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EXTENDED ABSTRACT

Artificial neural networks (ANNs) have proven to
be extremely valuable tools in the field of water
resources engineering. However, one of the most
difficult tasks in developing an ANN is determining
the optimum level of complexity required to model
a given problem, as there is no formal systematic
model selection method. The generalisability of an
ANN, which is defined by its predictive performance
on the universe of possible data, can be significantly
impaired if there are too few or too many hidden
nodes in the network. Therefore, for an ANN to be
a valuable prediction tool, it is important that some
effort is made to optimise the number of hidden nodes.

This paper presents a Bayesian model selection
(BMS) method for ANNs that provides an ob-
jective approach for comparing models of varying
complexity in order to select the most appropriate
ANN structure. Given a set of competing models
H1, . . . ,HH , BMS is used to compare the posterior
probability that each modelHi is the true data
generating function, given a set of observed data
y. This probability is also known as theevidence
of a model and the ratio of two competing models’
evidence values, known as theBayes’ factor, can be
used to rank the competing models in terms of the
relative evidence in support of each model.

For ANNs (and other complex models), the evidence
of a model p(H|y) is analytically intractable and,
consequently, alternative methods are required to
estimate these probabilities for the competing models.
One such method involves the use of Markov chain
Monte Carlo (MCMC) simulations from the posterior
weight distribution p(w|y,H) to approximate the
evidence. It has already been shown that there
are numerous benefits to estimating the posterior
distribution of ANN weights with MCMC methods;
therefore, the proposed BMS approach is based
on such an approximation ofp(y|H), as this only
requires a simple additional step after sampling from
p(w|y,H). Furthermore, the weight distributions
obtained from the MCMC simulation provide a useful
check of the accuracy to the approximated Bayes’
factors. A problem associated with the use of posterior

simulations to estimate a model’s evidence is that the
approximation may be sensitive to factors associated
with the MCMC simulation. Therefore, the proposed
BMS method for ANNs incorporates a further check
of the accuracy of the computed Bayes’ factors
by inspecting the marginal posterior distributions of
the hidden-to-output layer weights, which indicate
whether all of the hidden nodes in the model are
necessary. The fact that this check is available is one
of the greatest advantages of the proposed approach
over conventional model selection methods, which
do not provide such a test and instead rely on the
modeller’s subjective choice of selection criterion.

The aim of model selection is to enable generalisation
to new cases. Therefore, in the case study presented
in this paper, the performance of the proposed
BMS method was assessed in comparison to the
performance of conventional ANN selection methods
on data outside the domain of the training data.
This case study, which involves forecasting salinity
concentrations in the River Murray at Murray Bridge,
South Australia, 14 days in advance, was chosen as
it had been shown previously that, if an ANN was
trained on the first half of the available data, it would
be required to extrapolate in some cases when applied
to the second half of the available data set. In this
case study, the proposed BMS framework for ANNs
was shown to be more successful than conventional
model selection methods in selecting an ANN that
could approximate the relationship contained in the
training data and generalise to new cases outside the
domain of those used for training. The Bayes’ factors
calculated were useful for obtaining an initial guide
to the most appropriate model; however, the final step
involving inspection of marginal posterior hidden-to-
output weight distributions was necessary for the final
selection of the optimum number of hidden nodes.
The model selected using the proposed BMS approach
not only had the best generalisability, but was also
more parsimonious than the models selected using
conventional methods and required considerably less
time for training.
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1. INTRODUCTION

Over the past 10-15 years, artificial neural networks
(ANNs) have proven to be extremely valuable tools
in the field of water resources engineering (Maier and
Dandy, 2000). These nonparametric empirical models
require few assumptions about the system under study,
making them well suited to modelling the poorly
understood processes that occur within water resource
systems. One of the main advantages of an ANN is
its ability to capture and learn functional relationships
contained within a sample of training (calibration)
data, such that it can then generalise and make
predictions about the population from which the data
came. This generalisation ability, or generalisability,
is measured by the predictive performance of the
trained ANN on cases not contained in the training
data set.

With an ANN, modelling the response of a systemy,
given a set of predictor variablesx, involves finding
an appropriate relationshipy = f(x,w), wheref(·)
is the function described by the ANN andw is a vector
of connection and bias weights (free parameters)
that characterise the data generating relationship.
For the types of problems modelled by ANNs, the
form of f(·) is generally not known; however, it is
often complex and nonlinear, involving hundreds or
even thousands of weights. Ideally, achieving good
generalisability would involve selecting a network
of optimal complexity, where optimality is defined
as the smallest network that adequately captures
the underlying relationship, and then estimating its
weights from the training data. However, determining
the optimal complexity is one of the most difficult
tasks in designing an ANN, as there exists no
systematic model selection method to ensure the
optimal network will be chosen (Qi and Zhang, 2001).

The flexibility in ANN complexity selection primarily
lies in selecting the appropriate number of hidden
layer nodes, which determine the number of weights
in the model. In doing this, a balance is required
between having too few hidden nodes such that there
are insufficient degrees of freedom to adequately
capture the underlying relationship, and having too
many hidden nodes such that the model fits to noise
in the individual data points rather than the general
trend underlying the data as a whole. The latter
case is referred to as overfitting, which is often
difficult to detect but can significantly impair the
generalisability of an ANN. To prevent overfitting,
cross validation during training is often used (Maier
and Dandy, 2000); however, apart from being
more susceptible to overfitting, large ANNs with
many hidden nodes are inefficient to calibrate, the
parameters and resulting predictions have a higher
degree of associated uncertainty and it is more difficult
to extract information about the modelled function

from the parameters (Reed, 1993). Therefore,
selection of the minimum number of necessary hidden
nodes can be crucial to the performance of an ANN
and its value as a prediction tool.

The most commonly used method for selecting
the number of hidden layer nodes is by trial-and-
error (Maier and Dandy, 2000), where a number of
networks are trained, while the number of hidden
nodes is systematically increased or decreased until
the network with the best generalisability is found.
The generalisability of an ANN can be estimated
by evaluating its ‘out-of-sample’ performance on an
independent test data set using some ‘goodness of fit’
measure, such as the root mean squared error (RMSE)
or the coefficient of determination (r2). However, this
may not be practical if there are only limited available
data, since the test data cannot be used for training.
Furthermore, if the test data are not a representative
subset, the evaluation may be biased. Alternatively,
information criteria which measure ‘in-sample’ fit (i.e.
fit to the training data) but penalise model complexity,
such as Akaike’s information criterion (AIC) or the
Bayesian information criterion (BIC), can be used
to estimate an ANN’s generalisability. However, it
has been suggested that these criteria overly penalise
ANN complexity (Qi and Zhang, 2001). A limitation
of both of these in-sample and out-of-sample model
selection methods is that they assume a globally
optimal solution has been found during training. In
reality, ANNs may be sensitive to initial conditions
and training parameters and can often become trapped
in local minima (Reed, 1993). Therefore, evaluation
of the model structure may be incorrectly biased by
the weights obtained.

The aim of this paper is to present a model
selection method for ANNs that provides an
objective approach for comparing models of varying
complexity in order to select the most appropriate
ANN structure. The proposed framework is based
on Bayesian methodology and Markov chain Monte
Carlo (MCMC) sampling and uses sampled weight
vectors from the posterior weight distribution to
estimate theevidencein support of a given ANN
structure. An advantage of the Bayesian approach is
that it is based on the posterior weight distribution
and, thus, is not reliant on finding a single optimum
weight vector. Furthermore, the evidence of a
model is evaluated using only the training data and
therefore, there is no need to use an independent
test set. A real-world water resources case study is
used to demonstrate the proposed method, where it is
compared with conventional model selection methods.
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2. METHODS

2.1 Bayesian Methodology

The concept behind the Bayesian modelling frame-
work is Bayes’ theorem, which states that any prior
beliefs regarding an uncertain quantity are updated,
based on new information, to yield a posterior
probability of the unknown quantity. In terms of
an ANN, Bayes’ theorem can be used to estimate
the posterior distribution of the network weights
w = {w1, . . . , wd} given a set ofN target data
y = {y1, . . . , yN} and an assumed model structureH
as follows:

p(w|y,H) =
p(y|w,H)p(w|H)

p(y|H) =
∫

p(y|w,H)p(w|H)dw
(1)

In this equation,p(w|H) is the prior distribution,
which describes any knowledge of the weight
values before observing the data;p(y|w,H) is
known as thelikelihood function and is obtained
by comparing the observed datay to the model
outputs ŷ. This is the function through which
the prior knowledge ofw is updated by the
data. The denominatorp(y|H) is a normalising
constant known as the marginal likelihood, or
evidence, of the model. When estimating the
posterior of the weights, it is common to ignore
this term, instead writing (1) as the proportionality
p(w|y,H) ∝ p(y|w,H)p(w|H). However, when
using Bayesian methods for model selection, the
model evidence becomes very important.

2.2 Bayesian Model Selection (BMS)

Given a set ofH competing models, Bayes’ theorem
can be rewritten to infer the posterior probability that
each modelHi, wherei = 1, . . . ,H, is the “true”
model of the system given the observed data, as
follows:

p(Hi|y) =
p(y|Hi)p(Hi)

p(y) =
∑H

j=1 p(y|Hj)p(Hj)
(2)

wherep(Hi) is the prior probability assigned toHi

andp(y|Hi) is the evidence of the model, which is the
denominator in (1). It is unlikely that any model will
actually be the “true” model of the system; however,
the Bayes’ approach enables the relative merits of
the competing models to be compared in an objective
manner.

It is generally assumed that the prior probabilities
assigned to the different models are approximately
equal, as a model thought to be highly implausible
would not even be considered in the comparison.

Furthermore, even without a prior preference for
simple models, the evidence of a model automatically
favours simple theories, as discussed in MacKay
(1995). Therefore, (2) can be simplified to:

p(Hi|y) =
p(y|Hi)∑H

j=1 p(y|Hj)
∝ p(y|Hi) (3)

which states that the relative probabilities of the
competing models can be compared based on their
evidence. The ratio of two models’ posterior
probabilities is called theBayes’ factorBF , which,
when assuming equal prior probabilities, is defined
by:

BF2,1 =
p(H2|y)
p(H1|y)

=
p(y|H2)
p(y|H1)

(4)

In order to interpret the information provided by
BF2,1 in terms of the evidence against model
H1 in favour of model H2, Kass and Raftery
(1995) suggest using the interpretive scale given in
Table 1. The problem of BMS then becomes one of

Table 1.Bayes’ factor interpretive scale

2 loge BF2,1 Evidence againstH1

0 to 2 Weak
2 to 6 Positive
6 to 10 Strong
> 10 Very strong

estimating the evidence of each competing model and
ranking the models according to their Bayes’ factors.
Nevertheless, this task is far from trivial. As shown
in (1), the evidence can be evaluated by the integral
p(y|H) =

∫
p(y|w,H)p(w|H)dw; however, except

for the simplest of models, this integral is analytically
intractable. Therefore, alternative methods are needed
to estimatep(y|H).

2.3 Proposed BMS Framework

In order to estimatep(y|H), (1) can be rearranged as
follows:

p(y|H) =
p(y|w,H)p(w|H)

p(w|y,H)
(5)

However, for ANNs (and other complex models),
direct evaluation of this equation is impossible, as the
posterior weight distributionp(w|y,H) is analytically
intractable. Recently, Markov chain Monte Carlo
(MCMC) methods for simulating observations from
posterior distributions have increased in popularity.
As discussed in Kingston et al. (2005), there
are numerous benefits to estimating the posterior
distribution of ANN weightsp(w|y,H) with MCMC
methods. Therefore, the proposed BMS approach
is based on approximatingp(y|H) using MCMC
posterior simulations, as this only requires a simple
additional step after sampling fromp(w|y,H).
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Furthermore, the weight distributions obtained from
the MCMC simulation may provide a useful check for
the accuracy to the approximated Bayes’ factors.

2.3.1 MCMC Sampling of the Posterior Weights

The first step in the proposed framework involves
selecting an appropriate likelihood function and prior
weight distribution. Assuming that the residuals
between the observed data and the model outputs
are normally and independently distributed with
zero mean and constant varianceσ2, the likelihood
function is given by:

p(y|w, σ2,H) =

1√
2Πσ2

N∏
i=1

exp

{
− [yi − f(xi,w)]2

2σ2

}
(6)

In this study, a wide uniform prior on the range
[-100,100] was assumed for each weight in order to
specify an equal probability of a weight taking on
positive or negative values, but an otherwise lack of
prior knowledge about the weights.

As the likelihood function given by (6) depends not
only on the value ofw, but also on the value of
the varianceσ2, a two-step MCMC procedure was
used in this study to sample bothw andσ2 from the
posterior distribution. This involved the use of the
two simplest MCMC algorithms: the Gibbs sampler
and the Metropolis algorithm. In the first step of
this procedure, the variance parameterσ2 is held
constant while the weightsw are sampled from the
distribution:

p(w|σ2,y,H) ∝ p(y|w, σ2,H)p(w,H) (7)

using a Metropolis sampling step. As it is
generally difficult to sample fromp(w|σ2,y,H)
directly, the Metropolis algorithm makes use of a
simpler, symmetrical distributionQ(w∗|wt) (often
a multinormal distribution with meanwt), known
as the ‘proposal’ distribution, to generate candidate
weight vectorsw∗ based on the current weight vector
wt, thus forming a random walk Markov chain
within the weight space. An adaptive acceptance-
rejection criterion is employed such that this sequence
continually adapts to the posterior distribution of the
weights. This works by only accepting the candidate
weight state according to the probabilityα, given by:

α(w∗|wt) = min
[
p(y|w∗,H)p(w∗|H)
p(y|wt,H)p(wt|H)

, 1
]

(8)

If w∗ is accepted,wt+1 is set equal tow∗, otherwise
wt+1 = wt and the process is repeated. In this study,
rather than using the straight Metropolis algorithm, a
variation developed by Haario et al. (2001) called the
adaptive Metropolis (AM) algorithm was used, as it

has been found to have a number of advantages over
other variants of the Metropolis algorithm in terms
of efficiency and ease of use (Marshall et al., 2004).
The AM algorithm was developed to overcome the
problems experienced using the straight Metropolis
algorithm associated with selecting an appropriate
covariance for the proposal distribution. In this
algorithm, the covariance of the proposal distribution
is updated at each iteration based on all previous
states of the weight vector, ensuring that information
gained about the proposal distribution throughout the
simulation is used to increase the efficiency of the
algorithm and improve the convergence rate.

In the second step of the MCMC procedure, the
weights are held constant whileσ2 is sampled from
the full conditional distribution:

p(σ2|w,y,H) ∝ p(y|w, σ2,H)p(σ2) (9)

using the Gibbs sampler. To enable straightforward
sampling fromp(σ2|w,y), a noninformative conju-
gate inverse chi-squared priorσ2 ∼ χ−2 (0.1, 0.01)
was assumed. Given sufficient iterations, the sampled
sequences should converge to a stationary distribution.
From this point onwards, it can be considered
that the sampled parameters are generated from the
posterior distribution and can be used to a predictive
distribution for each given input pattern.

2.3.2 Computation of Evidence

There are a number of methods available for
approximating the evidence of a model using posterior
simulations (see DiCiccio et al. (1997)). In this
study, the framework proposed by Chib and Jeliazkov
(2001) was used due to its simplicity and ease of
programming. By taking the logarithm of (5) at some
fixed pointŵ, the following expression is obtained:

log p(y|H) = log p(y|ŵ,H) + log p(ŵ|H)
− log p(ŵ|y,H) (10)

Thus, if ŵ is a sampled weight vector obtained using
the above MCMC procedure, the only unknown in
this equation islog p(ŵ|y,H). Therefore, estimation
of the evidence is reduced to estimating the posterior
weight density at a single point̂w. Chib and Jeliazkov
(2001) do this using the following equation:

p(ŵ|y,H) =
K−1

∑K
i=1 α

(
ŵ|wi

)
Q

(
ŵ|wi

)
J−1

∑J
j=1 α (wj |ŵ)

(11)
where wi are sampled draws from the posterior
weight distribution,wj are sampled draws from the
proposal distributionQ

(
wi|ŵ

)
andα(·) is given by

(8). Chib and Jeliazkov (2001) note that while the
choice ofŵ is arbitrary, for estimation efficiency it
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is appropriate to choose a point that has high posterior
density. Therefore, in this study, the median of the
posterior distribution was chosen. Furthermore, they
state that althoughJ and K may be different, in
practice they are set to be equal.

2.3.3 Checking Bayes Factors with Posterior
Weight Distributions

There may be a number of problems associated with
estimates ofp(y|H) based on posterior simulations,
for reasons discussed in DiCiccio et al. (1997).
Therefore, in this framework, it is proposed that
the Bayes’ factors calculated using the approximated
evidence values be used as a guide for model
selection, but a final check of the model rankings be
carried out using the posterior weight distributions.
If the marginal posterior distribution of a hidden-
to-output layer weight includes the value zero, this
suggests that the associated hidden node may be
pruned from the network without affecting model
performance. If there are more than one hidden-
to-output layer weights with marginal posterior
distributions that include zero, scatter plots of pairs
of these weights should be inspected to determine
whether the joint distribution of the weights passes
through the origin (0,0), which would indicate that
both weights in the pair may be pruned.

3. CASE STUDY

The aim of model selection is to enable generalisation
to new cases. In this case study, the performance
of the proposed BMS method is compared to that of
conventional ANN selection methods on data sampled
from a different domain of the data-generating
distribution than the training data. In other words, the
model selection methods are considered with respect
to extrapolationsor novel predictions. The case
study chosen for this was that of forecasting salinity
concentrations in the River Murray at Murray Bridge,
South Australia, 14 days in advance. This case study
was also investigated by Bowden et al. (2002, 2005),
who used approximately half of the available data
(from 1 December 1986 to 30 June 1992) to develop
an ANN, while the remaining data (from 1 July 1992
to 1 April 1998) were reserved to simulate a real-
time forecasting situation using the developed ANN.
By clustering the data, they identified that the data
set used to perform the real-time simulation contained
two regions of uncharacteristic data that were outside
the domain of the data used to develop the model, thus
it was known that the model would have to extrapolate
in these regions.

Similar to Bowden et al. (2002, 2005), data from
from 1 December 1986 to 30 June 1992 were used

in this study for model development and data from
1 July 1992 to 1 April 1998 were used to evaluate
the performance of the model selection methods.
The same 13 model inputs used by Bowden et al.
(2005) were also used in this study and included
salinity, river level and flow data at various lags and
locations in the river. The model development data
(period from 1 December 1986 to 30 June 1992) were
further divided into training (80%) and test (20%) data
subsets, which were used for training the models and
evaluating out-of-sample performance, respectively.

In the first part of the investigation, conventional
ANN development and model selection methods
were applied. This involved a using trial-and-error
procedure to select the appropriate model structure,
beginning with a network with two hidden nodes
and successively increasing the number of hidden
nodes in increments of two for each trial, until
there was no significant improvement in in-sample
performance. For each model, the hyperbolic tangent
(tanh) activation function was used on the hidden layer
nodes, while a linear activation function was used on
the output layer. In order to decrease the networks’
sensitivity to initial conditions, a genetic algorithm
(GA) was used to train the models. Additionally,
to prevent overfitting, the test set was used for cross
validation during training. Once trained, the RMSE
and r2 criteria were used to measure out-of-sample
performance on the test data, whereas AIC and
BIC were used to evaluate in-sample performance,
while penalising complexity, on the training data.
In the second part of the investigation, the models
investigated in the first part of the study were trained
and compared using the proposed BMS method. For
each model, the MCMC sampling algorithm was
initialised with the weights obtained using the GA.
The test data were not required using this method
and, therefore, could have been added to the training
data. However, in order to carry out a fair comparison
of the model selection methods, this was not done
in this study. Finally, the “optimal” models selected
according to the various criteria were evaluated on
the second period of data (from 1 July 1992 to
1 April 1998) to assess the ability of the different
model selection approaches to select a model with the
ability to generalise to novel cases.

4. RESULTS & DISCUSSION

The trial-and-error model selection approach resulted
in 5 ANNs being developed, containing between 2 and
10 hidden nodes. Additional hidden nodes beyond
10 were considered not to significantly improve
in-sample fit and were therefore not considered.
The results obtained using the conventional model
selection methods are shown in Table 2, where
the “optimal” model selected according to each
criterion is shown in bold font. The results in this
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table demonstrate how conventional model selection
methods can be inconclusive, as the in-sample
performance measures (AIC and BIC) indicate that
an 8 hidden node ANN is the best, whereas the
out-of-sample performance measures (RMSE andr2)
indicate that a 10 hidden node ANN is optimal. As
there is no general consensus on which is the better
model selection criterion, it is difficult to determine
which model to choose.

Table 2. Results obtained using conventional model
selection methods

No. of AIC BIC RMSE r2

hidden nodes
2 12348 12507 46.46 0.936
4 12435 12748 38.79 0.955
6 11582 12050 39.99 0.955
8 11319 11941 41.89 0.949
10 11503 12278 35.90 0.962

The models developed under the BMS framework
were ranked according to the computed Bayes’
factors, as shown in Table 3, where the ranking of
each model is given together with the log Bayes’
factor calculated by comparison with the highest
ranked model (i.e. the evidence against the model
in favour of the Rank 1 model). It can be seen
here that the strongest evidence was in favour of a
6 hidden node model. Apart from the 10 hidden
node ANN, the rankings given in this table appear
to be logical, with the overly simplistic and complex
models being ranked the lowest. It was considered
that the surprising result for the 10 hidden node model
may have been the result of inappropriate convergence
of the MCMC algorithm due to its large size; however,
the accuracy of the calculated Bayes’ factor was
checked in the final step of the BMS approach, where
the marginal posterior hidden-to-output layer weight
distributions were inspected for the 4, 6 and 10 hidden
node ANNs. These are shown in Figure 1 for the 6
hidden node model and, as it can be seen, the marginal
posterior distributions for the weights exiting hidden
nodes 1 and 2 both contained the value zero. A scatter
plot of these weights (Figure 2) shows that the joint
distribution of the weights passes through the origin,
indicating that both weights may be pruned from the
network. Seven of the marginal posterior hidden-to-
output layer weight distributions for the 10 hidden

Table 3.Bayes factor model rankings

Rank No. of 2 loge

hidden nodes BFRank 1,Rank i

1 6 –
2 4 11.84
3 10 14.89
4 2 21.63
5 8 33.82

node ANN included zero. When scatter plots of
these weights were inspected, it was identified that 4
hidden nodes could be pruned as the joint distribution
of weights exiting these nodes passed through the
origin. None of the marginal posterior hidden-to-
output layer weight distributions for the 4 hidden node
ANN contained the value zero; therefore, the 4 hidden
node model was selected as the optimal structure by
the BMS method.
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Figure 2. Scatter plot of joint weight distribution

Shown in Table 4 are the model performance
results obtained on the second period of data
using the “optimal” models as selected by the
conventional in- and out-of-sample selection criteria
and the proposed BMS approach. The RMSE
and r2 values were calculated based on the single-
valued (deterministic) outputs obtained using the
GA estimated weights, as well as the mean of
the (Bayesian) predictive distribution obtained using
the weight vectors sampled from the posterior
distribution. For comparison, the results obtained by
Bowden et al. (2005) using a 32 hidden node ANN are
also presented. It is not surprising that these results
are similar for all of the models, as cross validation
was used to prevent overfitting in the deterministic
case, and in the Bayesian case, the marginal posterior
distributions of unnecessary weights often included
zero, which effectively removed them from the
network. However, overall, it can be seen that the 4
hidden node ANN trained and selected using the BMS
method had the best generalisation ability on this new
data set. Furthermore, this was the most parsimonious
model (i.e. the simplest explanation of the system)
and the time required for training was significantly
less than that required for the larger models (65–74%
less in the Bayesian case and 85–87% less in the
deterministic case). The fact that the performance of
the 4 hidden node ANN based on the posterior weight

Table 4. Performance of selected models on second
period of data (from 1 July 1992 to 1 April 1998)

No. of Bayesian Deterministic
hidden nodes RMSE r2 RMSE r2

4 78.14 0.885 99.70 0.845
8 85.16 0.865 93.68 0.866
10 82.82 0.872 95.95 0.864

32 (Bowden et al., 2005) 95.0 –
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Figure 1. Marginal posterior hidden-output layer weight distributions

distribution was considerably better than that obtained
using the deterministic weights, also highlights the
benefits of the Bayesian weight estimation approach.

5. CONCLUSIONS

The BMS framework for ANNs presented in this
paper was shown to be more successful than
conventional model selection methods in selecting
a parsimonious ANN that could approximate the
relationship contained in the training data and
generalise to new cases outside the domain of those
used for training. While the Bayes’ factors used in the
approach provide a good initial guide for selecting the
appropriate number of hidden nodes, the calculation
of these values can be sensitive to factors such
as convergence of the MCMC posterior simulation
algorithm. Therefore, the final step in the proposed
BMS framework, involving inspection of marginal
posterior hidden-to-output weight distributions, is
extremely important in selecting the appropriate
model. The fact that this check is available is one
of the greatest advantages of the proposed approach
over conventional methods, which do not provide such
a test and instead rely on the modeller’s subjective
choice of selection criterion.

6. REFERENCES

Bowden, G., H. Maier, and G. Dandy (2002), Optimal
division of data for neural network models in water
resources applications,Water Resources Research,
38(2), 1010.

Bowden, G. J., H. R. Maier, and G. C. Dandy (2005),
Input determination for neural network models in
water resources applications. Part 2. Case study:
forecasting salinity in a river,Journal of Hydrol-
ogy, 301(1-4), 93–107.

Chib, S., and I. Jeliazkov (2001), Marginal likelihood
from the Metropolis-Hastings output,Journal of
the American Statistical Association, 96(453),
270–281.

DiCiccio, T. J., R. E. Kass, A. Raftery, and L. Wasser-
man (1997), Computing bayes factors by com-
bining simulation and asymptotic approximations,
Journal of the American Statistical Association,
92(439), 903–915.

Haario, H., E. Saksman, and J. Tamminen (2001),
An adaptive Metropolis algorithm,Bernoulli, 7(2),
223–242.

Kass, R. E., and A. E. Raftery (1995), Bayes factors,
Journal of the American Statistical Association,
90(430), 773–795.

Kingston, G. B., M. F. Lambert, and H. R. Maier
(2005), Bayesian training of artificial neural net-
works used for water resources modeling,Water
Resources Research(In press).

MacKay, D. J. C. (1995), Probable networks and plau-
sible predictions - a review of practical Bayesian
methods for supervised neural networks,Network:
Computation in Neural Systems, 6(3), 469–505.

Maier, H. R., and G. C. Dandy (2000), Neural net-
works for the prediction and forecasting of wa-
ter resources variables: a review of modelling is-
sues and applications,Environmental Modelling
and Software, 15(1), 101–124.

Marshall, L., D. Nott, and A. Sharma (2004), A com-
parative study of Markov chain Monte Carlo meth-
ods for conceptual rainfall-runoff modeling,Water
Resources Research, 40(2), W02501.

Qi, M., and G. P. Zhang (2001), An investigation of
model selection criteria for neural network time
series forecasting,European Journal of Opera-
tional Research, 132(3), 666–680.

Reed, R. (1993), Pruning algorithms - a survey,IEEE
Transactions on Neural Networks, 4(5), 740–747.

1859




