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Abstract

The design and management of organised systems, comprised of dynamic interde-
pendent collectives of autonomous agents, is the kind of problem that the discipline
of complex systems is intended to address. Nevertheless, conventional model-based
applications of complex systems may be of limited utility when the problem is also
data-poor and soft. In this case, a quantitative model may be at best meaning-
less; at worst harmful. Systems approaches, such as soft systems methodologies,
have been developed that provide some guidance in this domain. However, these
alternatives do not utilise the exact techniques of complex systems, preferring to
abandon mathematical representations altogether. It is the aim of this thesis to
advance a “conceptual analysis” approach to complex systems design that exploits
deep insights from the mathematics of complex systems, without building explicit
models of the underlying system. It is argued that this approach can extend the
domain of applicability of the discipline of complex systems into situations where
quantitative data is unavailable, and human and social factors are significant.

Conceptual analysis of complex systems is inherently multidisciplinary, because
it is broader than the foundations of any single conventional discipline. This is
reflected in the structure of this thesis, which spans the philosophy, theory and
application of complex systems. Part I on systems philosophy develops an un-
derstanding of representation, which sheds light on the utility and limitations of
models. The history of the systems movement is then surveyed, systemism is dis-
tinguished from both individualism and holism, and ‘system’ is defined. Complex
systems is contrasted with both early systems theory and contemporary systems
approaches.

Part II on complex systems theory firstly relates the major theoretical concepts
within a rigourous information theoretical framework. They include complexity,
edge of chaos, self-organisation, emergence, adaptation, evolution and self refer-
entiality. The central systems concept – emergence – is then examined in depth
beyond its information theoretic interpretation, leading to a concise definition of
emergent properties and emergence. A new framework for understanding emer-
gence in terms of scope, resolution and state yields substantial novel insights. It
is shown that emergence is coupled to scope, in contrast to the conventional ex-
planation that relates levels of description.

Part III applies the preceding philosophical and theoretical framework to real-world
problems in the defence and security arena. In the first example, the theory of
multi-scale complexity reveals structural impediments to success for conventional
force structures in asymmetric warfare, such as Operation Iraqi Freedom. The
second example analyses the capability development process, which is responsible

vi



Abstract

for transforming the security needs of Government into equipment purchasing de-
cisions. The analysis produces practical recommendations for improvements that
address the underlying complexity of the problem. Reflections in the conclusion of
this thesis focus on the interrelations between philosophy, theory and application.
As the individual contributions of this thesis are woven into a single tapestry, they
demonstrate the utility of a multidisciplinary approach to complex systems design.
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Foreword

Mathematics is not a careful march down a well-cleared highway, but
a journey into a strange wilderness, where the explorers often get lost.
Rigour should be a signal to the historian that the maps have been made,
and the real explorers have gone elsewhere.

William S. Anglin

Whilst this thesis and my background are notionally in applied mathematics, I
think the multidisciplinary label is more appropriate. The interdisciplinary pass-
port of complex systems has provided me with the freedom to cross disciplinary
boundaries frequently enough that distinctions between philosophy, mathematics
and science seem to be as much a matter of style as substance. One of the great
drawbacks of the expansion of human knowledge is the proportional pressure on
the individual to specialise in only one “language game”, when any messy real
world problem requires contributions across many specialties to uncover effect-
ive solutions. Even real world problem solving, or “action research”, is itself a
specialty! The compartmentalisation of knowledge into disjoint pigeon-holes by
the Academic System has produced legions of subject matter experts, armed with
vocal barrages of well-rehearsed critiques, ready to defend their turf against the
occasional generalist and more frequently migrating interdisciplinarian (often a dis-
illusioned physicist) that dares to “swim outside their lane”. A systemic cultural
bias towards depth over breadth is just one of the barriers to multidisciplinary
research.

To me, the great attraction of complex systems is the opportunity to learn in a
direction lateral to the usual decomposition of scientific knowledge. This is still
a process of specialisation, but the complex systems framework provides signific-
antly more wriggle-space, as well as a fresh perspective on some of the most ex-
citing challenges in science and engineering. I share with Gell-Man the belief that
complex systems is capable of constructing bridges between the specialised repres-
entations of relatively isolated scientific disciplines. These links have the potential
to improve communication and understanding, thereby strengthening the web of
science. Complex systems can also help to interpret the relationships between the
sciences, by accounting for emergence in a way that is neither reductionist nor
holist – a topic which I address in this thesis.

Complex systems is a field that can present itself as an aspiring politician, en-
igmatic in its attempt to be all things to all people. Popular science books on
complexity enjoy a higher profile than seminal papers in the field, and are often
a researcher’s first exposure and primary impression of complex systems. The
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Foreword

success of the likes of Waldrop [319], Holland [153, 154], Lewin [204] and Casti
[76] in enthusiastically informing the public about complexity is to be applauded.
However, a brief survey of the foundational concepts: complexity, emergence, ad-
aptation, self-organisation and co-evolution, reveals not just a lack of agreement
regarding definitions, but often a reliance on definition by intuition or by example.
Such definitions either assert that we know Complexity when we see it (except
when we disagree), or provide a list of things and proclaim them to be Complex.
Neither strategy involves any justification of the definition, and both are vacuous.
Any reader who accepts these concepts is really only accepting the preconceptions
they brought to the reading1, which implies that different readers will interpret the
same concept in as many ways as there are different backgrounds. This is symp-
tomatic of any field in its infancy, but clarity must be a priority for the research
agenda of complex systems. This is not to say that complex systems requires a
single foundation or perspective, but to emphasise that the danger of not having
well-defined concepts is incoherence. The hyperbole surrounding complex systems
buzzwords and catch phrases, none more prevalent and misleading than the “edge
of chaos”, can only result in the misapplication of complex systems models out of
context without understanding the assumptions of the original models. This aspect
of complex systems is most manifest within the “complexity management” literat-
ure, where a number of gurus peddle management processes using complexity as
a metaphor2.

At the other end of the spectrum, some traditionally hard – and often labelled
reductionist – areas of science such as statistical mechanics are associating their
research with complex systems. This is puzzling when, according to Bar-Yam [25,
p. 91], a complex system can be defined as a system where the assumptions of ther-
modynamics do not hold. One could rather cynically suggest the involvement of
theoretical physicists in complexity is motivated by the funding that fashionable
interdisciplinary research attracts, rather than a genuine commitment to emer-
gence and self-organisation, or agent based modelling. However, another way of
viewing this development is that statistical mechanics is starting to ask questions
beyond the properties of simple ergodic materials in equilibrium, moving from
‘thermostatics’ towards a genuine theory of thermodynamics. As more complex
structures can be treated within a statistical mechanical framework, these tools
will provide a new understanding of how systems can increase in organisation and
persist far from equilibrium.

Between these two extremes, a remarkably diverse array of research is conducted
under the auspices of complex systems, and this diversity is a source of great
strength. I like to think of complex systems as almost orthogonal to and entangled
with disciplinary science, which suggests that any attempt to demarcate simple
versus complex systems is ill conceived. Instead, it is better to view complex
systems as specialising in the study of organisation and relationships, in the global
implications of structure at multiple scales. Some simple structures are already well
treated within disciplinary science, in which case the only contribution of complex

1One is reminded of Sartre’s [274, p 17] critique of Marx: “I found everything perfectly clear,
and I really understood absolutely nothing. To understand is to change, to go beyond oneself.
This reading did not change me.”

2See for example [86, 221, 273]. For more insightful discussions of management theory and
complexity see the journal Emergence:Complexity and Organisation.
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systems is to make connections with equivalent structures in other disciplines that
may benefit from analogous techniques.

But the real work for complex systems is to extend our knowledge of how structures
can change in organisation, and how increasingly complex structures can continue
to be analysed even when traditional techniques fail. General insights into the
nature of organisation, including appropriate mathematical techniques – which
must always be supplemented with discipline-specific knowledge – can enable dis-
ciplinary science to progress beyond simple models and analytical techniques that
fail to fully capture structures in space and time. When someone says that x is a
complex system, I interpret this as a claim that conventional approaches to mod-
elling the system have failed to capture an aspect of the system’s behaviour that
is considered essential to the modeller. Consequently, when at least one significant
conventional assumption is revised, this should count as a complex systems ap-
proach. And when a complex systems approach is generalised beyond the confines
of its original discipline, this should count as a contribution to complex systems
theory.

Throughout my thesis I have tried to balance application with inquiry. Applica-
tion, in the spirit of the engineer, seeks to proceed with building more concrete
instantiations of ideas in order to evaluate the ability of new theory to make a dis-
cernable difference to people’s lives. Inquiry, in the spirit of the philosopher, seeks
to question how the framework the engineer builds to help solve problems may con-
strain thinking and create its own set of problems. Without a deep understanding
of both perspectives, the increasingly specialised armchair of contemporary philo-
sophy may appear to the engineer to have nothing to contribute to real-world
problems. Meanwhile, science and engineering may appear to the philosopher as
merely a new dogmatic techno-utopian cult3, a secularised mysticism that places
Mother Nature in the vacuum left by the exorcism of God from philosophy begin-
ning with Hume. Unfortunately, specialists at either end of the applied/inquiry
spectrum commonly hold these misconceptions – perhaps to justify claims for the
superiority of their own perspective. Of course, we all know that inquiry and ap-
plication are opposite sides of the knowledge development coin; it is only because
the System encourages specialisation that their relationship is viewed in predom-
inantly competitive terms.

So this is the Unique Selling Point of my thesis: I take an end-to-end systems
view of the development of knowledge, from philosophy to design via complex sys-
tems theory. Thus my approach is inherently multidisciplinary, because it develops
knowledge about the whole that is distinct from the knowledge contained in each
of the disciplinary parts. Whilst each part of my thesis could have been developed
to a greater degree of sophistication by specialising in only that area, this would
necessarily sever the connections between the philosophy and application of com-
plex systems that are surfaced in a multidisciplinary treatment. My Motivation
can be summarised as: to develop novel representations and theories that have an
impact on how real world systems are designed and implemented.

On Method, where possible I have chosen to align the questions I ask with the
“exact sciences”, and I expect substantial grounds to be given before directly

3I owe this turn of phrase to Darryn Reid.
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contradicting working scientific hypotheses. This is a methodological decision: it
is not based on metaphysical belief in the entities of the exact sciences, but on the
belief that to be anti-scientific – by erecting barriers to scientific investigation – is
almost always unhelpful. At the same time, science is not reflexive: it cannot be
used to legitimate itself. Additionally, in my chosen application domain – defence
science – the most important problems are messy, data poor and inherently soft. In
order to discuss foundations and address real world problems, it will be necessary to
operate outside the comfort zone of exact science, and be satisfied with qualitative
or conceptual analysis. A commitment to multidisciplinarity also demands that
the temptation to reduce all explanations to a single foundational perspective is
staved off.

On Convention, I will depart from the scientific style of the impartial third
person: ‘we conclude’, ‘this study opposes’, etc., for two reasons. On purely
pragmatic grounds, distinguishing between my personal research and conclusions,
and the research that ‘we’ have jointly undertaken – my collaborators and I –
clarifies my contribution for the examiner. Also for clarity, instead of using ‘we’
to refer to ‘the readers and/or I’ eg. ‘we may ask’, I will write ‘one may ask’.
The deeper reason behind this departure, is because the process of knowledge
development is inherently personal – it depends essentially on personal judgement.
This can be papered over and obscured by impersonal reporting, which only serves
to promote a positivist interpretation of science.

In the interests of clear communication I have included precise plain English defin-
itions of technical terms in the Glossary, the utility of which hopefully exceeds its
dryness. When a new term is introduced that has a technical meaning, it is under-
lined, as are cross-references within the Glossary. Use of the Glossary is entirely
optional, since the more important definitions are also developed in the body of
the thesis.
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Chapter 1

The Model-based Approach to
Complex Systems

No self-respecting thesis on complex systems would fail to include an
agent based model. This chapter presents a typical agent based sim-
ulation of a complex socio-technical system, comparing the effective-
ness of direct and indirect control measures in the so-called Global
War on Terror. Conclusions are reached regarding the effectiveness of
control in the face of naturally arising feedback loops, which are con-
ceptual devices that attempt to explain the symptom of unintended
consequences. I then pause to critique this study, which raises the six
questions that motivate my thesis.



1.1. Introduction

1.1 Introduction

A journey of two hundred pages begins with a single study. This study is the first
agent based model that I published during my candidature, and one that I found
increasingly difficult to retain within the body of my thesis, as my subsequent
research revealed a host of näıve presuppositions my well-intentioned study had
unwittingly incorporated. Even if the more superficial problems could be addressed
by rewording the explanatory text, I remained uncomfortable with the model itself.
This prelude provides a fitting home for this study. I hope it will become apparent
to the reader that my simple model raises many more questions than it answers.
These questions provide the motivation for my thesis. I hope that you will find the
six questions I promise to address sufficiently compelling to accompany me on my
journey through philosophy and complex systems theory, towards an alternative
approach to real world applications.

1.1.1 Novel contributions

The study presented in the first section of this chapter is based on:

[269] A. J. Ryan and A. Grisogono. Hybrid Complex Adaptive Engineered Systems:
A Case Study in Defence. Interjournal, 2004.

Our original contributions are:

1. A brief historical study of unintended consequences in defence and security;

2. An agent based model of terrorism demonstrating that direct control can
produce unintended consequences, which may be avoided by implementing
indirect controls.

My role in this work was:

1. After the initial meeting to set the scope of the paper, I performed all of this
work.

The critique I present in the second half of this chapter has not been published
elsewhere. The positive contributions of my critique, which arise from addressing
the questions it poses, will constitute the majority of my thesis.

1.2 Unintended Consequences in Defence Oper-

ations

In the tumult and uproar the battle seems chaotic, but there is no dis-
order; the troops appear to be milling about in circles but cannot be
defeated. An apparent confusion is a product of good order... Order or
disorder depends on organization.

Sun Tzu
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While the beginnings of understanding warfare as a complex adaptive systems
dates more than 2500 years to the writings of Sun Tzu, recently a growing body of
literature describes the broader aspects of defence systems and operations in terms
of complex systems science [155, 165–167, 199, 200, 227, 262, 276]. Previous work
[139] illustrates that a defence force exhibits the basic properties of a complex
adaptive system, and identifies adaptive mechanisms in natural systems at the
levels of organism, species and society. Analogous mechanisms exist within defence
systems at the levels of adaptive systems, capability development and defence
within society, which facilitate adaptation through learning, evolving and cultural
change respectively. The defining difference for designed complex adaptive systems
is the existence of an externally imposed purpose. Therefore the concept of fitness
for designed systems is determined not by their ability to survive and propagate,
but to fulfil that purpose - an abstract concept that can itself evolve over time.

The defence systems under consideration are distributed in nature and highly
autonomous, yet operate under the centralised control of human commanders and
evolve according to the intentions and perceptions of their human designers. This
study explores the interactions between centrally imposed controls and the underly-
ing complex adaptive system. Issues of predictability and unintended consequences
are discussed with reference to historical studies of warfare. A contemporary ter-
rorist scenario is developed as an Agent Based Model (ABM) to explore the effect
of constraining local interaction rules through centralised control. Two alternative
control mechanisms are contrasted in terms of their effect on system behaviour.

1.2.1 Design issues

There are a number of issues related to the design of complex systems. Lucas
[213] identifies a list of potential problems for implementing complexity theory as
a computing paradigm, many of which are relevant to designing complex systems
in defence. One problem is how to identify and repair inappropriately evolved
systems, meaning those systems that fail to meet their design objectives. This
is clearly a valid concern, since brains can suffer mental illness, species become
extinct and market economies crash. In each case, the feedback mechanisms have
pushed the system into an attractor state (or path/transient) that is adverse to
some fitness concept (such as continued survival or propagation) and unless these
mechanisms are altered or supplemented there is nothing to indicate that system
performance will revert to a more favourable attractor. Most systems in this state
require external interventions in order to restore preferred behavioural patterns.
For a defence system this role could be performed by the system designer, similar
to the way a reserve bank monitors a national economy and adjusts the official
interest rate.

Note that this identifies a requirement for continual monitoring and feedback,
as well as appropriate mechanisms for system repair when defective behaviour is
identified. The way these types of mechanisms could interact with the underlying
complex adaptive system is not currently well understood, and controlling a com-
plex system such as an economy or a defence force by altering a single variable is
both difficult and unreliable. Central to this problem, and to the most important
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issues relating to the design and control of complex adaptive engineered systems,
are two concepts: unpredictability and unintended consequences.

Unpredictability

Predictability is often considered an imperative for military systems, since warfare
can exhibit instabilities characteristic of chaos: microscopic state differences can
lead to macroscopic state changes over relatively short time scales. This is the
meaning behind the term strategic corporal coined by General Krulak [190]. This
describes how the decisions made by a Corporal in a humanitarian aid situation
can within a matter of minutes either lead to the defusing of a potentially violent
situation, or if the wrong decisions are made, to far-reaching strategic effects cap-
able of jeopardising the mission. An essential role of training, doctrine, rules of
engagement and much of military command and control then, is to suppress vari-
ation that can potentially produce undesirable macroscopic state change. Taken
to an extreme, this urge to suppress variation and constrain the available degrees
of freedom can lead to a very brittle and unstable solution: as the strategic en-
vironment changes, the lack of variation inhibits the force’s ability to adapt. The
brittle nature of fixed solutions is a significant contributor to the central role of
the ‘need for variation’ in evolutionary theory.

Given that in the limit, enforcing predictability may come at the expense of robust-
ness, it may be instructive to review the use of inherently unpredictable systems.
A simple example is the use of horses in warfare. Since we lack a deep understand-
ing of the cognitive processes of the horse, the behaviour of a 500kg horse that
has been spooked is both unpredictable and dangerous. Nevertheless they played
a decisive role in combat for over five thousand years up to and including World
War I, epitomised by the capture of Atahuallpa by Pizarro in 1532 [109]. Rodney
Brooks [65] suggests this is because people have developed an understanding of
the parameters under which horses behave favourably. Provided the horse is well
fed and we don’t light a match next to its eye, a level of trust can be established
within this set of parameters through the trial and error of experience, even though
we cannot predict the behaviour of an individual horse in a particular situation.
Therefore a loss of certainty in system behaviour can be justified provided other
benefits, such as robustness or decisiveness in combat, can be realised. Clause-
witz [85] argued at great length and with great sophistication on the inherently
unpredictable nature of warfare. For example, Clausewitz observes that “[w]ar is
the province of chance. In no other sphere of human activity must such a mar-
gin be left for this intruder. It increases the uncertainty of every circumstance
and deranges the course of events”. In this light, attention should be focused on
understanding rather than suppressing unpredictability.

Unintended consequences

In any complex adaptive system where centralised control is imposed in order to
improve some measure of system performance, it is common to observe a raft of
unintended consequences. In some cases the unintended effects of change designed
to improve a measure can actually result in a decline. This can be explained
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in terms of naturally arising feedback loops. The following recorded historical
examples will illustrate how formal adaptive mechanisms have been hampered by
naturally arising feedback loops.

Artillery in the Battle of the Somme

An account of the Battle of the Somme during World War I from a technological
perspective is given in [63]. The firepower of the newly deployed machine gun was
so devastating that both sides were forced underground into trenches extending
from Switzerland to the North Sea, protected by hundreds of thousands of miles of
barbed wire and other obstacles. The tactical problem Allied high command faced
was one of penetration to end the stalemate. The solution they pursued for two
and a half years as the key to success was prolonged bombardment. A belief in this
solution persisted despite repeated failures, such as the Third Battle of Ypres in
1917. A year’s production of shells for 55,000 war workers were fired over nineteen
days, yet only forty-five square miles were taken in five months at a cost of 370,000
men. To understand why this strategy ended in mass slaughter rather than the
desired penetration it is necessary to identify the unintended consequences. Firstly
the bombardment shattered the ground, and rain turned the battlefield into a
“chaos of mud and swamp” [63], making penetration more difficult, rather than
easier. Secondly, the bombardment signalled the intention to advance, meaning
surprise was impossible and enemy reserves were ready in place. In combination,
these features of the system produced an effect opposite to the intended effect.

Moral hazard and bias in peacekeeping

The issues of moral hazard and bias in peacekeeping and humanitarian aid situ-
ations relates to the concept of unintended consequences. The issue of moral
hazard is summarised by the question: can actions taken by third parties to fore-
stall violence actually encourage it? Carment [74] suggests that belligerents utilise
the security, food and medical aid provided by third parties as a public good. In
other words, the services provided by peacekeeping organisations help not only the
victims of conflict, but can also be utilised by the perpetrators. Belligerents can
access the food and medical supplies, and be protected from retaliation, provided
that they are not too easily distinguished from the local population. This reduces
the risk of combat and increases the incentive to pursue gains through violence.
The bias of taking sides during intervention can encourage violence and result
in escalation, such as the NATO involvement in Kosovo. In this case, NATO
statements bolstered the Kosovo Liberation Army (KLA) and resulted in military
growth, strengthened numbers and increased international legitimacy. The KLA
then used ceasefire talks to improve their fighting capacity and reoccupy territory
lost in the previous year [74]. Once again, the effect of changing the system is
opposite to the intended effect.
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The Pentropic Army

In 1956-60 the US Army undertook a restructuring in response to the shift in
strategy away from the expense of a large ground force towards a nuclear policy
[177]. The Pentomic division was designed to withstand nuclear attack through
dispersion, but able to mass quickly to employ a tactical nuclear response. Aus-
tralia implemented a similar model called the Pentropic division in 1960-65 with
the intention of improving interoperability with Australia’s main ally, and improv-
ing the Army’s capability in the nuclear age. However, both interoperability and
capability decreased under the restructure. Roger Lee [201], head of the Australian
Army History Unit, explains how this occurred:

Current operations in Malaysia as part of the conventionally structured
British Commonwealth Far East Strategic Reserve required battalions
to reorganise from Pentropic to standard British Commonwealth bat-
talion structure before service. In addition, the US Army abandoned
the Pentomic divisional structure in 1961, leaving Australia interoper-
able with none of its allies. The restructuring of the Pentropic bat-
talions, now commanded by a full Colonel, resulted in a large rank gap
between the commander and the OCs (Officer Commanding) of the
supporting elements. Consequently, OCs did not voice their concerns
to the Battalion commander, resulting in command failures. Other
problems were that a full Colonel may be too old to cope with a field
command, and at the next higher command level, the battle group,
there was too wide a span of command. Finally, the demise of the
CMF Army Reserve, once an important capability, has been attrib-
uted to the introduction of the Pentropic division.

An accumulation of unintended consequences overwhelmed any positive effects of
the restructure and the Pentropic structure was abandoned in 1965.

1.2.2 Agent based model

The previous section identified different instances of centralised changes to complex
adaptive systems producing unpredicted effects on system behaviour, often for the
worse. The obvious question is: can centralised control shape emergent behaviour
to improve system performance? In this section, an Agent Based Model (ABM)
is developed to explore how centralised control influences natural interactions at
the individual agent level. The ABM can be considered a distillation, meaning the
minimum set of features of a real world situation are included in the model. This
is both the greatest strength and weakness of the distillation approach to agent
based modelling. An austere representation provides the clearest understanding
of the dynamics of the mechanisms under investigation, in the same way as an ex-
perimentalist will go to great lengths to construct a laboratory environment where
external influences are removed. The disadvantage of this approach is the partic-
ular insights cannot be directly applied to the real world without consideration of
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many complicating subtleties. A large number of equally valid1 simple models can
be derived from the same complex real world situation. A considerable limitation
of all ABMs is the implementation of human decision-making as a fixed rule set.
Even if heuristic learning algorithms and adaptive rules are incorporated, it is clear
that the current state of the art in Artificial Intelligence falls well short of human
abilities for cognition, intelligence, invention and adaptation, all of which affect
the behaviour of socio-technical systems.

Terrorism scenario

We will use a hypothetical anti-terrorism scenario to investigate unintended con-
sequences in complex systems. An issue-motivated group is using violence as a
method for achieving its goals. The indiscriminate use of violence against civilian
targets has led to the group being referred to as terrorists in the international
media. The government is under pressure to resolve the situation quickly with
the minimum bloodshed, and the terrorists are not open to negotiation. Terrorist
bombings have led to public outrage and calls for retaliation. However, retaliatory
strikes seem to only have increased the terrorists’ resolve and led to a cycle of
violence with civilians caught in the crossfire. Military options that provide the
required level of survivability against armed terrorist threats cannot guarantee a
level of precision capable of preventing innocent casualties.

An alternative approach has been tabled in parliament. An immediate cessation
of retaliatory strikes combined with a doubling of police presence will discourage
the gathering of terrorists. It is argued that over time this will reverse the negative
publicity of civilian casualties, and as the population rejects the violent methods
of the terrorists, their support and recruiting base will contract.

Terrorism model

A model is now developed in order to contrast the control mechanisms represent-
ing the two approaches to the terrorist problem outlined in the previous section.
The terrorist scenario is implemented in NetLogo [328] as a multi agent system.
Interaction rules at the agent level are specified and aggregate system behaviour is
described as being emergent from the local interactions. As the parameter space
is explored by changing interactions it is possible to measure a change in the
emergent behaviour of the system state over time. The local interaction rules are
described in Table 1.1 below. The model contains five types of entities: civilians,
terrorists, police (these could represent a police or military peacekeeping force),
aerial weapon systems (these could equally represent fighter jets, homing missiles
or attack helicopters, and are referred to as jets) and bombs. Civilians and ter-
rorists live for 70 turns, and police numbers are kept constant. All new entities
are born as civilians and terrorists must recruit from the civilian population to
increase in number. The civilian birth rate is approximately equal to the death
rate. Movement for all entities except jets is linear in a random direction. The

1Here, ‘equally valid’ is meant in the sense that no one simple model is intrinsically more
privileged than others.
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jets travel at three times the speed of other units and track a particular target.
When a jet drops a bomb it explodes immediately. Terrorist bombs explode each
turn with a 20% chance. This means the probability a bomb kills the terrorist who
planted it is the probability the terrorist does not escape the blast radius of three
squares (terrain is represented by square patches arranged in a two dimensional
lattice). This equals 1 − (1 − 0.2)3 = 0.488, which means that 49% of terrorists
are suicide bombers. In the case that the terrorist escapes the explosion, a jet is
dispatched to bomb the terrorist.

Table 1.1: Local interaction rules for a NetLogo agent based model.

Interacting Entities Interaction Rule

Terrorist Bomb Plant Plants a bomb every 10 turns

Terrorist Civilian Recruit 10% chance of recruiting
neighbouring civilians

Police Terrorist Discourage Terrorist will not recruit
civilians if police are present

Bomb All except jets Kill All units in radius 3 die

Jet Terrorist Bomb If a terrorist bomb explodes,
the responsible terrorist is
tracked and bombed

Civilian Jet Bomb Convert If a jet bomb causes civilian
casualties, all witnesses are
converted into terrorists

The model captures each feature of the scenario as a number of simple local in-
teraction rules. Figure 1.1 below illustrates a NetLogo simulation in progress.
Jets and police are coloured blue, civilians are coloured white, bombs are coloured
black and terrorists are coloured red. Terrorist bomb explosions are red, while
explosions of bombs dropped by jets are pink. If jet bomb explosions cause any
civilian casualties, the civilians who witness the explosion (within a radius of two
squares) are converted into terrorists and displayed in pink, rather than red. The
initial settings are 100 civilians, 10 police and 10 terrorists. A jet entity is created
each time there is a new mission. This assumes that there are more jets available
to the government than retaliation missions at all times.

To establish the effect of different local interaction rules on the level of terrorist
activity, the model is replicated twenty times for four parameter settings. The first
setting is the current policy of retaliation against terrorist bombers and the current
police levels. The second setting doubles the number of police while continuing
retaliation. The third setting does not launch retaliation strikes against terrorist
bombers and maintains current police levels. The fourth setting both removes re-
taliation and doubles police staffing. A simulation is run for each setting for 1000
time steps or until the number of terrorists reaches zero. The system variables
measured to gauge the success of different settings are the number of bomb explo-
sions and the number of lives lost from both terrorist and jet activity after 1000
steps, the average number of terrorists alive per time step, the average number of
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Figure 1.1: NetLogo agent based model of a terrorism scenario.

time steps each replication runs for, and the number of runs where there are no
terrorists left after 1000 time steps. The results averaged over twenty replications
are shown in Table 1.2 below.

Table 1.2: Results of 20 NetLogo replications.

Setting 1 Setting 2 Setting 3 Setting 4

Retaliation Retaliation No Retal. No Retal.

Police = 10 Police = 20 Police = 10 Police = 20

Terrorist bombs 711 382 172 90

Terrorist kills 2307 1243 530 271

Jet bombs 254 141 0 0

Jet kills 743 412 0 0

Num. terrorists 30 19 11 8

Av. time Steps 930 678 431 308

Num. runs where 3 11 16 20

terrorists die out

When the model is replicated for setting 2 and compared to setting 1 (see Table
1.2 above), both the number of bombs planted and number of casualties from
bomb explosions are reduced by over 45% by doubling the police presence. The
average number of terrorists per time step is reduced from 30 to 19, although
for both settings this is still greater than the simulation’s starting value of 10
terrorists, which shows a growth in the number of terrorists over time. The number
of retaliatory strikes reduced from 254 to 141, resulting in 218 less casualties.
For Setting 1 the terrorists died out in only 3 of the 20 replications within 1000
iterations, and the average replication length was 930 time steps. With police
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numbers doubled to 20 in Setting 2, 11 replications terminated and the average
replication length was reduced to 678 steps. From this data we can conclude that
the police presence has had a significant positive impact on the level of terrorist
activity, the number of retaliatory strikes required and the likelihood that terrorism
is eliminated completely. This result could be expected, although it is interesting
that inhibiting one mechanism for recruiting new terrorists has such a large impact.

Less intuitive is that by prohibiting targeted bombing of terrorists through re-
taliatory strikes, the average number of terrorists, and therefore the average time
steps, the number of terrorist bombings and killings all reduce. For Setting 3,
the improvements are greater than Setting 2. The reason is that although the jet
bombings target and kill on average 254 terrorists, as a side effect it converts an
average of 299 civilians into terrorists. These extra 45 terrorists over the life of
the simulation represent 23% of the terrorist population, which has a multiplier
effect to increase terrorist killings by 77% from 530 to 2307. In Setting 4, which
prohibits retaliation and doubles the police presence, the best results are achieved.
The number of bombings is reduced to 90, the average number of terrorists is
8, which is lower than the initial conditions, and all 20 replications terminate
within 1000 time steps. Statistically, using a two-sample single tailed t-procedure,
the difference in terrorist activity (measured by the number of exploded terrorist
bombs) between Setting 1 and Setting 4 is significant at the 99.95% confidence
level, and the t-statistic is 9.82, which is much larger than the critical value of
3.88. Despite the high significance, a note of caution should be raised at this res-
ult, since the data is not normally distributed and contains outliers, which affects
the validity of the t-procedure for a sample size of twenty replications. Other ana-
lyses of ABMs [199, 200] suggest the data displays fractal characteristics due to
correlations between entities in both space and time. Consequently, modelling the
ensemble as a statistically scaling system may be more appropriate.

Conclusions

The ABM simulates two mechanisms for centralised control within a complex ad-
aptive system. In the model, autonomous agents make decisions based on local
interactions. Both mechanisms are intended to reduce the number of terrorists.
The retaliation mechanism, which operates by directly reducing the number of
terrorists, is subverted by local interactions. Consequently, it has the opposite
effect of increasing the number of terrorists and bombings. The policing mechan-
ism is less direct, since it does not kill or detain existing terrorists, nor prevent
them from bombing. However, it does inhibit the recruitment of new terrorists,
leading to decay in the terrorist population over time. The policing mechanism
can be understood to be operating on a longer time scale over several generations
of terrorists, rather than the short-term strategy of retaliating against individual
terrorists. The model is intentionally simple compared to the historical examples
discussed earlier and only contains a small number of feedback loops. As more in-
teraction types are added to the model, interference between feedback loops may
increase the complexity of the model’s behaviour. Many more counter-intuitive
effects of centralised control measures may be revealed, but this model demon-
strates a low complexity threshold for the emergence of unintended consequences.
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Most importantly, this model illustrates how indirect action altering the context
in which local interactions take place can be more effective than centrally imposed
policies focussed on directly improving a single system measure or benchmark in
complex systems.

1.2.3 Summary

In designed complex systems, human design and engineering mechanisms interact
with the naturally arising adaptive mechanisms, such that only limited control
is possible. Exploring the implications of conscious human design decisions, the
possibility for spontaneously arising informal adaptive feedback loops to under-
mine deliberate, formal adaptive mechanisms was demonstrated. The potential
for designed systems to harness the benefits of the underlying adaptive systems
while utilising intelligent design effort to shape the emergent system behaviour was
illustrated using an agent based model. The results may provide a basis for a new
understanding for effective change within complex systems, with implications for
system design, capability development and force transformation within defence.

1.3 Critique, or Taking the Red Pill

This is your last chance. After this, there is no turning back. You take
the blue pill – the story ends, you wake up in bed and believe whatever
you want to believe. You take the red pill – you stay in Wonderland
and I show you how deep the rabbit-hole goes.

Morpheus in The Matrix

The model I have presented was well received at the International Conference
on Complex Systems in 20042. It was also influential on the direction of my
candidature, because it led to the clear decision that I did not want to simply
turn the handle of an ABM-making machine to produce a parade of complex
systems models. I sensed that there were deeper and far more important questions
beneath the facade of my simple model and its statistically justified conclusions.
This section critiques my study of unintended consequences, revealing a number
of assumptions that deserve further examination.

The opening sentence of the study immediately raises a question: what does it
mean to understand warfare “as a complex adaptive system”? Does it imply that
Complex Adaptive System (CAS) is a category, or a type of thing? Could we
classify parts of the world as being a CAS? If so, what other categories are there?
Is CAS the subset of complex systems that have the capacity to adapt, and in
turn are complex systems the subset of systems that are complex? What things
are not systems? All of these questions make the same mistake of confusing the
way an observer structures their thinking about the world, with the world itself.

2The only constructive criticism I received was that the model could have been more realistic
– that it would be better if I had the ‘real’ feedback loops in the model. The critique I present
here will go well beyond questions of model accuracy.
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This mistake is most easily revealed when one realises that it is the observer that
chooses the boundary of the system. As I will discuss in detail in Chapter 3, a
system is not an objective region of space-time, it is an approach for structuring
our understanding of the world.

The first two paragraphs also introduce a bundle of closely related concepts: fit-
ness, purpose, intention, perception, autonomy, predictability and control. Again
there is no distinction between concepts that observers use to explain the system,
compared with intrinsic features of the dynamics of a process. These concepts will
require some work to untangle, but for now I will point out that talk of “externally
imposed purpose” implies that the designer is outside the system boundary, yet to
“evolve according to the intentions and perceptions of their human designers” is
to bring the designer back inside the system boundary. Two things are clear: my
study has not been clear or consistent regarding boundaries or terminology; and
if the internal models and perceptions of agents affect their behaviour, this needs
to be accounted for when developing an understanding of systems.

The section on design issues provides an explanation for systems that have evolved
inappropriately3. It claims that “the feedback mechanisms have pushed the system
into an attractor state that is adverse to some fitness concept”. This claim is
extremely general, supposedly accounting for the behaviour of brains, ecosystems
and economies. But what does it mean for a feedback mechanism to push? What
are the entities involved in the feedback relation? In most system dynamics models
of feedback, these entities are abstractions and aggregations, not spatially located
physical objects. Fitness is not the only conceptual device in this explanation:
attractors and feedback mechanisms are also just concepts for explaining observed
behaviour. They are part of the systems perspective. But this begs the questions
of what constitutes a systems approach; and what are the relationships between
the concepts that populate a systems framework.

The historical arguments add some depth to the discussion, because they use a
complementary perspective to the systems approach. But on closer examination,
even though they provide anecdotal support for the existence of unintended con-
sequences, they give no support to the conjecture that the cause of unintended
consequences is feedback loops within a complex adaptive system. Surely there is
a better way to integrate the insights of a complex systems approach with existing
approaches.

One of the more interesting statements within the terrorism model is that “aggreg-
ate system behaviour is described as being emergent from the local interactions”.
Because behaviour is “described as being emergent”, here the distinction is made
that emergence is a concept in the eye of the observer. The obvious question this
raises is whether emergence can occur independently of an observer. The emer-
gence of life from non-living matter is often taken to be a prototypical case of
emergence, and yet surely it is not contingent on any observer. A secondary ques-
tion is whether any and every combination of local interactions generate emergent
behaviour. When is it appropriate to describe aggregate behaviour as emergent?
Do the null interaction rules generate emergent behaviour? Is a Gaussian dis-

3The idea that something can evolve inappropriately is itself highly questionable, because it
confuses a tautologically defined process with the value judgements of an external observer.
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tribution an emergent property? If so, how can independent components share
collective emergent properties? Alternatively, is emergence only when the aggreg-
ate behaviour cannot be described by an equation or model that is simpler than
the underlying dynamics? This sort of answer has been suggested in the literature,
but it is deeply unsatisfactory, because it depends vitally on the degree of know-
ledge of the observer. It leads to an association between emergence and surprise,
and to an inescapably relativist definition of emergence.

As was foreshadowed in the introduction, perhaps the most problematic aspect
of this study is the model itself. Granted, two important limitations are stated
up front: the model is overly simple and does not and cannot account for human
decision-making. But what impact do these limitations have on the conclusions
drawn from the model?

As was acknowledged above, a large number of equally valid simple models can be
derived from the same complex real world situation. Consequently, a single model
tells us very little about the problem domain. But it gets worse than this. Be-
cause agent based models are in general massively over-parameterised, traditional
approaches to validation are problematic. This is because given almost any real
world data set, one can expect to find at least one set of tuned parameters that
reproduces the phenomenology. Therefore, reproducing the observable behaviour
of the real world does not imply that the underlying model is valid or generalis-
able. There are similar issues in analysing the sensitivity of the simulation model
to changes in resolution. Whereas the analytical solution to a set of differential
equations can provide deep insight on sensitivity that is independent of resolution,
the same cannot be said for the result of digital computations. Without running
large numbers of models with extremely high precision a statistically significant
number of times, the impact of the choice of time step and the precision of each of
the model parameters is unknown in agent based models. Chaos theory shows that
arbitrarily fine scale differences can be amplified into arbitrarily large deviations
over a number of time steps, so the finite granularity of agent based models may
be significant – at the very least there is no way to prove that it is not.

Due to the nature of agent based modelling, the simulation requires a precise
number (or at least a probability distribution) for every parameter. This often
results in quantifying the unquantifiable. For example, in my study a witness
who is within two squares of a retaliatory strike killing innocent civilians, always
converts to terrorism. The basis for this rule is that the incident combines two
ingredients that are expected to be common amongst terrorists: the experience
of trauma, and disagreement with the way power is executed within the current
political and social structure. However, even if a psychologist agreed that these are
necessary conditions for conversion to terrorism, they would hardly be prepared to
commit to a quantitative rule that related these causes to effects. The retaliatory
strike explaining why one witness joined a terrorist organisation, may equally
explain why the next witness joined a peace activist organisation. To say that
witnessing the death of innocent civilians is a cause of terrorism is like saying that
being born is a cause of terrorism – even if necessarily true it is not revealing.
Uniform and fixed simple rules will never capture human decision-making: even
when we understand how a society of rational rule-following robots behave, there
is much more to know about human behaviour, and this is why social sciences
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exist. Rule based, mechanistic explanations of human behaviour are manifestly
inadequate, given that arguably a defining characteristic of human intelligence is
choosing when to break the rules.

In conclusion, the conceptual framework of this study is confused and the terms are
not well defined. For the problem domain I seek to address, agent based modelling
appears to offer limited insights as a direct and explicit model of the socio-technical
system. Some of the issues I have raised in this critique apply specifically to my
agent based model, but most hold for any agent based model. Similar problems
afflict dynamical systems, system dynamics, cellular automata, social networks,
artificial neural networks and other model-based approaches when they are used
to explain many types of social phenomena. And yet, if the conceptual framework
could be more rigorously developed, there ought to be a way to contribute valuable
insights towards understanding and intervening in complex socio-technical systems.
This idea is not new: Bar-Yam’s [34] recent book applying complex systems to
real-world problems takes precisely this approach. However, little attention has
been paid so far to the legitimation of a “conceptual analysis” approach towards
complex systems design and management.

1.4 Organisation of Thesis

This thesis is organised to address the criticisms from the previous section, so that
more appropriate applications of complex systems can be realised. The goal is to
present applications based on a sound philosophical foundation and a rigourous
theoretical framework.

The critique of the previous section can be reformulated as raising the following
six questions:

1. How do models represent the underlying system of interest?

2. What is a systems approach?

3. What sort of insights are unique to a complex systems approach?

4. How are the concepts of complex systems interrelated?

5. What is emergence?

6. Are there alternatives to model-based applications of a complex systems
approach?

These are big questions, but as the Australian complex systems researcher David
Green is fond of saying, “big questions get big answers”. The first three questions
are predominantly questions of philosophy. Question one requires an understand-
ing of the utility and limitations of representations, and how they can be useful
models of the system of interest. Philosophy of mind and cognitive science provide
an extensive literature on representation that is not widely known within complex
systems. Question two asks about the foundations of systems thinking, and the
philosophy of systems. This is something that analytic philosophy is largely silent
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on, but that early systems theorists were keen to address, by contrasting their ap-
proach with disciplinary science. Question three requires a contrast between com-
plex systems and other systems approaches, in addition to the contrast between
systems thinking and science.

Questions four and five are questions of complex systems theory. Often, the dis-
tinction between systems that are self-organising, adaptive, and complex is not
clear. Nevertheless, this is the kind of question that should have theoretical an-
swers within the discipline of complex systems. Question five concerns the central
feature of any systems approach, the rather mysterious concept of emergence. Yet
there is no theory of emergence, or perhaps more accurately there are many the-
ories of emergence, none of which are satisfactory.

The sixth question is about broadening the application of complex systems. Agent
based modelling is paradigmatic of complex systems research, and will continue to
play an important role in understanding the dynamics of complex systems. Simple
models can generate deep insight: Kauffman’s random boolean networks [175],
Arthur’s El Farol bar [17], and Conway’s game of life [130] are notable examples.
However, as the previous section shows, there are significant limitations to model-
based approaches, even when the insights of complex systems may be relevant to
the problem. This suggests that there is room for complementary techniques for
the application of complex systems. This is especially true for soft problems, where
human factors are significant and quantitative data does not exist.

My thesis is organised in three parts that propose initial answers to these questions.
Part I discusses the philosophy underlying complex systems, which is so scarcely
discussed that one could be forgiven for presuming it is taboo in the complex
systems literature. The consequence of ignoring philosophy is ill defined terms
and bold conclusions that are reliant on a trivial relationship between models and
the aspects of the real world they are supposed to represent. It is the mistake
that Broad [62] masterly summarised as confusing the Author of Nature with the
Editor of Nature. Part I surveys key philosophical insights – in the broadest sense
of the term – that I use to frame my understanding of complex systems. Chapter
2 explores the topic of representation, presenting a theory of the representational
relation between entities, models and agents. The development of clear and explicit
definitions provides a precise foundation for subsequent chapters. Chapter 3 digs
a bit deeper into exactly what is meant by ‘a systems approach’. The history of
the systems movement is outlined, and a novel definition of ‘system’ is developed.
Chapter 4 presents the case for an alternative to model-based applications of a
complex systems approach. This chapter gives broad guidance for conceptual
analysis and identifies the most important considerations within this approach.

Part II develops the theory of complex systems. I begin by casting the central
concepts of complex systems into information theory in Chapter 5. This facilit-
ates precise definitions and enables an exploration of the relationships between
concepts. The concepts I address are:

• Complexity;

• Edge of chaos;

• Self-organisation;
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• Adaptation;

• Evolution; and

• Self referentiality.

I then move beyond the information theoretic interpretation for the important
concept of emergence. A new framework in terms of scope, resolution and state
is developed. In Chapter 6, emergent properties and emergence are formalised
within the new framework to provide precise, testable definitions. It is shown
that emergent properties are coupled to scope, and there exist fundamental limits
on our ability to model emergence in formal systems. Chapter 6 is the major
individual contribution of my thesis, because emergence is such a central concept in
systems research, and yet to date it has proved so difficult to understand. So many
contradictory statements have been made about emergence because it is viewed as
both paradoxical and imprecise. I contend that this is inevitable when emergence is
explained in terms of hierarchical levels. In light of the new framework, emergent
properties are no longer mysterious – they are simply a difference in local and
global structure.

Part III applies conceptual analysis to two problems in the defence and security
domain. The first example in Chapter 7 applies the theory of multi-scale com-
plexity to the operational imperative of countering asymmetric warfare. Deep
structural impediments are revealed, and possible solutions are discussed. The
second example in Chapter 8 critiques the capability development process, which
is responsible for transforming the security needs of Government into equipment
purchasing decisions. This is the most challenging application of complex sys-
tems I consider, due to the scale, complexity and socio-technical nature of the
problem that the process is designed to address. While quantitative methods are
not appropriate, conceptual use of complex systems engineering theory provides
a number of significant insights, which are suggestive of practical improvements
to the capability development process. Together, these applications demonstrate
an alternative to model-based analysis of complex systems, making use of both
theory and philosophy to guide practice. The applications are where the value of
the preceding inquiry is realised: where deeper understanding can influence the
way forces are organised and capability is designed.

The final chapter summarises the results of my thesis, and draws concluding re-
marks that link together the insights that span my philosophical, theoretical and
applied research. It addresses a final question, which is perhaps the most import-
ant question: why do multidisciplinary research? I argue that I have demonstrated
how the synthesis of philosophy, theory and application can transcend the artificial
boundaries that have been erected to insulate the specialist. Moving beyond tradi-
tional competitive relationships has opened up many cooperative synergies across
disciplines, which is a rich and largely untapped source for novel contributions.
Indeed, I believe that the principle novel contribution of this thesis is to show
that the novelty within each chapter is a direct result of being conducted within
a multidisciplinary context. The concluding chapter reviews the interconnections
between the chapters to add weight to the case for multidisciplinary research.
In short, my thesis demonstrates the need for multidisciplinary research, because
there exists knowledge that lies beyond the reach of individual disciplines.
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Philosophy
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Chapter 2

Representation

Representation is inherent to the concept of an agent, but its import-
ance in complex systems has not yet been widely recognised. In this
chapter I introduce Peirce’s theory of signs, which facilitates a defin-
ition of representation in general. In summary, representation means
that for some agent, a model is used to stand in for another entity
in a way that shapes the behaviour of the agent with respect to that
entity. Representation in general is then related to the theories of rep-
resentation that have developed within different disciplines. I compare
theories of representation from metaphysics, military theory and sys-
tems theory. Additional complications arise in explaining the special
case of mental representations, which is the focus of cognitive science.
I consider the dominant theory of cognition – that the brain is a rep-
resentational device – as well as the sceptical anti-representational re-
sponse. Finally, I argue that representation distinguishes agents from
non-representational objects: agents are objects capable of represent-
ation.
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2.1 Introduction

Representation is an essential concept for understanding the behaviour of agents
in a complex system. Consider traders in a stock exchange market as agents. If
every agent has unmediated access to the value of a company (including its exact
future profits discounted to present value), then the market cannot exist, since
shareholders would only be willing to sell above this value, a price no rational
buyer would pay1. Only when partial information on value is allowed and different
agents have access to different information is it possible to predict the formation
of a market. In this case, each agent must construct a model representing the
perceived value of a company. By communicating, agents can modify their models
to take into account the representations other agents in their social network have
constructed. Because there is a benefit in being connected to agents who are bet-
ter at predicting future value, some agents may specialise in developing predictive
models and charging other agents for access to their expectations (such as financial
advisors). Markets would not exist if there were not differences between agents in
their representations. Variety in representation allows the simultaneous existence
of buyers and sellers, as well as the potential for a secondary market based on
constructing representations and selling advice. Even though this is quite obvi-
ous, imperfect information, bounds on rationality, and consequently the need for
constructing representations did not feature in the theories and models of classical
economics.

It turns out that an account of representation is just as important in understanding
the role of the discipline of complex systems, as for understanding the behaviour
of agents within a complex system. This is because, as will be shown in Chapter
3, the systems approach is one way of representing the world. When this is over-
looked, systems applications may be blind to the limitations of the representations
they employ. The treatment of representation in this chapter is intended to be
interpreted on two levels. On one level, when an analyst uses a complex systems
approach, they invariably construct systems representations. On another level,
when the system contains agents that also represent their environment, this must
be accounted for in any model of the system.

Section 2.2 makes the metaphysical assumptions of this chapter explicit. Then in
Section 2.3, Peirce’s theory of signs is used as a basis for a theory of representation
in general. When agents represent their environment, they may use either external
or internal models. Section 2.4 surveys accounts of external representation across
several disciplines, while Section 2.5 surveys internal representation, which has
been discussed mostly in philosophy of mind and cognitive science. This chapter
concludes by defining ‘agent’ in Section 2.6, which demonstrates the strong link
between agency and representation.

1One might expect trades to be made exactly at the value of the stock. However, once a
financial or time cost is included no rational buyer can exist. Why would an agent buy shares
that never increase in real value and incur an exit fee?
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2.1.1 Novel contributions

I am the sole author of this chapter, which has not been published elsewhere. My
original contributions are:

1. A general definition of representation;

2. Development of three categories of external models in representation;

3. A comparison of theories of representation spanning philosophy, military
theory and systems theory;

4. Analysis of the representationist/anti-representationist debate, which iden-
tifies that while the discourse has centred on representation-as-mirroring, a
more appropriate framing is achieved by representation-as-inference; and

5. A definition of agent.

2.2 Metaphysical Assumptions

Before representation is discussed in detail, it is prudent to make the metaphysical
assumptions of this chapter explicit. The metaphysical position I will adhere to
is known as physicalism, the view that there are no kinds of things other than
physical things. In particular, I assume that the relationship between macroscopic
and microscopic phenomena is one of supervenience. The Stanford Encyclopedia
of Philosophy offers the following definition:
Definition 2.1 (Supervenience). A set of properties A supervenes upon another
set B just in case no two things can differ with respect to A-properties without also
differing with respect to their B-properties [220].

Supervenience, along with physicalism, entails that in principle, all of the book-
keeping regarding forces can be accounted for in purely physical terms between
arbitrarily small entities, when the set B is taken to be the properties of fun-
damental physics. This is because every time there is a change in a macro level
property, there must be a corresponding change in the micro level properties. That
the physcial forces fully account for the dynamics at the micro level tells us little
about what physical predictions mean. Semantics is always relative to an agent’s
subjective experience of the world, a concept which does not feature in, and cannot
be fully explained by, the elementary particles and fundamental forces of physics.
First-person experience is just one example of an emergent property (see Chapter
6), the general reason why descriptions at other levels cannot be eliminated. I
will assume that forces in chemistry, biology, psychology and sociology do not add
anything to the physical: that the laws of physics are conservative. This is con-
sistent with Anderson’s [11] twin assertions that all ordinary matter obeys simple
electrodynamics and quantum theory, but that “the ability to reduce everything
to simple fundamental laws does not imply that ability to start from those laws
and reconstruct the universe”. This assumption can be argued with, but it cannot
be proved either way. I assume supervenience regarding the relationship between
macro and micro phenomena because to do otherwise is to place some entities out-
side the domain of scientific explanation, and it is difficult to see what is achieved
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by doing so. Descartes’ [107] non-physical mind that provided the basis for sub-
stance dualism in Meditations VI, and Bergson’s [43] elan vital that animated
the evolution and development of organisms, are examples of non-physical entities
that have been postulated in science, and history suggests both acted as barriers
to progress. Consequently, I only consider representations that supervene on the
physical as meaningful.

Secondly, the multidisciplinary theme will already be apparent in this chapter
by the way that connections are made between conversations occurring in rel-
ative isolation in different disciplines. Continual movement between disciplinary
frameworks may initially be disconcerting, because each discipline has idiosyn-
cratic terminology that must be introduced in order to retain the precise meaning
of the theories expressed within that discipline. Also, multidisciplinarity does not
adhere to the conventions of any one discipline, and to be trained in disciplinary
research is to become proficient in the application of negative feedback whenever
these (often tacit) conventions are breached.

The alternative – to survey the literature of multiple disciplines through the lens of
only one set of disciplinary conventions – is what I will refer to as an interdisciplin-
ary2 approach. While interdisciplinarity has a lower overhead, it only marginally
extends beyond the limits of disciplinary knowledge. An assumption underlying
my approach is that multidisciplinarity is not subject to the same limits, because
it attempts to do more than just apply the one hammer to a broader domain of
nails. Multidisciplinarity cannot rest on the foundation of a single discipline. The
lack of a universal approach for multidisciplinary discourse is discussed extens-
ively by Kline [185]. In order to provide significant insights beyond those that
are already well documented within disciplines, I will focus on parallels between
disciplinary discourse – not just to identify similarities and differences, but to com-
prehend features within a broader scope. The associated terminological baggage
is an unfortunate but necessary cost of this approach.

2.3 Representation in General

Things don’t mean: we construct meaning using representational sys-
tems – concepts and signs.

Stuart Hall

There are a number of reasons why unmediated interaction with the world can be
undesirable. Some entities are distinctly unfriendly, others are inaccessible, and
sometimes the process of interaction is too costly or time consuming. In order to
understand anything about a solar flare on the surface of the Sun, mediated access,
via the construction of models, is necessary to avoid the undesirable consequences
of unmediated contact. A model acts as a representation because it stands in for
unmediated interaction with the system of interest. Other situations where rep-
resentations stand in for unmediated interaction include predicting properties of

2Unfortunately, the literature is divided as to which of interdisciplinarity and multidisciplin-
arity is the broader and more novel programme. See for example [185] compared with [8].
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previously unrealised configurations; designing artifacts that do not exist; facilitat-
ing comparison of structural similarities between apparently dissimilar phenomena;
and generalising knowledge to apply beyond a single entity at a single moment in
time3. As will be discussed in Section 2.5.1, the dominant theory of human cog-
nition assumes that the mind is a representational device, and that the brain has
representational content.

In counterpoint to the important and varied roles of representation, there ex-
ists little formal work on representation in general. What are the necessary and
sufficient conditions for representation to occur? What kinds of representations
exist? One such general theory was proposed by Peirce, which he named the
theory of signs or “semiotics”. However, because much of his work was misplaced
and posthumously edited non-chronologically into highly fragmented volumes, and
since Peirce’s unique and subtle philosophy requires explication before the finer
points of his theory of signs can be appreciated, it remains under-utilised as a
general theory of representation. Fortunately, Von Eckardt [312, p. 143-159] has
performed considerable work to situate Peirce’s theory of signs as a foundation for
the more specialised debate on mental representation in cognitive science. I will
draw heavily on Von Eckardt’s interpretation of Peirce, since it is better oriented
towards contemporary concerns in the theory of representation. Unlike Peirce or
Von Eckardt, my interests apply to the field of complex systems, and so I will
abuse the semiotic and cognitive science terminology by translating it into more
general language.

Figure 2.1: Representation as a triadic relation between entity, model and inter-
pretant.

For Peirce, representation was an irreducible triadic relation between objects, signs
and interpretants. This implies that something is a sign only if it is a sign of an
object with respect to an interpretant [312, p. 145]. It also implies that the rep-

3This list paraphrases Kline [185, p. 19].
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resentation relation cannot be decomposed into diadic relations between entities,
objects and signs. According to Peirce, representation can only be fully understood
by considering the three components of the triadic relation simultaneously.

In the triadic relation, the sign is a token that signifies the object. The more general
term I will substitute for sign is model. Peirce’s object is already quite general: it
may be abstract or concrete, a singular object or a set of objects (a complex object).
However, since objects do not in fact need to be objective (or concrete), I will use
the more general term entity. The interpretant exists in the mind of the interpreter
for whom the sign is a sign [312, p. 148]. Whereas Peirce and Von Eckardt limit
their attention to human interpreters, I will generalise this to consider agents.
The cost of this generalisation is that the precise nature of interpretants cannot
be specified in a way that applies to all agents. Consequently, I can only induce
the existence of an interpretant by an observable effect on the agent’s behaviour.
The triadic relation between entity E, model M and interpretant I is illustrated
in Figure 2.1.

Von Eckardt [312, p. 158] summarises the value of Peirce’s theory of signs for
understanding representation in general as follows:

1. Peirce’s distinction between a representation and a representation bearer;

2. His insistence that something can be a full-blown representation only if it is
both grounded and interpreted;

3. His attempt to understand what makes a mental effect an interpretant of
some particular representation;

4. His struggle with the problem of interpretation for mental representation;

5. The idea that model and entity are related by two very different sets of
relations—semantic relations (such as representing, signifying, referring to,
and expressing) and the ground relations in virtue of which those semantic
relations hold;

6. His taxonomy of kinds of ground; and

7. His apparent interest in ultimately understanding representation in a com-
pletely naturalistic way.

Examining each of these points in turn, the first distinction leads Peirce to consider
the character of a model itself. Von Eckardt uses the term “representation bearer”
to refer to the properties of the model that belong to the model itself, and not to the
entity it represents. In a similar vein, Kline [185] brings attention to the essential
difference between a model and an entity by invoking what he calls Korzybski’s
Dictum, after Alfred Korzybski’s [188] warning that “the map is not the territory”.
It is important to remember that Korzybski’s Dictum applies to all representations.
It implies that a representation must behave differently to the entity in some
contexts. Representations are not perfect substitutes, which means there always
exist limits to their ability to stand in for the entity they represent. The other
implication of this distinction is that it is both possible and useful to understand
the properties of representation bearers as distinct from the properties of the entity
they represent.
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The second item addresses the interpretation and grounds of a model. The reason
that the interpretant is a necessary component of the triadic relation is because a
representation is more than just a logical similarity between two entities. If a tree
casts a shadow, it is not telling the time until an agent uses it to tell the time [1].
Or in the words of Dennett, “Nothing is intrinsically a representation of anything;
something is a representation only for or to someone” [104, p. 101]. By shaping
the agent’s behaviour, I brings M into the appropriate relation as a representation
of E. That is, when an agent interprets (and therefore understands) the model,
this grounds the model as a representation of E.

The third item links interpretation with a change in behaviour. If I is in agent
A, then the representation must be capable of shaping the behaviour of the agent
through the presence of I. Peirce classified interpretants as emotional (feelings),
energetic (efforts) and logical (habit-changing) effects. According to Von Eck-
ardt, logical effects, which modify the interpreter’s disposition to behave, were
considered the primary effect.

The fourth item refers to the problem of infinite regress. While non-mental repres-
entation is relatively straightforward, issues arise when M is internal to the agent.
The difficult question one faces is “what interprets a mental representation?” If
mental representations are interpreted in the same way as non-mental representa-
tions, this gives rise to an infinite regress of thoughts interpreting thoughts [312,
p. 282].

Separating semantic and ground relations, as noted in point five, allows one to
account for how a semantic relation can come to exist. In order for a model M to
produce an interpretant I in an agent A, it is necessary for A to understand the
representation, which requires A to have knowledge of what the ground is. The
following example clarifies this account [312, p. 156]:

For example, suppose I see a photograph. To understand that photo-
graph I must know (in some sense) that there are both a causal relation
and a similarity relation between the photograph and its subject, and
I must know (in some sense) the respects in which the photograph is a
causal effect of and is similar to its subject. If I know all that, then I
will be able to form a belief or a thought about the subject of the pho-
tograph (that is, who or what the photograph represents)—specifically,
that there was such a subject and that this subject looked a certain
way at the time the photograph was taken. In other words, by consid-
ering the photograph in conjunction with its ground I come to be in a
relation to the object it represents.

With respect to item six, according to Peirce, there exist three kinds of pure
ground: iconic, indexical, and symbolic [312, p. 150]. Icons, such as diagrams and
images, are models grounded by their intrinsic (first order) similarity to the entity
they represent. An index, such as a weathervane, signifies an entity because of a
causal or spatiotemporal connection between the index and the entity. Symbolic
representations, such as words, are grounded by convention. Symbols act as models
only because of the way they are consistently interpreted, which can then generate
regular effects on the behaviour of the agent.
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In the final item, Von Eckardt interprets Peirce’s theory of signs as naturalistic,
meaning closely connected to natural science. The naturalistic approach fits neatly
with the metaphysical assumption of supervenience outlined in Section 2.2.

I will now propose a definition of representation that reflects Peirce’s triadic rela-
tion.
Definition 2.2 (Representation). A triadic relation between a model, entity and
agent. The model substitutes for at least one entity, shaping the behaviour of at
least one agent.

The model stands in for an entity, and it always does so for an agent, thereby
modifying the agent’s predisposition to behave. In this definition, the interpretant
is implicit in the ability of the model to shape the behaviour of an agent. The
model may refer to a class of entities, and may also be shared by multiple agents.
However, at least one entity and one agent are necessary for a representation
relation.

2.4 External Representation

According to Peirce’s triadic relation, the entity E is part of the world, the inter-
pretant I is in the agent, but the location of the model M is unspecified. For the
case that M is external to the agent, the triadic relation is relatively straightfor-
ward, since the problem of infinite regress does not need to be addressed. Peirce’s
typology describes three ‘pure’ types of grounding relations, which is important for
a theory of representation in general. However, in practice, models may incorpor-
ate some combination of iconic, indexical and symbolic grounds. The aim of this
section is to provide concrete examples of external models, and then show how
entities, external models and interpretants have been classified within disparate
academic disciplines.

2.4.1 Three kinds of external models

Common models used in representation can be distinguished by implementation
rather than pure type. Here, I will assume that a model is somehow simpler
than the entity it represents. Although not necessarily true, in practice this is
reasonable, since a 1 : 1 mapping in complete detail is in general completely
useless (consider a life-sized map of the world, then consider trying to maintain
the accuracy of every detail). Even if the representation bearer is not itself simple,
practical models must confer some benefit, such as ease of manipulation4. Models
have deliberate differences and may accentuate salient features, in order to retain
only those aspects that are necessary to stand in for the entity. A caricature of
a politician and a scale model of an aeroplane are examples of representations
that can be understood and manipulated efficiently, which makes them useful
substitutes for direct experience under certain conditions.

4An example of a useful 1 : 1 mapping is the conversion between Polar and Cartesian co-
ordinates, which is practical because performing this conversion can often improve the ease of
manipulation.
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One special kind of representation is a mathematical model. For example, two con-
tained gas particles can be modelled mathematically by two hard uniform spheres
with no internal energy except velocity, in an enclosed continuous four dimen-
sional space (including time). The dynamics of the model constrain its behaviour
by conserving momentum and energy, which is transferred along the axis joining
the spheres’ centres of mass when they collide elastically. The spheres are reflected
by collisions with the containing walls. In principle, the model, in conjunction with
initial measurements of position and velocity, can be used to predict the outcome of
measuring the position and velocity of the particles at any future time. The model
is a representation when someone (or more generally an agent) uses the model to
stand in for a system of interest. For example, the agent could deduce the value
of variables associated with the particles in place of direct observations of the gas
particles at future times. In Peirce’s typology, mathematical models have sym-
bolic grounds. A mathematical model can always be interpreted as manipulating
symbols in a formal system according to syntactic rules5.

The gas particle dynamics can be represented in at least two other ways. Predic-
tions could also be derived using a physical model, such as two balls on a billiard
table. The billiard balls are analog representations, which are not arbitrary and
abstract like symbols, but are in some way analogous to their subject. Formally, an
analog model must exhibit systematic variation with its task domain [237]. This
means the analog model does not have to represent every aspect of the entity in
the same units – consider a sun dial, which represents the passage of time as the
movement in space of a shadow. Animal testing of pharmaceuticals, architects’
scale models and pictures are examples of analog representations, although note
that the last two examples can also contain symbolic content, which is usually of a
secondary nature. Note that in some analog models, it is possible to view the model
from multiple perspectives, while other analog models may fix the perspective in
the process of representing an entity. Either way, an agent must use the analog
model in place of real world measurements in order to fulfil the representation
relation. In Peirce’s typology, analog models have iconic grounds.

Another way the gas particles could be represented is using the English language.
For the task of predicting particle dynamics, language is quite limited. However, if
the particles were at sufficiently low temperature that their movement was frozen,
an English description of their configuration could provide a useful representation
for an agent. Language can be used to arrange words, which function as labels, to
represent objects. Nouns are labels for entities or classes of entities, while the verb
phrase of a predicate with two arguments (two nouns) refers to the relationship
between the corresponding entities. Labels in isolation can act as signs, which
constitute the most primitive form of representation, capable of standing in for
only a single idea. Signs are formalised in semiology, whose contemporary form
follows much more closely from the work of Saussure [275] than Peirce [156]. When
a set of signs is organised into a language with syntactic rules for manipulation
and intricate networks of relationships between components, its representational
power is qualitatively increased, and is rich enough to be studied in the distinct

5For some areas of mathematics, the corresponding formal system may have an infinite number
of axioms, rules or symbols, however these areas of pure mathematics are not practical for forming
representations, and for my purposes can safely be ignored.
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but related fields of linguistics and structuralist philosophy. An important obser-
vation is that the structure of sign systems (languages) does not need to represent
the structure of the world. The structure in language is based on the difference
between terms, rather than a reflection of structure in the world. This decoupling
both provides flexibility of expression within language, while at the same time
necessarily limiting its representational nature. Following Saussure, this construc-
tionist view of language is the dominant view in structuralist and post-structuralist
philosophy. Note that while mathematics is also a language6, and both mathem-
atics and language have symbolic grounds, I consider formal systems separately
from linguistic representations, because they can play significantly different roles
in representation.

Many disciplines have developed explanations of the way external models – math-
ematical, analog and linguistic – are used by agents to represent their world. The
three disciplines I now consider are metaphysics, military theory and systems the-
ory. The terminology and the scope of representations under consideration varies
significantly. In spite of this, it is found that Peirce’s triadic relation provides a
common structure for explaining representation in each case, and also that the ex-
ternal models conform to the three kinds identified in this subsection. Further, the
theory of representation in general reveals shortcomings in each of the disciplinary
accounts.

2.4.2 Representation in metaphysics

Popper advocated an ontological pluralist doctrine from 1967, which is detailed
in Objective Knowledge [250] and concisely summarised in [251]. According to
Popper, there exists three worlds:

• World 1 is the physical universe, including both living organisms and non-
organic matter.

• World 2 is the world of individual psychology, of mental events, raw feels
and thoughts.

• World 3 is the world of abstract products of the human mind, including
language, scientific theories, mathematics, paintings and symphonies.

The use of ‘world’ is indicative of the ontological nature of Popper’s distinction.
He clearly views each world as consisting of different kinds of stuff, proposing “a
view of the universe that recognizes at least three different but interacting sub-
universes.” [251, p. 143]. The nature of the interactions are causal, and the
abstract world is always linked to the physical world via the human mind [251, p.
165]:

If I am right that the physical world has been changed by the world
3 products of the human mind, acting through the intervention of the
human mind then this means that the worlds 1, 2, and 3, can interact
and, therefore, that none of them is causally closed.

6This interpretation is made precise in formal language theory.
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Popper contrasts his three world hypothesis with ontological monism (materialism
or physicalism) and ontological dualism (mind-body dualism) by saying that the
monist only admits world 1, while the dualist only admits worlds 1 and 2. When
Popper refers to say a symphony or a sculpture in world 3, this is separate from
the world 1 instantiation of the entity. It is only the abstract ideal of the entity
that exists in world 3. Thus, world 3 entities are types, which may have many
corresponding real world tokens that are imperfect embodiments of their type.
The key to Popper’s defence of world 3 are the claims that a) abstract entities
exist that are not embodied in world 1 or 2, such as the infinite members of the
set of natural numbers N; and b) abstract entities have a causal influence on world
1, such as Einstein’s equation e = mc2 resulting in the development and use of an
atomic bomb.

The three world hypothesis is of interest to us, because it neatly separates the
real world entities E that are being represented (world 1), mental interpretations
I of those entities (world 2), and external models M that are products of the hu-
man mind (world 3), in a way that is compatible7 with Peirce’s triadic relation.
However, Popper’s cosmology directly contradicts our understanding of physics.
In particular, conservation laws and symmetry imply that world 1 is closed, and
current theory requires only four fundamental forces (the strong and weak nuclear
forces, electromagnetism and gravity) to explain every causal physical interaction.
Popper claims that world 3 entities that cannot be embodied in world 1 can nev-
ertheless exert a causal influence on world 1, because they are apprehended by
human minds in world 2, which then control causal events back in world 1. But
then any physical explanation of a system that includes humans is causally incom-
plete. Even if one accounted for all of the interactions of the four fundamental
forces, there would be a ‘residual causality’ that remained unaccounted for. This is
because abstract entities are not subject to the four fundamental forces, and yet if
they have their claimed causal powers, their absence or presence will change the ag-
gregate force acting on bits of world 1 matter. Consequently, one can ask whether
it is conceivable that an experiment exists that could test for a residual causality
leak from world 1. This would require us to ascertain the presence or absence
of an abstract entity, which would require a human mind, without affecting the
physical state in the experiment. But in order to say whether the abstract entity
was present, the memory would have to be stored in the brain, thus changing the
physical state in the experiment (assuming supervenience). In fact, Popper’s claim
is metaphysical, and unfalsifiable, in contrast to the ideal of scientific conjecture
that he advocated. For our purposes, Popper’s ontological distinction is stronger
than is justified. The same argument applies to the similar, but less sophisticated
distinction that Penrose [245] proposes between the physical, Platonic forms, and
the human mind.

7For both Peirce and Popper, M could be private or shared. However, there is a difference in
emphasis: Peirce is mostly concerned with private use, whereas Popper concentrates on shared
uses of M .

28



2.4. External Representation

2.4.3 Representation in military theory

At the other extreme of the academic spectrum, one finds a position that as far
as I can ascertain, is advocated only within the relatively isolated discipline of
military theory. A central idea in Network Centric Warfare (NCW) [4] and the
closely associated, but broader Effects Based Operations (EBO) [295] concepts, is
that military actions occur in three domains: the physical, information and cog-
nitive domains. They are based largely on “common sense” and are not rigorously
defined. For example, Garstka [131] provides the circular definition: “The informa-
tion domain is the domain where information lives.” This definition is perpetuated
in [4]. More sense can be made of Smith’s [295, pp. 160-173] interpretation:

The three domains provide a general framework for tracing what actu-
ally goes on in the stimulus and response process inside human minds
and human organizations, and how physical actions in one domain get
translated into psychological effects and then into a set of decisions in
another domain. Understanding this process is important because with
it, we can begin to comprehend how people and organizations perceive
a stimulus or action and why they respond or react in the way they do
and thus, how we might shape behavior.

Smith then defines each domain.

. . . the physical domain encompasses all the physical actions or stimuli
that become the agents for the physical and psychological effects we
seek to create. . . . the actions in the physical domain may be political,
economic, and/or military in nature, and all must be equally considered
to be objects or events. . .

The information domain includes all sensors that monitor physical ac-
tions and collect data. It also includes all the means of collating or
contextualizing that data to create an information stream, and all the
means of conveying, displaying, and disseminating that information.
In essence, the information domain is the means by which a stimulus
is recognized and conveyed to a human or to a human organization. . .

The cognitive domain is the locus of the functions of perceiving, making
sense of a situation, assessing alternatives, and deciding on a course
of action. This process relies partially on conscious reasoning, the
domain of reason, and partially upon sub-conscious mental models,
the domain of belief. Both reason and belief are pre-conditioned by
culture, education, and experience.

It is clear from these definitions that the physical domain contains the entities E
that one needs to represent; the information domain is where external models M
are displayed and disseminated; and the cognitive domain is where the models are
made sense of – where the interpretants I exist. In both Smith [295] and Alberts et
al. [4], the relationship between the domains is seen to be a flow from the physical
domain to the cognitive domain via the information domain. Alberts et al. [4, pp.
12-13] establish this flow, and then use it to motivate the central importance of
information:
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With the exception of direct sensory observation, all of our information about 
the world comes through and is affected by our interaction with the 
information domain. And it is through the information domain that we 
communicate with others (telepathy would be an exception). Consequently, it 
is increasingly the information domain that must be protected and defended to 
enable a force to generate combat power in the face of offensive actions taken 
by an adversary. And, in the all important battle for Information Superiority, 
the information domain is ground zero. 

 
Disregarding the reference to telepathy and the sales speak, what is Alberts' claim? 
Direct sensation is claimed to be an exception to the usual flow of understanding from 
the physical world to the cognitive domain, via the information domain. This 
description, along with the accompanying diagram - reproduced in Figure 2.2, 
conjures up visions of the information domain as populated by automated sensors 
collecting, fusing and disseminating data unaided by human cognition and judgement. 
Smith is again more cautious, describing the cognitive domain as the locus where data 
is interpreted and decisions are made, not the information network. However, he 
maintains the same connections from the physical domain to the information domain, 
and the information domain to the cognitive domain. This is most explicit in the 
layered diagrams Smith uses to depict the domains, with the physical domain layer at 
the bottom, the information domain layer in the middle, and the cognitive domain 
layer on top. 
 
 
 

 
NOTE:  This figure is included on page 30 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
Figure 2.2: The three domains of warfare, after Alberts et al. [4]. 
 
 
Interestingly, the three domain model is derived8 from Fuller's [129] book  The 
Foundations of the Science of War, in which Fuller described a trinity between the 
three spheres of man. Because they are both based on a triadic relation, the 
 
 
 
________________________ 
8In [131], Garstka notes that “A key element of the model is a focus on three 
domains: the physical domain, the cognitive domain, and the information domain. 
This conceptual model builds upon a construct proposed initially by J.F.C. Fuller in 
1917, and refined in Measuring the Effects of Network-Centric Warfare." 
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structure of Fuller’s three sphere theory of warfare is structurally analogous to
Peirce’s theory of signs. However, in the modern day interpretation of Fuller, the
triadic relation between the domains of warfare has been reduced to two dyadic
relations: the physical–information and information–cognitive relations. This in-
tended “refinement” of Fuller’s conceptual model has only concealed the essential
nature of representation as an irreducible triadic relation.

2.4.4 Representation in systems theory

In his book on multidisciplinary thinking, Kline [185, p. 16] notes three uses
of the word ‘system’ within science, which are relevant to the role of external
representations. So that they can be compared, he gives them three separate
labels. The first conception, the most common use by scientists outside the systems
community, is:
Definition 2.3 (System (1)). The object of study, what we want to discuss, define,
analyse, think about, write about, and so forth.

Kline refers to this understanding with the label ‘system’, which for example could
refer to the solar system, a communicating vessel, an ecosystem, or an operating
system. In fact, according to Kline, a system can be anything, as long as there is a
well defined boundary associated with the system. In this thesis, I use ‘system of
interest’ to denote this meaning of system. In Peirce’s triadic relation, the system
of interest corresponds to the entity E.

The second usage is defined as:
Definition 2.4 (System (2)). A picture, equation, mental image, conceptual model,
word description, etc., which represents the entity we want to discuss, analyse,
think about, write about, etc.

Kline coins the term ‘sysrep’ to mean representations of systems. Sysreps are “one
of three basic types of representation: words, pictures and mathematics”: that is,
sysreps are models M . The types of representations Kline identifies correspond to
the categories of language, analog and mathematical models I proposed in Section
2.4.1, except that pictures are only one of several possible analogs. According
to Kline, the ideal aim of a sysrep is to perfectly mirror a system, where “[b]y
‘perfect mirror’ we mean not only that the sysrep will fully represent each and
every characteristic of the system with total accuracy, but also that it will rep-
resent nothing more” [185, p. 18]. The common – but misguided – conception of
representation as a perfect mirror is critically examined in Section 2.5.2.

The third usage is the most general conception, which is consistent with attempts
to define the meaning of system within the systems community:
Definition 2.5 (System (3)). An integrated entity of heterogeneous parts which
acts in a coordinated way.

Kline uses the label ‘system’ or ‘systemic’ for this conception, where a systemic
property is an emergent property, which is a property of the whole but not a
property of the components of the system.

The final concept Kline invokes is a schemata, which denotes “all the ideas in a
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person’s head which are used to represent and interact with the world” [185, p. 31].
Example schema include words, relational ideas, behavioural routines and medical
diagnosis. Kline then answers the question: “What is the relation of a sysrep to
schemata in the mind? A sysrep is a particular kind of schemata, a very special
class of the totality of the schemata we construct in our minds.” Kline defines
non-mental representation as a special class and an extension of mental repres-
entation. This approach is problematic, because mental representation is actually
more difficult to understand than external representation. It makes more sense to
explain mental representation in terms of the more straightforward case of external
representation, even if mental representation precedes external representation from
a chronological view.

In Kline’s view, the relation between entities, models and their interpretants is
as follows. Scientists view the world as being comprised of systems, which are
interpreted using mental schemata. Schemata enable complex interactions with the
world, but are formed using largely non-conscious mechanisms, and may be fuzzy
and unstructured. When we go to the trouble of making a schemata explicit and
shared in a structured social environment, it becomes a sysrep (which must still
be interpreted by people). The goal of forming sysreps is to mirror the system,
so that ideally the behaviour of the sysrep and the system are identical. While
Kline is right to distinguish between systems, system representations, and system
interpretations, the details of how they interact are not consistent with Peirce’s
triadic relation.

Burke [72] has formalised and refined the systems approach to understanding rep-
resentation, in a clearly articulated conceptual model. He offers the following
definitions for entity, system, system description and model [72, pp. 9-12]:
Definition 2.6 (Entity). An entity is any object that has existence in the physical,
conceptual or socio-cultural domains.
Definition 2.7 (System (4)). A system is an idealisation of an entity as a complex
whole.
Definition 2.8 (System description). A system description is a representation of
a system.
Definition 2.9 (Model). A model is an idealisation and/or representation of an
entity.

Four implications follow from these definitions. Firstly, because systems are ideal-
isations of entities, they are abstractions that have no physical existence [81].
Systems are not part of the furniture of the world, they only exist inside minds.
Stated another way, a system is a way of looking at the world [324]. Secondly, an
entity can be idealised as a system in multiple ways: there is no unique systems
view for any entity. Thirdly, and most importantly for this discussion on repres-
entation, both systems and system descriptions are considered to be models by
Burke. The difference is that external models (a system description) presuppose
the existence of a corresponding idealisation (a system). This is equivalent to
requiring that external models M require an interpretant I in order to represent
an entity E. Therefore, Burke’s system theoretic interpretation is consistent with
Peirce’s triadic relation for external representation. Fourthly, Burke defines sys-
tem descriptions to be derived from systems (idealisations of entities), rather than
directly from entities. This implies that the system description can only capture
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aspects of the entity that have already been captured in the system. Consequently,
a system description can be interpreted as a system that has been further abstrac-
ted from the entity it represents.

2.4.5 Summary of external representation

I will conclude the discussion of external representation by comparing the distinc-
tions that have been identified above in different disciplines. The most notable
commonality is that in each case, exactly three categories have been necessary to
explain external representation, and furthermore these categories can be aligned
with the entities, models and interpretants of Peirce’s triadic relation. Of course,
this has more to do with the selective nature of my literature survey than uni-
formity of approach. Descartes’ [107] dualism was unconcerned with external rep-
resentations, while Rosen’s [265] Modeling Relation between the formal systems
of science and the natural systems they represent attempted to explain external
representations without explicit reference to the human mind or interpretants.
Nevertheless, each of the approaches I have covered supposes that things are nat-
urally considered as belonging either to the physical, the mental, or the social
products of the mental. The physical world contains the entities that one would
like to represent, external models are social products that can be shared, but they
must be interpreted by someone or some agent to count as a representation.

There is an important way in which the domains in military theory differ from
the accounts of representation by Popper, Kline and Burke. Interactions between
the physical domain and the cognitive domain are mediated by the information
domain. In contrast, the other accounts explain external models as products of
the human mind. Physical entities must be conceptualised before they can be
externally represented. Because militaries functionally separate the collection of
information from decision-making, the role of human conceptualisation in inform-
ation collection that mediates between the physical and information collection is
easily ignored. But without human intervention and judgement there is only data,
not representation or information, and automation can reduce but not eliminate
human participation in constructing representations9. In view of Peirce’s triadic
relation, each of the alternative accounts considered aspects of this relation, but
none are as comprehensive as Peirce’s theory of signs.

External models have been variously held to be: abstract products of the human
mind; information bearing artifacts; the socio-cultural environment; a specially
precise subset of mental representation; a mirror that reflects part of the world;
and a mental representation reduced by additional simplifying assumptions, which
is explicit and shared. However, most of these assertions are not entirely accurate.
Definitions, such as Kline’s, that attempt to explain external representations with
respect to mental representation are not enlightening, because the cause is more
complicated than the effect. Peirce’s typology of iconic, indexical and symbolic

9This is a point that Polanyi [249, p. 20] makes well, and an example is the automation of
the photo-finish for horse races, which still required human judgement in a case where one horse
was fractionally in front, but the other extended further past the finish line due to a thick long
thread of saliva coming from the horse’s mouth. It would seem that such semantic ambiguities
cannot be satisfactorily resolved by syntactic processors.
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pure forms, and my categories of formal, analog and linguistic models, provide a
framework for understanding external representation, which is sufficiently general
to account for representation across disparate disciplines. Within this framework,
an external model is most accurately conceived of as a grounded representation
bearer external to the agent who interprets the model. Less formally, an external
model is an equation, analog or description that represents something for an agent
and thereby modifies its behaviour.

2.5 Internal Representation

Representation plays an important explanatory role in biology. From the perspect-
ive of a living agent, the world contains limited essential resources of energy and
matter for survival and reproduction, as well as threats to survival such as pred-
ators and other harmful energy sources. It is easy to see that the ability to sense
qualities of the immediate environment and to control locomotion with context
sensitive behaviour confers a significant relative selective advantage. Bacteria that
follow a chemical or light gradient can be viewed as performing very basic repres-
entation: chemical reactions triggered by the local environment stand for greater
expected concentrations of non-local useful energy which cannot be directly de-
tected. An agent that can sense distal features of its environment, using passive
or active sensors to detect patterns of incoming energy such as light photons or
sound waves, can secure an even greater selective advantage. Whereas proximal
sensory information requires an agent to ‘bump’ into a threat before it can react
to it, an agent that can sense a threat at a distance can avoid the threat entirely.
However, distal information is noisy, incomplete and intermittent. Just because
a predator becomes occluded by vegetation does not secure the safety of its prey.
Current sensory input alone is inadequate for determining the best action in any
context. By constructing an internal representation of its environment, an agent
can continue to act appropriately in the absence of direct sensory stimuli.

This story of representation in biology is inspired by the accounts of Dennett [105,
pp. 177-182] and O’Brien and Opie [238], which suggest that representation is the
problem that the brain is intended to solve. There is some empirical support for
this conjecture in the form of the sea squirt Ciona intestinalis. The tadpole larva
has a central nervous system of about 330 cells that controls locomotion. Once
it attaches to a permanent object, it undergoes a metamorphosis that has been
loosely described as eating its own brain (the cerebral ganglion is broken down and
reused), since it no longer needs sensorimotor control, and therefore has no need
to represent its environment.

Given this story, one may ask how the brain represents. This question has gen-
erated the most sophisticated conversation about internal representations, and
has been especially preoccupied with the human brain. The Representational
Theory of Mind, or representationalism, dates back at least to Aristotle [248].
The proposed answers of contemporary cognitive science divide into three main
camps. They are Good Old Fashioned Artificial Intelligence (GOFAI), also known
as symbolic, classical, or conventional cognitive science; connectionism; and the
dynamical systems hypothesis.
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When the representation is internal to the agent, one is faced with the question
of what interprets the model. If internal models are interpreted in the same way
as external models, then this leads to infinite regress, because the interpretant is
also an internal model that requires its own interpretant, and so on. Von Eckardt
[312, p. 283] describes two alternative resolutions to the infinite regress problem
Peirce considered, and relates these to analogous moves in contemporary cognitive
science.

The first solution is to weaken the definition of interpretant, to be a potential
rather than an actual interpretant. The regress still consists of an infinite series
of representations, but it is now easier to reconcile the associated interpretants,
because they do not need to actually exist. This solution is reiterated by Cummins
in cognitive science.

The second solution is “to find something that can function as an interpretant but
which is not, itself, also representational and therefore in need of interpretation”
[312, p. 283]. Peirce suggests that the only candidate for this is a habit-change.
Specifically, Von Eckardt argues it must be a modification in the tendency to
act in ways dependent on the content of the representation. The habit-change
does not need to affect external behaviour; changes to mental habits (processes
that generate other internal representations) also count. However, in order to
eventually curtail the regress, internal models must ultimately be interpreted by
shaping the agent’s external behaviour. A very similar solution is suggested by
Dennett, which Von Eckardt claims is the widely endorsed solution in cognitive
science. Further, Von Eckardt [312, p. 290-302] shows in detail how this solution
can handle the regress problem. Briefly, this involves demonstrating that:

• Interpretant I of model M is producible by M ; and

• I is related to both the agent A and M , such that by means of I the content
of M can make a difference to the internal states or the external behaviour
of A towards the entity E.

Von Eckardt establishes this is the case for both conventional (symbolic) and con-
nectionist machines. I will now provide a short introduction to GOFAI and con-
nectionism, the two strongest advocates of representationalism.

2.5.1 Representationalism

How can a particular state or event in the brain represent one feature
of the world rather than another? And whatever it is that makes some
feature of the brain represent what it represents, how does it come to
represent what it represents?

Daniel Dennett

These are the questions of representationalism, a position that assumes that the
mind is a representational device, and that the brain has representational content.
They are exceptionally difficult questions, because the mechanisms behind brain
functions such as learning, memory and computation in the brain are currently
poorly understood. Consequently, the mechanisms underlying representation are
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equally opaque. Also, under almost any metric, the human brain rates as the
one of the most complex entities studied in science10. For a deeper discussion of
representationalism than I can afford here, see Cummins [98].

As is the case for most enduring themes of Western philosophy, the first records
of representational theories of mind are found in the writings of Aristotle [13]. In
Book III, part 4, Aristotle describes the part of the human soul that thinks and
judges: νoυ̂ς or the mind. According to Aristotle, the mind is “capable of receiving
the form of an object; that is, must be potentially identical in character with its
object without being the object.” This statement clearly demonstrates Aristotle’s
use of the distinction between a model and the entity it represents. By form,
Aristotle refers to the properties of the object, as opposed to its material substance.
In Aristotle’s metaphysics, the immaterial mind knows something when it takes
on the form of that object, such that it represents the object in virtue of their
similarity, in exactly the same way that a picture can represent a scene (Peirce’s
iconic grounds). “To the thinking soul images serve as if they were contents of
perception . . . That is why the soul never thinks without an image.” Berkeley
[44] and Hume [163, 164] both extended this Aristotelian conception to argue that
all mental contents are images in the mind, and that they are representations in
virtue of their resemblance to perception. The inherent weakness of basing mental
content on similarity can be seen by probing the mechanisms that could imbue
mental images with the same properties as the objects they represent. Images
presented to an immaterial mind are not so much an explanation as a metaphor,
where thinking is like putting on a theatre for the Eye of the Mind.

In contrast, Hobbes [151, Chapter V] and Leibniz [202] advanced the idea that
everything done by the mind is a computation. In this view, thought proceeded
by symbolic manipulations analogous to the additions and subtractions of the
new calculating devices – in modern parlance the mind was seen as an “automatic
formal system” [149]. Notably, this reframed the question of representationalism to
propose a mechanical and material explanation of mental processes. This provided
a crucial step towards a science of cognition, because it opens up the possibility
that certain features of cognition could be reproduced artificially.

The link between computation and representation is important but subtle. Because
of the universality of Turing’s conceptual model of digital (symbolic) computation,
it is a common assumption that all computation is equivalent to a Universal Turing
Machine. However, as O’Brien and Opie [239] correctly point out, this does not
account for analog computation. They propose a definition of computation in
general, which is broad enough to capture both analog and digital computation,
but still sufficiently constrained to differentiate computation from the vast majority
of physical systems – intestines, microwave ovens, cups of tea, etc. – that are not
involved in computation.

[T]here are two distinctive features of computational processes (as op-
posed to causal processes in general). First, they are associated with
representing vehicles of some kind. Second, and more importantly,
computational processes are shaped by the contents of the very repres-
entations they implicate. We thus arrive at the following characterisa-

10See Bar-Yam [25] for estimates of the complexity of the brain compared with other systems.
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tion:

Computations are causal processes that implicate one or more repres-
enting vehicles, such that their trajectory is shaped by the representa-
tional contents of those vehicles.

This characterisation of computation makes explicit the link between computa-
tion and representation. Computations are those processes involving representing
vehicles (models), such that the outcome of the process depends on the content of
the model. Representation is inherent in computational processes, and computa-
tion is the mechanism that causally links the contents of models to changes in the
behaviour of the agent that interprets the model. Representation and computation
are a package deal: a commitment to a computational theory of mind entails a
commitment to representationalism.

Although conceived in the 17th century, it was not until the mid 20th century that
the computational idea rose to prominence. The initial hype associated with the
AI movement had a profound impact on 20th century cognitive science, such that
computational theories of mind were predominantly based on algorithmic symbol
manipulation. The Universal Turing Machine [301] provided a theoretical basis
for universal symbol-based simulators of human intelligence, while exponential
increases in computing power dramatically expanded the application of computer
algorithms towards focussed engineering tasks that had previously required the
application of the human mind.

Yet simulations that could be confused with intelligent humans have not materi-
alised. AI researchers began to hit some fundamental walls: general intelligence
appeared to require fast, situated, unencapsulated reasoning, where automated
formal systems were slow, abstract, and only capable of manipulating the initial
axioms they were given according to fixed rules. Coinciding with a growing dissat-
isfaction with the ability of the products of AI to live up to expectations, several
alternatives have been advanced within cognitive science, and symbolic computa-
tional models of cognition began to be referred to as GOFAI.

Connectionism, or Parallel Distributed Processing (see for example [218]), which
is based on highly abstract networks of artificial neurons, presents an alternative
paradigm for modelling cognition, which can be interpreted as performing analog
computation. Connectionist models are inspired by current understanding of the
architecture of the brain, and are described by Dennett [105, p. 269] as blazing
the first remotely plausible trails of unification between the mind sciences and the
brain sciences. Different kinds of connectionist networks have been shown to have
content addressable memory [159]; provide universal function approximation [160];
degrade gradually when damaged; and distribute representations across the set of
connection weights, which decouples representations from individual symbols. Due
to their parallel processing, connectionist networks are also very fast. The theor-
etical model of connectionism, an artificial neural network with real connection
weights, has been proven to be capable of hypercomputation [291] – that is, able
to compute functions that Turing machines cannot. Of course, such machines
are not practical, since real numbers in general require infinite information, and
there are also a number of issues artificial neural network implementations suffer
from. They are almost always simulated on a digital computer, which implies these
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instantiations are equivalent to Turing machines; they learn reliably only under
supervision; and they are usually treated as black boxes, because their behaviour is
not currently well understood. Of course, there are philosophical concerns as well.
For example, Fodor and Pylyshyn [126] criticise connectionism because it cannot
explain systematicity: the feature of human cognition whereby the ability to think
one thought entails the ability to think of numerous logically related thoughts,
such as its converse.

The most recent alternative to both GOFAI and connectionism is the dynamical
systems hypothesis [304]. However, advocates of the dynamical systems account
are often explicitly critical of explanations involving representation, so a discussion
of dynamical systems is deferred to Section 2.5.2 on anti-representationalism.

In summary, representational theories of mind have been proposed that are based
on symbolic manipulation and analog covariance. GOFAI and connectionism agree
that mental contents can stand in for, and stand in relation to real world objects.
They also assume that psychological processes are computations that represent
aspects of the external world.

2.5.2 Anti-representationalism

There is no harm in saying of good tools and good moves that they are
also good representations, but nothing interesting is conveyed by this
choice of idiom, and its employment should not tempt us to construct
theories about how representation works.

Richard Rorty

Accounts of representation in cognitive science and artificial intelligence have been
criticised as a basis for biological behaviour on a number of fronts. Brooks [64]
summarises one key idea against representation in the physical grounding hypo-
thesis: the world is its own best model, the trick is to sense it appropriately and
often enough. The first part is true but uninteresting, because it is the trivial
case where the representation relation degenerates into a diadic relation between
A and E ≡ M . The second part is important, because it emphasises the need
for agent decisions to be grounded. However, the physical grounding hypothesis
does not and can not dispose of representation entirely. Even if the world is used
as its own model, the agent needs to interpret the meaning of its observations.
Constructionist accounts of vision (see for example [243]) argue that the process
of perception involves significant construction by the observer. In their critique of
a simplistic but common conception of “pure vision” – essentially the idea that the
visual system is a bottom-up hierarchy designed to fully mirror the visual scene –
Churchland et al. [82] provide an alternative account that they label interactive
vision. Some of the constructive characteristics of interactive vision are: visual
fields are highly non-uniform; vision is exploratory and predictive; the motor sys-
tem and the visual system are entangled; sensory processing is more like a recurrent
network than a hierarchy; and vision cannot be neatly separated from other brain
functions. Consequently, the process of sensing the world appropriately is in fact
one of the major sources of representational activity in the brain [241]. Also, in
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_____________________________________________________________________ 
 
Section 2.3 I gave a number of reasons why internal representations can be con- 
venient, even if they are not perfect substitutes for unmediated access to the real 
world. 
 
Van Gelder [304] denies that cognition involves computation or representation, 
advancing an alternative dynamical systems hypothesis. In this account, rather than 
interpreting cognitive states as symbols, they are treated as quantifiable states of a 
nonlinear dynamical system. Van Gelder uses the Watt governor, depicted in Figure 
2.3, to illustrate his thesis. The Watt governor is a mechanical device that maintains a 
constant speed for a flywheel despite fluctuations in both steam pressure from the 
boilers and the engine workload. The Watt governor was a pivotal invention during 
the industrial revolution that allowed the generation of reliable, smooth and uniform 
power. The Watt governor works because a spindle is geared into the flywheel such 
that the spindle rotates proportionally to the speed of the flywheel. The faster the 
spindle rotates, the more centrifugal force it generates, raising the spindle of the 
flywheel. Because the spindle is directly linked to the throttle valve, the faster the 
spindle rotates, the higher its arms rise, the more the valve is closed, restricting the 
flow of steam. As the speed of the flywheel decreases, so too does the spindle, the 
arms fall, opening the valve and increasing the flow of steam. Thus, a steady state for 
the speed of the flywheel exists and the Watt governor maintains the steady state by 
exerting negative feedback on any deviation from the steady state. 
 
 
 
 
 

 
NOTE:  This figure is included on page 39 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
Figure 2.3: The Watt centrifugal governor for controlling the speed of a steam 
engine, after [121] as reproduced in [304]. 
 
 
 
 
Van Gelder compares this mechanical device, which he classifes as a dynamical 
system, with a hypothetical computational device capable of performing the same 
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function. The computational device would follow an algorithm that depends on
representation.

The very first thing it does is measure its environment (the engine) to
obtain a symbolic representation of current engine speed. It then per-
forms a series of operations on this and other representations, resulting
in an output representation, a symbolic specification of the alteration
to be made in the throttle valve; this representation then causes the
valve adjusting mechanism to make the corresponding change [304, p.
350].

In contrast, the mechanical device is non-representational. Van Gelder gives four
reasons: representation is not needed to fully account for the operation of the
Watt governor; the obvious correlation between arm angle and engine speed is not
representational because representation is more than mere correlation; the simple
correlation only obtains in the steady state; and the arm angle cannot represent
engine speed because the two quantities are coupled.

Of these, the first three reasons are not persuasive. Just because an explanation
of the Watt governor within some frameworks do not need the concept of repres-
entation does not imply that representation cannot be used to explain the same
process. After all, none of the compound objects – such as spindles and throttles
– are necessary concepts in the quantum mechanical wavefunction of a Watt gov-
ernor. The second point does nothing to disprove representation occurs, it merely
demands a higher standard of proof than demonstrating correlation, while the
third point only notes that any correlation is not simple.

The forth reason is the most interesting. Van Gelder observes that “the angle of
the arms is at all times determining the amount of steam entering the piston, and
hence at all times both determined by, and determining, each other’s behaviour.”
Because of this circular causality, Van Gelder claims that representation is “the
wrong sort of conceptual tool to apply”. When representation is thought of as
a mirror, it does indeed seem wrong for the mirror to determine any part of the
mirrored entity, because there is an asymmetry in their relationship. However,
under the conception of representation as a triadic relation, it is necessary for
the model to change the behaviour of an agent, and possible for the agent to be
acting upon the represented entity. Peirce’s triadic relation does not preclude the
formation of feedback loops, although it does provide an incomplete explanation
for such tightly coupled variables as the arm angle and engine speed.

The important criticisms of both Brooks and van Gelder are directed at the cognit-
ive science community’s early preoccupation with explicit symbolic representation.
However, Section 2.3 demonstrates that representation in general can have iconic
and indexical – not just symbolic – grounds. Brooks’ situated robots do not do
away with representation altogether – they actually encode significant amounts
of their behaviour symbolically on finite state machines. Dynamical systems, as
advocated by Van Gelder, can still function as representations with iconic grounds.
The analog model in Section 2.4.1 is one such example. Rather than undermin-
ing representation, these critiques serve to highlight differences between formal
systems and other possible bases for biological representation.
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Maturana and Varela’s [217] ground-breaking second order cybernetics approach
to the biological basis of cognition is also critical of representationalism, which they
claim is inadequate for a scientific explanation. They use an analogy reminiscent of
Searle’s [277] Chinese room argument to claim that living systems do not represent
[217, p. 136]:

Imagine a person who has always lived in a submarine. He has never
left it and has been trained how to handle it. Now, we are standing on
the shore and see the submarine gracefully surfacing. We then get on
the radio and tell the navigator inside: ‘Congratulations! You avoided
the reefs and surfaced beautifully. You really know how to handle a
submarine.’ The navigator in the submarine, however, is perplexed:
‘What’s this about reefs and surfacing? All I did was push some levers
and turn knobs and make certain relationships between indicators as I
operated the levers and knobs. It was all done in a prescribed sequence
which I’m used to. I didn’t do any special maneuver, and on top of
that, you talk to me about a submarine. You must be kidding!’

This analogy works by specifying an overly narrow system boundary. The ad-
equacy of the navigator in avoiding the reefs cannot be explained unless the bound-
ary is expanded to include the process that generated the prescribed sequence of
knob turns and lever pushes. Specifically, the person in this example only becomes
a navigator once they have been trained. But then it is easy to see that the pre-
cise purpose of training the navigator in the sequence of actions is to stand in for
observations of the reefs and the depth below sea level, and thereby modify the
submarine’s behaviour.

A more serious threat to representationalism is anti-representationalism, which
has been advocated by Davidson, and even more forcefully by Rorty [263]. Anti-
representationalism holds that any statement about the world is an inseparable
cohabitation of subject and object, rather than correspondence between an object
and a model. Rorty rejects the ‘mirror’ metaphor of knowledge, where knowledge
is a reflection of the mind-external world. According to Rorty this metaphor,
which we have already seen used explicitly by Kline above, is the central metaphor
for representationalism. Rorty criticises what he calls the Aristotle-Locke analogy
of knowledge to perception,

. . . the original dominating metaphor as being that of having our be-
liefs determined by being brought face-to-face with the object of the
belief (the geometrical figure which proves the theorem, for example).
The next stage is to think that to understand how to know better is to
understand how to improve the activity of a quasi-visual faculty, the
Mirror of Nature, and thus to think of knowledge as an assemblage of
accurate representations. Then comes the idea that the way to have
accurate representations is to find, within the Mirror, a special priv-
ileged class of representations so compelling that their accuracy cannot
be doubted. These privileged foundations will be the foundations of
knowledge, and the discipline which directs us toward them—the the-
ory of knowledge—will be the foundation of culture. The theory of
knowledge will be the search for that which compels the mind to belief
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as soon as it is unveiled. Philosophy-as-epistemology will be the search
for the immutable structures within which knowledge, life, and culture
must be contained—structures set by the privileged representations
which it studies. The neo-Kantian consensus thus appears as the end-
product of an original wish to substitute confrontation for conversation
as the determinant of our belief [263, p. 163].

It should be noted that Rorty’s attacks are not directly focussed on the cognitive
science debate on mental contents, which the previous critiques have participated
in. Rorty, who is trained in analytic philosophy, is more concerned with structur-
alist and linguistic attempts to ground knowledge as representation. For example,
Rorty [264] cites Brandom’s [60] characterisation of the representationalist school
as saying that “the essential feature of language is its capacity to represent the
way things are.” Proponents of this school are taken to be Frege, Russell, Tarski
and Carnap, who are contrasted with Dewey, Wittgenstein and Sellars, who view
language as a set of social practises. However, it was noted in Section 2.4.1 that
there is no necessity for language to be representational. Further, Rorty’s target
is much larger than just the philosophy of mind – he seeks to question the legit-
imacy of transcendental (Kantian) epistemology as distinct from psychology, and
advocates that the only constraints on knowledge are essentially conversational in
nature. Rorty rejects the very idea of a theory of knowledge, truth or rationality.

Is it possible to salvage representationalism from these attacks? Rorty seeks an a
priori defeat of representation, but there is an empirical component to the question
of whether minds represent. Languages are not reflections of reality, in the sense
that they are not mirrors that can be polished to provide a True representation of
the world. However, it does not immediately follow that formal systems, analogs
or minds can not represent in any meaningful way.

A stronger defence of representationalism can be made by carefully articulating
what work the representation relation needs to perform. From the perspective of an
agent faced with a decision, consider two different processes for choosing between
the alternatives. For concreteness, suppose the agent is a frog near the edge of a
cliff choosing whether to jump forward to the left or right. One choice is safe but
the other choice will result in certain death. Using the first process, suppose that
the frog, like one of Brooks’ situated robots, is able to make its decision by using
the world “as its own best model”. Brooks’ idea of sensing the world often enough
is similar to Van Gelder’s claim that dynamical coupling and feedback can do the
same job as representation, without requiring extensive planning or computation.
In the case of the frog, it is a pretty simple and efficient process: both alternatives
are sensed and the apparently less perilous alternative is immediately acted upon.
The process is memoryless11, so it can be repeated every time the frog lands. It
can work when several conditions are met: if the frog can sense at least as far as
it leaps; if the sensory comparison is reliable; and if the environment is sufficiently
stationary while the frog is airborne.

If the latter condition is violated, nothing can guarantee the safety of the frog if it

11I should clarify that I mean memoryless in the mathematical (Markovian) sense: the prob-
ability of future states only depends on the current state. This is significantly more abstract and
general than the meaning of memory in cognitive science.
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continues to leap. However, by using an alternative representational process, the
frog may stand a chance even when the first two conditions do not hold. Suppose
that it is a dark and foggy night, so that the frog cannot reliably sense the relative
merits of jumping left and right. Fortunately, the frog has taken this path many
times before, and remembers the sequence of left and right jumps that have got it
home safely in the past. Then recognition of the starting location and recollection
of this sequence can substitute in the decision-making process for sensing the
alternatives at every step. The sequence can act as a model which when interpreted
by the frog can stand in for the currently unreliable sensory information. In this
process, representation must still be grounded by having previously sensed the
alternatives using the first process. However, it can no longer be memoryless.
By maintaining an internal model, the frog amplifies the applicability of sensory
information beyond immediate local sense-response reflexes, to affect behaviour
non-locally in space or time. Representation allows the agent to do more with less
sensory information, to fill in gaps and to generalise new information. In other
words, the real work that representation is doing is inference.

Rorty is right to reject the metaphor of representation as a mirror, reflecting the
nature of reality for Descartes’ Eye of the Mind. But representation is not a mirror,
its purpose is not to reflect but to infer. In this section, I have argued that percep-
tion is to some extent constructed, which involves representational activity. I have
shown that representation can have non-symbolic grounds, meaning dynamical
systems can be a basis for representation. I have examined Maturana and Varela’s
argument against representation, which relies on an overly narrow definition of
system boundary. Finally, I have argued that Rorty’s attack on representation
is largely directed towards language as representational, and to representation as
mirroring. These critiques have merit, but do not challenge the general theory of
representation provided by Peirce’s triadic relation as an explanation of internal
representation.

2.6 Agents

So far I have not specified what I mean by an agent. However, the preceding discus-
sion on representation offers a precise way of characterising agency. Because of the
ubiquity of agents in complex systems, this section contains the most important
implications of this chapter.

As Peirce has argued, representations require an interpretant, and therefore an
agent to perform the interpretation. Thus, there is a sense in which representations
(and computations) are relative to a subject – that is, they are subjective [278, p.
92]. But there is an equally objective way that a subject plus a model either does,
or does not, represent. By redrawing the system boundary to include the model’s
user, representation is an intrinsic feature of this system of interest. This is the
importance of the triadic relation: because it is irreducible, the system boundary
must always extend to include the agent in order to understand representation.

This is why, unless one can identify who is using the model and how it shapes
their behaviour, the model cannot be considered to be a representation. Peirce,
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Von Eckardt, Popper, Smith, Kline and Burke all identify the ‘who’ with a human
mind, which is more generally the case in the literature. I have generalised this
to say that a model is always a model employed by an agent. An agent can be a
person, but it can also be a group of people, an animal, a cell, a certain kind of
robot or a certain kind of physical process (after all, each member of this list is a
physical process). The ability to form and use representations appears to be the
principle difference12 between an object and an agent – it is the difference between
kicking a rock and kicking a cat (not that either experiment is condoned, except
as a thought experiment).

More formally, if an entity’s response to a stimulus is directly determined by its
current state, and the current state does not include any models, then the entity
is not an agent. If stimulus and response are indirectly related because they are
mediated by representation, then the entity is an agent.
Definition 2.10 (Agent). An entity that constructs and uses representations to
shape its own goal-directed behaviour.

More will be said about goal-directed behaviour below, but for now note that goal-
directed behaviour does not imply that agents only have a single goal: it is merely
intended to distinguish between directed and undirected behaviour. It seems there
is a continuum, such that entities may have a degree of agency, depending on how
indirect the relationship between stimulus and response is, and how sophisticated
the representations can become, which is often called the plasticity of the repres-
enting medium. I am not overly concerned about the precise demarcation between
agent and non-agent. The definition is more useful for comparative purposes, in
order to investigate if the degree of agency has increased, and to say that a human
has more agency than a cockroach, which has more agency than a virus, which has
more agency than the robot Cog [66], which has more agency than a cyclone13.

The degree of autonomy of an agent refers to freedom of choice or variety, which is
made precise by the notion of source coding in information theory (see Section 5.2).
The degree of autonomy is evident in the sensitivity of changes in the behaviour
of the agent to changes in its representations. For example, if an agent’s model
is replaced by any other model (such as its inverse) and yet this has no causal
influence on the behaviour of the agent, then the model does not contribute to
the autonomy of the agent. If this holds for all models, then the agent is not
autonomous. A model must shape behaviour to be a representation and provide the
agent with autonomy. In contrast, if any arbitrary desired feasible state within the
agent’s environment can be achieved by changing only the agent’s representations,
which then realise the desired state by modifying the agent’s behaviour, the agent
has maximum autonomy. When autonomy is shared between two or more agents,

12For example, Aristotle [13] says “The soul of animals is characterized by two faculties, (a)
the faculty of discrimination which is the work of thought and sense, and (b) the faculty of
originating local movement.” In my account, representations both encode distinctions and shape
movement or behaviour.

13Most people do not consider a cyclone to be an agent, even though it is a self-maintaining,
non-equilibrium entity with unpredictable behaviour. The anti-cyclonic Great Red Spot on
Jupiter is a structure with a diameter significantly greater than Earth, which has persisted since
it was observed by Cassini in 1665. I believe the main reason cyclones are not considered agents
is because it is not possible to sustain an interpretation of either goal-directed behaviour or
representation for a cyclone and although unpredictable, they are not autonomous.
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this is the subject of game theory, and the degree of autonomy of a player is the
number of available strategies14, and any mixed strategy on this set constitutes a
model.

The autonomy of agents can lead to philosophical debate about free will and
teleology. In view of Hume’s compatibilism [163, 164], the autonomy of an agent
does not imply the agent is necessarily nondeterministic – that with exactly the
same internal and external states, two distinct responses to the same stimulus are
possible. Instead, a weaker condition holds, namely given different representations,
an agent is capable of choosing different actions. To confuse the matter, often it
is useful to explain the behaviour of a system as an autonomous agent, even when
it is clearly not purposive. For example, Dawkins [101] describes genes as selfish
molecules, as if they have minds, which is a form of teleonomic explanation. For
my purposes, I will always assume that agency entails a degree of autonomy in
Hume’s sense, and also implies that the agent is capable of exhibiting goal-directed
behaviour.

The notion of goal-directed behaviour has been formalised by Sommerhoff [297],
who observed that the essence of goal-directed activity is:

that the occurrence of the goal-event G is invariant in respect of certain
initial state variables (u0) despite the fact that G depends on action
factors and environment factors that are not invariant in respect of u0.
The invariance of G being due to the fact that the transitional effects
of changes in u0 mutually compensate, so to speak.

Sommerhoff realised it was possible to treat goal-directedness as an objective prop-
erty, independently of the subjective notion of purposiveness of interest to the psy-
chologist. He established three necessary and sufficient criteria for goal-directed
behaviour. Firstly, for at least one variable a associated with the action, and one
variable e associated with the environment, for at least one time tk,

F (ak, ek) = 0. (2.1)

This ensures that the action is capable of compensating for environmental variab-
ility. Secondly, a and e must be mutually orthogonal, meaning that the value of
one of the variables does not determine the value of the other for the same instant.
This allows the mechanism for goal-directed behaviour to realise Equation (2.1)
for a range of initial conditions. And thirdly, there must be a set S0 of initial en-
vironmental conditions (where |S0| ≥ 2), such that each initial condition requires
a unique action ak which satisfies Equation (2.1). This criterion ensures that the
goal could have been achieved from an ensemble of initial conditions, rather than
only from the actual initial conditions. |S0| provides a measure of the degree of
goal-directed behaviour: the greater |S0| is, the more environmental variety the
agent can destroy and still achieve its goal. Thus, goal-directed behaviour is un-
derpinned by Ashby’s [18, 19] law of requisite variety, which is explained in Section
3.3.2.

From a stimulus-response perspective, an agent can be thought of as sensing stimuli
and acting to produce an appropriate response. The function that maps from

14This game theoretic interpretation assumes the set of strategies is countable, where only
strategies that affect the value of the game are counted.
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sensory inputs and models to output actions is its decision map. The sense, decide
and act functions of agents are roughly analogous to detectors, rules and effectors
in Holland’s [153] complex adaptive systems terminology; perceptual, cognitive
and motor components in cognitive science; input (actuating signal), control unit
(dynamic element), and output (controlled variable) in control theory; state, policy
and action in reinforcement learning [298]; stimulus, organism and response in
Hull’s [162] version of behavioral psychology; state, mixed strategy and move in
game theory; and observe, orient/decide and act (OODA) in Boyd’s [57] decision
cycle.

The sense, decide, act trinity is a pervasive characterisation of agency that can
be related back to Peirce’s triadic relation. Without sensing, there is no way
to ground representations. Without acting, representation cannot shape external
behaviour. Without deciding, representations cannot be interpreted, the agent
cannot be autonomous, and its behaviour is not goal-directed. A necessary and
sufficient condition for agency is the possession of sense, decide, and act functions.
But this is exactly equivalent to requiring that an agent be able to construct and
use representations to shape goal-directed behaviour.

In summary, representation and agency have been co-defined. Representations
always involve an agent, and agents always represent their environment. The
triadic nature of the representation relation is the reason that these definitions
cannot be separated. Due to this intimate relationship, a theory of representation
is essential to an understanding of the behaviour of agents in a complex system.
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Chapter 3

Systems

What is a systems approach? The first step towards answering this
question is an understanding of the history of the systems movement,
which includes a survey of contemporary systems discourse. In particu-
lar, I examine how systems researchers differentiated their contribution
from mechanistic science – but also from holistic doctrines; and identify
the similarities and sharpest differences between complex systems and
other systems approaches. Having set the scene, the second step in-
volves developing a definition of system for this thesis, consistent with
the spirit of the systems approach.
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3.1 Introduction

If someone were to analyse current notions and fashionable catchwords,
they would find ‘systems’ high on the list. The concept has pervaded all
fields of science and penetrated into popular thinking, jargon and mass
media.

Ludwig von Bertalanffy, 1968

Since von Bertalanffy’s [308] theory of open systems introduced the idea of a
General Systems Theory (GST) which rose to prominence in the mid twentieth
century, the field of systems research has become ever more fashionable, and the
closely knit couple of GST and cybernetics have given birth to a large family of
systems approaches, including complex systems [25, 132, 175], nonlinear dynamical
systems [140], synergetics [142], systems engineering [143], systems analysis [110],
systems dynamics [127], soft systems methodology [81], second order cybernetics
[217, 314], purposeful systems [2], critical systems thinking [168, 169, 303], total
systems intervention [125], and systemic therapy [37]. As well as adding systems
concepts to the tool sets of all fields of science, the systems approach has opened up
new areas within disciplines, such as systems biology [183], and created new hybrid
disciplines at the interface between traditional disciplines, such as sociobiology
[330]. Many of these systems approaches are introduced in Midgley’s [222] epic
four volume collection on systems thinking. Diversity is clearly a major strength
of the systems approach, but this also makes it difficult to characterise. Consider
the following typical definition of a system:
Definition 3.1 (System (5)). A system is a set of entities with relations between
them [195].

By this definition, the converse of a system is a set of entities with no relations, not
even logical ones, between them: a heap1. But heaps cannot exist physically, they
are only an idealisation, since logical relations can always be established between a
set of entities. Alternatively, it could be argued that an indivisible ‘atomic’ element
does not meet the definition (provided trivial sets and relations are excluded). Thus
a system is never undifferentiated. Nevertheless, under this definition, just about
everything bigger than an electron is a system, which makes ‘system’ a vacuous
container concept until it is further qualified. For example, the following systems
engineering definition only considers physical systems in functional relationships:
Definition 3.2 (System (6)). A system is a bounded region in space-time, in which
the component parts are associated in functional relationships [50].

While there have been many attempts consistent with this definition to make sys-
tems the Furniture of the World2 [68, vol. III], claims that the world is systemic –
usually synonymous with näıve realist and ‘hard’ systems research – are problem-
atic. They ignore the fact that systems thinking involves its own set of simplifying
assumptions, modelling choices and reductions. They also ignore the insights of
second order cybernetics [314], that the observer (and by extension the systems
theorist) should also be considered as a system. However, there is no need for
systems approaches to make the bold claim that the world is “made up of” sys-

1Aristotle [14] used the concept of a heap to refer to matter without form.
2That is, give systems an ontological status or “real” existence.

48



3.1. Introduction

tems. Knowledge that is obtained using a systems approach makes more sense
when it is seen as one perspective for thinking about the world, rather than an
objective property of bounded regions of space-time. Consequently, a definition of
system should define how the real world is idealised, represented and acted upon
when viewed as a system. A definition of system will not tell us how to discern
when a part of the world “is a system”, but it can shed light on when it may be
appropriate to utilise a systems approach.

It is also important to stress that the opposite extreme of a relativist and purely
subjective account of systems, where all views are equally valid, is not appropri-
ate. In this chapter, I will take a moderate approach that considers the insights
from both hard and soft systems approaches. The utility of a systems perspective
is the ability to conduct analysis without reducing the study of a system to the
study of its parts in isolation. Knowledge obtained from the systems perspective
can be as “objective” as knowledge obtained from a reductionist scientific per-
spective. In this way, a systems approach contributes valuable insight capable of
complementing the traditional analytic method.

This chapter begins by describing the scientific climate prior to the systems move-
ment. Next, the history of systems thinking is interpreted. There are many dif-
ferent stories that could be told to make sense of the development of the systems
approach3. This history is selectively biased towards the design of complex systems
as the theme of my thesis. It emphasises the key concepts that differentiate between
members of the systems family. The systems approaches I survey are general sys-
tems theory, cybernetics, systems analysis, systems engineering, soft systems and
complex systems. The introduction of specific systems results is mostly deferred
to Chapter 5. Finally, I develop a definition of ‘system’ as a concise summary of
the systems approach.

3.1.1 Novel contributions

I am the sole author of this chapter, which has not been published elsewhere. My
original contributions are:

1. My history of the systems movement;

2. A comparison between the research agenda in general systems theory and
cybernetics with complex systems;

3. A list of features of the systems approach;

4. A definition of system as a representation of an entity as a complex whole
open to feedback with its environment;

5. A list of key assumptions that should be critically examined as part of a
systems approach.

3Alternatives include Checkland [81] and Matthews [216], or see Lilienfeld [208] for a partic-
ularly spiteful critique.
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3.2 Science Before Systems

If the Renaissance was a period of re-discovery of classical Greek science, then the
subsequent period of the Enlightenment4 produced the scientific revolution that
provided a foundation for the Modern worldview [216]. Descartes, the ‘father of
modern philosophy’, played a pivotal role in the self-understanding of Enlight-
enment science. In an attempt to demarcate between knowledge derived from
science/philosophy and superstition, Descartes described a scientific method, the
adherence to which he hoped could provide privileged access to truth. Descartes’
[108] method contained four precepts:

The first was never to accept anything for true which I did not clearly
know to be such; that is to say, carefully to avoid precipitancy and
prejudice, and to comprise nothing more in my judgement than what
was presented to my mind so clearly and distinctly as to exclude all
ground of doubt.

The second, to divide each of the difficulties under examination into
as many parts as possible, and as might be necessary for its adequate
solution.

The third, to conduct my thoughts in such order that, by commencing
with objects the simplest and easiest to know, I might ascend by little
and little, and, as it were, step by step, to the knowledge of the more
complex; assigning in thought a certain order even to those objects
which in their own nature do not stand in a relation of antecedence
and sequence.

And the last, in every case to make enumerations so complete, and
reviews so general, that I might be assured that nothing was omitted.

The first rule of sceptical inquiry, and the fourth rule of broad and complete
analysis, describe the dominant approach to Modern Western philosophy5. Mean-
while, the second rule of analytic reduction, and the third rule of understanding
the simplest objects and phenomena first, became influential principles of Mod-
ern science, which would eventually differentiate itself from philosophy. Together,
these two principles provided the view of scientific explanation as decomposing
the problem into simple parts to be considered individually, which could then be
re-assembled to yield an understanding of the integrated whole. It is this that I
will refer to as the Cartesian analytic method.

While Descartes had articulated a philosophy for the scientific method, Newton’s
[234] breakthroughs in gravitation and the laws of motion showed the immense
power of simple, precise mathematical idealisations to unify and at the same time

4The Enlightenment usually refers to the period between the signing of the peace accord at
Westphalia in 1648, which brought stability to Western Europe, and the publication of Kant’s
[173] Critique of Pure Reason in 1781, which mounted a sceptical challenge to the Enlightenment
philosophy.

5The first rule is hardly a contentious principle in philosophy, but the fourth rule is equally
important. For instance, Broad [62, p. 12] claims that “the greatest mistake in philosophy is
that of over-simplifying the facts to be explained.”
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quantitatively predict the behaviour of diverse phenomena. Newton’s Law of Uni-
versal Gravitation

F =
Gm1m2

r2
(3.1)

gives the force of attraction F between two objects idealised as point masses m1

and m2, where r is the distance between them and G is a universal constant. The
law describes the mechanics of gravity by a universal fixed rule, which captures
the first-order effects that dominate the dynamics of most macroscopic inanimate
bodies. In particular, our solar system is dominated in terms of mass by the Sun,
and the inverse square relationship of gravitational force to distance means that
other solar systems exert insignificant forces on our own. This allowed Newton to
ignore the great majority of objects in his calculations of planetary motion – of
the 105 objects in our solar system, Newton only had to consider 10 [324, p. 13].
Further, by Equation (3.1), the force between m1 and m2 is independent of any
other mass mi. This allows each pair of interactions to be considered independently
and then summed: superpositionality holds for the Law of Universal Gravitation,
allowing tremendous simplification. Not only did Newton’s mechanics provide
an alternative cosmology that ended the dominance of Aristotle’s worldview, it
unified terrestrial and celestial dynamics. Once the heavens and Earth were seen
to be governed by the same laws, it became conceivable that the mathematics that
accounted for the motion of planets could also account for life on Earth.

Newton’s mechanics played a primary role in the 19th century physics worldview
of a deterministic, mechanistic Universe, which von Bertalanffy [309] characterised
as the view that “the aimless play of the atoms, governed by the inexorable laws
of mechanical causality, produced all phenomena in the world, inanimate, living,
and mental.” Polanyi [249, pp. 6-9] traces the origins of mechanism to Galileo’s
synthesis of a Pythagorean belief that the book of nature is written in geometrical
characters, and Democritus’ principle: “By convention coloured, by convention
sweet, by convention bitter; in reality only atoms and the void.” Even though
Newton did not personally emphasise this in his philosophy, and many classical
mechanists were troubled by the implications of action at a distance, Newton’s
followers unequivocally interpreted Universal Gravitation as the mechanistic ideal.
Laplace, who made important extensions to Newton’s physics, provided one of the
more famous articulations of mechanism. It became known as Laplace’s demon,
after the following passage of Essai philosophique sur les probabilitès [198].

We may regard the present state of the universe as the effect of its past
and the cause of its future. An intellect which at a certain moment
would know all forces that set nature in motion, and all positions of
all items of which nature is composed, if this intellect were also vast
enough to submit these data to analysis, it would embrace in a single
formula the movements of the greatest bodies of the universe and those
of the tiniest atom; for such an intellect nothing would be uncertain
and the future just like the past would be present before its eyes.

For all of its achievements, the Cartesian analytic method in conjunction with
mechanism cast a shadow over subsequent Modern science, by setting the laws
of theoretical physics as an ideal to which the less exact sciences should aspire,
and to which they might eventually be reduced. In this view, only the mechanical
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properties of things were primary, and the properties studied in other sciences were
derivative or secondary [249].

However, there were many areas of science that resisted the mechanical worldview.
The debate between the mechanists and the vitalists on the distinction between
inanimate matter and life dominated biology for three centuries. Roughly, the
mechanists claimed that life was nothing-but chemistry and physics. Meanwhile,
the vitalists countered that life was irreducible to the laws of physics, and the
additional vital aspect of living organisms was capable of violating the laws of
physics, or at least under-constrained by physics: life was in part self-determining.
This was resolved only in the 1920s when the emergentists [6, 7, 62, 229–231]
advanced a middle path that acknowledged the need for adherence to the laws of
physics, while at the same time denying that all phenomena could be eliminatively
reduced to physics. In retrospect, emergentism marked a pivotal advance towards
systems thinking.

Checkland [81] identified three further classes of problems that persistently failed
to be conquered by the Cartesian analytic method of science. They are problems of
complexity, problems of social science, and problems of management. According to
Checkland, the complexity that arises when densely interacting variables give rise
to ‘emergent phenomena’ poses a serious problem, one that to date reductionist
thinking and the experimental method has not been able to overcome.

Secondly, the problems of social science are not just densely interacting, but they
contain individual human beings with potentially unique private knowledge and
interpretations that condition their response, limiting the precision and general
applicability of ‘laws’ governing social behaviour. In addition, social phenomena
can always be interpreted from many more possible perspectives than are required
for natural science.

Thirdly, Checkland cites management – the process of taking decisions in social
systems – as problematic for analytic science. Operations Research (OR), the
scientific approach to management, arose in support of military operational de-
cisions during the second world war, and was institutionalised and applied widely
in industry after the war. However, Checkland claims that OR’s ability to solve
problems with particular general forms has been of little use to real life problems,
where the details that make a problem unique predominates any insight that know-
ledge of the general form provides. Even though Checkland does not substantiate
this assertion, it is reinforced by observations from within the OR community that
OR is being increasingly relegated to the tactical rather than strategic decision-
making arena [117]:

the uniqueness of the OR approach is not seen as indispensable, its
methodology is challenged, it is regarded as a narrow specialist dis-
cipline, a suitable sanctuary for mathematicians, its involvement in
implementation is tenuous and its general impact somewhat limited.

Whilst it would be a gross oversimplification to say that science prior to the
mid twentieth century was non-systemic, it was not until this period that a self-
consciousness of what it meant to be systemic arose. It is in the context of a dom-
inant analytic approach to science, and a growing awareness of its limitations, that
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the systems movement sought to provide an alternative approach. Kline’s Defin-
ition 2.3 of system showed that the term already had a common usage within
analytic science as the object or objects of interest. However, this usage does not
attribute any properties to a system – it acts as a container, merely a convenient
label for the collection of interacting objects under investigation. In contrast, the
systems movement began by articulating a more substantial conception of system.

3.3 Enter the System

In the West, von Bertalanffy’s [308] seminal paper on open systems, published
in 1950, is usually attributed as seeding the rise of the systems movement, al-
though he had published on a systems approach to biology since 1928 [307]. The
purpose of the paper was to rigorously account for the key distinction between
the organismic systems of biology, compared with the closed systems of conven-
tional physics. In making this distinction, von Bertalanffy wished to scientifically
account for apparent paradoxes in the characteristics of living systems, when con-
sidered in relation to the physics of closed systems. For example, the second law
of thermodynamics states the inevitability of increasing entropy and the loss of
order, and yet the evolution and development of biological systems can exhibit
sustained increases in order. By providing empirically supported scientific ex-
planations of phenomena such as equifinality (when a system’s dynamics are not
state-determined) and anamorphosis (the tendency towards increasing complica-
tion), von Bertalanffy simultaneously extinguished vitalism and firmly established
the roots of systems theory in the natural sciences.

Von Bertalanffy’s emphasis on flows of matter (and later energy and information)
into and out of an open system brought attention to the environment of the open
system. This adds something that Definition 3.1 does not contain: a system is
more than just a set of components and their relationships – it is a complex whole
that affects and is affected by its environment. Further, a system has a boundary
that prevents it from becoming mixed with its environment. The implication of
the environment is that a system must always be understood in context.

The domain of systems theory does not cover all systems – it was never intended
as a theory of everything. In 1948, Weaver [323] noted that between mechanics
and statistical mechanics, there was an absence of mathematical techniques for the
treatment of systems with medium numbers of components, whose behaviour could
be much more varied than either simple machines or very large ensembles. Weaver
gave a name to the systems in this gap, saying that “one can refer to this group
of problems as those of organized complexity”. Weaver illustrated the domain of
organised complexity graphically. A slightly elaborated version of this graphic by
Weinberg [324] is reproduced in Figure 3.1. In Weaver’s view, the entities that
systems theory studies are substantial (physical) systems. Occasionally, confusion
has arisen as to whether the domain of systems theory extends to the study of
abstract (conceptual) systems. (Ashby [20, p. 260] notes this general uncertainty
within GST.) This confusion is exacerbated because systems theories of both per-
suasions have been developed, often without explicitly addressing their domain of
applicability. However, it is fair to say that both substantial and abstract systems
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NOTE:  This figure is included on page 54 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 3.1: Types of systems, after Weinberg [324]. 
 
have been legitimate subjects of systems enquiry. 
 
Checkland [81, pp. 74-92] suggested that systems thinking was founded on two 
pairs of ideas: 
 
1. Emergence and hierarchy, originating in organismic biology and generalised in 
GST; and 
 
2. Communication and control, originating in communication engineering and 
generalised in cybernetics. 
 
To these pairs of ideas should be added the requirement for a systems approach to be 
broader than any conventional discipline: a systems approach is fundamentally 
interdisciplinary. In retrospect, a sophisticated theory of systems that preceded both 
GST and cybernetics had been developed by Bogdanov [114] in Russia and published 
sometime between 1910-1913, but for political reasons his Tektology was not widely 
known until after the Cold War, by which time the systems movement was already  
well established in the West, and synonymous with GST and cybernetics. 
 
Another precursor to a recognised systems movement (by about a decade) was 
Angyal's [12] theory of systems, developed in the context of psychology. In 
particular, Angyal distinguished between relations and systems: 
 
A relation requires two and only two members (relata) between which the relation is 
established. A complex relation can always be analysed into pairs of relata, while the 
system cannot be thus analysed. 
 
This distinction leads to the difference between aggregates, in which the parts are 
added, and systems, in which the parts are arranged. Note that Newtonian mechanics 
only describes the behaviour of aggregates. Angyal also realised the 
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importance of the manifold that the system is embedded in, saying that a system
is “a distribution of the members in a dimensional domain.” Hence, a system is
more than a set of interrelated components: the relations must be organised. Spa-
tial arrangements are an important determinant of systemic properties. This also
implies that many combinations of relations will not be possible for any particu-
lar system, since the relations must conform to the system’s organisation. Thus
organisation imposes order on a system, which can be thought of as a constraint
on its dynamics.

Because the systems approach stood in contrast to mechanism (and also the related
‘isms’ of atomism and individualism), some began to associate systems with holism.
The systems philosopher Bunge [69, 71] recognised this conflation and sought to
distinguish systemism from holism. According to Bunge [69],

a holistic philosophy is one that not only accepts the thesis that a
whole is more than a mere aggregation of its parts: holism maintains
also that wholes must be taken at face value, understood by themselves,
not through analysis.

Because the holistic approach rejects the possibility of analysis, it relies upon the
method of intuition, not rational explanation or empirical experiment. While the
systems approach recognises the existence of emergent properties, it nevertheless
seeks to explain them in terms of how their constituent parts are organised. Where
holism is satisfied with a non-rational apprehension of un-analysed wholes, system-
ism aims to demystify emergent properties by providing scientific understanding
that utilises analysis as well as synthesis. Therefore, it is equally important that
the systems approach be distinguished from holism as from mechanism.

Another important refinement to the philosophical characterisation of the systems
approach was provided by Churchman [83], in the form of the following question:

How can we design improvement in large systems without understand-
ing the whole system, and if the answer is that we cannot, how is it
possible to understand the whole system?

Ulrich [302], a student and self-proclaimed disciple of Churchman, realised that
Churchman’s question captured “the real challenge posed by the systems idea: its
message is not that in order to be rational we need to be omniscient but, rather,
that we must learn to deal critically with the fact that we never are.” Thus, in
a very deep sense, the systems approach is tied to understanding the limits of
representations.

3.3.1 General systems theory

Von Bertalanffy together with Rapoport and Boulding formed the Society for
General System Theory in 1954, which organised the systems community and
provided a yearbook from 1956 dedicated to systems research. Along with the
closely related field of cybernetics, GST helped to define the core principles of the
systems approach.

For von Bertalanffy, the main propositions of GST (adapted from [309]) were:
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1. Isomorphisms between the mathematical structures in different scientific dis-
ciplines could integrate and unify the sciences;

2. Open systems require consideration of the flow of energy, matter and inform-
ation between the system and its environment;

3. Within open systems, the same final system state may be reached from
different initial conditions and by different paths – open systems exhibit
equifinality;

4. Teleological behaviour directed towards a final state or goal is a legitimate
phenomenon for systemic scientific inquiry;

5. A scientific theory of organisation is required, to account for wholeness,
growth, differentiation, hierarchical order, dominance, control and competi-
tion; and

6. GST could provide a basis for the education of scientific generalists.

Von Bertalanffy’s principle concern was to provide an alternative foundation for
unifying science, which he proposed in reaction to the reductionist mechanistic
worldview. In particular, he rejected the crude additive machine theories of organic
behaviour, which treated wholes as nothing more than linear aggregates of their
components. It is notable that von Bertalanffy [309, 310] really only mentions
emergence and hierarchy in passing. GST adopted almost unchanged the theory
of biological emergentism developed in the 1920s, while the task of developing
hierarchy within GST was taken up by other authors. In fact, I would suggest
that rather than a theory of general systems, GST resulted in the more modest
contribution of several theories of hierarchies. The remainder of this section on
GST will consider the twin concepts of emergence and hierarchy.

Emergence as “the whole is more than the sum of the parts” justified the need to
understand systems in addition to understanding their parts. By understanding
emergent properties, the general systems theorists felt that they could offer insights
that the reductionist / mechanist agenda ignored, because mechanism could not
account for the non-additive relationships between components. The ability to
explain emergent properties is a prerequisite for a general theory of organisation.
A detailed history of emergence is deferred to the chapter on emergence, where it
is given in Section 6.2.

The hierarchical nature of systems is a logical consequence of the way system
is defined in terms of its constituent parts, since the parts may also meet the
definition of system. This was noted by many authors, but Boulding and Simon
made particularly influential extensions to this corollary. Boulding’s [55] Skeleton
of Science presented a hierarchical view of systems, “roughly corresponding to
the complexity of the ‘individuals’ of the various empirical fields.” Where von
Bertalanffy [308] had focussed on the relationship of physics and chemistry with
biology, Boulding generalised this into a hierarchy with nine levels, which began
with physics and extended through biology, psychology, sociology and metaphysics.
Following Matthews [216, p. 201], Boulding’s hierarchy is summarised in tabular
form in Table 3.1.

Boulding saw these levels as different layers of theoretical discourse. That is, the

56



3.3. Enter the System

layers were not part of nature itself, but were a way of organising the theoretical
concepts and empirical data collected in the various sciences (although it has not
always been presented this way by other authors). When Boulding later aligned
specific disciplines with the levels, the intent was to highlight that, for example,
any analysis of level 8 sociocultural systems using only the methods of level 1 and
2 structures and mechanics would be necessarily incomplete. Boulding’s hierarchy
has been extended by Checkland [81] and critiqued by numerous authors includ-
ing Capra [73]. Despite its shortcomings, Boulding’s hierarchy was an influential
representation of the relations between the sciences. It also reveals a view that
many early systems theorists shared: that their role was to be one step removed
from empirical science, in order to recognise the broader patterns occurring across
science. Others, such as Bunge [67] and Rapoport [258], later developed more
explicit arguments that the systems approach lies midway between the scientific
and philosophical approaches.

Table 3.1: Boulding’s hierarchy of systems complexity.

Level Characteristics Examples Relevant
Discipline

1. Structure Static Crystals Any

2.
Clock-works

Pre-determined
motion

Machines, the
solar system

Physics,
Chemistry

3. Control
mechanisms

Closed-loop control Thermostats,
mechanisms in
organisms

Cybernetics,
Control Theory

4. Open
systems

Structurally self
maintaining

Flames, biological
cells

Information
Theory, Biology
(metabolism)

5. Lower
organisms

Organised whole
with functional
parts, growth,
reproduction

Plants Botany

6. Animals A brain to guide
total behaviour,
ability to learn

Birds and Beasts Zoology

7. Humans Self-consciousness,
knowledge symbolic
language

Humans Psychology,
Human Biology

8.
Socio-cultural
systems

Roles,
communication,
transmission of
values

Families, clubs,
organisations,
nations

Sociology,
Anthropology

9. Transcend-
ental
systems

Inescapable
unknowables

God Metaphysics,
Theology
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Simon’s [292] classic paper on The Architecture of Complexity sought to explain
some features of naturally arising hierarchies, in contrast to Boulding’s attempt to
relate the description of nature within different disciplines of science. Simon pro-
posed that systems with a large number of non-simply interacting parts frequently
take the form of hierarchy, defined as

a system that is composed of interrelated sub-systems, each of the
latter being, in turn, hierarchic in structure until we reach some lowest
level of elementary subsystem.

Simon is describing a nested hierarchy, which was later generalised in the highly ab-
stract GST dialect of hierarchy theory [9] that this paper helped to initiate. There
are two central insights in [292]. Firstly, what Simon saw as the ubiquity of hier-
archies in natural complex systems is explained by a simple probability argument:
the time it takes for the evolution of a complex form depends critically on the
number of potential intermediate stable forms, as these building blocks to a large
degree insulate the process of system assembly against the effects of environmental
interference. Given that a hierarchy of building blocks can be assembled orders of
magnitude faster than a non-hierarchical assembly process, among complex forms,
hierarchies are the ones that have the time to evolve.

Secondly, Simon realised that the interactions at each level of the hierarchy are of-
ten of different orders of magnitude, and commonly the interactions are strongest
and most frequent at the lowest level in the hierarchy. When these conditions
hold, the hierarchy is nearly decomposable, which simplifies the analysis of a com-
plex system in several ways. Near decomposability implies that subparts belonging
to different parts only interact in aggregate, meaning individual interactions can
be ignored: the levels are screened off from each other by rate differences. This is
why in modern hierarchy theory, three levels of a hierarchy, one up and one down,
are generally considered sufficient for analysis of the focal level. Also, nearly de-
composable hierarchies are highly compressible: they have significant redundancy,
meaning that a relatively small amount of information may adequately describe
an apparently complex system.

3.3.2 Cybernetics

At about the same time that GST was attempting a general mathematics of organ-
isation, the new field of cybernetics was embarking on a similar quest to uncover
the general mathematics of machines. According to Wiener [326], who suggested
the name for the field,

cybernetics attempts to find the common elements in the functioning of
automatic machines and of the human nervous system, and to develop
a theory which will cover the entire field of control and communication
in machines and in living organisms.

In [326], Wiener described the initial results from the cybernetic community, whose
impressive interdisciplinary role-call included Rosenblueth, von Neumann, McCul-
loch, Pitts, Lorente de Nó, Lewin, Bateson, Mead and Morgenstern. With the
exception of Morgenstern, they were all members of the core group of ten confer-
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ences on cybernetics held between 1946 and 1953, sponsored by the Josiah Macy,
Jr. Foundation and chaired by McCulloch. Wiener identified the principle of feed-
back as a central step towards the study of the nervous system as an integrated
whole, outlining the role of negative feedback in control, and positive feedback in
producing instability. The principle of feedback distinguishes cybernetic systems
by their circular organisation, where activity flows from effectors acting on the
environment, to sensors detecting their outcome, which then act upon the effect-
ors, thereby closing the feedback loop. The other major distinction that Wiener
drew was between communication engineering and power engineering as a basis
for understanding mechanical systems. He identified a change in emphasis in the
former from the economy of energy to the accurate reproduction of a signal. The
implications of this distinction are that understanding the behaviour of a control
system depends not on the flow of energy so much as the flow of information.
Fortuitously, at the same time Shannon [287] was developing a quantitative defini-
tion of information as the average reduction in uncertainty (see Chapter 5), which
became one of the dominant frameworks within cybernetics, and more generally
within systems theory.

Although Wiener’s [326] analogies between calculating devices and the human
brain now appear dated, a number of the big systems ideas arose from Wiener’s
cybernetic collaborators in attempting to understand the behaviour of “all possible
machines”. They include von Neumann’s self-reproducing automata [316], McCul-
loch and Pitts’ [219] model of the neuron that forms the basis for artificial neural
networks, Maturana’s [217] autopoesis, von Foerster’s [314] second order cyber-
netics and Bateson’s [36] ecology of mind, each exploring different implications of
circularity.

Outside the US, the British psychiatrist Ashby had published on what became
known as cybernetics from 1940, inventing the homeostat – a machine that ad-
apted towards self-regulation – and writing the 1956 classic text An Introduction
to Cybernetics. Ashby’s ideas have had a profound influence on complex systems
theory, pre-empting and shaping the complex systems approach, and still provid-
ing insights on contemporary concerns such as self-organisation, adaptation and
control. Perhaps Ashby’s greatest contributions were the connections he developed
between information theory and systems theory. In [18, p. 3], Ashby observed

cybernetics typically treats any given, particular, machine by asking
not “what individual act will it produce here and now?” but “what
are all the possible behaviours that it can produce?”

It is in this way that information theory comes to play an essential part
in the subject; for information theory is characterised essentially by its
dealing always with a set of possibilities . . .

Ashby’s most famous result, introduced in this book, applies information theory
to machine regulation to yield the law6 of requisite variety. The law provides a
quantitative measure of the amount of variety a regulator R must absorb in order
to produce goal-directed behaviour. The story of representation as the problem
the brain is intended to solve, introduced in Section 2.5, is augmented by Ashby’s

6The law of requisite variety is actually a mathematical theorem, not a physical law.

59



3.3. Enter the System

understanding of the purpose of constructing representations that shape behaviour.
That purpose is primarily to maintain essential system variables, E, within certain
limits. Ashby argues that natural selection has eliminated those organisms that are
not able to regulate the flow of environmental variability. The remaining species of
organisms all employ mechanisms that actively resist environmental disturbances,
D, that would push the essential variables outside their limits and result in death.

The law is simple to introduce. If different disturbances can be countered by the
same response by the regulator, they are not counted7 as distinct members of
D. If the set of possible outcomes, O, of the disturbance followed by regulation
(denoted by the transformation matrix T ) is within the acceptable limits of E,
it is compatible with the organism’s continued existence (denoted by the set η).
In this case, the regulator is considered successful. Let the variety, measured
as a logarithm of the number of possibilities, of D, R and O, be VD, VR and VO

respectively. Then the law of requisite variety is simply

VO ≤ VD − VR. (3.2)

Intuitively, goal-directed behaviour demands that variety in the outcome remain
below some bound. In order to reduce VO, VR must be increased: only variety
in the regulator can destroy variety created by the environmental disturbance.
Another8 way to understand the law of requisite variety is to ask what if R > D?.
Then by Equation 3.2, VO < 0 ⇒ O < 1. This means that the disturbances are
perfectly countered by the regulator, and so there is no variety in the outcome of
the process.

The law of requisite variety sheds light on the nature of control. Figure 3.2,
adapted from [18], shows the causal influences between the variables introduced
above and a new control variable C. In this model, C decides the desired outcome
or sequence of outcomes, which R must obey. Roughly, C, R and E constitute
the organism or the ‘system’, which is open to energy and information but closed
with respect to control. R takes information from the independent sources, C and
D, and attempts to produce an action that achieves C’s objective in spite of the
external disruption D. The ‘environment’ T transforms the actions of D and R,
which influences the value of the essential variables E. Therefore, control over E
necessarily requires regulation. This can be interpreted as the communication of
a message from C to E via the compound channel T , while transmitting nothing
from D. This is not just a superficial analogy to information theory: the law
of requisite variety is a restatement of Shannon’s [287] tenth theorem on channel
coding. This reveals the deep connections between goal-directed behaviour (see
Section 2.6), control, regulation and communication.

Another connection between information theory and systems is evident in Ashby’s
definition of complexity as the quantity of (Shannon) information required to de-
scribe a system [21], although Ashby was not the first to propose this definition.

Where GST predominantly analysed structure to understand organisation, cyber-
netics developed a complementary approach for analysing dynamical behaviour,

7This way of counting disturbances does a lot of the work in the law of requisite variety, and
it is the key assumption that must be satisfied for real world applications of Ashby’s law to be
valid.

8Thanks to Scott Page for this suggestion.
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Figure 3.2: Control and regulation in Ashby’s law of requisite variety.

independently of how the system was internally structured. The two are comple-
mentary because structure can be viewed as a constraint on the system’s dynamics,
while the dynamics are responsible for the formation of structure. The behaviourist
approach to modelling systems was formalised within cybernetics by generalising
the electrical engineer’s ‘black box’. The black box approach assumes that the
internal structure of a system is hidden, and so knowledge of the system must be
obtained by systematically varying inputs to the system and observing the corres-
ponding outputs. The same approach to behavioural psychology is described as
stimulus-response (as in [321]), and both terminologies were used interchangeably
in cybernetics.

Although GST and cybernetics were strong allies in advancing the systems move-
ment, there were some important differentiators. The research agenda for cyber-
netics was focussed on machines, while GST was much broader. The commitment
of cybernetics to behaviourist mechanical explanations outlined in the previous
paragraph stands in contrast to the position within GST that mechanics provides
an incomplete account of open systems. Thus in Boulding’s hierarchy, systems at
or above level four require more than just an understanding of information and
control as provided by cybernetics at level three. Also, in cybernetics emergence
was typically dismissed as incompleteness of the observer’s knowledge of the parts
and their couplings (see for example [18, pp. 110-112]). The only time cybernetics
acknowledged genuine emergence was as a result of self-reference or circularity.
Unlike GST, cybernetics embraced mechanistic explanations, but sought to aug-
ment the physicists’ view of causes preceding effects with circular causation and
goal-directed behaviour.

3.3.3 Systems analysis

Systems analysis was an extension of Operations Research (OR) to broader con-
cerns. Morse and Kimball’s [232] book set the standard for OR, including its
definition.

Operations research is a scientific method of providing executive de-
partments with a quantitative basis for decisions regarding the opera-
tions under their control.
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Although slightly older, OR had some common ground with the new systems ap-
proaches. In particular, OR too saw itself as an interdisciplinary approach based
on scientific methods. The way in which OR provided a scientific basis for de-
cisions was to use mathematical models. Also, OR often developed integrated
solutions, rather than considering individual components in isolation. Network
flow, queueing theory and transportation problems are typical examples of this,
but also serve to highlight some key differences. Traditional OR addressed prob-
lems where the objectives were precisely given, and the components were fixed
[128], but their configuration could change according to the value of the control
parameter x. The operations researcher would structure the problem by framing it
in such a way that the performance of alternative configurations could be compared
against the same objective. This focus on increasing measurable efficiency meant
that OR was traditionally interested in only one organisation: the configuration
that gives the global minimiser of the objective function f(x). As OR developed
increasingly sophisticated mathematical techniques, it became more theoretical
and less interdisciplinary, which led to a number of issues that have already been
mentioned in Section 3.2.

In the newly established RAND (Research ANd Development) Corporation, the
mathematician Paxson (whose work has not been declassified) was more interested
in decisions affecting the next generation of military equipment, than configuring
a fixed set of platforms already in operational service. Early applications of OR
to what Paxson called “systems analysis” were criticised because they did not
adequately consider costs [110]. Consequently, systems analysis became a col-
laborative venture between mathematicians/engineers and economists. Successful
high profile projects in air defence and the basing of bombers added “Red Team”
game-theoretical approaches to the systems analysis methodology, generated sus-
tained interest in systems analysis within RAND, and gained the attention of
senior management. As well as borrowing from and extending OR, systems ana-
lysis inherited the black boxes and feedback loops from cybernetics in order to
construct block diagrams and flow graphs. A subsequent technique for perform-
ing systems analysis – Forrester’s [127] system dynamics9 – made more explicit
use of these cybernetic concepts. After a decade where RAND led the formalisa-
tion and application of the systems analysis methodology, in 1961 the Kennedy
Administration brought both RAND people and systems analysis techniques into
government to provide a quantitative basis for broad decision-making problems
[110]. McNamara’s use of systems analysis within the Department of Defense and
NATO was highly controversial and widely criticised. Nevertheless, it is notable
as the systems approach which has had the greatest impact on society, due to the
scale and nature of the decisions that it justified. In particular, the Vietnam war
was planned with considerable input from systems analysis techniques combining
operations research with cost analysis.

Aside from a rudimentary use of feedback, systems analysis was largely independ-
ent of developments in systems theory. As Checkland [81, p. 95] nicely described
it,

on the whole the RAND/OR/management science world has been un-

9System dynamics represented the world as a system of stocks and flows, from which the
behaviour of feedback loops could be deduced.
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affected by the theoretical development of systems thinking, it has been
systematic rather than systemic in outlook . . .

By this, Checkland meant that systems analysts assembled cookbooks of mechan-
ical solutions to classes of recurring problems, rather than developing techniques
that addressed emergent properties, interdependencies and environmental influ-
ences. In so far as it was applied to the class of simple mechanical systems depic-
ted above in Figure 3.1, this was perfectly reasonable. However, as the interests of
systems analysis broadened from merely technical systems to include many social
factors, this omission became more apparent.

3.3.4 Systems engineering

Systems engineering has a history quite separate to the systems movement. Its
closest historical link comes from the application of systems analysis techniques to
parts of the systems engineering process. The need for systems engineering arose
from problems in the design and implementation of solutions to large scale engin-
eering challenges spanning multiple engineering disciplines. A multidisciplinary
team of engineers required a lead engineer whose focus was not the design of indi-
vidual components, but how they integrated. Consequently, management concerns
were as significant as technical challenges for a systems engineer. The Bell Tele-
phone Laboratories and Western Electric Company’s design and manufacture of
the Nike air defence system, commenced in 1945, is widely cited as one of the first
systems engineering projects. The surface to air missile defense program integ-
rated ground-based tracking radars, computers and radio controlled anti-aircraft
rockets, in order to protect large areas from high altitude bombers. It was novel
because unlike conventional anti-aircraft artillery, Nike allowed continuous missile
guidance: the radars and computers enabled feedback and control. Bell Labs were
the prime contractor for the project, while much of the detailed engineering was
undertaken by the major subcontractor, Douglas Aircraft Company. The 1945
Bell Labs report A Study of an Antiaircraft Guided Missile System was considered
a classic in applied interdisciplinary research due to its depth of insight, scope,
and influential role in the systems engineering of Nike [120].

Following the success of individual systems engineering projects, Bell Labs struc-
tured itself around the new systems engineering approach. Bell Labs was organised
into three areas: basic research, systems engineering and manufacturing projects
[178]. The systems engineering area provided the interface between advances in
communications theories and the manufacture of commercial systems. Because of
the “whole system” perspective within the systems engineering area, it was re-
sponsible for prioritising the activation of projects with the greatest potential user
benefit, within the technical feasibility of communications theory. The responsib-
ility of the systems engineer was the choice of the “technical path” between theory
and application in order to create new services; improve the quality of existing ser-
vices; or lower their cost. Because of its emphasis on user benefit, standards were
seen to play a vital role in systems engineering. Standards were used to measure
quality of service, which enabled cost benefit analysis of different technical paths.

When framed as the decision-making problem of selecting between different tech-
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nical paths on the basis of cost effectiveness, systems engineering appears closely
related to the problems that RAND were concurrently tackling with systems ana-
lysis. Bell Labs was aware of this analogy [320], and drew on OR and systems
analysis techniques. However, the systems engineer typically placed a greater em-
phasis on technical knowledge than the systems analyst, and correspondingly less
emphasis on mathematical models. In contrast to the dynamical models of systems
analysis, systems engineers developed architectures to represent system designs.

Outside Bell Labs, Project Apollo was one of the highest profile early successes of
the systems engineering approach, which quickly spread from its origins in defence
to also become the standard approach to large scale civilian projects. The tra-
ditional systems engineering process can be summarised as follows: 1) Customer
needs are captured in precise, quantified requirements specifications; 2) System
requirements are decomposed into requirements for subsystems, until each subsys-
tem requirements is sufficiently simple; 3) Design synthesis integrates subsystems;
and 4) Test and evaluation identifies unintended interactions between subsystems,
which may generate additional requirements for some subsystems. If there are un-
intended consequences (i.e. unplanned emergent properties), the process returns
to stage 2, and repeats until the system meets the requirements.

Because systems engineering is applied to the most ambitious engineering projects,
it also has a long list of large and public failures [29]. Partly in response to per-
ceived failures, systems engineering has identified “System of Systems” problems as
a distinct class of problems that are not well suited to traditional centrally managed
systems engineering processes. Although there is not a standard System of Systems
(SoS) definition, the term SoS usually denotes heterogeneous networks of systems
including a majority of Maier’s [215] discriminating factors: operational and ma-
nagerial independence, geographical distribution, and emergent and evolutionary
behaviours. The recent popularity of the SoS buzzword in the systems engineering
literature has prompted the expansion of systems engineering techniques to include
methods that can cope with evolving networks of semi-autonomous systems. This
has led many systems engineers to read more widely across the systems literature,
and is providing a re-conceptualisation of systems engineering as part of the sys-
tems movement, despite its historical independence. This is reflected in the latest
INCOSE handbook [148, p. 2.1], which states “[t]he systems engineering perspect-
ive is based on systems thinking”, which “recognizes circular causation, where a
variable is both the cause and the effect of another and recognizes the primacy of
interrelationships and non-linear and organic thinking—a way of thinking where
the primacy of the whole is acknowledged”.

3.3.5 Soft systems

The systems approaches I have surveyed so far have each expressed an unbounded
enthusiasm for multi-disciplinarity in their missionary papers, and yet all have
tended to converge towards a relatively narrow band of ‘hard’ scientific methods,
where this is taken to mean strong scepticism towards any theory that cannot be
stated exactly in the language of mathematics. C. P. Snow’s famous “Culture Gap”
between literary intellectuals and scientists proclaimed that a gulf between the
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two cultures prohibited any real communication or shared understanding between
them. A related, but perhaps deeper cultural divide was noted a generation earlier
by James [170] (as quoted in [216]) in 1909:

If you know whether a man is a decided monist or a decided pluralist,
you perhaps know more about the rest of his opinions than if you
give him any other name ending in ‘ist’ . . . to believe in the one or
in the many, that is the classification with the maximum number of
consequences.

Even within science, this metaphysical divide can be observed. Another way of
approaching the dichotomy is to ask whether the goal of enquiry is objective know-
ledge or inter-subjective discourse. Hard science, by accepting only mathematically
precise arguments, adopts a monistic stance. Consequently, hard science is asso-
ciated with the search for a unified rational foundation for systems universally
valid across the sciences. Von Bertalanffy, Wiener, Ashby and Forrester all clearly
held this aspiration to varying degrees. In contrast, a pluralist position rejects the
possibility of unification, emphasising the incommensurability of frameworks that
view reality from different perspectives. This is rejected by the monist, because it
is seen to be opening the door to inconsistency, paradox, relativism and irration-
ality. Within the Macy conferences, issues of subjective experience and Gestalten
(form perception) were raised, usually by psychoanalysts such as Kubie [10]. The
hard scientists sustained vocal criticism that tended to suppress these ideas: in
particular, they strongly questioned the scientific status of psychoanalysis.

Von Foerster, an editor of the Macy conference proceedings, later developed second
order cybernetics [314], which shifted attention from the cybernetics of observed
systems, to the cybernetics of observing systems. In studying the “cybernetics of
cybernetics”, von Foerster applied cybernetic concepts to the observer, which led
him to reject the possibility of objective observation. Von Foerster’s [315] variant
on James’ metaphysical distinction was introduced as

a choice between a pair of in principle undecidable questions which are,
“Am I apart from the universe?” Meaning whenever I look, I’m looking
as if through a peephole upon an unfolding universe; or, “Am I part of
the universe?” Meaning whenever I act, I’m changing myself and the
universe as well.

By adopting the latter position, von Foerster was dismissing the search for a unified
rational foundation for systems as an ill-posed problem. Even though von Foerster
approached second order cybernetics using essentially hard techniques, he played
an important role in undermining the doctrine of objectivity that “[t]he properties
of the observer shall not enter the description of his observations” [314]. Second
order cybernetics provides a scientific basis for the theory-ladenness of observation:
the philosophical assertion that all observations contain an inseparable element of
theory.

In 1981, Checkland [81] published the first sophisticated systems methodology for
‘soft’ problems. Checkland firstly divided systems into five types: natural systems
(atomic nuclei to galaxies); designed physical systems (hammers to space rockets);
designed abstract systems (mathematics, poetry and philosophy); human activity
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systems (a man wielding a hammer to the international political system); and tran-
scendental systems (as in Boulding’s hierarchy, although these are not considered
in detail). Checkland’s central thesis was that human activity systems were fun-
damentally different in kind from natural systems, and consequently required a
fundamentally different approach. Checkland [81, p. 115] argued that

The difference lies in the fact that such systems could be very dif-
ferent from how they are, whereas natural systems, without human
intervention, could not. And the origin of this difference is the special
characteristics which distinguish the human being from other natural
systems.

That special characteristic is self-consciousness, which is claimed by Checkland
to provide “irreducible freedom of action” to humans. However, one should note
that this distinction between the human being and other natural systems is much
more of a metaphysical assertion than an empirical fact, and it is the most crucial
theoretical assertion for Checkland’s argument against the use of hard methods in
human activity systems.

The fundamentally different approach that Checkland used to investigate human
activity systems was ‘action research’. According to Checkland [81, p. 152],

Its core is the idea that the researcher does not remain an observer
outside the subject of investigation but becomes a participant in the
relevant human group.

From this, it is clear that action research follows von Foerster’s lead in exploring
the implications of acting as part of the universe. This commitment is responsible
for the two distinguishing features of the soft systems approach: the way problems
are framed, and the way models of the system are built and used.

The difference in problem framing is most clearly visible in Checkland’s [81, p.
316] definition of a soft problem:
Definition 3.3 (Problem, Soft). A problem, usually a real-world problem, which
cannot be formulated as a search for an efficient means of achieving a defined end;
a problem in which ends, goals, purposes are themselves problematic.

Thus, instead of defining an objective that can be tested at any point in time to
see if it has been met, the soft systems approach operates with a comparatively
unstructured and fuzzy understanding of the “problem situation”. Because the
problem is framed using only minimal structure, the quantitative methods of OR
and systems analysis cannot be brought to bear on its solution. Nor is the aim of
soft systems optimal efficiency, instead it seeks feasible, desirable change.

The way models are built is fundamentally pluralist: “human activity systems can
never be described (or ‘modelled’) in a single account which will be either generally
acceptable or sufficient” [81, p. 191]. It is accepted that different people will
view the system and its problems differently, and models aim to make explicit the
assumptions of a particular view in order to facilitate dialog, rather than building a
single foundational representation of the system. Thus, the difference between hard
and soft systems approaches is a deep divide: it is James’ metaphysical distinction
between the belief in the one or in the many. Perhaps the most important point
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in favour of soft systems methodology is that it has mostly been considered useful
in practice for solving real-world problems [225].

Habermas [141] added a further category in contrast to what I have described
as hard and soft approaches, with the development of critical theory. Accord-
ing to Habermas, humans have developed a technical interest in the control and
manipulation of the world; a practical interest in communicating to share un-
derstanding with other people; and an emancipatory interest in self development
and freedom from false ideas. Critical theory aims to reveal systematic distor-
tions resulting from the power structure that affect both hard (technical) and soft
(communicative) approaches. It formed the theoretical basis for critical systems
theory, which has produced several methodologies [168, 303] for taking practical
action in management contexts. However, because the intention of critical theory
is emancipation, not design or even intervention, these methods have struggled to
resolve this fundamental inconsistency. The main contribution of critical systems
theory to date has been to critique both the hard and soft systems approaches,
rather than to advance a practical alternative to systems design (see for example
[224]). Consequently, it will not be considered further in this thesis.

3.3.6 Complex systems

Complex systems became known as a distinct systems discourse with the estab-
lishment of the Santa Fe Institute (SFI). A widely read romantic account of the
formation of the SFI and its initial research agenda was published by the journalist
Waldrop [319]. Its success set the model for communicating complex systems re-
search to the informed general public through easy to read popular science novels.
These novels attempted to capture the excitement of research on the frontier of
“a new kind of science”, while at the same time emphasising its applicability to
important global issues, which are inevitably both systemic and complex. The up-
side of the way complex systems was marketed is that it has grown to become the
most active10 area of systems research; the barrier to entry from many disciplinary
backgrounds is comparatively low, since discipline-specific jargon is minimised; and
there is a largely positive perception of complex systems in the wider community,
where there is awareness at all. The downside to this approach includes a prolifer-
ation of poorly defined buzzwords; a level of hype that is reminiscent of early AI;
and widespread use of complex systems as a superficial metaphor. Of course this
is not the only legacy of the SFI: it has established a dynamic network of talen-
ted systems researchers affiliated with many Universities, which interacts with a
network of powerful corporations (both networks are almost entirely confined to
the USA), within a unique and effective business model. It has also published a
high quality series of proceedings from invite-only workshops on a diverse array
of interdisciplinary topics that have added considerable substance to the complex
systems approach.

The New England Complex Systems Institute (NECSI) has taken a much more sys-
tematic approach to complex systems. Bar-Yam’s [25] complex systems textbook

10This claim is justified by the scale and number of conferences, the number of complex systems
centres, and the volume of new research, in comparison to other systems approaches.
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collated a large survey of the mathematical techniques in complex systems, includ-
ing iterative maps, statistical mechanics, cellular automata, computer simulation,
information theory, theory of computation, fractals, scaling and renormalisation.
These techniques were then further developed and applied to the brain, protein
folding, evolution, development, and human civilisation, to demonstrate the inter-
disciplinary breadth of complex systems applications. In addition to publishing
the only comprehensive textbook on complex systems11, NECSI hosts the Inter-
national Conference on Complex Systems, which is the premier complex systems
conference.

Taking these two organisations as representative of the complex systems approach,
complex systems is essentially a refinement of the GST/cybernetics research agenda.
There has, in fact, been remarkably little interaction between complex systems and
second order cybernetics, soft systems or critical systems: the insights from these
alternative systems approaches are neither acknowledged nor addressed. (GST
is usually just not acknowledged – the term never appears in [25, 132, 175, 197,
204, 281, 319].) Nor do the contemporary soft approaches draw on the techniques
of complex systems. This could be explained by a general aversion to mathem-
atics – for example, Midgley’s four volumes of systems thinking explicitly aimed
to exclude “papers that were heavily dependent on a high level of mathematical
reasoning” [222, p. xxi]. Consequently, of 76 papers on systems thinking, only
one high-level paper on complex systems was included. There has been greater in-
teraction between complex systems and other ‘hard’ systems approaches: OR and
systems analysis share techniques such as genetic algorithms [135] and particle
swarm optimisation [179] with complex systems, while the new area of complex
systems engineering [59] augments systems engineering problems with complex
systems approaches. To show just how closely the aims of complex systems over-
lap with the GST/cybernetics research agenda, analogs of the ideas introduced in
Sections 3.3.1 and 3.3.2 are now identified within complex systems.

Whereas von Bertalanffy imagined unity of the sciences through isomorphisms,
Gell-Mann [132, p. 111] talks of building staircases (or bridges) between the levels
of science, while Bar-Yam [25, p. 2] cites universal properties of complex systems,
independent of composition. Self-organisation, which has been labelled antichaos
[174] due to its stabilising dynamics, is a substitute for equifinality. However, equal
attention is now given to chaotic dynamics – which exhibit sensitivity to initial
conditions – to demonstrate the limits of the classical state-determined system.
Goal-directed behaviour is studied under the heading of autonomous agents [176,
p. 49]. Organisation is still of central importance [176, p. 81] – especially self-
organisation [175, 280], [25, p. 691] – which largely follows in the tradition of
either Prigogine [235] (viewed as an open system far from equilibrium) or Ashby
[20] (viewed as an increase in organisation or an improvement in organisation).

The preoccupation in complex systems with quantifying the complexity of a system
is a minor extension of the desire to understand organisation in general, and qualit-
atively expressed in Weaver’s concept of organised complexity. The most common
way to quantify complexity is by the amount of information it takes to describe a
system, which follows from the use of Shannon information theory in cybernetics,

11Other more specialised books do now exist, such as Boccara’s [51] textbook on the physics
of complex systems.
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but also borrows from theoretical computer science the notion of algorithmic com-
plexity (see Section 5.3 for detailed examples of measuring complexity). Ashby’s
conceptualisation of adaptation and learning as an adaptive walk in the parameter
space of a dynamical system is followed by Kauffman [175, p. 209], and gener-
alised theories of adaptation and evolution have been developed by Holland [153]
and Bar-Yam [25, p. 531] respectively. Meanwhile, genetic algorithms [135], artifi-
cial neural networks [159], reinforcement learning [298] and ant colony optimisation
[112] are a selection of practical techniques used to generate adaptation in complex
systems.

Von Neumann’s [316] theory of natural and artificial automata are still studied
in a mostly pure mathematical branch of complex systems – cellular automata –
that can be expected to gain increasing attention from potential applications in
areas such as Field Programmable Gate Array (FPGA) design and nanotechnology.
Emergence continues to be a central concern in complex systems [30, 99, 154].
Boulding’s hierarchy among the disciplines of science is maintained by Gell-Mann
[132, pp. 107-120], although Simon’s view of systems as nested hierarchies has
been mostly supplanted by the consideration of systems as networks [35, 322].
An approximate translation between GST/cybernetics and complex systems is
summarised in Table 3.2.

Table 3.2: Comparison of the themes of general systems theory and cybernetics
with complex systems.

General Systems Theory Complex Systems

and Cybernetics

Unity of science through
isomorphisms

Coherence of science through
bridges

Isomorphic mappings Universality classes

Emergence Emergence

Organisation Self-organisation

Organised complexity Complexity

Adaptation Adaptation/evolution

Equifinality Chaos and antichaos

Goal-directed behaviour Autonomous agents

Automata Cellular automata

Hierarchies Networks

With so much commonality, what is different about the field of complex systems?
In terms of the research agenda, very little.

Phelan [247] notes the broad similarities between complexity theory (referred to
here as complex systems) and systems theory (by which Phelan means systems
methodologies in operations research, engineering and management science, fol-
lowing from the pioneering systems work of von Bertalanffy, Ashby and Boulding),
but attempts to also distinguish between the two. According to Phelan, systems

69



3.3. Enter the System

theory is predominantly focused on intervention, whereas complex systems is more
interested in exploration and explanation. Whereas the system dynamics models
of systems theorists only capture the aggregate flow of quantitative parameters,
complex systems models consist of unique individual agents capable of learning,
planning and symbolic reasoning, capturing the micro-diversity that systems the-
ory did not. Thirdly, Phelan claims that ‘complexity’ has a different interpretation
within the two fields. For systems theorists, “complexity is a function of the num-
ber of system components and the amount of interaction between them”. In con-
trast, in complex systems complexity “is something of an illusion—it is something
that emerges when several agents follow simple rules”.

Of these three distinctions, the second is the the most meaningful. The first
distinction is a matter of emphasis: both systems theory and complex systems are
in the business of both explanation and intervention (consider the interventions
recommended by the companies that comprise the Santa Fe Info Mesa). The third
distinction may be true for the work of some complex systems theorists – such as
Holland [153, 154] and Wolfram [333] – but does not hold for others, such as Bar-
Yam [25] and Kauffman [175]. It is more accurate to observe that there are many
more ways to think of complexity (algorithmic complexity, behavioural complex-
ity, effective complexity, multiscale complexity, physical complexity and structural
complexity, to name a few) in complex systems than the approach initially taken
by systems theorists.

The principle difference between complex systems and GST/cybernetics is not the
questions that are being asked, but the way in which they are answered. The
techniques of complex systems have made substantial ground on the questions
that the early systems theorists asked, but did not have the methods to answer.
Agent based models, as identified by Phelan, are one component of this expanded
toolkit within complex systems. It is only when one delves beyond the level of
metaphor that complex systems reveals its contributions to the systems approach.

The analytical techniques within complex systems to understand organisation can
be separated by three broad aims: to analyse the patterns, the scales and the dy-
namics of a system. Patterns that are discovered12 in measurements or descriptions
of a system indicate the formation of structure in either space or time. Kauffman’s
boolean network models of self-organisation [175], network theory, [35, 322] and
computational dynamics [92] are examples of the analysis of pattern formation,
where couplings, interactions and correlations respectively between parts of a sys-
tem give rise to measurable regularities.

The relationship between an observer and a system can be analysed in terms of
the scale and scope over which the observer interacts with the system. Multiscale
analysis techniques [25, 34, p. 258] provide a method for relating the possible sys-
tem configurations that are observed at different scales. The development of the
renormalisation group13 [331], and dynamic renormalisation theory to analyse crit-
ical phenomena in physics provides an important general method of identifying the

12Whether the patterns are a property of the system, the observer, or the relationship between
them is a non-trivial question that is intimately related to the theory-ladenness of observation.
See Dennett [106] for an insightful discussion on patterns.

13Note that there is a connection between the renormalisation group and Simon’s nearly de-
composable systems [293].
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important parameters when the equations describing the system are independent
of scale. In such cases, the method of separation of scales does not apply. Renor-
malisation operates by abstracting interdependencies between fine scale variables
into interdependencies between coarse scale variables, and can be applied recurs-
ively. Fractals provide another significant set of techniques that enable multiscale
analysis in complex systems, which were not available to GST.

Dynamics relates the behaviour of the system to its behaviour in the past. Dy-
namics can place constraints on future configurations, identify attractors and other
patterns that occur in time. The calculus of nonlinear dynamical systems was not
invented until after the peak of GST activity, meaning the early systems theorists
talked of steady states and equilibria, rather than attractors and bifurcations. The
dynamics of evolution and more generally adaptation (which includes learning as
well as evolution) are of particular interest, as the only processes that are known
to generate multiscale complexity (ie. increase organisation over multiple scales).
Advances in biology since GST include a much better understanding of group se-
lection pressures in evolution; swarm intelligence in social insect populations; and
the operation of the adaptive immune system; all of which complex systems has
drawn on and contributed to.

As well as analytical advances, the impact of the Information Technology revolu-
tion on complex systems can hardly be understated. Von Neumann’s original auto-
mata were computed with pencil and paper. In contrast, Barrett’s TRANSIM
Agent Based Model (ABM) (see for example [75]), running on Los Alamos Na-
tional Laboratory supercomputers, has simulated the individual decisions of an
entire city’s motorists. Currently, there are ABM platforms capable of simulat-
ing over a million non-trivial agents, such as MASON [214]. At its best, agent
based modelling can combine all three threads of the complex systems approach
to understanding organisation, simulating adaptive pattern formation over mul-
tiple scales. While the computational power and relative simplicity of ABMs can
be abused, acting as a substitute for thought14, it has provided complex systems
with a unique approach to model-building that stands in contrast to aggregate
models, such as those used in system dynamics.

An example of an aggregate model that has been widely used in defence is the
Lanchester differential equation for combat attrition, which relates the mass and
effective firing rate of one side to the rate of attrition of the opponent (see Equation
(7.1)). Rather than directly guess the functional form of aggregate attrition rates,
the agent based approach models the individual agents, and the aggregate beha-
viour is computed from the ‘bottom up’. If the individual behaviour is easier to
model than the aggregate behaviour, ABMs can eliminate the need to make simpli-
fying assumptions about the macroscopic dynamics, instead allowing macroscopic
patterns to ‘emerge’ from the microscopic rules and interactions [53]. ABMs are
also useful when the spatial configuration is relevant15 (c.f. Angyal above); when

14The complex systems community but also the wider scientific community has been par-
ticularly vocal in its criticism of Wolfram’s [333] book on this account – see for example
[134, 172, 189, 191, 279].

15If the spatial dimension is abstracted away but the interactions are retained, an ABM essen-
tially becomes a network model, which has a set of analytical techniques that are increasingly
popular within complex systems.
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autonomy is distributed across many agents; when thresholds, nonlinearities or
logical conditions govern individual decision-making; and when the rules change
or the agents learn.

Of course, complex systems is not the only field to simulate the behaviour of indi-
vidual agents in order to predict aggregate behaviour. In contrast to physics-based
constructive simulations, the agents in ABMs are relatively abstract. However, the
relationships are typically richer, which gives rise to collective properties in addi-
tion to the properties of the simple agents. The limitations of ABMs as predictors
of certain aspects of social systems has already been discussed in Section 1.3.

3.4 Defining ‘System’

A System is a set of variables sufficiently isolated to stay discussable
while we discuss it.

W. Ross Ashby

The historical approach to understanding systems provided a rich context within
which individual contributions to systems theory could be assessed. In this section,
my aim is to distill this into a concise definition, which captures the essence of
the systems approach. Every definition must choose a position along a tradeoff
between generality and depth of insight: as Boulding [55] notes, “we always pay for
generality by sacrificing content, and all we can say about practically everything
is almost nothing.” In contrast to Definition 3.1, my definition of ‘system’ will
not be a catch-all container. As a relatively strong definition of system, it will
exclude some entities that are legitimately systems in the informal sense – such
as closed systems – but which are not the focal subject of the systems approach.
Recalling that the focal subject is “organised complexity”, this excludes entities
with trivial structure or trivial behaviour, such as a contained gas, or well mixed
solution of chemicals at equilibrium. The important points to consider from the
previous section are:

1. Systems are an idealisation;

2. Systems have multiple components;

3. The components are interdependent;

4. Systems are organised;

5. Systems have emergent properties;

6. Systems have a boundary;

7. Systems are enduring;

8. Systems effect and are affected by their environment;

9. Systems exhibit feedback; and

10. Systems have non-trivial behaviour.
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Recall Burke’s Definition 2.7 of a system as “an idealisation of an entity as a
complex whole.” This is an extremely compact definition that incorporates the
first seven aspects of systems listed above. Importantly, it explicitly recognises that
as an idealisation, a system abstracts away many details of an entity (the map is not
the territory). A system is not a physical object, it is a representation that stands in
for an entity, and it is always constructed and used by an agent (or observer). The
use of the word entity indicates that the subject of the idealisation may equally be
abstract or substantial. The word complex implies multiple components, organised
in a non-aggregative arrangement. Also, complexity implies interdependence [25,
p. 12]. The system boundary, its enduring nature, and emergent properties in
addition to the aggregate properties of the parts are all implied by the term whole
in Burke’s definition.

However, the final three aspects of systems are not directly implied by this defin-
ition. Eight requires a system to be open. There is a subtle point here that
requires explication, due to the fact that the system boundaries are chosen by the
observer. Any open system can always be reframed as closed by expanding the sys-
tem boundaries to include its environment. When applied recursively this method
achieves closure with certainty, since the Universe is closed to the exchange of en-
ergy, matter and information. However, if for every possible system/environment
partitioning the system is closed, then its long term behaviour will be trivial. Con-
sequently, a more accurate way to state this requirement is that there exists at
least one system/environment partition such that the system is open.

Together, eight and nine imply ten, since an open system requires more inform-
ation than the initial conditions of the system to predict its future behaviour,
and combinations of positive and negative feedback between the system and its
environment are the source of non-trivial behaviour. This implication was made
precise by von Foerster [313], who distinguished between trivial and non-trivial
machines. The former have invariant input-output mappings and determinate be-
haviour, whereas the latter have input-output relationships that are determined
by the machine’s previous output. Non-trivial machines may be deterministic, yet
are still unpredictable. According to this distinction, feedback is necessary and
sufficient for non-trivial machines. I now present my definition of system for this
thesis, which incorporates all ten aspects of a systems approach:
Definition 3.4 (System (7)). A system is a representation of an entity as a com-
plex whole open to feedback from its environment.

I define a system as a representation rather than an idealisation, because even
though the meaning is similar, as Chapter 2 demonstrated, representation has a
well defined theoretical basis. This definition provides the meaning of system for
the remainder of this thesis. It is too restrictive as a commonsense conception
of system, but it provides insight on both the nature of systemic problems and
the value of the systems approach. Because a system is a representation, it can
stand in for the entity it represents. Systems are useful idealisations that com-
plement the traditional abstractions within scientific disciplines, such as the point
masses, frictionless surfaces, and massless springs of physics. All representations
are based on simplifying assumptions, and as a consequence there are limits to
their application.
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This connection can help to clarify when the systems approach should apply. By
rephrasing the list of systems aspects above, one can derive a set of simplifying
assumptions of non-systemic approaches which deserve careful examination. This
line of reasoning follows closely from Churchman’s question, and has been explored
elsewhere. For example, Bar-Yam [25, pp. 91-95] takes this approach to contrast
complex systems with the assumptions of thermodynamics. Weinberg [324] also
provides an extensive discussion of the simplifying assumptions of science, and the
importance in systems science of understanding the limits of applicability of simple
models. When one or more assumptions are violated, then the systems approach
may provide useful insights and more appropriate models (but never complete
understanding). The assumptions of non-systemic approaches include:

1. The system is closed;

2. Averaging over time and across individuals is valid;

3. Superpositionality holds;

4. Space can be ignored;

5. Local structure is smooth;

6. Different levels are independent;

7. Control is centralised; and

8. Causation is linear.

The assumption of a closed system enables the design of reproducible experiments
with predictable outcomes from the same initial conditions, and the powerful in-
evitability of increasing entropy obtains, meaning dynamics are irrelevant to long-
term behaviour and equilibrium states dominate. However, under this assumption
only a limited number of properties of open systems far from equilibrium can be
explained. Classical statistics affords great simplification for modelling systems
with minimally biased estimators that average over time series and across indi-
vidual members of an ensemble. However, averaging over time destroys informa-
tion about temporal structure, while averaging over individuals hides the unique
properties of the individual.

Superpositionality means that the whole is the sum of the parts: interactions
within the system can be evaluated by calculating the sum of the pairwise inter-
actions between components. This greatly simplifies the modelling process, and
is consistent with Occam’s Razor, because it assumes the minimal additional in-
formation about the system of interest. However, it assumes commutativity and
that only first-order dyadic interactions exist. Therefore, superpositionality only
strictly applies to aggregates, not systems where the structure of interactions af-
fects the system’s properties, and where the forces on a component have indirect
effects. Similarly, assuming that spatial arrangement can be ignored simplifies the
analysis of well-mixed systems, but if there is significant spatial structure, the as-
sumption of global mixing may give misleading results, as local interactions depart
from the average behaviour given by uniformly mixed interactions.

When a system’s behaviour is fairly trivial, then one can safely assume that at finer
scales, the local structure becomes smooth [25, p. 258], and that different levels can
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be analysed in isolation. The former assumption allows the application of calculus,
while the latter allows the technique of separation of scales, which averages over
fast processes and fixes the slow processes to analyse the intermediate dynamics
[25, p. 94]. These assumptions do not hold universally. If infinitesimals diverge
or correlations occur over all scales – both of which occur at a second order phase
transition – new modelling techniques are required.

Assuming control is centralised improves modelling efficiency: most components
can be ignored because they are inert in the control process, and control becomes
sequential, synchronous and linear. However, if autonomy is distributed across
many system components, its behaviour may be qualitatively different to the cent-
ralised model. Typically, a system with distributed control may be expected to be
less efficient but more robust and adaptive. Finally, the assumption that causa-
tion is always best modelled by a linear chain between effects and prior causes, as
viewed by Laplace’s demon, may not always hold. An example von Foerster [315]
gave in an interview with Yveline Rey is how the process of a person switching
on a light can be much more efficiently described as how causes in the future, “to
have the room lit”, determine actions in the present, “turn the switch now”. It
also explains why if turning the switch on does not illuminate the room because
the globe is blown, subsequent actions find an alternative path to the same end,
such as “draw the curtains”.

This list of assumptions is not complete, but a large proportion of systems research
can be motivated in terms of developing alternative techniques for when these as-
sumptions do not hold. Alternatively, systems theory may generalise alternative
techniques when they arise within more specialised disciplines, seeking to organise
available techniques not by discipline, but by their assumptions about the sys-
tem’s structure and dynamics. Thus, a good deal of attention is paid to surfacing
modelling assumptions and discussing limits of applicability within any systems
approach. However, where GST found it difficult to say much about systems in
general, contemporary systems approaches have had more success in identifying
significant features of classes of systems that share certain properties (e.g. chaotic
systems), or specific mechanisms for their generation (e.g. genetic algorithms)
[293]. The GST ambition to unify science has been supplanted by the narrower
but more realistic task of forging interdisciplinary links between specific models
within the disciplines.

3.5 Conclusion

The systems movement is an attempt to understand organisation, a concept that
is trivialised in mechanism and remains un-analysed in holism. Organisation is
a compound concept that incorporates both structure and dynamics. The result
of over half a century of systems thinking is not a general theory of organisation,
but a loosely connected set of techniques, where each technique contributes some
insight on the temporal and spatial structures of organised complexity. Because
no single technique provides a complete understanding of organisation, knowledge
of the limits of applicability of individual techniques is central to any systems
approach.
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Complex systems is arguably the most active contemporary field of systems re-
search. It follows in the spirit of general systems theory and cybernetics, although
it is less concerned with rhetoric on the unity of science as the development of
quantitative models that have interdisciplinary application. Systems analysis and
systems engineering have longer and much richer experience with real world sys-
tems applications, but constitute a comparatively superficial commitment to sys-
tems theory. All of these approaches can be broadly characterised as hard ap-
proaches, concerned with the exact scientific application of mathematical models.

The deepest divide between contemporary systems approaches occurs between
hard and soft methods. Soft systems methodologies take a pluralist stance, where
a systems model is taken to say more about the modeller and their assumptions
than the system of interest itself. Advocates of soft systems approaches claim that
hard approaches to social systems can be dangerous, because they do not account
for the special nature of self-conscious and free-willed humans. Due to the deep
philosophical differences between hard and soft systems approaches, there exists
little constructive dialog between these communities.

A system is a representation of an entity as a complex whole open to feedback
from its environment. The utility of a systems approach derives from the critical
examination of simplifying assumptions. This helps to make explicit the associated
limits of applicability, such that revision of the appropriate assumptions can ex-
tend the application of scientific model-building. The revisions apply in general to
reductionist assumptions that wholes do not have properties apart from the prop-
erties of their components, and in particular to linear thinking about causation,
composition and control.
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Chapter 4

Conceptual Analysis

This chapter presents the method of conceptual analysis for complex
systems design. Conceptual analysis is a middle path between model-
based approaches and metaphorical approaches to complex systems
design. It aims to extend the applicability of theorems and insights
from complex systems to problems that may be soft, data-poor and
social.



4.1. Introduction

4.1 Introduction

Chapter 3 described a number of systems approaches. It was suggested that the
most significant difference between the many systems approaches is captured by the
hard/soft dichotomy, because it is a metaphysical choice between belief in the one
and the many. Consequently, there is a culture gap between hard and soft systems
researchers. Hard systems science concentrates on developing mathematical or
computer models. Given a problem, a quantitative model is built, the model
is analysed and this justifies intervention and design of the system of interest.
In contrast, soft systems thinking works within a less structured framework that
surfaces assumptions and “root metaphors” of different perspectives. Problems are
resolved and decisions are made by finding a strategy that is mutually desirable
from multiple perspectives.

Roughly speaking, hard systems approaches dominate every domain except for so-
cial problems. Practical applications of hard techniques (especially systems ana-
lysis) to social problems have been strongly criticised [81, 157, 208]. The devel-
opment of a model-based approach to interventions against terrorist attacks was
found to be problematic in Chapter 1. Soft systems methodology is a response to
perceived failures of hard systems in this domain. Although the results from soft
systems have generally been more satisfactory for social problems [225], the cur-
rent methodology also represents a missed opportunity. By eschewing quantitative
methods, soft systems adds very little theoretical insight for the problem owners.
Moreover, by emphasising the equality of all perspectives, it dilutes the influence
that deep understanding of the system can have. Its strength is bringing structure
to the tacit knowledge embedded in organisations, rather than contributing any
unique knowledge of systems.

A significant depth of systems knowledge now exists within complex systems. One
view of that knowledge from the perspective of information theory will be provided
in Chapter 5. The principle research question of this thesis is how it is possible to
apply this knowledge without building explicit models of the system of interest.
The attempt to answer this question begins in this chapter by advancing a middle
path between hard and soft systems research.

I will refer to this approach as conceptual analysis, which is a topic in Yaneer
Bar-Yam’s course on complex systems. Bar-Yam describes conceptual analysis as
the use of complex systems theory at a conceptual level in order to distinguish
mountains from molehills. This is precisely the intent behind the applications I
will develop in Chapters 7 and 8. The theory is used as a ‘model’ to represent a
system of interest, but it is different to the model-based approaches to complex
systems where explicit quantitative models are simulated or solved analytically.
More formally, I will work under the following definition:
Definition 4.1 (Multidisciplinary Conceptual Analysis). An approach to real
world problem situations, which draws on theorems, models and exact results from
both disciplinary and interdisciplinary science, in order to construct low resolution,
conceptual representations that facilitate interventions and evolutionary change
within the problem situation.

Note that multidisciplinary conceptual analysis has a different meaning to the term
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‘conceptual analysis’ in analytic philosophy, which denotes an a priori definition of
precisely what concepts and words represent. Currently, the most comprehensive
collection of social problems that have been addressed using conceptual analysis in
the complex systems sense can be found in Making Things Work: Solving Complex
Problems in a Complex World [34]. Bar-Yam provides a simple yet deep introduc-
tion to the theory of complex systems and includes eight real world applications of
conceptual analysis. However, the legitimacy of the conceptual analysis approach,
its boundaries and its defining characteristics are never explicitly addressed.

This chapter draws on the philosophy of representation and systems developed
above to offer broad guidance for conceptual analysis. This guidance is not in-
tended to be prescriptive: conceptual analysis is an approach rather than a meth-
odology. It is also not a framework: the framework of complex systems theory
is developed in the second part of my thesis in Chapters 5 and 6. However, it is
profitable to articulate the general aims and utility of conceptual analysis in com-
parison to model-based approaches. Section 4.2 identifies the main characteristics
of conceptual analysis. Section 4.3 then raises three issues that must be considered
in the application of conceptual analysis: the problems of standards, inconsistency
and justification.

4.1.1 Novel contributions

I am the sole author of this chapter, which has not been published elsewhere. My
original contributions are:

1. An explicit account of the method of conceptual analysis; and

2. Addressing the issues of standards, inconsistency and justification for mul-
tidisciplinary conceptual analysis.

4.2 Multidisciplinary Conceptual Analysis

For systems theory to have an impact, it must ultimately influence real world
decisions. If systems theory only interprets the world without changing it, then it is
essentially irrelevant. There is a spectrum1 of actions, from intervention to design,
that exert increasing control over a system of interest. Complete control is possible
for relatively simple systems, such as the engineering design of a discrete product by
a single firm. In more messy situations, such as nation-building to establish viable
peace, design is infeasible and even intervention becomes problematic. Conceptual
analysis is an approach that links complex systems theory with real world action
across the spectrum of intervention to design.

The three distinguishing characteristics of conceptual analysis are:

1. It draws on the exact results of complex systems;

1The reader should be aware that this concept of a spectrum of influence assumes the systems
theory is developed externally from the system of interest. This is a reasonable assumption in
most cases.
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2. It does not build explicit quantified models of the system of interest; and

3. It is multidisciplinary.

By “exact results”, I mean theorems and symbolic models – the mathematics of
complex systems. Mathematics studies the structure of abstractions of quantity,
symmetry, change and logic, which roughly correspond to the primary branches
of algebra, geometry, analysis and foundations of mathematics. The intention of
a systems approach is to explain organisation, which is evident through structure
in the configuration and dynamics of systems. Consequently, it is inevitable that
mathematics – the systematic study of structure – should play an essential role
within complex systems. This role is not to ‘mirror’ system behaviour, but to
provide deep insights on how structure affects function.

The mathematical theorems and agent based models of complex systems can al-
ways be interpreted as formal systems. The great strength of formal systems as
representations in the sciences is that they generate theorems that are logical con-
sequences of the set of axiomatic assumptions (noting that initial conditions may
also be expressed as axiomatic theorems). In other words, mathematics is the
only way to ensure that inferences are correct, given a set of explicit assumptions.
Ashby felt this gave mathematical explanations a privileged status: “Having ex-
perienced the confusion that tends to arise whenever we try to relate cerebral
mechanisms to observed behavior, I made it my aim to accept nothing that could
not be stated in mathematical form, for only this language can one be sure, during
one’s progress, that one is not unconsciously changing the meaning of terms, or
adding assumptions, or otherwise drifting towards confusion” [290]. This feature
of formal systems underwrites the confidence of hard scientists in the language of
mathematics. Most importantly, it focuses debate on the axiomatic assumptions,
since any disagreement between a theorem and empirical experiment is traceable
to the initial assumptions.

In Section 3.4, it was shown how the systems approach can be characterised as
the critical appraisal and revision of scientific assumptions. In this view, it is
strongly complementary to the use of mathematics, which derives the necessary
consequences of a set of assumptions. It is perfectly reasonable to assume that the
behaviour of any system can be profitably analysed by the critical use of formal
systems representations, since as Section 3.4 showed, systems are enduring, and
consequently have regularities that can be represented. The main problem arises
when social factors are forcibly quantified, and rules governing the dynamics are
explicitly specified. There are many cases when this is either not possible or not
appropriate. What insights can exact techniques offer in these situations?

When explicit quantitative models are produced in systems design, it is easy to
understand how they function as representations that shape behaviour (ie. shape
the final design). An illustrative description of the process is as follows. The
modeller – who in this case is the agent in Definition 2.2 – firstly quantifies their
purpose using an objective function f(·). Secondly, the modeller identifies the
variables in the system of interest that affect the value of f(·), which can be
partitioned by variables x ∈ X the modeller can influence, and variables y ∈ Y
where significant influence is not possible. The modeller sets the value of y based
on measurements or expectations of the system of interest, then explores the space
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X for good values of f(x, y) until a termination criteria is reached. The model
provides a useful substitute for physical designs, since in general moving in model
design space is much cheaper than moving in physical design space. Finally, the
behaviour of the modeller is influenced by the model, because the best solution x∗

at the time of termination of movement in model space guides the physical design
that is implemented. An equally clear-cut recommendation for intervention can
be made on the basis of quantitative models.

The case for conceptual models differs significantly. The modeller does not need to
reduce their understanding of objectives f(·) or environmental factors y to quant-
itative measurements. This freedom comes at the cost of much lower resolution.
The relative fitness of two similar configurations may be unclear. Further, a con-
ceptual model is not intended to identify a point solution x∗. Instead, the model
distinguishes between volumes of design space, one or more of which may be re-
commended for certain contexts (ie. for a set of environmental conditions y ∈ SY ).
A conceptual model is used to understand the coarse features of good design, in
order to identify the most significant parameters. This helps to avoid “subsystem-
atisation” [158, p. 160], when more detailed models of easily quantified subsystems
are optimised at the expense of total system performance. Conceptual models dir-
ect the modeller towards broad classes of designs or intervention strategies, rather
than specifying a point design.

Most disciplines have had the debate over quantitative versus qualitative models.
The trend towards increasing empirical grounding in almost all disciplines [185, p.
198] has forced the question with respect to almost every subject domain. At the
same time, this trend has tended to add currency to quantitative approaches and
marginalised more qualitative approaches.

The debate within economics is especially interesting, because economics has his-
torically placed a greater emphasis on mathematical models of social phenomena
than the other social sciences. As a result, economists have a depth of knowledge in
both mathematics and social problems – the domain where hard systems methods
have had the least success.

A particularly eloquent discussion on this topic took place over several dozen
letters between Keynes and Harrod in 1938 [46]. The discussion concerned the
applicability of the methods of the natural sciences within economics, and in par-
ticular the value of populating economic models with quantitative statistical data.
Keynes and Harrod agreed that the work of Shultz, attempting to turn econom-
ics into a “pseudo-natural-science”, was more or less a waste of time. However,
they disagreed on the merits of quantitative research as exemplified by Tinbergen’s
research on business cycles. Harrod’s opinion was that

Tinbergen may be doing very valuable work, in trying to reduce this
part of theory to quantitative terms . . . I begin to feel that the time
has come when I ought to soil my fingers by doing some of this sort of
statistical work myself or supervise others in the doing of it.

Keynes’ reply sheds light on why quantifying parameters in social models may not
always be beneficial.

In chemistry and physics and other natural sciences the object of exper-
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iment is to fill in the actual values of the various quantities and factors
appearing in an equation or a formula; and the work when done is once
and for all. In economics that is not the case, and to convert a model
into a quantitative formula is to destroy its usefulness as an instrument
of thought. . .

One has to be constantly on guard against treating the material as
constant and homogeneous in the same way that the material of the
other sciences, in spite of its complexity, is constant and homogeneous.
It is as though the fall of the apple to the ground depended on the
apple’s motives, on whether it is worth while falling to the ground,
and whether the ground wanted the apple to fall, and on mistaken
calculations on the part of the apple as to how far it was from the
centre of the earth.

But do not be reluctant to soil your hands, as you call it. I think it
is most important. The specialist in the manufacture of models will
not be successful unless he is constantly correcting his judgment by
intimate and messy acquaintance with the facts to which his model
has to be applied.

This correspondence ran in parallel to a conversation between Tinbergen and Har-
rod, which resulted in Tinbergen rewriting the introduction to his book to ac-
commodate Keynes’ critique. At the heart of the matter is Keynes concern that
to convert a model into a quantitative formula is to destroy its usefulness as an
instrument of thought. Keynes also touches on the limitation of modelling social
phenomena that can be found as a disclaimer on any financial product disclosure
statement: past performance is no guarantee of future results. This distinction
between models in economics and the natural sciences changes the way that mod-
els are used. In economics, according to Keynes, the “object of statistical study
is not so much to fill in missing variables with a view to prediction, as to test
the relevance and validity of the model.” Empirical test is still important, but it
Keynes wanted to emphasise that it did not fulfil the same function for social phe-
nomena. Soiling one’s hands could aid with choosing between competing models
and improving understanding of the relevance of a model, but it should not be
expected to converge towards a predictive tool where the empirical data directly
supports intervention.

Just as the exact theories in economics can provide a basis for decision-making from
market design to government regulatory interventions – even when they are not
furnished with statistical data – so too can the exact theories of complex systems
inform design and intervention. In the spirit of Keynes’ philosophy, conceptual
analysis uses models to change the way the modeller thinks of the problem situ-
ation, rather than as containers for statistically valid measurements of quantities
that operate under assumptions of stationarity and context independence.
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4.3 Problems for Multidisciplinary Conceptual

Analysis

The main difference between Keynes’ approach and conceptual analysis is that
conceptual analysis is multidisciplinary. Multidisciplinarity is important, because
it is not appropriate to demarcate between simple and complex systems: sys-
tems are a way of representing the world, they are not the furniture of the world.
Consequently, the theories of complex systems are entangled with disciplinary
knowledge, and applications of complex systems must be able to also draw on
disciplinary discourse as required. However, this has three implications that need
to be addressed: the problems of standards, inconsistency and justification.

The twentieth century phenomena of increasingly differentiated disciplines is a
more or less inevitable consequence of the growth of science, and the changes to
how science is funded. For problems that admit to partitioning by subject, the dis-
ciplinary framework allows standards, conventions and aspirations for researchers
to be shared, which become embodied in communities of practice and professional
societies. According to Klein [184] in her book on interdisciplinarity, a discipline
signifies “a stable epistemic community and agreement upon what constitutes ex-
cellence in a field”. Chapter 3 introduced the systems movement, which was an
experiment in establishing an interdisciplinary professional society. As a central
figure of general systems theory, Boulding ([56] as cited in [184]) noted that in-
terdisciplinarity “easily becomes the undisciplined if there is no organized payoff
for the constant critical selection of its ideas, theories and data”. The observation
is even more pertinent to multidisciplinarity. It begs the question: how can the
standards of disciplinary research be maintained outside of disciplines?

One answer is that they cannot. However, because the purpose of multidiscip-
linarity is fundamentally different, it is not appropriate to measure value of mul-
tidisciplinary research directly against disciplinary standards. Nevertheless, some
structure must be imposed on activity outside of disciplinary frameworks. This was
the motivation behind Boulding’s elaboration of the skeleton of science discussed in
Section 3.3.1. Determining the appropriate structure for non-disciplinary discourse
is a substantial issue that has not been satisfactorily addressed to date. Klein
[184, pp. 12-13] cites three reasons why interdisciplinary discourse is problematic.
They are confusion over definitions; widespread unfamiliarity with interdisciplinary
scholarship; and the dispersion of discourse across general, professional, academic,
government, and industrial literatures. The paradox that non-disciplinary dis-
course faces is that should it become structured, professionalised and specialised,
it will be yet another discipline. Only by adding structure can non-disciplinary
research consistently raise its standards, but it will have lost its defining character
in the process, and more importantly will have walled itself off from the disciplines
it seeks to integrate. Perhaps the only way out of this paradox is to specialise, but
to do so in a way that runs orthogonal to the disciplinary decomposition. In this
way, multidisciplinary discourse can be bounded and structured, but it can also
confront problems that no other individual discipline can address.

The second problem for multidisciplinary research is the inconsistency of assump-
tions between disciplines. Because of this, the uncritical concatenation of theories

83



4.3. Problems for Multidisciplinary Conceptual Analysis

from different disciplines produces non sequiturs. Literary theorist Fish [124] is
critical toward the very idea of interdisciplinarity because he believes it invariably
mixes incompatible sources. Discussing examples of this practice, Fish concludes
that meaningful research can only occur within narrow disciplinary confines.

The unconcern these [interdisciplinary] essays display is with the claims
made by the theorists cited, claims that arise from the particular prob-
lems they set out to solve, problems that are urgent and perspicuous
in the context of some specific project. . . But if you have your eye on
a larger horizon—a horizon so large that it barely knows boundaries,
never mind laws of entailment—almost anything you come across will
seem relevant and capable of being plugged in unproblematically.

However, it is inevitable that there will exist messy real world problems that are
broader than any disciplinary framework. By denying the possibility of inter-
disciplinary (or multidisciplinary) research, Fish is denying that theory can be
systematically applied to such problems. This view seems too extreme, although
the logical problems associated with integrating often eclectic collections of dis-
ciplinary theory (also raised by Hoos [157, 158] and Lilienfeld [208]) need to be
addressed.

To avoid drawing invalid conclusions from integrating over incompatible sources,
there are two requirements for a multidisciplinary approach. Firstly, the assump-
tions of any model need to be considered, including implicit assumptions that
derive from its disciplinary origin. This aspect of systems theory has already been
elaborated in the previous chapter. Secondly, components of a multidisciplinary
approach need to be examined together, and any inconsistencies must be explicitly
addressed. Identifying the reasons for inconsistencies between disciplinary theories
and providing potential resolutions can be a major contribution of a multidiscip-
linary approach.

The third problem for a multidisciplinary approach is the problem of justifying the
use of theories that cannot be directly empirically tested. Because multidisciplin-
ary theories are necessarily broader than a single discipline, they are less readily
tested. They must firstly be supplemented with the context provided by a discip-
line before an experiment can be designed to collect empirical evidence. Consider
Bak’s [23] theory of self-organised criticality. The idea that many natural sys-
tems self-organise towards a critical point is an exceptionally difficult theory to
test. As many examples can be found that refute the theory as support it. Con-
sequently, self-organised criticality has itself remained critically poised on the edge
between acceptance as a useful contribution to complex systems and rejection as
an unsubstantiated and overly broad claim. Ambiguity about its domain of ap-
plicability, and the need for significant furnishing with disciplinary context have
both contributed to uncertainty of the value of self-organised criticality.

Computer modelling can be useful here, since artificial worlds can be arbitrarily
abstract, unlike physical experiments. However, while simulations can provide a
stringent test the on the logical validity of a theory, they tend to be a more elastic
test of empirical validity. The flexibility of arbitrary abstractness also means that
important physical details may be abstracted away, giving misleading support to
general theories. Fortunately for conceptual analysis, this issue is less problematic,
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because the approach operates with a coarse enough resolution that the need for
empirical testing is largely circumvented. Another way to reduce the risk of util-
ising theories that are not empirically testable is to introduce them at a sufficiently
fine scale, which then reduces the scale of both negative and positive consequences.
Feedback can then inhibit counterproductive changes and reinforce useful changes.
When empirical evidence is unavailable, small fractions of the real world system
can be used as a laboratory. This is the role of test pilots, and more generally of
pilot programs to introduce cultural change, education initiatives and even new
television shows into existing systems.

A final aspect of multidisciplinary research is relevant to all three issues raised
above. The value of a multidisciplinary approach should ultimately be judged
not whether it is correct, but whether it is useful, either directly or indirectly.
The problems of standards, inconsistency and justification are all analytical con-
cerns. However, there will always be very real limits to the omniscience of a
priori analysis. These limits are implied by the distinction between representa-
tions and representation bearers (Section 2.3), are emphasised by Churchman’s
question about securing improvement for the whole system (Section 3.3), and will
be demonstrated for the problem of predicting emergence (Section 6.5). Together,
these concepts point to the conclusion that investing too heavily in analytic jus-
tification for action can be counterproductive. An alternative perspective recasts
the role of modelling as generating novel variation in potentially fertile regions of
design space. The merits of novel designs can then be measured in operational
environments. Low resolution conceptual models allow new designs to be pro-
duced with a relatively small investment of time and resources, which need to be
tested in context. Selection pressure can then operate directly on physical designs
to reinforce useful variation. The use of real evolutionary pressure in context to
improve engineering designs is described in detail in [27]. Rather than seeking to
establish an analytical guarantee for successful design, this use of multidiscplinary
conceptual analysis focusses on improving the design over time through situated
learning and evolution.

4.4 Conclusion

This chapter presented the case for multidisciplinary conceptual analysis. It was
argued that even in problems where the environment is non-stationary, fitness is
not easily quantifiable and social factors are significant, the exact theories and
theorems of complex systems are relevant. In conceptual analysis, low resolution
models are constructed that draw on both complex systems and disciplinary theory.
The purpose of conceptual analysis is to identify promising classes of significantly
novel interventions or system designs to seed evolutionary change in real world sys-
tems. As a multidisciplinary approach, conceptual analysis needs to pay special
attention to the assumptions underlying the theory it draws upon, address incon-
sistencies in cross-disciplinary models, and make small scale changes to systems
in context that utilise evolutionary mechanisms to improve system performance
over time. Conceptual analysis can apply in contexts where traditional quantit-
ative model-based applications of complex systems are inappropriate, and provide
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insights that soft systems methodologies do not reveal.
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Chapter 5

The Information Theory of
Complex Systems

Complex systems as a discipline currently works within a loosely defined
framework of concepts such as complexity, self-organisation, emergence
and adaptation. The fuzziness of complex systems definitions is com-
plicated by the unclear relation among these central processes: does
self-organisation emerge or does it set the preconditions for emergence?
Does complexity arise by adaptation or is complexity necessary for ad-
aptation to arise? The inevitable consequence of this lack of clarity is
miscommunication. We propose a set of concepts, together with their
information-theoretic interpretations, which can be used as a diction-
ary of complex systems discourse. Our hope is that this information-
theoretic framework may clarify communication between practitioners,
and provide new insights into the field.
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5.1 Introduction

Chapter 3 introduced complex systems, which studies general phenomena of sys-
tems comprised of many elements interacting in a non-trivial fashion. Fuzzy quan-
tifiers like ‘many’ and ‘non-trivial’ are inevitable. ‘Many’ implies a number large
enough so that no individual component or feature predominates the dynamics of
the system, but not so large that features are completely irrelevant. Interactions
need to be non-trivial so that the degrees of freedom are suitably reduced, but
not constraining to the point that the arising structure possesses no further degree
of freedom. Crudely put, systems with a huge number of components interacting
trivially are explained by statistical mechanics, and systems with precisely defined
and constrained interactions are the concern of fields like chemistry and engineer-
ing. In so far as the domain of complex systems overlaps these fields, it contributes
insights when the classical assumptions are violated. In Figure 3.1, Weinberg’s de-
piction of types of systems shows this region of “organised complexity”. However,
such simple depictions can give the misleading impression that there is a hard dis-
continuity between organised complexity and the contrasting regions of organised
simplicity and disorganised complexity. In reality, the boundaries between these
regions contains systems where two alternative idealisations both apply to some
degree.

Due to the difficulty of precisely defining the domain of complex systems, it is un-
surprising this vagueness extends to other aspects of the discipline, which notably
lacks a standard formal framework for analysis. There are a number of reasons
for this. Because complex systems is broader than physics, biology, sociology,
ecology, or economics, its foundations cannot be reduced to a single discipline.
Furthermore, systems which lie in the gap between the ‘very large’ and the ‘fairly
small’ do not submit meekly to traditional mathematical modelling techniques or
frameworks.

Initially setting aside the requirement for formal definitions, we can summarise our
general understating of complex systems dynamics as follows:

1. Complex systems are open systems, and receive a regular supply of energy,
information, and/or matter from the environment;

2. A medium sized ensemble of individual components interact, which gives rise
to non-trivial behaviour;

3. The non-trivial interactions result in internal constraints, leading to sym-
metry breaking in the behaviour of the individual components, from which
coordinated global behaviour arises;

4. The system is now more organised than it was before; since no central director
nor any explicit instruction template was followed, we say that the system
has self-organised;

5. This coordination can express itself as patterns detectable by an external
observer or as structures that convey new properties to the system itself.
New behaviours emerge from the system;

6. Coordination and emergent properties may arise in response to environ-
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mental pressure, in which case we can say the system and its parts display
adaptation;

7. When adaptation occurs across generations at a population level we say that
the system evolved;

8. Coordinated emergent properties give rise to larger scale effects. These inter-
dependent sets of components with emergent properties can be observed as
coherent entities at lower resolution than is needed to observe the compon-
ents. The system can be identified as a novel unit of its own and can interact
with other systems/processes expressing themselves at the same scale. This
becomes a building block for new iterations and the cycle can repeat from 1.
above, now at a larger scale.

The process outlined above is not too contentious, but does not yet address how
and why each step occurs. Consequently, even when we can recognise the process
in a phenomenological way, we can not understand it, intervene with confidence,
or engineer for it. A scientific explanation must address the deeper issue of the
mechanisms that give rise to the phenomenology.

Even worse than the fuzziness and absence of deep understanding already de-
scribed, is when the above terms are used interchangeably in the literature. The
danger of not making clear distinctions in complex systems is incoherence. To
have any hope of coherent communication, it is necessary to unravel the knot of
assumptions and circular definitions that are often left unexamined.

Here we suggest a set of working definitions for the above concepts, essentially
a dictionary for complex systems discourse. Our purpose is not to be prescript-
ive, but to propose a baseline for shared agreement, to facilitate communication
between scientists and practitioners in the field. We would like to prevent the
situation in which a scientist talks of emergence and this is conflated with self-
organisation.

Part I provided a high level overview of complex systems, and established why
and in what circumstances it applies to real world problems. This chapter begins
the task of providing the detailed framework for complex systems theory. For
this purpose we chose an information-theoretic framework. There are a number of
reasons for this choice:

• Shannon’s [287] theory of communication had an enormous influence on the
early systems work in cybernetics and general systems theory;

• A considerable body of work in complex systems has been cast into inform-
ation theory, as pioneered by the Santa Fe Institute, and we borrow heavily
from this tradition;

• It provides a well developed theoretical basis for our discussion;

• It provides definitions which can be formulated mathematically;

• It provides a range of computational tools, so for simple cases quantitative
measures can be computed.

Nevertheless, we believe that the concepts should also be accessible to disciplines
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which often operate beyond the application of such a strong mathematical and
computational framework, like biology, sociology and ecology. Consequently, for
each concept we provide a ‘plain English’ interpretation, which is intended to
enable communication across fields. In this spirit, we have also attempted to
depict all of the concepts in a single graphic to provide an intuitive understanding
of the significant interrelationships.

5.1.1 Novel contributions

This chapter is based on:

[252] M. Prokopenko, F. Boschetti, and A. J. Ryan. An Information-theoretic
Primer on Complexity, Self-organisation and Emergence. Submitted to Complexity,
2007.

Our original contributions are:

1. A comprehensive survey of information theoretic interpretations of complex-
ity, the edge of chaos, self-organisation, emergence, adaptation, evolution
and self-referentiality;

2. A definition for each concept, both in the mathematics of information theory
and in plain English; and

3. Insights into the relationships between complex systems concepts.

My role in this work was:

1. Leading the section on adaptation and evolution;

2. Leading the discussion and conclusions;

3. Helping with the writing of each section; and

4. Developing the graphical interpretation of the relationship between the con-
cepts.

There are some differences between [252] and the version I present here. I have
rewritten the section on emergence to be more consistent with Chapter 6 and
expanded the discussion in many sections.

5.2 An information-theoretical approach

Information theory was originally developed by Shannon [287] for the reliable trans-
mission of information from a source X to a receiver Y over noisy communication
channels, and includes the fundamental concepts of source coding and channel
coding.

Source coding quantifies the average number of bits needed to represent the result
of an uncertain event. Intuitively, it measures one’s freedom of choice in selecting
a message which captures information in the source X faithfully i.e. without
information loss. Another interpretation is the number of possible distinctions
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that are required to distinguish between every potentially different configuration
of X. This quantity is known as (information) entropy. In the simplest cases, when
all configurations are equiprobable, the amount of information can be measured
by the logarithm (base 2) of the number of configurations. The entropy is a
precise measure of the amount of freedom of choice (or the degree of randomness)
contained in the process – a process with many possible states has high entropy.
Formally, given a probability distribution P over a (discrete) random variable X,
the entropy is defined by

H(X) = −
∑
X

p(x) log p(x) , (5.1)

and is the only measure satisfying three required properties:

• Changing the value of one of the probabilities by a small amount changes
the entropy by a small amount;

• If all the choices are equally likely, then entropy is maximal; and

• Entropy is independent of how the process is divided into parts.

The joint entropy of two (discrete) random variables X and Y is defined as the
entropy of the joint distribution of X and Y :

H(X, Y ) = −
∑
X,Y

p(x, y) log p(x, y) , (5.2)

Mutual information I(X; Y ) is defined as the amount of information (in bits) that
the received signal Y contains about the transmitted signal X, on average:

I(X; Y ) = H(X) + H(Y )−H(X, Y ) = H(Y )−H(Y |X) , (5.3)

where H(Y |X) is the conditional entropy of Y given X, also called the equivocation
of Y about X. If X and Y are independent, the joint entropy is simply the sum
of their individual entropies, and the mutual information is zero. Informally, we
can state that

mutual information = receiver’s diversity

− equivocation of receiver about source (5.4)

Equivocation of Y about X may also be interpreted as non-assortativeness between
Y and X: the degree of having no correlation in either a positive or negative way.
This interpretation is particularly useful in dealing with assortative, disassort-
ative, and non-assortative networks. While this ‘plain English’ definition may
still seem obscure, mutual information is simply the average reduction in uncer-
tainty that knowledge of X provides about the outcome of Y . For example, if
H(Y ) = H(Y |X), then I(X; Y ) = 0. Because the uncertainty about Y does not
decrease when X is known, X provides no information about the value of Y , and
so their mutual information is 0.

Channel coding establishes that reliable communication is possible over noisy chan-
nels if the rate of communication is below a certain threshold called the channel
capacity. Channel capacity is defined as the maximum mutual information for the
channel over all possible distributions of the transmitted signal X.
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In the remainder of this chapter, we intend to point out how different concepts in
complex systems can be interpreted via simple information-theoretic relationships.
In particular, when suitable information channels are identified, the rest is often a
matter of computation – the computation of “diversity” and “equivocation”. The
choice of channels is typically a task for modellers, which we will demonstrate with
numerous examples.

There are other mathematical approaches, such as non-linear time series analysis,
chaos theory, etc., that also provide insights into the concepts of complex systems.
However, these approaches are outside the scope of this chapter. It is possible
that information theory has not been widely used in applied studies of complex
systems because the literature can appear impenetrable to the uninitiated: there
is a high mathematical barrier to entry. We would like to clarify its applicability
and illustrate how different information channels can be identified and used.

5.3 Complexity

It is an intuitive notion that certain processes and systems are harder to describe
than others. Complexity tries to capture this difficulty in terms of the amount
of information needed for the description, the time it takes to carry out the de-
scription, the size of the system, the number of components in the system, the
number of conflicting constraints, the number of dimensions needed to embed the
system dynamics, and related ideas. For a much broader survey of measures of
complexity than can be supplied here, see http://bruce.edmonds.name/combib,
which contains 386 references with distinct definitions of complexity.

Here we propose to adopt a definition of complexity as the amount of information
needed to describe a process, a system or an object. This definition is computable
(at least in one of its forms), is observer-independent (once resolution is defined),
it applies to both data and models [54] and provides a framework within which
self-organisation and emergence can also be consistently defined.

5.3.1 Concept

Algorithmic Complexity The original formulation can be traced back to So-
lomonoff, Kolmogorov and Chaitin, who developed independently what is today
known as Kolmogorov-Chaitin or algorithmic complexity [79]. Given an entity
(this could be a data set or an image, but the idea can be extended to material ob-
jects and also to life forms) the algorithmic complexity is defined as the length (in
bits of information) of the shortest program (computer model) which can describe
the entity. According to this definition a simple periodic object (a sine function
for example) is not complex, since we can store a sample of the period and write a
program which repeatedly outputs it, thereby reconstructing the original data set
with a very small program. At the opposite end of the spectrum, an object with no
internal structure cannot be described in any meaningful way but by storing every
feature, since we cannot rely on any shared structure for a shorter description. It
follows that a random object has maximum complexity, since the shortest program
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able to reconstruct it needs to store the object itself. Note that this provides a
definition of randomness for individual objects, as having a structure which can
not be compressed in any meaningful sense. In this way, algorithmic complexity
provides deeper insight than probability theory, where randomness is defined with
reference to an ensemble. A nice property of this definition is that it does not
depend on what language we use to write the program since it can be shown that
descriptions using different languages differ only by constants.

Statistical Complexity A clear disadvantage of the algorithmic complexity is
that it can not be computed exactly but only approximated from above1. A
common criticism of this definition is that there are problems for which associating
randomness to maximum complexity seems counter-intuitive. Imagine you throw
a cup of rice to the floor and you want to describe the spatial distribution of the
grains. In most cases you do not need to be concerned with storing the position of
each individual grain; the realisation that the distribution is structure-less and that
predicting the exact position of a specific grain (given the location of other grains)
is impossible is probably all you need to know. And this piece of information is
very simple (and short) to store. There are applications for which our intuition
suggests that both strictly periodic and totally random sequences should share low
complexity.

One definition which addresses this concern is the statistical complexity [97], which
attempts to measure the size of the minimum program able to reproduce the stat-
istically significant features of the entity under analysis. In the rice pattern men-
tioned above, there is no statistical difference in the probability of finding a grain
at different positions and the resulting statistical complexity is zero. Along with
our previous non-mathematical analogy we could say that for many purposes the
actions of a mentally disabled patient, taking apparently random actions at any
time can be described very briefly by just noticing the lack of apparent intention-
ality or purpose in the patient’s behaviour.

Apart from implementation details, the conceptual difference between algorithmic
and statistical complexity lies in how randomness is treated. Essentially, the al-
gorithmic complexity implies a deterministic description of an object (it defines
the information content of an individual sequence), while the statistical complexity
implies a statistical description (it refers to an ensemble of sequences generated by
a certain source) [52, 137]. As suggested by Boffetta et al. [52], which of these ap-
proaches is more suitable is problem-specific. In the previous analogy, the details
of the behaviour of a mentally-disabled patient maybe of crucial importance to a
psychiatrist, who may thus prefer an algorithmic approach, but less relevant to a
more superficial observer, for whom a statistical description would suffice.

Excess entropy and predictive information As pointed out by Bialek et al.
[47], our intuitive notion of complexity corresponds to statements about the under-
lying process, and not directly to Kolmogorov complexity. A dynamic process with
an unpredictable and random output (large algorithmic complexity) may be as
trivial as the dynamics producing predictable constant outputs (small algorithmic
complexity) – while “really complex processes lie somewhere in between”. Inter-
estingly, however, the two extreme cases share one feature: the entropy of the

1See the Chaitin theorem [78].
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output strings “either is a fixed constant or grows exactly linearly with the length
of the strings”, and corrections to the asymptotic behaviour do not grow with the
size of the data set. Grassberger [137] identified the slow approach of the entropy
to its extensive limit as a sign of complexity. Thus, subextensive components –
which grow with time less rapidly than a linear function – are of special interest.
Bialek et al. [47] observe that the subextensive components of entropy identified by
Grassberger determine precisely the information available for making predictions
– e.g. the complexity in a time series can be related to the components which
are “useful” or “meaningful” for prediction. We shall refer to this as predictive
information. Revisiting the two extreme cases, they note that “it only takes a
fixed number of bits to code either a call to a random number generator or to a
constant function” – in other words, a model description relevant to prediction is
compact in both cases.

The predictive information is also referred to as excess entropy [94, 96], stored
information [289], effective measure complexity [119, 137, 210], complexity [16,
207], and has a number of interpretations.

5.3.2 Information-theoretic interpretation

Predictive information

In order to estimate the relevance to prediction, two distributions over a stream of
data x are considered: a prior probability distribution for the futures, P(xfuture),
and a more tightly concentrated distribution of futures conditional on the past
data, P(xfuture|xpast), and define their average ratio

Ipred(T, T ′) =

〈
log2

P(xfuture|xpast)

P(xfuture)

〉
, (5.5)

where 〈· · · 〉 denotes an average over the joint distribution of the past and the
future, P(xfuture|xpast), T is the length of the observed data stream in the past,
and T ′ is the length of the data stream that will be observed in the future. This
average predictive information captures the reduction of entropy (in Shannon’s
sense) by quantifying the information that the past provides about the future:

Ipred(T, T ′) = H(T ′)−H(T ′|T ) or informally,

predictive information = total uncertainty about the future−
uncertainty about the future, given the past (5.6)

The predictive information is always positive and grows with time less rapidly than
a linear function, being subextensive. It provides a universal answer to the ques-
tion of how much is there to learn about the underlying pattern in a data stream:
Ipred(T, T ′) may either stay finite, or grow infinitely with time. If it stays finite,
this means that no matter how long we observe we gain only a finite amount of
information about the future: e.g. it is possible to completely predict dynamics of
periodic regular processes after their period is identified. For some irregular pro-
cesses the best predictions may depend only on the immediate past (e.g. a Markov
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process, or in general, a system far away from phase transitions and/or symmetry
breaking) – and in these cases Ipred(T, T ′) is also small and is bound by the logar-
ithm of the number of accessible states: the systems with more states and longer
memories have larger values of predictive information [47]. If Ipred(T, T ′) diverges
and optimal predictions are influenced by events in the arbitrarily distant past,
then the rate of growth may be slow (logarithmic) or fast (sublinear power). If the
data allows us to learn a model with a finite number of parameters or a set of un-
derlying rules describable by a finite number of parameters, then Ipred(T, T ′) grows
logarithmically with a coefficient that counts the dimensionality of the model space
(i.e. the number of parameters). Sublinear power-law growth may be associated
with infinite parameter (or nonparametric) models such as continuous functions
with some regularisation (e.g. smoothness constraints) [48].

Statistical complexity

The statistical complexity is calculated by reconstructing a minimal model, which
contains the collection of all situations which share a similar specific probabil-
istic future – the causal states – and measuring the entropy of the probability
distribution of the states. The description of an algorithm which achieves such
reconstruction and calculates the statistical complexity for 1D time series can be
found in [284] and for 2D time series in [283].

In general, the predictive information is related to the statistical complexity such
that
Ipred(T, T ′) ≤ Cµ, which is the minimum average amount of memory needed to
statistically reproduce the configuration ensemble to which the sequence belongs
[306] – both predictive information and statistical complexity are measured in bits.

Excess entropy

Excess entropy is defined as a measure of the total apparent memory or structure
in a source [95]:

E =
∞∑

L=1

(hµ(L)− hµ), (5.7)

where hµ(L) = H(L)−H(L−1), L ≥ 1, for the entropy H(L) of length-L sequences

or blocks, and hµ = limh→∞
H(L)

L
is the source entropy rate – also known as per-

symbol entropy, the thermodynamic entropy density, Kolmogorov-Sinai entropy,
metric entropy, etc. The length-L entropy rate hµ(L) is the average uncertainty
about the Lth symbol, provided the (L − 1) previous ones are given [52]. As
noted by Crutchfield and Feldman [95], the length-L approximation hµ(L) typically
overestimates the entropy rate hµ at finite L, and each difference bhµ(L)− hµc is
the difference between the entropy rate conditioned on L measurements and the
entropy rate conditioned on an infinite number of measurements – it estimates the
information-carrying capacity in the L-blocks that is not actually random, but is
due instead to correlations, and can be interpreted as the local (i.e. L-dependent)
predictability [115]. The total sum of these local over-estimates is the excess
entropy or intrinsic redundancy in the source. Thus, the excess entropy measures
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the amount of apparent randomness at small L values that is “explained away”
by considering correlations over larger and larger blocks. Importantly, Crutchfield
and Feldman [95] demonstrated that the excess entropy E can also be seen as
either:

1. the mutual information between the source’s past and the future – exactly
the predictive information Ipred(T, T ′), if T and T ′ are semi-infinite, or

2. the subextensive part of entropy H(L) = E + hµL, as L →∞.

It was also shown that only the first interpretation holds in 2-dimensional systems
[123].

Revisiting Equation (5.6), we may point out that the total uncertainty H(T ′)
can be thought of as structural diversity of the underlying process. Similarly the
conditional uncertainty H(T ′|T ) can be related to structural non-conformity or
equivocation within the process. That is, a degree of non-assortativeness between
the past and the future, or between components of the process in general. This
analogy creates an alternative intuitive representation, which will be analysed in
section 5.4:

predictive information = excess entropy = diversity − non-assortativeness (5.8)

5.3.3 Example – Thue-Morse process

Predictive information grows logarithmically for infinite-memory Thue-Morse se-
quences σk(s) which contain two units 0 and 1, and can be obtained by the substi-
tution rules σk(0) = 01 and σk(1) = 10 (e.g. σ2(1) = 1001, etc.). Such a process
needs an infinite amount of memory to maintain its aperiodicity [95], and hence,
its past provides an ever-increasing predictive information about its future.

An even faster rate of growth is also possible – typically, this happens in prob-
lems where predictability over long scales is “governed by a progressively more
detailed description” as more data are observed [47]. This essentially produces an
increase in the number of causal states, used by Crutchfield in defining statistical
complexity.

5.3.4 Example – periodic vs random processes

The source entropy rate hµ captures the irreducible randomness produced by a
source after all correlations are taken into account [95]:

• hµ = 0 for periodic processes and even for deterministic processes with
infinite-memory (e.g. Thue-Morse process) which do not have an internal
source of randomness, and

• hµ > 0 for irreducibly unpredictable processes, e.g. independent identically
distributed (IID) processes which have no temporal memory and no complex-
ity, as well as Markov processes (both deterministic and nondeterministic),
and infinitary processes (e.g. positive-entropy-rate variations on the Thue-
Morse process).
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The excess entropy, or predictive information, is a better measure of complexity
as it increases with the amount of structure or memory within a process:

• E is finite for both periodic and random processes (e.g. it is zero for an IID
process) – its value can be used as a relative measure: a larger period results
in higher E, as a longer past needs to be observed before we can estimate
the finite predictive information;

• E diverges logarithmically for complex processes due to an infinite memory
(e.g. Thue-Morse process) – again, its value can be used as a relative measure
estimating a number of parameters or rules in the underlying model;

• E exhibits a sublinear power law divergence for complex processes due to a
nonparametric model of the underlying process (e.g. a continuous function
with smoothness constraints) – here, the relative measure is the number of
different parameter-estimation scales growing in proportion to the number of
taken samples (e.g. the number of bins used in a histogram approximating
the distribution of a random variable), i.e. a progressively more detailed
description is required.

5.3.5 Summary

While entropy rate is a good identifier of intrinsic randomness, it suffers from
the same drawbacks as the Kolmogorov-Chaitin (KC) complexity, to which it is
strongly related. To reiterate, the KC complexity of an object is the length of
the minimal Universal Turing Machine (UTM) program needed to reproduce it.
The entropy rate hµ is equal to the average length (per variable) of the minimal
program that, when run, will cause an UTM to produce a typical configuration
and then halt [91, 122, 206].

The relationships Ipred(T, T ′) = E and E ≤ Cµ, suggest a very intuitive interpret-
ation:

predictive information =

richness of structure ≤ statistical complexity

= memory for optimal predictions (5.9)

where the latter is defined as the entropy of causal states – all histories that have
the same conditional distribution of futures [97, 282]. The causal states provide
an optimal description of a system’s dynamics in the sense that these states make
as good a prediction as the histories themselves. The inequality in Equation (5.9)
means that the memory needed to perform an optimal prediction of the future
configurations cannot be lower than the mutual information between the past and
future themselves [122]: this relationship reflects the fact that the causal states
are a reconstruction of the hidden, effective states of the process.

Specifying how the memory within a process is organised cannot be done within
the framework of information theory [95], and a more structural approach based
on the theory of computation must be used – this leads (via causal states) to
ε-machines and statistical complexity Cµ.
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5.4 Edge of Chaos

According to the analysis presented in the preceding section, statistical complex-
ity is small at both extremes (complete order and complete randomness), and is
maximal in the region somewhere between the extremes. Moreover, in some “in-
termediate” cases, the complexity is infinite, and may be divergent at different
rates. A few natural questions then arise:

• Where does complexity become maximal;

• How can we precisely identify this region;

• What happens to information dynamics within or near this region; and

• How are such dynamics are related to self-organisation, adaptation, evolu-
tion, and emergence in general.

5.4.1 Concept

Cellular automata (CA) are discrete spatially-extended dynamical systems that
have been used as models of many computational, physical and biological processes
[226], and we shall use this abstraction to illustrate the edge of chaos phenomenon2.
Langton [196] examined behaviour of CA in terms of the parameter λ – the fraction
of rules with a given property in the rule table (e.g. the fraction of nonzero
transitions). Varying the parameter within its range between ordered and chaotic
extremes, he identified, for intermediate values of λ, an increase in the mutual
information I(A; B) between a cell and itself at the next time-step. An intriguing
feature is that the average mutual information has a distinct peak at the transition
point – an indication of a phase transition from “order” to “chaos” in CA. This
study introduced the edge of chaos – the region where the CA behaviour shifts
from the ordered regimes towards chaotic regimes, effectively approaching random
dynamics.

5.4.2 Information-theoretic interpretation

A rule-space of 1-dimensional CA can be characterised with the Shannon entropy
of the rules’ frequency distribution [335]. More precisely, given a rule-table (the
rules that define a CA), the input-entropy at time step t is defined as

St = −
m∑

i=1

Qt
i

n
log

Qt
i

n
(5.10)

where m is the number of rules, n is the number of cells (system size), and Qt
i

is the number of times the rule i was used at time t across the CA. The input-
entropy settles to fairly low values for ordered dynamics, but fluctuates irregularly

2We would like to point out that the edge of chaos hypothesis is far from being accepted
unanimously. The edge of chaos concept is also distinct from low dimensional chaos in dynam-
ical systems, characterised by non-periodicity with few degrees of freedom. Nevertheless some
connections have been made – see subsection 5.4.3 for a brief description.

99



5.4. Edge of Chaos

within a narrow high band for chaotic dynamics. For the complex CA, order and
chaos may predominate at different times causing the entropy to vary. A measure
of the variability of the input-entropy curve is its variance or standard deviation,
calculated over time. Wuensche [335] has convincingly demonstrated that only
complex dynamics exhibits high variance of input-entropy, leading to automatic
classification of the rule-space. Importantly, the peak of input-entropy variance
points to a phase transition as well, indicating the edge of chaos.

Similarly, Wolfram [332] classified cellular automata rules qualitatively – according
to their asymptotic behaviour: class I (homogeneity); class II (periodicity); class
III (chaos); class IV (complexity). The first class consists of CA that, after a finite
number of time steps, produce a unique, homogeneous state (analogous to “fixed
points” in phase space). From almost all initial states, such behaviour completely
destroys any information on the initial state, i.e. complete prediction is trivial and
complexity is low. The second class contains automata which generate a set of
either stable or periodic structures (typically having small periods – analogous to
“limit cycles” in phase space), where each region of the final state depends only on
a finite region of the initial state, i.e. information contained within a small region in
the initial state thus suffices to predict the form of a region in the final state. The
third class includes infinite CA producing aperiodic (“chaotic”) spatiotemporal
patterns from almost all possible initial states – the effects of changes in the initial
state almost always propagate forever at a finite speed, and a particular region
depends on a region of the initial state of an ever-increasing size (analogous to
“strange attractors” in phase space). While any prediction of the “final” state
requires complete knowledge of the initial state, the regions are indistinguishable
statistically as they possess no structure, and therefore the statistical complexity
is low. The fourth class deals with automata that generate patterns continuously
changing over an unbounded transient.

5.4.3 Example – universal computation

The fourth class of CA contains members at the edge of chaos (in the critical re-
gion) that were also shown to be capable of universal computation [332]. They sup-
port three basic operations (information storage, transmission, and modification)
through static, propagating and interacting structures (blinkers, gliders, collisions).
Importantly, the patterns produced along the transient are different in terms of
generated structure, and in fact, their structural variability is highest among all
four classes – i.e. the predictive information and the complexity of the class IV
automata are highest. Casti [75] made an analogy between the complex (class IV)
automata and quasi-periodic orbits in phase space, while pursuing deeper inter-
connections between CA, dynamical systems, Turing Machines, and formal logic
systems – in particular, the complex automata producing edge of chaos dynamics
were related to formal systems with undecidable statements (Gödel’s Theorem).
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5.4.4 Example – graph connectivity

Graph connectivity can be analysed in terms of the size of the largest connected
subgraph (LCS) and its standard deviation obtained across an ensemble of graphs,
as suggested by Random Graph Theory [118]. In particular, critical changes occur
in connectivity of a directed graph as the number of edges increases: the size of
the LCS rapidly increases as well and fills most of the graph, while the variance in
the size of the LCS reaches a maximum at some critical point before decreasing.
In other words, variability within the ensemble of graphs grows as graphs become
increasingly different in terms of their structure.

An information-theoretic representation can subsume this graph-theoretic model.
For example, a feasible average measure of a complex network’s heterogeneity is
given by the entropy of a network defined through the link distribution. The latter
can be defined via the simple degree distribution, the probability Pk of having a
node with k links, or via the remaining degree distribution qk: “the number of edges
leaving the vertex other than the one we arrived along” [296]. The remaining degree
distribution is useful in analysing how assortative, disassortative or non-assortative
is the network. Assortative mixing (AM) in Graph Theory is the extent to which
high-degree nodes connect to other high degree nodes [233]. In disassortative
mixing (DM), high-degree nodes are connected to low-degree ones. Both AM and
DM networks are contrasted with non-assortative mixing (NM), where one cannot
establish any preferential connection between nodes on the basis of degree.

Importantly, the conditional entropy H(q|q′) may estimate spurious correlations in
the network created by connecting the vertices with dissimilar degrees – this noise
affects the overall diversity or the average uncertainty of the network, but does not
contribute to the amount of information (correlation) within it. Using the joint
probability of connected pairs qk,k′ , one may calculate the amount of correlation
between vertices in the graph via the mutual information measure, the information
transfer, as

I(q) = H(q)−H(q|q′) =
m∑

k=1

m∑

k′=1

qk,k′ log
qk,k′

qkqk′
. (5.11)

Informally,

transfer within the network = diversity in the network (5.12)

− assortative noise in the network structure

This interpretation is analogous to the one suggested by the Equations (5.4) and
(5.8), assuming that assortative noise is the non-assortative extent to which the
preferential (either AM or DM) connections are obscured. In general, the mutual
information I(q) is a better, more generic measure of dependence: correlation
functions, like the variance in the size of the LCS, “measure linear relations whereas
mutual information measures the general dependence and is thus a less biased
statistic” [296]. At the edge of chaos, the information transfer within the network
attains its maximum. This case, however, is not easily achievable as observed by
Solé and Valverde. In fact, the cases where entropy H(q) and noise H(q|q′) are
approximately equal, are most typical, suggesting that some intrinsic constraints
dominate the search-space of possible network configurations.
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5.4.5 Summary

The main edge of chaos hypothesis asserts that when biological systems must
perform complex computation for survival, the process of evolution under natural
selection tends to select systems near a phase transition between ordered and
chaotic behaviour [226] – i.e. the complex dynamic regime acts as an evolutionary
attractor in the state space. The analysis summarised in this section emphasises
the role of structural variability (equivalent to predictive information) in complex
systems – at the edge of chaos the behaviour is potentially structurally richer and
therefore, has a higher predictive capacity.

5.5 Self-Organisation

Three ideas are implicit in the word self-organisation: a) the organisation in terms
of global implicit coordination; b) the dynamics implicit in progressing in time from
a not (or less) organised to an organised state; and c) the spontaneous arising of
such dynamics. To avoid semantic traps, it is important to notice that the word
‘spontaneous’ should not be taken literally; we deal with open systems, exchan-
ging energy, matter and/or information with the environment and made up of
components whose properties and behaviours are defined prior to the organisation
itself. The ‘self’ prefix merely indicates that no centralised ordering or external
agent/template explicitly guides the dynamics. It is thus necessary to define what
is meant by ‘organisation’ and how its arising or increase can be detected.

5.5.1 Concept

A commonly held view is that organisation entails an increase in complexity, since
both are related to interdependence, and both are minimal for the case of inde-
pendence. Unfortunately the lack of agreement on complexity means we are no
closer to understanding organisation. De Wolf and Holvoet [103] define complexity
as a measure of redundancy or structure in the system. The concept can be made
more formal by adopting the statistical complexity described above as a measure
of complexity, as demonstrated in Shalizi [280] and Shalizi et al. [285]. This defin-
ition offers several of the advantages of the Computational Mechanics approach:
it is computable and observer independent. Also, it captures the intuitive notion
that the more a system self-organises, the more behaviours it can display, the more
effort is needed to describe its dynamics. Importantly, this needs to be seen in
a statistical perspective; while a disorganised system may potentially display a
larger number of actual configurations, the distinction among several of them may
not be statistically significant. Adopting the statistical complexity allows us to
focus on the system configurations which are statistically different (causal states)
for the purpose at hand. We thus have a measure which is based only on the
internal dynamics of the system (and consequently is observer-independent) but
which can be tuned according to the purpose of the analysis.

For an alternative definition of self-organisation based on thermodynamics as stud-
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ied by Prigogine, and the distinction between self-organisation and the related
concept of self-assembly, we refer the reader to Halley and Winkler [144].

5.5.2 Information-theoretic interpretation

In the scientific literature the concept of self-organisation refers to both living and
non-living systems, ranging from physics and chemistry to biology and sociology.
Kauffman [176] suggests that the underlying principle of self-organisation is the
generation of constraints in the release of energy. According to this view, the con-
strained release allows for such energy to be controlled and channelled to perform
some useful work. This work in turn can be used to build better and more efficient
constraints for the release of further energy and so on. This principle is closely
related to Kauffman’s own definition of life [176]. It helps us to understand why
an organised system with effectively less available configurations may behave and
look more complex than a disorganised one to which, in principle, more config-
urations are available. The ability to constrain and control the release of energy
may allow a system to display behaviours (reach configurations) which, although
possible, would be extremely unlikely in its non-organised state. It is surely pos-
sible that 100 parrots move independently to the same location at the same time,
but this is far more likely if they fly in a flock. A limited number of coordinated
behaviours become implementable because of self-organisation, which would be
extremely unlikely to arise in the midst of a nearly infinite number of disorganised
configurations. The ability to constrain the release of energy thus provides the
self-organised system with behaviours that can be selectively chosen for successful
adaptation.

However, Halley and Winkler [144] correctly point out that attention should paid
to how self-organisation is treated if we want the concept to apply equally to
both living and non-living systems. For example, while it is tempting to consider
adaptation as a guiding process for self-organisation, it then makes it hard to use
the same definition of self-organisation for non-living systems.

Recently, Correia [89] analysed self-organisation motivated by embodied systems,
i.e. physical systems situated in the real world, and established four fundamental
properties of self-organisation: no external control, an increase in order, robust-
ness3, and interaction. All of these properties are easily interpretable in terms of
information transfer. Firstly, the absence of external control may correspond to
‘spontaneous’ arising of information dynamics without any flow of information into
the self-organising system. Secondly, an increase in order or complexity reflects
simply that the predictive information is increased within the system or its specific
part:

Ipred([t1 − T, t1], [t1, t1 + T ′]) < Ipred([t2 − T, t2], [t2, t2 + T ′]), and (5.13)

CSystem
µ (t2) > CSystem

µ (t1), for t2 > t1 and positive T and T ′, (5.14)

3Although Correia refers to this as adaptability, according to the concepts in this chapter he
in fact defines robustness. This is an example of exactly the kind of issue we hope to avoid by
developing this dictionary.
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where CSystem
µ (t) is the statistical complexity at time t. In general, however, we

believe that one may relax the distinction between these two requirements and de-
mand only that in a self-organising system, the amount of information flowing from
the outside IOutside is strictly less than the change in the predictive information’s
gain:

IOutside < Ipred([t2 − T, t2], [t2, t2 + T ′])− Ipred([t1 − T, t1], [t1, t1 + T ′]), or (5.15)

COutside
µ < CSystem

µ (t2)− CSystem
µ (t1), (5.16)

where COutside
µ is the complexity of the contribution from the outside.

In general, a system is robust if it continues to function in the face of perturbations
[317]. Information-theoretically, robustness of a self-organising system to perturb-
ations means that it may interleave stages of an increased information transfer
within some channels (dominant patterns are being exploited) with periods of
decreased information transfer (alternative patterns are being explored).

The interaction property is described by Correia [89] as follows: “minimisation
of local conflicts produces global optimal self-organisation, which is evolutionarily
stable.” Minimisation of local conflicts, however, is only one aspect, captured
in Equations (5.4), (5.8), and (5.12) as equivocation or non-assortativeness, and
should be generally complemented by maximising diversity within the system.

5.5.3 Example – self-organising traffic

In the context of pedestrian traffic, Correia [89] argues that it can be shown that
the “global efficiency of opposite pedestrian traffic is maximised when interaction
rate is locally minimised for each component. When this happens two separate
lanes form, one in each direction. The minimisation of interactions follows directly
from maximising the average velocity in the desired direction.” In other words,
the division into lanes results from maximising velocity (an overall objective or
fitness), which in turn supports minimisation of conflicts.

Another example is provided by ants: “Food transport is done via a trail, which is
an organised behaviour with a certain complexity. Nevertheless, a small percentage
of ants keeps exploring the surroundings and if a new food source is discovered
a new trail is established, thereby dividing the workers by the trails [161] and
increasing complexity” [89]. Here, the division into trails is again related to an
increase in fitness and complexity.

These two examples demonstrate that when local conflicts are minimised, the
degree of coupling among the components (i.e. interaction) increases and the
information flows easier, thus increasing the predictive information. This means
that not only the overall diversity of a system is important (more lanes or trails),
but the interplay among different channels (the assortative noise within the system,
the conflicts) is crucial as well.
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5.5.4 Example – self-regulating morphogenetic processes

Modelling information processing in bio-systems is concerned with the nature of
biological information and the ways in which it is processed in biological and ar-
tificial cells and tissues. There are a number of models involving self-organising
or self-regulating processes within complex biological systems. For example, some
morphogenetic models explore the requirements for spontaneous formation of reg-
ular and stable structures out of more or less homogeneous cell aggregations or
cell sheets – i.e. the creation of a new form apparently without a detailed external
blueprint. In particular, the biomechanical model of Beloussov and Grabovsky [41]
reproduces two main categories of patterns, stationary cell domains and running
waves. It interplays short- and long-range factors in a “causal chain” moving from
the state of an initial homogeneous cell layer towards the complicated shapes of
embryonic rudiments: “the local perturbations act in ensemble, rather than in a
mosaic, one-to-one manner”4. The model involves a measure of the cells’ mechano-
sensitivity (i.e. their ability to transform external mechanical stresses into active
mechanochemical reactions), and changes in the tangential pressure due to cell
extensions and contractions. An increase in mechanosensitivity is related to the
formation of regular stationary structures and propagating waves, travelling across
embryonic tissues, while an increase of the limits of tangential extension is essen-
tially destructive, deteriorating regular structures and generating irregular waves.
This interplay between two forces may be interpreted in information-theoretic
terms: the information transfer is optimal when the diversity in mechanosensit-
ivity is large, and the assortative noise (conflicts) inducing tensions is minimal.
Spontaneous formation occurs, thus, within an optimal range of the information
transfer and not at either of these extremes.

5.5.5 Example – self-controlling neural automata

One possible pathway towards an optimal solution in the information-theoretic
search-space is explored in the context of neural networks with dynamic synapses.
Cortes et al. [90] studied neural automata (neurobiologically inspired cellular
automata) which exhibit “chaotic itinerancy among the different stored patterns
or memories”. In other words, activity-dependent synaptic fluctuations (“noise”)
explore the search-space by continuously destabilising a current attractor and in-
ducing random hopping to other possible attractors. The complexity and chaoti-
city of the resulting dynamics (hopping) depends on the intensity of the synaptic
“noise” and on the number of the network nodes that are synchronously updated
(we note again the two forces involved in the information transfer – diversity and
non-assortativeness). Cortes et al. [90] utilised a quantitative measure – the en-
tropy of neural activity over time (computed in frequency-domain), and related
varying values of synaptic noise parameter F to different regimes of chaoticity.
Decreasing entropy for mid-range values of F indicates a tendency towards regu-
larisation or smaller chaoticity. Importantly, hopping controlled by synaptic noise

4We would like to point out that in this example, as well as in many others, there are ex-
ternal initial conditions, and this requires a precise estimation of the external influence COutside

µ ,
contrasted with the increase in complexity CSystem

µ (t2)− CSystem
µ (t1) during morphogenesis.
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may occur autonomously, without the need for external stimuli.

5.5.6 Example – self-organising locomotion

The internal channels through which information flows within the system are
observer-independent, but different observers may select different channels for a
specific analysis. For example, let us consider a modular robotic system modelling
a multi-segment snake-like (salamander) organism, with actuators (“muscles”) at-
tached to individual segments (“vertebrae”). A particular side-winding locomotion
emerges as a result of individual control actions when the actuators are coupled
within the system and follow specific evolved rules [253, 254]. There is no global
coordinator component in the evolved system, and it can be shown that the amount
of predictive information between groups of actuators grows as the modular ro-
bot starts to move across the terrain – that is, the distributed actuators become
more coupled when a coordinated side-winding locomotion is dominant. Faced
with obstacles, the robot temporarily loses the side-winding pattern: the modules
become less organised, the strength of their coupling is decreased, and rather than
exploiting the dominant pattern, the robot explores various alternatives. Such
exploration temporarily decreases self-organisation, i.e. the predictive information
within the system. When the obstacles are avoided, the modules “rediscover” the
dominant side-winding pattern by themselves, recovering the previous level of pre-
dictive information and manifesting again the ability to self-organise without any
global controller. Of course, the “magic” of this self-organisation is explained by
properties defined a priori : the rules employed by the biologically-inspired actuat-
ors have been obtained by a genetic programming algorithm, while the biological
counterpart (the rattlesnake Crotalus cerastes) naturally evolved over a long time.
Our point is simply that we can measure the dynamics of predictive information
and statistical complexity as it presents itself within the channels of interest.

In summary, the fundamental properties of self-organisation are immediately re-
lated to information dynamics, and can be studied in precise information-theoretic
terms when the appropriate channels are identified.

5.6 Emergence

Traditionally, the idea of emergence has been intimately associated with a layered
view of nature. Emergence explains the existence of irreducible wholes at levels
above fundamental physics. Examples that have been considered include such
grand events as the emergence of classical reality from quantum mechanics [180],
of life from non-living chemistry [100], and of mind from non-conscious neurons
[305]. As was discussed in Chapter 3, emergence was initially proposed as a middle
ground between the mechanists and the vitalists, by claiming that emergent prop-
erties of systems were consistent with, but not reducible to the properties of their
physical components. The emergent properties require the use of new concepts at
a ‘higher level’, which are meaningless at the level below [81]. For example, quarks,
molecules, cells, humans is a potential sequence of wholes, each of which (above
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quarks) have emergent properties not applicable to the level below. It can also be
noticed that scientific models of these wholes become progressively less detailed as
the level increases. The resolution decreases, by decreasing the granularity of the
distinctions that the observer is capable of discerning. This is partly because it
is impractical to model every subatomic particle in a human, but it is also partly
because it is unnecessary: emergence of a whole implies coherence and therefore
redundancy.

Attempts to formally address the study of emergence have sprung up at regu-
lar intervals in the last century or so (they are reviewed in Chapter 6), under
different names, with varied approaches and motivations. Here we will examine
Crutchfield’s [93], distinction between two phenomena which have been both been
discussed as candidates for emergence: pattern formation and ‘intrinsic’ emer-
gence. Both concepts involve agents forming representations to shape their own
behaviour (see Chapter 2).

5.6.1 Concept

Pattern Formation. In pattern formation we imagine an observer trying to
‘understand’ a process. If the observer detects some patterns (structures) in the
system, they can then employ such patterns as tools to simplify their understanding
of the system. As an example, a gazelle which learns to correlate hearing a roaring
to the presence of a lion, will be able to use it as warning and flee danger. Not
being able to detect the pattern ‘roaring = lion close by’ would require the gazelle
to detect more subtle signs, possibly needing to employ more attention and thus
more effort. In this setting the observer (gazelle) is ‘external’ to the system (lion)
it needs to analyse and represent in a way that modifies its own behaviour.

Intrinsic emergence. In intrinsic emergence, the observer is ‘internal’ to the
system. Imagine a set of traders in an economy. The traders are locally connected
via their trades, but no global information exchange exists. Once the traders
identify an ‘emergent’ feature, say in the stock market, they can employ it to
understand and affect the functioning of the system itself. The stock market
becomes a mean for global information processing, which is performed by the
agents (that is, the system itself) to affect their own functioning.

5.6.2 Information-theoretic interpretation

Given that a system can be described and studied at different levels, a natural
question is “what level should we choose for our analysis”? A reasonable answer
could be “the level at which it is easier or more efficient to construct a workable
model”. This idea has been captured formally by Shalizi [280] in the definition
of Efficiency of Prediction. Within a Computational Mechanics [282] framework,
Shalizi suggests:

e =
E

Cµ

(5.17)

where e is the Efficiency of Prediction, E is the excess entropy and Cµ the statistical
complexity discussed above. The excess entropy can be seen as the mutual inform-
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ation between the past and future of a process, that is, the amount of information
observed in the past which can be used to predict the future (i.e. which can be
usefully coded in the agent instructions on how to behave in the future). Recalling
that the statistical complexity is defined as the amount of information needed to
reconstruct a process (that is equivalent to performing an optimal prediction), we
can write informally:

e =
how much can be predicted

how difficult it is to predict
(5.18)

Given two levels of description of the same process, the approach Shalizi suggests
is to choose for analysis the level which has larger efficiency of prediction e. At
this level, either:

• we can obtain better predictability (understanding) of the system (E is lar-
ger), or

• it is much easier to predict because the system is simpler (Cµ is smaller), or

• we may lose a bit of predictability (E is smaller) but at the benefit of much
larger gain in simplicity (Cµ is much smaller).

We can notice that this definition applies equally to pattern formation as well as to
intrinsic emergence. In the case of pattern formation, we can envisage the scientist
trying to determine what level of enquiry will provide a better model. At the level
of intrinsic emergence, developing an efficient representation of the environment
and of its own functioning within the environment gives a selective advantage to
the agent, either because it provides for a better model, or because it provides for a
similar model at a lower cost, enabling the agent to direct resources towards other
activities. This definition means it is possible to make precise and measurable
comparison of the efficiency of different models as discussed in subsection 2.4.1.

5.6.3 Example – the emergence of thermodynamics

A canonical example of emergence without self-organisation is described by Shalizi
[280]: thermodynamics can emerge from statistical mechanics. The example con-
siders a cubic centimetre of argon, which is conveniently spinless and monoatomic,
at standard temperature and pressure, where the gas is sampled every nanosecond.
At the micro-mechanical level, and at time intervals of 10−9 seconds, the dynamics
of the gas are first-order Markovian, so each microstate is a causal state. The ther-
modynamic entropy (calculated as 6.6 · 1020 bits) gives the statistical complexity
Cµ. The entropy rate hµ of one cubic centimetre of argon at standard temperature
and pressure is quoted to be around 3.3 · 1029 bits per second, or 3.3 · 1020 bits per
nanosecond. Given the range of interactions R = 1 for a first-order Markov process,
and the relationship E = Cµ−Rhµ [122], it follows that the efficiency of prediction
e = E/Cµ is about 0.5 at this level. Looking at the macroscopic variables uncovers
a dramatically different situation. The statistical complexity Cµ is given by the
entropy of the macro-variable energy which is approximately 33.28 bits, while the
entropy rate per millisecond is 4.4 bits (i.e. hµ = 4.4 · 103 bits/second). Again,
the assumption that the dynamics of the macro-variables are Markovian, and the
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relationship E = Cµ−Rhµ yield e = E/Cµ = 1−Rhµ/Cµ = 0.87. If the time-step
is a nanosecond, like at the micro–mechanical level, then e ≈ 1, i.e. the efficiency
of prediction approaches maximum. This allows Shalizi to conclude that “almost
all of the information needed at the statistical-mechanical level is simply irrelev-
ant thermodynamically”, and given the apparent differences in the efficiencies of
prediction at two levels, “thermodynamic regularities are emergent phenomena,
emerging out of microscopic statistical mechanics” [280].

5.7 Adaptation and Evolution

Adaptation is a process where the behaviour of the system changes such that there
is an increase in the fit, and therefore the mutual information, between the system
and a potentially complex and non-stationary environment. The environment is
treated as a black box, meaning an adaptive system does not need to understand
the underlying system dynamics to adapt. Stimulus response interactions provide
feedback that modifies an internal model or representation of the environment,
which affects the probability of the system taking future actions.

5.7.1 Concept

The three essential functions for an adaptive mechanism are generating variety,
observing feedback from interactions with the environment, and selection to rein-
force some interactions and inhibit others. Without variation, the system cannot
change its behaviour, and therefore it cannot adapt. Without feedback, there is
no way for changes in the system to be coupled to the structure of the environ-
ment. Without preferential selection for some interactions, changes in behaviour
will not be statistically different to a random walk. First order adaptation keeps
sense and response options constant and adapts by changing only the probability
of future actions. However, adaptation can also be applied to the adaptive mech-
anism itself [138]. Second order adaptation introduces three new adaptive cycles:
one to improve the way variety is generated, another to adapt the way feedback
is observed and thirdly an adaptive cycle for the way selection is executed. If an
adaptive system contains multiple autonomous agents using second order adapt-
ation, a third order adaptive process can use variation, feedback and selection to
change the structure of interactions between agents.

From an information-theoretic perspective, variation decreases the amount of in-
formation encoded in the system, while selection acts to increase information.
Since adaptation is defined to increase mutual information between a system and
its environment, the information loss from variation must be less than the increase
in mutual information from selection.

For the case that the system is a single agent with a fixed set of available actions,
the environmental feedback is a single real valued reward plus the observed change
in state at each time step, and the internal model is an estimate of the future
value of each state, this model of first order adaptation reduces to reinforcement
learning (see for example [298]).
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For the case that the system contains a population where the fitness of successive
generations is correlated due to inheritance with variation under selective pressure,
the adaptive process reduces to evolution. Evolution is not limited to DNA/RNA
based terrestrial organisms, since other entities, including populations of individu-
als, prions, artificial life programs and culture also meet the criteria for evolution
given by Lewontin [205]:

1. Different individuals in a population have different morphologies, physiolo-
gies, and behaviors (phenotype variation).

2. Different phenotypes have different rates of survival and reproduction in
different environments (differential fitness).

3. There is a correlation between parents and offspring in the contribution of
each to future generations (fitness is heritable).

One well-known generalisation of evolution is Dawkins’ [102] concept of Universal
Dawinism, which extends the Darwinian principles of variation, inheritance and
selection to apply to evolutionary change in all open, complex systems.

5.7.2 Information-theoretic interpretation

Adami [3] advocated the view that “evolution increases the amount of informa-
tion a population harbours about its niche”. In particular, he proposed physical
complexity – a measure of the amount of information that an organism stores in
its genome about the environment in which it evolves. Importantly, physical com-
plexity for a population X (an ensemble of sequences) is defined in relation to a
specific environment Z, as mutual information:

I(X, Z) = Hmax −H(X|Z) (5.19)

where Hmax is the entropy in the absence of selection, i.e. the unconditional entropy
of a population of sequences, and H(X|Z) is the conditional entropy of X given Z,
i.e. the diversity tolerated by selection in the given environment. When selection
does not act, no sequence has an advantage over any other, and all sequences are
equally probable in ensemble X. Hence, Hmax is equal to the sequence length.
In the presence of selection, the probabilities of finding particular genotypes in
the population are highly non-uniform, because most sequences do not fit the
particular environment. The difference between the two terms in Equation (5.19)
reflects the observation that “If you do not know which system your sequence
refers to, then whatever is on it cannot be considered information. Instead, it is
potential information (a.k.a. entropy)”. In other words, this measure captures the
difference between potential and selected (filtered) information:

physical complexity = how much data can be stored−
how much data irrelevant to environment is stored (5.20)

Comparing this with the information transfer through networks, Equation (5.12),
as well as analogous information dynamics Equations (5.4) and (5.8), we can ob-
serve a strong similarity: “how much data can be stored” is related to diversity of

110



5.7. Adaptation and Evolution

the network, while “how much data irrelevant to environment is stored” (or “how
much conflicting data”) corresponds to assortative noise in the network. In short,
natural selection increases physical complexity by the amount of information a
population contains about its environment. Adami argued that physical complex-
ity must increase in molecular evolution of asexual organisms in a single niche if the
environment does not change, due to natural selection, and that “natural selection
can be viewed as a filter, a kind of semipermeable membrane that lets information
flow into the genome, but prevents it from flowing out”. In general, information
may flow out and it is precisely this dynamic that creates larger feedback loops
between the system and its environment.

Adami’s definition of physical complexity can be related back to our earlier defini-
tion of predictive information. Adami states that “physical complexity is informa-
tion about the environment that can be used to make predictions about it.” There
is an important difference between physical complexity and predictive information,
excess entropy and statistical complexity. Whereas the latter three measure cor-
relations within a sequence, physical complexity measures correlation between two
sequences representing the system and its environment. However, it is always pos-
sible to represent the system and its environment as a single sequence by redefining
the system boundary to include the environment, which means that correlations
between the system and its environment occur within a sequence. This can then be
measured in principle by statistical complexity, provided that correlations within
the system, and correlations within the environment are accounted for.

5.7.3 Example – perception-action loops

The information transfer can also be interpreted as the acquisition of informa-
tion from the environment by a single adapting individual: there is evidence that
pushing the information flow to the information-theoretic limit (i.e. maximisation
of information transfer) can give rise to intricate behaviour, induce a necessary
structure in the system, and ultimately adaptively reshape the system [186, 187].
The central hypothesis of Klyubin et al. is that there exists “a local and universal
utility function which may help individuals survive and hence speed up evolution
by making the fitness landscape smoother”, while adapting to morphology and
ecological niche. The proposed general utility function, empowerment, couples the
agent’s sensors and actuators via the environment. Empowerment is the perceived
amount of influence or control the agent has over the world, and can be seen as
the agent’s potential to change the world. It can be measured via the amount of
Shannon information that the agent can “inject into” its sensor through the envir-
onment, affecting future actions and future perceptions. Such a perception-action
loop defines the agent’s actuation channel, and technically empowerment is defined
as the capacity of this actuation channel: the maximum mutual information for
the channel over all possible distributions of the transmitted signal. “The more of
the information can be made to appear in the sensor, the more control or influ-
ence the agent has over its sensor” – this is the main motivation for this local and
universal utility function [187]. Other examples highlighting the role of informa-
tion transfer in guiding selection of spatiotemporally stable multi-cellular patterns,
well-connected network topologies, and coordinated actuators in a modular robotic
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system are discussed in [253, 254, 256, 257].

5.8 Self Referentiality

Patterns of intrinsic emergence may form as a result of observer-independent pro-
cesses – nevertheless, these are patterns only with respect to a certain observation
structure, imposed on or selected in the environment a priori, and not necessarily
by the “observer”. An interesting aspect, however, is that the choice of such a
structure is not entirely decoupled from the environment. In fact, this choice often
depends on the emergent phenomena. So the process can be best characterised
in terms of tangled hierarchies exhibiting Strange Loops: “an interaction between
levels in which the top level reaches back down towards the bottom level and in-
fluences it, while at the same time being itself determined by the bottom level”
[152].

5.8.1 Concept

This view involves the concept of downward causation [49, 136, 150]: a feature is
emergent if it has some sort of causal power on lower level entities. While com-
mon views of emergence assume that lower level entities must have an “upward”
causation on the emergent features, this approach requires a 2-way causal relation.
As an example, we can imagine individuals organising into a community (e.g. the
Bar problem [17]). Their actions affect how the community develops (upward
causality) and the development of the community itself affects the behaviour and
interaction of the individuals (downward causality). An important feature of such
systems is that, in the absence of explicit information sharing, each individual may
need to “best-guess” what the other individuals may do over time. Systems that
fall into this category are sometimes called self-referential problems – situations
where the forecasts made by the individuals serve to create the world they are try-
ing to forecast [39, 40]. In these systems, the “best” thing to do depends not on a
rational decision model (which does not exist), but on what everyone else is doing,
creating a heterogeneous mix of decision strategies that continually co-evolve over
time [17, 38, 77]. Even if the individuals are allowed to communicate and share
some information, the heterogeneity prevails [116].

5.8.2 Information-theoretic interpretation

A closely related problem is the minority game [80]: a repeated game where N
(odd) agents have to choose one out of two alternatives at each time step, and
those who happen to be in the minority win. As noted by Batten [39], “seemingly
simple at first glance, the game is subtle in the sense that if all players analyse
the situation identically, all will choose the same alternative and therefore all
will lose”. The agents may share information on the outcomes of the game in
the past M rounds (memory). In the minority game, there is a second order
phase transition in the space of the parameter α = 2M/N , between a symmetric
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phase (where no past information is available to agents) and an asymmetric phase
(where past information is available). An important feature of minority games
is the possibility for some agents (risk-averters) to imitate others (risk-takers) in
selecting their actions. As observed by Slanina [294], there is an optimal level
of imitation, beyond which the whole collective starts to perform worse in terms
of the average gain of the agents: “moderate imitation can be beneficiary, while
exaggerated one can be harmful”. In addition, this optimal level increases with
decreasing memory length M : the less information is shared, the more imitation
is allowed.

5.8.3 Example – shortest path formation by ants

Another well-known example of downward causation is shortest path formation
with ants: ants indirectly interact through changes in their environment by depos-
iting pheromones and forming a pheromone trail. This mechanism for increasing
shared information is known as stigmergy. The probability that an ant chooses a
trail increases with the number of ants that chose the same path in the past – the
process is thus characterised by a positive feedback loop (a form of autocatalytic
behaviour called allelomimesis) [112]. Since the pheromone evaporates (loss of
information), the shortest path lasts longer than the alternatives, and the ants
have a higher probability of using and reinforcing it. Thus, not only the shortest
path emerges as a result of allelomimesis and stigmergy (upward causation), it
also influences the movement of the ants because they follow the pheromone trail
(downward causation) [103]. Importantly, we again observe diversity in ant beha-
viours (path explorers and path exploiters).

5.8.4 Summary

The observed diversity in agent behaviours (risk-takers and risk-averters, or ex-
plorers and exploiters) creates information dynamics: loss of information, or “for-
getting” effect [193], and gain of information, or “information selectivity” [194].
Our conjecture is that self-referentiality eventually forces a split in information dy-
namics, breaking the cycle between upward and downward causation. As a result
of such a break, some form of memory (implicit or explicit) emerges in the system
in order to support both diversity and imitation.

In summary, in self-referential systems there is also a relationship between hetero-
geneity, the level of non-assortative mixing, and the information shared within the
system – similar to the information transfer relationships in Equations (5.4), (5.8),
(5.12), and (5.20). A precise information-theoretic analysis of this relationship for
self-referential systems is a subject of future research (see Parunak et al. [244] and
Prokopenko et al. [255] for preliminary analysis).
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5.9 Discussion and Conclusions

By studying the processes which result from the local interaction of relatively
simple components irrespective of composition, complex systems has accepted the
audacious aim of addressing problems which range from physics to biology, soci-
ology and ecology. It is not surprising that a common framework and language
which enable practitioners of different field to communicate effectively is still lack-
ing. As a possible contribution to this goal we have proposed a framework within
which concepts like complexity, emergence and self-organisation can be described,
and most importantly, distinguished.

Figure 5.1: A systems view of complex systems concepts.

Figure 5.1 illustrates some relationships between the concepts introduced in this
chapter. In particular, it shows two levels of an emergence hierarchy that are used
to describe a complex system. The figure depicts dynamics that tend to increase
complexity as arrows from left to right, and increases in the level of organisation
as arrows from bottom to top. The concepts can be related in numerical order
as follows. (1) demonstrates self-organisation, as components increase in organ-
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isation over time. As the components become more organised, interdependencies
arise constraining the autonomy of the components, and at some point it is more
efficient to describe tightly coupled components as an emergent whole, rather than
a collection of unrelated elements. (2) depicts a lower resolution description of the
whole. If the collective whole causally affects the behaviour of its components, it
is self-referential. Note that Level 2 has a longer time scale. The scope at this
level is also increased, such that the emergent whole is seen as one component
in a wider population. As new generations descend with modification through
mutation and/or recombination, natural selection operates on variants and the
population evolves. (3) shows that interactions between members of a population
can lead to the emergence of higher levels of organisation: in this case, a species is
shown. (4) emphasises flows between the open system and the environment in the
Level 1 description. Energy, matter and information enter the system, and con-
trol, communication and waste can flow back out to affect the environment. When
the control provides feedback between the outputs and the inputs of the system
in (5), its behaviour can be regulated. When the feedback contains variation in
the interaction between the system and its environment, and is subject to a selec-
tion pressure, the system adapts. Positive feedback that reinforces variations at
(6) results in symmetry breaking and/or phase transitions. (7) shows analogous
symmetry breaking in Level 2 in the form of speciation.

Below the complexity axis, a complementary view of system complexity in terms
of behaviour, rather than structure, is provided. Fixed point behaviour at (8) has
low complexity, which increases for deterministic periodic and strange attractors.
The bifurcation process is a form of symmetry breaking. Random behaviour at (9)
also has low complexity, which increases as the system’s components become more
organised into processes with “infinitary sources” [95]: e.g. positive-entropy-rate
variations on the Thue-Morse process and other stochastic analogues of various
context-free languages. This class of behaviour (“infinitary sources”) is depicted in
(1). The asymptote between (8) and (9) is interpreted as the ‘edge of chaos’, where
the complexity can grow without bound. Beyond some threshold of complexity
at (10), the behaviour is incomputable: it cannot be simulated in finite time on a
Universal Turing Machine.

For our discussion we chose an information-theoretical framework. There are four
primary reasons for this choice:

1. It enables clear and consistent definitions and relationships between com-
plexity, emergence and self-organisation in the physical world;

2. The same concepts can equally be applied to biology;

3. From a biological perspective, the basic ideas naturally extend to adaptation
and evolution, which begins to address the question of why complexity and
self-organisation are ubiquitous and apparently increasing in the biosphere;
and

4. It provides a unified setting, within which the description of relevant inform-
ation channels provides significant insights of practical utility.

As noted earlier, once the information channels are identified by designers of a
physical system (or assigned to interactions between a bio-system and its environ-
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ment by modellers), the rest is mostly a matter of computation. This computation
can be decomposed into “diversity” and “equivocation”, as demonstrated in the
discussed examples.

Information theory provides a set of tools to carry out experiments, make pre-
dictions, and computationally solve real-world problems. Like all toolboxes, its
application requires a set of assumptions regarding the processes and conditions
regarding data collection to be satisfied. For example, information theory when
used alone does not distinguish systems by spatial configuration. Also, it is by
definition biased towards a view of Nature as an immense information processing
device. Whether this view and these tools can be successfully applied to the large
variety of problems complex systems aims to address is far from obvious. Our
intent, at this stage, is simply to propose it as a framework for a less ambiguous
discussion among practitioners from different disciplines. The suggested inter-
pretations of the concepts may be at best temporary place-holders in an evolving
discipline – hopefully, the improved communication which can arise from sharing
a common language will lead to deeper understanding, which in turn will enable
our proposals to be sharpened, rethought and continue to evolve.
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Chapter 6

Emergence

Since its application to systems, emergence has been explained in terms
of levels of observation. This approach has led to confusion, contra-
diction, incoherence and at times mysticism. When the idea of level is
replaced by a framework of scope, resolution and state, this confusion is
dissolved. It is shown that emergent properties are determined by the
relationship between the scope of macrostate and microstate descrip-
tions. This establishes a normative definition of emergent properties
and emergence that makes sense of previous descriptive definitions of
emergence. In particular, this framework sheds light on which classes
of emergent properties are epistemic and which are ontological, and
identifies fundamental limits to our ability to capture emergence in
formal systems.



6.1. Introduction

6.1 Introduction

The early development of emergence in the philosophical literature was in the
context of the emergence of vitality from chemistry, and the emergence of minds
from biology. This promoted the importance of understanding emergence, as a
potential explanation not only of the relation between the general and special
sciences, but also of the evolution of life, intelligence and complexity. Yet with
its dual edge, the sword of the Emergentist philosophers carved out an overly
ambitious research agenda, which set as its subject domain processes that are still
largely impenetrable to science. Section 6.2 briefly reviews this history, a discourse
that has largely obscured the fact that at heart, emergent properties are simply a
difference between global and local structure.

The purpose of this chapter is to advance a new definition of emergent properties
and emergence. Emergence is an essential pillar of every systems approach, and yet
no precise, well defined account of emergence has achieved any level of consensus
among systems researchers. The current surge of interest in complex systems –
arguably the systems approach that seeks the closest integration with science –
desperately lacks a clear understanding of emergence. For systems theory to be
relevant to empirical experimentation, exact, testable concepts are necessary. It is
not unreasonable to expect that achieving coherence on what it means for a system
to have emergent properties, and when this counts as emergence, would lead to
significant advances in systems research. I suggest that the current murkiness sur-
rounding the central concepts in complex systems represents a serious impediment
to progress. Clarifying emergence is an important step towards enhancing commu-
nication within the systems community. Even more importantly, it can improve
communication with other fields of inquiry, enabling – among other possibilities –
the application of exact systems concepts in science.

The approach taken in this study departs from the tradition of philosophical fas-
cination in the emergence of life, consciousness and the universe. Undoubtedly, the
most interesting exemplars of emergence are complex, highly evolved, and prob-
ably even self-organising. However, for emergence to be a useful and unambiguous
distinction, firstly it must be isolable in a more basic form. Secondly, it must be
understood in terms of well defined primitives. In Section 6.3, I argue that the
conventional account in terms of levels and hierarchy does not meet the second
criterion, so an alternative framework of scope, resolution and state is defined. In
Section 6.4, an emergent property is defined, and simple examples show that novel
emergent properties are coupled to scope. Section 6.5 defines emergence as the
process whereby novel emergent properties are created, and examines the relation-
ship between emergence and predictability. Section 6.6 uses the definition of an
emergent property to outline a principled approach to determining the boundary
of a system. I consider the practical limitations of the definitions in Section 6.7,
and point towards some practical applications in Section 6.8.

6.1.1 Novel contributions

This chapter is based on:
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[268] A. J. Ryan. Emergence is coupled to scope, not level. Submitted to Complex-
ity, 2007.

My original contributions are:

1. A review of theories of emergence in philosophy and systems theory;

2. A precise definition of emergent properties;

3. Showing that the Möbius strip has novel emergent properties;

4. A precise definition of emergence;

5. Showing there exist fundamental limitations on generating emergence within
formal systems;

6. A new method of deducing an objective system boundary from emergent
properties;

7. Practical examples of emergent properties and emergence in different fields
of science and engineering;

8. Discussion of the practical limitations for the application of emergence; and

9. The original insight that emergence is coupled to scope, not level.

6.2 A Short History of Emergence

The notion of an emergent effect was first coined in 1875 by the philosopher George
Lewes1 [203] to describe non-additive effects of causal interactions, to be contrasted
with resultants. According to Lewes,

Although each effect is the resultant of its components, one cannot
always trace the steps of the process, so as to see in the product the
mode of operation of each factor. In the latter case, I propose to call
the effect an emergent. It arises out of the combined agencies, but in a
form which does not display the agents in action ... Every resultant is
either a sum or a difference of the co-operant forces; their sum, when
their directions are the same – their difference when their directions
are contrary. Further, every resultant is clearly traceable in its com-
ponents, because these are homogeneous and commensurable ... It is
otherwise with emergents, when, instead of adding measurable motion
to measurable motion, or things of one kind to other individuals of their
kind, there is a cooperation of things of unlike kinds ... The emergent
is unlike its components in so far as these are incommensurable, and it
cannot be reduced to their sum or their difference.

Several new theories of emergence appeared in the 1920s. Lewes’ emergents were
subtly refined by Alexander [6, 7], Broad [62] and Morgan [229–231], among oth-
ers, to support a layered view of nature. The concept of emergence as a relation

1A precursor to emergence was the idea that the whole is more than the sum of its parts,
which is usually attributed to Plato or Aristotle [14, 147]. Lewes was also influenced by Mill’s
[223] description of heteropathic effects, whose multiple simultaneous causes were not additive.
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between simultaneous causes and their joint effect was translated to consider the
upward causation of composition. Emergence now focused on properties rather
than dynamical interactions, by considering the relationship between components
and the whole they compose. This view on emergence was held in contrast to
reductionist mechanism, the ideal that all apparently different kinds of matter
are the same stuff, differing only in the number, arrangement and movement of
their constituent components [62, p45]. Although properties of a complex whole
were still simultaneously caused by the properties of components, novel system
properties were said to emerge if they could not, even in theory, be deduced from
complete knowledge of the properties of the components, either taken separately
or in other combinations. Emergent properties were therefore irreducible, and
represented barriers to mechanistic explanations. It was this conception of emer-
gence that became the kernel of the mid twentieth century systems movement, as
summarised by Checkland [81]:

It is the concept of organized complexity which became the subject
matter of the new discipline ‘systems’; and the general model of organ-
ized complexity is that there exists a hierarchy of levels of organization,
each more complex than the one below, a level being characterized by
emergent properties which do not exist at the lower level. Indeed,
more than the fact that they ‘do not exist’ at the lower level, emergent
properties are meaningless in the language appropriate to the lower
level.

Although Checkland suggests that the levels of hierarchy are ordered by com-
plexity, he is in fact defining an emergence hierarchy2, and there is no necessary
condition on higher levels of organisation having greater complexity3. In any case,
Checkland does explain the standard argument for emergence clearly. In this ac-
count, the macro language contains concepts that are meaningless at the micro
level, in the way that it is meaningless to talk about flocking as a property of a
single bird. It is important to emphasise that this does not claim one cannot map
between sets of microstate descriptions to macrostates: it is the methodological as-
sumption of supervenience that such a mapping is in principle possible4. Instead, it
is the weaker assertion that when any component of a system is viewed in isolation,
its microstate description cannot map to the associated emergent properties.

Since the systems movement adopted the conception of emergence as a relation
between levels, explanations of emergence have diverged to include a remarkable
number of contradictory positions. This includes a number of reductionist scientific
explanations that erase the distinction between emergent properties and mech-

2An emergence hierarchy is a system view from a structural perspective made on the basis of
the existence of emergent properties [72].

3Bar-Yam [25, p5, p746] provides several examples of emergent simplicity. Whether higher
levels of an emergence hierarchy are necessarily more complex is dependent on whether the
hierarchy is nested, and if the scope and resolution of description is the same at all levels.
Checkland is by no means the only author to conflate an emergence hierarchy with increasing
complexity; this has been common practice since the 1920s.

4The alternative position is a form of ontological pluralism, such as Cartesian substance
dualism or organismic vitalism, which discourages scientific investigation. This approach declares
at least one explanatory primitive (the mind or élan vital) which is by definition non-material
and inaccessible to science.

120



6.3. Replacing Level With Scope and
Resolution

anistic explanations, relegating emergence to the merely epiphenomenal5. Many
other explanations tie emergence to evolution, complexity and/or self-organisation,
presenting a singular unintelligible knot of concepts. Meanwhile, in contemporary
philosophy a spectrum of conflicting positions, broadly either epistemological or
ontological approaches to emergence, have been articulated with little headway
made in either camp6. As the only commonality amongst the alternative positions
is their failure to gain sufficient traction to generate consensus, their variety has
only reinforced the status of emergence as an enigma.

6.3 Replacing Level With Scope and

Resolution

The conventional explanation of emergence presented in the previous section is un-
satisfactory. The use of an emergence hierarchy to account for emergent properties
is alarmingly circular, given that the levels are defined by the existence of emergent
properties7. In hierarchy theory, levels are most often considered to be epistemic,
although seemingly only to avoid the burden of proof that falls on an ontological
position. Many hierarchy theorists prefer to remain reality-agnostic [9]. Unsur-
prisingly, the inconclusive nature of levels means that explanations of emergence
in terms of levels of description are unable to resolve its nature – is emergence a
natural phenomenon or an artifact of the process of observation? To bypass this
impediment, one needs to define emergence without invoking the concept of levels,
which I argue can be accomplished using scope, resolution and state8.

Scope is defined by a spatial boundary. Spatial is used in the broadest sense of
the word to include conceptual and formal, as well as physical spaces, provided
the system has a physical manifestation (spatial refers to the set of components,
in contrast to temporal, which refers to the dynamics of those components). The
scope of a system representation is the set of components within the boundary
between the associated system and its environment. If an observer shifts from
representing the system to representing a component, such that the component
is now the system of interest, the scope of observation has narrowed. Conversely,
when the scope is increased to include components that were previously part of
the environment, the scope has broadened. There is also a temporal dimension to
scope, which defines the set of moments of time over which the system is represen-
ted. S denotes scope, while S(x) and S(τ) denote only the spatial and temporal
dimensions of scope respectively.

Resolution is defined as the finest spatial distinction between two alternative sys-
tem configurations. If a fine (high) and a coarse (low) resolution representation
have the same scope, the fine resolution can distinguish a greater number of
possibilities, n, and therefore each state contains more (Shannon) information,

5See the survey on The Laws of Emergence in [88, p 24].
6Matthews [216, p203] describes this impasse; also see [240] for a review.
7For a sounder (but still not explanatory) account of emergence in terms of levels see [70].
8Bar-Yam [30] recognises the importance of scope, scale and the microstate-macrostate re-

lation in understanding emergence, and consequently [30] is closer to the following account of
emergence than the sources covered in Section 6.2.
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H = −∑n
i=1 pi log(pi) = log(n), assuming all states are equiprobable. A closely

related concept is scale, which is a transformation by multiplication. The con-
nection is that as a property is scaled up (multiplied) within a system, it can be
detected at coarser resolutions. The distinction (which is rarely made) is that scale
is independent of how the system is represented, whereas resolution is an attribute
of the representation (scale is ontological, but resolution is epistemological). Once
the resolution is set, this determines the ‘size’ of the components that comprise
the system. There is also a temporal dimension to resolution, which defines the
duration of a moment in time, where longer moments represent coarser (lower)
resolutions. R denotes resolution, while R(x) and R(τ) denote only the spatial
and temporal dimensions of resolution respectively.

Figure 6.1 illustrates different temporal and spatial scopes and resolutions, repro-
duced from [266]. a) shows an Elodea leaf placed on a microscope slide. b) shows
the same leaf at higher magnification: it has the same amount of data (the same
number of pixels), but it has a narrower spatial scope and finer spatial resolution.
c) contains four frames of a movie demonstrating streaming cytoplasm within the
cell, and has a broader temporal scope than a) or b). The scope of c) is similar to
a), but its spatial resolution is coarser.

Figure 6.1: Example of different temporal and spatial scopes and resolutions.

The state of a system is the information that distinguishes between alternative
system configurations up to some resolution at one moment in time. Macrostate
M and microstate µ denote sets of states with two different resolutions and scopes,
with the following macro-to-micro relations:

RM ≤ Rµ (6.1)

SM ≥ Sµ (6.2)

(RM,SM) 6= (Rµ,Sµ) (6.3)

Intuitively, the macrostate has either a coarser resolution or a broader scope, or
both. Let M′ ∈ MM and µ′ ∈ Mµ denote the sets of M′|µ and µ′|M respectively
satisfying Equations (6.1)-(6.3). Also note that M and µ represent sets of states
if S(τ) > 1. This non-standard usage of the terms enables the representation of
ensembles, and allows for emergent properties to be structured in time as well as
space.
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There exist other factors that influence the representation of a system by an ob-
server. They include perspective (some information at a particular resolution is
hidden eg. the state of internal organs to the naked eye) and interpretation (eg.
optical illusions that have multiple valid interpretations). However, one does not
need to invoke these factors to account for emergence, so for simplicity they are
excluded.

6.4 Emergent Properties

Definition 6.1 (Emergent property). A property is emergent iff it is present in a
macrostate and it is not present in the microstate.

For this purpose, it is not necessary to impose any limitations on how the presence
of emergent properties are inferred, provided the same methods are available in M
and µ. The application of a set of methods designed to infer whether an emergent
property is present or not constitutes a decision procedure. If the decision pro-
cedure returns a value of 1, informally the property has been detected. Ideally, an
emergent property should be consistently present in an ensemble, to distinguish
an emergent property from a statistically unlikely transient pattern (such as a
recognisable image appearing in one frame of white noise). For a macrostate M,
PM

µ (t) = {ρ1, ρ2, ..., ρn} is the set of emergent properties present in M and not
present in µ at time t. If SM(τ) > 1, then t indicates the most recent moment in
SM(τ).

It follows from the definition that emergent properties must be the result of spa-
tially or temporally extended structures, since otherwise it would be trivial to de-
tect their presence in the microstate. By structure, I mean there is a pattern that
relates the components, which implies redundancy, and therefore the description of
the components is compressible. Structure means the components are ‘organised’
in the way Ashby [20] intended: communication (in some generalised sense) occurs
between components to act like a constraint in the product space of possibilities.
A corollary to this is that if the components are independent, they cannot give
rise to emergent properties. Consequently, a Gaussian distribution is not organ-
ised, nor is it an emergent property of IID components. The law of large numbers
is a statement about the loss of structure, not the emergence of new structure.
Further, superpositionality, averaging and other linear operations cannot be the
source of emergent properties. This is because a linear operator evaluates equally
for any arrangement of the components. Because addition is commutative, linear
operations capture a common feature of a set of components independent of their
organisation, so the global structure is always exactly the sum of its parts. Lewe’s
original insight on emergents can now be restated: nonlinearity is a necessary
condition for emergent properties.

So far, I have not specified which M ∈ MM and µ ∈ Mµ were chosen as the
macrostate and microstate in Definition 6.1. Given that ∃ρi ∈ PM

µ (t), we would
like to know if ρi is a result of a change of resolution or scope. Both cases are now
considered, by holding one of the two variables equal between the macrostate and
the associated microstate.
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6.4.1 Class I: Weak emergent properties

For the first case let SM = Sµ, which by Equations (6.1) and (6.3) implies RM <
Rµ. Hence, H(M) < H(µ). Let the surjective map9 C : Mµ → MM give the
coarsegrained macrostate corresponding to the microstate µ. By Definition 6.1, a
decision procedure exists to detect ρi in M. But if ρi can be detected in M = C(µ),
it can also be detected in µ by applying C, followed by the decision procedure for
M. Therefore, in this case, the presence of ρi in M implies the presence of ρi in µ.

The difficulty with determining the presence of emergent properties arises from
finding the map C in the first place: it represents ‘hidden structure’, rather than
‘novel structure’. This problem reduces to a combinatorial search problem for the
mapping that reveals the relationship between the structure hidden in µ, and its
more apparent representation in M. The worst scenario is if C is non-recursive, in
which case the procedure for detection outlined above is incomputable. However,
it is unknown whether physical processes exist that are capable of performing non-
recursive mappings10. Aside from incomputability, the most challenging case is an
incompressible iterative function, such that C involves a large but finite number of
transformations. For example, consider a simulation of a discrete time dynamical
system, where µ is a vector of the initial conditions and updating rules, and M is
the binary terminal state of the simulation. C is incompressible if the most efficient
way to infer M given µ is by running the simulation11.

Properties in this case are classified as weak emergent properties, which is con-
sistent with Bar-Yam’s [30, p17] definition of “the relationship of microscopic and
macroscopic views of a system that differ only in precision”. A weak emergent
property is epistemic, since once one has discovered the right mapping C, by
Defintion 6.1 it can no longer be considered emergent. Even in the extreme case
of incomputability, it is a limitation in one’s ability to detect the property that
creates the appearance of it being emergent. In other words, one only believes a
weak emergent property is not present in µ because of practical or fundamental
limitations in the ability to detect and deduce the consequences of the structures
that give rise to the emergent property in M. When practical limitations are the
cause, a weak emergent property may appear to be emergent to one observer, but
is not emergent to an observer with a deeper understanding of the microstate12.
Within the assumptions and definitions of this study, if resolution is the only dif-
ference between a macrostate and microstate, no property of the macrostate can
be genuinely emergent from the microstate.

9That such a function exists is the fundamental methodological assumption of science referred
to in Section 6.2.

10See [87] for a review of the possibility of physical processes whose behaviour conforms to
non-recursive mappings.

11This corresponds to Darley’s [99] definition: “A true emergent phenomenon is one for which
the optimal means of prediction is simulation”. Holland’s [154] book on emergence takes a very
similar approach, without committing to a precise definition.

12In the literature, note that the label ‘weak’ is rarely used by proponents of this position.
However, a purely epistemic conception of emergence is usually revealed by the assignment of
emergence to the relationship between the observer and the system. A good example is Weinberg
[324, p60], who states “We can always find cases in which a property will be ‘emergent’ to one
observer and ‘predictable’ to another”.
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The class of weak emergent properties can be summarised by the following defini-
tion.
Definition 6.2 (Weak Emergent Property). A property is weakly emergent iff it is
present in a macrostate but it is not apparent in the microstate, and this macrostate
differs from the microstate only in resolution. A weak emergent property is a
limitation of the observer, not a property of the system of interest.

6.4.2 Class II: Novel emergent properties

For the second case let RM = Rµ, which by Equations (6.2) and (6.3) implies
SM > Sµ. In this case, H(M) > H(µ). It is useful to identify a minimal macro-
state as a macrostate with the smallest possible scope that still exhibits ρi.
Definition 6.3 (Minimal Macrostate). A macrostate M∗ is minimal with respect
to an emergent property, if the emergent property is present in M∗, and it is not
present in any µ with the same resolution and narrower scope (ie. in any proper
subset of the components of M∗).

M∗ is not necessarily unique, since if two components are interchangeable, then
there are two distinct M∗ that can both satisfy Definition 6.3. Three simple ex-
amples will show that M∗ can be well defined.

Firstly, consider a Möbius strip, which is a one sided, one edged, non-orientable
‘surface with boundary’. One can think of the Möbius strip as being comprised
of a singly twisted loop of triangles, such as the tiling depicted in Figure 6.2.
It can be shown that any compact differentiable manifold allows a triangulation.
RM∗ is determined by the number of triangles used, and SM∗ equals the set of
triangles. If one considers any proper subset by removing at least one triangle,
the resulting surface or surfaces are two sided, orientable and have more than
one edge. Formally, the Euler characteristic χ is 0 for a Möbius strip, but equals
the number of disjoint simplicial (triangular) complexes in µ. This is equal to
or greater than 1, so M∗ is not topologically equivalent to any µ. Therefore, the
properties associated with the Möbius strip are emergent properties of M∗ that
do not exist for narrower scopes. Further, as χ is a topological invariant, it does
not depend on the resolution of the triangulation. Hence, the emergent property
is coupled to the scope of M∗, irrespective of which particular surfaces are defined
as the components of M∗.

Figure 6.2: A Möbius strip can be triangulated to show it has novel emergent
properties.
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Secondly, a perfect secret sharing scheme divides some data D into n pieces
D1, ..., Dn such that:

1. Knowledge of any k or more Di pieces makes D easily computable; and

2. Knowledge of any k−1 or fewer Di pieces leaves D completely undetermined
(in the sense that all its possible values are equally likely).

An efficient perfect secret sharing scheme is presented in [286] based on polynomial
interpolation, where a random polynomial is chosen of degree k − 1 such that
q(x) = a0 + a1x + ... + ak−1x

k−1 has a0 = D and ai ∈ [0, p) are integer and
bounded by a large prime p. Then the keys Di ∈ Z are generated by Di =
q(i)mod p, i = 1, .., n. Interpolation retrieves a unique value for a0 = D if at least
k values of q(i) are known, but when k − 1 values are revealed to an opponent,
all polynomials associated with possible secrets D′ are equally likely – the mutual
information I(D; D′) = 0. Thus when RM = Rµ = min(|Di − Di′ |) = 1 (ie. one
can distinguish between each possible Di ∈ [0, p)) and SM∗ = k, then D is present
in M∗ and is not present in any µ. By construction, D is an emergent property
that is coupled to any M∗ with a scope of k.

The third example presents an instance where the emergent property depends on
temporal rather than spatial scope. Conceptually, there is no difference between
structure extended in space or time, except that communication can only move
forwards in time, meaning that structure can only constrain possibilities that are
within the future light cone of the first component of the structure in the temporal
scope. Consider a process governed by the deterministic periodic discrete time
iterative function

f(t + Pn) = f(t) ∀t ∈ Z, (6.4)

where P ∈ Z+ is the period and n ∈ N, such that Pn is a multiple of P . The
property of this sequence is translational symmetry, which is present in M∗ when
(RM∗(t),SM∗(t)) = (1, P + 1), and is not present in any µ with a Sµ(t) ≤ P . This
example is trivial, but the extension of the idea of temporal emergent properties
to general discrete dynamical systems includes far more interesting structures.

This class of emergent property arises from structure that is extended over the
scope of the system, which I refer to as novel emergent properties. There is a
difference between local and global structure in any system that exhibits emergent
novelty. This explains why emergent novelty cannot be understood or predicted
by an observer whose scope is limited to only one component of a system. When
the resolution of the macrostate equals the resolution of the microstate (or the
inverse mapping from the macrostate to a set of microstates is known and well
defined), emergent novelty is at least in part ontological. One cannot say it is fully
ontological, since some a priori concepts are used in this framework to structure
the analysis. However, the minimal macrostate has an objective property that is
independent of variations in the epistemic status of an observer.

Novel emergent properties are not just nonlinear, they are nonseparable. This is
because if they were separable, then their presence could be established without
requiring a scope at least as great as the minimal macrostate.
Definition 6.4 (Novel Emergent Property). A property is a novel emergent prop-
erty iff it is present in a macrostate but it is not present in any microstate, where
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the microstates differ from the macrostate only in scope.

One subclass of emergent novelty that has been discussed as a separate phe-
nomenon in the literature is ‘emergent behaviour’, which is a property of the
system that is only exhibited in certain environments. An example of emergent
behaviour is the interaction between a lock and a key13. The key is said to have
an emergent behaviour, since it opens any door containing a complementary lock,
and this is not present in the microstate description of the key in isolation. This
property is only present in the macrostate when the spatial scope of the system
is expanded to include both the lock and the key. The emergent behaviour can
then be explained as complementary spatially extended structure between two sys-
tem components. From this analysis, I conclude that emergent behaviours are the
result of mistakenly attributing a novel emergent property of a system to one of
its components. While it is often convenient to keep the idealised system bound-
ary fixed and talk of emergent behaviours, at the same time one should be clear
that the scope of the emergent property extends between the system and certain
contexts.

The classification of emergent properties has not considered the case thatRM < Rµ

and SM > Sµ. This case is harder to analyse, since it is not possible to say whether
H(M) is greater or less than H(µ). Fortunately, because one can rule out resolution
as a source of emergent properties, the only important factor is scope. Therefore,
simply by coarsegraining µ so that RM = Rµ, this is reduced to Class II.

6.5 Emergence

So far I have analysed emergent properties without saying how they arise. This is
the process of emergence.
Definition 6.5 (Emergence). Emergence is the process whereby the assembly,
breakdown or restructuring of a system results in one or more novel emergent
properties.

Assembly and breakdown are the dual processes of adding and removing interac-
tions between system components that change the cardinality of the set of compon-
ents in the system, while restructuring changes interactions between components
without changing the cardinality. Some researchers claim that only self-assembling
and self-restructuring processes can emerge. For example, Holland [154] argues
that emergence must be the product of self-organisation, not centralised control.
This is another example of attempting to tie together separate concepts that are
useful only if they have distinct meanings. It usually leads to circular definitions
(emergence is self-organising; self-organisation is a process that gives rise to emer-
gence), or greedy reductions (emergence is nothing-but self-organisation).

13Following Bar-Yam [30], I use this example for ease of comparison with what Bar-Yam calls
‘type 3 strong emergence’ or ‘environmental emergence’. Additionally, a popular example of
emergence in the literature is the smell of ammonia, which is said to emerge from the odourless
nitrogen and hydrogen components. What is not usually explained is that the smell of ammonia is
a property of the relationship between the gas and human olfactory receptors, and is therefore an
example of environmental emergence. According to ‘shape’ theories of olfaction, the interaction
between ammonia molecules and the human receptor system is not dissimilar to a lock and key.
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When an emergent property is reinforced by positive feedback, its scale is increased.
However, it is important to emphasise that merely scaling an emergent property
is not emergence. The common use of the word does not make this distinction.
For example, consider the following observation on avian bird flu. “Despite the
widespread emergence of H5N1 influenza viruses in poultry in many countries in
Asia in early 2004, there were no outbreaks of H5N1 influenza in poultry or hu-
mans in Hong Kong during this time.” [211] In this case, “widespread emergence”
is synonymous with “growth”. It refers to scaling of the population infected by
H5N1, rather than the assembly of the initial mutation of the virus. Scaling is an
important process, since if an emergent property is not reinforced it cannot per-
petuate or have a significant impact (consider a mutation that does not replicate).
However, the technical definition of emergence only applies to the initial process
of assembly.

Having made this distinction, one can now make a useful observation on the con-
nection between centralised control and emergence. Centralised control is charac-
terised by a lack of autonomy in the system’s components, except for the controller.
The controller can assemble (or breakdown or restructure) the other components
of the system, which may result in a spatiotemporally extended property. If this is
performed by following some template or blueprint, one can ask whether the emer-
gent property is present in the template. If so, then the property emerged within
the controller, then was scaled up (which is not emergence) as it was realised across
the system’s components. If not, one can say the property emerged in the system,
even though it was assembled under central control from a template. If there is
no template, then the emergence also occurs in the system, not the controller.
Error-free, context-insensitive asexual replication can only scale existing emergent
properties, but the introduction of mutation, crossover, retroviruses or ‘nurture’
(ie. sensitivity to information from the environment) can lead to emergence. In
summary, emergence can occur through centralised control, provided the emergent
property is not already present in the controller.

Emergence is defined above as a process, which means it is temporally extended.
That is, emergence is not a property of a system at any point in time, it is a relation-
ship between system properties at two different moments in time. Let M have emer-
gent properties PM(t) = {ρ1, ρ2, ..., ρn} at time t. At some later time t′, the system’s
emergent properties are PM(t′) = {ρ1, ρ2, ..., ρn−r, ρn+1, ..., ρn+s}, with r, s ∈ N. If
max{r, s} > 0, then at least one new emergent property is present, or a previ-
ous emergent property no longer exists in M. In either case, between t and t′, M
exhibits emergence14.

As a thought experiment, one can set Sµ to be unbounded in space and include
all prior moments in time. In this case, M with the same resolution and spatial
scope contains just one new moment in time. Now, if M contains a novel emergent
property p̂i, then p̂i has never existed before. For M∗ such that p̂i ∈ PM∗ , SM∗

contains a corresponding structure whose specific configuration has likewise not
occurred previously. I coin the term ‘naissance emergence’ to refer to the original
emergence of a novel emergent property p̂i. Naissance emergence is the source of

14Note that every ρi has a logical complement, ‘absence of ρi’. Therefore the disappearance
of ρi is logically equivalent to the appearance of its complement, and vice versa. This is why it
is not possible to separate the roles of assembly and breakdown in emergence.
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novelty, and is an important distinction for a discussion of the relationship between
emergence and predictability.

The problem for scientists aspiring to predict naissance emergence is that, by defin-
ition, p̂i is not present until it is within temporal scope ie. until it has already
occurred! Of course, a scientist may have a theory about what properties may per-
tain for a configuration that has not existed. But from Section 6.4, a theory where
the proposed properties are linear combinations of properties of the components
in other subsets or configurations cannot give rise to a novel emergent property.
Also, from Section 6.4.2, recall that novel emergent properties are nonseparable.
Therefore, any theory that claims to predict naissance emergence must extrapolate
p̂i from a nonlinear and nonseparable combination of previously observed proper-
ties. But if the extrapolation is nonlinear, it is not unique. Therefore, our scientist
must have multiple theories for p̂i, all of which are possible. There is no logical
way to choose between the candidate theories, so a choice of p̂i can only be justi-
fied by empirical experiment. But by conducting the experiment, p̂i is now within
temporal scope. Consequently, p̂i cannot be predicted with certainty until it has
already occurred.

This implies that formal systems, including mathematical models and computer
simulations, are incapable of reproducing naissance emergence. This does not mean
that once naissance emergence has occurred that one cannot alter one’s models
to include p̂i and associate it with some M∗. It just means that this cannot be
done a priori, because empirical access is necessary to select between the possible
properties of completely new configurations. Naissance emergence is an ontological
concept, since in light of the preceding discussion it cannot be epistemic.

6.6 Rethinking System Boundaries

Interestingly, the view of emergent properties developed in this study presents an
alternative way of defining the boundary of a system. It is rare that the process of
system definition is treated explicitly. However, it is suggested that the following
process is typical. Firstly, the system boundary is chosen to separate the system
from its environment where the interactions are weakest, which sets the scope.
Weak interactions are targeted because open systems will always have flows of
inputs and outputs across the boundary, but if these flows are weak compared
to internal interactions, they can be either ignored or aggregated, and a systems
analysis should accurately capture first order features of the system.

Secondly, once the scope of the system is set, deciding the resolution is usually
straightforward. If the scope is the biosphere, it is currently infeasible to model
at the resolution of individual molecules. If the scope is an individual molecule,
then the resolution will need to be significantly finer if one wants to say anything
useful about the system. Limitations on the available cognitive and/or inform-
ation processing resources provides an upper bound on the practical resolution
for observing a system of any given scope, and since the upper bound is Pareto
dominant with respect to information, observers could be expected to be near
the Pareto dominant values (ignoring extremely small scopes). Thus, limitations

129



6.6. Rethinking System Boundaries

on information processing provides an approximately linear inversely proportional
relationship between scope and resolution. Just like a camera’s zoom lens, vary-
ing the scope automatically adjusts the resolution, and automatic processes are
subconscious and hardwired, rather than conscious, deliberate and justified.

Thirdly, now that the scope and resolution are known, the system is composed of a
finite number of components. Emergent properties belong to the system if they do
not occur in the absence of the system, and are not properties of the components
taken separately or in other combinations.

A number of issues arise from this kind of approach to defining a system. The
most obvious problem is because it is subconscious, intuitive and unstated, it is
not subject to criticism or debate. The definition of the system is axiomatic, and
despite its crucial role in the success or failure of all subsequent analysis, it is
placed beyond question, or rather slipped in beneath questioning. In addition,
the open nature of most systems of interest means specifying a unique boundary
is problematic. At what point does the flow of matter, energy and information
stop being part of the environment and start being part of the system? Finally, I
showed in Section 6.4.2 that this approach leads to the idea of emergent behaviours,
whereby emergent properties are assigned to the system, when the system is only
one component of the structure extending between the system and its environment
that gives rise to the emergent property.

Definition 6.4.2 enables an alternative approach for identifying the boundaries of
a system. Firstly, a system is defined by a set of properties {ρ1, ρ2, ..., ρn} that
characterise and identify that system. Secondly, for each property i, the minimal
macrostate M∗

i is identified, which associates that property with a particular scope,
SM∗

i
. Thirdly, the system boundary is defined as the set union of the scope for

each property,
⋃n

i=1 SM∗
i
. Finally, the resolution must be at least as fine as the

highest resolution minimal macrostate. By starting from a set of emergent proper-
ties, the process is explicit and justified; flows from the environment are included
in the system boundary only when they are a necessary component of a system
property; and every property must belong to a subset of the system’s components.
The ontological nature of novel emergent properties means the system boundaries
derived from them are not arbitrary, but reflect features of the system that are
independent of the observer.

It may be argued that in practice, it is never possible to list every property of a
system. This is not a major limitation due to the nature of the union operator.
When a subset of the set of all system properties is considered, {ρ1, ρ2, ..., ρk},
with k < n, the derived system boundary represents a lower bound on the actual
system boundary. This is easy to see, since

⋃k
i=1 SM∗

i
⊆ ⋃n

i=1 SM∗
i
. Further, as new

properties are added to the subset, the derived system boundary must converge
from below to the actual system boundary. Using this procedure, one can approach
a representation of a system’s boundary, whose only dependence on the observer
is deciding on the set of properties to be associated with the system.
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6.7 Practical Limitations

The analysis above has helped to clarify the role resolution and scope play in
emergent properties of substantial systems with a unique, well defined microstate.
Mathematical examples are useful because truth is accessible within the rules of
the axiomatic system. It is possible to analytically show properties of microstates
and macrostates, avoiding problems such as the theory-ladenness of observation
that arise when properties must be detected empirically. Unfortunately, a num-
ber of such issues limit the ability to decisively show the presence of emergent
properties and emergence in the real world. One of the most difficult aspects of
identifying emergent properties in natural examples is choosing the resolution for
the macrostate, which determines what are considered to be components. If a
novel emergent property is present with respect to one set of components, but not
for another way of defining the components, is the property really emergent? If
there exists any way of defining the components, such that the emergent property
is present in a microstate with narrower scope, then the novel emergent property
does not belong to the macrostate. The property is still emergent, but it has been
attributed to the wrong scope, because of the choice of resolution. In general the
decision procedure cannot check every possible resolution, so in practice applying
Definition 6.4.2 could overestimate the scope of the minimal macrostate.

Microstates and macrostates are defined in Section 6.3 to cater for an ensemble
perspective. Although this has not been required in the examples above, except to
capture temporal structure, it will often be required for physical systems. When
considering sufficiently fine microstates (either quantum or semi-classical), obser-
vations of a system over time cannot be performed on the same microstate, but
rather on the ensemble of states. In this situation, a single microstate is not phys-
ically observable and therefore is not a physically meaningful concept [30]. This
means one needs to take an ensemble perspective [30], which complicates the pro-
cess of observation by making it statistical, but it is still entirely compatible with
the framework developed in this study.

To quote Zadeh [336], “[m]ore often than not, the classes of objects encountered in
the real physical world do not have precisely defined criteria of membership”. If a
property is either statistical or fuzzy, there will not be a discontinuous boundary
between emergent and non-emergent. For example, a self-avoiding random walk
has the property of almost completely unstructured movement when the scope of
the microstate is one move, and the property of considerably structured, statistic-
ally self-similar movement when the scope of the macrostate is a large number of
moves. The emergent property of statistical self-similarity is satisfied with greater
confidence as the temporal scope of the macrostate broadens. In this case, the
scope associated with the novel emergent property will be somewhat arbitrary.
However, one can at least specify bounds on the associated scope, such that below
the lower bound the novel emergent property does not exist, while it exists with
an arbitrary degree of confidence above the upper bound on scope.

There exist many systems that are not studied according to the distribution of their
physical substance, including formal (mathematical) systems and social systems.
In these systems, a convenient property of physical systems is absent. In phys-
ical systems, entropy is well defined by the quantum difference given by Planck’s
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constant h [25, p13]. This means there exists only a finite number of distinct
possibilities. Even though formal and social systems must both ultimately have
physical instantiations, they do not have obvious bounds (analogous to Planck’s
constant) on possibilities. For instance, although the number of distinct thoughts
a human mind will have in its lifetime is finite, one apparently cannot specify
in advance any finite set containing every possible thought, nor determine the
finest possible distinction between two thoughts the mind is capable of making. In
mathematical systems, the bounds on scope and resolution are even less obvious
(real numbers in general contain infinite information), which is why mathematics
is sometimes described as the study of all possible worlds. If the distinct pos-
sibilities are not bounded, then resolution may not be a meaningful concept, and
the microstate may contain infinite information. In order to apply this framework
to non-physical systems, spaces must first be approximated with a finite product
space of possibilities, so that the microstate and resolution are both well defined.

6.8 Practical Applications

The preceding mathematical examples are useful because of their simplicity and
precision. This section will not be precise or conclusive, but rather suggestive of
real world examples of emergence. The aim is to provide a few hooks for some of
the many disciplines that investigate emergent phenomena.

Simple machines such as pulleys and levers provide a mechanical advantage by
decreasing the amount of force required to do a given amount of work. In isola-
tion, simple machines increase the scale of effect of the energy source, which by
Section 6.5 is not emergence, or transform energy between forms. However, when
a collection of simple machines are assembled to form a compound machine, it
is possible that the compound machine has an emergent property that no proper
subset of the parts and the energy source exhibit. Usually, these emergent proper-
ties are thought of as either the function of the compound machine, or unintended
consequences. A particularly vivid example of emergent functionality is given by
Rube Goldberg machines, named after the American cartoonist who drew improb-
able machines for performing simple tasks. The board game Mousetrap, and the
computer game The Incredible Machine, are both instantiations of Rube Gold-
berg machines where no proper subset of the system components can achieve the
functionality of the complete system. Almost all engineered systems – clocks, ra-
dios, computers, and aeroplanes – are designed for specific, predictable emergent
properties. However, note that to provide robust functionality, most engineered
systems contain redundancy, which means the system contains more components
than the minimal macrostate. Also note that if the emergent function is a beha-
viour, then by Section 6.4.2 the emergent property is formally a property of the
larger system in which the engineered system is used.

In chemistry, a catalyst decreases the activation energy of a chemical reaction.
An autocatalytic set is defined as a reaction system (M, R) of molecules M and
reactions R, such that all the catalysts for all its reactions R are in M . If no
proper subset of (M,R) is an autocatalytic set, then the reaction system has the
emergent property of catalytic closure. Some researchers, such as Kauffman [175,
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p329], have linked certain forms of catalytic closure with the ability to generate
heritable variation, and consequently to evolve under the pressure of natural se-
lection. Although the speculative claims of artificial chemistry have not yet been
empirically demonstrated, autocatalysis is an obvious candidate for the emergence
of novelty in chemistry.

In biology, many synergies have been studied that may be examples of emergence.
The link between synergy and emergence has been made by Corning [88], who
defines synergy as “the combined (cooperative) effects that are produced by two
or more particles, elements, parts, or organisms – effects that are not otherwise at-
tainable”. Once again, a cautionary remark obtains that greater efficiency through
synergy is just scaling, not emergence. One synergy that does appear to be due
to emergent properties is obligate endosymbiosis, such as the relationship between
the Olavius algarvensis Oligochaete – a gutless marine worm – and the chemoauto-
trophic bacteria that lives inside it. Under certain conditions (such as the absence
of an external source of reduced sulphur compounds), neither organism can survive
in isolation. However, a syntrophic sulphur cycle recycles oxidised and reduced sul-
phur between the symbionts, which is believed to have enabled O. algarvensis to
colonise new habitats and extend their geographic distribution [113].

Another biological example demonstrates how emergent properties can be either
spatially or temporally extended. Cyanobacteria are a remarkably diverse group
of prokaryotes. Different species that engage in the chemically incompatible pro-
cesses of nitrogen fixing and photosynthesis have evolved different solutions to
work around this obstacle. Anabaena spatially separates the processes in separ-
ate heterocysts and passes the products between cells using filaments [288]. In
contrast, Synechococcus temporally separates the processes, performing photosyn-
thesis during the day and nitrogen fixation at night [111]. Yet another species,
Trichodesmium both spatially and temporally separates the processes [45]. All
three species have the same emergent property, which since it cannot be a prop-
erty of a single component, must be distributed in space, time, or both space and
time.

In economics, games such as the tragedy of the commons [145] and prisoner’s di-
lemma [259] capture a mathematical representation of the difference between local
and global structure. In these games, pursuit of a local maximum in the micro-
state (one player’s payoff) prevents the players from maximising the macrostate
(the total payoff to all players). The structure of the games and greedy rational
behaviour combine to ensure a sub-optimal Nash equilibrium will prevail, even
when a solution exists where all players could have received greater payoffs. This
kind of outcome results because the scope of consideration of greedy rational play-
ers is too narrow. If the negative externalities of the actions of individual players
are incorporated into the payoff (which broadens the scope of what each player
pays attention to), then the structure of the game changes and the equilibrium
will no longer be dominated by other combinations of strategies. The game is
now factored, meaning any increase in the payoff to one player does not decrease
the total payoff to all players [334]. The point at which incorporating the cost
of negative externalities into the payoff matrix results in a factored game is the
scope associated with this emergent property. The applications of game theory
are of course much wider than just economics. There are many games with a
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similar difference between local and global structure, such as Braess’ Paradox [58],
where adding extra capacity to a network can reduce global performance, and Par-
rondo’s paradox [146], where playing two losing games can be a winning strategy
overall. In Parrondo’s paradox, scope has a different meaning (playing each game
in isolation or in conjunction), but the emergent property is still coupled to scope.

6.9 Summary

Due to its central position in systems approaches, a redefinition of emergence has
significant implications for systems research. The definitions in this study do not
directly contradict the common view that emergent properties at one level are
meaningless at the level below. However, they do provide a deeper understanding
that represents a substantial refinement of the common conception. A simple
explanation of emergent properties is given in terms of scope, which forms the basis
of a normative definition of emergent properties and subsequently for emergence.
That is, rather than just describing what emergent properties are like, my definition
prescribes the conditions whereby a property should be formally considered to be
emergent.

Definition 6.1 is so general it is trivial. Given almost any macrostate, one can
choose a microstate with a sufficiently small scope that the macrostate has an
emergent property relative to that microstate. If almost every macrostate has
emergent properties, the definition is meaningless. This is why the idea of the
minimal macrostate M∗ is crucial. M∗ allows emergent properties to be coupled to
a specific scope. Definition 6.4.2 is more specific, because it only counts emergent
properties when they are not a property of any microstate with smaller scope.
Consequently, only a small fraction of macrostates have novel emergent properties.

A number of phenomena have previously been lumped under the banner of emer-
gence. In this study, I found that the concept is currently too broad. Weak
emergent properties must be excluded from emergence: the resolution of obser-
vation, or the language of description has no bearing on whether a property is
emergent. Emergent behaviour, or environmental emergence, must be reassessed
as a novel emergent property of a system with larger scope. A clear distinction
was made between emergent properties and emergence, which shows that simply
scaling an emergent property cannot be considered emergence.

Lewes thought of emergents as the converse of resultants, while Broad recast emer-
gentism in opposition to mechanism. In this study, an emergent property is the
converse of a local property. This is consistent with Lewes, insofar as resultants
represent linear combinations of existing localised components. Nonlinearity is a
necessary but not sufficient condition for an emergent property. In contrast, if a
property is non-local, it is spatially or temporally extended, and necessarily emer-
gent, so this opposition is more revealing. The relationship with Broad’s antonym
is less clear, since it depends on how strictly mechanism is interpreted. Under
the purest interpretation of mechanism, local properties should tell us everything
there is to know about a system, and there is no potential for naissance emer-
gence. However, pure mechanism is not really a serious metaphysical position,
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and contrasting it with emergentism does little to reveal what emergent proper-
ties are. The view of emergence in this study seems to be most compatible with
non-reductive physicalism, although it is not my intent to advocate a particular
ontology. In summary, Definition 6.1 not only enables us to say what emergent
properties are, it also allows us to better say what they are not.

As long as there exist possible configurations of the universe that have not yet
occurred, one must be realistic about our ability to predict future dynamics on the
basis of formal systems, when the dynamics may be influenced by emergence. This
insight is the most profound implication of emergence, yet also the most difficult
aspect of emergence to demonstrate constructively, by virtue of its absence in
formal systems.

The alternative to level and hierarchy – scope, resolution and state – offers a
generic framework for analysing systems. Because the primitives are well-defined
for any physical system, they should have broad applicability in systems research.
An obvious direction for further research is to supplement these primitives with
other concepts to provide a more powerful formalism.

Given that science has always valued depth of knowledge over breadth, it is not
surprising that a scientific understanding of emergence has not been forthcoming,
when emergent properties are precisely the properties that cannot be understood
with additional depth. The existence of emergent properties provides legitima-
tion for broader multidisciplinary systems approaches that complement special-
ised scientific disciplines. However, this insight is not articulated in discussions of
emergence based on levels, because in general a level is an indeterminate mixture
between relationships of scope and resolution. By revealing the coupling between
emergence and scope, it is hoped that the dialogue on emergence can achieve
coherence.

The above analysis of emergence concludes the development of the theoretical
framework for this thesis. Having addressed questions on the nature of representa-
tion, systems and multidisciplinary research, and then provided novel formulations
of complex systems concepts including emergence, self-organisation and adapta-
tion, it is now possible to investigate the application of multidisciplinary conceptual
analysis to real world problems. Part III of this thesis introduces two problems
that are amenable to a complex systems approach. They are real world problems
with real stakeholders, so it is important to stress that they have not been ‘reverse
engineered’ to exemplify the preceding conceptual framework. Although conveni-
ent toy models could have been developed to showcase the conceptual framework,
it was decided that a more flexible application of the framework to contemporary
defence problems would better demonstrate the potential impact of multidiscip-
linary conceptual analysis.

The first case study tackles the problem of conventional force structures conduct-
ing operations against an asymmetric insurgency. This problem was raised due to
current operations in the Middle East, and both drew on and contributed to Future
Land Warfare’s concepts for operating in this environment – Complex Warfight-
ing [181] and Adaptive Campaigning [318]. The second case study responds to a
request from Capability Development Group to provide suggestions for a more flex-
ible and agile capability development process, compared with the current process
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as documented in the Defence Capability Development Manual [22].
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Application

137



Chapter 7

Asymmetric Warfare

This chapter applies multidisciplinary conceptual analysis to the prob-
lem of force design for asymmetric operations. Conventional military
forces are organised to generate large scale effects against similarly
structured adversaries. Asymmetric warfare is a ‘game’ between a con-
ventional military force and a weaker adversary that is unable to match
the scale of effects of the conventional force. In asymmetric warfare, an
insurgents’ strategy can be understood using a multi-scale perspective:
by generating and exploiting fine scale complexity, insurgents prevent
the conventional force from acting at the scale they are designed for.
Insights from complex systems show how future force structures can
be designed to adapt to environmental complexity at multiple scales –
including complexity generated by asymmetric adversaries – to achieve
full spectrum dominance.



7.1. Introduction

7.1 Introduction

The cold war was a story about two giant bears, Uncle Sam and Mother Rus-
sia, armed to the teeth and locked in the dynamic stability of mutually assured
destruction. The nuclear arms race saw both bears grow stronger and more dan-
gerous. The only non-catastrophic resolution could be voluntary withdrawal by
one side, which occurred when Mother Russia backed down, exhausted and weak
from keeping pace with Uncle Sam. Now the undisputed power in the woods,
Uncle Sam felt lost at first without the focus that a life-threatening adversary de-
mands. Searching for animals that might one day become powerful bears, Uncle
Sam encountered many mystical animals: dragons, elephant gods and a reptilian
Godzilla, although none seemed interested in confronting the dominant bear on
his terms.

So Uncle Sam went into hibernation, until one September several sharp stings
rudely awaked him. Enraged, the bear found the small bodies of the bees that
had released their venomous barbed stingers in his flesh1.Uncle Sam tracked the
honey trail to a hive in the mountains, which he smashed with his giant paws.
Unsatisfied, the bear continued over the mountains and into the desert where he
knew of another beehive, rumoured to have even nastier stings. This hive too was
quickly smashed, but Uncle Sam was in for a surprise. For this species of desert
bee was more aggressive and easily agitated. Every time they stung the intruder,
an alarm pheromone triggered more bees to attack. The swarming enemy was
small, mobile and dissolved into the desert under direct attack, which rendered
the bear’s keen eyesight and large muscles ineffective and impotent. Crushing
individual bees could not destroy the swarm, and even when the bear had limited
success, a Goliath triumph over David could do little to win the hearts and minds
of the neighbouring animals. Truth be told, the locals rather thought the bear was
stirring up a hornet’s nest.

This story illustrates just a few of the issues associated with the transition from
the cold war era to the so-called Global War on Terror. It is a problem that is
relevant to every nation state in every region. Terrorism is asymmetric, enduring,
ancient, unencapsulated and continually co-evolving: it is the kind of problem that
has most stubbornly resisted conventional scientific reduction, the kind of problem
that has helped motivate the rise of systems thinking.

Section 7.2 provides insights from complex systems theory, explaining in terms of
organisation and scale why the bear is ineffective against the bees, and introduces
adaptation as a possible response. The conjunction of systems engineering and
complex systems (beginning to be recognised as a separate field as complex systems
engineering) is developed in Section 7.3 to provide a new approach to developing
capabilities for complex environments. Section 7.4 explains the attrition warfare
paradigm that conventional forces are organised to fight, which is contrasted with
asymmetric warfare in Section 7.5. Adaptive responses to asymmetric warfare are
discussed in Section 7.6.

1I thank Martin Burke for suggesting this metaphor for asymmetric warfare. Swarms of bees
are also discussed as a metaphor for effects-based operations in [295].
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7.1.1 Novel contributions

This chapter is based on:

[267] A. J. Ryan. About the bears and the bees: Adaptive approaches to asym-
metric warfare. Interjournal, 2006.

My original contributions are:

1. Development of the relationship between scale and complexity in asymmetric
warfare;

2. Identification of adaptive responses to asymmetric warfare, involving changes
in force structure and capability development.

7.2 Two Complex Systems Theories

Two complex systems theories are useful for understanding asymmetric warfare:
multiscale variety and adaptation. The law of multiscale variety [31, 32] is an
extension of Ashby’s law of requisite variety [18] (see Section 3.3.2). Assume that
a system has N parts that must be coordinated to respond to external contexts,
and the scale of the response is given by the number of parts that participate in
the coordinated response. Secondly, assume that under (complete) coordination,
the variety of the coordinated parts equals the variety of a single part. Then,
coordination increases the scale of response, but decreases its variety: there is a
tradeoff between large scale behaviour and fine scale complexity. In this chapter
complexity refers to the (log of the) number of possible configurations, which
is a measure of variety based on Shannon information. The generalised law of
multiscale variety states that at every scale the variety necessary to meet the
tasks, at that scale, must be larger for the system than the task requirements [32].

Adaptation is a generic model for learning successful interaction strategies between
a system and a complex and potentially non-stationary environment (see Section
5.7). The environment is treated as a black box, and stimulus response interac-
tions provide feedback that modifies an internal model or representation of the
environment, which affects the probability of the system taking future actions.
For the case that the system is a single agent with a fixed set of available actions,
the environmental feedback is a single real valued reward plus the observed state
at each time step, and the internal model is an estimate of the future value of each
state, this model of adaptation reduces to reinforcement learning. However, an
adaptive system may also be comprised of a number of agents acting and sensing
the environment in parallel, in which case the representation is distributed. The
distributed representation may not be consistent or complete, but can be thought
of as an ecology of cooperating and competing models, each partially representing
some aspects of the environment. The three essential functions for an adaptive
mechanism are generating variety, observing feedback from interactions with the
environment, and selection to reinforce some interactions and inhibit others.
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7.3 Complex Systems Engineering

The capability development process (See Chapter 8) is responsible for acquiring
all new major capabilities in defence. Consequently, it has a significant impact
on force structure. In order to change the way coalition forces are structured for
asymmetric operations, it is necessary to examine force design and acquisition.
In contrast to the classical systems engineering approach to this problem, here a
complex systems engineering approach is introduced.

Complex systems engineering when taken literally is a contradiction in terms. If
conventional approaches to modelling do not capture the dynamics of a complex
system, one cannot expect to predict the effects of design choices on behaviour,
an essential precondition for engineering. Therefore, either the systems one can
engineer will never actually be behaviourally complex (and certainly no more com-
plex than the designer), or else a new understanding of what it means to design
and engineer a system is required. Since there appears to be no bound to the
complexity of problems people can imagine engineering solutions to, the latter
course of action seems inevitable. Complex systems engineering will be examined
in greater detail in Chapter 8, but some aspects that are relevant to the problem
of asymmetric warfare will be highlighted.

In order to increase the complexity of engineering designs, the first step is to
surrender the security blanket of complete understanding and control for systems
design. Real limits on certainty and predictability of system behaviour should be
acknowledged, and also that complete test and evaluation is not feasible [28, Thm
A]. Rather than planning a design centrally, the design occurs distributed across a
team with managerial independence, relying more on market forces and end user
feedback than the ability of the lead systems engineer to understand and predict
the behaviour of the whole system.

Each designer would be responsible for developing a functional building block for
the system, capable of operating independently. The way in which different func-
tions interface would not be pre-specified. Interfaces would be negotiated locally
as the building blocks are developed, creating large numbers of possible interac-
tion networks. Whereas traditional systems engineering takes a glueware approach
to integration that tends to minimise the number of possible interaction patterns
[236], harnessing self-organising mechanisms to produce global structure provides
an important source of variety. Even when the components of a self-organising
system are fixed, the multiple possible arrangements of components provides the
flexibility to respond to unexpected environments and exploit unplanned function-
ality.

Traditional systems engineering assumes fixed epochs, where one system is replaced
by a new system that is essentially designed from scratch. However, complex
problems will not have fixed solutions, so the design, develop, operate, and dispose
life cycle is artificial. Rather than one-off replacement costs, complex systems
engineering projects could be given a continual flow of funding that incrementally
changes the system. The system is always operational, and the distinction between
legacy and current systems is dissolved. Because the interaction patterns are not
fixed, as new components are added the system will self-organise to include them.
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Some of the new components will directly compete with legacy components for
links. As the new components demonstrate better performance, their interactions
will be reinforced, while old components that fall into disuse can be removed.
The coexistence of generations in the one system provides redundancy [27], which
alleviates the need for exhaustive test and evaluation and allows greater risk-taking
and innovation when designing new components.

7.4 Attrition Warfare

Conventional military forces are organised to generate large scale effects against
similarly structured adversaries. Industrial age mass production allowed nation
states to re-equip and reorganise rapidly following defeats in battle that in the
Napoleonic era would have been decisive [295]. Therefore, industrial age armies
had to be prepared to fight wars of attrition, where the primary aim is the physical
destruction of the adversary’s armed forces and its support base. Because of this,
the attrition ‘game’ is dominated by the physical resources or mass each player
can bring to bear. Each side competes to produce effects on a larger scale in order
to overwhelm their opponent’s defences. The Lanchester differential equations are
the classical model for attrition warfare because they capture the importance of
mass in achieving the physical destruction of an opponent.

The original form of the Lanchester equation for directed fire warfare [192] is:

dmB

dt
= −rmB (7.1)

dmR

dt
= −bmR, (7.2)

where mB, mR are the number of force units in the Blue and Red sides, their
derivatives represent the attrition rate, and b, r are the effective firing rate of a
single force unit for the Blue and Red forces respectively. If the initial size of
Blue and Red is MB and MR, the solution to the differential equations can be
rearranged to give Lanchester’s square law:
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Intuitively, Equation (7.3) means that increases in initial mass MB will produce
quadratic improvements in battlefield superiority for the Blue force compared to
improvements in efficiency b.

Of course, the Lanchester model is a representation that captures the dynamics of
combat only in the limit of the simplest environment. This is because the model
assumes that every combatant is within detection and engagement range, forces are
homogeneous, fire is uniformly distributed over surviving units, and factors such
as manoeuvre, logistics, and command and control have no significant effect on
casualties. As an environment becomes more complex, mass becomes increasingly
irrelevant since the complexity limits the size of effects that can be massed against
any target. Consequently, spatial arrangement becomes increasingly important,
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which suggests that a systems approach may be more appropriate than aggregate
models.

So how is a conventional force organised? Consider two organisational drivers
for conventional military structures. Firstly, there has been a trend throughout
the history of warfare towards greater lethality at all levels of warfare in order
to mass a large scale effect in the shortest possible time frame. As is expected
from the multiscale law of requisite variety, this emphasises greater coordination
of the activities of units at all levels. “Synchronisation” enables the exploitation
of synergies and compensation for weaknesses of different units within combined
arms teams, and at a higher level of organisation by joint warfighting. Centralised
control, detailed planning and collective training exercises are the dominant mech-
anisms for producing synchronised effects. A continual focus on synchronisation
to produce large scale effects has encouraged specialisation. Specialisation can in-
crease efficiency by avoiding redundancy, but it also locks in dependencies between
units, reducing the ability of units to operate in isolation at finer scales. In order to
focus effects, conventional forces are organised to be spatially oriented towards the
forward edge of the battle area, with most protection for the front-line manoeuvre
units, less protection for stand-off indirect fire units and little protection for the
rear logistics supply chain.

Secondly, with increasing lethality comes increasing responsibility and the poten-
tial for the misuse of force to adversely affect the strategic goals of conflict. This
has reinforced the use of centralised control and codified procedures to limit flexib-
ility and prevent strategically detrimental application of force. Highly centralised
hierarchical control reliably amplifies the scale at which the commander can con-
trol battlespace effects, at the expense of the fine scale variety (complexity) that
the conventional force can cope with.

7.5 Asymmetric Warfare

In contrast to attrition warfare, asymmetric warfare is a ‘game’ between a conven-
tional military force and a weaker adversary that is unable to match the scale of
effects of the conventional force. To compensate, the weaker adversary must be-
lieve their will to accept the costs of conflict is greater than their opponent. What
began as Operation Iraqi Freedom, and is now referred to by the Pentagon as the
Long War, is a paradigmatic example. The US-led Multinational force is opposed
by an Iraqi insurgency composed of approximately 14 guerilla organisations, each
with distinct aims and relatively independent operations. Although the insurgents
have limited material means, their religious and ideological motivations provide
strong will. A history of aversion to casualties in democracies during conflicts,
especially when the conflict is peripheral to the nation’s core interests, provides a
basis for the insurgents’ belief that the Multinational force’s strategic will can be
weakened if domestic support for a continued presence in Iraq is sufficiently eroded.
At the tactical level, suicide bombings represent an asymmetry in will, where sui-
cide bombers have sufficient will to utilise methods outside those available to the
Multinational force.
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For insurgents to exploit their asymmetries, they must also negate the asymmetries
that favour the conventional force. In particular, they must avoid direct, large scale
confrontation against the better equipped, trained and synchronised conventional
force. This can be understood using a multi-scale perspective: by generating and
exploiting fine scale complexity, insurgents prevent the conventional force from
acting at the scale they are organised for – large scale but limited complexity
environments.

By dispersing into largely independent cells, insurgents can limit the amount of
damage any single attack from the conventional force can inflict. This significantly
reduces the threat of retaliation from acting as a deterrent, since the insurgents
have negligible physical resources exposed to retaliatory attack [295]. Insurgents
that do not wear uniforms and blend into a civilian population cannot be readily
identified or targeted until they attack, in a situation of their choice. There is no
longer a forward edge of the battle line, meaning softer support units are vulner-
able. The number of possible locations, times and direction of attack increases
significantly compared to attrition warfare, increasing fine scale complexity. The
heightened potential for collateral damage from mixing with civilian populations
dramatically increases the task complexity for a conventional force that must min-
imise the deaths of innocent civilians for any hope of strategic victory.

By moving into complex terrain, such as urban or high density vegetation, the
Multinational force’s most expensive sensors (such as satellites and radar) designed
to detect large scale movements are ineffective due to the fine scale of physical
activity, which provides a very low signal to noise ratio. In this situation, insurgents
control the tempo and intensity of the conflict, which enables them to exploit niches
in the fuzzy spaces near artificial boundaries, such as the traditional conceptual
dichotomies of war/peace, combatant/non-combatant, state/non-state actors, and
tactical/strategic operations, adding further to complexity. The ability to mass
synchronised battlespace effects is of little use in such a complex situation.

7.6 Adaptive Responses to Asymmetric

Warfare

Clearly the conventional force requires a different organisation to respond to asym-
metric powers, while still maintaining the ability to generate large scale effects
when required. The force must be able to generate sufficient variety in effects
at every scale, from peace-keeping and peace enforcement crises to high intensity
warfighting, to achieve full spectrum dominance. Because the biggest capability
gap is currently in asymmetric warfare, I will focus on this context.

Within the Australian Army, units form Platoons or Troops, each with a specialist
function, such as to detect, respond or sustain. The Platoons in a Battlegroup can
then be combined to form Company level combat teams, and integration at lower
levels is uncommon. In contrast, the Australian Complex Warfighting concept
[181] outlines a new type of organisation to cope with increased complexity. Smal-
ler, austere, semi-autonomous teams with modular organisation are envisaged.
These teams use swarming tactics and devolved situation awareness to operate
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as self-reliant teams that aggregate to achieve larger scale effects through local
coordination rather than central control. Teams would not be as specialised as
current units, since each team must be largely self-reliant for logistics, sensing,
decision-making and responding to threats. The difference between a logistics and
reconnaissance team for complex warfighting would be a matter of emphasis, since
both would have a base capability for mobility, survivability, detection and re-
sponse. Complex warfighting tasks such as asymmetric warfare require a shift in
conventional force structure towards Special Forces structures.

Each of these changes are consistent with complex systems insights. However,
the new organisation presents additional challenges. Whereas a centralised system
promotes standardisation of equipment and process, semi-autonomous teams will
deliberately promote variety. As well as reflecting differences in local context, the
variety will exist because some teams will discover successful strategies that are
unknown to other teams. Therefore, it is necessary to promote the spread of suc-
cessful strategies between autonomous teams to improve overall force effectiveness.
However, if successful variations are adopted too readily, the reduction in variation
between teams will diminish the force’s ability to adapt. There exists a tradeoff
between being adapted (specialised) to the current environment, and adaptability
for future contexts. Numerous examples of this tradeoff between exploitation and
exploration were provided in Chapter 5.

Another challenge associated with semi-autonomous teams is ensuring that the
goals of the autonomous teams are aligned with force level goals. Abu Ghraib is
an example where the pursuit of local goals (extracting intelligence) produced ex-
tremely damaging strategic effects. The impact of socio-cultural issues on strategic
success is clear in this example. The interplay between increasingly ubiquitous
mass media and populations that value surprise in news (which Shannon’s theory
accounts for) act to reinforce the perception of anomalies, and can also reinforce
the public response. For armed forces, the more independent teams become, the
more likely at least one team will develop a culture that reinforces strategically
counterproductive behaviour. The role of higher level headquarters that manage
semi-autonomous teams will be to clearly communicate and then police the bound-
aries of acceptable behaviour, within which autonomous teams have freedom to
innovate.

This kind of force structure places very different demands on the capability de-
velopment process. Whereas a conventional force demands standardisation so
that effects can be synchronised and the output of units is predictable, complex
warfighting teams will be heterogeneous and have varied demands for materiel.
An industrial age approach to capability development tailored to large scale pro-
duction of standardised materiel is unsuited to meeting the fine scale but complex
demands of the new force structure. In contrast, the complex systems engineering
model introduced in Section 7.3 enables a much more responsive development pro-
cess. Individual autonomous teams could test new ways to sense and respond to
asymmetric threats, enabling them to adapt at the secondary level. From the cap-
ability development perspective, semi-autonomous teams provide an ideal entry
point and realistic test bed for new systems, and allow the coexistence of legacy
and experimental systems discussed in Section 7.3. If the system provides a signi-
ficant benefit, demand for it will quickly spread through the network of teams. If
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a new system has a negative effect on one team’s performance, at least it will have
a negligible effect on overall force performance due to the autonomy of the teams.

In order to be effective, the adaptive response must occur at all levels. At the
strategic level, the use of complex warfighting teams to deny targeting success
is only one available strategy in a space that includes economic, political and
information operations. In this space, the effects of taking different sets of actions
is typically far less certain and first, second and third order adaptive cycles can
play a crucial role in identifying and exploiting useful sets of actions.

7.7 Conclusion

Asymmetric warfare presents a challenge of increased fine scale complexity. Cur-
rent force structures are monolithic bears designed for large scale effects, and must
be reorganised by devolving autonomy and increasing independence to provide
sufficient fine scale variety. Once variety is available, the best way to cope with
complexity is using adaptation, which can improve system performance over time
and track changes in the environment. Complex systems theory has the poten-
tial to improve the way military capability is acquired, organised and managed,
enabling adaptive responses to asymmetric warfare.
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Chapter 8

Capability Development

This chapter develops the second case study for multidisciplinary con-
ceptual analysis, investigating options for a more agile capability devel-
opment process. The extant capability development process is a top-
down planning, project-based acquisition methodology underpinned by
traditional systems engineering. In this chapter we present an altern-
ative process for capability development based on complex systems en-
gineering and an entrepreneurial model for project management, which
enables self-organisation with respect to capability requirements. Using
complex systems theory we contend that this provides a basis for agile
and flexible capability development, overcoming systemic issues with
the current process. In particular, self-organising capability develop-
ment is likely to result in better reuse, interoperability and integration
as well as rapid satisfaction of new requirements.



8.1. Introduction

8.1 Introduction

If the Australian Defence Force (ADF) is viewed as a system, capability develop-
ment is one of the key points of influence where the decisions made can dramatically
alter the composition and ability to fight for the future force. At a recent work-
shop on Complex Adaptive Systems in Defence, syndicate groups were presented
with the following symptoms by Capability Development Group that indicate the
capability development process may not be delivering capability in line with the
expectations of the government, the media and the ADF itself [242]:

Background. The [Australian Defence Organisation] has had a his-
tory of struggling to optimise strategies for force development. A num-
ber of systems, models and processes have been adopted and discarded.
While agility and adaptability are recognised as desirable characterist-
ics of future force structures they could also be considered desirable
characteristics of a capability development model or process.

Symptoms. The problem is primarily manifested in continuing with
capability decisions that time has rendered irrelevant, ineffective or
sub-optimal. The failure to identify the impacts of one capability de-
cision on others produces similar effects.

The words that Capability Development Group (CDG) uses to express their symp-
toms are insightful into the underlying dynamics of the problems they face. The
classic cause of the first symptom is developing stable future plans within a non-
stationary context. The planning process is so inflexible that the course of action
is invariant in the face of change. By the time the plans have been implemented,
changes to the context render decisions made at an earlier date inappropriate.
The sunk cost effect [15, 228] of developing a plan and committing to acquiring
capabilities that will be less effective than previously envisaged can exacerbate the
consequences if decision-makers are tempted to “bend reality to fit their plan”.

The second symptom is typically caused when a complex problem is segmented
into modular sub-problems. Placing artificial boundaries within the system has
the advantage of constraining the degrees of freedom for each sub-problem and
thus reducing its complexity. In capability development this is achieved by giving
program managers nearly independent projects, each with independent measures
of success. This strategy can be successful for simple problems, but as the problem
becomes more complex (ie. the number of interdependent projects increases), the
strategy does not scale, and the interfaces quickly become more complex than the
individual projects [33].

The side effect of discretising capability into projects is that when they are de-
livered to the end user, the assumptions that were made in one project may affect
another project, reducing the effectiveness of the total capability. Because pro-
gram managers are goal-driven towards and rewarded for delivering against the
requirements within their project, there is little incentive to divert resources from
internal deconflicting to external deconflicting of requirements and assumptions.
It is little surprise that under these circumstances the artificial boundaries pro-
duce stovepipes that are reinforced over time, reducing the ability of the capability
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development system to deliver holistic capabilities integrated across multiple pro-
jects.

Since a “number of systems, models and processes have been adopted and dis-
carded”, this suggests that one or more core assumptions are shared amongst
previous approaches to develop capability. After uncovering some implicit assump-
tions previous approaches have made that are not appropriate for the problem of
capability development, we will suggest an alternative methodology to overcome
systemic causes behind the symptoms that have been observed in the current
capability development process. The purpose of this chapter is not to present a
water-tight alternative to the current process. Rather, it explores how else the
capability development process could be. This is just the first step in the search
for a way of organising decision-makers, such that the process delivers capabilities
that are more closely aligned with the expectations of Government, citizens and
soldiers.

8.1.1 Novel contributions

This chapter is based on:

[270] A. J. Ryan and D. O. Norman. Agile and Flexible Capability Development.
In Proceedings of the Land Warfare Conference, Brisbane, Australia, 2006.

Our original contributions are:

1. A new way of assessing the fitness of capabilities;

2. A new approach to designing complex, tailored capabilities;

3. A deductive approach to comparing force structures; and

4. An entrepreneurial model for project management.

My role in this work was:

1. After an initial two days of jointly whiteboarding the scope, research ques-
tions and outline of the paper, I performed all of this work. The framework
of questions we asked Capability Development Group to structure their prob-
lem was developed jointly between Anne-Marie Grisogono and myself.

8.2 The Current Capability Development Pro-

cess

The current capability development process is described in detail in the Defence
Capability Development Manual [22]. Capability is defined as “the power to
achieve a desired operational effect in a nominated environment, within a specified
time, and to sustain that effect for a designated period. Capability is delivered by
systems that incorporate people, organisation, doctrine, collective training, plat-
forms, materiel, facilities, in-service support, and command and management”.
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This emphasises that capability is a systemic property that arises from the inter-
actions between the interdependent Fundamental Inputs to Capability (FIC), and
links it to achieving a specific operational effect. Although the current capability
development process is centred on the acquisition of materiel, namely major cap-
ital equipment investments of $20 million or more (or with individual items of $1
million or more), its measure of success is the based on the capability generated
by the set of FICs operating as an organised whole.

Capability systems have a life cycle that includes phases to identify needs, develop
requirements, acquire solutions, maintain in-service, and dispose of or redeploy
the system. The Chief, Capability Development Group (CCDG) shares the re-
sponsibility of the needs phase with the Deputy Secretary, Strategy. CCDG has
the primary responsibility for the requirements phase, and is a stakeholder in the
acquisition and in-service phases. Consequently, we will limit the scope of this
chapter to the needs and requirements phases of capability development.

The aim of capability planning is to “develop and maintain the most cost effi-
cient and operationally effective mix of capabilities for achieving the Australian
Government’s strategic objectives”. There are seven principles that guide the cur-
rent process. They are: 1) the process is top-down, so that the value of different
capabilities is assessed by and traceable to their contribution to the government’s
strategic priorities; 2) a bottom-up perspective examines how current and future
planned building blocks of capability can best contribute operationally; 3) value
for money, which considers the whole of life cost against the benefit of a capability;
4) a long range view is necessary due to the lag before capabilities enter service
and the duration in-service once a commitment is made; 5) flexibility, which is the
capacity of the capability development system to respond to changes in context
and short notice requirements; 6) be informed by new operational concepts and
how they may most efficiently utilise materiel to generate capability; and 7) evalu-
ate capabilities with respect to adversary capabilities rather than specific threats,
since capabilities are more enduring than threats.

It is interesting that there exist direct conflicts within the first five principles,
which means capability development decisions will inevitably involve negotiation,
tradeoffs and balancing of the development principles, rather than simultaneous
optimisation. If the top-down and bottom-up perspectives come to opposing con-
clusions, this must be resolved before a project’s priority can be agreed upon. A
project that delivers long-term capability must be balanced against more immedi-
ate requirements in order to be flexible. And value for money involves balancing
operational effect with the opportunity cost of other operational effects that the
ADF must forgo in order to commit to a capability.

The capability development process is illustrated in Figure 8.1, which is repro-
duced from the DCDM [22]. The process begins at the top left corner with the
development of high-level strategic documents including the White Paper, Defence
Updates and the Budget. These documents set the broad capability priorities
from Government specifying the strategic interests and tasks for the ADF. In the
second stage, each of the broad strategic priorities is developed into military stra-
tegic objectives, effects and options in the Australia’s Military Strategy document.
They are related: the effects are chosen to meet the objectives, while the response
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options are selected to meet the effects required. The context for analysing differ-
ent response options is provided by the Australian Illustrative Planning Scenarios
(AIPS), joint and single service experimentation and operational concepts. The
Defence Planning Guidance developed in the top right corner organises defence
contingencies into priority bands based on Government guidance.

Figure 8.1: Overview of the Capability Development Process, after [22].

The Defence Capability Strategy identifies broad military capabilities required
in each contingency, and evaluates how the requirements can be achieved at the
minimum cost through sustaining or retiring current capabilities and acquiring new
capabilities. This is an important stage since it compares the prioritised strategic
requirements developed in previous stages with the Force In Being (FIB). The
difference between the FIB as well as projects that are already in progress, and
the requirements is a set of capability gaps. The ability to fill a capability gap is
the primary justification for the entry of a new capability option into the Defence
Capability Plan (DCP).

Any organisation or group in Defence can suggest capability options (these are
expressed as an operational effect or a broadly defined equipment solution) in
the form of an Initial Capability Definition Statement (ICDS). All ICDSs are
reviewed by the Options Review Committee, known as the troika because it has
three members: Chief, Capability Development Group; Head, Capability Systems;
and First Assistant Secretary, Capability, Investment and Resources. The troika
filters the list of ICDSs, resulting in an endorsed list that is further developed
into a Capability Definition Statement (CDS). Once the CDS has been completed
it returns to the troika. If it is endorsed the CDS is given a project number

151



8.2. The Current Capability Development Process

and becomes part of the Defence Capability Plan (DCP), which also means it is
accepted by Government as an official need. The DCP is a rolling ten year plan of
all unapproved Major Capital Investment projects, and is the critical link between
strategic guidance and detailed capability planning. The completion of the DCP
marks the end of the needs phase of the capability development process.

The requirements phase consists of progressing projects through the two pass ap-
proval system and results in a tender quality proposed solution agreed by govern-
ment. Projects are developed for first pass committee approval by producing the
Capability Options Document, which lists at least three broad options that fulfil
the requirement. Projects that are approved on second pass have formal agree-
ment from Government to fund the acquisition of a specific capability system with
a well-defined budget and schedule. The details involved in first and second pass
approval are now reproduced from the DCDM (sections 3.10, 3.11):

First pass approval is, in effect, approval in principle to proceed with
more detailed analysis and costing of broad capability proposals. More
specifically, first pass approval provides government approval of:

a. the broad functions and performance of the proposed capability;

b. the proposed year of decision (YOD), Initial Operational Capabil-
ity (IOC) and Full Operational Capability (FOC). The IOC is the
point in time when a capability system is deemed by the Capab-
ility Manager as ready to be deployed in an operational role. The
FOC is the point in time when there is Operational Acceptance
or Operational Release of the whole capability, jointly ratified by
the Sponsor and Capability Manager;

c. the set of feasible generic options to be explored in more detail;

d. the broad costing for the capability options, including FIC as-
pects;

e. the timings of the development of the option(s);

f. studies or other activities to support the development of options
for the second pass, and funding to pursue those studies/activities;

g. industry engagement to develop a business case for second pass
approval; and

h. the funding needed for Defence to undertake the detailed analysis
of the approved options, including any test and evaluation (T&E)
required.

Second pass approval is formal approval by government of a specific
capability solution to an identified capability development need. Second
pass approval provides government approval of:

a. a preferred specific capability solution chosen from the narrow
band of options approved at the first pass approval stage;

b. the specific functions and performance of the proposed capability;
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c. the planned Year Of Decision (YOD), Initial Operational Capab-
ility (IOC) and Full Operational Capability (FOC);

d. budgetary provision for acquisition and operation of the capability
solution, including FIC aspects;

e. the strategy for acquiring the capability and bringing it into ser-
vice; and

f. T&E concepts and funding.

The intellectual basis for the process is the field of systems engineering, which
was covered in Section 3.3.4. Traditional systems engineering is a highly effective
methodology when certain assumptions are met. The requirements for the system
should be known in advance, they should not be subject to change within the
lifetime of the project, and resources across the whole process should be centrally
controlled and able to be reallocated [236]. Unfortunately, none of these assump-
tions hold. The capability development process results in force structures that
are unique for each operation, exist in a changing context, and are not developed
under fully centralised control. It has been demonstrated that individual projects
– let alone the whole capability development process – exist beyond the boundary
conditions for the successful application of traditional systems engineering [236].
However, guidance for this domain is not entirely absent. Complex systems engin-
eering, while still in its infancy, promises to address increasingly complex real-world
problems using complex systems techniques [59].

8.2.1 Requirements

Based on the presentation by Capability Development Group [242], an improved
capability development process would deliver more agile capabilities that are able
to quickly assemble into forces to meet new mission operational requirements,
with reduced friction and increased synchronisation and efficiency. Rather than
take this as our starting point, we firstly examine why this may be desirable.

The specific operations the future force will undertake are unknown. Although the
primary dimensions that characterise future threat environments are known, we
cannot rule out the emergence of a new dimension. An example of this occurring
is the use of nuclear weapons in World War II, which produced a new dimension
of Weapons of Mass Destruction for both capability and the threat environment.
Consequently, it is reasonable to assume that future threats will not only be non-
stationary, but may develop in dimensions of which we are currently unaware. This
has implications for measuring risk, since the theory of probability does not apply
- it is the difference between an uncertain and an unknowable threat.

In addition, while Western defence forces have become increasingly organised to
mass large scale effects, the current asymmetric threats are smaller scale but high
complexity threats (see Chapter 7). In order to generate capabilities that are
structured for complex warfighting, the capability development process will need
to shift from large scale capability development to complex capability development.
This is a key distinction that will be examined in Section 8.3.2.
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It is worth explicitly identifying the link between threats and the capability de-
velopment process. The type of threat the future force faces will shape the force
structures that can successfully achieve their mission. The force structures that
are required to succeed against a given threat dictate the requirements for materiel
that the force structures consist of. The materiel requirements in turn shape the
process of developing capability, since the process must be responsive to changes in
the threat environment leading to demand for new materiel. Figure 8.2 summarises
this causal relation.

Figure 8.2: The influence of the nature of threat on the capability development
process.

Figure 8.2 provides the business case for improving the agility of the capability
development process. As long as the threats the ADF face can change and evolve,
the capability development process must be flexible and agile if it is to supply
effective capabilities in this environment.

The detailed requirements for a more flexible and agile process are now developed.
CDG identified a number of difficulties with the current process [242]:

Issues. Some of the issues include:

• Monitoring and identifying changes to original assumptions be-
hind decision making and feeding this back in to effect change,

• Map, synergise and deconflict interactive processes such as intelli-
gence, strategy, capability development, shaping and influencing,
concept development and experimentation both functionally and
across Defence outputs,

• Map interactions between needs, requirements, acquisition, in ser-
vice and disposal phases, and

• Enhancing agility and adaptability characteristics of the system-
optimising decision making and decision makers.

The first issue shows an implicit desire to develop and maintain a central list of
changes to assumptions to identify points of impact. Such a centralised repository
is likely to become outdated and add unnecessary overheads to the projects by
continually requesting data in the struggle to remain relevant. This also assumes
that changes to assumptions are understandable and identifiable as a coherent,
consistent set. If this is not the case then centralised problem solving reduces to
trial and error [171]. The requirement we can extract from this issue is the ability
of the process to adapt to changes in assumptions, whether these are monitored
and understood centrally or not.
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The second issue indicates that the capability process cannot be separated from
other functions within the ADF such as intelligence and concept development.
There is no clear boundary separating capability development from the rest of the
ADF, and since the rest of the ADF consists of autonomous actors who are not
under the direct control of CDG, decisions within the capability development pro-
cess must be negotiated with the other autonomous actors in order to achieve a
successful outcome for the ADF. This must be explicitly acknowledged in the cap-
ability development process in order to deliver successful outcomes. In particular,
it must be reflected in the way the success of individuals is measured.

Once the assumption of a centralised mapping mechanism is removed from the
third issue, we require that the capability development process manage interactions
across the functional boundaries within the capability development system. This is
because if the functions coordinate their activities they can explore a greater region
of outcome space, which we expect will include regions that deliver more capab-
ility to the end user. Therefore we need guidelines for the interactions between
functional areas that enable the capability development system to find and exploit
desirable regions of the outcome space.

The fourth issue implies that the current process is rigid, and asserts that a more
adaptive and agile process will lead to more optimal decision making. While we
agree that adaptation and agility are desirable attributes of the process, it should
be noted that no matter how adaptive a process is, it is likely to satisfice rather than
optimise within a complex system [11]. An excessive focus on optimisation can
lead to improvements in efficiency, while the more important issue of effectiveness
is ignored.

CDG have identified features of the process that lead to complexity [242]:

Complexity. The complexity comes from:

• Lag between a control and its effect - decisions on force structure
taken now may not be implemented for 2-15 years. How to ensure
the relevance of decisions made in very different contexts,

• The interaction between elements of capability and understanding
how changes to one element impact upon others,

• The interaction between a number of autonomous actors and pro-
cesses which are not constant and also change with time, and

• The impacts of inputs from outside actors (Government, Industry)
that may not be consistent with any logic/process used within
Defence.

The first and forth items may add to problem difficulty, although they do not add
to complexity in the technical sense of the word. However, the second and third
items are rooted in complexity. The implications of each of these factors for the
capability development process are now considered.

From control theory, we know that controlling even a linear time-invariant system
using a static output feedback (or showing such a controller does not exist) is
an open problem [300]. The long time lag identified in the first item above can
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lead to common control problems such as overshoot and oscillation. We have
shown earlier the system is not time-invariant, which makes the control problem
analytically far more difficult. This reinforces the requirement to produce a process
that is adaptable rather than optimised.

The second item identifies the fundamental cause of complexity, which is interde-
pendence between parts of a system. In any operation, the products of the capabil-
ity development process must interact in order to generate capability. Because the
current process acquires new equipment out of context in stovepiped projects, a
project could meet its internal specifications, but have unintended consequences on
other projects when they are required to interact. In order to avoid this outcome,
we need mechanisms for revealing any conflicts with existing or planned capabil-
ities, and negotiating decisions between a project and the capability owners they
impact upon.

The third item requires that the autonomous actors be explicitly accounted for in
the process, and importantly must recognise that actors change due to the posting
cycle, while external agencies may also reorganise and change their procedures and
processes. These complexities contribute to uncertainty, eroding the effectiveness
of long-term planning and analysis.

The final item notes that the Government controls the direction, the requirements
and the budget for defence, all of which may change without warning. The layer
of Government control above the Australian Defence Force cannot be within the
scope of any changes to the capability development process, and therefore the
process must be designed to work within the Government layer. In addition,
the ADF can only acquire equipment that industry can supply. The capability
development process will enhance its long term effectiveness if it can foster a
strong local industry, which may place pressure to provide a degree of certainty in
decision-making and thereby limit short term adaptability.

CDG have provided the following list of metrics [242]:

Metrics. An improvement would be observed as reduced friction and
increased synchronization and efficiency of capability development pro-
cesses. This might be evidenced by:

• Reduction in time taken in requirements and acquisition phases
of capability, development cycle and corresponding freeing up of
man hours,

• Greater confidence in process,

• Reduction in delivery of capability that is missing some vital sup-
porting component,

• Reduction in delivery of capability where initial need has changed,
and

• Reduction in delivery of capability where requirements have been
superseded.

In summary, a new process should aspire to be simpler and streamlined while de-
livering a capability the end user is happier with. Changes to the process should
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result in greater adaptivity, robustness to change, and better management of in-
ternal and external interactions across system boundaries and between autonomous
actors.

8.3 New Perspectives

Different perspectives on capability development lead to different ways of thinking
about problems and solutions. In this section we characterise the current paradigm,
then develop new perspectives for measuring fitness, acquiring capability, assessing
the gap between needs and capability, and controlling capability development de-
cisions. Our characterisation of the current perspective is broad and non-specific,
because it is intended to apply equally to previous similar approaches to capability
development.

8.3.1 What is fitness for a capability development process?

The measure of fitness we use to compare different capability development pro-
cesses will shape the characteristics of the process we select. The current process
can be better understood once the benchmarks against which capabilities are se-
lected is appreciated.

Current measures of fitness: Error, risk and opportunity

The traditional framework for comparing capability development processes is in
terms of error, risk and opportunity. The process should allocate resources to
projects proportional to the ratio of return to risk. The bulk of the decision-
making process in capability development is geared around minimising the error
of estimating the return and the risk for individual projects. For example, the
Kinnaird review [182] recently resulted in changes to the capability development
process to provide more structured roles for DMO and DSTO in assessing and
signing off on the schedule and technical risks respectively for every project. This
makes good sense from the perspective of error, risk and opportunity.

The current process measures the fitness or value of a project by its promised
contribution to predicted future requirements articulated in high-level strategic
guidance. This is a purely top-down approach to evaluating capability, since it
is measured by the perceived value according to those at the top of the organisa-
tional hierarchy. Under a centralised planning framework this makes sense because
central decision-makers have a bigger picture view of the organisation, its purpose
and its likely future. The greater the potential of a project to deliver decisive
capability in future operations, the more resources the process is willing to invest
in that project. Resources may be effectively fully committed to an acquisition in
this process before the equipment has ever been built or tested, due to sunk costs
and an inflexible process acting as a barrier to change. The concept of efficiency
in this context refers to the ability to deliver a project to requirements on time
and on budget.
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To mitigate the risk of a strategy that could lead to lock-in, a key driver in the
current process is maximising accountability. The existence of an audit trail from
identified future requirement through to the delivered capability is necessary to
ensure the risk of misspending taxpayers’ dollars is minimised. The audit process
tends to be self-reinforcing, since if a project delivers a capability that does not
meet the original requirements, one cause that is often blamed is some form of
leeway in the current accountability process. The obvious remedy is to subject
future projects to greater control. Of course, even within this perspective it is
obvious that there is a point where regulating more details of the process will lead
to inefficient use of taxpayers’ dollars due to the overheads of complying with the
process. However, the cost of compliance can be justified as insurance against large
deviations from the expected capability a project will deliver, and large deviations
have the most detrimental impact for the Minister of Defence, in the media and
on morale.

Interoperability in current processes takes a traditional systems engineering per-
spective on integrating a system of systems. In order to achieve interoperability
it is necessary to develop systems in relative independence and then spend addi-
tional time and money to integrate the separate systems. In order to minimise the
integration costs, the relations between systems are mapped out using tools such
as Use Cases to identify functional flows. The precise relations that are required
between systems are then specified in detail and this minimal set is implemented.
The informal term for the implementation of the integration function is glueware.
As the name suggests, glueware holds the system components together, but it
also shares another property with its namesake: glueware tends to set [236]. This
means there is only one way (or a very small number of ways) in which the system
of systems can be organised to perform its minimal set of functions. It also means
that as new systems are added to a system of systems, they must find a way to in-
teract with the current agglomeration rather than reorganising the interactions of
several component systems. Over time, the integrated system of systems becomes
a spaghetti of fixed interactions and to improve the system of systems, engineers
are forced to redesign it essentially from scratch.

A new measure of fitness: End user value

There exist alternative frameworks for assessing the fitness of a capability develop-
ment process. Given the non-stationary threat environment described in Section
8.2.1, the fitness of a project cannot be determined in advance, but relates to its
utility to the end user during real operations. This is an important distinction,
since it redefines our understanding of efficiency. A project could deliver to re-
quirements ahead of time and under budget, but still have a low efficiency if it
has no impact on capability when it is deployed. Similarly, a project that does
not meet the original requirements could be highly efficient if it is used during
operations by end users in ways the capability developers never envisaged.

An example is the use of the 88mm Flak guns (see Figure 8.3), initially designed
solely for anti-aircraft defence, in many other roles including anti-tank, vital asset
protection, bunker busting, offensive support, sea targeting and beach landing
defence. Rommell most famously used the 88mm Flak gun during the Battle of
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Sollum in June 1941 at Halfaya, where they destroyed 123 out of 238 attacking 
British tanks from concealed dug-in positions. The versatility and effectiveness of the 
88mm Flak gun can be explained by the employment of building blocks and 
coevolution. Having interchangeable components allowed the development of 
multiple variants that recombined the basic building blocks to produce different 
capabilities for different roles. The variants then co-evolved in response to the way in 
which commanders employed them in the field. For example, the early use of the 
88mm Flak guns during the Spanish civil war to attack bunkers and troops led to the 
development of the Sonderanhaenger 201 (special trailer) enabling firing at a low 
angle without lowering the mounting to the ground. From 1940 the Sonderanhaenger 
were fitted with shields for protection during direct fire operation. The 1941 Flak 
variant rotated the mount by 90° to reduce the silhouette. None of these features were 
required for the original anti-aircraft function, but once end users discovered the 
utility of the gun in different roles, feedback into the acquisition process enabled the 
adaptation of the equipment to the new context. 
 
 
 
 

 
NOTE:  This figure is included on page 159 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 8.3: 88mm Flak Anti-Aircraft gun in use as an Anti-Tank weapon, after 
[212]. 
 
 
Once it is acknowledged that the context is non-stationary and unable to be predicted, 
the utility of centralised futures planning must be questioned. Although the top of the 
hierarchy has access to a broader spectrum of information, the information has been 
filtered to reduce complexity and the decision-makers are removed from direct 
operational experience. Any change in the context will almost certainly be first sensed 
at “the edge" of the system, in the lowest ranks of the hierarchy. Since this is also 
where the value of capability is realised, the aggregation of requirements from the 
edge of the network could provide much more efficient capabilities. Moving power to 
the edge is seen to be a central issue for force transformation [5], but it is equally 
applicable to the capability development process itself. 
 
There are currently four arenas where value is determined in a decentralised way 
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that balances competitive and cooperative forces: science, democracy, the justice
system and regulated free market economies [61]. For example, democracies and
free market economies both rely on signals of preference from end users (voters
and consumers) to reinforce strategies that provide value to the whole system.
Development in these arenas occurs through evolution rather than central con-
trol. A necessary condition for “edge organisations” is the ability to collect and
aggregate signals of preference from end users. There are many mechanisms that
could facilitate this process within capability development, ranging from surveys
and referendums through to a level of direct purchasing power.

From this perspective, efficiency is no longer a primary objective. The focus on
optimisation within a traditional systems engineering context can result in optim-
ality under a very specific set of conditions, but systems that are brittle to changes
in the environment or underlying assumptions. The optimal solution on a fitness
landscape is all too often on the edge of a cliff. For example, the optimal racing
line for a car around a barrier is immediately adjacent to the racing line that hits
the barrier. In this case, the optimum exists on a discontinuity that leaves no
margin for error.

Optimisation, combined with our first definition of efficiency, results in methodo-
logies based on standardisation and eliminating redundancy. An example of this
thinking in the DCDM is the justification of a centralised filtering process “to re-
duce the amount of unnecessary work” [22, Section 2.23]. This approach is ideal
for industrial manufacturing, where production lines transform tightly controlled,
constant inputs into constant outputs. However, a side effect of increasing the
efficiency of a system in this way is that the elements become tightly coupled,
which in complex systems dramatically increases the risk of catastrophic failure
[246]. These failures are caused by the amplifying effect of tight coupling, which
allows small perturbations to cascade through the system.

Insights from complex systems science propose exactly the opposite of the tradi-
tional standardisation and efficiency framework: diversity and apparent redund-
ancy are essential elements of a robust and adaptive system [33, 139]. From this
perspective, it is natural to develop a portfolio of possible capabilities rather than
pursuing a single option. Different options could be funded in parallel at a low
level, with end users receiving small numbers of rapid prototypes. Value is assessed
in the most realistic environment available by users, and competing capabilities
have their funding grow at the expense of others based on relative assessments
of fitness. Successful capabilities survive, and are reinforced by larger scale de-
velopment and deployment across the ADF. Weaker programs must die out when
they can no longer successfully compete for their funding. Because the capability
development process would deliberately maintain a level of diversity, as the con-
text changes weaker programs (as assessed in the old context) may become more
relevant, and as their funding grows with the corresponding increase in fitness,
the capability could be scaled up rapidly, when compared to a capability devel-
opment process that commits to selecting a single capability option optimised for
the old context. Evolutionary approaches that incorporate strong real-world feed-
back deliver capabilities that are characterised by their effectiveness, rather than
efficiency.
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Integration would also acquire a new emphasis. Rather than developing glue-
ware, integration would set common languages and interface standards so that
systems could self-organise into many different working configurations. Here, self-
organisation refers broadly to an increase in organisation that does not follow an
explicit instruction template and is not centrally directed.

The Internet is a paradigmatic example of how the specification of minimal inter-
face standards delivers enormous flexibility in the functionality and topology of
interactions. As new components are added to a system, the topology of interac-
tions can reorganise into a new stable pattern. As legacy components are replaced,
the interactions with other components can gradually shift from the old to the new.
This has the added benefit of providing redundancy and robustness. Redundancy
in turn allows new capabilities to be more innovative and less risk averse, since the
existing components provide safety backup until the new components are proven
in real-world contexts.

8.3.2 How complex is capability development?

All systems contain a fundamental tradeoff between complexity and scale [32].
Here, complexity is measured by the distinguishable variety in the system, while
scale means to multiply or repeat a component of the system. Intuitively, this
tradeoff states that generating large scale effects is only possible by sacrificing the
variety of the components of the system. In this section, the current emphasis
on large scale acquisition is contrasted with an alternative complex acquisition
approach.

Current approach: Large scale acquisition

The current approach to capability development is a large scale approach. Many
projects are a significant percentage of the defence budget, and involve the mass
production of standardised equipment which is then deployed across large parts
of the ADF. For example, the Steyer rifle, the ASLAV armoured vehicle and the
RAVEN communications sub-system have been produced in several standard vari-
ants at large scale. Again, the motivation for large scale acquisition is efficiency.
The economic growth of the industrial age was a result of the efficiencies of large
scale transformation of resources into goods and services.

The large scale nature of most acquisitions demands a rigourous capability devel-
opment process, since errors are amplified by scaling, and can significantly threaten
the capability of the ADF. The requirements for rigour and long term planning
contribute significantly time lags and inflexibility in the capability development
process.

A New approach: Complex acquisition

Section 8.2.1 identified increased complexity as a challenge for the ADF. The draft
Australian Army Complex Warfighting concept [181] outlines a new type of or-
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ganisation to cope with increased complexity. Smaller, austere, semi-autonomous
teams with modular organisation are envisaged. These teams use swarming tactics
and devolved situation awareness to operate as self-reliant teams that aggregate to
achieve larger scale effects through local coordination rather than central control.

This kind of force structure places very different demands on the capability de-
velopment process. Whereas a conventional force demands standardisation so
that effects can be synchronised and the output of units is predictable, complex
warfighting teams will be heterogeneous and have varied demands for materiel.
An industrial age approach to capability development tailored to large scale pro-
duction of standardised materiel is unsuited to meeting the fine scale but complex
demands of the new force structure.

Complex acquisition requires the delivery of tailored solutions to different users,
which increases variety. It also implies closer feedback between end users and the
acquisition process. There is still room for large scale production, but this would
be driven by end user demand rather than strategic planning. An alternative to
conventional large scale engineering – complex systems engineering – was described
in Section 7.3.

8.3.3 How are capability gaps identified?

The identification of capability gaps plays a crucial role in establishing the business
case for large investments in materiel, providing an audit trail between projects
and unmet military strategic needs. In this section, we consider the implications
of approaching this problem in reverse, starting with the force in being rather than
the high level strategic need.

Current philosophy: Inducing requirements

While comparing two capabilities against one possible future is difficult, comparing
and deciding between alternatives against an open-ended ensemble of possible
futures is a truly “wicked” problem. Rather than tackle this problem directly,
the current process addresses the simplified problem of a number of generic point
scenarios that include representative elements of future operations. This idea is
illustrated by the first recommendation of the recent Kinnaird Review [182] of
procurement in the ADF:

Recommendation 1

Defence should present to government the following information in a
succinct form on an annual basis:

• an assessment of the types of contingencies Australia might face
in carrying out the strategic tasks endorsed by government in
Defence White Papers;

• advice on the military force required in each contingency and the
capacity of the ADF to apply this force now and in the future;
and
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• advice on capability to be sustained, acquired or retired to ensure
this can be achieved at acceptable cost.

As described in Section 8.2, these point scenarios are identified broadly in the high-
level strategic guidance. The most common analytical basis for assessing capability
gaps are the Australian Illustrative Planning Scenarios (AIPS). The AIPS are
designed to cover the spectrum of operations in dimensions such as intensity of
conflict, type of adversary, geography and environment, and operational objectives.

For each context, the force structure and capabilities required are induced. The
capabilities are compared to the Force In Being (FIB) and current capability pro-
jects to identify capability gaps. Each context reveals a different set of capability
gaps. When aggregated, the capability gaps may produce an inconsistent or con-
flicting set of requirements. For example, mobility in high-intensity conflict may
require a high degree of survivability, while mobility in peacekeeping operations
may require a vehicle that does not intimidate or discourage interaction with the
local population. The aggregated requirements list is highly dependent on the
details of the scenarios chosen, and any bias towards one type of scenario will be
reflected in the requirements list. This also introduces the need to rank the relative
importance of the point scenarios in order to prioritise the capability gaps, which
is currently done centrally and at the highest level.

A new philosophy: Deductive exploration

In contrast, a deductive approach starts with the FIB. Human creativity is har-
nessed to invent new force structures and capabilities that can be added to the
FIB, within some resource limit. A new force structure can then be tested against
the AIPS, and is only considered if it may outperform the current force structures
in all scenarios. Unlike induction, the deductive approach is logically valid. More
importantly, the deductive process begins with a coherent force structure that in-
cludes the FIB, so the requirements do not contain inconsistencies. If capabilities
are viewed as building blocks that can be reorganised to fulfil different missions,
the number of useful ways they can be organised provides a measure for the poten-
tial number of different operations a given set of building blocks could perform. In
other words, this measures the force’s flexibility, or equivalently its variety. This
enables a comparison of the reach of different force structures within an open-ended
ensemble of possible futures, which is not possible within an inductive framework.

Because the deductive process starts with existing components that may be re-
organised, it is likely to result in better reuse. Interoperability and integration
now naturally fit with the new focus on self-organisation, rather than generating
glueware. Recombining the interactions between existing components with small
modifications, rather than acquiring new systems from scratch, can satisfy new re-
quirements quicker. This is reminiscent of the way nature opportunistically reuses
building blocks for new functions. For example, the evolution of limbs from fins
shows how the lobe-finned relatives of early tetrapods produced weight-bearing
fins during the Devonian period [84]. This is thought to have eventually changed
the function of their paired pectoral and pelvic fins from providing underwater
stabilisation and lift to moving across land.
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8.3.4 How are capability development projects controlled?

Approaches to controlling the implementation of capability development decisions
can be broadly characterised as either centralised or decentralised. Neither ap-
proach is intrinsically superior, as each approach is useful for different contexts.
The majority of structured human activity is organised similar to a centrally con-
trolled hierarchy. Interestingly, most other living systems are better described by
distributed self-organising networks. In this section, the current centralised process
is contrasted with an alternative decentralised model for capability development.

Current approach: Top-down centralised control

The current approach to capability development is a predominantly top-down dir-
ected process. All major projects must demonstrate a link to centralised strategic
guidance. This provides a rational audit trail for decision-making, which maximises
accountability. Projects are then allocated with the cost, schedule and content of
the project pre-defined. The posting cycle of 2-4 years means that program man-
agers will generally not control a project from start to finish, since the average
project is significantly over 5 years. As caretakers, the incentive structure for pro-
gram managers is geared towards minimising the risks of not meeting the cost,
schedule and content goals. Program managers have a limited ability to change
these parameters to avoid unanticipated threats or exploit new opportunities.

Centralised control linearly transforms requirements into implementations, since
it requires sequential, synchronous decision-making. Centralised control is usually
implemented as a hierarchical control structure. It is most effective for problems
with bounded complexity, when prediction and precise control are both possible
and desirable. The advantages of hierarchies (see for example [329]) include the
ability to exercise tight constraints on the behaviour of large numbers of people
from the top down. The ability of different levels of the hierarchy to solve problems
of different scales allows the system to apply course-graining filters and operate at
multiple levels of complexity, provided cross-level interactions are minimal. The
major limitation of hierarchies is they cannot cope with significantly greater com-
plexity than their central node, which is usually an individual. This means there
is a limit to complexity, beyond which the hierarchy is no longer the most effective
way of organising human activity [25].

An insightful exposition of centrally controlled hierarchical organisation is given
in Bar-Yam’s latest book [34]. The example is lengthy but highly relevant to
understanding the limitations of centralised control.

In the Soviet Union tremendous effort was devoted to planning the
economy. There was a general five-year plan, and then there were de-
tailed one-year plans that were broken up further into one-month plans.
They used a form of computerized scientific management, as well as a
careful negotiation process between individuals who were responsible
for individual enterprises in the system. In the one-year plans, the
flow of materials, products, labor and money was directly specified for
each product within each enterprise. Not only was what went in and
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out specified but also where it came from and where it went to. On a
daily basis (and then weekly, monthly and yearly) the flows of money
were monitored by the banking system so that they corresponded to
the plans. The prices were set centrally so that the flows of money cor-
responded to the flow of materials, products and labor. The planners
were well aware of the U.S. free market system and they viewed it as
wasteful. Planning, they believed, would lead to increased efficiency
due to an elimination of wasteful duplication of effort. In the free mar-
ket system there are multiple companies doing the same thing. This
repetition of effort seems to planners to be a waste of labor and capital.

How well did the planned system work?

In a supermarket in Moscow, the total number of possible foods you
might find was only roughly a hundred. . .Most of the time even these
foods were not available. It was a system where scarcity was the
rule. People had to be satisfied with what there was, not what they
wanted. . .Waste was very high, 20-50%, even though the items were
very scarce. A substantial fraction of fresh fruit rotted in warehouses. . .
Waiting in line and shopping generally took a substantial fraction of
people’s time and a significant fraction of income was spent on food.

This was the main food system of the Soviet Union. . . The farmers’
markets were the main source of additional food options, though at
significantly higher prices.

Contrast this with the U.S. food supply system at the time. American
supermarkets in this period were stocked with well over 10,000 products
(today nearly 40,000), selected from over a hundred thousand possible
products by supermarket owners. . . Food of various types, prices and
qualities was available at essentially all times (24/7) and in all loca-
tions. The economy as a whole was and is consumer-limited rather than
supply-limited, so that advertising is necessary for sellers to promote
their products.

There is a direct connection between the failure of the Soviet food
system to provide adequate improvement and the collapse of the So-
viet Union. The person “in charge” of agriculture in the USSR from
1978-1985 was Mikhail Gorbachev, before he rose to become General
Secretary in 1985. His college degree was as an agronomist-economist.
The ineffectiveness of the agricultural system led to Gorbachev’s efforts
to change the Soviet system and might be considered among the im-
mediate causes of the collapse of the USSR. The leaders of the USSR
were very aware of the comparison of their effectiveness as measured
in comparison with the U.S. and other countries. Thus, we would be
well justified in saying that the inability to perform the complex task of
food production and supply, as compared with the effectiveness in other
places, contributed to the downfall of the centrally planned economy
of the USSR.

The collapse of the Soviet Union, the free markets in China, the change
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of many governments from dictatorships to more democratic systems
and the implementation of [Total Quality Management] in corpora-
tions all point to the inability of central control to effectively manage
the complexity of modern social organizations in the face of complex
external forces and demands.

The planning process for the Soviet economy has a similar perspective to the cur-
rent capability development process. The underlying justification is that analysis
and rigorous planning results in more efficient utilisation of resources and better
decisions. The problems experienced within the Soviet economy also have ana-
logs within capability development: end users have little choice and little say, are
forced to wait for costly equipment (the media continually reports budget and
schedule over-runs), ammunition and consumables are scarce, and the system does
not appear responsive to changing needs. The central planners have observed sim-
ilar symptoms of inefficiency from “capability decisions that time has rendered
irrelevant, ineffective or sub-optimal”.

A new approach: Self-organising capability development

By viewing program managers as entrepreneurs, an alternative approach to cap-
ability development can be advanced. An entrepreneur has control over the niche
their business occupies. They define the need their project will fulfil and the solu-
tions they provide. Rather than being rewarded on the promise of their project, an
entrepreneur is rewarded for delivering successfully to their clients. An immediate
implication of this model is that some project deliverables must occur at a faster
rate than the posting cycle, so the entrepreneurs can receive feedback.

If the capability development process is viewed through the lens of business ana-
lysis, an alternative to top-down definition of capability needs becomes apparent.
The requirements we described in Section 8.2.1 for capability development are
analogous to the requirements for the set of all suppliers in an economy. Suppliers
want to minimise the cost of producing goods and services while maintaining agil-
ity with respect to shifts in consumer tastes and demands. While short-term trends
in demand can be identified, long-term changes in consumption are unpredictable.
Central planning to manage the evolution of supply to meet demand has already
been shown to be unsuccessful in the case of the Soviet food production and dis-
tribution system [34]. Centralised control is unable to scale up to the complexity
of this kind of problem. In a non-stationary and disruptive dynamic context one
type of agent drives the self-organisation of the economy to meet demand: the
entrepreneur.

An entrepreneur is rewarded for identifying and fulfilling a consumer’s need for
less than or equal to the price they are willing to pay for it. The entrepreneur
has control over the niche they fulfil and interacts with other suppliers in both
competitive and cooperative relations, depending on the degree to which their
neighbouring suppliers’ goods and services substitute or compliment their own
product. Whether or not individual entrepreneurs adapt to changing tastes, the
economy as a whole is still adaptive.

The entrepreneurs whose goods and services are most demanded receive the most
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revenue, and the proportion of revenue that is reinvested reinforces the growth of
the entrepreneur’s company. Entrepreneurs that provide no value to consumers
soon go out of business. The large personal rewards for success provide the incent-
ive for entrepreneurs to take risks and identify latent regions of value.

The larger and more valuable an unsatisfied need becomes, the greater the rewards
that are available to a new entrepreneur. In this way, the economy effectively
“auctions off” new niches to the first entrepreneur who can identify and supply
goods and services for a given cost. The value of new goods and services is always
assessed by consumers.

This entrepreneurial model for capability is fundamentally decentralised. Pro-
gram managers are given greater autonomy rather than being centrally controlled.
Decentralised control allows parallel, asynchronous decision-making, which is non-
linear and can scale effectively with increasing complexity.

We are not suggesting that program managers should be subjected to all the ex-
tremes of market forces. However, a degree of market pressure could change the
incentive structure, such that the capability development process is more adapt-
ive. There are many mechanisms for the attribution of credit to entrepreneurial
program managers, and only a subset of these are financial.

Another important caveat is that free markets operate best (meaning that certain
undesirable characteristics, such as not accounting for externalities or over-utilising
common resources, are reduced) with a degree of central regulation. Constraints
are required to ensure negative externalities are paid for within the system and
that self-interest does not dominate the interests of society. In the context of the
capability development process, market regulation corresponds to constraints on
the freedom of action of entrepreneurial program managers. This activity in [33] is
described as the creation of a planned environment that fosters learning by doing
and enables unanticipated advances using evolutionary engineering.

In capability development, an entrepreneurial model for managing capabilities
could provide the engine for adaptation and agility in capability. In order for
the model to succeed, the capability development process must be modified to
operate as an effective marketplace.

8.4 Summary

CDG has identified agility and adaptability as important characteristics of the
capability development process. We have shown why this is important by linking
changes in the threat environment to the need for a flexible capability development
process. A detailed examination of the symptoms, issues, complexity and metrics
for improvement provided by the client established some of the problems with the
current process and identified the requirements for a new capability development
process.

In Section 2, four new perspectives were contrasted with the current capability
development process. By transferring some decision-making power to the edge of
the organisation, capability development can be more agile to changes in context.
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By incorporating complex acquisition methods, the process can generate a greater
variety of capabilities, which increases the force’s ability to cope with complex-
ity and evolve novel solutions. Through a deductive exploration of possible force
structures, projects can be selected in the face of great uncertainty. By changing
the incentive structure and increasing the autonomy of program managers, the
capability development process can adapt to avoid threats and exploit opportun-
ities.

The new perspectives we have surfaced in this chapter provide insights about
some limitations of the current process, and have suggested new directions that
may overcome systemic issues in the capability development process. A detailed
analysis of those directions is beyond the scope of this chapter, but would appear
to be an obvious direction for further research. In particular, the issue of “market
design” requires a synthesis of deep understanding of the functioning of success-
ful markets, and the specifics of the capability development environment, before
specific recommendations could be made.

We are not advocating that the old metrics, production and control structures be
discarded. Instead we would like to emphasise that the traditional perspectives
are incomplete. We should aspire towards a dynamic balance between the current
process and new mechanisms that increase adaptability. If agility and flexibility
are truly desired, traditional approaches must be augmented with greater end-user
participation, complex acquisition methods and greater autonomy for program
managers.
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Chapter 9

Conclusion

This final chapter summarises the results of my thesis. More import-
antly, I reflect on the relationships between chapters, showing how these
connections allow us to transcend the false dichotomy between inquiry
and application, and the arbitrary boundaries between disciplines. The
conclusion of my thesis is that the best way to understand, intervene
in and design complex systems is with a multidisciplinary approach.



9.1. Ontogeny of This Thesis

9.1 Ontogeny of This Thesis

In Greek, θέσις literally means position. To establish a position, it is necessary
to arrange one’s research into a logical progression that tells a story whose as-
sumptions are reasonable and whose conclusions are justified. In this thesis, the
story starts with a seed of doubt, found at the core of rotting fruit fallen from the
tree of model-based approaches. It begins in earnest by establishing new roots in
philosophy, matures by growing a strong trunk of theory, and culminates in the
fruits of my labour, two ripe and juicy real-world applications.

This tale lies in stark contrast to the actual sequence of events from which it was
constructed.

My candidature commenced with a set of seven applied complex systems projects
that crawled along roughly in parallel. These applications provided me with a
broad and healthy dose of experience, but their only tangible contribution to this
thesis was the application in Chapter 1 – an example that I believe demonstrates
the misapplication of complex systems. The rest of the thesis unfolded by chapter
almost exactly in reverse order, as my interests migrated towards more theoretical
concerns, and then into philosophy. It was only towards the end of the write-up
that the unifying theme of multidisciplinary conceptual analysis became apparent.
But even this account belies the non-linear nature of research, since formalising
the theory induced changes to the applications, while developing the philosophy
unleashed still greater modifications on the later chapters. Although inconvenient,
the frequent revisions signified firstly that my inquiry was generating meaningful
distinctions, and secondly that the parts were strongly related.

That philosophy is necessary for sensible applications.

That theory needs to be grounded by worked examples, and informed by more
general principles.

This sounds obvious, but then why is breadth systematically deferred in favour
of depth in academia? Do the limits to cognitive capacity necessitate organisa-
tion into intellectual stovepipes? It gradually dawned on me that not only could
my thesis refute such a conclusion by counter-example, but that this was the
deepest theme of my research. This chapter concludes by re-capping the contribu-
tions of each chapter. I then focus on the multi-disciplinary relationships between
the chapters. They demonstrate that there are insights that cannot be found
through specialisation – emergent properties that do not fit within the scope of
disciplinary stovepipes. Finally, I make some observations on future research in
multi-disciplinary approaches to complex systems design.

9.2 Summary of Results

Recall the questions in Section 1.4 that motivated this thesis.

1. How do models represent the underlying system of interest?
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2. What is a systems approach?

3. What sort of insights are unique to a complex systems approach?

4. Are there alternatives to model-based applications of a complex systems
approach?

5. How are the concepts of complex systems interrelated?

6. What is emergence?

These questions are used, in the following subsections, to review the contributions
of my thesis.

9.2.1 How do models represent?

The first question was answered in Chapter 2 by developing a general definition of
representation:
Definition 9.1 (Representation). A triadic relation between a model, entity and
agent. The model substitutes for at least one entity, shaping the behaviour of at
least one agent.

This identifies the crucial role of the agent in constructing representations, and
how models must affect the agent’s predisposition to behave. However, many
more detailed questions on representation were also addressed. There are three
types of pure ground for representations: iconic, indexical, and symbolic. The
three types of external models are formal systems, analogs and language. The
general nature of my definition of representation was demonstrated by considering
representation in metaphysics, military theory and systems theory.

In contrast to external models, internal models give rise to an infinite regress,
unless the interpretant is ultimately a change in external behaviour. Internal
representation underwrites explanations of the purpose of the brain in classical
and connectionist cognitive science, but this assumption has been challenged by
a growing number of anti-representationalist arguments. Analysis of this debate
in the context of Peirce’s triadic relation revealed the insight that rather than the
dominant metaphor of representation-as-mirroring, a more accurate account is of
representation-as-inference. Finally, Chapter 2 used the theory of representation to
distinguish between agents and objects. In this account, agents and representation
are inseparable: agents necessarily represent their environment, and representation
always involves an agent.

9.2.2 What is a systems approach?

The second question was also answered with a definition:
Definition 9.2 (System). A system is a representation of an entity as a complex
whole open to feedback from its environment.

A history of the systems movement provided the context in which the different
elements of this definition could be appreciated. The definition incorporates ten
essential features that are characteristic of the systems approach. The systems

171



9.2. Summary of Results

movement was cast as a reaction to the excesses of the Cartesian analytic method,
a reductionist form of mechanism that was inadequate for problems of complexity,
social science and management. However, systems science is also different from
holism, because systems are explained in terms of their components, whereas hol-
ism appeals to intuition, which leaves components unanalysed. Another way of
answering the question “what is a systems approach?” was provided by view-
ing the systems approach as the critical revision of modelling assumptions. Eight
common modelling assumptions were listed, assumptions that systems research has
challenged by developing new techniques for capturing and analysing organisation.

General systems theory, cybernetics, systems analysis, systems engineering, soft
systems and complex systems approaches were described and distinguished. The
most significant difference between the many systems approaches is the difference
between hard and soft systems approaches, because it is a metaphysical choice
between belief in the one and the many.

9.2.3 How is complex systems unique?

Complex systems studies the mechanisms of dynamic pattern formation over mul-
tiple scales. Emergence, self-organisation and adaptation are the main themes of
complex systems. Of course, these themes are not unique to complex systems
– they are important in many of the systems approaches. The question of how
complex systems differs from alternative systems approaches was not explicitly
answered, but it is easy to infer from the descriptions of the different systems
approaches in Chapter 3.

Perhaps the most notable feature is that, of all the systems approaches, complex
systems is the most tightly integrated with the natural sciences, due to an emphasis
on explaining mechanisms in natural systems. In contrast, systems engineering
usually has more pragmatic concerns. Meanwhile, systems analysis and is more
analytic, and consequently focuses on extracting from a system of interest just the
information that is relevant to decision-making. This can often be achieved from
phenomenology ie. without a detailed understanding of mechanisms. In relation
to science, systems analysis adheres most closely with management science, due to
their mutual interest in decision-making. Cybernetics was explicitly behaviourist
and independent of science for its foundations. Soft systems and critical systems
approaches draw more from sociology than from the natural sciences. And while
the research agenda of complex systems is largely contained in the enthusiastic vis-
ions of the early general systems theorists, complex systems has been less abstract
and less concerned with unified theories and general principles.

Generally, the systems approaches place a strong emphasis on the information
sciences (information theory, control theory and computer science). However, the
agent based modelling technique is distinctive of complex systems. ABMs are
uniquely able to represent the emergence of collective behaviour in a discrete time
simulation, where decision-making is distributed amongst self-organising agents
following simple rules.
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9.2.4 Are there alternatives to model-based applications?

The alternative that was advanced in Chapter 4 is conceptual analysis. Conceptual
analysis is a multidisciplinary approach that utilises the exact results of complex
systems without building quantified models of the system of interest. It was shown
that mathematically precise theory in conjunction with the critical examination
of assumptions provides a powerful method for arriving at insights using low res-
olution models, without the need for detailed quantitative input. Three issues for
conducting multidisciplinary research, namely standards, inconsistency and justi-
fication, were addressed. It was found that conceptual analysis needs to examine
assumptions and inconsistencies in multidisciplinary models, and make small scale
changes to systems in context, using evolutionary mechanisms to improve system
performance over time. Conceptual analysis shifts the focus of modelling from
producing rigourous analytically justified designs, towards generating novel ideas
that can then be implemented and assessed in context.

Part III exhibited two applications of conceptual analysis. The first example ana-
lysed asymmetric warfare, where the insurgency’s tactics combine to increase fine
scale complexity. The law of multiscale variety explains why this strategy is ef-
fective against conventional forces. Recent military theory was supported by and
extended using complex systems concepts, such as adaptation and complex systems
engineering. The second example engaged the Australian Capability Development
Group in thinking about how to make the capability development process more
adaptive. Using a structured framework of questions and doctrinal information
on the current process, a number of assumptions were critically examined. This
gave rise to a new measure of fitness based on end user value; a new approach to
acquisition to facilitate variety and tailored capabilities; an alternative philosophy
for justifying expenditure; and an entrepreneurial model for program managers.
These applications built low resolution conceptual models, which were used to gen-
erate new ideas in force design and suggestions for change in the current capability
development process.

9.2.5 What are the conceptual interrelationships?

Chapter 5 answered this question in several different ways. Firstly, an illustrat-
ive story was told about a cyclical process that generated increasing complexity
through self-organisation and emergence. This is the sort of story that can be
found in many popular books on complexity. The next answer was given as a
series of definitions formalised using information theory. These definitions were
supplemented with a number of examples, which illustrated that each concept was
a useful distinction in its own right. Finally, this more precise understanding of the
language of complex systems was reassembled in diagrammatic form to provide a
representation of the important interrelationships between these concepts.

Chapter 5 also made several deep connections. The formula

mutual information = receiver’s diversity

− equivocation of receiver about source
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together with the identity of predictive information with excess entropy leads to
the relation

predictive information = diversity − non-assortativeness.

The predictive information expresses a recurring theme within complex systems.
In the literature, this has been less formally explained as a tradeoff between ex-
ploitation and exploration, or between being adapted and adaptable. Connections
were made to information transfer in graph theory, robustness in self-organising
systems, increases in physical complexity through evolutionary processes, and self-
referential processes such as shortest path formation by ants. Each process was
shown to be a balance between diversity and equivocation.

9.2.6 What is emergence?

The answer to this question, given in Chapter 6, was once again able to be formu-
lated as a definition:
Definition 9.3 (Emergence). Emergence is the process whereby the assembly,
breakdown or restructuring of a system results in one or more novel emergent
properties.

However, the definition of an emergent property proved to me more interesting,
once the framework of scope, resolution and macrostate/microstate was formalised.
Definition 9.4 (Emergent property). A property is emergent iff it is present in a
macrostate and it is not present in the microstate.

It was shown this definition could be narrowed further to novel emergent properties,
since changes in resolution only generates weak (apparent) emergent properties.
Definition 9.5 (Novel Emergent Property). A property is a novel emergent prop-
erty iff it is present in a macrostate but it is not present in any microstate, where
the microstates differ from the macrostate only in scope.

This definition is more specific, because it only counts emergent properties when
they are not a property of any microstate with smaller scope. This definition
provides the key insight of Chapter 6 – that emergent properties are coupled to
scope, not level. Defining emergent properties precisely allowed alternative inter-
pretations. Equivalently, an emergent property is: non-local; spatially or tempor-
ally extended; or a difference in local and global structure.

It was shown that naissance emergence, the source of novelty, cannot be predicted
with certainty until it has already occurred. This is a fundamental limit for formal
systems with respect to emergence. The definition of an emergent property was
used to describe an alternative process for defining the boundary of a system.
It was argued this process was less subjective, depending only on the choice of
properties belonging to the system.
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9.3 Interconnections

Many of the topics of this thesis were reflexive. Contributions to the theory of
multidisciplinarity were performed in a multidisciplinary way. The theory of rep-
resentation provided an understanding of the representations I employed. As I
developed a theory of adaptation, I was also very conscious of how my theory was
adapting. My theory of emergence literally emerged – it was not until my chapter
had a certain scope and structure that I was able to recognise its unique contri-
bution. This is more than a superficial play on words; it identifies important rela-
tionships between concepts with themselves. Often, this allowed the contributions
to be interpreted on multiple levels. For instance, representation was necessary for
modelling the behaviour of agents that construct representations, but also applied
to the modelling process itself.

There were several strong links made between representation and systems. Sys-
tems theory contained several candidate theories of representation; while systems
were defined as representations in Definition 3.4. The systems concept of ‘agent’
was also intimately involved in representation, because representation is a triadic
relation involving an agent; and agency requires the ability construct and use
representations. These connections were surprising, because the two topics have
developed almost completely independently in the literature. To my knowledge,
the inseparable relation between agency and representation has not been previously
published.

Information theory provides an important interpretation of representation, includ-
ing concepts such as mutual information and predictive information, which can
in principle quantify how well a model substitutes for an entity. Representation
was necessary to explain adaptation in Section 5.7, because both learning and
evolution “encode information” about the environment in models. The connection
here is that in order to reinforce useful changes in an adaptive process, environ-
mental feedback must be evaluated with respect to an expectation of the effect of
the change – an expectation which is derived from a model. Emergence as pre-
dictive efficiency also directly relates to the efficiency of representational models.
Additional significant connections between information theory and representation
clearly exist, however they are a topic for future research.

The systems movement has always been closely related with information theory,
because of the close parallels between the work of Wiener and Shannon, as well
as Ashby’s clear articulations of the importance of information theory for com-
plexity and control. While this connection is not novel, the comprehensiveness of
Chapter 5 contributes towards understanding how information theoretic repres-
entations can be applied to modelling complex systems. By providing a formal
mathematical framework, information theory also allows the relationships within
complex systems concepts to be explored.

Variety was a recurring theme in this thesis. It was formally introduced in Chapter
3; featured in the account of goal-directed behaviour in Chapter Section 2.6; ex-
plained the purpose of constructing representations that shape behaviour in Sec-
tion 3.3.2; was formally connected to information theory by Shannon’s tenth coding
theorem; was an essential function for an adaptive mechanism in Section 5.7; ex-
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tended to the law of multiscale variety in Section 7.2; and used as a measure of
complexity in Section 8.3.2.

The fact that emergence has an information theoretic formulation demonstrates
a relation between Chapters 5 and 6. However, the deeper connection here is
a more personal one. When Shalizi visited Australia to explain his information
theoretic definition of emergence to the CSIRO interaction task on emergence, it
generated a lot of excitement. However, in order to be appropriately scientific, it
was decided to form a sub-team to critically examine the definition and identify its
limitations. As a member of this sub-team, I was forced to think about precisely
when the equation e = E

Cµ
gave counter-intuitive classifications of emergence. The

exactness of Shalizi’s formulation meant that this was an insightful process, be-
cause it focussed my attention on specific cases that required a more satisfactory
explanation. Understanding the information theoretic formulation for emergence
allowed me to ultimately move beyond information theory and develop the theory
and examples of emergence in Chapter 6.

A common theme of systems thinking is that learning can be obstructed by a
conventional adherence to disciplinary boundaries [222, vol. I, p. iixx]. This theme
was taken a step further in my thesis by developing a number of arguments towards
multidisciplinarity. In Chapter 2, the multidisciplinary theme was introduced, and
a multidisciplinary analysis of representation was performed. A characterisation
of the systems movement as being broader than any conventional discipline was
discussed in Section 3.3, continuing the multidisciplinary theme. In Chapter 4,
the multidisciplinary approach to complex systems analysis was articulated. This
drew on the previous two chapters. The modeller and the model formed a triadic
relation with the system of interest. Conceptual analysis was described as a way of
applying complex systems theory, and therefore conceptual analysis is a systems
approach. The characterisation of the main systems approaches in Chapter 3
provided a context within which the contributions of conceptual analysis could be
situated.

Chapter 5 was oriented towards interdisciplinary communication, providing rep-
resentations of complex systems concepts in mathematics, language and graphical
form. Chapter 6 provided support to the case for multidisciplinary research. By
emphasising the importance of scope, emergent properties necessitate the devel-
opment of techniques with sufficient breadth, rather than additional depth. The
existence of emergent properties provides legitimation for broader systems ap-
proaches that complement specialised scientific disciplines.

The applications in Part III put the multidisciplinary approach into practice on real
world problems. Significant novel insights were revealed through broad conceptual
analysis. The assumptions of current perspectives were critically examined, and
often found to be focussing on a narrow range of solutions. For example, solutions
to the challenges of asymmetric warfare are still largely focussed on concentrating
large scale effects, when the ability to cope with fine scale complexity is needed.
And the capability development process continues to attempt to achieve tighter
control on the delivery of projects to requirements on time and on budget. What
is really desired though, is not greater efficiency, but greater effectiveness, and the
obsession with efficiency actually has harmful consequences for effectiveness. Part
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of the obsession with efficiency derives from the quantitative approach to mod-
elling, which by quantifying fitness inevitably reduces effectiveness to efficiency.
In contrast, conceptual analysis is designed to uncover effective regions of state
space, and is a more appropriate use of analysis in the search for novel design and
intervention options.

In summary, the components of this thesis are strongly related, in spite of their
breadth. The chapters span philosophy, theory and application; they connect
mathematics, science and engineering. Their collective contribution is multidiscip-
linary. Together, they show that the best way to understand, intervene in and
design complex systems is with a multidisciplinary approach.

9.4 The End is The Beginning is The End

In my beginning is my end . . . In my end is my beginning.

East Coker by T. S. Eliot

This thesis has covered a significant amount of ground in order to advance the
method of multidisciplinary conceptual analysis. Because of its scope, I feel as
though I have only scratched the surface of the utility of conceptual analysis. As
is always the case with progressive research, this thesis has generated many more
questions than it has answered. However, in this concluding section I will limit
my attention to six big questions for further research.

1. Can more detailed guidance be provided for conceptual analysis, and is it
desirable?

2. For problems where no one person is in charge, how can conceptual analysis
be linked with effective intervention?

3. How can multidisciplinarity continue to raise its standards and still be ac-
cessible to everyone?

4. How can a precise understanding of emergence be put to work?

5. Is it possible to measure and detect emergence in simulations and in the real
world?

6. What is the precise relationship between representation and information the-
ory?

Chapter 4 indicates a new direction for expanding the domain of complex systems
application, but much more work remains to be done to flesh out the details.
Good examples of conceptual analysis exist, but they need to be systematically
compared to identify the general features of conceptual analysis, so that more
detailed guidance for future applications can be provided. The second part to
this question asks how much guidance is a good thing? Constraints are always
necessary because they focus energy so that it can do useful work. But if the
conceptual analysis approach is overconstrained, if it becomes a recipe book or
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algorithm for generating novel designs, then it will in fact not be producing novel
designs.

The second question picks up on a limitation of the applications in this thesis. A
full application of conceptual analysis would have implemented some changes in the
real system, measured their effect in comparison with the expected effect (provided
by the conceptual model), and reinforced successful variation to begin the evolution
of new designs in context. The applications in [34] also end with conclusions
of the analysis stage, rather than with the results of real world interventions.
This is in part because the problems that multidisciplinary conceptual analysis is
especially suited to are never owned by a single stakeholder. Consequently, effective
intervention requires coordinated changes to be made by multiple agencies, and the
likelihood of coordination diminishes in direct proportion to the number of agencies
involved. This perhaps the most important question for conceptual analysis to
address in order to have a positive impact.

The third question is an open question that was stated as a paradox in Chapter 4.
There is clearly a need for multidisciplinarity, and this drives the need for coherence
on the meaning of terms. Even the meaning of interdisciplinarity and multidiscip-
linarity cannot be agreed upon. But unlike disciplines, multidisciplinarity cannot
force agreement by walling itself off from other discourses until isolation through
jargon and other barriers to entry breeds conformity. How can multidisciplinar-
ity develop depth of knowledge and yet remain accessible to all the disciplines it
supports?

From a systems perspective, the most important individual contribution of this
thesis is the precise formulation of emergence. Emergence is the central systems
concept, and yet its explanation in terms of levels has been an impediment to a
genuine understanding of emergence. Now that an alternative account exists, how
can this be put to work? What changes to systems theory and application follow
from Chapter 6? The full implications have not yet been explored.

The fifth question is also related to this issue. In more concrete situations, in
principle one should be able to measure and test for emergent properties. For
example, consider a flock of boids [261] with a control parameter α. Suppose that
for α = 0, the birds move independently of all other boids, while for α = 1, the
birds move with total cohesion. If flocking is defined as when the autonomy of the
flock subsumes the autonomy of the individual boids, then it should be possible
decide whether flocking occurs, provided autonomy can be measured or estimated.
As α is increased over [0, 1] starting at 0, at some point the average autonomy
of the boids will be exceeded by the autonomy of the flock. At this point, the
flock has emerged from the structure of interactions between the boids. Measuring
and detecting emergence in a toy simulation model is an important step towards
putting the new conception of emergence to work.

The language of information theory provides rich yet precise concepts for inform-
ation, communication, complexity and variety. It is obvious that models that
participate in representation relations can be interpreted as encoding information.
Adami shows how evolution can be defined as an increase in mutual information
between a population and its environment. A similar connection between rep-
resentation in general and information theory can no doubt be made. This could
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provide a precise test between competing models as substitutes for the same entity.
It would also be possible to compare the information capacity of representations
with different grounds – for example analog versus digital models of the same
system of interest. In turn, the triadic relation has interesting implications for
information theory. A formal treatment of this connection could be expected to
yield important results.

So we have come full circle, back to the beginning of the cycle of inquiry. I welcome
you to join me exploring the next six questions in the search for big answers.
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Appendix A

Glossary

In the interests of clarity, the technical terms I use are defined here.

A.1 Definitions

Definition A.1 (Abstraction). A description that does not refer to a unique sub-
stantial entity in an arbitrarily well defined region of space-time. Some abstractions
have no physical instantiation, while others are lossy compressions of the state of
a substantial entity.
Definition A.2 (Adaptation). A change in organisation that increases the fit
between a system and its environment.
Definition A.3 (Agent). An entity that constructs and uses representations to
shape its own goal-directed behaviour.
Definition A.4 (Behaviour). The response of an entity given a particular a stim-
ulus within a specified context. Broad [62] contrasts ‘behaviour’ with ‘quality’, as
qualities do not logically require a stimulus or a context to be well defined properties
of entities.
Definition A.5 (Boundary). Demarcation between a system and its environment.
Boundaries are a modelling choice.
Definition A.6 (Class). A set whose members share a common property.
Definition A.7 (Communication). The transfer of information [287].
Definition A.8 (Complex System). A system of interest with behavioural com-
plexity that is not captured by conventional modelling techniques. The source of
complex behaviour is the non-trivial organisation of interdependent components
with emergent properties.
Definition A.9 (Complex Systems, Discipline of). A discipline that studies the
mechanisms of dynamic pattern formation over multiple scales. Emergence, self-
organisation and adaptation are the main themes of complex systems.
Definition A.10 (Complexity, Algorithmic). The algorithmic complexity, or al-
gorithmic information content, of a string is the log of the length of the shortest
program for a given Universal Turing Machine (UTM) which can print the string.
Algorithmic complexity is maximal if the string is incompressible, meaning there is
no program shorter (within a fixed constant) than the one that directly prints each
bit of the string. A related measure is descriptive complexity.
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A.1. Definitions

Definition A.11 (Complexity, Behavioural). The amount of algorithmic inform-
ation (see algorithmic complexity) necessary to describe a system’s response to its
environment [25]. A related measure is interactive complexity.
Definition A.12 (Complexity, Effective). The length of a highly compressed de-
scription of the regularities in an entity’s state [133]. A related measure is statist-
ical complexity (see Section 5.3).
Definition A.13 (Complexity, Multiscale). The amount of (Shannon) informa-
tion required to describe a system at each scale or resolution. The total multiscale
complexity is always constant for a given system of interest, but a tradeoff between
fine and large-scale degrees of freedom means that the same components can be or-
ganised to exhibit different “complexity profiles” – different functions of complexity
over scale [31].
Definition A.14 (Complexity, Physical). The time required by a standard uni-
versal Turing machine to generate the entity from an input that is algorithmically
incompressible (see algorithmic complexity). Also known as logical depth [42].
Definition A.15 (Complexity, Structural). A measure of the spatial organisa-
tion of a system. It is a topological metric that ignores composition. Structural
complexity is dependent on the spatial and temporal resolution of the observer.
Definition A.16 (Configuration). The spatial arrangement of a system of interest.
Definition A.17 (Context). A context is a class of environments i.e. an abstract
environment.
Definition A.18 (Control). The negation of environmental disruptions in order
to realise a goal.
Definition A.19 (Discipline). An open, organised social discourse with a mutual
interest in knowledge development.
Definition A.20 (Distinction). A separation between an entity and its back-
ground. A criterion of distinction indicates what we are talking about and specifies
its properties as an entity [217].
Definition A.21 (Dynamics). Forces that change the configuration of a system
of interest. Dynamics are observed indirectly through behaviour.
Definition A.22 (Emergence). Emergence is the process whereby the assembly,
breakdown or restructuring of a system results in one or more novel emergent
properties.
Definition A.23 (Emergent property). A property is emergent iff it is present in
a macrostate and it is not present in the microstate.
Definition A.24 (Emergent Property, Novel). A property is a novel emergent
property iff it is present in a macrostate but it is not present in any microstate,
where the microstates differ from the macrostate only in scope.
Definition A.25 (Emergent Property, Weak). A property is weakly emergent iff
it is present in a macrostate but it is not apparent in the microstate, and this mac-
rostate differs from the microstate only in resolution. A weak emergent property
is a limitation of the observer, not a property of the system of interest.
Definition A.26 (Entity). Any object that has existence in the physical, concep-
tual or socio-cultural domains [72]. Reference to an entity implies the operation of
a distinction that defines it and makes it possible [217].
Definition A.27 (Environment). An environment is a substantial (or concrete)
context. The environment of a system of interest is everything outside the system
boundary in causal contact with the system – it affects or is affected by the system.
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Definition A.28 (Epistemology). A theory concerning means by which we may
have and express knowledge of the world [81].
Definition A.29 (Feedback). A process in which the output signal of a system
is measured, and the measurement influences the input to the system in order to
regulate future output.
Definition A.30 (Force). Fundamental quantity responsible for the physical be-
haviour of matter. The four fundamental forces are gravity and the three forces
relevant to elementary particle physics. These are the electromagnetic, the weak
and the strong interactions [299].
Definition A.31 (Formal System). The elements of a formal system are [327]:

• A finite set of symbols.

• A grammar with a decision procedure capable of parsing well formed formulae.

• A set of axioms that are well formed formulae.

• A set of inference rules.

• A set of theorems. This includes all of the axioms, plus all of the well formed
formulae that can be derived from previously-derived theorems and the ax-
ioms.

Formal systems can be used as symbolic external models for the purpose of repres-
entation.
Definition A.32 (Goal). An achievable end which can be expressed as a determ-
inistic function of the state.
Definition A.33 (Hierarchy). When used to model systems, higher levels control
(regulate, interpret, harness) lower levels, whose behaviours are made possible by
properties generated at still lower levels. [272]. A hierarchy is a partially ordered
set [9].
Definition A.34 (Information). The reduction in uncertainty [287]. Information
can also be interpreted as the ‘improbability’ of an event, since it is the negative of
entropy ie. the logarithm of the reciprocal of the probability [292].
Definition A.35 (Knowledge). Knowledge is the process of forming, maintaining
and using representations.
Definition A.36 (Law). A constraint on the set of possible future states.
Definition A.37 (Level). A layer in a hierarchy. Levels are populated by entities
whose properties characterise the level in question [9].
Definition A.38 (Light Cone). In Minkowski spacetime under special relativity,
a flash of light defines two light cones. The future light cone expands into space
at the speed of light, encompassing every point that could be affected by the flash
of light. The past light cone includes all spacetime points from which a material
particle could reach the point of the flash before it occurred, and therefore affect it.
Any two points in spacetime with disjoint light cones cannot be causally connected.
Definition A.39 (Macrostate). A state that has a larger scope, coarser resolution,
or both, compared to a microstate.
Definition A.40 (Measurement). The detection of change, quantified as a rational
multiple of a standard quantity.
Definition A.41 (Microstate). A state that has a narrower scope, finer resolution,
or both, compared to a macrostate.
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Definition A.42 (Minimal Macrostate). A macrostate M∗ is minimal with respect
to an emergent property, if the emergent property is present in M∗, and it is not
present in any microstate µ with the same resolution and narrower scope (ie. in
any proper subset of the components of M∗).
Definition A.43 (Model). A representation of an entity by an agent.
Definition A.44 (Multidisciplinary Conceptual Analysis). An approach to real
world problem situations, which draws on theorems, models and exact results from
both disciplinary and interdisciplinary science, in order to construct low resolution,
conceptual representations that facilitate interventions and evolutionary change
within the problem situation.
Definition A.45 (Observer). An observer is an agent that takes measurements or
observations of a system of interest to gain information about it. This information
can be communicated to others in the form of a description [26].
Definition A.46 (Observation). Observation of an entity is the process by which
information is acquired about that entity. [72]
Definition A.47 (Ontology). A theory of what exists.
Definition A.48 (Open System). A system of interest that exchanges energy,
matter or information with its environment.
Definition A.49 (Organisation). Interdependence between components of a sys-
tem in both structure and dynamics. In contrast, a system of interest at maximum
entropy exhibits independence between components and is disorganised.
Definition A.50 (Pattern). A pattern is organisation identified by an observer in
a dynamical system (derived from [93, p. 3]).
Definition A.51 (Problem, Soft). A problem, usually a real-world problem, which
cannot be formulated as a search for an efficient means of achieving a defined end;
a problem in which ends, goals, purposes are themselves problematic.
Definition A.52 (Process). A sequence of changes in the configuration of a sys-
tem.
Definition A.53 (Property). Properties are functions from objects to character-
istics [68] .
Definition A.54 (Quality). A property that is logically independent of the context,
in contrast to a behaviour.
Definition A.55 (Representation). A triadic relation between a model, entity and
agent. The model substitutes for at least one entity, shaping the behaviour of at
least one agent.
Definition A.56 (Resolution). The finest spatial distinction between two altern-
ative system configurations. If a fine (high) and a coarse (low) resolution repres-
entation have the same scope, the fine resolution can distinguish a greater number
of possibilities, n, and therefore each state contains more (Shannon) information.
Definition A.57 (Scale). In physics, scale refers to a standard for measurement
that indicates the length below which no further details can be resolved – physical
scale is the inverse of resolution. In mathematics, scale is a transformation by
multiplication. The physical usage applies to measurement and observation, while
the mathematical usage applies to scaling (see Section 6.3).
Definition A.58 (Scope). Scope is defined by a spatial boundary. Spatial is used
in the broadest sense of the word to include conceptual and formal, as well as
physical spaces, provided the system has a physical manifestation.
Definition A.59 (Self-assembly). A process that increases the organisation of a
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system by moving towards equilibrium.
Definition A.60 (Self-organisation). A process that increases the organisation of
a system away from equilibrium, in contrast to self-assembly.
Definition A.61 (State). The complete set of variables that describes a system
of interest at a moment in time. The state may or may not include the history of
the system of interest. Observing changes in attributes results in a transmission of
information. According to quantum physics, every substantial system of interest
has a unique state, which can be derived from its quantum mechanical state vector
or wave function.
Definition A.62 (Structure). Interdependence in potential configurations of a
system.
Definition A.63 (Substantial). Substantial entities are finite, have a definite spa-
tial and temporal existence, and cannot be universal. Synonyms include concrete
and physical [68].
Definition A.64 (Symmetry). The existence of different viewpoints from which
the system of interest appears the same [11].
Definition A.65 (Symmetry breaking). When a whole has less symmetry than
its component parts in isolation, it exhibits broken symmetry. The symmetry of
any steady state configuration of matter must equal the symmetry of the underly-
ing dynamical equations that govern it, unless one or more symmetries have been
broken by the interaction of the parts.
Definition A.66 (System of Interest). The object of study (see Kline’s [185]
Definition 2.3).
Definition A.67 (System). A system is a representation of an entity as a complex
whole open to feedback with its environment.
Definition A.68 (Theory-ladenness of observation). A contemporary term for an
idea that perhaps was first emphasised in the philosophy of Kant, and that is cap-
tured in the following passage from Reichenbach [260]. “Every factual statement,
even the simplest one, contains more than an immediate perceptual experience; it
is already an interpretation and therefore itself a theory ... the most elementary
factual statement, therefore contains some measure of theory”. However, obser-
vation can be at once theory-laden and theory-neutral, in the sense that the data
relevant to a theory T can be collected by someone whether or not they believe in
T , or, even, whether or not they have knowledge of T [311].
Definition A.69 (Variety). Log of the number of possibilities. That is, the number
of bits needed to specify the cardinality of an ensemble. Variety is usually measured
by (Shannon) information.
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