Investigating the role of Huntingtin in development and disease using the zebrafish model organism

A thesis submitted for the degree of Doctor of Philosophy, January 2007

Amanda Lumsden, B. Sc. (Hons)

School of Molecular and Biomedical Science, Discipline of Genetics, ARC Special Centre for the Molecular Genetics of Development, The University of Adelaide

Table of contents

List of figures and tables	v
Declaration	vii
Acknowledgements	ix
Abbreviations	xi
Abstract	XV
Chapter 1: Background	1
Huntington's disease	1
Genetics of HD	1
HD neuropathology	2
Energetic defects, excitotoxicity and oxidative damage in HD	5
HD is a member of the polyglutamine disease family	6
Common features of polyglutamine diseases	7
Polyglutamine gain-of-function hypothesis	8
Inclusions/aggregates: causative, consequential, or innocent bystanders?	9
What determines the specificity of neuronal vulnerability?	10
Huntingtin function and HD	12
Somatic instability and HD	22
This study	25
Chapter 2: Materials and methods	29
Materials	29
Methods	34
Chapter 3: Investigation of the role of somatic instability in HD pathogenesis, an	d
progress towards a transgenic zebrafish model of HD	53
Introduction	53
Results	57
Discussion	66
Chapter 4: Developmental defects associated with Htt deficiency in zebrafish em	ıbryos
	73
Introduction	73
Results	74
Discussion	88
Chapter 5: Identification of a role for Huntingtin in intracellular iron	
compartmentalisation	93
Introduction	93
Results	101
Discussion	110
Chapter 6: Final discussion	117
Introduction	117
Investigation of the contribution of somatic instability to HD pathogenesis	117
Investigation into the normal function of Htt in development	118
Conclusion	125
Appendix A	127
Appendix B	129
References	131

List of figures and tables

Chapter 1 Figure 1.1	The striatal and cortical connections relevant to HD pathology	4
Table 1.1	Polyglutamine diseases known to be caused by the expansion of CAG repeat tracts within the coding region of genes encoding unrelated proteins	7
Table 1.2	Selected Huntingtin-interacting proteins	.21
Figure 1.2	Phylogeny showing the evolutionary conservation of the HD gene	16
Figure 1.3	Schematic illustration of the amino acid sequence of Huntingtin	18
Figure 1.4	Conservation of Huntingtin homologues from various species	19
Figure 1.5	Model for the relationship between inherited repeat copy number and age at the onset of symptoms	23
Figure 1.6	Stages of early zebrafish development	26
Chapter 2		
Figure 2.1	Schematic diagram illustrating the sequential steps involved in the generation of repeat-containing contructs	43
Figure 2.2	Introduction of a <i>Kpn</i> I site into the <i>hd</i> polyglutamine-encoding region, to facilitate the insertion of longer repeat sequences	44
Table 2.1	Configuration of CAG and CAA triplets within the repeat sequence in expanded exon 1 clones <i>hd</i> ex1(CAG) ₉₈ and <i>hd</i> ex1(CAG/CAA) ₉₈	45
Table 2.2	Details of injection volumes and concentrations used in MO studies	48
Chapter 2		
Figure 3.1	Schematic representation of the expression vectors used in experiments described in this chapter	54
Figure 3.2	Whole-mount in situ hybridisation of hd mRNA in early zebrafish development	.58
Figure 3.3	Diagram summarising the creation and breeding of <i>hd</i> (1.2):EGFP transgenic zebrafish	59
Figure 3.4	Mosaic <i>hd</i> promoter-driven expression of EGFP in live F ₀ embryos at various developmental stages	60
Figure 3.5	Example of an F_0 zebrafish embryo exhibiting a high level of mosaic <i>hd</i> promoter-driven EGFP expression in neurons, myotubes and cells of the eye and heart at 30 hpf	.61
Figure 3.6	Ubiquitous <i>hd</i> promoter-driven expression of EGFP in a transgenic F_1 embryo	62
Figure 3.7	Maternal expression of EGFP in the progeny (F_2) of a self-cross between a pair of F_1 transgenic fish	62
Table 3.1	Putative TGIF and COMP1 binding sites occurring within 1.2 kb upstream of the HD ORF in human, rat, mouse, pufferfish and zebrafish	.64
Figure 3.8	Location of overlapping/adjacent putative TGIF and COMP1 binding sites within vertebrate <i>HD</i> promoters	65
Figure 3.9	Mosaic expression of expanded Htt-EGFP fusion constructs in zebrafish embryos	66

Chapter 4

Figure 4.1	Positions within the <i>hd</i> mRNA sequence targeted by antisense morpholinos <i>hd</i> MO1 and <i>hd</i> MO274
Figure 4.2	Morphological appearance of Htt-deficient zebrafish embryos76
Figure 4.3	Knockdown of an EGFP reporter and endogenous Htt levels by <i>hd</i> -targeted morpholinos
Figure 4.4	The normal pattern of apoptosis is disrupted in Htt-deficient embryos at 24 hpf80
Figure 4.5	Heterogeneous levels of apoptosis amongst embryos injected with <i>c</i> MO or <i>hd</i> MO1 in comparison to minimal levels in uninjected embryos at 19 hpf81
Table 4.1	Quantification of apoptosis levels at 19 hpf in uninjected embryos and embryos injected with either <i>c</i> MO or <i>hd</i> MO182
Figure 4.6	Htt-deficient embryos have a pale blood phenotype
Table 4.2	Dose-dependent effect of <i>hd</i> MO1 and <i>hd</i> MO2 on phenotypes associated with Htt deficiency in zebrafish embryos at 48 hpf
Figure 4.7	Swim bladder inflation is impaired in Htt-deficient embryos
Figure 4.8	Alignment of melanophores to the horizontal myoseptum is disrupted in Htt-deficient embryos
Table 4.3	Quantification of pigment disruption at 96 hpf in embryos injected with cMO, haMO1 or haMO288
Chapter 5 Figure 5.1	Position of the intermediate cell mass (ICM) in developing zebrafish embryos94
Figure 5.2	Diagram illustrating the key proteins involved in iron acquisition, and the regulation of homeostatic responses to cellular iron availability by IRE-IRP interactions
Figure 5.3	Detection of hd mRNA expression in the ICM102
Figure 5.4	Transient suppression of Hb production in response to Htt knockdown103
Figure 5.5	Histochemical staining for ferric iron, detected by DAB-enhanced Prussian blue staining105
Figure 5.6	Provision of iron to the cytoplasm rescues hypochromia and reduced yolk extension phenotypes in Htt-deficient embryos107
Figure 5.7	Levels of <i>tfr1a</i> and <i>tfr1b</i> transcripts are increased in response to Htt knockdown
Figure 5.8	Schematic model illustrating how disruption of Hb production in Htt-deficient zebrafish blood cells is rescued by provision of bio-available iron (iron-dextran) to the cytoplasm
Appendix A	Zebrafish genetic mutant strains that have a thin yolk extension phenotype similar to Htt-deficient embryos, have defects in housekeeping genes
Appendix E	3 Quantitative PCR data corresponding to Figure 5.7129

Declaration

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Amanda Lumsden

Acknowledgements

There are many people that I wish to thank for making this PhD possible and for offering support along the way.

Firstly, thankyou to the Faculty of Science, and the Centre for Molecular Genetics of Development (CMGD), for granting me a scholarship to support my PhD studies. Thankyou also to the Discipline of Genetics, greater School of Molecular Biosciences, and the CMGD for providing a supportive network of knowledge and resources, and a friendly work environment.

I would like to thank Rob Richards for being a wonderful supervisor and role-model, and for giving me the opportunity to pursue my PhD in the fascinating area of Huntington's disease genetics. Thankyou for your encouragement and support, for discussion of ideas, for giving me the freedom to follow my intuition, and for offering invaluable advice. I would also like to thank all the members of the Richards lab (past and present), for thought-provoking discussions, useful tips at the lab bench, and for being a dynamic and fun bunch of people to work with. I would especially like to thank Donna Crack and Rob for constructive advice during the preparation of this thesis, and Sonia Dayan for helping so much with the qPCR assay; your time and effort was greatly appreciated. I am also grateful to Tanya Henshall, for allowing me to present her beautiful western result in this thesis.

To my co-supervisor, Michael Lardelli, thankyou for introducing me to the wonders of zebrafish. Your help and advice was very much appreciated, especially with the initial assessment of the morphant phenotype, discussions of transgene design and scoring of apoptosis levels. I am also sincerely grateful to all the members of the Lardelli Lab for making me feel welcome in their lab, for generously offering advice, reagents, protocols and assistance, and for in-depth discussions of fish matters. In particular, thanks to Ben Tucker, Svanhild Nornes and especially Simon Wells for performing embryo injections for me, often at short notice!

I am very grateful to several other people that have made valuable contributions to this PhD project: Graham Lieschke, for reassuring discussions regarding the blood phenotype, and for confirming that it was an effect worth pursuing; Tim Cox, for suggesting Prussian blue staining as a means of visualising iron; and Steve (Ped) Pederson (statistics guru and great pal), for assistance with analyses of the qPCR data. Special thanks also to Danielle Simmons and the Lynch lab (at UCI), for allowing me to cite their unpublished findings.

I would also like to acknowledge all those who have kept me sane (ish), on a day to day basis. In particular- to Amanda for frequent coffee break debriefs, and for lending a sympathetic ear in trying times; Sonia, for being a great sounding board for ideas (and for our enjoyable singing sessions in the lab!); Alex (Sasch), for introducing the lab to good ol' Uncle Ernie (Ernest Ranglin), and for constantly surprising me with new nicknames; Edwina and Velta, for helping me draw that 'line in the sand'; and Joan Kelly for great advice on all sorts of matters. Thanks to all the other PhD students also, for moral support!

To my friends outside the department, thanks for being so supportive, and for getting my mind off the PhD every now and then, for brunches, coffees...or something stronger when required! I really appreciated it!

Thanks to all the zebrafish embryos that gave up their lives for science research!

Lastly, a very special thanks goes to my loving family for believing in me, and taking an interest in my project. Thanks for your encouragement, and ongoing support, especially during the writing period. Now I can finally say... "it's finished!!"

Abbreviations

aa:	amino acid
ALAS:	5-aminolevulinic acid synthase (as in ALAS1 and ALAS2)
AP:	alkaline phosphatase
ATP:	adenosine triphosphate
BCIP:	5-bromo-4-chloro-3-indolyl phosphate
bp:	base pairs
BSA:	bovine serum albumin
c-aconitase:	cytosolic aconitase
cDNA:	complementary DNA
CHAPS:	3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
<i>c</i> MO:	control MO
DAB:	3,3-diaminobenzidine
Dcytb:	duodenal cytochrome B
DIC:	(Nomarski) differential interference contrast
DMSO:	dimethyl sulfoxide
DMT1:	divalent metal transporter 1
DNA:	deoxyribonucleic acid
dNTP:	deoxynucleoside triphosphate
dpf:	days post fertilisation
DRPLA:	dentatorubral pallidoluysian atrophy
dUTP:	deoxyuridine triphosphate
EDTA:	ethylenediaminetetraacetic acid
EGFP:	enhanced green fluorescent protein
ELT:	Expand Long Template
ES:	embryonic stem (as in ES cells)
Fe:	iron
GABA:	γ-aminobutyric acid
Hb:	haemoglobin
HD:	Huntington's disease
<i>hd</i> MO:	MO antisense to hd mRNA (as in hdMO1 and hdMO2)
hpf:	hours post fertilisation
HPLC:	high performance liquid chromatography
Htt:	Huntingtin
ICM:	intermediate cell mass

IPTG:	isopropyl-β-D-thiogalactopyranoside
IRE:	iron responsive element
IRES:	internal ribosomal entry site
IRP:	Iron responsive protein (as in IRP1 and IRP2)
ISC:	Iron-sulfur cluster
kB:	kilobase pairs
kDa:	kilodalton
LB:	luria broth
m-aconitase:	mitochondrial aconitase
<i>mc</i> MO1:	mispair control MO
mL:	millilitre
mM:	millimolar
MO:	morpholino oligonucleotide
MQ:	MilliQ
mRNA:	messenger RNA
NBT:	nitro blue tetrazolium chloride
NEB:	New England Biolabs
ng:	nanogram
nL:	nanolitre
NMDA:	<i>N</i> -methyl-D-aspartate
ORF:	open reading frame
pA:	polyadenylation
PBS:	phosphate buffered saline
PBST:	phosphate buffered saline plus 0.1% Tween 20
PCR:	Polymerase Chain Reaction
PNRC:	perinuclear recycling compartment
POD:	peroxidase
qPCR:	quantitative PCR
RNA:	ribonucleic acid
rpm:	revolutions per minute
SAP:	shrimp alkaline phosphatase
SBMA:	Spinobulbar muscular atrophy
SCA:	Spinocerebellar ataxia (as in SCA1, SCA2 etc.)
SOC:	<u>Super Optimal Broth plus glucose (originally for catabolite</u> repression)
SSC:	NaCl (salt)/sodium citrate buffer

xii

TBE:	Tris/boric acid/EDTA buffer
TdT:	Terminal deoxynucleotide transferase
Tf:	Transferrin
TfR:	Transferrin receptor
TMR:	Tetramethylrhodamine (as in TMR red)
TUNEL:	Terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-
	end labelling
UTR:	untranslated region
UV:	ultraviolet light
YE:	yolk extension
X-Gal:	X-galactoside (5-bromo-4-chloro-3-indolyl - β -D-galactoside; BCIG)

Abstract

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder of typically mid-life onset, for which there is currently no cure. HD is one of nine neurological disorders caused by the expansion of a CAG trinucleotide repeat that encodes an extended polyglutamine tract within the respective disease proteins (which, in the case of HD, is Huntingtin). Curiously, despite these proteins having mostly widespread patterns of expression in the brain, a specific subset of neurons is preferentially affected in each disease, whilst other neurons also expressing the mutant protein are relatively unaffected. Furthermore, although the expression patterns of these disease proteins often overlap in distribution within the brain, the population of neurons that is most vulnerable differs from one disease to the next. Knowledge of what determines the specificity of neuronal vulnerability is likely to provide insight into the molecular mechanism(s) underlying the pathology in these diseases.

The aim of this work was to use the zebrafish model organism to investigate two factors hypothesised to contribute to the specificity of neuronal vulnerability in HD: 1) region-specific somatic expansion of the disease allele, and 2) disruption of normal Huntingtin (Htt) protein function. The most significant findings of this study resulted from the investigation into the normal function of Htt. Antisense morpholino oligonucleotides were used to specifically knock down Htt expression in early zebrafish development, resulting in a wide variety of developmental defects. Most notably, Htt-deficient zebrafish had pale blood due to a decrease in haemoglobin production, despite the presence of (apparently unavailable) iron within these cells. Provision of additional iron in a bio-available form to the cytoplasm restored haemoglobin production in Htt-deficient embryos. Since blood cells acquire iron via receptor-mediated endocytosis of transferrin, these results suggest a role for Htt in the release of iron from endocytic compartments into the cytosol.

Iron is required for the function of many cellular proteins and enzymes that play key roles in oxidative energy production. Disrupted iron homeostasis and decreased energy metabolism are features of HD pathogenesis that correlate to the major sites of degeneration in the HD brain. The findings of this study raise the possibility that perturbation of normal Htt function (by polyglutamine expansion) may contribute to these defects, thereby providing a novel link between Htt function and specificity of neuronal vulnerability in HD.