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ABSTRACT

This thesis is concerned with fundamental algorithms for estimating parameters of
geometric models that are particularly relevant to computer vision. A general frame-
work is considered which accommodates several important problems involving estima-
tion in a maximum likelihood setting. By considering a special form of a commonly
used cost function, a new, iterative, estimation method is evolved. This method is
subsequently expanded to enable incorporation of a so-called ancillary constraint. An
important feature of these methods is that they can serve as a basis for conducting
theoretical comparison of various estimation approaches.

Two specific applications are considered: conic fitting, and estimation of the funda-
mental matrix (a matrix arising in stereo vision). In the case of conic fitting, uncon-
strained methods are first treated. The problem of producing ellipse-specific estimates
is subsequently tackled. For the problem of estimating the fundamental matrix, the
new constrained method is applied to generate an estimate which satisfies the neces-
sary rank-two constraint. Other constrained and unconstrained methods are compared
within this context. For both of these example problems, the unconstrained and con-
strained methods are shown to perform with high accuracy and efficiency.

The value of incorporating covariance information characterising the uncertainty of
measured image point locations within the estimation process is also explored. Co-
variance matrices associated with data points are modelled, then an empirical study
is made of the conditions under which covariance information enables generation of
improved parameter estimates. Under the assumption that covariance information is,
in itself, subject to estimation error, tests are undertaken to determine the effect of im-
precise information upon the quality of parameter estimates. Finally, these results are
carried over to experiments to assess the value of covariance information in estimating
the fundamental matrix from real images. The use of such information is shown to be

of potential benefit when the measurement process of image features is considered.
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NOTATION

a € RP : column vector of length p

A e Rmm : n X m dimensional matrix

I, 1 : p x p identity matrix (generally p is inferred from context)
AT : transpose of A

Al . inverse of A

A~ : Moore-Penrose inverse of A

| Al : determinant of A

I|A]lx : Frobenius norm of A

rank(A) : rank of A

diag(oy,...,0,) : n X n matrix with o, ..., 0, along the diagonal and zeros elsewhere
tr(A) : trace of matrix A

vec(A) : vectorisation of A

O] : gradient row vector [L, ... L]

02, : Hessian matrix of .J, [%@ij} iin”

H; : alternative notation for the Hessian matrix of J(-)

p(X) : probability of event X

E[x] : expected value of the random variable x

A® B : Kronecker product of A and B
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