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Abstract

This paper evaluates four featural models of stim-
ulus similarity using data collected for a set of 16
nations. Algorithms are developed for finding stim-
ulus representations, and the important issue of
balancing data-fit against model complexity is ad-
dressed by using the Geometric Complexity Crite-
rion. Although the data clearly incorporate both
common and distinctive features, Tversky’s (1977)
Contrast Model seems unable to express these reg-
ularities in an appropriate manner. However, we
show that a new version of the Contrast Model that
treats each feature as either being common or dis-
tinctive is better able to capture the essential as-
pects of the similarity judgments.

Featural Representation

A fundamental issue in psychology regards the ap-
propriate manner in which to represent stimuli in
a model of human cognition. As argued by Brooks
(1991), it is important to constrain representations
to those justified by empirical data, and avoid the
questionable practice of specifying representations
“by hand” . One well-established technique for pin-
ning down mental representation involves measur-
ing the similarity between pairs of stimuli. The as-
sumption underlying this approach is that the deci-
sion process involved in judging similarity is a sim-
ple one, and thus the data can be considered to re-
flect the underlying mental representation to a large
extent. While this is not without theoretical dif-
ficulties (e.g., Goodman, 1972; Goldstone, Medin,
& Halberstadt, 1997), it is substantially superior to
the alternative approach of hand-tuning representa-
tions, which may not reflect human representational
structures in any regard. Goldstone’s (1999) recent
review identifies four main approaches to similarity
modeling: geometric, featural, alignment-based and
transformational. In this article we discuss current
approaches to featural representation, and provide
experimental evidence to support a new approach
for modeling featural similarity.

The featural approach to mental representation
describes an object in terms of the attributes it pos-
sesses. Features may be either perceptual or concep-
tual in nature: for example, a tiger might possess the
features “four legged”, “orange”, and “predatory”.

The task of deriving featural representations from
similarity data can be stated as follows: if n denotes
the number of stimuli in the domain, then given an
n X n matrix of similarity judgments S, find a set of
m features that explain these judgments. We can de-
note this set of features by the n x m feature matrix
F = [fix], where f;; is 1 if the ith stimulus possesses
the kth feature, and 0 if it does not.

Four Models of Featural Similarity

One well-established approach for extracting feat-
ural representations from similarity data involves us-
ing additive clustering algorithms (e.g, Shepard &
Arabie, 1979; Tenenbaum, 1996). The similarity be-
tween two stimuli is estimated as the sum of the
weights of their common features (i.e., those that
they both possess). That is,

8ij = Zwkfikfjk +c, (1)
k

where wy denotes the saliency weight of the kth
feature, and c is a positive-valued constant added
to all similarity estimates. Thus an m-feature
common features representation consists of the fea-
ture matrix F, the vector of saliency weights w =
[wy,wa, ..., wy,] and the additive constant. As
noted above, additive clustering relies on a purely
common features model. This means that the stim-
uli become more similar only to the extent that they
share features.

An alternative featural model is the distinctive
features model, under which similarity is measured
according to the differences between the features
that stimuli have. This means that if one stimu-
lus has a feature and another does not, they become
less similar. This can be written as

8ij =c— % ;wkfik (1= fix) — %;wk (1 = fir) firs
(2)

which is identical to the symmetric distance met-
ric proposed by Restle (1959), and closely related



to discrete multidimensional scaling (Clouse & Cot-
trell, 1996; Rohde, in press).

A general framework that interpolates between
these two models is Navarro and Lee’s (2001) adap-
tation of Tversky’s (1977; Gati & Tversky, 1984)
Contrast Model (TCM), consisting of a weighted
sum of the common features similarity (Eq. 1) and
the distinctive features similarity (Eq. 2). If we let
0 < p <1 denote the weighting given to the common
features component, then this model is given by

5; = sz:wkfikfjk - % Ek:wkfik (1~ fik)
~IS S (U fu) for e 3)
k

The common features model corresponds to the ex-
treme case p = 1, and the distinctive features model
to the other extreme case p = 0.

However, this model is not the only way of striking
a balance between common and distinctive features.
Alternatively, we propose a new featural similarity
model in which each individual feature is declared
to be either a common feature (which increases the
similarity of pairs of stimuli that share it) or a dis-
tinctive feature (which decreases the similarity of a
pair of stimuli if one has it and the other does not).
This Modified Contrast Model (MCM) is thus:

Sij = Z Wi fir fik —% Z wi fir (1 — fix)

keCF keDF
1
—5 wi (1 = fix) fix + ¢ (4)
keDF

where k£ € C'F implies that the sum is taken over
common features, and k € DF means that only dis-
tinctive features are considered.

Psychologically speaking, the argument is that
a feature embodies some kind of regularity about
the world, which may be that a set of stimuli all
have something in common, or alternatively, that
two groups of stimuli are in some way different from
each other. A common feature instantiates the idea
of “similarity within”, whereas a distinctive feature
represents the notion of “difference between”. While
it may be the case that the saliency of a feature
can change, a commonality does not suddenly be-
come a distinction, nor vice versa. In the MCM, the
overall balance between commonality and distinc-
tiveness emerges as a function of the relative num-
ber and saliency of common and distinctive features,
rather than being specified by the parameter p, as
it is in the TCM. That is, where the TCM assumes

that common and distinctive features are weighted
during the decision process, the MCM considers the
commonality or distinctiveness of a feature to be a
regularity inherent in the environment, and so em-
beds it in the representation itself. In this way, the
MCM assumes that featural regularities can be ei-
ther commonalities or distinctions, but never a bit of
both. When a group of stimuli have both common
and distinctive aspects, the MCM models these two
aspects as two distinct featural regularities.

Model Fitting

It is useful to distinguish between the psychological
problem of modeling featural similarity and the nu-
merical problem of finding features (Shepard & Ara-
bie, 1979). The psychological problem is: given a set
of features F', how should similarities be estimated?
This is the question addressed by the four featural
models discussed in the previous section. The nu-
merical problem is a data fitting problem: given a set
of similarity data S, and assuming a particular psy-
chological model, what set of features F most prob-
ably gave rise to the data? A variety of approaches
have been adopted in fitting the additive cluster-
ing model, ranging from mathematical programming
(Arabie & Carroll, 1980) to expectation maximiza-
tion (Tenenbaum, 1996) and stochastic hillclimbing
(Lee, in press). The process by which such algo-
rithms operate is relevant to the psychological prob-
lem of similarity modeling only inasmuch as we re-
quire that they derive good answers to the numerical
problem. While none of the above methods is per-
fect, it is fair to say that each approach performs
well enough to allow interpretation and discussion
of the derived representations. The representations
derived here used a stochastic hillclimbing approach
to fit the featural models similar to that adopted by
Lee (in press) and Navarro and Lee (2001).

The fitting procedure adopted the Geometric
Complexity Criterion (GCC: Myung, Balasubra-
manian, & Pitt, 2000) as the measure to be min-
imized by the successful representation. As has
been remarked upon previously (e.g., Myung, 2000;
Roberts & Pashler, 2000), achieving a good data-fit
is not the sole criterion of a good model. Other con-
siderations such as generalizability, simplicity and
interpretability must be taken into account. From a
quantitative standpoint, one can operationalize the
trade-off between fit and complexity in a kind of for-
mal version of Ockham’s razor. The GCC is based
on the notion that the complexity of a model is given
by the number of distinguishable parametric distri-
butions indexed by the model. Informally, this can
be thought of as a measure of how many different



similarity matrices could be produced by a given fea-
ture structure under all possible choices of saliency
weights. The more distributions a model indexes,
the more complex it is. This measure is superior to
the Akaike Information Criterion (Akaike, 1977) or
the Bayesian Information Criterion (Schwarz, 1978),
which estimate model complexity by counting the
number of free parameters. As Lee (2001) has
pointed out, the number of parameters is not a good
indicator of the complexity of featural representa-
tions, since the way in which features are assigned
to stimuli has a considerable influence on model com-
plexity. Furthermore, Navarro and Lee (2001) have
demonstrated that common features representations
are more complex on average than distinctive fea-
tures representations. These systematic differences
in what Myung and Pitt (1997) call the functional
form complexity of a model require a more discrim-
inating measure such as the GCC. The derivation
of GCC measures for the four featural models is
straightforward, and follows the approach outlined
by Navarro and Lee (2001).

Experiment

In order to provide an empirical test of the four feat-
ural similarity models, similarity data were collected
for a set of 16 nations identified by name. The na-
ture of this domain made it less than satisfactory to
present people with a pair of countries and ask them
to rate their similarity. It seems likely that this task
would be ambiguous, in that the initial reaction of
participants may be to ask, “Compared to what?”
Even when the similarity between a pair of nations
does not need a context, participants are unlikely
to bring to this task a pre-existing numerical scale
of nation-similarity upon which to rate it. An al-
ternative approach is to provide participants with a
context in which to make judgments. The task we
used was to present people with a list of four coun-
tries, and ask them to select from the list the pair of
nations most similar to one another.

Method

Participants Participants in the study were 16
university students (4 male, 12 female) aged 17 to
36, with a median age of 24, who took part in the
experiment for course credit.

Materials The list of nations used was: China,
Cuba, Germany, Indonesia, Iraq, Italy, Jamaica,
Japan, Libya, Nigeria, the Philippines, Russia,
Spain, United States, Vietnam, and Zimbabwe.
They were chosen to suggest a variety of possible
classification schemes (e.g., political system vs geo-
graphical location), and involve a variability in over-

all saliency (e.g., Italy and Germany were better
known to most of our participants than Zimbabwe
and Nigeria).

Procedure On each trial a list of four countries
was displayed (via computer) to the participant, who
was asked to pick out the two countries most simi-
lar to each other. The 16 nations yield (1¥) = 120
distinct pairs of nations, and a total of (1f) = 1820
possible lists of four. Given that the similarity rat-
ings are sensitive to all four presented stimuli, it was
important to exhaust exactly the set of 1820 quadru-
ples. To that end, the 1820 items were partitioned
into 20 subsets of 91 quadruples. Most participants
provided responses to one of these subsets, though a
few of the participants provided responses to multi-
ple subsets. Since each quadruple involves the pre-
sentation of 6 of the 120 nation-pairs, each pair ap-

peared a total of % = 91 times across the entire
data set.
Results

Calculating the mean empirical similarity involved
operationalizing the similarity of a pair of countries
as the expected probability of selecting that pair in
an arbitrary trial containing both stimuli. Using a
standard result in Bayesian statistics (Gelman, Car-
lin, Stern, & Rubin, 1995, p. 31), if a particular pair
is chosen k times out of n (n being 91), then the em-
pirical similarity is given by s;; = %_‘;—; In using the
GCC to control model complexity, it is important to
know the precision of the similarity values (Lee, in
press), which is basically a measure of the extent to
which participants agreed in their judgments. Preci-
sion is important because more precise data justify
more complex models. We estimated the precision
to be moderate, by using the full distribution of the
similarity judgments. Details of this estimation pro-
cedure, as well as that used to calculate similarity
values, are given by Navarro (2002).

Using our stochastic hillclimbing algorithms, rep-
resentations of the nations similarity data that min-
imized the GCC were found for each of the four sim-
ilarity models. Of these four representations, the
GCC values for the common features, distinctive fea-
tures, and MCM representations are virtually indis-
tinguishable, with the TCM performing slightly bet-
ter. However, the qualitative characteristics of these
representations are important in terms of model in-
terpretability, and we discuss each in turn.

The best common features representation is shown
in Figure 1, and contains seven features that explain
78.1% of the variance in the data. The features are
highly interpretable, containing features for west-
ern European nations, Caribbean nations, south-
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Figure 1: Common features representation of the
nations similarity data, accounting for 78.1% of the
variance (GCC=41.2). Common features are de-
picted by rectangles that encompass the nations that
possess them.

ern African nations and Asian nations. It seems
probable that the feature containing only the Philip-
pines and Indonesia reflects perceived cultural and
geographical similarities, and that the Iraq—Libya
feature reflects the fact that both are Arabic na-
tions and that both have been considered “rogue
states”. The final feature consists of Germany, Rus-
sia, United States, China and Japan, and could be
said to denote the “world powers” among the stim-
ulus set.

The best distinctive features representation is
shown in Figure 2, and contains five features that ex-
plain 71.0% of the variance in the data. Three of the
five features have a natural interpretation: one fea-
ture separates the African and Middle-Eastern na-
tions from the rest of the world, and another sepa-
rates the Asian nations from the others. The top-
weighted feature in Figure 2 makes an intuitively
plausible distinction that might be labeled “devel-
oped vs undeveloped”. It is interesting to note that
the placement of China within the developed na-
tions is equivocal, since the GCC increases only mar-
ginally when China is placed in the other category.
This makes sense, given China’s status as a quickly
developing nation. Significantly, however, the re-
maining two features do not appear to reflect any
kind of interpretable structure. From a psycholog-
ical standpoint, this is highly undesirable, since a
central aim of representational modeling is to find
interpretable structures in the data.

Table 1 displays the six feature representation de-
rived using the TCM with p = 0.7, which explains
80.8% of the variance. Since the TCM specifies a
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Figure 2: Distinctive features representation of the
nations similarity data, accounting for 71.0% of the
variance (GCC=41.5). Distinctive features are de-
picted by lines that partition the stimulus set.

balance of common and distinctive features, there is
no simple way of depicting this representation graph-
ically. The high p value indicates that commonali-
ties are weighted more heavily than differences. All
of the clusters in Table 1 appear in either the com-
mon features or distinctive features representations,
which is not surprising. The features themselves
make sense, although it is not easy to see exactly
what p = 0.7 means when providing an overall inter-
pretation. It is noteworthy that the distinctive fea-
ture that separated the developing from developed
world in Figure 2 does not appear in this representa-
tion, despite being the most heavily weighted of the
distinctive features. The reason for this may be that
the feature does not make sense as anything other
than a purely distinctive feature, since any common
features component makes one half (either developed
or developing) more salient than the other.

The seven feature MCM representation shown in
Figure 3 explains 81.2% of the variance, and picks
out a number of features from the common features
representation: the western Europe, Caribbean,
southern Africa and Asian features are all present,
as is the “world powers” feature. The feature con-
taining Cuba, Iraq and Libya is interesting, in that
the inclusion of Cuba is a marginal case as judged
by the GCC. With Cuba included, the feature has a
“rogue states” interpretation, whereas without Cuba
it would reflect the Arabic nations. Finally, the
model also includes the “developed vs developing”
regularity from the distinctive features representa-
tion. The comparison between this distinctive fea-
ture and the “world powers” common feature is also
worth making. The fact that these two related but



Table 1: TCM representation of the nations sim-
ilarity data, employing a common features bias
(p = 0.7), accounting for 80.8% of the variance
(GCC=36.9).

STiMULI IN CLUSTER WEIGHT
Germany, Italy, Spain. 0.682
Nigeria, Zimbabwe. 0.495
China, Indonesia, Japan, Philippines, 0.453

Vietnam.
Indonesia, Philippines. 0.374
China, Germany, Japan, Russia, 0.316
United States.
Iraq, Libya, Nigeria, Zimbabwe. 0.288
additive constant 0.236
0.581 0.196
Italy Russia China
Germany
Spain United States Japan
0.219
Iraq Nigeria Vietnam
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Libya Zimbabwe | | Philippines
Jamaica 0.375 0.682 Indonesia
0.555 0.425

additive constant: 0.146

Figure 3: MCM representation of the similarity-
condition countries data, accounting for 81.2% of the
variance (GCC=41.0)

different features emerge in these different frame-
works suggest that people make a distinction be-
tween the developed nations and the undeveloped
nations, but that there is also something shared by
the world powers of the stimulus set. Not all devel-
oped nations share this status, so it is appropriate
that both features emerge. Moreover, the fact that
two nations are developed does not necessarily im-
ply that they are alike, but if one is developed and
the other developing, it does make them different,
so the “developed vs. developing” feature should be
a distinctive feature. Correspondingly, two nations
are alike if they are major world powers, but this
does not say anything about their similarity if they
are not.

Discussion

As previously noted, a major aim of featural similar-
ity modeling is to capture simple, interpretable reg-

ularities present in the data. In this case, the com-
mon features representation is easily interpreted, yet
the distinctive features representation is not. Fur-
thermore, both the TCM and MCM representations
evidence a bias towards commonalities. Overall,
therefore, it appears that the participants’ judge-
ments were more heavily influenced by common fea-
tures than distinctive features. Nonetheless, both
the TCM and MCM representations include a dis-
tinctive features component, suggesting that distinc-
tive features are not irrelevant in the data.

It is worth noting that the “developed vs devel-
oping” feature included in the distinctive features
and MCM representations is the single most promi-
nent regularity in the data set: when restricted to
a single feature, all featural models except the com-
mon features model (which is incapable of express-
ing this feature) yield this feature. It accounts for
more variance and has a substantially lower GCC
than any other single feature. Though we do not
wish to draw overly strong conclusions from a single
experiment, the prominence of this regularity calls
into question a central assumption of the TCM. As
argued in the results section, this “developed vs de-
veloping” feature only makes sense as a purely dis-
tinctive feature. The TCM could only incorporate
it by setting p = 0. However, as observed above,
common features are more prominent than distinc-
tive features in the data, and thus a high p value is
preferred. In doing so, the TCM is able to give a
good account for the data in a quantitative sense,
but only by discarding this qualitatively important
regularity. Notably, since the TCM assumes that all
features are subject to the single decision variable p,
it cannot simultaneously accommodate a common-
ality and a distinction under any parameterization.
In comparison, the MCM is not merely capable of
accommodating this phenomenon; it is typical be-
havior for the model.

Future Work

As noted above, a single data set provides only mild
evidence: it is important to demonstrate that similar
effects may be observed in other data sets. Though
space does not permit further analyses here, work
currently underway in this area seeks to generalize
these findings in precisely this way. Further research
could also extend the MCM in order to allow other
types of distinctions. A distinctive feature in the
current model partitions the stimulus set into two
groups, such as “male” and “female”. It could be
argued that there are regularities that have the hall-
marks of a distinction (in that differences-between
matter, but similarities-within do not) but involve



more than two groups. For example, the notion that
a thing is “animal”, “mineral” or “vegetable” could
be considered to be distinctive feature that parti-
tions the stimuli into three groups. Moreover, there
is a case to be made for representational formalisms
that involve both discrete aspects (such as features)
and continuous aspects (such as spatial dimensions).
Accordingly, another avenue for research would be to
pursue hybrid models that involve spatial as well as
featural components.
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