MECHANOELECTRIC FEEDBACK IN THE MAMMALIAN HEART

By Douglas Robert Kelly Bachelor of Science, Physiology (Hons)

A Thesis Presented in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy in Physiology

Friday, 16th Nov 2007

School of Molecular and Biomedical Science Adelaide University, South Australia Australia

Dissertation Committee: Assoc Prof David A Saint Assoc Prof Michael Roberts Dr Lorraine Mackenzie

Approved by:

Primary Supervisor Associate Professor Dr David A Saint Cardiac Electrophysiology and Biophysics Laboratory http://www.adelaide.edu.au/mbs/research/cfu/ http://www.kellyaustralia.com

NOTE: This picture is included in the print copy of the thesis held in the University of Adelaide Library.

Margaret Helen Kelly

(Sept 6, 1944 – May 30, 2001) This thesis is dedicated in loving memory of my mother who without I would not have been here

General Table of Contents

General Table of Contents	I	
Abbreviations	IX	
ACKNOWLEDGEMENTS	Х	
ABSTRACT	XI	
DECLARATION	XII	
CHAPTER 1: INTRODUCTION		1
INTRODUCTION	2	
MOTIVATION	2	
STRUCTURE	5	
RESEARCH CONTRIBUTION & AIMS	6	
	·	
CHAPTER 2: LITERATURE REVIEW		7
INTRODUCTION	9	
Ventricular Loading as a Trigger for Arrhythmia	10	
Excitation-Contraction Coupling	11	
METHODS OF OBSERVING MEF	12	
The various electrode techniques	12	
MEF at the Cellular Level	14	
Simple Electrophysiological Theory	15	
Non-Selective Stretch-Activated Cation Channels (NSACs)	17	
Potassium-Selective Stretch-Activated Cation Channels (KSACs)	21	
	21	
METHODS USED TO VISUALISE SACS	22	
NSAC Modulators	22	
Methods of Demonstrating SACs	24	
Relevance to Pathological Conditions	25	
CONCLUSION	26	

CHAPTER 3: GENERAL METHODS

INTRODUCTION BACKGROUND Langendorff Perfused Heart	31 32 32
LANGENDORFF SETUP & CALIBRATION	34
Intra-ventricular Balloon Construction	34
Calibration of Pressure and Flow Recordings	35
Ethics and Animal Care	36
Anaesthetisation of Animals	36
Surgical Preparation Of The Heart	37
Measurement of Contractile Force	38
Pacing	39
Perfusate Solutions	39
Perfusion of the Heart	41
Statistical Analysis	43

CHAPTER 4: PRELIMINARY EXPERIMENTS

Preliminary Experiment 1: Intrinsic Heart Rate and Basic Conditions

INTRODUCTION	47
METHODS	47
RESULTS	48
DISCUSSION	51
CONCLUSION	52

45

Experiment 2: MAP Recording Electrodes	53
INTRODUCTION	53
Surface Method	54
Transmural Method	58
Obtaining MAP recordings	59
METHODS	59
RESULTS	59
DISCUSSION	63
DATA ACQUISITION	63
CONCLUSION	65
Limitations	65
DRUGS AND CONCENTRATIONS	66
EXCLUSIONS	66

CHAPTER 5: CONTRIBUTION OF MEF TO THE FRANK-STARLING RELATION

INTRODUCTION	69
BACKGROUND	70
BACKGROUND	70
<i>Frank-Starling Response</i>	70
<i>Changes in lattice spacing and myofilament Ca</i> ²⁺ <i>sensitivity</i>	71
<i>Changes in the intracellular Ca</i> ²⁺	72
METHODS	73
RESULTS	74
DISCUSSION:	83
<i>Considerations</i>	88
<i>Summary</i>	90
CONCLUSION	91

CHAPTER 6: FURTHER INVESTIGATIONS OF MEF		93
INTRODUCTION BACKGROUND METHODS RESULTS DISCUSSION CONCLUSION	95 95 96 98 100	
MEF IN THE GUINEA PIG HEART		100
INTRODUCTION METHODS (GUINEA PIGS) RESULTS DISCUSSION CONCLUSION	100 101 101 105 107	
MEF IN THE RAT HEART		108
INTRODUCTION METHODS RESULTS DISCUSSION SUMMARY CONCLUSION	108 108 109 110 111 111	
CHAPTER 7: MEF IN SUB-EPICARDIAL AND ENDOCARDIAL MYOCARDIAL LAYERS)	113
INTRODUCTION BACKGROUND The involvement of SACs in Beat-to-Beat Regulation	115 115 116	
METHODS RESULTS <i>Effect of stretch on sub-epicardial and endocardial MAPs</i>	116 117 117	
DISCUSSION Effect of Stretch on Sub-epicardial and Endocardial MAPs Effect of Pharmacological Modulation of SACs	125 125 127	
SUMMARY CONCLUSION ACKNOWLEDGEMENTS	128 129 129	

CHAPTER 8: FURTHER INVESTIGATIONS INTO TRANSMURAL MEF		131
TEMPERATURE MODULATION OF MEF		133
INTRODUCTION Temperature modulation of SAC response	133 133	
METHODS RESULTS SUMMARY DISCUSSION CONCLUSION	135 136 142 142 143	
STREPTOMYCIN MODULATION OF SAC		
RESPONSE IN GUINEA PIG		145
INTRODUCTION METHODS RESULTS <i>Sub-Epicardial Effect of Stretch</i>	145 145 147 148	
DISCUSSION CONCLUSION	150 153	
TEMPERATURE MODULATION OF MEF IN THE GUINEA PIG		153
INTRODUCTION RESULTS DISCUSSION	153 154 155	
GLIBENCLAMIDE MODULATION OF STRETCH RESPONSE		157
INTRODUCTION METHODS RESULTS DISCUSSION SUMMARY CONCLUSION	157 158 158 161 162 163	

CHAPTER 9: MEF IN ISOLATED MUSCLI PREPARATIONS	Ξ	165
INTRODUCTION BACKGROUND Intracellular Recordings	167 168 168	
METHODS RESULTS <i>Preliminary Experiments</i> <i>Effect of Stretch</i> <i>Effect of SAC Modulators</i>	170 172 172 174 178	
DISCUSSION CONCLUSION ACKNOWLEDGEMENTS	180 182 183	
EFFECT OF TEMPERATURE ON MEF IN ISOLATED PAPILLARY MUSCLES)	184
INTRODUCTION RESULTS DISCUSSION CONCLUSION	184 185 187 188	

CHAPTER 10: INTRACELLULAR RECORDINGS IN LEFT ATRIAL TISSUE

BACKGROUND	191
METHODS	191
RESULTS	192
DISCUSSION	199
CONCLUSION	200

CHAPTER 11: THE CONTRIBUTION OF MEF TO THE GREGG EFFECT 201 INTRODUCTION 203 BACKGROUND 203 204 Effect of Contraction on Coronary Flow Involvement of SACs 205 METHODS: 206 RESULTS 207 Gregg Effect Observations with Suction MAP Electrode 208 Gregg Effect Observations with Surface Contact Electrode 211 Gregg Effect Observations with Transmural MAP Electrode 212 DISCUSSION 215 CONCLUSION 218

CHAPTER 12: INTRACELLULAR RECORDINGS OF ISOLATED PERFUSED RIGHT VENTRICLE

219

229

BACKGROUND	221
METHODS	222
RESULTS	223
DISCUSSION	226
CONCLUSION	228

CHAPTER 13: CONTRIBUTION OF MEF TO RAPID-STRETCH INDUCED ECTOPIC BEATS

INTRODUCTION 231 BACKGROUND 231 Other Effects of Stretch 232 *Importance of Na⁺-Ca²⁺ exchanger* 233 **METHODS** 234 RESULTS 235 DISCUSSION 238 CONCLUSION 241 **ACKNOWLEDGEMENTS** 242

IN VIVO DEMONSTRATION OF MEF

BACKGROUND	243
METHODS	243
PRELIMINARY RESULTS	244
DISCUSSION	246
RESULTS	247
DISCUSSION	248
CONCLUSION	249
ACKNOWLEDGEMENTS	250

CHAPTER 14: CONCLUSION

INTRODUCTION SUMMARY OF RESULTS Chapter 5 - Contribution of MEF to the Frank-Starling Relation: Chapter 6 - Further Investigations of MEF in the Rat Heart Chapter 7 – Epicardial and Endocardial MEF Responses: Chapter 8 – Further Investigations into Transmural MEF: Chapter 9 – MEF in Isolated Muscle Preparations Chapter 10 – MEF in the Isolated, Stretched Left Atrium Chapter 11 – Contribution of MEF to the Gregg Effect Chapter 12 – MEF in the Isolated, Perfused Right Ventricle Chapter 13 – MEF in response to rapid stretch	254 254 254 255 255 256 256 256 256 256
DISCUSSION Involvement of SACs Effect of Experimental Conditions Regulation and Modulation of SAC Activity Stretch and the Gregg Effect Other Sources of MEF Sensitivity of Stretch Responses Other Mechanisms of MEF Suitibility of MAP Recordings for Observing MEF SACs and Ischaemia Methods of Demonstrating SAC Responses Modulation of SAC-mediated MEF Responses in the Heart	257 258 259 260 261 261 263 265 265 266 266
CONCLUDING REMARKS	268
FUTURE DIRECTIONS:	269
Involvement of SACs in MAP Generation	269
Involvement of TREK-1 in MEF	270
Involvement of SACs in Pathological Conditions	270
REFERENCE LIST	271
List of Figures & Tables	302
Index	306

Abbreviations

Abbreviations:

APD	Action Potential Duration
CICR	Calcium-induced Calcium Release
DAD	Delayed After Depolarisation
EAD	Early After Depolarisation
ECG	Electrocardiogram
EDLVP	End Diastolic Left Ventricular Pressure
EDV	End Diastolic Volume
ESLVP	End Systolic Left Ventricular Pressure
HR	Heart Rate
KSAC	Potassium-selective SAC
LV	Left Ventricle
LVP	Left Ventricular Pressure
MAP	Monophasic Action Potential
MEF	Mechano-electric feedback
NSAC	Non-selective SAC
RMP	Resting Membrane Potential
SAC	Stretch Activated ion Channel
SR	Sarcoplasmic Reticulum
VF	Ventricular Fibrillation
Vm	Membrane Potential

ACKNOWLEDGEMENTS

This work was carried out within the Discipline of Physiology in the School of Molecular and Biomedical Sciences at The University of Adelaide during the years 2003-2007. I wish to express my sincere thanks and gratitude to a number of people, most specifically, Dr Lorraine Mackenzie for her guidance and extensive experience in scientific methodology and for keeping the current work on track. Likewise I wish to thank Dr Daniel Ninio for his help and encouragement during the earliest stages of my PhD whom without I would not have been able to initially conduct many of the experiments. I am also thankful to my supervisor Associate Professor David Saint for the patience, trust and friendship over the years. In addition I enjoyed our lively discussions on many topics.

I also wish to thank Professor Caroline Mc Millen, Head of Department (and Discipline) whose bubbly outlook on scientific life and leadership of the Physiology Discipline provided a happy, supportive atmosphere required for productive research. I am also extremely grateful to Dr Michael Roberts for his methodological and mechanistic advice as well as being a good friend. All was most appreciated and will never be forgotten.

I would like to express my sincere thanks to Mr Craig Maier and Mr Rick Carlson of Diamond Cut productions for free DC Audio Restoration Tools (DC-Art) software and participation in beta testing of new programs and restoration algorithms. Throughout my PhD, DC-Art software has provided me with many hours of enjoyable music and the great personal satisfaction that accompanies restoring recordings of long forgotten artists. As such, these artists form the theme to the present thesis. Examples of restored tracks for each artist can be found at <u>http://www.kellyaustralia.com</u>

Lastly, I would like to thank my family and friends for putting up with my behavioural fluctuations over the past years, not to mention the divergent music tastes.

Abstract

ABSTRACT

Stretch of cardiac muscle is known to activate various physiological processes that result in changes to cardiac function, contractility and electrophysiology. To date, however, the precise relationship between mechanical stretch and changes in the electrophysiology of the heart remain unclear. This relationship, termed mechanoelectric feedback (MEF), is thought to underlie many cardiac arrhythmias associated with pathological conditions. These electrophysiological changes are observed not only in the whole heart, but also at the single cardiomyocyte level, and can be explained by the presence of stretch-activated ion channels (SACs). Most investigations of the actions of stretch have concentrated on these sacrolemmal ionic currents thought responsible for the proposed MEF-induced changes in contractility. While these studies have provided some useful insight into possible mechanisms, the inappropriate use of solutions and non-physiological degrees of stretch, may have caused somewhat misleading results. Currently, little is known about the involvement or contribution of non-selective or K⁺ selective SACs to the normal cardiac cycle. Here, I investigate the concept that stretch-induced changes in cardiac electrophysiology (MEF) are important in normal cardiac cycle and demonstrate the effects of stretch on the Frank-Starling mechanism (stretch induced increases in cardiac contractility) while pharmacologically manipulating stretch-activated ion currents. Experiments were conducted using a number of agents known to influence stretch-activated channels either in a positive or antagonistic manner. Results proved somewhat negative toward MEF theory with only substantial or pathological levels of stretch being able to elicit any electrophysiological change in the heart. Furthermore, where electrophysiological changes were associated with pathological stretch they were not consistently modulated by stretch-activated ion channel activators or blockers. Of equal importance was the observation that smaller levels of myocardial stretch associated with positive changes in contractility via the Frank-Starling mechanism were not associated with any electrophysiological changes in the Langendorff perfused heart (as observed by monophasic action potentials) nor in isolated muscle preparations (as observed through transcellular membrane potential recordings). As such, the present research undertaken in this thesis confirms an absence of electrophysiological changes with stretch except under extreme conditions suggesting that MEF is not a robust and necessarily repeatable phenomenon in the mammalian heart.

Declaration

I declare that this thesis does not incorporate, without acknowledgment, any material previously submitted for a degree or diploma in any university. I also declare that to the best of my knowledge it does not contain any materials previously published unless noted below, or written by another person except where due reference is made in the text.

Signed:

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Signed:

Declaration

Some of the material in this thesis has been published in the following papers and presentations:

An introduction of the ideas covered in this thesis appeared in

Kelly, DR (2003). Investigation of mechano-electric feedback and the Frank-Starling relationship in the heart: The function of stretch-activated ion channels in the heart, University of Adelaide Report & Presentation.

Parts of the isolated atrial and papillary muscle chapter have been presented;

Kelly, DR and Saint DA (2004). Absence of Mechano-Electric Feedback in isolated rat atrial tissue. Findings presented at the International Society for Heart Research (ISHR) Conference, Brisbane

Some of the Endocardial-Epicardial chapter appeared in;

Kelly, DR, Mackenzie L and Saint DA (2005). Effect of temperature on stretch-induced cardiac action potential shortening in the rat heart: involvement of TREK-1. Findings presented at the Australian Physiological Society, Canberra.

Mackenzie L, Kelly, DR and Saint DA (2005). More than one type of stretch activated channel contributes to the action potential duration in guinea pig. Findings presented at the Australian Physiological Society, Canberra.

Some of the Endocardial-Epicardial chapter appeared in;

Kelly D, Mackenzie L, Hunter P, Smaill B, Saint DA (2006). Gene expression of stretchactivated channels and Mechano-electric feedback in the heart. Clin Exp Pharmacol Physiol. 2006 Jul;33(7):642-8.

List of Figures & Tables

Figure 1:	Cellular Regulation Invoking MEF	12
Figure 2:	Cardiac Action Potential	17
Figure 3:	Raw Chart Recording	42
Figure 4:	Balloon Placement in Langendorff Perfused Heart	43
Figure 5:	Intrinsic Heart Rate	48
Figure 6:	Effect of Frequency of Stimulation on Contractility	49
Figure 7:	Effect of Frequency of Stimulation on Pulse Pressure	50
Figure 8:	Effect of Perfusion on Contractility	51
Figure 9:	Spring Electrode Design	56
Figure 10:	Suction Electrode	57
Figure 11:	Contact Electrode	57
Figure 12:	Epicardial-Endocardial MAP electrode	58
Figure 13:	MAPs Obtained With Spring Electrode	60
Figure 14:	MAPs Obtained With Suction Electrode	61
Figure 15:	Effect of Stimulation Frequency on MAP durations	62
Figure 16:	Filtering MAP Signals	64
Figure 17:	Frank-Starling Response	70
Figure 18:	Effect of Stepwise increases in EDLVP on MAP Morphology	75
Figure 19:	Effect of EDLVP on MAP Durations	76
Figure 20:	Effect of EDLVP and Time on MAP Amplitude	76
Figure 21:	Effect of Stretch on APD20 at Different Perfusion Pressures	78
Figure 22:	Effect of Coronary Perfusion Pressure on MAP APD50	79
Figure 23:	Effect of Coronary Perfusion Pressure on MAP APD80	80
Figure 24:	Effect of Coronary Perfusion Pressure on MAP Amplitude	81
Figure 25:	Effect of EDLVP on MAP Duration at Constant Perfusion Pressure	82
Figure 26:	MAP overlay at different EDLVP	83
Figure 27:	Effect of a Single Step in EDLVP on MAP Morphology	97
Figure 28:	Effect of 4-AP on MAP Morphology	98
Figure 29:	Effect of Changes in EDLVP on MAP Morphology in the Guinea Pig Isolated Perfused Heart (CP = 60 mmHg)	102

Figure 30:	Effect of Changes in EDLVP on MAP Morphology in the	
	Guinea Pig Isolated Perfused Heart ($CP = 80 \text{ mmHg}$)	103
Figure 31:	Guinea Pig MAPs superimposed	103
Figure 32:	Effect of Changes in EDLVP on Guinea Pig MAP Morphology	104
Figure 33:	Testing Refractory Periods During Stretch	105
Figure 34:	Rapid Stretch Induced Ectopic Beats	109
Figure 35:	Rapid Inflation and Deflation Induced Ectopic Beats	109
Figure 36:	Average Endocardial and Sub-epicardial MAP Durations	117
Figure 37:	Endocardial and Sub-epicardial MAP Recordings	118
Figure 38:	Effect of EDLVP on Sub-epicardial MAP Morphology	119
Figure 39:	of EDLVP on Endocardial MAP Morphology	120
Figure 40:	Effect of Stretch on Endocardial MAP APD50	121
Figure 41:	Effect of Stretch on Sub-epicardial MAP APD50	122
Figure 42:	Effect of Stretch on Endocardial MAP APD80	123
Figure 43:	Effect of Stretch on Sub-epicardial MAP APD80	124
Figure 44:	Effect of Temperature on TREK-1 Activity	134
Figure 45:	Effect of Temperature on Contractility	136
Figure 46:	Effect of Temperature on Sub-Epicardial MAP Morphology	137
Figure 47:	Effect of Temperature on Endocardial MAP Morphology	138
Figure 48:	Effect of Temperature on MEF in the Rat Heart (APD80)	139
Figure 49:	Effect of Temperature on MEF in the Rat Heart (APD50)	140
Figure 50:	Effect of Stretch on Rat Endocardial MAP	141
Figure 51:	Endocardial and Sub-epicardial MAP Amplitude in the Guinea pig	147
Figure 52:	Effect of Stretch on Endocardial and Sub-epicardial APD20 in the Guinea pig	148
Figure 53:	Effect of Stretch on Endocardial and Sub-epicardial APD50 in the Guinea pig	149
Figure 54:	Effect of Stretch on Endocardial and Sub-epicardial APD80 in the Guinea pig	150
Figure 55:	Effect of Temperature on MEF in the Guinea Pig Heart (APD80)	154
Figure 56:	Effect of Temperature on MEF in the Guinea Pig Heart (APD50)	155
Figure 57:	Modulation of Sub-epicardial Stretch Response by Glibenclamide	159

Figure 58:	Modulation of Endocardial response to Stretch by	
2	Glibenclamide	160
Figure 59:	Effect of Stretch and Glibenclamide on MAP Amplitude	161
Figure 60:	Effect of Stimulation Frequency on Papillary Muscle Contraction Force	172
Figure 61:	Effect of Perfusion Rate on Papillary Muscle Contractility	173
Figure 62:	Effect of Stretch on Papillary Muscle Contractility	174
Figure 63:	Effect of Stretch on Papillary Muscle Resting Membrane Potential	175
Figure 64:	Effect of Stretch on Papillary Muscle Action Potential Amplitude	176
Figure 65:	Effect of Papillary Stretch on Intracellular Action Potential Durations	177
Figure 66:	Effect of SAC Modulators on RMP in stretched Papillary muscles	178
Figure 67:	Effect of SAC Modulators on Amplitude in stretched Papillary muscles	179
Figure 68:	Effect of SAC Modulators on Papillary Muscle APD80 During Stretch	180
Figure 69:	Effect of Reducing Bath Temperature on Action Potential Parameters	185
Figure 70:	Effect of Temperature on Stretch-induced Changes in Electrophysiology	186
Figure 71:	Stepwise changes in resting tension on atrial contractility and electrophysiology.	192
Figure 72:	Effect of physiological tension on contractility in isolated left atrial tissue.	193
Figure 73:	Continuous Atrial Appendage Impalement During Stretch Manipulations.	194
Figure 74:	Effect of Stretch on Atrial Appendage Action Potential Duration	195
Figure 75:	Effect of Stretch on Atrial Appendage Action Potential Amplitude and Resting Membrane Potential	195
Figure 76:	Effect of Stretch on Atrial Appendage Action Potential Amplitude and Resting Membrane Potential	196
Figure 77:	Effect of Stretch on Atrial Appendage Action Potential Amplitude and Resting Membrane Potential	197
Figure 78:	Effect of Stretch on Action Potential Duration in Left Atrium of Rat	198
Figure 79:	Effect of Coronary Perfusion Pressure on Myocardial Contractility	207

Figure 80:	Preliminary Experiment Showing Effect of Flow on MAP durations	208
Figure 81:	Effect of Coronary Flow Rate on MAP Durations	209
Figure 82:	Effect of Coronary Flow Rate on MAP Amplitude in the Rat	210
Figure 83:	Effect of Changes in Coronary Perfusion Pressure on MAP Amplitude	211
Figure 84:	Effect of Coronary Perfusion Pressure on MAP Durations in Rat	212
Figure 85:	Effect of Coronary Flow Rate on MAP APD50 in the Rat	213
Figure 86:	Effect of Coronary Flow Rate on MAP APD20 in the Rat	214
Figure 87:	Effect of Coronary Flow Rate on MAP APD80 in the Rat	215
Figure 88:	Effect of Perfusion Rate on Perfusion Pressure in Isolated, Perfused Right Ventricle	224
Figure 89:	Effect of Perfusion Rate on Action Potential Amplitude and RMP in Isolated, Perfused Right Ventricle	225
Figure 90:	Effect of Perfusion Rate on Action Potential duration in Isolated, Perfused Right Ventricle	226
Figure 91:	Stretch-induced effects on the whole heart	232
Figure 92:	Timing of Stretch-induced Ectopic Beat	236
Figure 93:	Pharmacological Modulation of Stretch-induced Ectopic Beats	237
Figure 94:	Effect of Aortic Occlusion on Heart Rate and Mean Arterial Pressure	244
Figure 95:	Effect of Aortic Occlusion on HR in vivo	246
Figure 96:	Effect of Aortic Occlusion on Endocardial and Sub- epicardial MAP APD80 immediately after occlusion and immediately after release	247
Figure 97:	Effect of Aortic Occlusion on Endocardial and Sub- epicardial MAP APD50 immediately after occlusion and immediately after release	248
Table 1:	Summary of Endocardial and Sub-Epicardial MAP Changes in Response to Stretch at Physiological and Sub-Physiological Temperatures.	142
Table 2:	Summary of Stretch-induced Electrophysiological Effects in Isolated Rat Atrial Preparations.	199