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Abstract 

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder 

of typically mid-life onset, for which there is currently no cure. HD is one of nine 

neurological disorders caused by the expansion of a CAG trinucleotide repeat that 

encodes an extended polyglutamine tract within the respective disease proteins (which, 

in the case of HD, is Huntingtin). Curiously, despite these proteins having mostly 

widespread patterns of expression in the brain, a specific subset of neurons is 

preferentially affected in each disease, whilst other neurons also expressing the mutant 

protein are relatively unaffected. Furthermore, although the expression patterns of these 

disease proteins often overlap in distribution within the brain, the population of neurons 

that is most vulnerable differs from one disease to the next. Knowledge of what 

determines the specificity of neuronal vulnerability is likely to provide insight into the 

molecular mechanism(s) underlying the pathology in these diseases. 

The aim of this work was to use the zebrafish model organism to investigate two 

factors hypothesised to contribute to the specificity of neuronal vulnerability in HD: 1) 

region-specific somatic expansion of the disease allele, and 2) disruption of normal 

Huntingtin (Htt) protein function. The most significant findings of this study resulted from 

the investigation into the normal function of Htt. Antisense morpholino oligonucleotides 

were used to specifically knock down Htt expression in early zebrafish development, 

resulting in a wide variety of developmental defects. Most notably, Htt-deficient 

zebrafish had pale blood due to a decrease in haemoglobin production, despite the 

presence of (apparently unavailable) iron within these cells. Provision of additional iron 

in a bio-available form to the cytoplasm restored haemoglobin production in Htt-deficient 

embryos. Since blood cells acquire iron via receptor-mediated endocytosis of 

transferrin, these results suggest a role for Htt in the release of iron from endocytic 

compartments into the cytosol.  

Iron is required for the function of many cellular proteins and enzymes that play 

key roles in oxidative energy production. Disrupted iron homeostasis and decreased 

energy metabolism are features of HD pathogenesis that correlate to the major sites of 

degeneration in the HD brain. The findings of this study raise the possibility that 

perturbation of normal Htt function (by polyglutamine expansion) may contribute to 

these defects, thereby providing a novel link between Htt function and specificity of 

neuronal vulnerability in HD. 
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