurement process. Therefore it is entirely
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possible that the same image point can have a different associated covariance matrix

depending on the process by which it was measured. The procedure by which a co-

variance matrix can be associated with a data point can be derived in terms of the

component parameters α, β, and γ of Eq. (6.5). Such a process can be described as

follows:

• Determine the maximal direction along which the measurement process is sus-

ceptible to the largest perturbation. Under the assumption that the noise effecting

true points is Gaussian, the direction with the minimal chance of perturbation is

orthogonal. This maximal direction, once determined, can be used to determine

γ. (It is set to the angle that the maximal direction makes with the x−axis.)

• Find a ratio r of the expected values of perturbations in the maximal and minimal

directions. This can be used to determine the skew parameter, with β taken as

r(1 + r)−1.

• Determine an overall measure of the scale of error by adding the expected values

of perturbations in the maximal and minimal directions. This value can be taken

for α. Although the estimation process will be unaffected by global scale change

applied to all covariances, this parameter determines the relative scales of each

covariance matrix.

This procedure proves difficult to follow precisely in practice, however it can give

some guidance as to what to take for covariance matrices.

6.4.1 Covariance information from image gradients

An image is described by its intensity value E(x, y) at every point p = [x, y]>. Gradient

information from the image is the main ingredient for analysis. The partial derivatives

of E with respect to x and y, at a point, are denoted by Ex(x, y) and Ey(x, y). As the

image is a discrete sample of intensities, the partial derivatives are approximated using

simple differencing, with

Ex(x, y) =
E(x+ 1, y)− E(x− 1, y)

2
, (6.7)

and

Ey(x, y) =
E(x, y + 1)− E(x, y − 1)

2
. (6.8)
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Figure 6.4: Errors in estimates for varying spread of covariance parameters
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Figure 6.5: Average estimation error for increasing average error in covariance matrices

Often, rather than using these gradient values directly, often smoothed versions

are employed. Applied to the gradients, the hat operator defines a smoothed version,

defined formally as

Ê2
x = Ê2

x(x, y) =
∑

(i,j)∈W

G(i, j)× (Ex(x+ i, y + j))2 , with, (6.9)

G(i, j) = (2πσ2)−1 exp
(
−(i2 + j2)/2σ2

W

)
,

where W is a window of pixel values centred at (0, 0) (e.g. W = [−k, k] × [−k, k]
for some positive integer k) and σW is a fixed standard deviation expressed in pixels.

For subsequent experiments, the value of k = 7, and σW = 1.0 were used. Other

combinations, Ê2
y , ÊyEx and ÊxEy are defined analogously.

For a given points p, a covariance matrix of the form

Λ1
p =

1

Ê2
yÊ

2
x − ÊyExÊxEy

[
Ê2
y −ÊyEx

−ÊxEy Ê2
x

]
.

has been used in optical flow computation [47], texture segmentation [11], and shape

from factorisation methods [1, 58]. This matrix form is derived given the idea that

the particular image point is best located in the direction of highest intensity change.
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Figure 6.6: Ellipses representing covariance matrices for various image points

The leading scale coefficient ensures that overall,the uncertainty is inversely to the rate

of change of image intensity: the smaller the rate of change in image intensities, the

greater the uncertainty.

Fig. 6.6 shows ellipses representing covariances of form Λ1 for three different image

points. The ellipses are rendered as follows. The covariance matrix is subjected to SVD,

Λ = JDK>. As Λ is symmetric, it follows that J = K. The SVD form is similar to that

in Eq. (6.5), with J replacing the rotation matrix Rγ. The ellipse’s major and minor

axes are taken as the singular values (the diagonal elements of D), and the rotation is

determined from J .

6.4.2 Harris corners

It is important to consider covariance information in the context of a measurement

process. The measurement process adopted to find candidate points in an image (for

subsequent matching) was the Harris corner detector [22]. The detector evaluates a

corner response function H(x, y) which is defined for every point in the image. Points

whose value ofH is high enough, and which are local maxima, are taken as a set of Har-

ris points (or “corners”) for the input image. Harris points are found for a left and right

image, and it is only this subset of points which are used to determine corresponding

points.

The response function is defined also in terms of smoothed gradients. Its form is

H(x, y) =

∣∣∣∣∣ Ê2
y −ÊyEx

−ÊxEy Ê2
x

∣∣∣∣∣− κ
(
Ê2
y + Ê2

x

)
(6.10)

where κ is a small constant, assigned usually as κ = 0.04.
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The smoothing applied to the gradient values is important. If un-smoothed values

were used, for example ExEy instead of ÊxEy, then the (left hand) matrix would have

determinant zero, and therefore only the small correcting factor would be taken as

the response function. Because the values are smoothed, then (in general) Ê2
xÊ

2
y 6=

ÊxEy
2
, and the matrix has a non-zero determinant. If locally there is no variation in

intensity then Ex and Ey will both be zero, and the determinant will in this case be

zero. Consequently, H attains a small value – as it should given that this part of the

image is not a feature of interest.

It is possible to estimate a fundamental matrix by taking a series of matched Harris

points from a stereo image pair, and computing Λ1
p for each image point. The points

and associated covariances can be passed to an estimator. A series of Harris points and

their associated covariance matrices rendered as ellipses are shown in Fig. 6.8.

The form of Λ1 and the Harris response function H(x, y) are very similar. When

κ = 0, the scale factor of each covariance is simply H−1(x, y). So points with a high

value of H are better located. The only points which are selected as candidates for

matching, and hence used in estimation, are Harris points, by definition those with the

highest values of H(x, y). The corresponding covariance matrices will all have similar

scales. As a result there will be little variation in the scales of a set of Harris points,

and so the advantage of using covariance information in estimation will be lessened. In

relation to the experiments from Sect. 6.3.1, the situation will be similar to that where

ρ is close to zero. Kanazawa and Kanatani [32] present this argument in their analysis

of the effectiveness of using covariance information in estimation.

However, looking at Fig. 6.8, it is clear that although the scale characteristics may be

similar, there is a large variation in the skew (and rotation) components of covariance

matrices for each point. However, in many cases, the direction of minimal error seems

to be orthogonal from where it should be, at least heuristically. Many of the Harris

points tend to be estimated “inside” a corner, where the direction of most uncertainty is

along the bisector of the corner. However, there are many cases where the covariance

matrix of form Λ1 produces the maximal error directions orthogonal to this. This sug-

gests a slightly different form for covariance matrices, which use the same scale, but

with a different orientation. This form is given as

Λ2 =
1

Ê2
xÊ

2
y − ÊxEyÊyEx

[
Ê2
x ÊxEy

ÊyEx Ê2
y

]
. (6.11)

Covariance matrices of this form are shown in Fig. 6.9 for the same Harris points. It can
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be seen that for points “inside” a corner, the axis of highest uncertainty tends to align

with the bisector of the corner.

6.4.3 Real images

To test both forms of these covariance matrices, the fundamental matrix was computed

for three different real stereo image pairs. For a given stereo pair,

• Harris corners were extracted from each of the left and right images,

• corresponding pairs of points were manually determined,

• for each of the left and right points, three corresponding covariances were used:

those of form Λ1, Λ2, and I (the identity matrix),

• CFNS was used to estimate a fundamental matrix,

• the error measure JML(F̂ ) was evaluated for each estimate F̂ (using data points

instead of true points due to the lack of ground truth).

Points were matched manually to discount the presence of any mis-matched points

causing errors. As the purpose of this experiment was to determine the usefulness of

covariance information, it was important that mis-matched points be eliminated as a

artificial source of error. For these experiments, as true data were obviously unavailable,

the previous error measure involving the distance to left and right epipolar lines could

not be used. Instead, the ML cost function was employed. To use this cost function

however, the estimated fundamental matrices had to satisfy the rank-two constraint,

necessitating the use of CFNS.

The results are presented in Table 6.4.3. This table shows that for each of the three

tested stereo pairs, the fundamental matrix estimated using Λ2 covariances gives errors

which is less than those when identity covariances are used. Also, the fundamental

matrices generated using Λ1 covariances are either on par with, or worse than, using

identity covariances.
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images Λ1 I Λ2

grid 2.52 1.40 0.98

office 2.48 2.47 1.43

library 2.76 1.61 1.07

Table 6.1: Errors recorded for the three different stereo pairs

Figure 6.7: The office, grid, and library stereo image pairs
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Figure 6.8: Covariance matrices of form Λ1
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Figure 6.9: Covariance matrices of form Λ2



Chapter 7

CONCLUSION

This work has explored issues in relation to estimating parameters that arise in

certain computer vision problems. This chapter summarises the main results obtained

and highlights areas for further exploration.

7.1 Summary

A parametric model was defined describing how image features, used as data, are re-

lated to model parameters. The model adopted was that of a single objective principal

constraint function, sufficient to describe, for example, the problems of conic fitting and

fundamental matrix estimation. Standard least-squares estimation techniques were ap-

plied to this form, and an algebraic estimator (total least squares) was described for

reference. After showing that algebraic methods exhibit systematic bias, a conven-

tional maximum likelihood (ML) cost function was adopted. Following the method of

Sampson, a widely used approximated maximum likelihood (AML) cost function was

formally derived and supported with geometric analogy.

Next, attention was turned to finding a minimiser for this cost function. General

minimisation methods, including the Levenberg-Marquardt method, were discussed. A

method specific to the AML cost function, iteratively re-weighted least squared, was

also described. Next, a new approach was taken, whereby properties of the minimiser

itself were considered explicitly. By analytically deriving the gradient of the AML cost

function, a variational equation was defined describing the parameters at a (local) min-

imum of the cost function. Critically, the gradient was shown to have a special form

whereby the parameter vector is involved through multiplication by a factor matrix.

This insight was used to devise the FNS method for computing a minimiser of the AML

cost function, where evaluation of this factor matrix plays a key rôle.

Through considering the form of this factor matrix, and the consequences of the

variational equation, insights were also derived regarding other methods. For example,
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Taubin’s “eigenfit” method can readily be placed within this framework. It was shown

theoretically that the iteratively re-weighted least squares method does not act to min-

imise the AML cost function. The form of the factor matrix was additionally applied to

considering an appropriate stopping condition for the iterations involved in FNS.

The ordinary, unconstrained FNS method was expanded to incorporate an additional

ancillary constraint on the parameters. This was achieved by considering an expanded

system of equations, building on the variational form used previously, and incorporating

an Lagrangian multiplier. A specific restriction of the form of the ancillary constraint,

that it be homogeneous of some arbitrary degree, was used to derive key identities

involving the constraint function. These identities were used in turn to build a system

which bears resemblance to the original variational equation used for FNS. Algebraic

manipulation was performed on this system to reduce its dimensionality, rendering a

tractable form. Additional modifications were adopted to aid convergence. This final

form was used to define the constrained estimation method CFNS.

Estimation methods were first applied to the problem of (unconstrained) conic fit-

ting. Experiments were conducted whereby FNS was compared to minimising the AML

cost function using the Levenberg-Marquardt optimiser (a method denoted LM-A). The

results showed that, for different data sets generated using a different sub-arc of an

ellipse, the FNS method was rapidly convergent, typically requiring only a handful

of iterations to complete. The results further showed that the estimates produced by

FNS coincide with those generated by LM-A, but were computed with significantly less

computation cost. Successive estimates found using FNS were not necessarily mono-

tonically decreasing in their cost function values, something that was borne out when

the LM-A cost function surface was visualised using six “slices.”

A harder problem than unconstrained conic fitting arises when the conic is con-

strained to be an ellipse. A popular algebraic method, of Fitzgibbon et al guarantees

that its estimate will be an ellipse. After examining the form of this method, an analo-

gous method was derived by considering the variational equation. This method allows

an existing, unconstrained estimate to be upgraded to satisfy the ellipse constraint. Its

advantage is that, in using the AML cost function, it exhibits significantly less bias than

the algebraically based Fitzgibbon method. Experiments show that, for data which con-

forms to the proposed model, this correction produces estimates satisfying the ellipse

constraint which also have a low value of the AML cost function. This method was

shown to be additionally useful when used as a seed for the optimal (in a maximum
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likelihood sense) gold standard method.

The second application considered was estimation of the fundamental matrix. Ex-

periments with synthetic stereo data show again that, as was the case with estimating

conic sections, the unconstrained estimator FNS typically produces fundamental matrix

estimates on par with LM-A, but at a much lower computational cost. The well known

method of Hartley normalisation was shown in the results to produce very good esti-

mates. Even though it is an algebraically based method, it produced estimates almost as

good as geometrically based methods. This method was examined in more detail, with

a specific cost function developed showing exactly what entity was being minimised

when following the normalisation procedure. It was shown that this cost function was

an approximation to a geometrically inspired cost function, hence accounting for the

quality of results. Critically, the improved results were seen to arise from the normali-

sation procedure causing the associated cost function to resemble this improved form,

rather than from numerical benefits associated with better conditioned matrices.

Next, the problem of adopting the rank-two constraint was considered. The CFNS

method was applied to the constrained fundamental matrix estimation problem and

was compared to both the direct and iterative post correction methods, and the gold

standard (true maximum likelihood) method. The CFNS method was shown to produce

constrained estimates which minimise the AML cost function, while preserving the rank

two constraint. Estimates produced using the CFNS method were compared to those

generated by applying a post correction to unconstrained estimates. The results showed

the CFNS estimates had cost function values at least as low as, and in some cases slightly

lowers, than the post corrected estimates. The CFNS method was also shown to have

superior convergence properties than the (unconstrained) FNS method.

Finally, the usefulness of incorporating covariance information as input to the es-

timation process was considered. Synthetic experiments were conducted under ideal

conditions where covariance matrices used to create noisy data were passed directly

to estimators. Unsurprisingly there was seen to be a benefit to the estimation process

of extra information being made available. To more closely model a realistic situation,

further experiments were conducted where the amount of variability in the underlying

noise model was reduced, to enable the examination of the level of benefit still present.

Further tests explored the issue of how much information must be known about an

underlying covariance matrix for it to be generally useful for estimation. It was shown

that critical to the adoption of covariance matrices when using data from real images
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is to consider the likely sources of errors and use this knowledge when devising an

appropriate covariance matrix. Experiments were conducted with real stereo image

pairs with a particular form of covariance matrix adopted by considering the process by

which image features were measured. This form was shown to improve the accuracy of

estimates for the examples considered.

7.2 Future work

The parametric model considered in this thesis describes a single objective (scalar val-

ued) principal constraint function. This model can be upgraded to consider the multi-

objective case, where the principal constraint function is vector valued. Many of the

forms involved can be adopted by analogously using the vector form and applying ap-

propriate algebraic manipulation. The multi-objective case allows the immediate tack-

ling of problems such as estimation of the Homography matrix [44] and tri-focal ten-

sor [14]. It is possible to contemplate adopting other estimation problems from within

and outside the realm of computer vision, which can be massaged into the appropriate

form.

The usefulness of the FNS method (or even CFNS) could be explored in relation to

its incorporation to robust estimation. When outliers are assumed to exist in the data,

generally methods are followed whereby multiple random subsets of data are chosen,

and estimates produced for each subset. Because the FNS method is typically able to

be executed very rapidly, it may prove useful when incorporated at this stage.

In the constrained case, the CFNS method was used to impose the rank-two con-

straint when estimating the fundamental matrix. One possible extension of this work

would be to impose additional constraints. For example, geometrically inspired con-

straints could be added such as requiring any estimated fundamental matrix to be con-

sistent with a geometry where the cameras are in front of a scene. If information is

known about the cameras, for example that they conform to a stereo-head configura-

tion [6], or if they have fixed intrinsics, then this information could also be added. This

would require a new version of CFNS to be devised capable of dealing with multiple

constraints simultaneously.

Another avenue for exploration is further work with incorporating covariance in-

formation in the estimation process. The results from Chapter 6 indicate that there

is potential benefit involved when estimating the fundamental matrix, as long as the
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measurement process of data is considered. This work may be extended to consider in-

corporating covariance information in the case where more than two images are used,

for example, by incorporating covariance information into general bundle adjustment

techniques.



120

BIBLIOGRAPHY
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