
Coevolving a Computer Player
for Resource Allocation Games -

Using the game of TEMPO as a test space

by
c© Phillipa Avery, BCompSci(Hons)

A thesis submitted to the
Graduate Centre

in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy

Supervisor: Prof. Dr. Zbigniew Michalewicz
Associate Supervisor: Dr. Charles Lakos

School of Computer Science
University of Adelaide

September, 2008

Adelaide Australia

For Ben and Rachael.
Your support has gotten me to where I am today.

Thank you.

Contents

Abstract iv

Acknowledgements vii

List of Tables viii

List of Figures ix

List of publications xii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 4
1.3 Methodology . 5
1.4 Contributions . 6
1.5 Thesis outline . 8

2 Background 11
2.1 Strategic Decision Making . 11
2.2 Resource Allocation . 13
2.3 Game Theory . 14

2.3.1 Game Theory and Early AI . 15
2.3.2 The Prisoner’s Dilemma . 16
2.3.3 Nash Equilibrium . 18
2.3.4 Sequential vs. Simultaneous Games 18

2.4 Computers and Games . 22
2.4.1 The Evolving Field of AI . 23
2.4.2 Commonly Used Methods . 24
2.4.3 Expert Systems . 25

i

2.5 Evolutionary Algorithms . 26
2.5.1 The General Evolutionary Algorithm 27
2.5.2 Variations of Evolutionary Algorithms 29

2.6 Coevolutionary Algorithms . 34
2.7 Fuzzy Logic Systems . 37

2.7.1 Fuzzy Logic . 37
2.7.2 Fuzzy Control Systems . 38

3 The game of TEMPO 40
3.1 Background of TEMPO . 40
3.2 The Game Objectives . 41
3.3 How to Play . 42

4 Literature Review 47
4.1 Memory in Coevolutionary Systems . 48
4.2 The Creation of Artificial Intelligence Strategies 51
4.3 Evolving Computer Players . 53
4.4 Related Games . 55
4.5 Adapting to Humans . 57

5 The TEMPO Coevolutionary System 60
5.1 The Early TEMPO Computer Player . 60
5.2 Experimental Settings . 62

5.2.1 The Representation . 62
5.2.2 The Coevolutionary Algorithm Implemented 65

6 Short and Long Term Memory in Coevolution 69
6.1 Introduction . 69
6.2 Experimental Settings . 70
6.3 Seeding the Populations . 71

6.3.1 Experimenting with the Alien Expert 71
6.4 The Inclusion of a Simple Memory Structure 72
6.5 A Discussion on the Psychology of Human Memory 78
6.6 Implementation of a Short and Long Term Memory Structure 80
6.7 Unique vs. Not Unique Memory Structure 82
6.8 Ranked “Gladiator” Selection . 83
6.9 Investigating the Inclusion of Migration 83

ii

6.10 Creating a Dynamic Enemy . 86
6.11 Reassessment of the Alien Expert . 92
6.12 Experiment Parameter Comparisons . 97
6.13 Conclusions and Further Work . 98

7 Intelligence and Counter Intelligence 100
7.1 Introduction . 100
7.2 A Discussion on the Role of Intelligence 102

7.2.1 Intelligence (INTEL) . 102
7.2.2 Counter Intelligence (CI) . 103

7.3 Intelligence and Counter Intelligence in the TEMPO Military Planning Game103
7.3.1 Deficiencies of Intelligence in TEMPO 104

7.4 Applying a more Realistic Mechanism for INTEL and CI 105
7.4.1 Redesigning Offensive and Defensive Intelligence 105
7.4.2 Effects on Counter Intelligence 107
7.4.3 Implementation Methods Used . 108

7.5 Experiments and Results . 111
7.5.1 Experiments with the new INTEL Mechanism 111
7.5.2 Addition of Counter Intelligence 117

7.6 Conclusions and Future Work . 125

8 Adapting to Human game-play 126
8.1 Introduction . 126
8.2 Coevolving with Humans . 128
8.3 Representing Human Strategies . 130
8.4 The Human Adaptive Coevolutionary Process 132
8.5 User Study . 135

8.5.1 User study results . 136
8.6 Conclusions and future work . 138

9 Conclusions and Future Work 141

Bibliography 145

iii

Abstract

decision-making in resource allocation can be a complex and daunting task. Often there
exist circumstances where there is no clear optimal path to choose, and instead the deci-
sion maker must predict future need and allocate accordingly. The application of resource
allocation can be seen in many organizations, from military, to high end commercial and
political, and even individuals living their daily life. We define resource allocation as fol-
lows: the allocation of owner’s assets to further the particular cause of the owner.

We propose two ways that computers can assist with the task of resource allocation.
Firstly they can provide decision support mechanisms, with alternate strategies for the allo-
cations that might not have been previously considered. Secondly, they can provide train-
ing mechanisms to challenge human decision makers in learning better resource allocation
strategies. In this research we focus on the latter, and provide the following general hypoth-
esis: Coevolutionary algorithms are an effective mechanism for the creation of a computer

player for strategic decision-making games.
To address this hypothesis, we present a system that uses coevolution to learn new

strategies for the resource allocation game of TEMPO. The game of TEMPO provides a
perfect test bed for this research, as it abstracts real-world military resource allocation, and
was developed for training Department of Defence personnel. The environment created al-
lows players to practice their strategic decision-making skills, providing an opportunity to
analyse and improve their technique. To be truly effective in this task, the computer player
the human plays against must be continuously challenging, so the human can steadily im-
prove. In our research the computer player is represented as a fuzzy logic rule base, which
allows us investigation into the strategies being created. This provides insight into the ways
the coevolution addresses strategic decision-making.

Importantly, TEMPO also gives us an abstraction of another component of strategic
decision-making that is not directly available in other games – that of intelligence (INTEL)
and counter intelligence (CI). When resource allocation is occurring in a competitive cir-
cumstance, it is often beneficial to gain insight into what your opponent is doing through
intelligence. In turn, an opponent may seek to halt or skew the information being gained.

iv

The use of INTEL and CI in TEMPO allows research into the effects this has on the re-
source allocation process and the coevolved computer player.

The development of a computer player for the game of TEMPO gives us endless pos-
sibilities of research. In this research, we have focused on the creation a computer player
that can provide a fun and challenging environment for humans learning resource alloca-
tion strategies. We investigate the addition of memory to a coevolutionary algorithm for
strategy creation. This includes mechanisms to select memory individuals for evaluation
of coevolutionary individuals. We describe a successful strategy of selection, based on the
way a human’s short and long term memory works. We then investigate the use of INTEL
and CI in the game of TEMPO, and the way it is used by the coevolved computer players.
Through this work, we present a new version of the TEMPO game that more realistically
represents INTEL and CI. Finally, we describe a process that uses coevolution to adapt to a
human player real-time, to create a tailored game-play experience. This process was tested
in a user study, and showed a distinct advantage through the adaptive mechanism. Overall,
we have made some important discoveries, and described some limitations that leave future
research open. Ultimately, we have shown that our hypothesis is an achievable goal, with
an exciting future.

v

Coevolving a Computer Player
for Resource Allocation Games -

Using the game of TEMPO as a test space

This work contains no material which has been accepted for the award of any other degree
or diploma in any university or other tertiary institution and, to the best of my knowledge
and belief, contains no material previously published or written by another person, except
where due reference has been made in the text.
I give consent to this copy of my thesis, when deposited in the University Library, being
made available for loan and photocopying, subject to the provisions of the Copyright Act
1968.

Phillipa Melanie Avery
4th September 2008

vi

Acknowledgements

First and foremost, I would like to sincerely thank my mentor and supervisor Zbigniew
Michalewicz. His guidance and endless patience has made this work possible. When I first
knocked on his door and asked him to be my supervisor, I could not have imagined the
challenging and exciting path that lay ahead of me. It has been a true honour to work with
him, and I could not have asked for a better supervisor.

I would also like to thank all the people who have made this research possible. Firstly,
I would like to thank Martin Schmidt for helping to form the early stages of the research,
and Charles Lakos for his input in the latter stages. Thanks also go to Garrison Greenwood,
who came along for the ride and made it better, and I am privileged to call a colleague and
friend. Additionally, I would like to thank SAPAC for their continued support and provision
of resources.

Thanks go to all the friends and reviewers who have helped shape the work over the years.
I would especially like to thank all my colleagues, who have always been there to provide
me with a pat on the back, slap to the forehead, and occasional knock on the head. Thanks
also go to my family, for the encouragement and support.

Special thanks go to my husband Ben, who has given me the support and strength to keep
going. I would also like to thank Rachael, who has kept me sane for all these years. This
thesis is dedicated to them.

Finally, I would like to thank Mike Brooks and Dave Munro, who gave a stranger at the
door a chance. None of this would have been possible without your trust in me, and I am
truly grateful.

vii

List of Tables

3.1 Example TEMPO net offensive util scoring 44
3.2 Util adjustments to reflect diminishing returns 45

6.1 Summary of the experiments . 97

7.1 Example values and function results . 111

8.1 User Study Stage 1 Results . 137
8.2 User Study Stage 2 Results . 137
8.3 User Study Stage 3 Results . 138

viii

List of Figures

2.1 Penalty matrix for the Prisoner’s Dilemma 17
2.2 Payoff matrix for the Prisoner’s Dilemma 17
2.3 Example game tree . 19
2.4 A generic evolutionary algorithm . 27
2.5 Example crossover implementation . 29
2.6 Example of solutions in multiobjective space 32
2.7 A generic coevolutionary algorithm . 35
2.8 Example fuzzy set membership . 38

3.1 Example screen of a year’s game-play . 43
3.2 Diminishing return distribution for util adjustments 45

5.1 The early TEMPO coevolutionary representation 61
5.2 New structure of a chromosome . 63
5.3 Membership function example . 64
5.4 The coevolutionary algorithm implemented 66

6.1 Baseline success ratio against the static expert 72
6.2 The coevolutionary algorithm with memory implemented 73
6.3 Success ratio against the expert using random selection from history 75
6.4 Probability distribution by function of time 76
6.5 Success ratio against the expert using single memory with linear distribution 77
6.6 Success ratio against the expert for a single run using linear distribution . . 77
6.7 Success ratio against the expert using Laplace probability distribution . . . 78
6.8 Success ratio against the expert using short and long term memory 81
6.9 Success ratio against the expert for a single run using short and long term

memory . 82
6.10 Success ratio against the expert using gladiator system 84

ix

6.11 Success ratio against the expert with migration incorporated into the gladi-
ator system . 85

6.12 Success ratio against the expert for two single runs with migration incor-
porated into the gladiator system . 86

6.13 Using the clustered memory mechanism against the pwar expert 90
6.14 Success ratio against the pwar expert using linear time probability long

term memory . 91
6.15 Success ratio against the expert with no alien expert 93
6.16 Success ratio against the expert with individuals evaluated against the expert 95
6.17 Success ratio against the expert with alien expert seeding and evaluation

against the expert . 96

7.1 Example screen of a year’s game-play with the new inputs and data 107
7.2 Example probability density function used for INTEL. 109
7.3 Success ratio against the ‘intelligent’ expert with same expert inserted in

populations . 114
7.4 Success ratio against the ‘intelligent’ expert with no expert inserted into the

populations . 116
7.5 Success ratio against the old expert with no expert inserted into the popu-

lations . 117
7.6 Success ratio against the ‘intelligent’ expert with new fitness function with

the expert inserted into the population . 118
7.7 Success ratio against the ‘intelligent’ expert with new fitness function with-

out the expert inserted into the population 119
7.8 Success ratio with population A only allowed weapon and INTEL rules,

and population B also allowed CI rules, measured against the old baseline
expert . 120

7.9 Success ratio with population A only allowed weapon and INTEL rules,
and population B also allowed CI rules . 120

7.10 Success ratio with population A only allowed weapon rules, and population
B also allowed INTEL rules, measured against the old baseline expert . . . 121

7.11 Success ratio for both populations with population A only allowed weapon
rules, and population B also allowed INTEL rules 121

7.12 Success ratio for both populations with no penalty to the first five INTEL
rules . 122

x

7.13 Mean and standard deviation for each population with no penalty to the
first five INTEL rules . 123

7.14 Success ratio for the experiments with lowered INTEL costs, against the
‘intelligent’ expert . 124

7.15 Success ratio for the experiments with lowered INTEL costs, against the
‘intelligent’ expert . 124

8.1 The human adaptive coevolutionary process 132
8.2 Screenshot of the TEMPO GUI . 134

xi

List of publications

The work carried out for this thesis has been partially published in a number of conference
proceedings and a journal article.
The research for Chapter 6 has been published in the following conference proceedings:

1. P. Avery, Z. Michalewicz, and M. Schmidt. “A historical population in a coevolu-

tionary system”. In IEEE Symposium on Computational Intelligence and Games,
Honolulu, Hawaii, USA, 2007.

2. P. Avery and Z. Michalewicz. “Static experts and dynamic enemies in coevolution-

ary games”. In IEEE Proceedings for Congress on Evolutionary Computation, Sin-
gapore, 2007.

As well as the following journal article:

1. P. Avery, Z. Michalewicz, and M. Schmidt. “Short and long term memory in coevo-

lution”. International Journal of Information Technology and Intelligent Computing,
3(1), 2008.

The research for Chapter 7 was published in the following conference proceedings, with
the accomplishment of winning best student paper for the conference:

1. P. Avery, G.W. Greenwood and Z. Michalewicz. “Coevolving Strategic Intelligence”.
In IEEE Proceedings for Congress on Evolutionary Computation, Hong Kong, China,
2008.

The research for Chapter 8 has been used for the following paper, which was under review
at the time of submission:

1. P. Avery and Z. Michalewicz. ”Adapting to human game play with Coevolution”.
Submitted to IEEE Symposium on Computational Intelligence and Games, in August
2008.

xii

It will also be used to contribute to the following book chapter, which is currently in pro-
duction:

1. P. Avery and Z. Michalewicz. ”Using coevolution to adapt to human gamers ”.
In preparation for Studies in Computation Intelligence, with the volume Recent Ad-

vances in Machine Learning. Springer, 2009.

xiii

Chapter 1

Introduction

Every day, all over the world, people are involved in the task of strategic decision-making,
particularly in business and defence environments. The success of a business relies on the
ability of its decision-makers to reach the best decision on how to appropriate the resources
of the organization. Often this decision-making is done in a competitive environment,
where other organizations are in direct competition with the business’s goals (such as gain-
ing a bigger share of the market). The act of making these decisions over time can be
considered a strategic game. In this game, each player must make the right choice, at the
right time, to outmanoeuvre his or her opponent. The stakes at risk in these games are high,
and the players must use every resource they can garner to their advantage.

One of the most beneficial resources an organization can have is their decision-makers,
however people experienced in strategic decision-making can be hard to find. Training
someone in the process of decision-making can be difficult, as most good decision-makers
act on intuition [43] gained through experience.

This chapter introduces our research on providing a mechanism to assist with strategic
decision-making training. We begin with the motivation for our research, defining some
of the key concepts. We then explain how we addressed the needs identified, defining the
objective goals. This includes the general hypothesis for the thesis, and the breakdown
of objectives used to achieve this hypothesis. The next section describes the methodology
used to address the objectives. We then highlight the original contributions the research
has provided. We conclude with an outline of the thesis, describing the contents of each
chapter.

1

1.1 Motivation

Playing is very general term, and includes a large variety of activities, however the ability
to play games is universal. Games exist in many shapes and forms, and we learn different
elements of strategic thinking through them. Children learn at a very early age to play
games, and even to create their own games. Whether they are playing a make believe
(imagined) game of cops and robbers, or are defining their own rules to the game of Chess,
children have boundless ways of making something fun through game-play. Even at these
early childhood stages of game playing, some clear characterizations in the play become
apparent [25]. Firstly, the game must be fun. As soon as the player loses interest in the
game, it no longer becomes a game to him or her. Secondly, the game must have a set of
rules, even if there are no explicit rules. For example, in the make believe game of cops
and robbers players create their own rules to characterize the game scenario. The cops must
follow a certain behavioural etiquette to show they are cops, and similarly with the robbers.
Lastly, if the outcome of a game is known before hand, the motivation to play the game is
lost. The result of the game must be uncertain in the sense of not being able to predict the
‘winner’. Whether it is the uncertain flow of where the imagination might lead us, or the
thrill of competition, the consequence of a course of action continues to entice the player.

By playing, we learn general social concepts through interaction, and trial and error.
We also learn the ability to form strategies to achieve our objectives. Developing and fine-
tuning our strategic abilities through game playing helps to prepare for the real-world task
of strategic decision-making. The definition of a strategic decision is hard to give, however
Schwenk [91] provides the following characteristics. Strategic decisions are ill-structured

and nonroutine, with an element of uncertainty in action and outcome. If there is a clearly
visible path to take (for example from a set formula) for a decision, then it is no longer
a strategic decision. The outcome of the decision is also an important aspect of strategic
decision-making. If the outcome does not have a large impact on the goals of the decision-
maker, it is no longer a strategic decision. Lastly, the decision-making process itself should
be complex, for example through high information overload, temporal changes to the prob-
lem, and dynamic environments. Enterprises must be efficient at strategic decision-making
to be successful, and the complexity and difficulty leads many enterprises to fail at their
goals.

As identified in [92, p.486] “Research on strategic decision-making is difficult to do

because of the difficulty of observing the decision process in action”. This difficulty
also affects the ability to train people in the process of strategic decision-making, and to
grade them effectively. The use of a controlled “laboratory” style allows observation of

2

the decision-makers in a strategic decision scenario. By providing the decision-makers a
scenario to implement their strategies, it is possible to record the decision processes, and
identify factors that they themselves might not even be consciously aware of [92]. The
art of skilful decision-making is something many people seek. There is no ‘magic bullet’
solution and like most things, it requires practice and determination.

As stated by Donald Trump [100, pp.43-44] “Money was never a big motivation for me,

except as a way to keep score. The real excitement is playing the game.” To truly succeed
in strategic decision-making, you need to bring out the love of the game (in the sense of a
game as a generalized concept, e.g. success in business). To do this, the scenario needs to
be challenging and attainable.

To create an opportunity for decision-makers to practice their skills, they need to be pro-
vided with an abstraction of a strategic decision-making scenario. This abstraction needs
to be contained and follow well defined rules, so actions can be observed and analysed.
Additionally, many strategic decisions must be made in a dynamic competitive scenario,
where another enterprise is running in direct conflict with an organization’s goals. The
competitive nature of strategic decision-making in corporate and military alike, often in-
volves investigation into the opposition. This investigation involves gathering intelligence
about the competitors. As a result, an obvious corollary of this is for the organization
to attempt to stop competitors gaining access to their strategic information, by creating
counter-strategies. This is a key concept in strategic decision-making, and requires dif-
ferent strategy creation mechanisms. This concept of intelligence and counter intelligence
should also be provided in any abstraction for training purposes.

To create an abstraction for this scenario, a challenging opposition must be used that
can also make its own strategic decisions with its own goals. The need for an opposition
creates a dilemma, as it requires another player who is capable of adapting to the decision-
maker’s strategies. A human player can be hard to find, as people with the right experience
and skill levels to adapt at the necessary level of the player should be used. Additionally,
the time taken to train each player at their individual level creates an unrealistic level of
demand for the human trainers. The use of a computer player as opposition is therefore
ideal, as a human player can make use of the computer player at any time, for any length of
time. The problem lies in creating a computer player that can adapt to the level needed by
the human player in training. Additionally, the computer player needs to create strategies
that can cater for the dynamic decision-making scenario. These tasks are not simple ones,
and are not something that is currently available. It is the creation of a computer player for
this purpose that is the motivation for this research.

3

1.2 Objectives

As stated in section 1.1, our main objective for this research is to create a computer player
that will be effective in helping humans to learn good strategic decisions. For the purposes
of this thesis, we describe a computer player as a strategy for game-play. In the future,
there may be a distinction between a computer player and its strategy, but currently they
are the same thing.

To achieve our goal, we define the general hypothesis for this research as: “Coevo-

lutionary algorithms are an effective mechanism for the creation of a computer player

for strategic decision-making games”. To be effective, the computer player must develop
strategic rules in a reasonable time (the game-play must be continuous, with no detrimen-
tal impact on the play caused by time delays), and should provide a challenging learning
experience for human players.

To further this objective, we use a specific game that was developed to train Department
of Defence personnel in resource allocation, which is a strategic decision-making task. The
game is the TEMPO Military Planning Game, and it represents a simplified abstraction of
real-world resource allocation in a dynamic environment. Therefore, we now narrow our
main objective to be specifically for this game. The methodology described in this research
can be applied to numerous scenarios, but the practical experimentation has been conducted
using TEMPO.

Following from the motivation, the developed system must meet the following objec-
tives:

1. The computer player must be able to allocate resources effectively in the game of
TEMPO, for the purpose of being competitive against a human player.

2. The computer player and the TEMPO game should provide the necessary scenario
for the human player to learn the task of resource allocation.

3. The challenge given by the computer player should be tailored to the individual hu-
man’s ability level.

The challenge of the first objective is in evolving a computer player that can create
rules for strategic game-play, given the competitive and dynamic nature of TEMPO. The
second objective requires analysis of the computer players being generated, and the game
of TEMPO itself. To create a challenging scenario for human players to learn with, the en-
vironment of the game needs to be designed to test their skills. Additionally, the computer
player should be challenging enough to prompt human learning. Combined, the game and

4

the computer player form the scenario of a challenging learning task. The final objective
is perhaps the hardest to achieve, with the difficulty level and strategy generation of the
computer player adapting to the human player.

1.3 Methodology

The TEMPO game was created to allow decision-makers to practice their skills in a compet-
itive environment. The game allows strategies to be implemented in a zero-sum allocation,
which can be analysed for effectiveness. This auditing process allows the perfect opportu-
nity for players to analyse and improve their decision-making, increasing their experience
and ‘intuition’. By creating a contained practice environment, the decision-makers are
given a clearer understanding of how their strategic decision-making process is happening.
As identified by Schwenk [92, p.488]:

“Executives cannot always recall the details of complex decision processes.

What is worse, they tend to reconstruct events in a way that makes the processes

seem more purposeful and logical than they actually were. They do not do this

from a desire to deceive. Indeed, they may not even be aware of what factors

affected their decisions.”

This is a common scenario in strategic decision-making in general, as normally informa-
tion overload and dynamic factors affect the decision. By providing an environment where
the complexity is managed, and the actions recorded, the TEMPO system allows decision-
makers insight into their techniques. Good decision-makers are experienced in the way

decisions are made, not necessarily the context of the particular decision. By providing po-
tential decision-makers with a competitive game to practice their general decision-making
skills, they are shown the challenge and fun involved in finding a good strategy. The game
of TEMPO was designed for this purpose, and by creating a computer game with a com-
puter player adversary, the auditing is made even easier. The TEMPO also game provides
the ability to practice strategies with intelligence and counter intelligence.

As explained by De Jong [39], it can be difficult to define an evaluation function for
a computer player, as the best evaluation is how well it plays the game. When evaluating
against a static set of strategies, the computer player is only trained for those specific strate-
gies. The use of coevolution to evaluate the game-play however can provide a much greater
variety of evaluation strategies. Thus, a coevolutionary algorithm was considered the best
mechanism to create a challenging opponent for the TEMPO game. The use of coevolution
to successfully create computer players in many different types of games has led to much

5

research on the topic over the past decade. The application of the technique to an imperfect
game such as TEMPO, where not all the information on the game is made available to the
players, has not been as prolific.

The complexity of decision choice in imperfect games means that rules of game-play
can be complex and hard to determine. The individuals for the coevolution in this research
are represented as a fuzzy logic rule base. Fuzzy rules were used to allow the coevolution-
ary system to create general rules of strategic game-play, which were easily readable for
analysis purposes.

This research continues the work started by Johnson et. al. [55] on a computer player
for the TEMPO game, specifically for the objectives explained above. We analysed and
addressed the deficiencies of the previous computer player. This included the addition
of a memory to the coevolutionary system, to create more robust and challenging static
computer players. Additionally, the game of TEMPO itself was analysed for deficiencies,
particularly the intelligence and counter intelligence game components. As a final step, we
created a new process to provide human players with a test environment for the game of
TEMPO. This involved the creation of an adaptive process for the coevolutionary system.
A user study was then conducted to test the overall effectiveness of the system.

1.4 Contributions

There are three major contributions from this research, which are described in depth in
corresponding chapters in the thesis. The first major contribution is research into the ad-
dition of memory to the coevolutionary algorithm. We investigated different ways to use
the memory, specifically selection from the memory for evaluation of the coevolution in-
dividuals (represented as strategies for the game). We demonstrate the benefit of using a
mechanism for selection based on the way humans use short and long term memory. We
also made additional experiments to further mimic the use of long term memory through
ranking and clustering.

The contributions for this research have been published in [8–10]. The research met the
first objective as required in section 1.2. Using the memory addition to the coevolution, we
were able to develop computer players whose strategies were very challenging for human
players. The generated players were however still static representations of a strategic rule
base, for a particular strategy of game-play. While a computer player was able to best
human players in initial game-play, the human players were able to adapt to the strategy
over the long term.

The second major contribution was to analyse the role of intelligence and counter in-

6

telligence. This involved investigation into the deficiencies of the computer players and
the game of TEMPO, in the intelligence and counter intelligence aspects of the game. We
collaborated with Garrison Greenwood for the research, who has experience in both com-
putational intelligence and as a Lieutenant Colonel in the U.S. Army. Through the collabo-
ration, we were able to identify improvements that were necessary for the TEMPO game to
be a more realistic and useful tool for intelligence and counter intelligence in resource allo-
cation. Changes were made to create an intelligence mechanism for the game that allowed
partial purchase of intelligence in the required categories, replacing the previous boolean
decision mechanism. The counter intelligence was also changed in a similar manner, with
experimentation on the way to apply the purchase of counter intelligence in the game.
Deficiencies in the coevolved players were also investigated, through the changes to the
TEMPO game, and experiments with parameters that were thought to affect the purchase
of intelligence.

The research showed that the representation of the intelligence and counter intelligence
was a major factor in the game-play. However, we also identified the difficulty in trying
to coevolve individuals who recognized the importance of buying intelligence, instead of
simply finding the best generalized solution. Findings from this research were published
in [7], for which we were fortunate enough to be awarded best student paper at the Congress
of Evolutionary Computation 2008. The research aimed to achieve the second objective of
providing a challenging scenario for resource allocation. While this was addressed to some
degree, there is still more progress to be made to the usefulness of the game of TEMPO.

The final contribution of research was to create a system that adapts to a human player,
creating a tailored game-play experience. The complete system developed by this research
contributed a novel way of adapting to human game players by reverse engineering the
human game-play. The reverse engineering involves recording data from a human’s game
against a computer player, and performing an optimisation search to find rules of game-play
that follow the same manner of game-play as the human player. The reverse engineered
rules are then used in the TEMPO coevolutionary system to adapt to the human player’s
strategy. The coevolution is performed real-time, with an average of less than two minutes
for the computer player to form a new strategy. The combination of reverse engineering
the human strategy in this way, and combining it in a coevolutionary system to develop
a computer player that adapts to a human player, is a unique contribution. The system
worked very well overall, and provides a promising start for future research.

7

1.5 Thesis outline

The thesis is organized as follows. Chapter 2 gives a background to the general topics
surrounding our objectives. We begin with a discussion on the field of game theory, as it
offers many insights into factors concerning this research. The discussion then progresses
into the use of computers for the implementation of strategic game playing, with the emer-
gence of artificial intelligence (AI) and in turn computational intelligence. Some of the
relevant computationally intelligent techniques used by this research are then described.
We give a description of the general evolutionary algorithm and its components, followed
by the coevolutionary algorithm. We then conclude the chapter with a brief description of
fuzzy logic and fuzzy controllers.

Chapter 3 proves a detailed introduction to the game of TEMPO. The chapter begins
with a history of the game and its origins. We then go into the specifics of how the game
is played, and the structure of the game. This chapter is intended to give the reader an
overview of the game purpose and mechanisms. As the game is changed at various stages
throughout the research, it is only a superficial introduction to the game, with deeper un-
derstanding gained as the thesis progresses.

Chapter 4 provides a literature review of the work conducted for topics relevant to our
research. The first of our research presented in this thesis is the addition of memory to the
coevolutionary algorithm, for creating a more efficient and challenging computer player.
Relevant work into the addition of memory for coevolutionary algorithms is discussed, with
problems, benefits, and research needs addressed. This is followed by a general discussion
on the research into the analysis and creation of strategies by artificially intelligent means.
The difficulties involved in this are also discussed, as is the current research on these issues.
In relation to this, we give a review of the different computationally intelligent mechanisms
that have been used to create strategic computer game players, particularly relating to the
evolution of the players. We then discuss research into games with similar characteristics
to the TEMPO game, considering the current research in the area, and the similarities and
differences to the research on TEMPO. We finish the chapter with a discussion on the
research for creating a computer player that adapts to human game players.

Chapter 5 goes into detail on the technical aspects of the system used to create our com-
puter players. We describe the previous research into the creation of a computer player for
the game of TEMPO, and the changes implemented for our research. We give a detailed
description of the specific coevolutionary algorithm used in the creation of the players,
and the evolutionary mechanisms implemented. This includes a description of represen-
tation used for the individual computer players, followed by the coevolutionary algorithm

8

implementation.
Chapter 6 describes the first experimental stage of research for this thesis. This stage

addressed flaws found from the previous research into creating a computer player for the
TEMPO game. The addition of a memory population to the coevolutionary algorithm was
implemented, and research conducted into the best way to use the memory. Extensive ex-
periments were performed on the method of selection from memory, where selected indi-
viduals were used as part of the evaluation function. The growth of the memory population
over the generations affected the selection pressure, and diminished the usefulness of the
memory. Instead of restricting the size of the memory, and losing individuals, we experi-
mented with ways of varying the selection pressure based on the concept of human short
and long term memory. We found the technique gave us a distinct advantage, and proceeded
to investigate further into different ways of mimicking the human long term memory. The
chapter provides a description of the background research and analysis that led us to the
addition of a memory. The different experiments conducted and their results are provided,
with analysis and conclusions given.

Chapter 7 covers the next stage of the research that addressed the issues of intelligence
and counter intelligence in the game. The work in this chapter describes the changes made
to address the deficiencies in the TEMPO game, by creating a more realistic intelligence
and counter intelligence mechanism. We also describe the experiments conducted to evolve
computer players that make use of these changes.

Chapter 8 is the final chapter for the research in this thesis. The research involved the
amalgamation and extension of the previous research, into the Human Adaptive Coevolu-
tionary Process (HACP) for training human players. The system plays against a human,
and adapts to the human strategy, creating a challenging and fun learning experience. As
described above, it is this ability to provide a fun challenge to human players that ultimately
allows them to develop their intuition for strategic decision-making. The chapter describes
the creation of the HACP system, and the mechanisms used to adapt to the human player.
We then provide the results from a user study where human players with nominal experi-
ence in strategic decision-making use the HACP system. The results were very promising,
and an analysis of the benefits and the avenues for future research are discussed.

Chapter 9 concludes with a general summary of our findings and the future directions
for research. The specific findings for each research stage are given in their relevant chap-
ters, and this chapter will instead provide an overview of the findings from the thesis as a
whole. We also describe some of the deficiencies and difficulties that exist in the research,
and possible ways that they could be solved.

The research presented in this thesis has demonstrated the exciting prospect of coevo-

9

lution for strategic decision training purposes. We establish that the use of coevolution is
indeed possible, and that it can create an effective computer player for resource allocation
games. In the process, it also allows human players a fun and challenging way to gain
experience in the area. We hope you enjoy the story of the research presented here, nearly
as much as we have creating it.

10

Chapter 2

Background

In this chapter we describe some of the relevant areas of research, and provide some back-
ground information. We begin by describing the field of strategic decision-making, and
discuss the difficulties involved in the process. We also give a description of the specific
strategic decision-making task used by the TEMPO game, that of resource allocation. Next
we give a summary of some general game theory, as the field of game theory is paramount
to understanding the basic principles in strategic decision-making. We the describe the ef-
fects that games have had on computer science, and their continued importance. We then
describe the different areas of computational intelligence utilized in this research. This be-
gins with an overview of evolutionary algorithms, a general description of their purpose,
how they are used and what is involved in their creation. We then extend our description of
the evolutionary algorithm, with the coevolutionary algorithm. We compare coevolutionary
algorithms to evolutionary ones, presenting the advantages and disadvantages. Finally we
discuss the fuzzy logic rule base mechanism chosen to represent individuals in the system.
This involves a brief explanation of the concept of fuzzy logic, and how it applies to fuzzy
control systems.

2.1 Strategic Decision Making

The research into Strategic Decision Making can generally fall into two separate areas [92].
The first is analysing and creating the content of strategies. The second is observation and
analysis of the process involved in the decision-making. The creation of general strategies
can prove beneficial to the decision-making process, but generalized rules on strategy mak-
ing can often prove too generic for situation-dependant real-world problems. Instead, by
observing and analysing the way that strategies are created, guidance can be given to help
decision makers in the process.

11

One of the oldest and most universal research streams on strategic decision-making is
rationality and bounded rationality [43, 91]. Rational-choice (rational) strategic decision-
making, is when strategy making results from logical decisions. As stated by Eisenhardt
and Zbaracki [43, p.18] “According to this model, actors enter decision situations with

known objectives. These objectives determine the value of the possible consequences of an

action. The actors gather appropriate information, and develop a set of alternative actions.

They then select the optimal alternative.” The reality of problems however can contradict
this ideal, with inconsistent goals existing among decision makers, and over time. Often
the decision-making process can occur over long periods of time, with decision makers
coming and going, and the information relating to the problem changing. Many alternative
views of how strategic decisions eventuate have been suggested, with the rational thinking
being bound by circumstance (bounded rationality).

For example, in many organizations the decision often reflects standard operating pro-
cedures and guidelines. This decision is made regardless of whether it is the most beneficial
optimal alternative. The ability for different individuals with different agendas to all agree
on a single decision also complicates matters. Often parties will rely on expertise from
external consultants, or a devil’s advocate to argue the inadequacies of the decision. Most
commonly the success of the decision however, relates to the politics and power of the par-
ties involved [43]. If a decision maker has a position of higher standing, obtained through
past achievements or political prowess, he or she will often be given the final say. Obtaining
this position of power may relate directly to the ability of an individual to quickly decide on
a successful action. Studies [43] have shown that this quick decision-making is achieved
through shallow research of relevant information, thus creating a bounded rationality strat-
egy with incomplete information. As found by Eisenhardt and Zbaracki [43, p.22] “De-

cision makers satisfice instead of optimize, rarely engage in comprehensive search, and

discover their goals in the process of searching.” Often this ability to act on incomplete
information is described as ‘intuition’ gained from experience. The ability to make a suc-
cessful decision is something that comes with practice and experience.

When applying the science of strategic decision-making to a military organization, the
similarities with corporate strategy are strong. Socrates himself described the similarities
between a businessman and a military officer, showing that both make plans to allocate
their resources according to their goals [21]. One key difference however, is that military
strategy making can be broken into two different stages: deterrent and combative strate-
gies [98]. The aim of the deterrent stage is to avoid going to war, usually by displays
of dominance over an opposing country through force of arms. The combative stage has
different objectives, with the communication/relationship management and resource allo-

12

cation aimed at ending the war favourably and quickly. There are also different strategies
that emerge depending on the type of war being fought: offensive, defensive, pre-emptive,
subversive etc.

In the past, one of the differences between military and corporate strategic analogies
has been the clearly defined terrain of the war. As stated by Sudharshan [98, pp.28-19]:

“Military strategy is implemented in a terrain that is clearly defined and

known to the participants and does not change over time. The valleys remain

valleys and the high ground remains high ground. However, the marketing

“battlefield” is constantly changing. In addition to external forces of change

such as technology and customer values, businesses are continually changing

the relationship-offering space as they attempt to erode advantages established

by competitors.”

This emphasis of a static war scenario has shifted in recent years however, with modern
warfare tending to focus on cell structured guerrilla warfare. The strategies involved in
modern combative strategies must be adaptive, even in relation to physical terrain. While
a map can show physical valleys, they will not show the hiding spots of the guerrillas
that know the areas better than the soldiers do. They can not predict, when approaching a
village, if it has allegiance to the guerrilla cause and to what degree. The battlefield itself
has become an uncertain and dynamic environment, and the strategy making process needs
to adapt in response.

One of the key factors in strategic decisions is how to allocate the resources of the
enterprise to achieve their goals. The next section considers this area of the decision-
making process in more depth.

2.2 Resource Allocation

The concept of resource allocation is intertwined with strategic decision-making. As Bracker
[21, p. 221] summarizes “Strategic management entails the analysis of internal and ex-

ternal environments of a firm, to maximize the utilization of resources in relation to ob-
jectives.” The resource allocation made by an enterprise, creates the artefacts (the action
results) of their strategic decision-making. The mapping of resources to artefacts adds fur-
ther complexity to the strategic decision-making process. While the high end goal is to
allocate resources according to the objectives of the enterprise, often the sheer mass of
options available for the allocation creates further complication through information over-
load. The individual pros and cons of solutions can be lost in the magnitude of choice. Add

13

to this constraints applied by the organization, and the differing objectives (both of which
often change over the course of the decision-making process), and the problem difficulty
becomes daunting.

While resources can include any asset of an organization, including its people and end
products, often the resources are referred to in monetary and budget terms. Generally,
the successful allocation of the budget can be thought of as an optimisation issue, with
objectives relating to the company goals. Often there is not just one goal objective, and
multiple objectives must be met. The internal problem environment might also change in
the organization, as people and goals change, and different interested parties influence the
decision-making process. External factors also play a role in the complexity with com-
petitors, allies, and environmental issues out of the organization’s control all contributing.
Each factor has the capacity to change the significance of the resources and their worth,
and create the need for an adaptive allocation process.

The use of computers should be beneficial to the decision-making process. The process-
ing power of computers to determine optimal solutions for decision makers to choose from
provides a simplified choice. However, the dynamic nature of the decision-making process
makes the development of a computer decision support system difficult. For a computer
program to be useful, it either needs to adapt to the changing goals and environment, or be
rewritten to encompass the changes. Often this difficulty results in impractical solutions to
the decision-making process.

While a decision support system may help provide solutions, the bottom line is that
a human needs to make the final decision. If the human is not experienced enough and
educated in the situation, he or she may make the wrong decision. Hence, we need to
find a way to give the human decision makers practice at making decisions, in a changing
and dynamic environment. By providing decision makers with a contained environment to
practice their decision-making skills, the human players are able to learn through experi-
ence. The testing environment also gives future employers a mechanism to find and train
employees that demonstrate the ability to make good decisions in a generalized manner.

Game theory has given much insight into the heuristics that humans use in decision-
making. The next section discusses some of the concepts in game theory that are relevant
to this research.

2.3 Game Theory

Game theory research has provided much of the foundations for computer players. Some
of the great founders in the field of computer science, such as John von Neumann, were

14

also scholars of game theory, and much of the theory of computer science has been affected
by it over the years.

The main purpose of game theory is to interpret and represent the scenarios involved
in strategic decisions. By analysing and understanding the behavioural strategies, opti-
mal strategies can become apparent. Game theory research has wide reaching applications,
from understanding social and individual behaviour in social sciences, to analysing and pre-
dicting political strategy. It is a wide and varied field, and this background only describes
some of the more relevant topics to this research.

This section begins with a discussion of how game theory has influenced computer
players over the years. We then discuss some of the common techniques that have been
utilized by the Artificial Intelligence (AI) community.

2.3.1 Game Theory and Early AI

The use of strategy in games has been analysed and taught for many centuries in many
cultures. However, it was only recently that a research field has emerged that investigates
the way people analyse decisions in a generalized manner, rather than for a specific game.
John von Neumann and Oskar Morgenstern largely founded this field by publishing their
1944 book “The Theory of Games and Economic Behaviour” [102]. Hargreaves Heap and
Varoufakis [51] summarize the definition von Neumann and Morgenstern gave to a game
as follows:

“They [von Neumann and Morgenstern] defined a game as any interaction

between agents that is governed by a set of rules specifying the possible moves

for each participant and a set of outcomes for each possible combination of

moves. One is hard put to find an example of social phenomenon that cannot

be so described.”

This identification of games representing the interaction of social phenomenon is an
important one, as it indicates the ingrained game playing that human behaviour comprises.
Whether the specified rules are a set of statements to define a board game, or a set of legal,
ethical and moral rules defined by social circumstance, all of these create a constrained
environment for strategic decision-making. As a result, any form of study that seeks to
investigate human behaviour in these environments, stands a high chance of crossing over
with game theory. Thus, the research into AI, which has been largely based on finding
ways to recreate intelligence at a human level, has remained closely linked to the field of
game theory.

15

Game theory has produced some important observations on optimal decision-making,
and how people make their decisions. Research for game theory often involves representing
a social interaction in a constrained version of a game. This approach trivializes the details
and reality of the circumstances, and instead abstracts the situation into a simulation test
bed [18]. The game scenario allows two or more players in opposition to (and in some cases
in cooperation with) each other, making strategic decisions on the scenario presented. This
scenario provides a test bed to determine the actual heuristics that people use to play the
game and make decisions in general.

When game theory research uses a constrained test environment for a scenario, it is
often beneficial to perform the test using a computer. A computer allows for faster and
more global testing of a hypothesis. In turn, the constrained abstractions provided by game
theory are ideal for testing computer science algorithms for optimization and ‘intelligence’
heuristics. This mutual benefit ensures the ongoing overlap between the two fields. It is
through the abstraction of scenarios that some interesting research topics can be modelled
and tested.

2.3.2 The Prisoner’s Dilemma

One of the most well known scenarios in game theory is that of the Prisoner’s Dilemma

(PD), which allows study of complex strategic decision-making. In the PD, police are
questioning two suspects in relation to a crime. The police do not have enough evidence to
convict both suspects for the maximum penalty of 10 years, but there is enough evidence
for a minor conviction of 1 year. The police offer each suspect a deal. If the suspect
confesses and agrees to implicate his or her partner in the crime, then he or she will receive
a reduced sentence (from the 10 year maximum). If the partner chooses not to confess
(and stay quiet), the suspect will go free and the partner will receive the maximum time of
10 years. If the partner however also confesses, both suspects will receive a sentence of
5 years jail time. The suspects are also aware that if they both stay quiet, the police only
have enough to convict each of them of the minor crime. Each suspect must make his or
her choice without talking to the partner [41, 69]. Therefore, we have a scenario where
each suspect has the penalty matrix as defined in figure 2.1. where the years of jail time are
given according to each suspect’s choice.

To make the situation more general, we can define the decision as cooperating or de-

fecting. If the suspect chooses to cooperate with his or her partner, they will choose the
option that gives the most mutually beneficial result. If the suspect instead chooses to go
with his or her most individually beneficial option, they defect from the mutual plan. In

16

suspect B
Stay quiet Confess

Stay quiet 1,1 10,0
suspect A Confess 0,10 5,5

Figure 2.1: Penalty matrix for the Prisoner’s Dilemma

this situation, each suspect has the choice to cooperate with the partner and stay quiet, or
to defect and confess. These can be thought of in terms of benefits, or pay-offs, for each
suspect. The better the result, the higher the pay-off. We can assign a pay-off for each
scenario from the PD. Each suspect has the highest pay-off when he or she decides not to
cooperate and defect, while the partner continues to cooperate. Therefore, in this scenario
we give the largest pay-off of 5 for the defector. The opposite scenario, where the sus-
pect cooperates while the partner defects gives the worst pay-off, which we represent as 0.
When both suspects cooperate, they receive a pay-off of 3, as they can only be convicted
for the minor crime. When they both defect, they are given a pay-off of 1 as the penalty is
still a lengthy jail term. These can now be represented in a pay-off matrix, which can be
seen in figure 2.2.

suspect B
Cooperate Defect

Cooperate 3,3 0,5
suspect A Defect 5,0 1,1

Figure 2.2: Payoff matrix for the Prisoner’s Dilemma

Study of the PD normally iterates the scenario, where the results of one iteration affect
the next one. In a scenario of indefinite iteration (like that represented in cold and escalating
war scenarios), the Tit for Tat (TFT) method [11] is still arguably the most optimal overall
iterative strategy. TFT begins by cooperating for the first iteration, then changes strategy
each time the opposition does. If the opposition defects, then next round the player also
defects, if the opposition cooperates, next round the player also cooperates.

The IPD depicts a scenario representative of many real-world decision-making prob-
lems, such as cold wars (and active ones) and competitive business practices. In all these
cases, the mutually beneficial case (both suspects cooperating) seems to give the best sta-
bilized result. However, the temptation to defect and choose the individual best scenario
(where the suspect goes free) often results in both parties choosing this option and getting
a suboptimal result (5 years instead of 1 if they both cooperated). The PD also has a lot
of situation dependencies, like how well the suspects know each other and how much they
trust the other to stay quiet. Let us assume for the moment that both parties do not know

17

each other, and that each party is blind to the other players of the game with no knowledge
of opposition strategy. Is there an optimal strategy for them to take?

2.3.3 Nash Equilibrium

In his PhD thesis of 1950, John F. Nash Jr. introduced the concept known as Nash equi-
librium [74]. The Nash equilibrium defines a way to find an optimal strategy given games
such as the PD. A Nash equilibrium is a steady state in a game, where a choice exists for
both players, such that neither benefits from changing their strategy. Nash defined the equi-
librium for zero sum games where the players make their choice “... independently, without

collaboration or communication with any of the others [players]” [74, p. 5]. The PD is a
good depiction of such a problem.

Analysing the PD options from figure 2.2, we can determine the Nash equilibrium. Let
us start with both suspects choosing to cooperate. In this scenario, they both have a pay-
off of 3. If however, a player decides to defect, he or she receives a higher pay-off of 5
(with the other player continuing to cooperate). This shows that the scenario is not in Nash
equilibrium, as there exists a state where a player benefits from changing strategy.

For the scenario where one suspect cooperates and the partner defects, we have a pay-
off of 0 for the cooperator, and 5 for the defector. This scenario is also not in Nash equilib-
rium, as the cooperator gets a higher pay-off of 1 if he or she changes strategy to defect.

The last scenario is when both suspects defect. In this scenario, they both have a pay-off
of 1. If either suspect changes strategy and cooperates, the result is a lower pay-off of 0.
Therefore, in this scenario we have found a Nash equilibrium. Note, the Nash equilibrium
is not the most mutually beneficial scenario. If both suspects cooperate, they each achieve
a higher pay-off. However, in a scenario where is not complete trust in the other party, the
Nash equilibrium can be used to find the stable best option. It is also worth noting that
there can be multiple Nash equilibriums in a scenario, and there can also be none.

The Nash equilibrium is just one source of information available to help in making a
decision on what strategy to take in game playing. The next section will describe another
scenario where different tools can be used for the decision-making process.

2.3.4 Sequential vs. Simultaneous Games

Dixit and Nalebuff [41] describe two kinds of strategic interaction: sequential and simulta-

neous. A sequential interaction occurs when players make their actions one after another.
All previous actions from all players are visible, along with possible future actions for both

18

Player A

Player B Wins

Player A

Draw
Player A Wins

Player B

Player A WinsPlayer A

Player B Wins
Player B

Player A Wins

Player A
Player A Wins

Player B
Player B Wins

Player A

Player A Wins

Draw

Player A Wins
Player A

Player B Wins
Player A Wins

Player B
Player B

Player A
Draw

Player B Wins

Player B Wins

Player A

Player B Wins

Figure 2.3: Example game tree

players. A simultaneous interaction occurs when all players act simultaneously, without
knowledge of the opposition’s concurrent actions.

The Prisoner’s Dilemma depicts a situation where the player chooses and applies a best
strategy for the entirety of the game, simultaneously with the other player. In other games
such as Chess, the strategy can change depending on the current situation of the game. In
games such as Chess, each player moves sequentially, and the choice depends on choices
made in previous moves. These types of sequential games allow the player a perfect view
of all possible moves by both players [77], and are thus called perfect games. Perfect games
give each player all the information about the past player and opposition moves, and allows
accurate prediction of possible future choices.

The sequential type of game decision-making can typically be represented through a
decision tree, where all the possible choices from the beginning of the game to the end
can be identified. As an example, figure 2.3 shows an abstraction of a simple sequential
game-play.

The game tree starts with the first player (player A) making the opening move by choos-

19

ing from two options. The next player (player B) then has another set of options depending
on what the previous player has chosen. For example, if player A chooses his or her second
option (the lower branch), player B will then has three options available. Player B will
likely choose the third option (the lowest branch), as it will lead to a definitive win. How-
ever, if player A had analysed all the moves at the first step in the game, he or she would
be unlikely to choose the second option as it allows player B to force a win. By choosing
the first option, player A can either force a win or draw. This tree is a very simple example
of a decision tree, and in most games there is a much higher branching factor, and a greater
depth (ply) of game-play, which can give a very large search space of decisions.

When a sequential game give a perfect view of choices, it is theoretically possible to
force a win or draw from the opening move. Using tree traversal methods, a path can be
found where win or draw leaf nodes can be reached regardless of the opposition choices.
When such a path can be identified for a game, the game is referred to as solvable. A good
example of this is the game of Ticktacktoe, where it is a simple task for the player moving
first to ensure a win or draw. Thus, the game of Ticktacktoe is solved. The reality for
many games such as Chess and Go however, is that the size of the game tree is too large
for current computational power to solve, and so they are not currently solvable. We are
currently not able to, within reasonable time, search every decision and its branches to the
depth of the entire game. To emphasise this, even if we just wanted to traverse the tree for
Chess to a ply of 8, with an average branch factor of about 35 for each move, this would
give approximately 358 = 2, 251, 875, 390, 625 nodes to traverse. The size of a game tree
for the entire game of Chess makes it solvable in theory only, not in practice. Chess and Go
are however still perfect games, as they still allow all player information available, they are
just not solvable by today’s standards. This makes them perfect, and theoretically solvable
games.

It is the second category of simultaneous decision-making that applies directly to this
research. The area of simultaneous decision-making is where the opponents are making
decisions in parallel with each other. They act without all knowledge of their opponent’s
move, and have an imperfect view of the game. This situation requires the players to
attempt to see through the opponent’s decision. This prediction of opponent strategies can
lead to cyclic thinking, where predicted actions lead to cyclic strategy making. A good
example of cyclic thinking can be seen in the movie The Princess Bride (1973), where
the Dread Pirate Roberts engages in a battle of wits with one of the villains of the movie
Vizzini. The battle consists of each man drinking from one of two goblets of wine. Roberts
poisons the goblet of his choice with the deadly ‘iocane powder’ out of view of Vizzini,
and then Vizzini is given the choice of which goblet to drink from. The following quote is

20

taken from the movie,

Dread Pirate Roberts: All right. Where is the poison? The battle of wits has
begun. It ends when you decide and we both drink, and find out who is right...
and who is dead.
Vizzini: But it’s so simple. All I have to do is divine from what I know of you:
are you the sort of man who would put the poison into his own goblet or his
enemy’s? Now, a clever man would put the poison into his own goblet, because
he would know that only a great fool would reach for what he was given. I am
not a great fool, so I can clearly not choose the wine in front of you. But you
must have known I was not a great fool, you would have counted on it, so I can
clearly not choose the wine in front of me.
Dread Pirate Roberts: You’ve made your decision then?
Vizzini: Not remotely. Because iocane comes from Australia, as everyone
knows, and Australia is entirely peopled with criminals, and criminals are used
to having people not trust them, as you are not trusted by me, so I can clearly
not choose the wine in front of you.
Dread Pirate Roberts: Truly, you have a dizzying intellect.
Vizzini: Wait till I get going! Now, where was I?
Dread Pirate Roberts: Australia.
Vizzini: Yes, Australia. And you must have suspected I would have known the
powder’s origin, so I can clearly not choose the wine in front of me.

and on it goes. In the end, the reasoning in this situation was inconsequential, as Roberts
had poisoned both goblets (having built up an immunity to the poison). This scenario how-
ever, cleverly illustrates the difficulty and complexity in trying to predict what an opponent
might be thinking in an imperfect game, where both players must make the next move si-
multaneously. The simultaneous game-play adds a random aspect to the game, as it is not
possible to predict with 100% accuracy the opposition’s tactics, and hence it is not possible
to solve the game. Thus, simultaneous games are unsolvable, imperfect, and difficult to
determine generic strategies for.

It is worth noting that when applying these concepts to real-world problems such as
competing companies or political parties, the decision-making process often requires a mix
of both sequential and strategic decision-making. To illustrate this, consider the situation
where two politicians are trying to outmanoeuvre each other in an election campaign. The
decision-making of each of the campaigns is done in parallel. Each party tries to anticipate

21

what the other’s campaign might be, counter-acting with their own strategies. However, if
one party goes ahead with a campaign announcement prior to the other party, the situation
turns into a sequential one where someone has made the first move. Now the other party
must make theirs in response.

Study of human strategy making has given great insight into how they think, and the
optimal strategies to use in certain circumstances. The field of game theory was pioneered
by greats such as John von Neumann, who were also founders in many computer science
fundamentals. This close link between game theory and computers is well founded, as
computers became the perfect technology to test the theories being developed. Following
on from this, games were recognized as a great test bed for artificial intelligence. This
relationship is discussed further in the next section.

2.4 Computers and Games

The use of games to challenge and test a person’s abilities has been in place for many
centuries. From the Chinese use of Chess and Go to enhance war strategies, to the different
types of sport used to test various physical and mental abilities. Games are a part of human
culture. This use of games to test the abilities of a person has also been adapted for the
pursuit of AI. Through the use of games, computer scientists are able to test the ability of
an artificially intelligent mechanism, be it the ability to think, learn or even communicate
with other AI mechanisms.

The Macquarie Dictionary [3] defines a game as “a contest for amusement according

to set rules; a match.” Elements of this definition are repeated in other dictionaries, and
the common factor is the inclusion of playing to a set of rules. The other important factor
about games is the concept of the contest: one player competes against another with the
goal of winning. The combination of contesting behaviour whilst obeying set rules makes
game-play a wonderful area in which to test AI. The need to develop strategies to outplay
the opponent while maintaining the rules allows computer scientists to create intelligent
agents in a very testable way.

This section describes the relationship between AI and games, and how development
in the field has progressed. We then describe some of the techniques used to create AI for
games, including common heuristic and computational intelligent techniques.

22

2.4.1 The Evolving Field of AI

This relationship between AI and games was recognized early on in the development of
intelligent systems when Turing published his paper “Computing Intelligence and Machin-

ery” [101]. In this paper, Turing proposed a new mechanism (called the Imitation Game) of
testing a computer for intelligence, which can be generally described as a guessing game.
Turing adapted the following game that comprised three people: a man, a women and an
interrogator. The three players are separated, and only communication with the interroga-
tor is allowed. The interrogator then questions the other two parties, and by the end of the
game he/she must guess which is the man, and which is the woman. During the game, the
man tries to mislead the interrogator into thinking he is actually the woman. Conversely,
the woman’s job is to help the interrogator come to the correct conclusion. Turing adapted
this game to test a computer’s intelligence. The computer takes the role of the man, and a
human the role of the woman. To pass the test, the computer must successfully play to the
same capacity as a human player.

Whether or not the Turing test is a true depiction of a way to test intelligence, the prece-
dent laid out by it is generally accepted. Since the original publication, the Turing test has
been used as a milestone to test the success of AI at mimicry of human intelligence. This
goal reached a pinnacle when in May of 1997, IBMs Deep Blue supercomputer [54] man-
aged to beat the world Chess champion Garry Kasparov. A milestone had been reached;
a computer had beaten a human in one of the most well known intellectual games in the
world. However as it was happening, others were questioning the real intelligence of a
computer that has been manufactured and tailored specifically to the single task of playing
Chess, specifically a manufactured strategy made to beat Kasparov. The question being
asked was: is this really what we would classify as an intelligent thought process?

It was with this question in mind that Fogel and Chellapilla set out to create a new form
of intelligent computer; one which could learn to play the game of checkers without super-
vision or instruction [28, 29, 46]. This research opened up a new way for AI to make use
of the area of games, as now the aim moved from creating a machine to beat a human, to
creating a machine that can learn to beat a human. This means machines would no longer
need to be manually trained to play specific games. Ideally, they could play any game,
against any human, and play competitively. This new process has not only created promis-
ing computer players, it has also highlighted the possibility of a truly adaptive, predictive,
and learning intelligence. Such intelligence could achieve goals previously only dreamt
of in science fiction. The emphasis of this intelligence was no longer to mimic human
intelligence, but to allow a computer player to develop its own.

Before we address the technology leading to the creation of self learning computer

23

players however, we should look at the technology that paved the way.

2.4.2 Commonly Used Methods

Many different types of heuristics have been developed to find the best strategy to use for
a game. The heuristics work on the solution search space for the game, trying to find the
optimal (best) solution (strategy). The categorization of these heuristics can fall into two
general types. The first is heuristics that build a solution in steps. The second works on
complete solutions, and focuses on points in the search space.

We begin by discussing the first type of heuristics: those that build solutions. The
most well known category of these heuristics is greedy algorithms. The greedy algorithm
works by analysing possible values for the next step in the solution, and assigning the best
possible value. One example of these is the greedy Minimax algorithm, which works in a
tree structured search space. The Minimax algorithm traverses the tree by making the move
with the maximum advantage to the player, and the minimum advantage to the opposition.
This requires a limited set ply depth that represents the next step of the algorithm. The
best solution from the specified ply range is chosen. The process then iterates and the tree
traversal continues from the branch chosen during the previous iteration. There are many
other additions to this method of limiting the search space.

While the greedy algorithm depicts a solution being built consecutively, other heuristics
use different mechanisms. For example, it can beneficial to divide a problem into sub-
problems and solve these independently, combining for a complete solution. Others work
by testing possible next steps, and back tracking to find a good solution (such as A*). All
of these techniques are usually quick, but not very efficient at finding the optimal solution.

To find the optimal solution, it is usually more efficient to work with whole solutions
in the search space. Thus, we now address the category of heuristics that use complete
solutions. Possibly the most intuitive method of finding the correct strategy to use, is
to perform an exhaustive search of the possible solutions for the game. In many games
however, this is not a possibility. The processing time needed to evaluate all possible
solutions is too much. As a result of this limitation, the use of heuristics to pinpoint a near
optimal solution is employed.

Instead of searching the entire solution search space, we can define a starting point and
then specify a surrounding neighbourhood that is searched for the best solution. There are
a number of different ways to perform this search, such as using one of the local search
categories of algorithms that involve iteratively searching the points in a neighbourhood.
However, this is unlikely to find the optimum from the entire search space (the global

24

optimum), as it only finds the optimum in the defined neighbourhood (the local optimum).
The solution to this problem is to find a way to break out of the local optimum.

Some of the early algorithms developed to break out of local optimum incorporated
tactics such as the simulated annealing temperature variable, which allowed movement to
other areas of the search space. Another method is to have a memory structure, such as
that used by the tabu search algorithm [48], to force the search into new areas. These
methods use different ways to break out of the local optimum. Simulated annealing uses
randomisation to find a probabilistic solution whilst tabu search deterministically climbs
through the search space.

These methods, and in fact all methods mentioned in this section, have one thing in
common: they work on a single solution at a time. Generally, it can be said that many
of the single solution heuristics used to create game strategies were inefficient in their
ability find an optimum solution. Section 2.5 looks at the evolutionary algorithms that were
implemented to work on a number of solutions at the same time [69]. The next section
however concludes the computers and games section, by discussing one of the common
techniques used to represent computer players, with an expert system.

2.4.3 Expert Systems

Traditionally, an expert system for a particular domain was created through consultation
with one or more domain experts. The gathered information was then used to create a
knowledge base. Often this knowledge base was represented in the form of rules that reg-
ulated what action or decision was to be taken, given a set of input values. These rule sets
acted as a static representation of the knowledge of the experts at the time of the system
development. The expert system did not have the ability to change without constantly re-
quiring the experts to give updated information – thereby requiring a great deal of time that
experts in the field do not have. The static design also meant the system often came across
situations where it lacked a form of ‘common sense’. For example, in one case a medical
diagnostic expert system asked if a male patient was pregnant [67]. While this depicts a
bad initial design, it highlights the difficulty in covering all possible avenues of decision-
making. When using a static system that needs to be reprogrammed to include each newly
‘discovered’ rule, the whole process can become tedious. While the original expert systems
were hampered due to the described problems, they still became common practice in every-
day tools such as the decision support systems we can see in (some) medical practitioner’s
offices.

The concept of expert systems also crossed over into the game field. Many of the first

25

computer systems that outplayed human champions utilized a knowledge base of strategies
and open/end-game databases. The strategies were a set of rules that gave a set procedure to
follow if a number of conditions were met, and the open/end-game databases showed all the
best moves to make for all the possible beginning or end of game situations. The knowledge
bases were created through consulting experts and analysing books for various strategies
of the game being played. These would be used to create the necessary rules to enforce the
strategies. This is a direct application of an expert system, and when used in conjunction
with decision tree open/end game traversal, many systems were able to make sure that the
computer player always played the best move. It was through the use of these tactics (plus
custom built hardware in some cases) that systems such as Deep Blue [54], Chinook [89]
and Lago [85] were able to beat human title holders in their respective games.

The problem with these systems was the same as with the original expert systems:
they contained static knowledge of the game, and they were not able to deduce logical
conclusions as humans would. Instead, they needed to be manually taught, supervised
and tuned until they performed well enough at the single task of beating the designated
opposition. This manner of creating a system does not provide intelligence, more the ability
to compute and process a greater number of moves and possibilities than a human. As a
result, the past decade of creating computer players has introduced research focused on
creating a player that develops its own strategies and knowledge about how it should play
the game. This is the idea behind the development of a TEMPO player in this thesis. One
of the mechanisms for performing this self-learning is through evolutionary algorithms,
which are discussed in the next section.

2.5 Evolutionary Algorithms

Instead of trying to simulate intelligence, or create an “artificially” intelligent system, com-
putational intelligence aims to understand the process of intelligent behaviour. Poole et. al.
describes this goal as follows [82]:

“The central scientific goal of computational intelligence is to understand the
principles that make intelligent behaviour possible, in natural or artificial sys-
tems.”

The field seeks to use this understanding to create intelligent systems. Over the years
many computationally intelligent mechanisms have been created, most replicating the way
humanity and nature provide intelligent behaviour. One of these methods was evolutionary

26

algorithms, which were inspired by Darwin’s theory of natural selection. This section
discusses the field of evolutionary algorithms in more detail.

2.5.1 The General Evolutionary Algorithm

Evolutionary Algorithms (EAs) describe a wide range of algorithms that can be used to
represent the Darwinian selection model. The idea behind EAs is that instead of working on
a single solution at a time, we now have a population of solutions (P) that we are examining
at each generation (t) [69]. With a whole population of solutions available, we are able to
replicate the process of natural selection in Darwinian evolution. With natural selection,
every individual in a species is in a struggle to survive, and only the most adaptable and
successful of the species add to the survival. We can reproduce this evolution by allowing
our population to ‘breed’ a new set of solutions and then evaluate the new population for
appropriate parents for the next population, and so on.

There are a number of different types of EAs, including the well-know Genetic Algo-
rithms (GA) developed by Hillis [52]. However, all EAs generally follow the algorithm
shown in figure 2.4, and have a number of common elements. These common elements
include the initialization, evaluation, selection and variation operators.

procedure Evolutionary Algorithm
begin

initialize P (t)
evaluate P (t)
while(not termination-condition) do
begin

select Pintermediate(t) from P (t)
alter Pintermediate(t)
evaluate Pintermediate(t)
select P (t + 1) from P (t) ∪ Pintermediate(t)
t ← t + 1

end
end

Figure 2.4: A generic evolutionary algorithm

The initialization of the population typically incorporates a uniformly random proce-
dure. Using GAs as an example, each individual is represented as a binary vector. The

27

binary vector can then be translated into the phenotype (the observable traits) for the prob-
lem. For example, converting from a binary representation to a decimal one, as needed
by the problem. Each individual bit (called a gene) in the vector (which represents the
chromosome of the individual) is randomly assigned a value.

The evaluation function assigns a quality measure to each individual. For example,
when trying to optimize a function, each individual is comprised of possible variables for
the solution. The variable values are then fed into the function, with the function itself
evaluating the individual. After evaluating each individual, the fitness for it is assigned.
The idea of fitness is that the strongest (fittest) individuals should have a higher chance of
surviving, al la survival of the fittest. As a result, the individual with the best (closest to
optimal) solution should be assigned the highest fitness.

As shown in figure 2.4, there are two different selection steps for the EA [39]. The
first selection is used to determine which individuals should be chosen to generate the
offspring and become parents. Sometimes this includes all the population and there is
only a single selection process. In other variations however, the parents can be a subset of
the population P (t) and offspring are chosen from these parents only. For example, only
the ‘best individuals’ might be chosen to generate offspring, with the rest discarded. The
second selection mechanism is when the next generation (the survivors) are chosen. This
involves selecting individuals from the intermediate offspring population (the individuals
created from altering the parents), and possibly individuals from the initial P (t) population,
choosing survivors based on fitness. The size of the survivor population can also vary.

After selecting parent individuals, the variation operators are applied to create offspring
in different areas of the search space. There are a number of different ways to do this, but
generally the operators consist of two classes: recombination operators and mutation op-
erators. The recombination operator takes elements from parent individuals, and combines
them into offspring. The most common form of recombination operator is the crossover

operator. It takes two parents and creates one or more new offspring. To perform crossover,
parent individuals are selected and the crossing point(s) chosen, with the segments created
from each used to create the offspring. This is demonstrated in figure 2.5, where examples
for crossover on binary string representations with single and two point crossover given.
The more crossover points, the more the sequence is changed, which can be beneficial de-
pending on the problem and the size of the chromosome. Recombination operators create
new individuals, while preserving parts of the sequential chromosome phenotype. The re-
combination operator is only applied to a certain percentage of the population, at a rate
dependent on the problem being solved.

The mutation operator is applied to a percentage of the genes in the population, applying

28

Single point crossover
Individual1 = {01110010|0010010111} new Individual1 = {01110010|0100110101}
Individual2 = {00101110|0100110101} new Individual2 = {00101110|0010010111}

Two point crossover
Individual1 = {01110|01000100|10111} new Individual1 = {01110|11001001|10111}
Individual2 = {00101|11001001|10101} new Individual2 = {00101|01000100|10101}

Figure 2.5: Example crossover implementation

changes according to the mutation ratio. Due to the large potential for change, it is typically
smaller than that for recombination. It is usually applied after the chromosome sequence
changes made from the recombination operator, however many variations on this exist. The
next section describes a number of modifications that exist for the EA.

2.5.2 Variations of Evolutionary Algorithms

The EA in figure 2.4 is a very high level outline of a general evolutionary algorithm, and
many variations on the implementation details exist. The design of an EA is likely to
change for different problems. To design an EA for a problem, the following implemen-
tation categories should be addressed: representation of individuals, initialization of the
population, the evaluation function, the variation operators, the selection mechanisms, and
the termination condition [69]. These are discussed further in this section.

The representation of individuals changes dependent on the problem. Each problem has
its own solution space, with some mechanism of representing a solution. These solutions
need to be represented in a way that can be applied to the EA. Sometimes it is relatively easy
to map a solution directly to a data structure such as a vector. Other times a more complex
representation is needed, such as neural networks, or even individual computer programs.
When deciding on the representation, it is important to consider how the representation will
affect the variation operators. The variation operators need to be able to maintain enough
of the previous generations, while providing continued diversity for population evolution.
When designing a representation for an individual, the variation operators should also be
designed accordingly.

The initialization of the populations has been discussed briefly in the previous section.
As mentioned, the standard method is through uniformly random initialization. Once again
however, the initialization is problem specific and other mechanisms exist. Sometimes a
good mechanism is to force a certain distribution of starting individuals, to ensure coverage
of the solution space. Another method is to initialize the population with a set of existing

29

individuals that represent up to date information. This means the evolutionary process does
not have to start from scratch, and can instead focus on improving existing knowledge.
Another approach is to supplement random individuals by adding non-random individuals.
There are many ways to do this, such as using greedy algorithms to develop good starting
solutions, or to use individuals that contain human knowledge. Whatever the initialization
design, it is important to maintain diversity to allow the population to continue evolving.

The evaluation is also problem dependent, and is a major factor when attempting to
find an optimal solution. The more complex the problem, the more complex the evaluation
function. One of the complexities involved in such problems are constraints. Often real-
world problems do not simply require a solution, but also one that is bound by a set of
constraints. For example, let us look at the Travelling Salesman Problem (TSP). The TSP
represents a graph traversal problem, where a salesman must visit every node (exactly once)
in the graph and return to the starting node in the shortest possible time. In real-world
situations representative of TSP scenarios, there is also likely to be other constraints. For
example, the salesman may have a time window in which he must travel to a particular city
to pick up more supplies. The evaluation of an individual must now evaluate an individual’s
merit, and its validity. If a solution does not satisfy a constraint then it is no longer valid.

There are also different types of constraints dependent on the flexibility of the problem.
The salesman example constraint given might be considered a hard constraint, since if the
salesman does not go to get more supplies, he can not continue his trip. Another constraint
might be that the salesman should visit a particular city earlier rather than later, as an
important client is there. This however might be a soft constraint, which is not considered
as important as getting a shorter path.

There exist a number of ways to include constraints into the evaluation process. For
example, the rejection of infeasible solutions (known as the death penalty) kills any created
solutions that are outside the constraint bounds. This can however be problematic if feasible
solutions are hard to find. Another method is to repair infeasible solutions. The process of
repairing involves a local search for each infeasible individual to find a feasible repaired
solution. This improved solution is then applied to the individual either as the evaluation
result (the evaluation result for the repaired solution is given as the evaluation result for the
original one), or by replacing the original solution.

Another way to include constraints in the evaluation function is to penalize invalid in-
dividuals. There are many different ways to incorporate penalties, and the method used is
problem dependant. The design of penalties allows flexibility in the type of infeasible solu-
tions included in the populations, which can be beneficial since a good infeasible solution
may be just one step away from a good feasible one

30

Another problem that occurs when designing an evaluation function for real-world
problems, is that often there are multiple objectives. For example, when designing a phone
for today’s market there are many considerations. People want their phones to be as small
as possible, with as many extras as possible. They want the applications, the camera, the
wi-fi, the touch screen and so on. All of these require more battery and processing power,
which makes the size of the phone bigger. There is no clear preference for size over extras.
To be competitive in the market the phone designers need to provide both. In this case, a
trade-off between the objectives must be found.

The concept of making decisions given multiple conflicting objectives is given the name
of multi criteria decision-making [69]. Sometimes it is simply a matter of finding a way
to assign each objective unit with a given weight, and then translating the objectives into
a single objective problem. Often however, the objectives are not directly comparable. To
pick a solution for such problems (a multiobjective optimization), it is necessary to find
the set of best solutions, given the objective trade-offs. This involves finding the sets of
dominant and dominated solutions. Any solutions that are worse on all objectives than
a given solution, are dominated by that solution. For example, figure 2.6 represents a
solution space for a generic minimizing problem with two objective functions. We can see
that solution z has a higher outcome for both objectives than solution y does, thus making
it worse than y (with minimization). So z becomes a dominated solution, and y a dominant
solution. However, z is not dominated by x, as z has a better outcome for objective 1. There
can also exist a number of solutions that are all equally beneficial from some perspective
(given all the objectives), but favour different objectives. This can be seen in figure 2.6,
with solutions x and y.

Solutions that are not dominated by any other solutions are nondominated. If we find
all the nondominated solutions for a search space, these form the Pareto-optimal set. In the
case of figure 2.6 we can see that the Pareto-optimal set would consist of [x, y] as neither of
these solutions are dominated. When optimizing a multiobjective problem, it is beneficial
to find a set of nondominated solutions that are as close to the Pareto-optimal set as possible.
Once this set has been found, it becomes necessary to make a hard line choice of which
strategy in the set to use. Due to the nature of multi-objective problems, the solutions found
will not give ‘the optimal’ solution as they are biased towards different objectives. At this
stage, it is necessary to analyse the importance of the objectives themselves and determine
what degree of bias in the solution is deemed acceptable.

We now look at the choices available for the variation operators. There are literally
hundreds of variations for recombination and mutation. Gwiazda has published a compre-
hensive review of crossover [49] and mutation [50] methods for GAs that alone add up to

31

x

z
y

Objective 2

Figure 2.6: Example of solutions in multiobjective space

over 300 different techniques. Gwiazda has classified the operators based on the GA type,
such as binary operators and real operators. The types of operators for EAs are even more
extensive, and their classification can be difficult due to the diversity. Many types of re-
combination operators exist that take more than two parents, and have varying techniques
of combining these parents. Additionally, the recombination operator can also combine
other heuristics, such as a local search method to influence the evolutionary search [104].
Finding the right type of operator for a given problem can be can be a time consuming
process of trial and error. In many cases (when possible), the ease of applying a tried and
true method (such as k-point crossover) wins out over the benefits of other lesser known
ones.

There exist a number of different selection methods, and again, the choice depends
on the problem being solved. Three well-known methods are roulette wheel, tournament
and rank selection. The roulette wheel selection assigns each individual a probability of
selection proportional to its fitness (in relation to all the other individuals). A higher fitness
value will give a larger probability of selection. The tournament selection method works by
selecting individuals (usually randomly) and comparing them to other selected individuals.
The individuals with the higher (winning) fitness are then selected as the parent/survivor.
A typical tournament involves selection of two individuals for competition, but k selection

32

can be used where k individuals compete tennis tournament style (except losing individuals
go back in the running) to find a winner.

Rank selection involves selecting based on the rank of an individual rather than the
fitness. Each individual is ranked according to the fitness, and the selection is then propor-
tional to its rank. Selection by rank can help to discourage premature convergence onto a
sub-optimal solution. When selecting by roulette, individuals with higher fitness are likely
to be selected many times. The resulting population can be saturated with the individual,
hampering diversity. If the individual is a local optimal, the population has prematurely
converged before finding the global optimal. Using ranking, the proportion for selection is
controlled, and greater diversity can be maintained.

As mentioned, convergence occurs as the ‘better’ individuals are chosen to be copied
to P (t+1), and over time saturate the population. At the other end of the scale, sometimes
there is not enough selection pressure, and good individuals can miss out on selection.
This can be countered somewhat with the use of a elitist model [38], which ensures the best
individual(s) from the population is included in the next generation.

The different selection steps, whether selecting parents or survivors, and the different
selection techniques have a substantial impact on the EA performance. As shown, each of
these methods has advantages and disadvantages. It is important to consider these when
deciding on which mechanism is the best for the problem at hand. For further informa-
tion, De Jong provides a comprehensive analysis of effects of selection, along with other
elements of the EA in [39].

The termination condition also has many different forms [90]. The evolution could be
terminated based on a time limit or generation count. Another way is to terminate once the
population has converged on a solution and diversity has been lost. Termination could also
depend on the gain made by the population, if the progress of the evolution slows, it could
be terminated. Other times there can exist a cut-off threshold where the evolution stops
when a sufficiently ‘good’ solution has been found. Often a combination of these methods
(and others) is used.

As a final addition to this section, it is worthwhile mentioning the combination of ap-
proaches that can form hybrid systems. Often advantages can be found with different
approaches [90], such as creation of individuals through local search methods, or repre-
sentation of individuals with fuzzy rules or neural networks. Different methods can also
be used for the decoding from genotype to phenotype. These different techniques can then
be merged with EAs to create adaptive solutions, and thereby gain the benefits of both
approaches. There are many different ways and forms of hybridizing EAs with other ap-
proaches, and sometimes the complexity of the systems can outweigh the advantages, but

33

overall there are also many benefits to be gained.
In addition to variations in the representation of the algorithm components in figure 2.4,

there also exist extensions that add to the algorithm. The next section discusses one of these
extensions, specifically the one that is used in the thesis; the Coevolutionary Algorithm.

2.6 Coevolutionary Algorithms

Evolutionary algorithms cover a wide range of different types of systems, all of which
perform the same evolutionary function of pushing for survival of the fittest. One extension
to the EA is the coevolutionary algorithm that is described here. In an EA, competition
occurs among individuals in a population, with each trying to achieve the highest fitness.
With a coevolutionary system, there exist two or more different species of individuals,
usually represented in their own populations (although they can also exist in the same
population). The individuals from one species then compete against other species, and
their fitness is based on how well they do against the other species. As a result, each species
continually influence each other’s fitness landscapes. This process allows flexibility in the
evaluation of individuals, as there is no defined optimal solution being sought. Instead, the
individuals are encouraged to learn solutions for competitive (or cooperative) behaviour
through a process of trial and error.

Hillis originally made this process popular when he used a parasite vs. host scenario
to evolve sorting networks [52]. Hillis demonstrated the concept of two competing entities
that, through the competitive process, evolve new and innovative ways to outmanoeuvre
each other. This concept can be visualized as the struggle between rabbits and foxes. The
rabbits are struggling to exist by not getting eaten by the foxes, so they develop stronger leg
muscles to out-run the foxes, and smarter ways of evading them. The foxes in turn are also
struggling to survive starvation and react to the rabbit’s evolutionary changes by becoming
faster and smarter themselves.

The coevolutionary process of generating these tactical traits is an interesting one, and
many unusual and innovative traits have been developed. Some of the traits look logical
and calculated, such as the mimicry of eyes on butterfly wings that fool predators into
thinking they are spotted. The important thing to note however, is that there is no logical
thought process involved. The amazing thing about coevolution is that these traits have
been generated through random evolutionary variation. They have been tuned by breeding
successful variant traits, and excluding unsuccessful ones. This is learning at a species
level, not an individual one.

The mechanisms used for coevolutionary algorithms are essentially the same as that

34

used for traditional EAs. The only real difference is that instead of deciding the fitness of
the individuals using a single species/population, the fitness is decided by how well they
compete with other species. An outline of a coevolutionary algorithm is shown in figure
2.7, which extends the EA given in figure 2.4. The algorithm outlined shows the case of
two species only, however there can exist multiple species.

procedure Coevolutionary Algorithm
begin

t ← 0
initialize P1(t)
initialize P2(t)
evaluate P1(t) against P2(t)
evaluate P2(t) against P1(t)
while(not termination-condition) do
begin

select P1 intermediate(t) from P1(t)
select P2 intermediate(t) from P2(t)
alter P1 intermediate(t)
alter P2 intermediate(t)
evaluate P1 intermediate(t) against P2(t) ∪ P2 intermediate(t)
evaluate P2 intermediate(t) against P1(t) ∪ P1 intermediate(t)
select P1(t + 1) from P1(t) ∪ P1 intermediate(t)
select P2(t + 1) from P2(t) ∪ P2 intermediate(t)
t ← t + 1

end
end

Figure 2.7: A generic coevolutionary algorithm

As with the EA, there are a number of variations that exist on the basic algorithm.
There can be numerous populations/species, which can change the way individuals are
evaluated. Coevolution can also be used to find solutions through cooperation instead of
competition, where individuals are evaluated on how well they form a complete solution.
For example, De Jong and Potter [40, 83] describe a technique that coevolves a complex
structure by decomposing the structure into substructures, and assigning a species for each
substructure. The species are then combined through cooperative coevolution to find a
complete structure.

As the purpose of coevolution is to compete against the opposition species, the evalu-
ation stage of the algorithm becomes an important factor. With EAs the correct design of
the evaluation function is crucial to provide a useful outcome, and it is no different with
coevolution. In coevolution on a general level, the fitness of an individual should be de-

35

termined by how well they do at the task at hand against the opposition population. One
of the key factors here is the measurement against the opposition species. The manner of
selecting opposition individuals can affect the performance of the evaluation. Rosin and
Belew recognized this restraint in [87], and suggested techniques that select from the op-
position population using random selection, best of generation selection and competitive
fitness sharing selection. Bull [23] also evaluates the use of a roulette wheel style of selec-
tion for evaluation. Theoretically, any number of different methods of selection could be
used depending on the desired outcome and problem at hand.

The quality of the evaluation function is also affected by the sample size (r) taken
from the opposition species. To truly measure the effectiveness of an individual, it should
theoretically be played against all opposition individuals to assign a fitness. However, often
this is not a realistic task due to processing requirements, and restricted selection from the
opposition must be performed. If the selection is too restricted however, the evolution
could suffer from an insufficient view of the opposition solution space, and adaptation to
the opposition species could be hampered. Ideally, a compromise between processing time
and evaluation performance should be found.

Another factor to affect coevolutionary algorithm is that of cycling or forgetting. As
mentioned before, by incorporating more than one species in the evolutionary process, the
different species affect the fitness landscapes of their opponents. This works as follows:
suppose one population develops a strategy that works against an opposition, that strategy
should then spread throughout the population. The only way the other species can compete
is to focus on beating that strategy. Thus, the focus of coevolution is to beat the other
species’ current winning solution, not find an overall optimal solution (if one even exists).
In problems where an evaluation function for an optimal solution can be difficult to define,
this can be a distinct advantage. However, this process can also lead to stagnation in the
adaptive process as the species begin to cycle solutions.

Coevolutionary learning happens at a species level, and the individuals that are not
performing competitively are phased out. As a result, individuals that were at one point
competitive, but have been countered by an opposing species, are subsequently left be-
hind. At some future stage in the coevolution these individuals may once again become
good strategies, and must be ‘re-invented’ by the coevolutionary process. This cycling be-
haviour in conjunction with the way the fitness landscape of one species chases the other
species’ form the Red Queen effect [33]. The Red Queen is a character from Lewis Car-
roll’s Through The Looking Glass, who was constantly running and never getting anywhere,
as the surrounding landscape was keeping up with her.

As mentioned, coevolution is ideal for problems where the optimal can be hard to de-

36

fine. This concept is a perfect application for the creation of self learned computer players
for simultaneous games. Defining an evaluation function to find ‘the’ optimal player for
this is near impossible, as there is no real measurement to use. By utilizing coevolution
however, the players are evaluated on how well they learn play, and players with good
strategies are allowed to emerge. They are encouraged to find winning strategies by simply
playing against another population of individuals that are doing the same thing.

Section 2.4.3 showed us how expert systems could be used to represent strategies for
game-play, and this section described the process of using coevolution to create players of
the game. The next section gives the background on the representation of these players as
fuzzy logic controllers.

2.7 Fuzzy Logic Systems

Fuzzy logic is a means of representing natural language human linguistic variables in a
mathematically viable way. The use of fuzzy logic control systems as expert systems has
a long standing success rate. When used for an AI player, it also provides human readable
rules for strategic game-play. This section describes the basics of fuzzy logic, and the main
types of control systems designed to use this logic.

2.7.1 Fuzzy Logic

Zadeh originally developed the concept of fuzzy logic in 1965 [105]. Fuzzy logic formally
recognizes the way people naturally categorize information into logically recognizable sets.
In classic set theory, there exist crisp boundaries for sets. For example, if a man is 180 cm
and over, he is considered tall, while 160 cm – 179 cm could be considered medium. The
problem is that this is not how people naturally classify things. People have a concept of
a ‘grey area’, which does not have a decisive crisp value. While we agree that 180 cm is
tall, we recognise that 175 cm is still tall to some degree. By using fuzzy sets we are also
able to represent the categorization in a non-crisp manner. Instead of saying that anything
under 180 cm is not tall, we can instead say that there is a range where a man can be tall to

a degree.
The ‘around 180 cm’ is depicted by setting a degree of membership into the fuzzy set

tall. This degree is defined by a membership function that maps the given input to the fuzzy
set with a degree in the range [0, 1]. This can be seen in figure 2.8 where there are three
fuzzy triangular membership functions represented: short, medium and tall. In the figure,
if a man was 180 cm, using the membership function for the fuzzy set tall he would be

37

classified as tall to a degree of 1.0. If he were 170 cm, he would be classified as tall to a
degree of approximately 0.5%, and medium to a degree of approximately 0.5%.

TallShort Medium
1.0

0.5

160 cm140 cm 180 cm

Height

Figure 2.8: Example fuzzy set membership

2.7.2 Fuzzy Control Systems

To create rules using fuzzy logic, there needs to exist one or more conditional IF statements
with an associated THEN statement. The IF statement tests the membership degree of an
input variable. When triggered, the THEN statement maps the result to a resulting fuzzy
set. For example:

IF man is tall, THEN distance to steering wheel is far
IF man is medium, THEN distance to steering wheel is medium
IF man is short, THEN distance to steering wheel is close

These rules give two domains of discourse, the input domain (U) and the output domain

(V). In the above example, the input domain is the variable man, and the output domain is
the variable distance to steering wheel. A fuzzy controller maps the input set ~u ⊂ U to the
output set ~v ⊂ V . Due to the large application field of fuzzy control systems, there exist
many different mechanisms used to perform this mapping. Most of these methods form
from some basic fuzzy logic systems, such as the Pure Fuzzy Logic System [103], which
uses a Fuzzy Inference Engine to take the fuzzy input sets, quantify them and use fuzzy
logic to create the output sets. If crisp (real valued) inputs and outputs are needed instead
of fuzzy ones, then an extension to the Pure Fuzzy Logic System proposed by Mamdani

38

adds a fuzzifier and defuzzifier. The fuzzifier takes the crisp input values and maps them to
a fuzzy set. The defuzzifier then takes the fuzzy output set and maps it to a crisp value.

The Takagi and Sugeno system can be also be used to input and output crisp values.
This system takes the input variables (as a subset of U) in crisp form, and applies them
to the fuzzy rule base. A weighted average of all the rules’ output is then given as the
final crisp value. This is the system our fuzzy logic control system is based on, and further
information on our implementation can be found in section 5.2.1.

As shown, a fuzzy controller uses a set of fuzzy rules to determine behaviour. One
method of creating expert systems is to use fuzzy logic to cluster and divide existing data
into categories of information. These categories are then used to define fuzzy membership
functions for use with fuzzy rules (which future data can be mapped against). A popular
manner of obtaining these rules in recent years has been through a process of evolution.
For example, by applying an evolutionary algorithm to a set of fuzzy rules and evaluating
their performance against some training data. In this way, an expert system can be created
without the need to extract knowledge from a human expert.

This concludes the background section of the thesis. We continue with a description
of the problem domain in chapter 4, with a review of the current state of research related
to ours. Before that however, we introduce you to the game of TEMPO. The next chapter
gives a description of the game’s background, its elements and the rules of play.

39

Chapter 3

The game of TEMPO

This chapter discusses the specifics of the TEMPO Military Planning Game, with an overview
of the origin and purpose of the game for training US Department of Defence personnel.
Also discussed are the possible applications of the concepts in TEMPO as a training and
decision support system for other non military applications.

The second part of this chapter then gives a detailed description on how the game is
played. This involves listing the rules of play and providing some of the known strategies
that human players use.

3.1 Background of TEMPO

The use of strategic thinking is not limited to game playing, and many of the strategies used
by players can be carried into real-world situations. This can be seen in a number business
and defence organizations, where the organization is essentially competing against rivals
for a strategic dominance in their field of expertise. This real-world situation can be directly
compared to a zero-sum game of strategy, where there are two or more competitors, and
only one can win.

In the area of defence, this game playing can occur when countries engage in espi-
onage and weapon research and manufacturing. The ultimate purpose of this is to maintain
sufficient utilities to win a war against rival countries if the need arises, but not spend ex-
cessively. The maintenance of only sufficient utilities is important, as it implies enough
utilities to win a war, without neglecting other budgeting issues. To achieve this fine line,
the personnel who perform the resource allocation need to know how to think strategically.
The resource allocation is made difficult due to influences such as the political motivations
of current (and future) governments, the changing field of the technologies used, and of
course the opposing countries with their own changing environments [56].

40

The US Department of Defence (DoD) realized the difficulty involved in the task, and
attempted to give their personnel an advantage through the creation of a management sys-
tem known as the Planning, Programming, and Budgeting System (PPBS). The PPBS put
into place a framework for the decision-making of defence budgeting, and incorporated a
set way of planning for current and future objectives [2]. As part of the set-up of this new
system, a major training program was initiated to enable the personnel to use the complex
new system. The game of TEMPO was created by H. Hatry, F. Jackson and P. Leer of Gen-
eral Electric’s TEMPO think tank as part of this initiative [4], and was used by the DoD in
the training of their system personnel [56]. The game enabled the personnel to practice the
strategies they would use in the creation of the resource allocation, and subsequent yearly
DoD budget. Since its creation in the early 1960s, the TEMPO game has been used to teach
resource allocation to over 20,000 students.

The original game of TEMPO was a paper-based game where opponents were pitted
against each other, with decisions recorded for review by trainers. The efficiency of this
was not optimal, as the time taken for game-play with other students limited the functional-
ity. Steps were taken to automate the game with a computer player for the opposition. This
allowed the students to play the game on their own time, and results were automatically
recorded and available for the trainers. The computer player system provided a greater
learning environment for the students, and was successfully used for training DoD person-
nel. The creation of the player also opened up a new area of research into AI for resource
allocation games. The computer player developed is discussed further in section 5.1, along
with its problems. The next section describes player objectives for the TEMPO game.

3.2 The Game Objectives
TEMPO is a zero sum game played between two opposing parties by allocating resources
in a cold war style simulation. The goal of the game is to acquire more offensive utilities
than the opposition before war breaks out. The decision-making process requires allocating
the yearly budget on the following:

1. Operating existing forces.

2. Acquiring additional forces.

3. Intelligence and counter intelligence.

4. Research and development.

The forces of the game are comprised of weapons that are grouped into four unit types:
Offensive A, Offensive B, Defensive A and Defensive B (OA, OB, DA and DB respec-

41

tively). Each of these units has its own weapons, such as OA1, OA2 and so on. Each
weapon has its own attributes (discussed further in the next section), with its own power
capability given as utils. It is the utils of the weapons that are currently operated for the
year that give a player his or her score.

The purchase of intelligence is also provided to give insight into the opponent’s tac-
tics. Counter intelligence is used to prevent the opposition gaining this insight. Lastly,
investment in research and development is available to provide for future weaponry. The
use of research and development in the game allows budget allocation to provide for bet-
ter weapons in future years. It was excluded in the computer player developed for the
DoD however, and was not included in this research. We would like to include it in future
research, but analysis on its implementation is required.

The resource allocation involved in the game is conceptually simple; determine what
force category is needed and allocate accordingly. The reality is however very different, as
the combinations of allocation plans can be high due to the amount of areas to allocate to.
This complexity is then magnified by the changing environment that occurs yearly, such as
the increase in the chance of war breaking out, and the addition of new weaponry.

The complexity is representative of a number of real-world situations in the corporate
and defence world alike, where resource allocation can be a very complicated and difficult
task to manage. To understand how to make an allocation, a person must have a good
understanding of the strategies and mechanisms used in the process. Only through personal
achievement and practice can they truly understand the value of various strategies. This is
where TEMPO is a great mechanism to practice the techniques needed to develop a well
thought out and balanced real-world allocation. The process could also be easily translated
into a business training environment instead of a military one.

Now that we have introduced the game, we delve further into its mechanisms. The next
section gives a detailed description of the game used in this research, and the rules of play.

3.3 How to Play

The goal of playing TEMPO is to obtain more offensive utilities than your opposition in
a cold war scenario when the end of the game is reached, and war breaks out. To do
this, a player must allocate a budget on a yearly basis to operate and acquire weapons,
and purchase intelligence. Each year the environment changes, and more choices become
available. This section gives details on exactly how the game works, and what information
a player is given.

Figure 3.1 shows an example year of game-play excluding the intelligence component.

42

Player's Environment Previous Year's Data

Budget Player Enemy

Year Pwar Avail Left Type Offensive Defensive Type Offensive Defensive

2 12.00% 11530 11530 A 1518 0 A 200 0

B 200 325 B 0 465

Current Year Allocation:

Weapon MaxAcq AcCost Inventory OptCost Utils Opted Bought ToOpt ToBuy

OA1 15 75 0 150 120 30 0 0 0

OB1 25 50 0 30 20 30 0 0 0

DA1 25 40 0 20 15 25 25 0 0

OB1 25 100 0 60 50 20 20 0 0

OA2 35 75 0 35 60 0 0 0 0

DA3 25 100 0 50 200 0 0 0 0

Figure 3.1: Example screen of a year’s game-play

The player’s environment section shows the yearly information necessary to make deci-
sions. This includes the current year of game-play (year), the percentage chance of war
occurring at the end of the current year (pwar) and the given budget for the year (bud-

get). The budget is represented as the amount given (available), and the amount left after
spending. Each player in the game starts with the same environmental values, but has
slightly different values for consecutive years, as each value is increased by a limited ran-
dom amount. At the end of each year, the average of the pwar values for both players
(represented in range [0,1]) is compared against a randomly generated number, and if the
generated number is less than the pwar value, war breaks out and the game is over.

Using the amount given in the budget, the player can purchase weapons from the current
year’s available weapon list. Each year new weapons may become available, possibly with
better attributes then previous weapons. The attributes for each weapon are:

1. MaxAcq – the maximum acquisition number for the weapon each year.

2. AcqCost – the cost to acquire (buy) a single unit of the weapon.

3. Inventory – the amount of weapons given to the player in inventory for the year (these
are then available for operation).

4. OptCost – the cost to operate the weapon for the current year.

5. Utils – the power value for the weapon.

Each weapon can be in one of two stages during the game years. These stages are acquisi-

tion and operation. When beginning the game, a player has initial units in their inventory.
To obtain additional weapons, they must be acquired. You can acquire up to the MaxAcq
number of weapons during a year, and each one bought will cost the indicated amount in
AcqCost. The weapons acquired in the current year of game-play, will be available to op-
erate the next year. Operating a weapon activates the weapon for the year. The available

43

weapons to operate are any weapons in inventory, any weapons bought the previous year,
and any previously operated weapons. If a weapon is not operated in the current year it is
lost for future use. If a weapon is operated, it is then ‘used’ for that year, and the utils for
the weapon are added to the player’s total utils.

At the end of each year, the total weapon utils for each category/type are summed. For
example, if a player purchases units of OA1 with total utils of 100, and OA2 with total
utils of 300, then the total OA for the year is 400 utils. Offensive weapons of a particular
type are countered by defensive weapons of the same type, and vice versa. For example,
if Player A has 400 OA utils at the end of a year, and Player B has 100 utils of DA, then
the result at the end of the year would be 300 utils of OA left for Player A. Extra defensive
utils however, are wasted budget. For example, if Player B had 200 OA utils in the same
scenario, and Player A had 300 DA utils, then Player B would have 0 OA utils left, and
Player A would have wasted the cost for the extra 100 DA utils. This example is extended
and shown in table 3.1 for clarity.

Table 3.1: Example TEMPO net offensive util scoring

Player A Player B
Type A

OAplayerA(OA1 + OA2 + ... OAn) 400 OAplayerB(OA1 + OA2 + ... OAn) 200
DAplayerA(DA1 + DA2 + ... DAn) 300 DAplayerB(DA1 + DA2 + ... DAn) 100
Net Offensive A (OAplayerA - DAplayerB) 300 Net Offensive A (OAplayerB - DAplayerA) 0

Type B
OBplayerA(OB1 + OB2 + ... OBnn) 200 OBplayerB(OB1 + OB2 + ... OBn) 600
DBplayerA(DB1 + DB2 + ... DBn) 300 DBplayerB(DB1 + DB2 + ... DAn) 100
Net Offensive B (OBplayerA - DBplayerB) 100 Net Offensive B (OBplayerB - DBplayerA) 300
Total Net Offensive Utils 400 Total Net Offensive Utls 300

If war had broken out in the year represented in table 3.1, Player A would have won
the game by 100 utils (Player A total net offensive utils - Player B total net offensive utils).
Correspondingly, Player B would have lost by 100 utils. Thus, a player can not win the
game simply by maximizing offensive weapons, as the other player can cancel these with
defensive ones. Additionally, a sliding scale ‘diminishing returns’ function is applied when
currently operated utils in any one force type (e.g. OA1) produces more than 2000 utils.
The adjustments applied are shown in table 3.2, with figure 3.3 depicting the diminishing
returns distribution.

The amount of total net utils for OA, OB, DA and DB from the previous year are
displayed to the player (on the top right of the screen in figure 3.1). If the player purchases
intelligence, then they are also given the opposition results from the previous year (which
are displayed to the right of the player’s results), although these may be skewed somewhat

44

Table 3.2: Util adjustments to reflect diminishing returns

Gross utils (GU) Adjusted utils

1 - 2000 Same as Gross utils
2001 - 3000 2000 + .9 × (GU-2000)
3001 - 4000 2900 + .8 × (GU-3000)
4001 - 5000 3700 + .7 × (GU-4000)
5001 - 6000 4400 + .6 × (GU-5000)
6001 - 7000 5000 + .5 × (GU-6000)
7001 - 8000 5500 + .4 × (GU-7000)
8001 - 9000 5900 + .3 × (GU-8000)
9001 - 10,000 6200 + .2 × (GU-9000)
10,001 - 11,000 6400 + .1 × (GU-10,000)
11,000 - ∞ 6500

0

1000

2000

3000

4000

5000

6000

7000

1 2001 4001 6001 8001 10001 12001

Gross ut ils

A
d

ju
s

te
d

 u
ti

ls

Figure 3.2: Diminishing return distribution for util adjustments

45

through the opposition purchasing counter intelligence.
Each year of game-play gives an increase in the pwar and budget, but it also gives new

weapons with their own unique attributes. This allows the player to more choice as time
goes on, but also increases the complexity of the choices.

The intelligence component of the game involves allocating part of the budget to pur-
chase intelligence into the opposition’s allocations. The intelligence is broken into two
parts: the intelligence into the opposition’s results (INTEL), and the counter intelligence
used to stop the opposition from seeing your results (CI). When a player purchases IN-
TEL, the opposition results for the previous year are given to the player. If CI is bought,
the player is only told if opposition utils in a particular category exist or not. The original
version of TEMPO included a boolean decision for both INTEL and CI. The INTEL was
broken into offensive and defensive INTEL, with a set price that you either purchase it at
or not. The CI was also a set price with the same boolean choice. For various reasons
discussed in Chapter 7, this was then changed and INTEL and CI were broken down into
the different types of Offensive and Defensive Intelligence A and B (OIA, OIB, DIA, DIB).
The boolean mechanism of purchase was also changed and replaced with a maximum cost
for each type. The player could then decide the degree of INTEL/CI to be purchased. The
percentage of INTEL/CI purchased then effects the quality of the results obtained back.

There are various common tactics for TEMPO that human players learn through game-
play. After witnessing a number of games being played by humans, there emerge some
common strategies that can be beneficial general tactics. These include such things as
using the pwar variable to determine how you concentrate your allocation, for example if it
is low, you might choose to focus your attention on building up your operational Offensive
weapons. Another common tactic is to focus your allocations on the weaponry that gives
you value for money, that is the weapons that have the highest amount of utils for the
cost used to purchase/operate them. There are many other tactics in addition to the ones
mentioned, however as yet there is no magical strategy that will win against any opponent.

The dynamic environment of TEMPO, combined with the increasing complexity caused
by the number of weapons available, can make the allocation decision process difficult.
This is amplified by the uncertainty of what the opponent is doing at the same time. It
is only once you have committed your allocation for the year that you can find out what
purchases the opposition has made (if you chose to purchase intelligence), and even then
the information may be corrupted due to the opposition’s purchase of CI. It can be a difficult
game for human players to master, and the creation of a computer player is a challenging
task.

The next chapter gives a review of the current research in the fields related to this thesis.

46

Chapter 4

Literature Review

In 1996 Doyle and Dean [42] published a review on the strategic directions for AI. One of
the major directions suggested was that of modelling rationality, and two of their long term
goals in this area are as follows:

• “Continued development of efficient representations and algorithms for
rational decision and action that integrate, extend, and improve on current
structured representations for probabilities, preferences, decisions, and
(game-theoretic) games.

• Extending the application of theories of rationality to learning and adap-
tation, especially in situations where the learning process must both use
and learn preference and utility information.”

These are goals that researchers are still striving for, and characterize the importance
of the research discussed in this thesis. This literature review describes some of the current
work in this area, specifically relevant to techniques applicable to the TEMPO computer
player. We start with a discussion on the addition of memory to the coevolutionary process
to improve the creation of long lasting solutions. This is followed with a description of
some of the methods being used to create artificially intelligent strategies in general, and
how the decision-making process can be implemented with computers.

We first consider the general area of computers and strategy making, and then the spe-
cific area of strategy making for games. The focus in this section is on the unsupervised
learning process of coevolving computer players for games. We follow on from this to
describe research on games that have similar components to the game of TEMPO.

The final topic of discussion for this chapter is that of computer players adapting to
human players. One of our main goals is to create a computer player that can help train a
human player to become strong at strategy making for resource allocation. This involves

47

becoming stronger as the human does, and adapting the strategies to the human. The work
in this area is presented as the final section to this chapter.

4.1 Memory in Coevolutionary Systems

As discussed in section 2.6, the Red Queen effect can cause the coevolution to ‘forget’ once
good individuals, as the goal of each individual is to beat the opposition for the current gen-
eration only. Traits that were once beneficial could be phased out as new strategies emerge
in the opposition, only to re-emerge as good strategies later in the coevolutionary process.
This constitutes a typical rock-paper-scissors scenario where cyclic strategy creation can
occur with a perpetual need to re-learn previously discarded strategies [45].

As discussed by Cliff and Miller [33], a later generation individual should be able to
beat an early generation opponent, but this is not always the case. Ancestors of the op-
position could have strategies that the later generations have forgotten about and have no
way of beating. One solution to this problem is to incorporate some form of memory
into the coevolutionary process, one that helps the populations to remember previous solu-
tions [45, 87].

This section discusses some of the memory solutions that have been developed specifi-
cally for coevolution. There has also been work on the addition of memory to EAs for use
in many domains such as game playing and multi-objective optimization. In such domains,
it can be important to retain an external memory structure to store past information. Exten-
sions to the EA exist for the initialization and supplementing of individuals [72], and using
the memory to guide the search. There has been a lot of work on this subject, part of which
is reviewed by Branke in [22]. Branke defines two forms of memory. The first is implicit

memory, where the individuals themselves have some form of redundant information form-
ing a long term memory. The second category is explicit memory, where there is a storage
mechanism used to reintroduce previously learnt information at a later stage of evolution
(e.g. replacing weaker individuals with previously good ones, or initializing an EA with in-
dividuals from a similar previous EA run). The remainder of this section however, focuses
on the specific research of memory in coevolution, as the purpose and outcomes of its use
differ from that of EAs.

Probably the most well known memory mechanism for coevolution is Rosin and Belew’s
hall of fame [87]. Rosin and Belew state two reasons for saving individuals, firstly to con-
tinue the genetic contributions of an individual to future generations (through selection and
elitism). The second reason is for testing the progress of the coevolution. The hall of fame
was introduced for this second purpose, and essentially acted as an extension to elitism by

48

preserving the best individuals from each generation for continued testing. Experiments
were conducted into sampling methods from the hall of fame, including updating the fit-
ness of the saved individuals and selecting based on the updated fitness scores. However,
they found that performance issues made random sampling a more beneficial alternative
and used this technique for all experiments. Rosin and Belew went on to investigate other
mechanisms of selection for opponents in the coevolutionary process in [86], however they
only looked at selecting the current best individuals, and did not investigate how to select
individuals from the memory.

The use of memory in coevolution to retain previous winning (best of generation) so-
lutions has been investigated using different memory mechanisms. Some involve retaining
the best of generations for insertion or replacement in latter generations [22], while others
use the memory to compete against and influence the fitness [87]. Puppala et al [84] even
used memory as a feature for cooperative coevolution. This involved pairing individuals
from the two populations and evaluating on how well they cooperate. The memory then
stores any cooperating pairs that have a higher fitness than one of the pairs in memory,
replacing the pair with the worst fitness. The individuals from memory are then used for
evaluating individuals in the populations.

Whichever mechanism used, there remain the same questions regarding the memory’s
representation and selection: How should individuals be selected for insertion into the
memory? What size should the memory be? How should an individual from the memory
be selected for use in the evolution, and how should it be used once selected? All these
questions form an integral part of the design of a memory, and research on this is still
needed. We start with a discussion on the first issue of selecting individuals for inclusion
to the memory.

Most systems choose to use best of generation individuals. However, this is not the
only option as discussed by Bader-Natal and Pollack [13], who save the entire populations.
Ficici and Pollack [45] also propose the use of a mixed strategy memory to find the Nash
equilibrium solutions for a problem. This involves two forms of memory, one that stores
the current optimal (mixed Nash equilibrium) strategy (N), and the other (M) stores all old
optimal solutions up to a set memory size constraint. The experiments performed with this
memory however used evolutionary tactics to evolve the population against the current best
individual, and update the memory when new bests were found. The use of the memory in
a coevolving system was not tested. The pruning of the M memory structure also means
that some useful information could potentially be lost.

Work by de Jong [37] expands on the concept of using the memory to store the currently
optimal solution. De Jong defines the coevolutionary process into two species of learner

49

and tester. The learner (L) is used to find an optimal solution, while the tester (T) is
there to assess the performance of the learners. Once again two memory structures are
used, one stores the current and past optimal solutions defined by Pareto dominance (the
learner archive LS). The other memory stores all solutions that have been dominated by the
learners in LS (the tester archive TS), where the current solution in TS must be a superset
of all the previous solutions in TS. If a new L is found that can dominate all the solutions
in TS, plus some new T not found in TS, then it is considered the new optimal solution.
Both the new L optimal solution and the new T associated with it are then added to the LS

and TS archives respectively. The individuals in the archives are also used to influence the
coevolution through crossover (with a probability of 1.0). This use of memory focuses on
finding the Pareto optimal solution for a problem with emphasis on monotonic growth of
the solutions.

Having discussed some of the research into which individuals to select, the next step is
to decide when the individuals should be selected and stored [22]. The selection of individ-
uals directly affects the question relating to the size of the population, and the selection of
an individual from the memory for use in the evolution. For example, storing the best in-
dividual from both populations at every generation can cause the memory to grow rapidly.
This in turn causes the probability for selection of individuals to be influenced by the larger
scale.

This has been discussed by Bader-Natal and Pollack [13] who describe a number of
different ways to add to the memory, such as saving every generation, having a fixed num-
ber of generations in memory as a FIFO queue, and periodically adding generations to the
memory. The main focus of their research however was to evaluate the use of their ‘All of
Generation’ technique (as discussed before), and a comparison of the different mechanisms
was not made.

The question of how to actually use the memory in the coevolution tends to fall into two
areas: inserting individuals from memory into the coevolution, or evaluating individuals
from the populations against the memory. Most of the current work falls under one of these
two categories. Research into what individuals to select from the memory for either of these
purposes has however, remained unaddressed. There has been some work on the case-based
EA memory, where it was found that individuals that are closer in fitness to the current
evolution are the most beneficial [59]. In the area of coevolution however, this remains
a fertile ground for investigation. Chapter 6 of this thesis discusses our investigation into
some different selection techniques.

The following section describes some of the different ways that researchers have at-
tempted to create computers with the ability to think strategically.

50

4.2 The Creation of Artificial Intelligence Strategies

The use of AI for strategic decision-making now affects our everyday life; from the direc-
tions our cars tell us to go, to the strategies used against us in the computer games we play.
To be useful, the strategies must be of a similar level (or higher) to human strategies. The
problem here is that humans can intentionally mislead and change strategies at will, which
is difficult for a computer to simulate, incorporate, and compete with. Barzel discusses this
difficulty in-depth in [16]. One of the main arguments presented by Barzel as a distinc-
tion between natural and artificial intelligence, is that computers are not able to deceive, as
they lack motivation to do so, given spontaneous circumstances. To deceive someone, is to
make them believe what is false is true, or what is true is false [1], usually to the deceiver’s
advantage. This concept of a computer being able to fool a human has been a key factor in
the development of AI.

Experiments into finding computational intelligent mechanisms to fool the opponent
have been conducted, such as the bluffing technique by Hurwitz and Marwala [53]. This
research uses a hypothesis that bluffing is purely a way of playing the odds, taking into
account your opposition’s known strategies. This means that if a player is known to ‘play
it safe’ then another player may take advantage of this by continuing to play with a weak
hand, and bluff the ‘safe’ player out of the game.

The game used in [53] is that of Lerpa, which has similar tactics to poker. The com-
puter player used a backpropagation neural network trained against three random strategy
players, and then later against other trained networks. By playing the same hand repeat-
edly, the authors were able to demonstrate that the players did indeed bluff according to
their description of bluffing. However, the idea of bluffing often includes more than just
playing the odds against an opponent you know well. In fact, a human player who knows
how to play a game well will avoid using a single strategy that causes him or her to be-
come a ‘known strategy’. A good player will continue to update his or her strategy as the
game-play iterates.

To truly read an opponent, even when they are changing their strategy, a player must
be able to predict what the opponent is planning. This involves using the past experience

gained from playing the game (and possibly the same opponent) to predict the opponent’s
strategy. When correctly predicting the opponent’s moves, a player can make an optimized
choice of game-play. When a computer performs this task, it too must find some way to
learn from past experience (be it their own, or from other sources). There are two main
techniques that allow this to happen: supervised and unsupervised learning. Supervised
learning allows a human to determine the direction of the computer player’s learning, whilst

51

unsupervised learning lets the computer find its own way to predict the correct action. This
thesis focuses on unsupervised learning – supervised learning techniques are not discussed.

The typical training technique for learning is to reward a player when they make a
correct choice once the result is known. One alternative of this is to use temporal difference
learning (TDL) [99], where the training is done in incremental steps over time. With this
method, each step is used to tune the current prediction, while simultaneously updating the
previous predictions up to the current time step. TDL has demonstrated great success in
unsupervised learning for computer game players, however they require a process that has
incremental steps leading to a finish state.

The TEMPO game essentially deals with high level decision-making in the area of
resource allocation. The way that high level decisions are made often requires layers of
strategic planning, which is discussed by Pinson et al. in [78]. There, the authors present a
distributed decision support system using agents to represent the partitioned sub-problems
of the decision-making process for strategic planning. They specify that the decision-
making process is very complex and involves several levels of decision, which are of an
obviously hierarchical nature. By recognising this hierarchal structure, the authors deduced
that agent-based systems would be a good way of representing the hierarchy with each of
the agents playing the individual roles represented by these levels of decision. These levels
are defined as strategic, decision-centre and specialist levels, which follow the idea that
decision-making is done by four groups of individuals: top-level managers which define
the strategic orientations and decomposition of goals into sub goals, middle-level and low-
level managers who deal with the sub-goals, and lastly a group of specialists who define all
the environmental constraints.

Our research has some high level similarities with the work by Pinson et. al., however
they designed a model specifically for distributed systems, and spend a large amount of
time discussing the problems associated with distribution. The hierarchical representation
of the decision-making process is worth noting however, as the decision-making process in
TEMPO can be described as hierarchical, and perhaps a decomposition into its individual
sub-decisions could be beneficial. The research by Pinson et. al. supports the effectiveness
of such a decomposition.

As a final note, Spangler published a literature review on strategic decision-making
with AI in 1991 [94]. Although mostly outdated, he does make the distinction between
AI for decision support systems that represent retrieved expert knowledge, and the need
for more cognitive modelling of strategic decision-making. In particular, he presents the
field of Competitive Intelligence as an investigative area for the research, as it provides
“a highly complex, analytic component of strategic decision-making.” The use of strategic

52

intelligence as a research topic is a major component of this thesis for these exact reasons.
The cognitive modelling suggested by Spangler however, is created through observing ex-
pert analysts. Our research is more about finding mechanisms to create strategies for the
analyst to learn against.

The area of strategic decision-making is very broad, so now we focus on its application
to games. The following section gives an overview of the work into developing computer
players to perform the decision-making for various games. In particular, the focus is on
research where the computer players have been developed using the unsupervised technique
of evolving their own strategies for game-play.

4.3 Evolving Computer Players

The 1990s saw a number of champion computer programs developed to beat the best human
champion game players. These included the infamous Deep Blue [54] hardware/software
combination that defeated the world Chess champion Kasparov in 1997, and the world
checkers champion software Chinook by Jonathan Schaeffer [89] that took the world check-
ers title in 1994. The development of these programs led to debates on the brute force
mechanisms used and the direction the AI field was taking. Some researchers then began
investigating mechanisms that allowed a computer player to learn strategies of game-play
for themselves, rather then being programmed how to play the game by experts and soft-
ware designers. Leading the research into evolving players that would accomplish this
goal, Chellapilla and Fogel [28,29,46] developed their Anaconda program to evolve neural
networks to play the game of Checkers. The neural networks were evolved over 840 gen-
erations (6 months) [29], and the best evolved network was played online against human
checkers players under the name of Blondie24. The computer player achieved an expert
level of play against the online players.

The network learned strategies on its own through a process of coevolution, with the
only information given being the piece positions, spatial characteristics and differential
information. The position of the pieces on the board were represented through a vector of
inputs from the set {1, K, 0,−K,−1} with 1 representing a normal checker, K a king, 0

an empty square, and negative values as the opposition’s pieces. The spatial characteristics
of the board were achieved through a hidden layer in the network. The piece differential
information (cost of network’s pieces against the cost of the opposition’s pieces) was given
as a direct input to the output layer of the network.

One interesting observation of this work was the reactions of the people playing against
Blondie24, as players commented on how surprised they were by the moves made. This

53

in itself shows one of the key elements of striving for actual artificial intelligence, and
not attempting to mimic human intelligence. Something that thinks differently to humans
would be very beneficial in both a practical and research sense.

Following on from the success of Chellapilla and Fogel, a number of researchers con-
tinued to coevolve neural networks to develop computer players for other games. These
included Chong et. al. [31] who coevolved a computer player for the game of Othello.
Their program comprised a search algorithm based on the basic Minimax search tree al-
gorithm (with a ply-depth of 2) using a neural network based evaluation function that was
coevolved. The same input procedure as Chellapilla and Fogel was used where the board
positions are received as input and the pieces are represented as +1 for black, -1 for white
and 0 for empty. The hidden spatial preprocessing layer is also included in this design,
and the piece differential information is sent straight to the output node. The evolutionary
process is also very similar to that of Chellapilla and Fogel.

The computer players evolved during the evolutionary process were compared against
deterministic computer players. One used only a piece differential evaluation function with
Minimax search (no neural network). The other player also used Minimax but included a
simplified heuristic for positional play based on Rosenbloom’s Othello player’s evaluation
function [85]. Eventually by generation 892, the evolutionary player was shown to outper-
form both the deterministic computer players. The computer player developed through this
research did not really add much novel information to Chellapilla and Fogel’s player except
to implement the concept for Othello. However, the testing mechanisms used showed the
benefits of using static testing techniques against the coevolutionary process.

Other games were also attempted in the same manner, such as the game of Kalah, which
was addressed by Ooh and Lim [76]. Others used the coevolved neural network approach
and applied it to the opening play of the game of Go. One example of this is Kendall,
Yaakob and Hingston [58]. According to the authors, Go can be modularised into three
stages: the opening game, the middle game, and the end game. They state that while the
middle game has been analysed for AI techniques, the beginning game, which according to
the authors is the most important, had not been addressed. To evaluate their neural network,
the network plays against a static player for the first 30 moves, and then the static player
takes over from the neural network and plays both players for the remainder of the game.

After the excitement caused by the neural network/coevolution approach, some other
hybrid approaches were investigated. One such mechanism included using particle swarm
optimization to competitively train neural networks for the game of Tiktacktoe [68]. An-
other was the work by Johnson et. al. [55], which coevolved a fuzzy logic rule base for the
game of TEMPO.

54

It is also worth mentioning recent research on imperfect information games such as
poker. Poker, like TEMPO, has opposition information that is hidden from the players.
This makes it harder to predict movement. Much recent work has focussed on creating a
computer player for poker, such as the opponent modelling work by Billings et al [19, 20],
and the evolution of a computer player by Barone and While [14, 15]. Poker has some
similarities with TEMPO, and the difficulties in evolving players for poker are similar to
the ones for TEMPO in the areas of imperfect information, and deception. There is still
much scope for addressing the problems involved in creating computer players for games
with imperfect information.

The next section describes some of the research on games that have some fundamental
similarities with TEMPO. This includes the need for strategies on resource allocation and
intelligence into opposition movements.

4.4 Related Games

Real-time Strategy (RTS) games have a lot of similarities with the game of TEMPO. Both
games have a large degree of opposition uncertainty, and resource allocation is at the heart
of the decision making. RTS games involve players controlling units for resource gathering,
construction, and warfare in a zero sum game. Game-play is performed real-time, with
players acting simultaneously.

Davis [36] describes a strategy mechanism for RTS and Turn-based games (where
game-play is turn based, with a single player moving each turn). In the system, the strategic
AI for the computer player is broken down into three components: the Analysis Module,
the Resource Allocation Module, and the High Level AI. The Analysis Module performs
the role most similar to that of a TEMPO player – it defines the current strategic goals and
then ranks them according to priority. The Resource Allocation Module then uses these
goals to allocate the resources in the game environment. The High Level AI then defines a
‘personality’ for the player by giving it specific rules for a given scenario.

RTS and Turn-based games also gain opposition knowledge through intelligence, usu-
ally by allocating a scout resource. To successfully neutralize your enemy you must be able
to obtain knowledge of what types of units the opponent has, how many there are and where
they are placed. In TEMPO this ‘scouting’ is done through allocation of budget resources to
INTEL categories. Counter intelligence however, as it is used in TEMPO, is not seen in the
RTS or Turn-based genres. Resource allocation is also a large part of RTS games [24], and
they can offer a much more complex representation of it than TEMPO does. Work in the
RTS field has been conducted by a number of researchers. Schadd et. al. [88] have inves-

55

tigated ways to use data gained from game-play with the opposition to create an opponent
model, which can then be used to predict a good strategy to use against them. Miles and
Louis [62,63,71] have investigated a number of mechanisms to develop AI for RTS games,
including evolving spatial decision making systems, and using case genetic algorithms to
‘grow’ better human opponents. None of these however has dealt with the high level cre-
ation of strategic resource allocation for changing environments. The use of intelligence
and counter intelligence also remains unaddressed.

One technique to try and predict your opponent’s strategies is to create an opponent
model. Schadd et. al. [88] use opponent modelling to create an intelligent AI opposition
for real-time strategy (RTS) games. Creation of a model involves collecting the opponent
data during the game-play, and classifying it as an available model. Schadd et. al. use a
hierarchical approach to divide the model into sub-models, each representing a different,
more specialized strategy of play. The hierarchy used has a two level classification, with
the top level consisting of a general game style (aggressive or defensive), and the bottom
representing the choices of units available for this game style. This is very similar to
the way TEMPO works, with its offensive and defensive weapon categories, and may be
something that could improve the way the human player model could work.

The importance of using intelligence gained on the opposition to create a strategy needs
further investigation however, and the game of TEMPO allows us a great test bed to focus
specifically on this task.

First Player Shooter (FPS) games and Role Playing Games (RPGs) are other areas
where it is advantageous for a player to obtain knowledge on the strategy of the opposition.
As with RTS games, the AI for these genres usually rely on programmed scripts repre-
senting a static rule base of strategies. This means that the enemies are of a set level of
expertise, and human players can quickly adapt to overcome them. A strong push to have
AI that adapts to the computer player can be seen in many games, especially in the FPS
genre with games such as Half Life 2 and Halo 3 creating very realistic opponent group
combat mechanisms, which react to the battle circumstances. This can also be seen in
games like BioShock, where each intelligent agent reacts independently to both the envi-
ronmental changes and the human player [73].

Pre-programmed scripts comprise the majority of the AI in computer RPGs [79]. The
scripts represent a static rule base of strategies. Spronck et. al. [95–97] made dynamic
use of scripts, by modifying the choice of script during game-play. They call this adaptive
learning technique online learning through dynamic scripting. The rules in the rule base
are manually created and appropriate for the domain. Each AI agent has its own rule base,
and each rule has its own importance weighting. Each time an agent is encountered by

56

the player, a new action script is generated by randomly selecting rules from the rule base,
with bias given to rules with larger weights. After the encounter has concluded, reinforced
learning is applied by adjusting the weights of the rules employed. Any rule that was
used successfully in achieving the goal has its weight increased, and any rule weights that
were detrimental to the goal are decreased. The rule base itself contained a set number of
rules (depending on the character type; e.g. fighters had 20, wizards 50), and out of these
approximately 20-25% of the rules were selected for each encounter. The rules themselves
never actually changed, with the adaptation only affecting which rules were chosen.

There is a significant need for competent computer players that give human players a
challenge. Having a player that can change its strategy depending on how the human is
playing is something that is gaining momentum. The next section discusses the current
research on computer players that adapt to human game-play.

4.5 Adapting to Humans

While there has been much work on evolving computer players to beat human players,
not much has been done on evolving computer players that are designed to be challenging

for humans. This means creating computer players that are specifically tailored to give
the human player a challenge, not just trying to find the optimal way to beat them every
time [36, 93].

One area of interest in strategic planning is that of predicting an opponent’s strategy
and modifying your strategy accordingly. This is a significant area of investigation, which
ranges from opponent modelling [44] to human behaviour recognition fields [47]. Carberry
performed a review on one of the more important techniques of plan recognition in [26].
The plan recognition technique uses inference to determine an opponent’s plan and goal
through observed actions. This is achieved through chaining actions to goals reachable
through these actions. For example, on observation a person at the store purchases eggs,
milk and flour. From this it might be reasonable to infer that they plan to bake something.
They then add some Maple Syrup and ice cream to their purchase. It now might be rea-
sonable to infer that they are specifically making pancakes. As humans we do this all the
time, but this can be difficult for computers to achieve, especially as the search space of
possibilities expands.

The individuals developed using the TEMPO coevolutionary system represent a static
rule base that human players can adapt to beat over time. Our long term goal is to create a
system where the individuals are evolving and adapting to beat a particular human player
during real-time game-play. To find a way to adapt to a human player, we investigated

57

two aspects: ways to extract rules representing a human’s strategy from the output of their
game-play, and ways that the system can use these rules to adapt.

The most relevant work is by Louis et. al. with their Case-Injected Genetic Algorithm
(CIGAR) research [60–63, 70]. The CIGAR system uses a data base (the case base) of
problems mapped to solutions (cases) to prompt the GA to come up with better and more
human-like solutions. The basic CIGAR system is a GA that starts with an empty case
base and a randomly initialized GA. Once the GA is run, the best individuals (represented
as cases) are saved in the case base. When another similar problem comes along, instead
of starting with a randomly initialized GA, the case base from the previous problem is used
to inject a percentage of the population with previously favourable individuals, and so on.
The individuals to select from the case base are chosen by similarity to the current best
individual in the GA, using a hamming distance metric. Interestingly, it was noted that
individuals that were too advanced for the current population would actually hamper the
evolution. The selected individuals then replace the worst individuals in the GA.

The application of CIGAR to games used a strike force real-time strategy (RTS) game,
where the computer player has to allocate its resources to a set of aircraft platforms (the
blue team). The platforms then attack the human players forces (the red team), which
are represented by buildings that the aircraft can target, and defensive installations that can
attack the computer players air force. The CIGAR system for this works in the same manner
as described above. In this case it also includes cases learnt from humans playing the blue
team in previous installations, by storing the human moves in the case base. Thus, the case
base consists of human derived cases, and cases discovered by the GA from playing against
human and computer players. The cases are then chosen using the same similarity metric,
with the possibility of a human case being chosen – and the evolution learning from human
game-play.

Our work differs from this in a number of ways. Firstly the TEMPO system uses a co-
evolutionary mechanism, not a GA. This changes the way it can use the memory, and adapt
to human players. The coevolutionary system can be run without any human interaction,
and is constantly changing and adapting. There is no search for an overall optimum, just
a way to beat the current opposition. There are also differences in the way individuals are
represented. The TEMPO coevolutionary system uses individuals representing a strategy
in fuzzy logic. To use human knowledge in the TEMPO system, the human strategy must
also be represented as a fuzzy rule base, which can be difficult.

Additionally, the TEMPO game is not a RTS game – it is a turn based game where each
player makes his or her decisions simultaneously. Each year of game-play, the environment
of the game changes and becomes more complex, and the knowledge of what the opposition

58

is doing is minimal and can be misleading (if counter intelligence has been used). The
players being developed in the TEMPO system are intended to encompass all this and
produce generalised strategies for game-play.

Finally there is the way the entire adaptive system works. Our system creates a player
that is tailored to an individual human. This means that the human rules have to be obtained
from, and added to, the currently evolving system. This differs from the Louis et. al. ap-
proach, where the human knowledge was obtained from humans playing past games.

Other relevant work by Ponsen et al [79–81] extends the dynamic scripting method de-
veloped by Spronck et al [95–97] for RTS games. As discussed in section 4.4, the dynamic
scripting method is used to change the strategy rules (the script) for an opponent during
game-play. Rules that perform well in a particular dynamic situation are given a higher
weighting, and are then more likely to be selected. The rules themselves are manually
designed for the specific game being implemented (similar to most current AI for games).

Ponsen extends the dynamic scripting to RTS by changing the script during successive
stages of the game as more resources become available. In addition, an offline evolutionary
algorithm was applied that attempted to create scripts to counter well-known optimized
tactics (for the game of WARGUS). Static players were used to measure against and the
fitness was adjusted for losses and wins against the static player. Aha et. al. [5] addressed
some of the disadvantages of using a static player. Aha et. al. used case-base reasoning to
select scripts for game-play against random opponents chosen from 8 different opponent
scripts. The evolutionary algorithm developed by Ponsen et al. was used to develop scripts
for each of the 8 opponent scripts, and the case-based system (CAT) then chose which tactic
to use (from possibly different scripts) at each stage of the game.

The research for dynamic scripting has a lot of similarities to the approach presented in
this thesis, such as the mechanism used to change opponents during game-play described
in Section 6.10. However, once again the research does not use coevolution, and the mech-
anisms are very different. The overall goal is slightly different as well, as the main goal for
the TEMPO system is for training purposes.

This concludes our review on the current field of research. The next chapter describes
our coevolutionary system, providing the coevolutionary algorithm used, and the imple-
mentation details.

59

Chapter 5

The TEMPO Coevolutionary System

This chapter presents the methodology used to create a computer player for the game of
TEMPO. We begin with the previous computer player developed by Johnson et. al. [55].
We then discuss a number of deficiencies with the previous computer player, which were
identified in [55]. Finally, we describe the changes made to the previous system, and give
a detailed description of our system.

5.1 The Early TEMPO Computer Player

Johnson et. al. developed a coevolutionary system to create a computer player for the game
of TEMPO in [55, 56]. The work by these authors is used as the baseline for the current
research. In [55] Johnson et. al. describe the methods they used to create a player for
the game. Initially, a Lisp genetic programming technique was used to experiment with
creating a computer player for the game. Following the success of the early experiments,
Johnson et. al. proceeded to create their TEMPO computer player by coevolving fuzzy
logic rules.

The TEMPO game was used in [55] to test the validity of evolving a self-learning arti-
ficial player for the game. The system followed similar work by Chellapilla and Fogel [29]
where a computer player developed its own method of play through coevolution. Instead
of using the neural network approach by Chellapilla and Fogel however, the player was
developed by coevolving a set of fuzzy rules. The system used a Mamdani fuzzy logic
system with Gaussian membership functions. The coevolution involved two populations of
individuals coevolving against each other.

The computer player consisted of two rule bases, one for weapon rules and one for
intelligence rules. The rules were represented with Gaussian membership functions for
each input value, with the evolution changing the shape of the membership function. The

60

chromosomes were composed of a number of concatenated rules up to a maximum of m

rules, where m is made up of w weapon rules and q intelligence rules. Each rule is then
built from the following fields. The first gene for a rule is Uj which depicts if the rule j

will be used. This is followed by sets of four genes that repeat for each input. The sets
consist of: Bij for defining if the input i is used, Cij to specify the centre of the Gaussian
membership function for the input (in range [0,1]), and Sij for the sigma of the Gaussian
in range [0,∞]. The final gene for the rule is Yj , which is the output in range [0,1] for rule
j. Figure 5.1 depicts the chromosome structure, expanding rule 3. The rules are then used
to decide if a particular intelligence category or weapon should be bought when the yearly
budget allocation is performed, using the production operation rule for fuzzy-AND. The
gene values are only ever translated into human readable fuzzy parameters (high, low, etc.)
for the purposes of understanding what the rules are doing.

Figure 5.1: The early TEMPO coevolutionary representation

The evaluation function involved each individual in each population playing a set num-
ber of games against the opposition population. The outcome of each game was recorded,
and at the end of all game-play the individual was evaluated using the average net won
utilities. A penalty was also applied to minimize the number of used rules in the rule set
– therefore applying the Ockham’s razor principle. The variation operators consisted of a
two point crossover and randomly created arithmetic mutation with a small probability of
a major mutation and a large probability of small mutation.

The computer player developed in [55] was implemented as a limited version of the
original game-play, and only goes up to a predetermined number of weapons. Specifically,
two weapon categories (offensive and defensive), two weapon types (A and B) and three
weapons for each type were used. In addition, the system does not include the research and
development component of the game. This part of the game was deliberately left out due
to the considerable added complexity that it creates, which was thought to be too much for

61

the development of the player.
The user interface of the game allowed a human player to play against a coevolved

computer player (the computer player was static, chosen from the coevolution).
There was a number of observations made in [55] relating to the ability of the player to

compete against humans. Firstly, the rules being developed by the coevolution process were
difficult for a novice human to beat initially, but easy to quickly overcome. Secondly, there
was the inability for the coevolutionary individuals to develop rules that bought intelligence
or counter intelligence. These two topics are addressed in this research.

Further changes to the original system were also made to improve performance. The
following sections describe the current coevolutionary system and the fuzzy logic rule base
mechanisms used in our work.

5.2 Experimental Settings

Our work developed a coevolutionary algorithm, with fuzzy rule representation for TEMPO
computer player individuals. The following sections present the details of the system and
the settings that were used. We begin with the representation used for the individuals. We
then describe the coevolutionary algorithm used.

5.2.1 The Representation

The original TEMPO fuzzy logic system was based on the Mamdani fuzzy logic system
with Gaussian membership functions (see [55] for further details). From observation, we
noted that the use of a Gaussian membership function with floating point precision resulted
in the evolutionary process fluctuating over small variations that did not really improve the
overall results. The fluctuation effectively slowed the system with no gain. To address this,
we changed the Gaussian membership function to a triangular membership function with
integer precision. It was anticipated that integer precision would stop the minor fluctua-
tions observed with the floating point precision, as the integer representation involved less
mutation variance. This meant the system would be able to spend time exploring a larger
area of the search space.

The integer membership function was represented by a corresponding integer value for
each fuzzy membership function, e.g. 0 for very low, up to 5 for very high. The previ-
ous Gaussian method had a floating value centre and sigma for each function, which could
be mutated by multiplying a randomly allocated minor or large value. The new muta-
tion mechanism for the integer precision involved randomly assigning a new membership

62

Figure 5.2: New structure of a chromosome

function for a large mutation, or moving to an adjacent membership function for a small
mutation. The change was implemented at the start of the experimentation, and the results
showed that the processing time was reduced to a third of the original speed. The minor
evolutionary fluctuation that previously occurred in the Gaussian system was no longer an
issue with the integer approach. The results against the static expert (a simple strategy used
as a baseline measurement) were also marginally improved, thus the triangular membership
function was an improvement over the Gaussian.

The new representation of the fuzzy logic system meant that the chromosome structure
shown in figure 5.1 needed to be modified. The new structure can be seen in figure 5.2.
As with the old system, there are m = w + q rules (where w is the maximum number of
weapon rules, and q is the maximum number of intelligence rules). Each rule is built from
the following (figure 5.2 expands rule 3): U3 is a Boolean defining if the rule is used, Bi3

is a boolean defining if input i is used, MFi3 is the membership function used for the input
i, and Y3 is the output in range [0,1] for Rule3.

As a final addition, we also added an extra gene onto the intelligence rule base chromo-
some. This gene represented an evolved cut-off weight used to buy intelligence and counter
intelligence. If the fuzzy rules for the intelligence rule base produced a crisp value after
passing through the fuzzy controller that was higher than the cut-off, then intelligence was
purchased, otherwise it was not purchased. The same applied for the purchase of counter
intelligence.

To implement the triangular membership functions, we used a representation of the
Takagi and Sugeno fuzzy system. We created a single triangular membership function for
an input dimension, corresponding to one of the linguistic variables used. Each input type
has its own set of membership functions. The membership functions either represent the
different types of input (e.g. category is either Offensive – 0, or Defensive – 1), or a range

63

measurement (very low – 0, low – 1, medium – 2, high – 3, very high – 4).
We also needed to represent the linguistic variables. Given the total minimum and max-

imum of a particular input, and the number of membership functions needed, the linguistic
variable would create the required number of membership function objects for the input
type. Each membership function has a minimum, centre and maximum value. A diagram
showing a typical membership function is shown in figure 5.3. The membership function
is represented as an isosceles triangle with a y value of 1.0. The bottom edge is of length
maximum − minimum, and the centre value is used to divide the triangle into the left
and right right-angle triangles. When passed an input value (u ε U), the slope-intercept
equation: y = mu + b is used to calculate the membership degree. In our implementation
m = 1/(centre −minmax) where minmax is either minimum or maximum depending
on which half of the triangle u is in. We then use b = −minmax/(centre−minmax).

y
1.0

0.75

0.5

0.25

0

Left

side

Right

side

z

maximumcenterminimum
u U

Input variable

Figure 5.3: Membership function example

The fuzzy controller takes each input value for the year (e.g. budget, weapon category
etc.), and matches the value against the fuzzy IF part of the rules, getting the membership
degree for each input that triggered a fuzzy rule. The fuzzy AND product rule was used to
sum all the membership values for all the used inputs in the rule. The weighted average of
all the rules was then taken as

y(~u) =

∑m
l=1 wlyl

∑m
l=1 wl

, (5.1)

where ~u is the input vector for the rule base, m is the number of rules in the rule base, yl

is the crisp output value of rule l, and wl is the product of the membership degrees for all

64

triggered input values. We define

wl =
n∏

i=1

µ varl
i ui , (5.2)

where n is the number of inputs, and µ varl
i ui is the membership degree (µ) of input ui in

the corresponding linguistic variable vari, for the rule l.
The above process is run for each of the different weapons available, with some com-

mon input values for all weapons (such as pwar, budget etc.), and some weapon specific
values (such as category, type, utils etc.). The total y(~u) value obtained from all the trig-
gered rules for each weapon with its specific ~u vector is then used to allocate a percentage
of the budget (the ratio) for the specified weapon. The allocation is performed by normal-
ising all the weapon y(~u) values with

ratioi =
y(~u)i∑m

j=1 y(~u)j

,

where i is the weapon index currently being allocated a ratio, and m is the number of
weapons available for purchase at the time.

The intelligence rule base goes through the same process, with one difference. As
the purchase of intelligence is a boolean decision, the cutoff ratio given for each rule (as
described previously) is used to determine if the intelligence category (offensive, defensive
or counter intelligence) is purchased. If the y(~u) value for the given category is greater than
the cutoff ratio, then the category is purchased, otherwise it is not. As a result, the purchase
of intelligence occurs first. The remaining budget is then used to purchase weapons, with
each weapon given the allocated amount (ratioi×budget). Any surplus left over is then
added on to the next weapon’s budget allocation.

The next section describes the coevolution algorithm used, and our implementation
details.

5.2.2 The Coevolutionary Algorithm Implemented

Our coevolutionary system is based on two competing populations to evolve individuals
represented by the fuzzy logic rule bases. The outline of our algorithm follows the one
described in section 2.6, with some differences. Our algorithm is shown in figure 5.4.

To initialize the populations, each individual creates a gene array for the weapon and
intelligence rule bases, and randomly assigns integer values from the range [0..99]. These
values are then mapped from genotype to the appropriate phenotype, depending on the al-

65

procedure The Coevolutionary Algorithm
begin

t ← 0
initialize P1(t)
initialize P2(t)
while(not termination-condition) do
begin

evaluate P1(t) against P2(t)
evaluate P2(t) against P1(t)
select P1 elites(t) from P1(t)
select P2 elites(t) from P2(t)
select P1 intermediate(t) from P1(t)
select P2 intermediate(t) from P2(t)
alter P1 intermediate(t)
alter P2 intermediate(t)
select P1(t + 1) from P1 elites(t) ∪ P1 intermediate(t)
select P2(t + 1) from P2 elites(t) ∪ P2 intermediate(t)
t ← t + 1

end
end

Figure 5.4: The coevolutionary algorithm implemented

lele requirements, as part of the evaluation phase. For example, if the gene locus requires a
phenotype to a linguistic variable, then the minimum phenotype value is the first member-
ship function number, and the maximum is the total number of membership functions for
the variable (e.g. 0 – 4).

After the initialization, the individuals are evaluated against the other population. The
basic system applies the following evaluation technique (with modifications introduced
later). We iterate over each population, with each individual played against r randomly
chosen individuals from the opposition population. The random selection mechanism was
carried over from the research by Johnson et. al., and it is possible that a different mech-
anism might be more effective. For the purposes of this research however it is sufficient,
and further experiments on the matter are outside the scope of our work. For most of our
experiments we used a sample size of r = 20. Through experimentation we found that
this size gave us enough sample scope for the population size of 100 that was used in the
experiments.

A single game-play involves a complete game, through to the final year when war
breaks out and a total net utils is allocated for the game. In each game the two players
distribute their budget as determined by the rule base (discussed in section 2.6). At the

66

end of the game, the total net utils for each player is determined and the fitness evaluation
variables updated accordingly. These variables keep track of the number of games played
by the individual, the total net utils for all games played, and the won and loss count for
the games (a draw counts as a loss for this purpose). Each individual plays a minimum n

games, but with a possible (but improbable) maximum n + (Opn) times, where Op is the
opposition population number. The maximum is due to the random selection for game-
play by the opposition’s evaluation round. The evaluation function consists of a number of
evaluation variables, defined as:

• wonRatio – the total number of wins divided by the total games played.

• totalNetUtils – the sum of all total net utils (both positive and negative) for all games
played.

• gamesPlayed – the total number of games played whilst evaluating the individual.

• weapRulePenalty and intelRulePenalty – the constant parameters used to determine
the weight of the rule penalty for the rule bases (weapon and intelligence respec-
tively).

• usedWeaponRuleNum and usedIntelRuleNum – the number of rules that were marked
as used for each rule base.

• usedWeapInputNum and usedIntelInputNum – the number of input variables used for
each used rule, in each rule base.

• weapInputNum and intelInputNum – the total possible usable inputs for each rule
base.

• netUtilsPenalty – assigned the highest net utils scored from all games played.

• lossCounter – counts all games lost or drawn from the games played.

The evaluation function eval is then calculated as follows:

eval(individuali) = wonRatio +(10e−6 ((totalNetUtils/gamesPlayed)−
weapRulePenalty (usedWeapRuleNum + usedWeapInputNum/weapInputNum)−
intelRulePenalty (usedIntelRuleNum + usedIntelInputNum/intelInputNum)+
10e−6 (netUtilsPenalty× lossCounter / gamesPlayed)))

Once all the individuals have been evaluated, the populations are sorted by the individ-
ual’s fitness score (which maximises the evaluation function). After sorting, the elite indi-
viduals from each population are collected as P1 elites(t) and P2 elites(t) respectively. The
number of elites saved is determined by the evolutionary parameter elitismRatio, which
was set to 10% for most experiments. The intermediate populations P1 intermediate(t)

67

and P2 intermediate(t) are then selected from P1(t) and P2(t) through tournament selec-
tion (k = 2). The Pintermediate(t) populations are of size Pn − (Pn×elitismRatio), where
Pn is the size of the corresponding P (t) population. The tournament selection was carried
over from the Johnson et. al. solution. We conducted experiments with rank selection, but
found that tournament selection worked better.

The intermediate populations are then altered, with either mutation or crossover ap-
plied. The evolutionary parameter xoverRatio defines the chance of crossover occurring
instead of mutation. If the mutation operator is used, the chosen parent has mutation ap-
plied at a rate defined in the evolutionary parameter mutationRatio. If mutation is applied
to a gene, there is a 10% chance of a big mutation being applied where the gene is ran-
domly reassigned a value. Otherwise a small mutation of plus or minus 1 is applied (with
boundary checking put in place). If the crossover operator is chosen, a randomly selected
two point crossover is applied. The variation operators were carried over from the Johnson
et. al. research, but the size of the individuals make at least two point crossover necessary.
Possible future work could investigate k-point crossover.

Once the alterations have been applied to the intermediate populations, the survivor
populations (P1(t + 1) and P2(t + 1)) are created. These are created as P1(t + 1) =

P1 elites(t) ∪ P1 intermediate(t) and P2(t + 1) = P2 elites(t) ∪ P2 intermediate(t).
The parameters of the coevolution are modified in subsequent chapters, with changes

described in the relevant section.
Now that we have described the basic algorithm used, the next chapter describes the

first stage of experiments. To create a computer player that can self-learn its game-play, we
give it the use of short and long term memory to enhance the learning experience.

68

Chapter 6

Short and Long Term Memory in
Coevolution

6.1 Introduction

A major goal in evolving a computer player for TEMPO is to create a means of competitive
strategy creation. Coevolution has proved to be a very effective way of creating computer
players that perform self learning to find appropriate strategies for a problem. This has
been shown repeatedly in experiments to create computer players for a variety of games as
discussed in section 4.3.

The previous research performed by Johnson et. al. [55] on a coevolutionary system for
the TEMPO game identified deficiencies that led to creation of weaker players. Not only
were the strategies relatively easy to beat, they also acted blindly to the opposition and did
not purchase intelligence. One possible reason for these deficiencies was that the coevo-
lutionary process being used was not providing progressive growth of the individuals, and
was cycling solutions. While we are not attempting to create an optimal solution through
the creation of computer players, we do need a mechanism that will encourage some degree
of consistent improvement. To provide this, the populations need some form of memory to
prompt them to learn from the past and allow future development.

The purpose of this memory however, is not to enforce monotonic improvement. We
want to encourage the populations to grow, but we also want to leave the coevolution free
to find interesting and unique strategies. The goal of the system is to be challenging for
humans, which is its ultimate purpose. To create this balance, we needed a memory system
that would retain and use the memory, but only as a formative guide for the coevolution.

We begin with a description of the experimental settings used. This is followed by our

69

first extension, which includes of an ‘expert’ seed into the populations. We then discuss
the structure of the memory that was chosen, and the initial experiments using this mem-
ory. This leads into our major contribution for this chapter, the introduction of a selection
mechanism for the memory – that of short and long term memory retrieval. We describe
the implementation techniques used, the experiments, and the results. We conclude with a
discussion on the impact the memory made to the TEMPO coevolutionary system.

6.2 Experimental Settings

All experiments performed in this section have the same experimental settings, except when
stated otherwise. Due to the stochastic nature of the experiments, we conducted each ex-
periment over ten separate runs, all with the same environmental and evolutionary con-
figuration. Due to the time and hardware restraints ten runs was consistently used for all
experiments. However, we did experimentally run more than ten times, and there was not
a distinctly noticeable difference. Less than ten runs did however have a greater impact.

The system was run each time for 50,000 generations with a population size of 100
for both populations (population A and population B). Each experiment also had the fol-
lowing parameters: the elitismRatio in each generation was 10%; crossover was applied
with 30% probability of occurrence; if crossover was not chosen, mutation was applied
(thus with a 70% probability of occurrence); if applied, each gene had a 50% chance of
mutation, with a 10% chance of large mutation – otherwise a small mutation occurred. The
number of evaluation games played changes throughout the experiments, and is detailed
in the relevant sections. The rule penalty was set to a constant of 10. The intelligence
rule base however assigned a proportional rule penalty according to the number of inputs
(e.g. intelRulePenalty = rulePenalty×totalIntelInputNum/totalWeaponInputNum).

The existing baseline measurement of the system used a static rule base ‘expert’ that
represented the strategy of: buy weapons based on their utilities per operation cost. The
higher the ratio, the more of the weapons would be bought. The term expert is used loosely
here, as the strategy is a simple concept. However, the strategy has proved capable of
winning against novice human players, and can be considered a good baseline player for
measurement of system performance. It has also been noted through our user study (in
chapter 8) that this strategy is one that human players naturally learn to use as a beginning
strategy. At the end of each generation, the best individual from each population would
play 100 games against the static expert, and the percentage of games won formed the won

ratio used in results.
The results for each experiment are depicted in graphs showing the average results

70

across the ten runs. The graphs show the won ratio against the expert on the y axis, and
the generations on the x axis. Additionally, the results are also shown with the Standard
Deviation (SD) range. The SD results have been smoothed using a Bezier curves function
to accentuate the changes.

6.3 Seeding the Populations

One suggestion made in [55] was to seed the population with hand crafted individuals to
determine how human-like individuals would fare in the coevolutionary process. We inves-
tigated this area, and provided a simple experiment to determine the reaction of the coevo-
lutionary process. When using the expert for performance measurement, it was noted that
the best individuals from the generations performed relatively poorly on average against
the expert. This was to be expected to some degree, in that the populations were focused
on beating each other, and they had no incentive to find strategies to beat the expert. We
decided to insert the static expert as an individual into each of the populations and record
how it fared in the evolutionary process. To differentiate between the two functions of the
same expert, we named the baseline measurement use of the expert as the static expert, and
the seeded expert the alien expert.

The alien expert mechanism worked by placing the static expert as another individual
in each of the populations. The individual would be subject to the same variation operators
as all the other individuals. The baseline static expert measurement system remained the
same.

6.3.1 Experimenting with the Alien Expert

As a baseline measurement, we ran the system without any seeding mechanisms. The
evaluation function was calculated solely from game-play against the opposition, with the
number of games played against the opposition given by r = 20. The results are shown in
figure 6.1 . For these graphs, the scale is to 50% for readability. The results depict how well
the best individual from each generation performed against the static expert player, which
was the baseline measurement.

The results show that the players were not doing overly well against the expert, achiev-
ing an average of 36% won ratio. The results also showed that there were no trends to
beating the expert, just occasional jumps in performance followed by decreases (this is not
visible in the average results shown here, but is visible in individual runs). This was to be
expected, as the coevolutionary process was not training the individuals against the expert,

71

(a) Population A (b) Population B

Figure 6.1: Baseline success ratio against the static expert

only against the other population.
To try and encourage the system to include the expert in the process, we used the alien

expert approach discussed previously. Here, the expert was inserted as one of the individ-
uals for each population A and B. The results from this approach were much the same as
the original results. After the addition of the alien expert, there was a very brief increase in
the won ratio followed by a sharp drop back to the previous average won ratio. Once again,
this was mostly expected, as the nature of coevolutionary systems is to focus on beating
the opposition in its current form, and promptly forgets any previous opponents once they
have been beaten.

This led us to experiment on the inclusion of a memory into the coevolutionary system.
We now consider this extension.

6.4 The Inclusion of a Simple Memory Structure

As discussed by Ficici in [45], the coevolutionary process can forget previously learned
solutions in favour of ones that are more effective against the current opposition. This can
be detrimental to the overall usefulness of the system. The issue of forgetting previously
good solutions is well documented in coevolutionary research, and while analysing the
results from experiments we found it was leading to the creation of strategies that were not
highly competitive. By introducing memory we attempted to increase the competitiveness
of our computer players to play against all strategies, not just the current opposition.

As discussed in section 4.1 there are a number of different ways we could implement
and use memory in our system. Our first approach was to implement a separate memory
for each population, and each generation the best of the opposition was stored in the other

72

population’s memory. This was intended to remind one population of the other population’s
winning strategies, and vice versa. After further experimentation and analysis however,
we came to the conclusion that to create a truly competitive individual, it should be able
to beat the opposition and any previous strategies of its own. We decided to experiment
with having a single combined (and decidedly larger) memory that both populations would
augment and play against.

We used the memory in the coevolution as opposition for the current populations. Thus,
at the end of each generation, each individual would play a defined number of games against
the opposition population, followed by a number of games against individuals in the mem-
ory. Hence, the fitness was maintained in the same manner as before (the won ratio of the
individual plus the total net utilities divided by the times played, with a penalty for number
of rules used). The coevolutionary algorithm used was now modified as shown in figure
6.2.

procedure The Covolutionary Algorithm with Memory
begin

t ← 0
initialize P1(t)
initialize P2(t)
while(not termination-condition) do
begin

evaluate P1(t) against P2(t) ∪Memory
evaluate P2(t) against P1(t) ∪Memory
add P1(t) fittestIndividual from P1(t) to Memory
add P2(t) fittestIndividual from P2(t) to Memory
select P1 elites(t) from P1(t)
select P2 elites(t) from P2(t)
select P1 intermediate(t) from P1(t)
select P2 intermediate(t) from P2(t)
alter P1 intermediate(t)
alter P2 intermediate(t)
select P1(t + 1) from P1 elites(t) ∪ P1 intermediate(t)
select P2(t + 1) from P2 elites(t) ∪ P2 intermediate(t)
t ← t + 1

end
end

Figure 6.2: The coevolutionary algorithm with memory implemented

At the evaluation phase, individuals are also evaluated against the memory population.
The fitness is calculated against totals of all games played. Each individual currently played

73

against random individuals from the opposition r times. In our memory strategy, the indi-
vidual is then played an additional r2 times against individuals from the memory. So the
total games played to assign the fitness for the individual is now r1+r2, where r1 represents
the games played against the opposition population, and r2 the games against the memory.

The populations are sorted after evaluation (as before), but the fittest individual from
each population is now added to the memory population. The rest of the algorithm performs
as before. We decided to include every generation’s best individual from each population
into the memory, as we wanted to keep a full history of the past winning strategies used.
Initially we implemented the memory as only containing unique entries, and later experi-
mented with the inclusion of all individuals regardless of uniqueness.

After deciding on the structure and influence mechanism of the memory, one question
remained: how would the individuals be selected from the memory. This question is a
significant issue for this chapter. We hypothesize that the individuals selected from the
memory can have a large influence on the effectiveness of the coevolution.

Our initial experiments with this system involved implementing the memory structure
as described and randomly selecting individuals to play against. To evaluate the fitness, a
number of games were played against the opposition (r1 = 20), re-adjusting the evaluation
after each game. To include this strategy of evolving against the memory, we then provided
a mechanism for playing an additional number of games (r2 = 20) against the memory, and
adjusted the fitness of the current individuals in the same manner as that for the opposition
games. The additional sample size of r2 = 20 was chosen to match the opposition sample
size, and minimize the impact of the memory on the performance.

The graph of the won ratio against the expert can be seen in figure 6.3. In these results
(as with the rest of the results) the y axis represents the won ratio against the static expert
to a scale of 100%.

The use of a memory gave us distinctly better results. We were now achieving an
average of around 55% won ratio, and were achieving an over 90% top won ratio against
the expert for single run results, with longer trends of winning.

These results were promising, but we noted that the populations were still not tending
towards beating the static expert and were instead regularly staying around the average to
below average won ratio. The populations were still ‘forgetting’ previous solutions and
focusing more on beating the current opposition. We reasoned that the cause of this was
the random nature of the selection from the memory.

By selecting at random, we were increasing the potential for larger amounts of the ear-
lier, and presumably simpler, individuals from the memory to be chosen. What we actually
wanted was the populations to improve against the harder (more recent) individuals, and

74

(a) Population A (b) Population B

(c) SD for Population A (d) SD for Population B

Figure 6.3: Success ratio against the expert using random selection from history

be occasionally prompted not to forget older strategies. Thus addressing the Red Queen ef-
fect, without losing the benefits of the coevolution. To achieve this, we decided to include
a probability distribution for game-play selection from the memory.

The initial probability distribution was a simple linear time distribution, where the latest
historical individuals had a higher probability of getting chosen than the older individuals.
This is depicted in figure 6.4, where the distribution can be seen as a function of time P (t),
where N is the current generation number.

This distribution would force a higher playing ratio against the more recent individuals,
but would still encourage play against the older strategies. To implement this probability
distribution, the individuals in the memory were represented in a list, with the most recent
additions added to the top of the list. When an individual from the memory is needed for
game-play, a random number is generated in the range [0..N] representing the individual to
play against (n). The probability for n viz. P (n) is then calculated using the linear slope

75

1.0

0.5

n... ...
N-132 N1

Time

Figure 6.4: Probability distribution by function of time

function,
P (n) = 1/Nn (6.1)

derived from the slope intersect function (y = mx + b, where b = 0).
Once P (n) has been found, another random number is generated in the range [0,1].

If the number generated is less that P (n), then the individual is selected. Otherwise the
process iterates.

The results of this experiment can be seen in figure 6.5, and showed an overall increase
in the won ratio average against the expert. This was a good result, but we wanted to see if
it could be improved.

The results from a typical single run of the linear probability distribution can be seen
in figure 6.6. This shows the fluctuation that occurred in a single run, and the room for
improvement against the expert.

The next question prompted by the previous results was whether the linear probability
distribution was the best distribution. Perhaps a curved distribution could provide better
results. To test this theory, we replaced the linear distribution with a Laplace (otherwise
known as double exponential) probability distribution function. We were expecting that
by introducing a curved distribution function with a sharp decline, we would force the
populations to play more against the most recent players in the memory. The results of this
experiment are shown in figure 6.7.

The individual results once again showed a slight improvement with a more pronounced
trend towards winning against the expert. However, there was still a lot of fluctuation and
the results were still not achieving the consistent won ratio we were looking for. What we

76

(a) Population A (b) Population B

(c) SD for Population A (d) SD for Population B

Figure 6.5: Success ratio against the expert using single memory with linear distribution

(a) Population A (b) Population B

Figure 6.6: Success ratio against the expert for a single run using linear distribution

77

(a) Population A (b) Population B

(c) SD for Population A (d) SD for Population B

Figure 6.7: Success ratio against the expert using Laplace probability distribution

really wanted, was to see an overall increase over time in the won ratio against the expert.
To really achieve the degree of selection pressure on the more recent memory additions,

we decided to experiment with the inclusion of a distribution mechanism that was inspired
by the way humans use memory; that of short and long term memory. The following section
gives a background to how humans use short and long term memory.

6.5 A Discussion on the Psychology of Human Memory

In our investigation of ways to select individuals from the memory for use by the coevolu-
tionary system, we considered the way that humans utilize memory. In our experimentation
it was decided to investigate the use of two types of memory selection: long term memory

(LTM) and short term memory (STM). The approach was to simplistically mimic the way
the human brain stores and uses memory. The concept of applying STM and LTM to heuris-
tics has been widely used over the years, and the use with tabu search has been thoroughly

78

documented by Glover and Laguna [48]. In our research however, we seek to mimic the
human mechanism of STM and LTM in a coevolutionary process.

Early theories of human memory consisted of one large memory system. However,
in the 1960s researchers recognized that the memory consisted of two parts: a short term
memory that acted as a temporary storage mechanism, and a long term memory that was
more permanent storage [6]. This was re-examined in the 70s and the two memory systems
broken down into further levels of processing [12]. The STM was re-termed the working
memory, and broken down into articulatory and visuospatial components. The LTM was
broken into explicit and implicit memory. Implicit memory involves learning that does not
involve active recollection of information, but rather retrieval through indirect performance.
Implicit memory includes information associated with: skills and habits, priming, condi-
tioning and non-associative learning [12]. Explicit memory on the other hand is the active
recollection of past incidents, and the semantic memory representing general knowledge of
the world. Explicit memory includes storage and retrieval of facts and events.

The actual linking between short and long term memory was originally thought to hap-
pen serially; that the information being taken in by our sensors was processed in the STM
and then if it stayed in the STM long enough, it would be transferred into LTM [12, 35].
Craik and Lockhart [34] challenged this theory, by introducing the concept of a levels-of-
processing framework. This framework had a sequence of analytic stages that show how
memory is set. The idea is that memory is not a separate faculty, but instead reflects the
outcome of attempts to perceive and comprehend information. Thus, the ability to affect
long term memory is directly related to the comprehension or ability to relate the knowl-
edge with the meaning (semantic understanding). In this way, the retrieval of information is
not a ‘brute force’ search mechanism, but instead the memories are encoded into the whole
cognitive system, and there is an increased potential for the same pattern to be repeated on
a subsequent occasion [35].

The understanding of how the STM and the LTM work, both independently and to-
gether, is still under extensive investigation. However, the knowledge that the memory is
divided into two forms: a short term memory aimed at recalling recent and relevant in-
formation, and a long term memory to store necessary information in the long term, are
fundamental theories for human memory.

79

6.6 Implementation of a Short and Long Term Memory
Structure

Our memory system is a continually growing population, with an increase of two individu-
als every generation (when uniqueness is not applied). This means that whatever selection
mechanism we apply, it is still effectively a time based probability distribution. The more
generations that pass, the larger the population becomes, and the less probability an indi-
vidual has of being selected for game-play. We have investigated different mechanisms to
bias this selection probability, but the selection probability of all these still diminish over
time.

The inclusion of a memory to evolve against had produced some nice peaks, but even
with the probability selection distribution it still seemed to average around a 60% won ra-
tio. The time function probability selection we were utilizing allowed a biased selection
mechanism, but it was still allowing a higher play rate against the older solutions than we
wanted. Even though the time-based probability selection was biased towards the most re-
cent individuals, as the memory grew, the chances of playing against the top end decreased.
To address this we decided to introduce a specified top end window to the probability selec-
tion – the short term memory window. This window would be evolved against a set number
of times prior to evolving against the whole memory – the long term memory.

As discussed before, humans have a current short term memory, and a larger long term
memory. We wanted to replicate this ability, as it is the short term memory that humans
use to determine the current situation, and the long term memory to bring past knowledge
on how to act given the situation. This is precisely what we wanted the players to do.
By forcing the populations to play against the most recent individuals in the STM, we are
maintaining the concept that the most recent situation is the most relevant. By then allowing
influence from the LTM, we allow learning from the past.

To implement the STM function, the top ten individuals in the memory were identified,
and an additional amount of games played against them. The LTM was then applied by
playing another set of games against the entire memory. So where previously the fitness
was created by playing r1 + r2 games, now the games against the memory is split into
r2S for the games played against the STM, and r2L for the games against the LTM. The
memory individuals selected for the LTM game-play are selected with the linear time based
probability discussed earlier, so the more recent individuals have a higher chance of being
selected. The STM is also selected from with the same linear time based probability, but as
the size is a static 10 individuals, as the entire population grows, the probability becomes
more uniform.

80

Our experiments for the new memory mechanism included a window of the top ten
individuals (the STM), and played against these individuals for r2S = 10 games. This was
followed by r2L = 10 games against the LTM (the entire memory). The games played
against the opposition remained the same (r1 = 20). The results were promising, with an
increase in won ratio for both populations as depicted in figure 6.8. More importantly, we
were now seeing trends towards beating the expert. This can be seen in figure 6.9, which
shows the results for a typical single run of the system. The single runs for the system
showed that in most cases, one of the populations was outperforming the other population,
and so the overall results were therefore improved as well.

(a) Population A (b) Population B

(c) SD for Population A (d) SD for Population B

Figure 6.8: Success ratio against the expert using short and long term memory

The short term memory mechanism works like the human memory mechanism for
learning, which allows a person to overcome information overload and use the most useful
and recent memory rather than their large long term knowledge base. The LTM is still
there for prompting historical memories and reminding the person of past successes and
mistakes, and allows the person to grow overall. We have attempted to replicate this in the

81

(a) Population A (b) Population B

Figure 6.9: Success ratio against the expert for a single run using short and long term
memory

TEMPO system, allowing the system to have reminders of past strategies, while still giving
the best information for the current situation. Additionally, we experimented with the size
of the STM, to see if a window of 10 was the most beneficial. We tried smaller and larger
windows, and found that a size of around 10 created the best results.

Following on from the success gained using the STM and LTM memory structure, we
decided to continue experimenting with different ways to change the selection pressure.
The following sections describe each of the variations using the STM and LTM.

6.7 Unique vs. Not Unique Memory Structure

One of the choices made early on was to make the individuals in the memory unique, and
then increase the probability of getting chosen if the same individual was repeatedly added
to the population. We decided to test this decision and performed a run with no uniqueness
checking, instead best individuals for all the generations were added to the memory.

Although there was not much of a difference, this was actually the first time the popu-
lations achieved an outright 100% won ratio in the single runs. We were not expecting this,
as we thought the unique population would have fared better due to the forced diversity
of the populations. This higher achievement could possibly be caused by the short term
memory filling up with the best strategy, and therefore forcing the populations to find a
solution to that single strategy. Further experiments are needed to confirm this hypothesis
however, and it is an area for future research.

82

6.8 Ranked “Gladiator” Selection

The next experiment was designed to further mimic the way the long term memory worked
in the human brain. Instead of every single bit of information ever learnt being stored in
long term memory, the information would be sifted and only relevant information stored.
We attempted to mimic this by using a ranked LTM. When adding a new individual to the
memory, the individual would play the top individual from the ranking. If it won it ranked
above the top individual, otherwise it would continue down the ranking until it found the
appropriate rank. This was only performed for the top 1,000 ranked individuals. If the
individual was not in this top 1,000, it would not be retained in the LTM. We nicknamed
the 1,000 top ranked individuals the “gladiators”.

This mechanism provided a very loose ranking, as ranked individuals are only played
against once to determine placement. It is therefore likely that the ranking would be incor-
rect in some cases. To address this, we included a mechanism where at each generation a
random individual would be chosen from the gladiators and played against the surrounding
20 neighbours, adjusting in rank where required.

The fitness calculation process was then modified as follows. After playing r1 = 20

games against the opposition, the individual would be required to play against the short
term memory as before (r2S = 10). They would then be required to play an additional
number of games against the gladiators (r2G = 10). The results can be seen in figure 6.10.

We were now seeing very promising results, with a much higher and obviously stable
won ratio. The single results for the gladiator system showed that in most cases both of the
populations were averaging an above 60% won ratio. However, we were still witnessing the
stabilized advantage of one population over the other as noted in the previous experiment.

The gladiator mechanism proved successful, but future work could investigate different
ways to rank the individuals in the gladiator system. Currently the mechanism is a very
simple stochastic one, and possible future research could consider other alternatives.

6.9 Investigating the Inclusion of Migration

From the results of the short and long term memory and gladiator experiments, we noted a
distinct pattern of one population dominating over the other. This domination was obvious
(especially in the case of the short and long term memory) and happened almost every
time the system was run. The interesting thing was the dominating population very quickly
achieved and maintained a very high won ratio against the expert, while the opposition
player stayed at an average won ratio. We theorized that the games against the memory

83

(a) Population A (b) Population B

(c) SD for Population A (d) SD for Population B

Figure 6.10: Success ratio against the expert using gladiator system

were effectively rewarding one population over the other by adding extra play against the
best individual from the ‘better’ population. This meant that the first population to find a
strategy that was good against both its own solutions and the opposition’s, would then be
able to continuously dominate against the opposition. The question we had however was
why the opposition was not able to catch up. Our ideal scenario involved both populations
being competitive with the expert strategy, so we decided to investigate the direct influence
of integrating individuals from the winning population into the opposition population, and
vice versa. To do this we incorporated methods of population migration. While migration
is a non-standard method of coevolving solutions, we felt it was worthwhile experimenting
with in this scenario.

For these experiments we included a migration mechanism that involved a probability
of performing crossover with an opposition individual. This was performed the same as
the normal crossover (two point crossover), except that one parent was chosen randomly
from the current population, and the other parent was chosen randomly from the opposition

84

population. The probability of crossover being performed was 30%, and if crossover was
chosen there was then a 10% chance that migration crossover was applied. The experiment
was then run using the gladiator selection. The results from these experiments can be seen
in figure 6.11.

(a) Population A (b) Population B

(c) SD for Population A (d) SD for Population B

Figure 6.11: Success ratio against the expert with migration incorporated into the gladiator
system

These results show a very big change from the gladiator experiments without migration.
The results are clearer when the single runs are viewed, and figure 6.12 shows some of the
single run results for this experiment. Even with minimal crossover being applied, the
results showed that the populations quickly started mirroring each other. The results also
seemed to disprove our theory of the memory having the biggest influence in the creation
of a dominating population, as the dominance disappeared with the small probability of
migration applied. These results were very surprising, and further research into why this
has occurred is warranted, but outside the scope of this research.

85

(a) Run 1 – Population A (b) Run 1 – Population B

(c) Run 2 – Population A (d) Run 2 – Population B

Figure 6.12: Success ratio against the expert for two single runs with migration incorpo-
rated into the gladiator system

6.10 Creating a Dynamic Enemy

The ability of the human memory to select relevant information implies that a person can
make a more meaningful decision given the circumstances at the time. This ability is also
something that is applicable to the TEMPO game, as the environment represented in the
game is a dynamic one, where each game has a randomized generation of environmental
variables. The game is made even more dynamic during the game-play, as each turn of play
the environmental variables change and players are given new resources.

By creating a memory retrieval function that allows the memory to be selected based
on the current circumstances in the game environment, we hypothesize that the players
developed will represent strategies that incorporate the environmental change, not just the
strategy of the opposition. To do this we introduce the concept of a dynamic rule base
as a coevolutionary opponent. This involves changing the current enemy used for fitness
evaluation, as the environment itself changes. The traditional way of coevolving against an

86

opposition requires taking two individuals, playing them against each other, and evaluating
the fitness from the outcome of the game. With a dynamic enemy we are playing a single
individual against a number of different individuals that change as the game itself changes.
By changing the enemy according to the current environmental scenario, we are creating
a dynamic enemy that changes its own rules accordingly. This is a more realistic scenario
to the way humans play games, and allows better adaptation to the dynamics of real-world
problems.

When a human recalls an event from long term memory, it is normally by relevance to
the current situation. This implies that there is some mechanism the brain uses to trigger
the appropriate memories. Mimicking this technique is difficult in our system, as the only
thing that changes according to the ‘current situation’ is the environment of each game.
To create a mechanism where the memory used is relevant to the current situation, there
actually needed to be a current situation. As mentioned before, the evaluation function
plays a set number of games against the opposition population and then more games against
the memory structures, with adjustments made to the fitness at the end of each game. Using
this technique there is no way to evaluate against the current situation during a single game.

To create a situation where the environmental changes could be used to trigger a relevant
rule from the memory, the game playing mechanism itself was re-evaluated. Instead of
playing all the years of the game against a single opposition and evaluating the outcome,
we could instead use different players whose rules were pertinent to the current situation
in the game and evaluate on the total outcome. This would create a dynamic enemy that
changes as the environment changes. This is an entirely new way of coevolving the TEMPO
players.

Additionally, as discussed in [57] it is common in coevolution to see groups or clusters
of individuals form that are focused on solving a sub-problem of the end goal. This is
particularly useful in our case as the different parts of the game can be broken up into sub
areas of strategy that deal with changes in pwar, budget, offensive, defensive and intelli-
gence. By including a clustered evaluation with the dynamic enemy, we hope to encourage
this clustering of sub-solutions to create a hierarchy of sub-problems that together form
a whole solution. The idea of clustering the populations of a coevolutionary system into
the different similar solutions was also investigated in [75], where similar strategies in the
populations were ‘packaged’ and evolution is on a package level as well as an individual
level. This allowed the fitness to be calculated at both an individual and package level, and
might be something worth investigating at a later date with our clusters.

The design of the triggering mechanism was based on the clustering of relevant infor-
mation. This meant that if a trigger for a particular situation came up, the cluster relating to

87

that situation could be called upon and an individual selected with relevant rules. The prob-
lem with this mechanism was the complexity involved with the amount of clusters needed
to represent each change in the environmental situation. To minimize this complexity, it
was decided to focus on the percentage of war change (pwar) scenario for this experiment,
and the memory was clustered on this single changing factor. The pwar is used to deter-
mine when war will break out. At the end of each year a random number is generated, and
if the number is smaller than the pwar, the game is over and the scores are calculated. This
‘race against time’ scenario is one of the main dynamics of the TEMPO environment, and
as a result is one of the larger influences on strategies.

To cluster the individuals five vectors are used, one for each of the membership func-
tions for pwar (very low, low, medium, high and very high). Each time an individual is
added to the memory, if it has any rules that use the pwar input, it is classified under the
relevant vector(s). The coevolutionary game-play was then modified to make use of these
vectors by changing the opposition as the pwar increased in the current game. For example,
at the beginning of the game the pwar input would be low, so the cluster for the pwar mem-
bership function low would be used to choose an opposition. Once the pwar value changed
to medium, then the med cluster would be selected, and so on. There were a number of
issues involved in this, such as what would happen for multiple triggers (i.e. the pwar is
very low to low), what if no rules are available for triggering, and what rule to select from
the vector if triggered.

To solve the scenario of multiple vectors triggered, a very simple mechanism was im-
plemented that involved selecting an individual from the first vector triggered, then giving
a percentage chance that the next triggered vector would be used instead. The chance was
dependent on the membership ratio of the pwar input, so the higher the membership in the
second membership function, the greater the chance that function would be used.

If no individuals could be found from the clusters for the current pwar, then the individ-
ual would be selected based on a linear time bias from the entire long term memory (LTM).
This mechanism still differed from the previous use of LTM, as the enemy was still being
changed during the game-play.

The issue of what rule to select from the cluster was similar to the issues dealt with pre-
viously, and so two mechanisms were tested. Initially the individual was chosen randomly
from the cluster, and then a time based linear probability distribution was applied. The time
based cluster distribution provided a slight improvement to the results, and was used for
further experimentation.

We were expecting average results from the clustered system for our experiments, as
the use of the pwar input to cluster the memory could potentially hamper the memory

88

functionality. Focusing only on pwar means a lot of other possibly better solutions are
ignored if they do not have the pwar input. This could then create a scenario where the
populations are evolving against weaker individuals. There was also an issue involving the
current alien expert, as by clustering by pwar, the alien expert was never being called upon
to evolve against. To counter this we introduced a second “expert” individual; the pwar

expert. As the expert was aimed at testing the pwar clusters, we derived a simple rule base
that used the strategy of: buy offensive weaponry while the chance of war (the pwar) is still
low, then start to build up defensive weapons when the chance of war gets higher. While the
strategy is very simple, it is one that is often used by human players and (when combined
with other strategies) can be quite effective. This expert was also made to be inserted into
the population, and to be used as the baseline measuring mechanism as with the previous
expert.

For this experiment we applied the clustering mechanism described to the long term
memory. The individuals were now evaluated with r1 = 20 games against the opposition,
followed by r2S = 10 games against the short term memory, and r2C = 10 games against
the clustered long term memory.

When we ran the clustered system using the same strategy as the previous experiments,
the results were lacking when compared to the normal short and long term memory mech-
anism. We thought that this might be caused by the fact that the current expert had no
reliance on pwar, and our clustered mechanism was tailored to adapt to pwar variation.
To test this we created the new pwar expert to test against as described. We then ran the
clustered mechanism again, this time replacing the static benchmarking expert and the alien
expert with the pwar expert. The clustered mechanism performed better against this expert,
and the results from this can be seen in figure 6.13.

For comparison purposes we then performed an experiment with the long term memory
set to the simple linear time based probability selection using the pwar expert. The results
from this can be seen in figure 6.14.

The clustered mechanism performed very differently to the normal long term memory
selection mechanism, with very large variations and a slower climb towards regularly beat-
ing the static expert. This slow trend to improve was accentuated by the large variations,
and was something we had not seen in prior experiments. The slow trend was something
that was partly expected, as the clustering mechanism may overlook better opponents from
memory to evolve against if they do not include a rule for pwar. Taking this into account,
it was interesting to see the increase towards better solutions towards the end of the genera-
tions. This is rather promising, and a future step in this direction is to incorporate the other
dynamic inputs into clusters, such as the budget and the weapon types and categories. The

89

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 6.13: Using the clustered memory mechanism against the pwar expert

variation itself was not expected to the degree seen, and reasons for this fluctuation are still
to be investigated. It is possible that the clustered memory largely contains very weak or
very strong rules due to only applying them by their pwar individuals against the expert,
and goes through phases of applying these.

Interestingly, when comparing the linear time probability results in figure 6.14 to the
same memory mechanism with the original expert instead of the pwar one as shown in
figure 6.8 (in section 6.6), it can be seen that initially the coevolutionary process takes
more time to improve against the baseline expert. In the long run however it performs
much better against this expert than against the old one. The individual runs against the
pwar expert showed large and consistent sequences of 90-100% won ratios against the
expert. The pwar expert appears to be very easy to beat consistently by the later solutions,
but works well against earlier solutions.

The clustered system presented in this research was the first step in creating a long term
memory that uses the changes in the environment to trigger appropriate coevolution. The
observations from the experiment displayed results that were very different from previous

90

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 6.14: Success ratio against the pwar expert using linear time probability long term
memory

experiments, with a highly varied result against the pwar expert. This was very interesting,
as it showed that on average there were variations that occurred drastically for all the runs.
This variation is likely caused by restriction to the pwar input, as many individuals from
memory (that may well be higher fitness individuals) are not chosen for evaluation against,
as they do not have any pwar fuzzy rules. This means that the fitness of the population
can rise as a result, and vice versa for the opposite scenario. This is something that needs
testing in future research, as more of the input classifications are added to the system.
Overall however, the clustered system improved in its rating against the pwar expert and
provided a very promising result.

The end goal of the clustered system is to have clusters for each of the inputs to the
fuzzy rules (e.g. budget, weapon category, type etc.), and then evaluate against a number
individuals from the different clusters that match with the current game scenario. By doing
this, we can also lead up to another goal, which is to incorporate a hierarchy to the game-

91

play. It is possible that it is better to have rules relating to weapon category (defence,
offence) before looking at type and subtype, so we could include a mechanism to evolve
more times against rules including the category followed by the type and so on. As a first
step in this goal, the clustered system performed very well, and the mechanism works with
interesting results.

6.11 Reassessment of the Alien Expert

The alien expert was used to test the effectiveness of the memory to retain and prompt
future generations, however it was never really tested in this capacity. This section gives
further details of the alien expert and its use, and introduces a strategy of evolving against
the expert.

Early research for this thesis showed that the memory mechanism did manage to im-
prove on the fitness against the static expert, but no further research was conducted into
whether the alien expert provided any assistance to this improvement by being in the mem-
ory. The research presented here investigates this matter further.

As discussed previously, the alien expert experiments involved inserting a simplistic
human-based expert individual into the coevolutionary process and seeing how it fared
against the other individuals. As was expected, a solution to beat the individual was soon
evolved, and the individual itself was disseminated through the future generations. The
alien expert was then used in the subsequent experiments to see how well the memory
worked in overcoming past strategies. The use of the alien expert in this capacity was
never tested however, and the effect the expert had on the evolutionary process needed
further investigation. To effectively test the alien expert, we have performed further tests
and experiments with the results presented here.

To test the usefulness of inserting the alien expert into the population at the beginning
of the evolution, a number of scenarios were put in place. All experiments involved running
the system using the short and long term memory mechanism with linear time distribution.
The first experiment was run with no alien expert included. We were expecting that the
results would show only a slight increase in the fitness against the static expert, as there
was no reward for beating it. In theory, as described in section 6.3, the alien expert should
prompt the populations to create solutions that perform well against the expert. This should
begin in the populations, and continue from the memory. Therefore, we were expecting the
alien expert experiment to outperform the one without an alien expert.

In addition to this, investigation was also conducted into the possibility of evaluating
against the expert each generation. Originally, the best individuals were played against the

92

static expert at the end of each generation for the benchmarking progress, but the fitness of
the individual was not updated to reflect the game-play. We hypothesized that by evolving
against the expert we should see a sharp incline in the fitness against the static expert, as
we were effectively training the individuals against the expert.

A tracking mechanism was put in place to tell when the alien expert was called upon
in the fitness evaluation process. This meant tagging the expert upon insertion into the
population, and any times it was inserted into the memory – from the first generation and
any subsequent generations when reused unchanged through elitism. Each time a tagged
individual was called upon from the memory to participate in the game-play for evaluation
it was recorded.

The first experiment was run with no alien expert inserted. The fitness was calculated
by playing r1 = 20 games against the opposition, followed by r2S = 10 games against the
short term memory and r2L = 10 games against the long term memory. The graph of the
won ratio against the expert can be seen in figure 6.15.

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 6.15: Success ratio against the expert with no alien expert

93

When compared with the results from figure 6.8 (the experiment with the same param-
eters as this one, but with the seeded alien expert), the results showed that the alien expert
stabilized the evolution with less fluctuations in the results. However, the fluctuations of
the experiment without any expert produced some better results in some of the peaks of
the evolutionary process. Also of interest, was the speed at which the coevolution was able
to regularly beat the expert. We were expecting the experiment without an alien expert
to show a slow increase against the expert, and a lot of variation with worse performance
overall than the alien expert experiment. What we found instead, was the memory by itself
quickly improved to beat the expert, even without any mechanism to know of the expert’s
existence.

This result led us to investigate whether the insertion of the alien expert into the popu-
lations may actually hinder the evolutionary process. As noted by Rosin and Belew [86],
having an initial opposition population that is hard to beat can stunt the evolution. The in-
dividuals will not fare well against the opposition, and there will be less variation to guide
the search. By inserting the alien expert into the population we are essentially adding an
individual that initially beats almost all the randomly generated individuals in the popula-
tions that it plays against (from the opposition population or from the memory). Without
the expert, the populations are free to search and improve without having their fitness de-
creased by being evaluated against the expert. This means that they are able to explore a
more diverse range of solutions, and create possibly better solutions against the expert that
are not specifically tailored to beat the expert.

As further testing, we directly evaluated the populations against the static expert. In-
stead of inserting the alien expert into the populations, we included an evaluation against
the expert each time the fitness was evaluated. We performed an experiment with this
method, with the same memory mechanism as previously, but with each individual being
played an additional game against the expert for fitness evaluation. As each individual plays
a minimum of 40 games for their fitness evaluation (r1 = 20, r2S = 10, r2L = 10), a single
game against the expert would not really affect the fitness. To counter this, we increased
the weighting of the game against the expert by a factor of 15% of the total games played.
The results of this experiment can be seen in figure 6.16.

The results showed even less variation than the results with an alien expert, and there
was also a lower won ratio when playing against the expert for benchmarking measurement.
This follows the previous hypothesis, that by evolving directly against the expert we are
hindering the evolutionary process. Our initial thought when developing the evaluation
against the expert mechanism was that we were effectively training the evolution against
the expert, and so the populations should increasingly become better against the expert.

94

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 6.16: Success ratio against the expert with individuals evaluated against the expert

Instead we found that by leaving the evolution to develop its own strategies to evaluate and
play against, there were far better results. By evaluating against the expert we are restricting
the variation of the populations and the memory.

As a final experiment, we included both the alien expert seeding, and the fitness evalu-
ation against the expert mechanism. The results from this can be seen in figure 6.17. This
shows again that the alien expert stabilizes the populations, with less variation seen than in
than in figure 6.16. When compared to figure 6.8 with the alien expert included, it can also
be seen that the evaluation against the expert decreases the average won ratio.

From the experiments above, we see that the best performing mechanism was when no
expert was included in the evolutionary process. Although the seeding of the alien expert
does stabilize the evolution results, the performance of the experiments with no expert
reached higher won ratios and performed better overall.

As an interesting observation, the stabilization occurring with the alien expert showed
the continued affect of the expert in the memory. This however, restricted the coevolution-

95

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 6.17: Success ratio against the expert with alien expert seeding and evaluation
against the expert

ary mechanism and the populations were not able to traverse the search space for solutions
that were stronger strategies. We hypothesize that this is due to the alien expert repeatedly
beating the early individuals and hence lowering their fitness and diversity overall. Then
when the populations evolved to overcome the expert, they had developed a set of solutions
and a memory affected by, and tailored to, the expert.

When the alien expert is left out of the evolutionary process, the populations are free
to develop a wide and varied set of solutions that can be more efficient at beating the
static expert in the long run. This is a very interesting observation, as it goes against what
the expected result was. It shows that the use of human knowledge inserted early into the
coevolutionary process does in fact hamper the result and not help to obtain better solutions.

96

6.12 Experiment Parameter Comparisons

A summary of the different experiments and the difference in parameters can be found table
1. The information depicted is as follows. The type of memory mechanism used is single
for the initial case, and then split into short and long, with the long replaced with gladiator
and clustered in latter experiments. The Probability Selection Distribution depicts the type
of distribution used to select an individual for game-play from the memory. The Game

Number shows the number of games each individual from each population must play to
calculate the fitness: r1 is the games played against the opposition, r2 is games against the
memory, r2S is games against the short term memory, r2L is games against the long term
memory and r2G is games against the gladiator long term memory, and r2C is games against
the clustered long term memory. The Memory Lengths show what size each of the memory
mechanisms are, where L is the single memory length, Ls is the short term memory length,
Ll is the long term memory length and Lg is the gladiator memory length. The Unique

field is a boolean field representing whether the memory applied uniqueness of individuals
or not. Finally, the Alien Expert field depicts if the populations were seeded with the alien
expert for the experiment.

Table 6.1: Summary of the experiments
Exp.(Section) Memory Prob. Game No. Memory Length Unique Alien

Select Expt.
Dist.

Baseline(6.3.1) ∅ N.A. r1 = 20 N.A. N.A. no
Memory(6.4) Single Uniform r1 = 20, L = ∞ yes yes

r2 = 20
Linear(6.4) Single Linear r1 = 20, L = ∞ yes yes

r2 = 20
Laplace(6.4) Single Laplace r1 = 20, L = ∞ yes yes

r2 = 20
Short & Long Term(6.6) Short, Linear r1 = 20, Ls = 10, yes yes

Long r2S = 10, Ll = ∞
r2L = 10

Unique(6.7) Short, Linear r1 = 20, Ls = 10, no yes
Long r2S = 10, Ll = ∞

r2L = 10
Gladiator(6.8) Short, Ranked r1 = 20, Ls = 10, yes yes

Gladiator r2S = 10, Lg = 1000
r2G = 10

Migration(6.9) Short, Ranked r1 = 20, Ls = 10, yes yes
Gladiator r2S = 10, Lg = 1000

r2G = 10
Clustered(6.10) Short, Linear r1 = 20, Ls = 10, yes no

Clustered r2S = 10, Ll = ∞
r2C = 10

Expert Tests(6.11) Short, Linear r1 = 20, Ls = 10, yes no
Long r2S = 10, Ll = ∞

r2L = 10

97

6.13 Conclusions and Further Work

The experimentation of memory in a coevolutionary system has shown that the short and
long term memory approach was beneficial, particularly when applying a structured long
term memory. We demonstrated that the sorting and selection mechanism for the memory
affects the usefulness of the memory, and that by including a specialized memory selection
mechanism represented by the short term memory, the system could make better use of its
memory.

The short term memory mechanism works like the human memory mechanism for
learning; it allows a person to overcome information overload and use the most useful and
recent memory rather than their large long term knowledge base. The long term memory
is still there for prompting historical memories and reminding the person of past successes
and mistakes, and allows the person to grow overall. We have attempted to replicate this
in the TEMPO system, allowing the system to have reminders of past strategies, while still
giving the best information for the current situation.

The inclusion of more than one selection mechanism from a memory based on long and
short term memory has many different areas that could still be investigated. The idea of an
even more biased memory selection, where the current situation could affect what strategies
from memory to play against, was investigated in the clustered experiment. However, more
work is required in this area. As mentioned in section 6.5, the long term memory in a
human is divided into explicit and implicit areas. It might be beneficial to try and find a
way to mimic this. In particular, this involves looking at the linking of relevant information
for retrieval from the long term memory. While we attempted this to some success with
the clustered mechanism, there remains a lot of room for improvement and investigation.
It might even be possible to include some mechanism of adaptation to the clusters using
some generic semantics to represent ‘social’ learning for the whole population.

The use of a ‘gladiator’ system for the long term memory worked well. The mechanism
created some very good results, and is worth future investigation. One possible area for
research is the ranking mechanism used. Currently a very simple stochastic mechanism is
used to rank the individuals, and it is likely that a better mechanism could be incorporated.

Another area that remains to be investigated, is to have an adaptive number of games
played against the memory dependent on the environment and the current stage of evolu-
tion. At the moment there are user defined parameters representing each set of games to be
played to get the fitness, including games against the opposition and the memory. It might
be that a better alternative would be to let the system itself decide what number of games
to play. To this end, investigation has begun into the use of a fitness threshold, where the

98

number of games played adjusts itself as the fitness variation increases or diminishes.
The use of memory with the TEMPO system has given rise to some very challenging

computer players. The individuals provide a much greater challenge to human players than
the individuals created without memory. However, the computer player produced is still
a static rule base that human players can adapt to given enough time. The major goal of
our research is to create a system where the individuals are evolving and adapting to beat
a particular human player during real-time game-play. The use of memory was the first
step in this research, and was necessary for the creation of the adaptive system discussed in
chapter 8.

Another deficiency that remained after the memory experiments was the area of intel-
ligence and counter intelligence. Unfortunately, the addition of memory did nothing to
improve the usage of intelligence by the computer players. Further investigation into why
intelligence was not being bought was needed. The next chapter describes the research
undertaken to this end, the changes made to the TEMPO game to incorporate intelligence,
and the interesting discoveries made in the process.

99

Chapter 7

Intelligence and Counter Intelligence

Strategic decision-making done in parallel with the opposition makes it difficult to predict
the opposition’s strategy. An important aspect in deciding a move is evaluating your op-
ponent’s past moves and using the evaluation to predict future movement. In the game of
TEMPO this is done through the purchase of intelligence, which gives you a relative view
of your opponent’s choices. The research presented here seeks to evaluate the way this in-
telligence is used in the current game, and present an alternative method of representation.
This alternate mechanism is then used in the coevolutionary system to obtain a computer
player that self-learns the importance of using opposition data in strategic decision-making.
The research presented here is partly from a paper published with Garrison Greenwood [7].

7.1 Introduction

The United States military is currently implementing the most comprehensive transforma-
tion of its forces since World War II. The goal is to improve the joint force warfighting
capabilities to meet current and future full spectrum requirements [30]. This new method-
ology, called Operational Sense and Respond Logistics (OS&RL), is based on the tenets
of adaptive systems. This has the underlying assumption that the military establishment,
and the threat environment under which the military operates, is inherently an adaptive
process [66].

The sense and respond (S&R) capability deals with an enterprise that is complex, adap-
tive and nonlinear. Sensing of operational needs in real-time, and providing response to
those needs within the time frame that meets commander’s intent, is critical to success of
the enterprise. Adaptation (and the speed of adaptation) in complex environments is the
most critical factor in meeting the objectives of the enterprise. Operations, logistics, and
intelligence aspects of military command must be integrated to coherently execute com-

100

mander’s intent.
Adaptation is essential to OS&RL. Under this new philosophy logistics can only be

effective if it adapts to an evolving commander’s intent and the current combat situation.
OS&RL supports the integration of operations, intelligence, and logistics through providing
the following capabilities:

• Support the concept of force capabilities management through continuous integration
and coordination of logistics capabilities with operations, intelligence, surveillance,
and reconnaissance functions.

• Synchronize logistics operations with commander’s intent, operations functions, and
intelligence, surveillance and reconnaissance (ISR) by maintaining and exploiting
total situation awareness based on: evolving commander’s intent; the strategic, oper-
ational, and tactical situation; the operational environment; and force capabilities.

• Anticipate force capability and logistics needs to proactively sustain the force and
alter initial conditions.

• Provide commanders with operations and sustainment options based on predictive
adaptive logistics.

• Implement commander’s intent, expressed in effects, missions, and tasks, in every
aspect of logistics, across the full range of military operations, and for the full set of
force capabilities.

The game of TEMPO has been used for many years as a tool for developing skills at
resource allocation in a war scenario. It is an iterative game, where at each turn you and
your opponent allocate individual budgets to cover a range of weapons and intelligence
categories unique for each player. At the end of the turn, you are given information about
the number of utilities you have left after the opposition’s corresponding utilities force
has countered yours. If you have bought intelligence (INTEL), then you also receive some
information about your opponent’s current utilities; if you bought counter-intelligence (CI),
you restrict the information your opponent receives.

Unfortunately, TEMPO currently does not handle INTEL or CI information in a very
realistic manner. TEMPO treats INTEL information as a boolean decision where you either
buy it or don’t buy it. This decision-making strategy does not match reality. Military
combat operations and logistic support operations always incorporate INTEL information
into the planning process, and use CI to help safeguard those operations. However, INTEL
and CI information can only affect plans if it is timely and digestible.

101

TEMPO also provides relatively useless information about the INTEL received from the
allocation of budget to it. For example, a TEMPO player could receive INTEL information
saying the opponent has “some equipment of weapon type B”. Such ambiguous information
is useless for logistic planning purposes and inadequate to properly train logisticians.

OS&RL is the wave of the future and logistic planners need training in its fundamentals.
TEMPO in its present form cannot accommodate OS&RL scenarios, primarily because of
the way INTEL and CI are implemented. Moreover, TEMPO has no current capability
to incorporate commander’s intent. It does however provide a framework for changing
battlefield scenarios, since the game iterates until war is declared.

The chapter is organized as follows. We begin by describing how INTEL and CI are
used in military strategic decision-making. We then describe our methodology and the
changes we made to TEMPO and the TEMPO computer system to improve INTEL and
CI information handling. Following this, we present our experimental results. Finally, we
outline our conclusions and future TEMPO modifications that will further support OS&RL
scenarios.

7.2 A Discussion on the Role of Intelligence

The following section elaborates on how intelligence (INTEL) and counter intelligence
(CI) are used in military planning. Although most discussions on these topics are from the
perspective of the battlefield commander, this research targets the logistics decision maker.

7.2.1 Intelligence (INTEL)

Intelligence provides logisticians with the requisite information needed to make informed
decisions about the allocation and distribution of resources required to support the battle-
field commander. Situational development is a key ingredient of an effective INTEL pro-
gram. Situational development is essentially a process for analysing information to help the
decision maker recognize and interpret enemy intentions, objectives, combat effectiveness,
and potential enemy courses of action [64, 65]. The decision maker can then ensure, sub-
ject to budget limitations, that the appropriate type and quantity of equipment is procured,
and sufficient resources are allocated to store, secure and maintain stockpiles under their
control.

Any information about the enemy should be fully integrated into planning decisions;
INTEL information serves as a constraint on other logistics decisions. For example, it is
unwise to buy a particular type of weapon if INTEL information indicates enemy combat

102

units have weapons that effectively neutralize it.
Intelligence operations include five basic functions: plan, prepare, collect, process and

produce. The first four functions are not discussed in depth here, because they are fully
discussed elsewhere [65], and because they are performed by INTEL gathering agencies
rather than logisticians. The last function however is worthwhile discussing.

The produce step involves evaluating, analysing, interpreting and combining informa-
tion and INTEL into a form that supports logistic decisions. Intelligence information from
single sources should never be taken at face value, the more corroboration the more believ-
able the INTEL.

7.2.2 Counter Intelligence (CI)

Counter intelligence counters or neutralizes intelligence collection efforts by others. CI in-
cludes all actions taken to detect, identify, exploit, and neutralize the multidiscipline INTEL
activities of friends, competitors, opponents, adversaries, and enemies [65]. Countermea-
sures are any actions taken to counteract attempts by others to obtain INTEL.

Either passive or proactive countermeasures can be used to thwart INTEL attempts, of-
ten with a mixture. Passive countermeasures include communications security (encrypting
data), computer security (firewalls), physical security (barriers) and camouflage. Proactive
countermeasures use deliberate deception to hide one’s true intentions by promulgating,
misleading, or wrong information.

7.3 Intelligence and Counter Intelligence in the TEMPO
Military Planning Game

The game of TEMPO is divided into categories of decisions, with the top level consisting
of allocations to weapons or INTEL. Most of the research presented so far has focused on
analysing and improving the way the computer player created and used rules for allocating
budget to the weaponry. The area of intelligence has been largely left untouched, thus this
chapter focuses on this area.

The original version of TEMPO divided the allocation of INTEL resources into three
categories: offensive INTEL, defensive INTEL and CI. For each category the player had
the option to either buy INTEL at the set price, or go without in that category (a boolean
decision). The offensive and defensive categories were used to provide INTEL on what
the opposition did in the previous year in the specified category. If a player purchases
offensive INTEL in one year, then the next year information on the opposition’s total net

103

OA and OB utils for the previous year is given. However, if the opposition buys CI, and
the player purchases INTEL, then the player is only given minimal information about the
opposition’s utils.

There are three combinations for INTEL to be received. If a player purchases INTEL
and the opposition have not bought CI, then the player will receive the full numeric value of
the opposition’s previous year’s results. If the player purchases INTEL and the opposition
purchases CI, then the player is only told that utils for the respective intelligence category
either exist or do not exist. If the player does not purchase INTEL then no information is
given on the opposition’s results, and the resulting value is unknown.

The coevolved system currently evolved intelligence rules, but was actively selecting
rules that were not being triggered to purchase INTEL. As a result, the rules being devel-
oped were overly generalized and purchasing the weapons blind to the opposition’s moves.

7.3.1 Deficiencies of Intelligence in TEMPO

It is unclear why TEMPO makes not buying intelligence even an option. The very idea
that intelligence activities might not be funded not only lacks common sense, but it is
foolhardy and dangerous. No warfighter would even consider implementing some course
of action without getting as much information as possible about the enemy’s capabilities
and intentions. To do otherwise puts men and equipment unnecessarily at risk.

Logistic planning is no different. Successful offensive and defence operations de-
mand an efficacious allocation of logistic resources, i.e. the minimum amount of resources
that are correctly configured and placed at the right place, at the right time, to satisfy
warfighter’s requirements. Intelligence helps to formulate initial logistic plans and it pro-
vides the feedback needed to determine if already existing plans are likely to be effective
when executed. Without intelligence it is impossible to adapt logistic resource allocations
as the strategic and/or tactical situation develops. Military planners, regardless if they are
warfighters or logistic planners, never commit resources or execute operations in the dark.
Hence, in TEMPO players should always buy INTEL, the only question is how much.

Of course any offensive or defensive operation will not be successful if enemy forces
know everything about the operational plan, as they could muster effective countermea-
sures. With respect to logistic planning, if the enemy acquires detailed information about
planned purchases, size and operational status of stockpiled equipment, and future distribu-
tion plans, they could gain valuable clues about warfighter’s intentions. CI activities deny
the enemy information. Therefore, the need to purchase INTEL also applies to CI.

If all TEMPO players buy INTEL and CI then the default position is that players get

104

some information about what their opponent has. Unfortunately past attempts to exploit
that information and allow it to influence future logistic planning have been unsuccessful.
In part, that is because just knowing something without knowing all details is often not that
useful. For example, if a player knows the opponent is buying offensive weapon type B,
then it would be wise to purchase defensive weapon type B. However, without knowing
how many offensive weapons the opponent has, it is impossible to know how many defen-
sive weapons to purchase and decisions degenerate into mere guesses. Indeed, TEMPO is
purposely designed not to reward over-purchasing to counteract an opponent’s strategy.

The commander’s intent should be supported as the tactical or strategic situation evolves.
To achieve this goal means logistic planning rules derived from static fuzzy rule bases
should be abandoned in favour of rules derived from continuously evolving fuzzy rule
bases, which are better able to anticipate logistic requirements. Intelligent software agents,
cognitive decision support, and historical knowledge bases are needed to provide the neces-
sary adaptability [66]. Flexibility is now paramount and far preferable to locally optimized
logistics plans.

The way INTEL is handled in TEMPO should be changed. Partial information, cur-
rently stated as “exists” cannot be effectively incorporated into fuzzy rule antecedents. One
possible improvement is to provide quantified information about an opponent rather than
the current three crisp values (no information, some information or 100% accurate informa-
tion). Tying their effectiveness in blocking information disclosure to the amount purchased
might also fuzzify CI expenditures. The more CI purchased, the better information transfer
is denied.

7.4 Applying a more Realistic Mechanism for INTEL and
CI

For the purposes of this research we decided to break the remodelling of INTEL up into
two steps. The first step is to implement the purchase of offensive and defensive INTEL,
and the second step – the purchasing of CI. The following section gives a description of the
issues with each step, and the implementation choices made.

7.4.1 Redesigning Offensive and Defensive Intelligence

The redesigning of the offensive and defensive INTEL involved two areas: how should a
player be able to allocate resources to the INTEL, and how the fuzzy rule system should be
adjusted to integrate these changes.

105

To make the purchasing of INTEL more realistic, we wanted to develop a system that
would create a direct correspondence between the amount of INTEL bought and the amount
of information received. There are many ways to do this, but we wanted something that
would be complex enough to represent a more realistic way of buying INTEL, and yet
simplistic enough to give the coevolutionary system a chance of discovering meaningful
rules. We achieved the complexity by breaking the purchase of INTEL down further into
types (e.g. Offensive A), and allowing the player to purchase a percentage of the total
cost. For example, the player can allocate budget to Offensive INTEL A (OIA) up to a
certain amount. If there is a maximum OIA expenditure of 400, and the player chooses to
allocate 200 out of the budget to this resource, then the player has purchased 50% of OIA.
To maintain simplicity we only decomposed INTEL into Offensive and Defensive INTEL
types A and B (OIA, OIB, DIA, DIB). We then gave each of the four areas a different
maximum budget to spend. It is then up to the player to decide how much of that INTEL
to purchase.

This new mechanism means the player can directly influence how much INTEL re-
ceived in a category. For example, the player may be focusing his or her attention on
Offensive A weapons, and chooses to buy a large percent of OIA, and a smaller percent (or
even 0%) of INTEL in another area. Therefore, the budget allocations for the four INTEL
areas require new allocation strategies by the player.

The result of buying a percentage of the INTEL in these categories is data correspond-
ing to the opposition’s total utilities in the area the purchase has been made. In addition, the
previous year’s INTEL bought is also displayed to the player, to help in analysing the in-
formation given for the opposition. These changes can be seen in figure 7.1, which depicts
an example of what a year’s game-play scenario will be.

The percentage of information bought leads on to one of the major decisions in this
chapter: how to create the correspondence between the allocated budget and the informa-
tion bought. One way is with a direct percentage translation. For example, if the player
bought 100% of OIA, and the opposition has 500 OA utilities, then the player is given the
full information of 500 opposition utilities. If the player only bought 80% however, then
he or she is told the opposition has 400 utilities, and so on. The problem with this direct
mapping method, is the obvious inference that is allowed. The player can directly infer how
much the opposition actually has by what percentage was bought. This issue of inference
made it difficult to decide what information to give the player, and eventually we decided
to create a probability distribution that would be influenced by the percentage of INTEL
bought. This is discussed further in the section 7.4.3.

To allow the coevolution to use the new values, we needed to extend the INTEL rules

106

Figure 7.1: Example screen of a year’s game-play with the new inputs and data

to include the new input data as described above, and change the way the INTEL budget
is allocated. Previously an evolved cut-off threshold was used, where if the INTEL rule
base normalized fuzzy-AND product is greater than the threshold, the INTEL is bought,
otherwise not. To make the changes described above, the budget distribution was changed
to the same mechanism used for the weapons; for each weapon the rules are examined,
and the weapon is allocated a percentage of the budget corresponding to the amount of
rules triggered and the strength of the rule outcome. The new INTEL budget is distributed
in the same way, with each of the INTEL categories being allocated a ratio of the budget
dependent on the triggered rules.

7.4.2 Effects on Counter Intelligence

The second area of investigation is that of CI, and the changes made for the INTEL system
directly affects how CI works. Like the old INTEL system, the CI is a boolean decision
of buy or don’t buy. However, the same reasoning applies to how CI works as to INTEL.
For each weapon category being developed and maintained by an opponent, the opponent
also has mechanisms in place to stop or skew information on the INTEL getting out. The
amount of resources spent on CI is usually directly proportional to its use by the opponent,
and/or the strategies the opponent has in play. Regardless, the player should have the
decision-making abilities available to change the amount being spent.

To allow the player to assign preventative CI, we mimic the way INTEL has been
changed as described in section 7.4.1. Each weapon category/type combination has its

107

own allocation for CI. We decided to assign the same amount of budget into CI as the op-
position does for their intelligence, however we should note that this might not be the most
effective way to assign the cost for CI.

When a player purchases CI, the probability distribution standard deviation used to
determine what value the opposition gets relative to the utils the player has bought, is
spread by the additional percentage of CI bought. This is explained further in section 7.4.3.

7.4.3 Implementation Methods Used

As discussed in section 7.4.1, we decided to implement the way INTEL information is
mapped using a probability distribution. Our implementation allocates each intelligence
category (OIA, OIB, DIA, and DIB) its own probability density function (PDF). We de-
cided on a normal distribution because it has several features that nicely capture the relative
roles of INTEL and CI.

The density function for a normal distribution has an adjustable mean value, which can
be set to the true value of the enemy utils for a particular weapon type. For example, if
the true enemy force expenditures on weapons system A is 150 utils, then the OIA PDF
has a mean value of 150. We are then able to use the standard deviation to change the
distribution of what information is given to the opposition. From the previous example
where the enemy force is 150 utils, if the player purchases 100% of OIA, he or she then
receive the exact information (presuming no CI has been bought). If however, the player
only purchases 80%, then the spread of the distribution is increased and the chances of
receiving the exact value of 150 become smaller. If a player purchases 0% of the INTEL,
he or she then receives the value unknown, to differentiate from an enemy utils value of 0.

The standard deviation for the PDF is calculated using the mean (the enemy value),
with the percentage of INTEL bought used to determine the sample size. We then use the
Box-Muller method (as described in [69, p. 507]) to retrieve a random number selected
from the distribution, which is then mapped to the value given to the player.

The above process is depicted in figure 7.2, where we can see the curve changing as
the percentage of INTEL bought decreases. The figure depicts the mean at 350 utils, with
a maximum enemy utils of 800. The blue curve represents 90% of INTEL bought, the red
is 80% and the green is 50%.

As mentioned in section 7.4.1, the amount of INTEL bought in a particular category
directly relates to the reliability of the enemy information given. Therefore, it is necessary
to display the amounts bought for the previous year in the current year’s information, so
the player has all the information necessary for decision-making.

108

Figure 7.2: Example probability density function used for INTEL.

The standard deviation can also be used for CI to create uncertainty about the received
INTEL information. The more CI bought by the enemy player, the bigger the deviation
becomes. Let CP

I be the INTEL bought by the player and CO
CI be the CI bought by the

opposition. We are interested in the ratio (assuming some INTEL has been bought)

σ =
CO

CI

CP
I

(7.1)

and use this ratio as the standard deviation for the INTEL PDF. This type of standard devi-
ation formula encapsulates the trade-off between INTEL and CI spending. The greater the
PDF spread, the greater the uncertainty in the received INTEL information. For instance, if
the enemy forces spend more on CI than the friendly forces do on INTEL, then we can ex-
pect the INTEL activities do not produce much meaningful information. The INTEL efforts
cannot break through the enemy’s CI barriers. The opposite effect occurs if friendly force
INTEL expenditures exceed the enemy’s CI expenditures. Our choice for a standard devi-
ation formula increases the PDF spread whenever CI expenditures are greater than INTEL
expenditures, which results in less precise information, and decreases the spread whenever
INTEL expenditures are greater than the enemy’s CI expenditures.

The addition of CI to this mechanism is intuitively simple. In addition to purchasing
INTEL, the players also have the opportunity to purchase CI in the same categories as
the INTEL available, and with the same costs as what the opposition has available to pur-
chase INTEL. When a player purchases INTEL, the PDF is determined as described above.
When the opposition purchases CI, this then affects the PDF by increasing the distribution.

109

For example, if a player purchases 80% of OIA, and the opposition purchases 40% of CI
for OIA, then the spread of the PDF generated to obtain the opposition’s OA data should
be further increased relative to the amount of CI bought. The way to actually apply this
however is more complicated.

Currently, with no CI being used, the function used to determine the distribution range is
simply 100%−the INTEL%. Thus, when the player purchases 80% INTEL, the distribution
range becomes 20%, and the chance of getting the exact opposition utils is relatively high.
Now we wanted to change the function to incorporate CI. One way investigated was to
directly apply the CI as is, so if the enemy purchases CI, simply add the CI amount to the
distribution (with a 100% range cutoff). In the above example, this would give an original
distribution range of 100%−80% = 20% (a relatively small range and likely to give a value
close to the actual enemy utils), and an adjusted distribution of (100%−80%)+40% = 60%

(a much larger range, and less likely to give a value close to the enemy utils). This is not
very meaningful, as it effectively cancels out any INTEL purchase made that is of equal or
less value, and greatly decreases larger INTEL values. This was deemed too great a penalty
to the purchase of INTEL.

Investigation was taken into a function that could be used to integrate CI with INTEL
meaningfully. The function was developed so that f(INTEL,CI) would give the range
to apply to the PDF. The function f(p, q) is shown below, where INTEL is represented as
p and CI as q, both in the range [0, 1]. This function takes into account the addition of the
CI to the PDF distribution range created by the INTEL (represented as (1 − p)), but also
incorporates the average of the two values.

f(p, q) = (1− p) + (1 + q)
(

pq

2

)
(7.2)

Some example values applied for the function and the original (1− p) function can be
seen in table 7.1. This table depicts the trends over a range of possible values.

To incorporate the CI component for the individuals, we added a third rule base for
generating CI based rules. This meant that there were now independent rule bases for
weapon, INTEL and CI rules. The CI rule base was given the same input parameters as the
INTEL rule base, and functioned in the same way.

To investigate the effect of incorporating CI into the system, we ran experiments with
and without the CI included in the system. The next section describes the experiments run
to investigate the addition of INTEL, followed by the addition of CI.

110

Table 7.1: Example values and function results
p q f(p) = (1− p) f(p, q) =

(1− p) + (1 + q)
(

pq
2

)

1 0 0 0
1 0.25 0 0.16
1 0.5 0 0.38
1 0.75 0 0.66
1 1 0 1

0 1 1 1
0.25 1 0.75 1
0.5 1 0.5 1
0.75 1 0.25 1

1 1 0 1

0.1 0.9 0.9 0.99
0.25 0.75 0.75 0.91
0.5 0.5 0.5 0.69
0.75 0.25 0.25 0.37

0 0 1 1
0.1 0.1 0.9 0.91
0.25 0.25 0.75 0.79
0.5 0.5 0.5 0.69
0.75 0.75 0.25 0.74
0.9 0.9 0.1 0.87

7.5 Experiments and Results

Each experiment was conducted for ten separate runs, all with the same environmental and
evolutionary configuration. The system was run each time for 10,000 generations with a
population size of 100 for both populations. Later experiments with CI have 50,000 gener-
ations, but all other parameters are the same. The coevolution is performed as previously,
using the short and long term memory selection distribution as described in section 6.6,
with the same evolution parameters.

The results show the won ratio against the expert, measured as the average over 100
games with the best individual from the population (A or B) for the generation. The y axis
displays the average won ratio over the ten runs. The x axis displays the generation number.
Additionally, the results are also shown with the Standard Deviation (SD) range. The SD
results have been smoothed using a Bezier curves function to accentuate the changes.

7.5.1 Experiments with the new INTEL Mechanism

The changes to INTEL in the TEMPO game were done for two purposes: to present a more
realistic game-play, and to try and prompt the evolved individuals into using the INTEL to
make their decisions. Previously, although rules regarding INTEL were being evolved, the
evolved rules were rarely being used to purchase any INTEL, and were essentially useless.
By including a more realistic way of getting information from the enemy, we were hoping

111

the evolutionary system would make use of this.
Our first experiment involved implementing the INTEL changes described in section

7.4.3, and analysing the rules and the purchases made from the rules. It was immediately
apparent that the rules being evolved were now buying INTEL, but still nowhere near reg-
ularly. It appeared that the rules that bought INTEL were largely disregarded by the evolu-
tion, as the INTEL bought was not being used by the weapon rules being evolved. Instead
the weapon rules were being evolved to be generic rules that bought the most weapons for
a given situation regardless of what the enemy was doing.

To give the evolutionary process some encouragement to use the INTEL rules, we de-
cided to implement the following changes. First, we made each individual purchase the
full INTEL for each category for the first iteration of the game. This was to encourage the
weapon rules to be developed using this information. We then lowered the cost of buying
the INTEL, as we reasoned the system was deliberately avoiding the ‘useless’ INTEL costs
and instead focusing on just buying the weapons.

The last change made was to the fitness function. As it was, the fitness was rewarding
the rules for purchasing weapons only, as it was calculated using the total net utilities left at
the end of each game. This meant that although we as humans can see a direct correlation
with the importance of buying INTEL, the evolutionary system was not picking up on this
and was instead focusing on rules that were buying the most weapons – regardless of what
the enemy was doing. To try and encourage the use of INTEL, we added a reward to the
fitness for each used INTEL rule created.

The results given from the above changes gave an increase in the number of INTEL
rules and the corresponding INTEL bought. However, after analysing the outcome of some
of the results, it appeared that the INTEL being bought was still not being used by the
weapon rules being evolved. There was no coordination between the evolution of the two
sets of rules, even after 10,000 generations. Hence, we wanted to test the importance of
using INTEL in the rules, and developed a rudimentary expert that would play a strategy
using rules that take advantage of the INTEL bought. The rules were as follows:

RULE 1:
if [EnemyOA IS Very High]
[Category IS Defensive]
[Type IS A]
then [Evaluation IS Very High]

RULE 2:
if [EnemyOA IS High]
[Category IS Defensive]

112

[Type IS A]
then [Evaluation IS High]

RULE 3:
if [EnemyOA IS Med]
[Category IS Defensive]
[Type IS A]
then [Evaluation IS Med]

and the same for low and very low. Then for EnemyDA:
RULE 6:

if [EnemyDA IS Very Low]
[Category IS Offensive]
[Type IS A]
then [Evaluation IS Very High]

RULE 7:
if [EnemyDA IS Low]
[Category IS Offensive]
[Type IS A]
then [Evaluation IS High]

and so on, with the same rules again for Type B.

The basic strategy behind these rules was to directly counter whatever the opposition were
doing. If the opposition is buying up in offensive weapons in a particular type, then buy
defensive weapons in the same type to counter this activity. If the opposition is buying
lots of defensive weapons of a category/type, then do not waste money by buying offensive
weapons in this type (as these are countered by the defensive weapons). However, if the
opposition has low defences in a particular type, then buy up offensive weapons of this
type.

This expert was then placed into the evolutionary process to see how it would fare. It
showed a distinct dominance in the evolution, and some of its traits (sections of the rules)
could still be seen in most runs even after thousands of generations. This showed us that
the use of INTEL was important when developing rules through the coevolutionary process.
We decided to use the expert as a benchmarking measurement and performed the previous
experiments mentioned again, measuring against this expert.

The results of running the system against the expert as a benchmark (and with the expert
still inserted in the populations) can be seen in figure 7.3.

The results showed that even after 10,000 generations, almost every run had the best

113

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 7.3: Success ratio against the ‘intelligent’ expert with same expert inserted in pop-
ulations

individual still buying a large percentage of INTEL, and actually using it to buy weapons.
Analysing the rules developed is very interesting, as the rule bases that are successful

against the expert seem to have a strategy of focusing on one aspect of the allocation. For
example, one of the individuals that won 70% of its games against the expert focused only
on weapons of type B. Of the ten INTEL rules evolved, six were regarding type B, with
only two rules (that were never triggered) for type A, and another two generic rules. The
weapon rule base then focused mainly on weapons of type B, often taking into account the
INTEL received. For example following are the first three rules from the weapon rule base
for the individual:

RULE 1:
if [Category IS Offensive]
[Type IS B]
then[Evaluation IS high]

114

RULE 2:
if [PWar IS Low]
[Budget IS Very Low]
[SUBTYPE IS 2]
[Inventory IS Low]
[MaxAcquisitonUnits IS Very High]
[Utils IS Medium]
[UtilsPerAcquisitionCost IS Medium]
[YearAvailable IS Medium]
[EnemyOffUtilsB IS Very Low]
[EnemyDefUtilsB IS Very Low]
then [Evaluation IS medium]

RULE 3:
if [PWar IS High]
[Budget IS High]
[OperationCost IS Very High]
[UtilsPerOperationCost IS Low]
[YearAvailable IS Very High]
[EnemyOffUtilsB ISLow]
then [Evaluation IS very high]

We also performed the same run without the expert inserted into the populations. These
results can be seen in figure 7.4, and show the coevolutionary system performs quite well
against the expert. The rules being evolved also show that the majority of best individuals
were actually purchasing and using a large degree of INTEL.

We measured the new system of INTEL against the very simple utils/operation cost
expert used in the previous experiments. The results of the new system against the expert
(without the new expert inserted into the populations) can be seen in figure 7.5. Previously,
the won ratio for the system (using the Short and Long Term memory mechanism) against
the old expert had an average of around 60%. We can see here that the system has achieved
greater results with the redesigned INTEL.

The last experiment performed was to attempt a stronger correlation between the weapon
and INTEL rule base. We wanted to reward weapon rules that bought weapons using infor-
mation provided by the INTEL rules. To do this, we separated the fitness function into: the
fitness for the INTEL rule base, and the fitness for the weapons. The fitness for the INTEL
rule base included the total INTEL bought by an individual, and an added reward for when
the INTEL bought was used to purchase a weapon by the weapon rule base. The weapon

115

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 7.4: Success ratio against the ‘intelligent’ expert with no expert inserted into the
populations

fitness was adjusted to reward each time a weapon was bought. These finesses were then
combined and added to the total fitness of the individual – calculated as the won ratio over
all games played.

The results of this experiment against the expert can be seen in figure 7.6. The results
show a slight overall improvement in the performance against the ‘intelligent’ benchmark-
ing expert. The individual runs using the new fitness function showed more individuals
that were not buying INTEL than in previous experiments. However, of the runs where the
leading individuals were buying INTEL, these individuals were performing much better
against the static expert then previously.

Figure 7.7 shows the same experiment re-run without the expert inserted into the popu-
lations. Once again we can see a slight improvement in the success ratio against the expert.

116

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 7.5: Success ratio against the old expert with no expert inserted into the populations

7.5.2 Addition of Counter Intelligence

The next step in the experiment was to assess the CI as described in section 7.4.3. The
experiments were performed by running the same system as for the INTEL experiments.
Each experiment had the same evolutionary parameters, and the system was run each time
for 50,000 generations unless otherwise noted.

This section contains results graphs that are slightly different from previous experi-
ments. Both populations are plotted on the same graph, so that differences in evolution
can be easily seen. As mentioned previously, the experiments were run 10 times, and the
average of the runs for each population was calculated for plotting purposes. For the graphs
in this section, this average was smoothed using the Bezier curves function to approximate
the data trend.

For the first experiment, we wanted to observe the impact of including the CI compo-
nent. To truly observe the difference, we ran the coevolution with one population allowed

117

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 7.6: Success ratio against the ‘intelligent’ expert with new fitness function with the
expert inserted into the population

development of CI rules, and the other population restricted to weapon and INTEL rules
only. The baseline was measured with the old expert, and the results can be seen in figure
7.8, with figure 7.9 displaying the populations on the same graph.

The results show that the addition of CI to the system did not have much further impact
from the INTEL implementation. However, we noted that the rules being developed were
not purchasing much INTEL or CI. To investigate this further, we performed the experiment
again, but this time having population A with no INTEL or CI rules, and population B with
only INTEL rules. These results can be seen in figure 7.10, with figure7.11 showing both
populations on the same graph.

The same trends in results were seen against the ‘intelligent’ expert. These results
proved very interesting, as the population with no INTEL or CI rules (popA) dominated
over the population with INTEL rules (popB). It would appear that the addition of INTEL
rules hampered the system somewhat, but the further addition of CI did not create addi-

118

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 7.7: Success ratio against the ‘intelligent’ expert with new fitness function without
the expert inserted into the population

tional drag, which meant that our first instinctive hypothesis that the extra rule bases were
affecting the evolution was incorrect. To investigate the reasons for this, we devised two
hypotheses. One was that the additional INTEL rules were causing the fitness of the indi-
viduals to be lowered due to the mechanism we used to apply the Ockham’s razor principle.
The second was the cost of purchasing INTEL was deemed an unnecessary hindrance for
the coevolutionary system.

Changing the way we applied the Ockham’s razor principle to the INTEL rule base
tested the first hypothesis. Each individual has three rules bases, one each for the weapon,
INTEL and CI rules. Each of these rule bases then have the Ockham’s razor principle
applied to them, penalizing the fitness by the number of rules and inputs used. We changed
this to allow the first five rules in the INTEL rule base to exist without penalty. The same
experiment was then run again, but with this new mechanism in place. The results showing
the bezier smoothed averages for both populations can be seen in figure 7.12, with both

119

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 7.8: Success ratio with population A only allowed weapon and INTEL rules, and
population B also allowed CI rules, measured against the old baseline expert

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

W
on

 R
at

io

Generations

Population A
Population B

Figure 7.9: Success ratio with population A only allowed weapon and INTEL rules, and
population B also allowed CI rules, measured against the old baseline expert.

120

(a) Population A (b) Population B

(c) Population A (d) Population B

Figure 7.10: Success ratio with population A only allowed weapon rules, and population B
also allowed INTEL rules, measured against the old baseline expert

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

W
on

 R
at

io

Generations

Population A
Population B

Figure 7.11: Success ratio for both populations with population A only allowed weapon
rules, and population B also allowed INTEL rules, measured against the old baseline expert

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

W
on

 R
at

io

Generations

Population A
Population B

(a) vs. old expert

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

W
on

 R
at

io

Generations

Population A
Population B

(b) vs. ‘intelligent’ expert

Figure 7.12: Success ratio for both populations with no penalty to the first five INTEL rules.
Population A only allowed weapon rules, and population B also allowed INTEL rules.

experiments shown. The mean and standard deviation results for each population in both
experiments can be seen in figure 7.13.

Once again, the results showed that when using the old static expert, the population
without INTEL or CI (popA) dominated over the population with INTEL rules (popB).
However, the results against the ‘intelligent’ static expert were different, with a much closer
average. It would appear that against the baseline that used INTEL rules to decide on
strategy, population B was able to keep up with population A once the rule penalty was
restricted.

The next experiment was performed to test the second hypothesis, that the cost of the
INTEL played a part in the dominance of the population without INTEL rules. It was
thought that the coevolutionary system was trying to find a good strategy by relying only
on the weapons, regardless of what the opposition was doing. The purchase of INTEL
just reduced the amount of budget that could be spent on weapons, and after all, it is the
weapons that are needed to win the game. To test this, we dropped the price of the IN-
TEL purchases. Previously the starting cost for each of the categories of INTEL had been
between 10-50 (with a starting budget of about 8,000). This cost then grew an average of
0.05% for each year of game-play (as did the budget). For this experiment we dropped all
starting costs for the INTEL down to 10, and the growth to 0.03. We then ran experiments
to test the hypothesis. The results of these can be seen in figure 7.14, showing both popula-
tions in the same graph for each experiment. The mean and standard deviation results for all
populations can be seen in figure 7.14 These results depict two different experiments, both
against the ‘intelligent’ expert. The first experiment had population A allowed no INTEL
or CI, and population B allowed INTEL. The second experiment then depicts population A

122

(a) Population A vs. old expert (b) Population B vs. old expert

(c) Population A vs. ‘intelligent’ expert (d) Population B vs. ‘intelligent’ expert

Figure 7.13: Mean and standard deviation for each population with no penalty to the first
five INTEL rules. Population A only allowed weapon rules, and population B also allowed
INTEL rules.

allowed INTEL, and population B allowed INTEL and CI.
The effect of lowering the cost for the experiment in figure 7.14(a) depicts a slight im-

provement in the use of intelligence. The results from figure 7.14(b) also show a definitive
difference. This is also witnessed when looking into the individual rules being evolved, as
the majority of rules in population B for the second experiment (b) are using both INTEL
and CI effectively. While previously population A had a very slight dominance in experi-
ments run, both populations are now equal in ability. This indicated that our hypothesis that
the coevolutionary system deemed the INTEL unnecessary was true, as results improved
once costs were dropped.

123

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

W
on

 R
at

io

Generations

Population A
Population B

(a) PopA no INTEL or CI, PopB INTEL no CI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

W
on

 R
at

io

Generations

Population A
Population B

(b) PopA INTEL no CI, PopB INTEL and CI

Figure 7.14: Success ratio for the experiments with lowered INTEL costs, against the ‘in-
telligent’ expert

(a) Population A with no INTEL or CI (b) Population B with INTEL and no CI

(c) Population A with INTEL and no CI (d) Population B with INTEL and CI

Figure 7.15: Success ratio for the experiments with lowered INTEL costs, against the ‘in-
telligent’ expert

124

7.6 Conclusions and Future Work

Our experiments have shown that it is difficult to prompt the evolutionary process to ap-
preciate the value of knowing what your opponent is doing. It takes the easy route of
finding solutions that work without needing the intelligence. Due to it being a coevolu-
tionary approach, it rarely needs to overcome an enemy that effectively uses intelligence.
With the changes made in this research however, we have made improvements in the use of
intelligence by the system, and have succeeded in developing a coevolutionary system that
evolves rules that now take into account the enemy’s movements.

By incorporating our “INTEL” expert into the system, we determined that an enemy
that does effectively use the intelligence dominates the other individuals. Therefore, for an
effective individual to be developed from the coevolutionary process, it needs to develop
mechanisms to use the INTEL effectively. We have performed a number of different exper-
iments to activate the coevolutionary process to use INTEL, and have had some success in
doing so. There is still a degree for improvement however, and further ways of encouraging
the individuals to make use of the intelligence they are purchasing should be examined.

Lastly, TEMPO requires several modifications before it can support S&R training. Lo-
gisticians must now prepare responsive and adaptive logistic support plans to meet the
commander’s intent [66]. One challenge is to modify the fuzzy rules, and their evolution,
to specifically support the commander’s intent. Something that TEMPO currently cannot
do. The first step in this process is to set the initial stockage levels, in terms of type and
quantity of equipment to support the commander’s initial mission. Fuzzy rules must adapt
as needed to support changes in the commander’s intent as the mission evolves prior to the
start of war. INTEL information plays a key role here as well. Indeed, some fuzzy rules
may be purged if the commander’s intent changes or INTEL information renders rules use-
less. Cognitive decision support tools must be also be designed to show risk and to help
managers develop different logistic courses of action, especially in support of predicted or
anticipated logistic support needs. Finally, fuzzy rules must be initialized and evolved in
ways that exploits the logistics knowledge base and lessons learned.

We have made some very important steps in improving the INTEL and CI for the
TEMPO game, and have had success doing so. However, for the game and computer player
to be truly challenging for strategy creation in this area, more work is needed.

The next chapter provides the finale for our research. We combined the previous imple-
mentation mechanisms, into developing a system that adapts to a single human player. We
describe this system, and the user study tests performed with it.

125

Chapter 8

Adapting to Human game-play

No matter how good a computer player is, given enough time human players may learn to
adapt to the strategy used, and routinely defeat it. A challenging task is to mimic this human
ability, and create a computer player that can adapt to its opposition’s strategy. Having such
a computer player provides a challenge that is ongoing. Additionally, a computer player
that adapts specifically to an individual human provides a more personal and tailored game-
play experience. To address this need we have investigated the creation of such a computer
player. By creating a computer player that changes its strategy with influence from the
human strategy, we have shown that the holy grail of gaming – an individually tailored
gaming experience, is indeed possible.

8.1 Introduction

A common method of representing a computer player is by a static strategy for game-play.
The representation of the strategy could be a neural network, a set of IF – THEN rules
(fuzzy or not), decision trees or many other means. Regardless of the representation, the
use of a static strategy results in a computer player that becomes obsolete once the human
player adapts to it. When a computer player ceases to challenge the human player, it is
no longer fun to play against. Thus, a game-play experience that is unique depending on
the circumstance, and the human game strategy used, has been of significant importance in
recent years. Games such as Fable (Lionhead Studios) and Star Wars: Knights of the Old
Republic (BioWare), which change the game scenario dependant on the choices the player
makes (to be a good, or evil character) have been very successful. The ‘choose your own
adventure’ style has proven to be a lucrative venture, and adaptive adversaries are key to
continued success. It seems that the ability for a computer player to adapt to an individual
human player is the holy grail of game-play.

126

Additionally, the ability to provide an adaptive computer player that tailors itself to the
human player has a lot of potential in the training industry. It is now fairly well accepted
that playing computer games is beneficial for teaching purposes [17]. The ability to provide
a fun and challenging way of learning has clear benefits. The problem lies in finding a
way to provide the individualistic training required for each student. Currently this lies
in providing a level rating (e.g. easy, normal, and hard) that the player can choose. This
system is inadequate however, as the classification of student levels into (normally) 3 levels
of expertise has obvious disadvantages. Instead, by adapting to the individual human, the
game play is no longer standardized for a wide range of players. As identified by Charles
et. al. [27], in relation to adaptation in games:

“Adaptation as such is strongly connected to learning and we may use it to learn
about a player in order to respond to the way they are playing, for example by
adjusting a computer opponent’s strategy so as to present a more appropriate
challenge level.”

By providing an experience that is tailored at a specific human player, the player can ex-
perience a game that simultaneously gains in difficulty as their experience and skill in the
game increases.

When the human player starts off playing the game, the strategy creation for the game
is fairly weak. The human player then starts to increase in strength as understanding of
the tactics increase, and more complex strategies are developed. The same can be said
for the coevolutionary algorithm. The initial generations of a coevolutionary computer
player create very basic and not overly intelligent rule development. Then, as each game
is played, it has a chance to encompass and counter the opposition’s strategy of game-play
and create better rules. We wanted to use this potential of the coevolutionary system to
create a computer player that coevolves to adapt to a human player relative to the human’s
capability. By including the human strategy into the coevolutionary system, the system
can evolve strategies that have adapted to the human strategies. As the human gains more
experience in playing the game, so does the computer player.

To achieve the goal of creating an adaptive computer player, we needed to create a
way of including the human strategy in a form the coevolutionary system could understand
and use. This essentially involved creating a method of reverse engineering the human
strategy from the outcome of the game-play. We decided to create an iterative system that
would record the data (the human choices and the game environment) from each game
played, and use that data to create a model of the human. The model would then be in
a form that could be included in the coevolutionary process. To create the model for our

127

coevolutionary system, it would need to be of the same fuzzy logic rule base structure as
the other individuals. The human model is then added as a supplementary individual to the
coevolutionary populations, so that the coevolution can evolve with, and against the model.

By reverse engineering the human’s strategy into a set of rules and adding the model
created to the coevolutionary system, we are able to influence the coevolutionary process.
At the beginning of the human’s learning progress, he or she will not have any experience
in playing the game, and are likely to have minimal strategy development. This stage is
probably the most difficult to reverse engineer, as the human is more random in strategic
choices. Consider the idea of beginner’s luck in games such as poker; expert players can
have trouble reading beginners, as the beginner makes seemingly random choices due to
inexperience. However, even the very general (and probably not effective) rules reverse
engineered at this stage have a chance of affecting the coevolution. It is unlikely that the
human rules will be considered the best individual in the population for elitism, but they
still have a chance of effecting the next generation through selection and crossover.

As the human starts to gain experience in the game, he or she develops ‘winning’ strate-
gies. It is likely that the human will then repeat the same or similar strategies over con-
current games if the strategy continues to work. It is here that the adaptive coevolutionary
system really comes into play. As the humans form a clearer pattern for reverse engi-
neering, the rules being modelled and added to the coevolutionary system have a greater
impact. Now the coevolution can act to directly overcome the human strategy, and create
new strategies that are a greater challenge to the human player. This allows us to develop
a system that grows and improves along with the human the computer player is competing
against; a tailored system that provides the best challenge for the individual human.

This chapter discusses the issues involved with creating a computer player using co-
evolution that can adapt to humans, and the methods we used to create this system. We
begin with a brief background discussion on the area and the difficulties involved. We then
discuss the mechanism used to create our adaptive computer player. After implementing
this system, we ran a user study to observe effectiveness of the system, and the way human
players interact with the computer player. The results of this user study are provided, along
with discussion and analysis. We conclude the chapter by discussing the findings, and the
areas of research that have been identified for future work.

8.2 Coevolving with Humans

There has been very little research regarding the adaptation of a coevolved computer player
to a human player. The main research performed has been conducted by Louis et. al. [60–

128

63] and Ponsen [79–81] (see section 4.5 for details), but there has currently been no re-
search on the creation of new rules that adapt to a specific human player, during game-play.

It is commonly known that playing a static coevolved player against the same human
repeatedly, allows the human to determine a counter-strategy that is dominant over the
static computer player. The first time the human plays against the strategy however, it is
unknown and could possibly be difficult to beat. The question then arises as to whether
the need for adaptation is indeed necessary. Could we not just continue the coevolutionary
process, and pick different individuals to play against the human each time? There could
well be enough difference in strategy represented through the coevolutionary process itself
to provide a challenge for each new game played.

While there has not been much recorded research on this topic, intuitively it would seem
that a similar occurrence to the static scenario would eventuate. This reasoning is based on
observation through our previous research, where the coevolution reached a plateau. This
plateau is visible through the baseline measurement technique used and analysis of evolved
rules, where the results show only small change in the best individuals over time. Even
though it is constantly changing and undulating, the evolution does not tend to make great
leaps in development. Thus, even though the human player would be playing a different
player each time, the strategies being developed by the player are similar in strength and
strategy to previous ones, and the human player could learn to overcome them. By incor-
porating the human model, a possibly new ‘best’ individual is included in the population,
and new strategies to beat it are created. Thus, allowing the evolving individuals to directly
counter the human strategy making and provide a greater individual challenge. In teaching
terms this is a great advantage.

There are a number of ways that the human models could be used in the coevolution-
ary process. Originally we thought of having a separate human population, similar to the
memory population in previous research. However, the extra processing time required for
selecting and evaluating a separate population was deemed excessive for the purpose. Ad-
ditionally, if evaluation were the only influence the human model had on the populations,
poorer human strategies would have little to no effect when they are constantly beaten. In-
cluding the human models into the populations has a direct effect on the individuals being
created (through selection and crossover).

To include the human in the process, we needed to find a way to coevolve against the
human model and the other randomly evolving players. This allows the system to create
players that are still finding randomly evolving strategies that can take into account, and
counter, the human player’s actions. By including the human model in the coevolutionary
process, when a new ‘best’ individual is chosen from the system to play against a human

129

player, this individual has been able to incorporate and counter the stronger elements of the
human strategies. Now the individual can provide a new challenge for the human.

8.3 Representing Human Strategies

Representing (modelling) humans is a research field in itself and can be very difficult to do.
To minimize this issue, we chose to very loosely reverse engineer the human choices as a
model of the strategies used. The model used would also need to be of the same format as
the coevolutionary individuals in the TEMPO system. Doing this allows the human model
to be directly inserted into the coevolutionary system for the process described above.

The reverse engineering of the human works as follows. When a human plays a game
against the computer player, the data of the game is recorded. This data includes the choices
the human made, and the environmental data for each game year. The data is then used in
an evolutionary system to find individuals that model the human by mimicking the human
choices. To evolve the human model, individuals represented in the same way as the co-
evolved individuals are randomly initialized. Each individual then plays the exact same
game as the human, against the same computer player as the human played. The individ-
ual is evaluated as the difference in outcome and allocated resources to what the human
achieved. The closer the individual comes to the same results as the human, the better the
fitness.

Additionally we added changeable constant weightings to the evaluation. The weight-
ings were applied to the differences in the outcome, weapons bought and intelligence/counter
intelligence bought between the individuals and the human value. By adding weights, we
are able to sway the evaluation importance of each of the parameters for the purpose of
creating more realistic rules. For example, it might be that getting a closer outcome (total
offensive utils at the end of the game) to the human was more important than creating rules
that allocated the resources in the same manner as the human, and vice versa. Hence the
evaluation function has the following evolutionary variables:

1. human NetUtils – the total net offensive utils for the human player at the end of their
game.

2. individuali NetUtils – the total net offensive utils the individual scored (when playing
the same game).

3. Years – the total number of years the game played for before war broke out.

130

4. human IntelChoice, human OptChoice, and human BgtChoice – the data arrays of
human allocations made for intelligence, weapons operated and weapons bought re-
spectively for the year.

5. individuali IntelChoice, individuali OptChoice, and individuali BgtChoice – the al-
locations the individual made for the year corresponding to the human allocations.

6. NetUtilsWeight, IntelWeight and WeapWeight – the constant weights applied to the
different evaluation areas as described.

The described evaluation function eval is implemented as

eval(individuali) = abs(human NetUtils − individuali NetUtils) NetUtilsWeight +∑Y ears
t=1 ((abs(human IntelChoicet−individuali intelChoicet) IntelWeight)+

(abs(human OptChoicet−individuali OptChoicet) WeapWeight)+
(abs(human BgtChoicet−individuali boughtChoicet) WeapWeight)).

We experimented with different values for the constants, with different preference
weights for the resources and outcome. For the final process, the outcome constant was
assigned the highest preference with a weight of five, followed by the weapon constant
with a weight of three. The INTEL/CI constant was given a weighting of one.

We also experimented with selection operators, and used ranked selection with elitism
in the final process. All individuals in the population were used as potential parents. The
variation operators used were two point crossover and mutation, where chosen genes were
replaced with a random value. Crossover was run on the parent population first, followed
by mutation. To avoid premature convergence on a suboptimal solution, we also forced the
individuals to have unique genotype.

After much experimentation and manual changing of the parameters to determine a
good result, the final evolutionary parameters chosen were as follows. The process ran for
150 generations, with a population of 100 individuals. An elitism ratio of 5% was used,
with a 50% crossover ratio, and a 10% mutation ratio. No rule penalty was applied to
minimize the rules used in the rule bases, as this seemed to occur naturally.

The rules evolved using this method give a rough estimation of possible strategies the
human used. It by no means represents the human strategy exactly, which is in many ways
a good thing. Our task is not to try and create an optimized computer player against a
human player, but to create a computer player that is challenging for the human player.
Even if it is only evolving against a rough estimate of the human player, for a single game-
play situation, the evolutionary process is still given the opportunity to counter the human
strategies.

131

Figure 8.1: The human adaptive coevolutionary process

8.4 The Human Adaptive Coevolutionary Process

To incorporate all the ideas described above, we needed to develop an entire system for
game-play. We named the system the Human Adaptive Coevolutionary Process (HACP).

HACP incorporates the coevolutionary system from previous chapters with a graphical
user interface (GUI) to play against human players. This was then combined with the
human reverse engineering (modelling) system described in section 8.3. The process flow
can be seen in figure 8.1.

The process consists of the following steps:

1. The process begins by coevolving two populations against each other and the mem-

132

ory population, using the STM and LTM as described in section 6.6.

2. After a set number of generations, the best individual from the currently winning
population is chosen and played against the human.

3. The data from this game is then recorded and passed to the evolutionary human
modelling system.

4. The modelling system then evolves a rule base that mimics the actions the human
made. This system runs for a set number of generations before the best individual is
selected.

5. The best individual is then placed into the coevolutionary system, replacing the worst
individuals from each population, and the whole process iterates again from the be-
ginning.

To ensure the human model affects the coevolutionary populations, the population size
was cut down to 15 individuals. Thus, even if the human model has a weaker fitness than the
individuals in the population, it still has a probable affect through selection. The first time
the coevolution is run, it runs for 300 generations. This is enough to develop a beginner
level player that buys some form of weaponry. The consecutive iterations of coevolution
then only have 100 generations to coevolve a new player, which allows reasonable time
(generally < 1 minute) in between games with the human.

The number of sample games played against the opposition and memory for evaluation
was also cut down to decrease the time taken. For this process, the individual is evaluated
by playing r1 = 5 games against the opposition, r2S = 5 against the Short Term Mem-
ory, and r2L = 5 against the Long Term Memory. All the other evolutionary parameters
remained the same as for previous experiments. Crossover was applied at rate of 30%, and
if crossover was not applied to the individual, mutation was applied for each gene at a rate
of 30% with a 10% chance of a large mutation.

The final component of the process is the human modelling system. This is added using
the evolutionary process described in section 8.3 above. The human modelling system
added on average an extra minute to the entire process.

The GUI was coded in Java and communicated to the C++ code through http sockets.
Figure 8.2 shows a screen shot of the GUI mid game.

The environment section shows the current year, the chance of war breaking out at the
end of the current year (the pwar), the budget for the year, and the amount of the budget
left as the user allocates to weapons and INTEL/CI. The previous year’s data section shows
the total OA, OB, DA and DB utils left over from the previous year (once the opposition’s

133

Figure 8.2: Screenshot of the TEMPO GUI

corresponding utils have been subtracted) for both the player, and the opposition. The
opposition utils are only shown if INTEL has been purchased, otherwise “UNKNOWN”
is displayed. If the opposition has purchased CI, then the value shown in the enemy’s
previous year’s data may be incorrect to some degree as described in 7.4.3. The previous
year’s INTEL section displays the amount of INTEL bought by the player for the previous
year.

The Intelligence Allocation table and Counterintelligence Allocation table both have
three columns. Each row in the table represents a different type of INTEL/CI category, with
the associated cost. The last column in each table is the user entry field, where the user can
enter the budget amount allocated to the category. The cost of INTEL/CI is deliberately
low to encourage purchase.

The Weapons table displays all the weapons available for the year. Each row represents
a different weapon with the corresponding attributes for the weapon. The first column gives
the name of the weapon, consisting of the category (Offensive/Defensive), type (A/B) and
number (1,2,3). The second column shows maximum number of weapons that can be
acquired (bought) each year. The third column is the cost to purchase a single unit of
the weapon. The fourth column represents the inventory for the weapon – the number of
weapons given to the player for ‘free’ at the beginning of the game. The fifth column
gives the cost to operate (use) a unit of the weapon for a year. The sixth column gives the

134

number of utils the weapon has (the power ability of the weapon). The seventh and eighth
columns show the weapons that have been opted and bought (respectively) in the previous
year. Finally, the ninth and tenth columns are the user input columns to allocate the budget
to opt previously bought and opted (or available in inventory) weapons, and purchase new
weapons for the coming year.

Once a player has made their allocations, the commit button is pressed and play either
continues into the next year, or war breaks out and the game results are displayed.

8.5 User Study

Using the HACP system, we ran a user study to test the effectiveness with humans. The
purpose of the user study was to obtain users with no experience of TEMPO, and use the
HACP system as a way of training them. We also wanted to test the effectiveness of using
a system that adapts to a human, as opposed to a static player or a coevolving player with
no knowledge of the human strategy.

To achieve this experiment, we created an application with three consecutive stages.
Each stage would involve the human playing 4 consecutive games against a computer
player, with the results for each game recorded. We chose 4 games due to time constraints,
but ideally more games would be beneficial. The first stage involved running the user
against the same static computer player for all 4 games. The static player was previously
evolved and consisted of 19 weapon rules, 8 intelligence rules and 8 counter intelligence
rules, with the two most active rules as:

1. IF Category IS Offensive and Type IS B
THEN Evaluation IS medium

2. IF OperationCost IS Very Low
THEN Evaluation IS high

The intelligence and counter intelligence rules were rarely activated. After playing the 4
games against this static player, the human was then informed that the next stage was about
to start.

Stage 2 consisted of the human playing 4 games against the coevolutionary system.
The system was first run for 300 generations (with the same evolutionary parameters as
described in section 8.4), and the individuals for both populations in the final generation
were saved. This was the starting point for all the human players, and the best individual
from this coevolutionary run was chosen as the starting individual to play against the hu-
man for Stage 2. Once the first game was completed, the coevolutionary system was then

135

restarted from where it left off, and another 100 generations were run. The best individual
from the best population (according to fitness) was then chosen to play against the human,
and this process was then iterated for the rest of the games. While the first coevolved player
in Stage 2 was the same for each test subject, consequent players were different due to the
coevolution.

Stage 3 was conducted in the same manner as Stage 2. However, in this stage, the
HACP system was used, and the additional steps of finding a human model and including
it in the coevolutionary system were applied.

8.5.1 User study results

The results for Stage 1 are depicted in table 8.1. The table shows the results for each
human player, for each game played, against the static computer player. The score is the
total net utils for the human player at the end of the game. Positive results show a win,
while negative ones are a loss. The number of years the game played for is also recorded
for comparison purposes. The final column in the table shows the total number of wins
each player had in the stage. The last row in the table gives the average score and years
played for each game, and the average games won for Stage 1.

As expected, the results show that the players had an overall average loss for this round.
The average loss does however decrease over the progression of the stage, depicting player
learning. From analysing the results and questioning the players, we found that the average
games played before the players felt confident in their game-play were 4–5 games. We
also note that there were some players who developed good strategies from Stage 1, and
performed well throughout the stages.

The Stage 2 results are depicted in table 8.2, in the same format as the stage one results.
By this stage, most of the players are confident in the game-play and begin to develop some
strategies to win. There is a dramatic increase in the average scores for the entire stage,
although there is still a slight learning curve in some participants. To note, the first game
played against is actually a simpler (but different) player than the static one played in Stage
1, so the number of negative scores tends to show some players are still developing their
strategies. By the end of this stage we only have a single player that has not won a game,
with the majority of players winning at least two games. The players are beginning to play
around with strategies, or have found a ‘winning’ strategy they continue to use.

The Stage 3 results are shown in table 8.2, and follow the same format as before. The
first game has the same player as Stage 2, Game 1 (the same coevolutionary starting point),
but this time round the majority of players win. At Stage 3, Game 2, the first round of the

136

Table 8.1: User Study Stage 1 Results

Stage 1
Game 1 Game 2 Game 3 Game 4

Player No. Score Years Score Years Score Years Score Years Wins
1 -135 4 655 8 0 2 0 3 1
2 -1920 7 1165 2 2480 8 2160 6 3
3 0 3 -4275 8 -2750 4 -50 2 0
4 460 4 -7100 7 2370 8 425 3 3
5 -6661 9 3230 3 -6440 7 -6012 8 1
6 -4340 7 1660 5 0 7 -2000 6 1
7 0 7 -620 5 -1640 5 0 7 0
8 2465 8 2000 5 2610 10 1400 6 4
9 0 7 -1090 5 -99 2 1165 2 1
10 0 8 2713 3 -1290 6 -1550 4 1
11 -1190 6 -3890 7 -1820 7 2730 6 1
12 2260 5 -4820 5 -4640 5 -4940 5 1

Average -1029.18 6.36 -504.73 5.27 -598.09 6.00 -157.45 4.82 1.45

Table 8.2: User Study Stage 2 Results

Stage 2
Game 1 Game 2 Game 3 Game 4

Player No. Score Years Score Years Score Years Score Years Wins
1 3860 5 -540 4 -495 4 1300 3 2
2 8940 7 4412 8 6589 9 -3004 6 3
3 -2518 7 1200 2 2955 7 -2599 8 2
4 -40 3 6100 7 5039 7 1092 5 3
5 -1155 4 -3358 5 659 6 2940 3 2
6 0 8 3260 6 700 4 0 9 2
7 -1440 3 3070 5 -840 3 0 7 1
8 1065 5 2910 5 615 5 2965 4 4
9 5188 9 1210 7 1278 5 3840 2 4
10 -1236 4 4800 8 289 4 4640 2 3
11 2965 6 4070 5 2604 7 0 3 3
12 -4620 5 -7656 7 -9316 8 -9186 5 0

Average 1420.82 5.55 2466.73 5.64 1763.00 5.55 1015.82 4.73 2.64

137

Table 8.3: User Study Stage 3 Results

Stage 3
Game 1 Game 2 Game 3 Game 4

Player No. Score Years Score Years Score Years Score Years Wins
1 2785 6 -649 10 -2600 4 0 5 1
2 3960 6 -490 6 -3290 6 2780 6 2
3 -4601 5 -3085 6 730 4 -1899 9 1
4 3765 6 442 9 582 7 2926 8 4
5 47 3 428 3 316 3 -342 4 3
6 -1440 3 3140 4 1640 6 -2090 4 2
7 230 4 1500 6 2148 2 5750 7 4
8 2455 6 3695 7 1019 8 400 3 4
9 4705 8 -586 7 1500 1 110 6 3
10 4995 7 445 7 1500 1 5630 8 4
11 3335 6 2450 6 3210 4 1740 5 4
12 -6418 6 -4894 7 -1180 3 -5050 6 0

Average 1839.64 5.45 662.73 6.45 614.09 4.18 1364.09 5.91 2.91

HACP process has been performed, with the coevolution taking into account the human
game-play. The Game 2 results for this stage show an overall success with the HACP
system. A large amount of the players who won in Stage 2, Game 2 either lost the game or
had the amount of utils won by greatly decreased. The 3rd game in Stage 3 shows this same
trend happening with some players, while others succeed with a new winning strategy. The
same thing is seen in Stage 3, Game 4.

The other notable thing from Stage 3 is with player 12, who was the only player that
had difficulty learning the game. The results from this stage show that even though the
losses were continuing, they were not by as much. It appears that even in this case the
game-play was slowly helping. Whether this is due to a longer learning curve or the HACP
system however is questionable.

8.6 Conclusions and future work

The total wins for Stage 3 were slightly higher than Stage 2, which was expected due to the
player learning curve continuing through into Stage 2. However, the results clearly show
that there was not a large jump in results between Stage 2 and 3, and that the system did
in fact continue to challenge and teach people. This conclusion was reinforced through the
informal verbal feedback process at the end of the user study. The majority of the users
stated that they found Stage 3 more challenging than Stage 2 when asked if they noticed

138

any difference between the two stages. There were also some users who specifically stated
that strategies they had developed and used in Stage 1 and 2 needed re-evaluation in Stage
3 when the computer player overcame their strategy. The human players were then forced
to think of different strategies.

There were also players who were able to dominate the game from Stage 1. This is
likely due to the choices made to cater for average users. For example, to allow for an eas-
ier starting point, we only evolved the starting computer player for 300 generations. With
a population of 15 individuals this only allows creation of a very simplistic player. Addi-
tionally, the short number of games played meant that the HACP system in Stage 3 did not
have much time to evolve against more complex human strategies. The human modelling
system also struggled more to create these strategies. Even with these deficiencies however,
the human players with stronger strategies noted that they thought Stage 3 was beginning
to increase in difficulty, and future research should test the impact of additional games.

While the HACP system does seem to have considerable benefit for the majority of
users, the extreme ends of the learning curve do not seem to benefit as much. One way to
address this problem is to adapt the evolutionary parameters to the capability of the human
player. The idea here is to adaptively restrict or encourage the coevolutionary process to
match the proficiency of the individual human player.

If a human player is doing particularly poorly and losing every game, he or she soon
feels discouraged and stops playing. Hampering the success of the coevolutionary process
can address this issue, be it through a reduction in generations or population size, or apply-
ing an additional weight to the evaluation function. The weight could change depending
on how much the individual won by against the human player, with the result of allow-
ing ‘lesser’ individuals to obtain a higher fitness. The human players who continually win
against the computer player also need a mechanism to make the play more interesting. The
same concept could be applied for these human players, but in reverse. When a computer
player loses to a human, the generations and/or population size could adaptively increase.
The evaluation weighting could be applied to progressively increase the loss penalty for
successive losses. There are also many other possibilities that could be applied.

The other area we would like to improve is the development of the human model. Each
time a new game is played, a new model is reverse engineered with no reference to previous
games. This process wastes a vast amount of data that could be used to refine the model, as
usually humans build strategies from previous game-play. One mechanism we have thought
of applying is to use the results of the previous year to influence the fitness of the current
models being evolved. If a model has some similar tactics to the previous year, then it is
rewarded. This concept also has inadequacies however, as it only forms a single link to the

139

previous year, and does not take into account long term strategy.
Overall, we had a great deal of success with the implementation of the HACP system,

with a number of users stating that they had fun trying to beat the computer player. Being
able to learn new and better strategies of resource allocation on their own time allows stu-
dents individual training that caters for their own needs. The HACP system provides a good
mechanism for applying such training. The HACP system also has benefits for creation of
computer players in many commercial games (such as turn based strategy games), where
each turn the strategy could be updated to incorporate the human player’s strategy. The
applications are many, and this research is just the beginning. We have shown that it can
work, and making it work in other games is an exciting challenge.

140

Chapter 9

Conclusions and Future Work

The research presented throughout this thesis has addressed the need for an adaptive com-
puter player for resource allocation games. We conclude the thesis by reiterating the hy-
pothesis and objectives, and how we achieved these goals. We also discuss inadequacies
that remain in the system, and possible future directions of research.

As stated at the beginning of the thesis, our hypothesis was that “Coevolutionary al-

gorithms are an effective mechanism for the creation of a computer player for strategic

decision-making games”. In particular we defined our three main objectives as:

1. The computer player must be able to allocate resources effectively in the game of
TEMPO, for the purpose of being competitive against human players.

2. The computer player and the TEMPO game should provide the necessary scenario
for the human player to learn the task of resource allocation.

3. The challenge given by the computer player should be tailored to the individual hu-
man’s ability level.

We now provide a summary of how each of these objectives was met through the re-
search. The first objective was addressed partially by the research of Johnson et. al. [55].
Deficiencies were found however in the efficiency of the computer player. To increase the
effectiveness of the computer player, we included the use of a memory in the coevolution-
ary algorithm. Additionally, we researched the mechanism of selection from the memory.

We developed a novel selection technique based on the human short and long term
memory structure. The technique was used to select individuals from the memory that
were used to evaluate the coevolutionary individuals. We found that the different forms
of selection pressure applied through probability distribution selection had an impact on
the effectiveness of the memory. In particular, we determined that high selection pressure

141

on the most recent individuals in the memory worked the best. This pressure was applied
through a selection window of the top ten individuals in the memory, which we called the
short term memory. Selection was then also applied to the entire memory, which we called
the long term memory, through a linear time distribution.

The use of the short and long term memory provided very good results, and further
research was conducted into different ways to use the long term memory. We had suc-
cess with a ranked selection technique, called gladiator selection, which out-performed the
linear long term selection technique. We also attempted to cluster the long term memory
into groups representing rules for the current situation in the game. These clusters were
then used for selection, dependant on the yearly status of the game. The clusters required a
different mechanism for coevolving the individuals, as instead of playing a complete game
against an opponent for evaluation, the individual played a complete game against chang-
ing opponents for evaluation. This technique provided some interesting results, and more
research is needed for the full benefit to be analysed.

The use of memory allowed the development of strong static rule bases. When played
against human players, the computer player was now much more competitive, and harder
to beat. There were still difficulties however in developing computer players that were
efficiently using the intelligence (INTEL) and counter intelligence (CI) components of the
game. It was with this in mind that we decided to re-evaluate the use of INTEL and CI in
the TEMPO game. In collaboration with Garrison Greenwood, we identified inadequacies
to the game that needed to be addressed. These inadequacies directly affected the second
objective of our research, as we found the TEMPO game was not currently providing the
scenario necessary for its purpose.

To address this deficiency, we changed the INTEL and CI from a boolean allocation
into a percentage allocation. The previous mechanism allowed players to either buy or not
buy INTEL and CI. The new mechanism allowed players to buy a degree of INTEL and CI
up to a specified amount. We also divided the INTEL and CI into the category/type units
(OIA, DIA, OIB and DIB) instead of the previous Offensive and Defensive categories, with
CI in a separate category. We presented a novel way of implementing this new INTEL/CI
mechanism, using a probability distribution function to map the amount of INTEL bought
to an appropriate degree of information given. The CI was also implemented using the
probability distribution, spreading the function to a degree.

The new INTEL/CI mechanism was a more realistic scenario for resource allocation,
and additionally the computer players started to develop INTEL rules that purchased IN-
TEL for the first time. The use of INTEL by the computer players was however still lack-
ing, and further experimentation was carried out to improve on this. While we were able to

142

make small improvements to the INTEL rule bases being developed, there is still a lot of
improvement to be made. It may be possible to achieve this improvement through a mecha-
nism to link the separate rule bases in the evaluation. The link could be achieved through a
hierarchy mechanism, or possibly some form of multi-objective task with evolved weights
determining the importance of weapons vs. INTEL.

Further improvements are also possible for the INTEL/CI in the game of TEMPO.
While the breakdown into the separate category/type units is more realistic, further break-
down is necessary for true usefulness. For example, consider a situation where CI is obscur-
ing the information being given about the opposition’s utils. It is now difficult to conclude
an appropriate action when only a single INTEL source is available, and realistically IN-
TEL should never be believed until it is corroborated. This should be performed by using
information from multiple, independent sources and then merging the data, looking for cor-
roborating evidence to support an analytical conclusion. This process, called information
fusion, adds credibility to the analytical conclusions; the more corroboration, the higher
the believability [32]. In practice INTEL information comes from a variety of sources in-
cluding human intelligence (where data is collected through interpersonal contacts between
individuals), signal intelligence (where data is collected by way of intercepted communica-
tions) or data transmissions imagery intelligence (where data is collected from space-based
electro-optical, radar or infra-red images). For each type of INTEL activity there is also a
corresponding CI activity to counteract it. It is this breakdown in the INTEL/CI mechanism
that we would also like to represent in TEMPO.

While the research into INTEL and CI for the TEMPO game provided many insights
and improvements, there is still much to do. In this regard, the second objective was met
to a degree. The computer players and the TEMPO game do create a good scenario for the
task of learning resource allocation, but more research is required for the full potential to
be met.

The third objective was addressed by our development of the Human Adaptive Coevolu-
tionary Process (HACP). This combined the work done with memory to improve the static
rules developed, and the additions to the INTEL/CI mechanism, and created an additional
step to adapt to a human player. The additional step used data recorded from a game with a
human player to reverse engineer a model of the human’s strategy. This strategy was then
placed in the coevolutionary system to continue evolving against. The next game played
against the human would use a static strategy that had been coevolved with the human
model, thus providing an adaptive computer player that tailors itself to the human.

Through a user study, we were able to test the usefulness of HACP system against
human players. We found a definite advantage of the HACP to provide a challenge for

143

human players. The human players began game-play against a static unchanging computer
player, and then played against a dynamic computer player with no adaptation, followed
by the adaptive HACP computer player. There were distinct advantages noticeable when
playing against the HACP computer player, which were also noted by the human players.

While we have met the third objective with the HACP system, there is still room for
further investigation, especially for human players at the extreme ends of the learning curve.
It is possible however that the HACP system could be tailored for these players, through an
adaptive process aimed at the specific skill level of the player. The possibilities for further
development and improvement are an exciting area for future research.

There are many possible future directions for research into a computer player for TEMPO.
One possibility is to increase the complexity of the game through the addition of more
weapon types (A, B, C etc.). This could provide a more interesting and challenging sce-
nario, and could allow further investigation for the use of INTEL/CI in the game. Another
area of investigation is the inclusion of the research and development component. This
would require analysis for impact on the game, as well as the computer players. However,
it would also increase the interest and strategy making challenge for the game. For further
realism in the game, it could also be beneficial to change the pwar environmental parameter
to change for the circumstance. If players both start purchasing large quantities of offen-
sive weaponry, the chances of war breaking out could increase. Another possibility is to
incorporate more than two players in the game. Providing additional players changes the
dynamics of the game, where alliances provide a cooperative scenario in addition to the
competitive one.

Other directions of research are to use the HACP system, or the other research com-
ponents presented in this thesis, and apply them to different domains. While our scenario
involved a competitive resource allocation game, the same techniques could be applied for
other scenarios such as cooperative games. Additionally, the concept of evolving a strategy
has any number of forms and applications.

Finally, through the HACP system we were able to achieve our overall hypothesis and
show that coevolutionary algorithms are indeed an effective mechanism to create a com-
puter player for strategic decision-making games. We have shown that human players
respond well to a computer player that adapts to their strategies, and that it is useful for
learning the development of new strategies. In turn, the human players develop increased
strategy making skills. We have succeeded in creating a system that achieved what we set
out to do, and have provided a number of novel techniques to apply coevolution for the de-
velopment of strategic computer players. Our research provides many exciting possibilities
for future work, and we look forward to seeing these applied.

144

Bibliography

[1] Websters Dictionary of the English Language, volume 1.

[2] The Planning, Programming, and Budgeting System (PPBS) directive. Technical
report, USA Department of Defense, May 22 1984.

[3] The Macquarie Dictionary. The Macquarie Library Pty. Ltd., 1996.

[4] TEMPO military planning game – explanation and rules for players. Technical re-
port, 2003.

[5] D. Aha, M. Molineaux, and M. Ponsen. Learning to win: Case-based plan selection
in a real-time strategy game. In Case-Based Research and Development, volume
3620/2005, pages 5 – 20, 2005.

[6] R. Atkinson and R. Shiffrin. Human memory: a proposed system and its control
processes. In The Psychology of Learning and Motivation: Advances in Research

and Theory, volume 2, pages 89 – 195. Academic Press, New York, 1968.

[7] P. Avery, G. Greenwood, and Z. Michalewicz. Coevolving strategic intelligence. In
IEEE Proceedings for Congress on Evolutionary Computation, Hong Kong, China,
2008.

[8] P. Avery and Z. Michalewicz. Static experts and dynamic enemies in coevolutionary
games. In IEEE Proceedings for Congress on Evolutionary Computation, pages
4035 – 4042, Singapore, 2007.

[9] P. Avery, Z. Michalewicz, and M. Schmidt. A historical population in a coevolution-
ary system. In IEEE Symposium on Computational Intelligence and Games, pages
104 – 111, Honolulu, Hawaii, USA, 2007.

[10] P. Avery, Z. Michalewicz, and M. Schmidt. Short and long term memory in coevolu-
tion. In International Journal of Information Technology and Intelligent Computing,
volume 3, 2008.

145

[11] R. Axelrod. More effective choice in the prisoner’s dilemma. In Journal of Conflict

Resolution, volume 23, pages 379 – 403, 1980.

[12] A. D. Baddeley. The psychology of memory. In The Essential Handbook of Memory

Disorders for Clinicians, pages 1 – 13. John Wiley and Sons, 2005.

[13] A. Bader-Natal and J. B. Pollack. A population-differential method of monitor-
ing success and failure in coevolution. In Genetic and Evolutionary Computation

Conference, volume 2723 of Lecture Notes in Computer Science, pages 585–586.
Springer, 2004.

[14] L. Barone and L. While. Evolving adaptive play for simplified poker. In IEEE World

Congress on Computational Intelligence., pages 108 – 113, May 1998.

[15] L. Barone and L. While. Evolving computer opponents to play a game of simplified
poker. In International Conference on Evolutionary Computation, pages 153 – 160,
1998.

[16] A. Barzel. The perplexing conclusion: The essential difference between natural
and artificial intelligence is human beings ability to deceive. In Journal of Applied

Philosophy, volume 15, pages 165 – 178, 1998.

[17] K. Becker. Teaching with games: the minesweeper and asteroids experience. In
Journal of Computing Sciences in Colleges, volume 17, pages 23 – 33, USA, 2001.
Consortium for Computing Sciences in Colleges.

[18] J. Beusmans and K. Wieckert. Computing, research, and war: If knowledge is power,
where is responsibility? In ACM Social Aspects of Computing, volume 32, pages
939 – 947, 1989.

[19] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of poker. In
Artificial Intelligence, volume 134, pages 201–240, 2002.

[20] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Opponent modeling in Poker. In
Proceedings of the 15th National Conference on Artificial Intelligence), pages 493 –
498. AAAI Press, 1998.

[21] J. Bracker. The historical development of the strategic management concept. In
Academy of Management Review, volume 5, pages 219 – 224, 1980.

146

[22] J. Branke. Memory enhanced evolutionary algorithms for changing optimization
problems. In Congress on Evolutionary Computation, pages 1875 – 1882, Washing-
ton, USA, 1999.

[23] L. Bull. On coevolutionary genetic algorithms. volume 5, pages 201–207, 2001.

[24] M. Buro and T. M. Furtak. RTS games and real-time AI research. In Proceedings

of the Behavior Representation in Modeling and Simulation Conference, pages 51 –
58, 2004.

[25] R. Caillois. Man, Play and Games. University of Illinois Press, 2001.

[26] S. Carberry. Techniques for plan recognition. In User Modeling and User-Adapted

Interaction, volume 11, pages 31 – 48. Kluwer Academic Publishers, 2001.

[27] D. Charles, M. McNeill, M. McAlister, M. Black, A. Moore, K. Stringer, J. Kuck-
lich, and A. Kerr. Player-centered game design: Player modeling and adaptive digital
games. In DiGRA 2005 Conference: Changing Views – Worlds in Play, 2005.

[28] K. Chellapilla and D. B. Fogel. Evolution, neural networks, games, and intelligence.
In Proceedings of the IEEE, volume 87, pages 1471 – 1496, 1999.

[29] K. Chellapilla and D. B. Fogel. Evolving an expert checkers playing program with-
out using human expertise. In IEEE Transactions on Evolutionary Computation,
volume 5, pages 422 – 428, 2001.

[30] B. Chin. Sense-And-Respond logistics evolving to predict-and-preempt logistics. In
Army Magazine, volume May, pages 61 – 72, 2005.

[31] S. Chong, D. Ku, H. Lim, M. Tan, and J. White. Evolved neural networks learning
Othello strategies. In The 2003 Congress on Evolutionary Computation, volume 3,
pages 2222 – 2229, Newport Beach, California, USA, 2003.

[32] K. Chopra and C. Haimson. Information fusion for intelligence analysis. In Pro-

ceedings of the 38th Annual Hawaii International Conference on System Sciences,
page 111, 2005.

[33] D. Cliff and G. F. Miller. Tracking the Red Queen: Measurements of adaptive
progress in co-evolutionary simulation. In European Conference on Artificial Life,
pages 200 – 218, 1995.

147

[34] F. Craik and R. Lockhart. Levels of processing: a framework for memory research.
In Journal of Verbal Learning and Verbal Behavior, volume 11, pages 671 – 684,
1972.

[35] F. Craik, A. Routh, and D. Broadbent. On the transfer of information from tempo-
rary to permanent memory. In Philosophical Transactions of the Royal Society of

London. Series B, Biological Sciences, volume 302, pages 341 – 359, 1983.

[36] I. L. Davis. Strategies for strategy game AI. In AAAI 1999 Spring Symposia, pages
24 – 27, 1999.

[37] E. D. de Jong. The incremental pareto-coevolution archive. In Genetic and Evolu-

tionary Computation – GECCO 2004, pages 525 – 536, 2004.

[38] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, 1975.

[39] K. A. De Jong. Evolutionary Computation, A Unified Approach. The MIT Press,
2006.

[40] K. A. De Jong and M. A. Potter. Evolving complex structures via cooperative co-
evolution. In Evolutionary Programming, pages 307 – 317, 1995.

[41] A. K. Dixit and B. J. Nalebuff. Thinking Strategically: The Competitive Edge in

Business, Politics, and Everyday Life. W.W. Norton & Company, 1991.

[42] J. Doyle and T. Dean. Strategic directions in artificial intelligence. In ACM Comput-

ing Surveys, volume 28, pages 653 – 670, 1996.

[43] H. M. Eisenhardt and M. J. Zbaracki. Strategic decision making. In Strategic Man-

agement Journal, volume 13, pages 17 – 37. John Wiley & Sons, Ltd., 1992.

[44] S. L. Epstein. Game playing: The next moves. In Proceedings of the Sixteenth

National Conference on Artificial Intelligence, pages 987 – 993. AAAI Press, 1999.

[45] S. G. Ficici and J. B. Pollack. A game-theoretic memory mechanism for coevolution.
In GECCO 2003, Lecture Notes in Computer Science, volume 2723/2003, pages 286
– 297. Springer Berlin/Heidelberg, 2003.

[46] D. B. Fogel. Blondie24: Playing at the Edge of AI. Morgan Kaufmann, San Fran-
cisco, CA, 2002.

148

[47] J. C. Giordano, P. F. R. Jr., and D. C. Brogan. Exploring the constraints of human
behavior representation. In Proceedings of the 2004 Winter Simulation Conference,
pages 912 – 920, 2004.

[48] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[49] T. D. Gwiazda. Genetic Algorithms Reference; Volume I – Crossover for single-

objective numerical optimization problems. Tomasz Dominik Gwiazda, 2006.

[50] T. D. Gwiazda. Genetic Algorithms Reference; Volume II – Mutation operator nu-

merical optimization problems. Tomasz Dominik Gwiazda, 2007.

[51] S. P. Hargreaves Heap and Y. Varoufakis. Game Theory: A Critical Introduction.
Routledge, 1995.

[52] W. Hillis. Co-evolving parasites improve simulated evolution as an optimization
procedure. In Emergent computation, pages 228 – 234. MIT Press, Cambridge, MA,
USA, 1991.

[53] E. Hurwitz and T. Marwala. Learning to bluff. In IEEE International Conference on

Systems, Man and Cybernetics, pages 1188 – 1193, 2007.

[54] IBM. Deep blue. Online, 20 September 2005. http://researchweb.

watson.ibm.com/deepblue/.

[55] R. W. Johnson, M. E. Melich, Z. Michalewicz, and M. Schmidt. Coevolutionary op-
timization of fuzzy logic intelligence for strategic decision support. In IEEE Trans-

actions on Evolutionary Computation, volume 9, pages 682 – 694, 2006.

[56] R. W. Johnson, Z. Michalewicz, M. E. Melich, and M. Schmidt. Coevolutionary
tempo game. In Congress on Evolutionary Computation, volume 2, pages 1610 –
1617, Portland, Oregon, 2004.

[57] H. Juille and J. B. Pollack. Dynamics of co-evolutionary learning. In P. Maes,
M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson, editors, Proceedings of the

Fourth International Conference on Simulation of Adaptive Behavior: From animals

to animats 4, pages 526 – 534, Cape Code, USA, 1996. MIT Press.

[58] G. Kendall, R. Yaakob, and P. Hingston. An investigation of an evolutionary ap-
proach to the opening of go. In 2004 Congress on Evolutionary Computation, vol-
ume 2, pages 2052 – 2059, Portland, Oregon, USA, 2004.

149

[59] S. J. Louis and J. Johnson. Solving similar problems using genetic algorithms and
case-based memory. In Proceedings of the Seventh International Conference on

Genetic Algorithms, pages 283 – 290, San Francisco, CA, 1997. Morgan Kaufmann.

[60] S. J. Louis and J. McDonnell. Learning with case-injected genetic algorithms. In
IEEE Transactions on Evolutionary Computation, volume 8, pages 316 – 328, 2004.

[61] S. J. Louis and J. McDonnell. Playing to train: Case injected genetic algorithms for
strategic computer gaming. In GECCO, 2004.

[62] S. J. Louis and C. Miles. Combining case-based memory with genetic algorithm
search for competent game AI. In ICCBR Workshops, pages 193 – 205, 2005.

[63] S. J. Louis and C. Miles. Playing to learn: Case-injected genetic algorithms for learn-
ing to play computer games. In IEEE Transactions on Evolutionary Computation,
volume 9, pages 669 – 681, 2005.

[64] Chairman of the Joint Chiefs of Staff. Doctrine for logistic support of joint opera-
tions. In Joint Publication 4-0, April 2000.

[65] Headquarters Department of the Army. Intelligence, field manual FM 2-0, May
2004.

[66] Office of Force Transformation, Department of Defense USA. Operational sense
and respond logistics: Coevolution of an adaptive enterprise capability. In Sense

and Respond Logistics Metrics Overview, 15 October 2007.

[67] J. McCarthy. Some expert systems need common sense. In Proceedings of a sym-

posium on Computer culture: the scientific, intellectual, and social impact of the

computer, pages 129 – 137, New York, NY, USA, 1984. New York Academy of
Sciences.

[68] L. Messerschmidt and A. Engelbrecht. Learning to play games using a PSO-based
competitive learning approach. In IEEE Transactions on Evolutionary Computation,
volume 8, pages 280 – 288, June 2004.

[69] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer
-Verlag, second edition, 2004.

[70] C. Miles, S. Louis, N. Cole, and J. McDonnell. Learning to play like a human:
case injected genetic algorithms for strategic computer gaming. In Congress on

Evolutionary Computation, volume 2, pages 1441 – 1448, 2004.

150

[71] C. Miles, J. Quiroz, R. Leigh, and S. Louis. Co-evolving influence map tree based
strategy game players. In Computational Intelligence and Games, pages 88 – 95,
2007.

[72] R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Environments.
Springer-Verlag, 2004.

[73] J. Murdoch. Bioshock. Online, May 2007. http://www.gamerswithjobs.
com/node/32465.

[74] J. F. Nash. Non-cooperative Games. PhD thesis, Princeton University, 1950.

[75] M. Nerome, K. Yamada, S. Endo, and H. Miyagi. Competitive co-evolution model
on the acquisition of game strategy. In Simulated Evolution and Learning, pages
224 – 231, 1996.

[76] W. C. Oon and Y. J. Lim. An investigation on piece differential information in
co-evolution on games using Kalah. In The 2003 Congress on Evolutionary Compu-

tation, volume 3, pages 1632 – 1638, Newport Beach, California, USA, 2003.

[77] M. J. Osborne. An Introduction to Game Theory. Oxford University Press, 2004.

[78] S. D. Pinson, J. A. Louy, and P. Moraitis. A distributed decision support system for
strategic planning. In Decision Support System, volume 20, pages 35 – 51, 1997.

[79] M. Ponsen, H. Muoz-Avila, P. Spronck, and D. Aha. Automatically generating game
tactics via evolutionary learning. In AI Magazine, volume 27, pages 75 – 84, 2006.

[80] M. Ponsen and P. Spronck. Improving adaptive game AI with evolutionary learning.
In Computer Games: Artificial Intelligence, Design and Education, pages 389 – 396,
2004.

[81] M. Ponsen, P. Spronck, H. Muoz-Avila, and D. Aha. Knowledge acquisition for
adaptive game AI. In Science of Computer Programming, volume 67, pages 59 – 75,
2007.

[82] D. L. Poole, A. Mackworth, and R. G. Goebel. Computational Intelligence: A Log-

ical Approach. Oxford University Press, New York, January 1998.

[83] M. A. Potter and K. A. De Jong. A cooperative coevolutionary approach to func-
tion optimization. In Proceedings of the International Conference on Evolutionary

Computation, pages 249 – 257, 1994.

151

[84] N. Puppala, S. Sen, and M. Gordin. Shared memory based cooperative coevolu-
tion. In Proceedings of the 1998 IEEE Conference on Evolutionary Computation

(ICEC’98), pages 570 – 574. IEEE, 1998.

[85] P. S. Rosenbloom. A world-championship-level Othello program. In Artificial Intel-

ligence, volume 19, pages 279 – 320, 1982.

[86] C. D. Rosin and R. K. Belew. Methods for competitive co-evolution: Finding oppo-
nents worth beating. In L. Eshelman, editor, Proceedings of the Sixth International

Conference on Genetic Algorithms, pages 373 – 380, San Francisco, CA, 1995. Mor-
gan Kaufmann.

[87] C. D. Rosin and R. K. Belew. New methods for competitive coevolution. In Evolu-

tionary Computation, volume 5, pages 1 – 29, 1997.

[88] F. Schadd, S. Bakkes, and P. Sprock. Opponent modeling in real-time strategy
games. In 8th International Conference on Intelligence Games and Simulation, vol-
ume GAMEON-NA,2007, pages 61 – 68, 2007.

[89] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron. A world
championship calibre checkers program. In Artificial Intelligence, volume 53, pages
273 – 290, 1992.

[90] M. Schoenauer and Z. Michalewicz. Evolutionary computation: An introduction. In
Control and Cybernetics, volume 26, pages 307 – 338, 1997.

[91] C. R. Schwenk. The essence of strategic decision making. D.C. Heath and Company,
1988.

[92] C. R. Schwenk. Strategic decision making. In Journal of Management, volume 21,
pages 471 – 493, 1995.

[93] B. Scott. AI game programming wisdom. In S. Rabin, editor, The Illusion of Intel-

ligence, pages 16 – 20. Charles River Media, 2002.

[94] W. E. Spangler. The role of artificial intelligence in understanding the strategic
decision-making process. In IEEE Transactions of Knowledge and Data Engineer-

ing, volume 3, pages 149 – 159, 1991.

[95] P. Spronck. Adaptive Game AI. PhD thesis, Maastricht University, 2005.

152

[96] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma. Adaptive game AI
with dynamic scripting. In Machine Learning, volume 63, pages 217 – 248, 2006.

[97] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma. Online adaptation of computer
game opponent AI. In Proceedings of the 15th Belgium-Netherlands Conference on

Artificial Intelligence, volume 2003, pages 291 – 298, 2003.

[98] D. Sudharshan. Marketing Strategy. Relationships, Offerings, Timing & Resource

Allocation. Prentice Hall, 1995.

[99] R. S. Sutton. Learning to predict by the methods of temporal differences. In Machine

Learning, volume 3, pages 9 – 44, 1988.

[100] D. J. Trump and T. Schwartz. Trump, The Art of the Deal. Random House, New
York, 1987.

[101] A. Turing. Computing machinery and intelligence. In MIND, volume LIX, pages
433 – 460, 1950.

[102] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

[103] L. X. Wang. Adaptive Fuzzy Systems and Control – Design and Stability Analysis.
Prentice Hall, 1994.

[104] H. Xie, M. Zhang, and P. Andreae. An analysis of constructive crossover and se-
lection pressure in genetic programming. In Genetic and Evolutionary Computation

Conference (GECCO’07), volume 2, pages 1739 – 1746, 2007.

[105] L. Zadeh. Fuzzy sets. In Information and Control, volume 8, pages 338 – 353, 1965.

153

by the sample size (r) taken from the

from

To whom it may concern,

The following provides information regarding the changes made to address the examiner's

comments in accordance with my supervisor and head of school.

Regards,

Phillipa Avery

To address the concerns of Kenneth De .Tong, the following changes were made.

The title was changed to represent the specific game of TEMPO.

The justification of parameter choices made has been addressed in two ways. Firstly, a

theoretical description of the domain was added to the coevolutionary background section.

Changes made have been highlighted with italics.

As with the EA, there are a number of variations that exist on the basic algorithm. There can
be numerous populations/species, which can change the way individuals are evaluated.
Coevolution can also be used to find solutions through cooperation instead of competition,
where individuals are evaluated on how well they form a complete solution. For example, De
.Tong and Potter [40, 83] describe a technique thaI coevolves a complex structure by
decomposing the structure into substructures, and assigning a specics for each substructure.
The species are then combined through cooperative coevolution to find a complete structure.

As the purpose of coevolution is to compete against the opposition species, the evaluation
stage of the algorithm becomes an important factor. With EAs the correct design of the
evaluation function is crucial to provide a useful outcome, and it is no diffirent with
coevolution. In coevolution on a general level, the fitness of an individual should be
determined by how well they do at the task at hand against the opposition population. One of
the key factors here is the measurement against the opposition species. The manner of
selecting opposition individuals can affict the performance of the evaluation. Rosin and
Belew recognized this restraint in [87J, and suggested techniques that select from the
opposition population using random selection, best of generation selection and competitive

fitness sharing selection. Bull [23J also evaluates the use of a roulette wheel style of selection
for evaluation. Theoretically, any number of different methods of selection could be used
depending on the desired outcome and problem at hand.

The quality of the I!l'aluation function is also affected
opposition species. To truly measure the effectiveness of an individual, it should theoretically
be played against all opposition individuals to assign afitness. However, often this is not a
realistic task due to processing requirements, and restricted selection from the opposition
must be performed. If the selection is too restricted however, the evolution could suffer
an insufficient view of the opposition solution space, and adaptation to the opposition species

mechanism might

could be hampered. Ideally, a compromise between processing time and evaluation
performance should be found.

Another factor to affect coevolutionary algorithm is that of cycling orforgetting. As
mentioned before, by incorporating more than one species in the evolutionary process, the
different species affect the fitness landscapes of their opponents. 1bis works as follows:
suppose one population develops a strategy that works against an opposition, that strategy
should then spread throughout the population. The only way the other species can compete is
to focus on beating that strategy. Thus, the focus of coevolution is to beat the other species'
current winning solution, not find an overall optimal solution (if one even exists). In
problems where an evaluation function for an optimal solution can be difficult to define, this
can be a distinct advantage. However, this process can also lead to stagnation in the adaptive
process as the species begin to cycle solutions.

Coevolutionary learning happens at a species level, and the individuals that are not
performing competitively are phased out. As a result, individuals that were at one point
competitive, but have been countered by an opposing species, are subsequently left behind.
At some future stage in the coevolution these individuals may once again become good
strategies, and must be 're-invented' by the coevolutionary process. This cycling behaviour in
conjunction with the way the fItness landscape of one species chases the other species' form
the Red Queen effect [33]. The Red Queen is a character from Lewis Carroll's Through The
Looking Glass, who was constantly running and never getting anywhere, as the surrounding
landscape was keeping up with her.

As mentioned, coevolution is ideal for problems where the optimal can be hard to define.
This concept is a perfect application for the creation of self learned computer players for
simultaneous garnes. Defining an evaluation function to fmd 'the' optimal player for this is
near impossible, as there is no real measurement to use. By utilizing coevolution however,
the players are evaluated on how well they learn play, and players with good strategies are
allowed to emerge. They are encouraged to find wirming strategies by simply playing against
another population of individuals that are doing the same thing.

To address the justification of used parameters, the following was added/changed in the
approach chapter:

After the initialization, the individuals are evaluated against the other population. The basic
system applies the following evaluation technique (with modifications introduced later). We
iterate over each population, with each individual played against r randomly chosen
individuals from the opposition population. The random selection mechanism was carried
over from the research by Johnson et. al., and it is possible that a different
be more effective. For the purposes of this research however it is sufficient, and further
experiments on the matter are outside the scope of our work. For most of our experiments we
used a sample size of r=20. Through experimentation we found that this size gave us enough
sample scope for the population size of J00 that was used in the experiments.

and then in the memory chapter:

Our initial experiments with this system involved implementing the memory structure as
described and randomly selecting individuals to play against. To evaluate the fitness, a
number of games were played against the opposition (r _1 =20), re-adjusting the evaluation
afier each game. To include this strategy of evolving against the memory, we then provided a
mechanism for playing an additional number of games (r _2=20) against the memory, and
adjusted the fitness of the current individuals in the same manner as that for the opposition
games. The additional sample size of r _2=20 was chosen to match the opposition sample
size, and minimize the impact of the memory on the performance.

for the use of ten runs in the experiments:

All experiments performed in this section have the same experimental settings, except when
stated otherwise. Due to the stochastic nature of the experiments, we conducted each
experiment over ten separate runs, all with the same environmental and evolutionary
configuration. Due to the time and hardware restraints ten runs was consistently used for all
experiments. However, we did experimentally run more than ten times, and there was not a
distinctly noticeable difference. Less than ten runs did however have a greater impact.

Finally, we included additional graphs representing the standard deviation on either side of
the average results. We used a Bezier curves function to smooth the average so the trends
were more visible. We then included the standard deviation + and - on the same graph. This
hence provides a mueh better way to read the results, with the inclusion of a confidence
interval.

The use of memory with multi-objective optimization was used as reference when deciding
what direction to take with the research. However, it was not directly connected v,ith the
research presented in the thesis, and was not included in the literat ure reviewlbackground
chapter for this reason. We stated in the background chapter that we were restricting the
description to the use of memory in coevolution, and focused on the techniques used, not the
domains they were applied to. If we were to include a review of all the research into the
addition of memory for the different domains and areas outside coevolution, it would greatly
inerease the length of the review without much gain to the reader. From our review of the
current research, there has not been any unique methods using memory and coevolution with
multi-objective research. Most used memory structure variations from the research described
in the literature review on the subject. However, to clarify this point, the following paragraph
in the literature review was changed accordingly:

This section discusses some of the memory solutions that have been developed specifically for
coevolution. There has also been work on the addition of memory to EAs for use in many

from that of EAs.

domains such as game playing and multi-objective optimization. In such domains, it can be
important to retain an external memory stnlcture to store past information. Extensions to the
EA exist for the initialization and supplementing of individuals [72], and using the memory to
guide the search. There has been a lot of work on this subject, part of which is reviewed by
Branke in [22J. Branke defines two forms of memory. The first is implicit memory, where the
individuals themselves have some form of redundant information forming a long term
memory. The second category is explicit memory, where there is a storage mechanism used to
reintroduce previously learnt information at a later stage of evolution (e.g. replacing weaker
individuals with previously good ones, or initializing an EA with individuals from a similar
previous EA run). The remainder of this section however, focuses on the specific research of
memory in coevolution, as the purpose and outcomes of its use differ

Subsequently, we believe the additions made for these concerns also addresses the concerns

put forth by Marc Schoenauer. The use of the Bezier curves representation throughout the

results addresses his third point. Additionally the smoothed results makes the changes in

results more apparent addressing his second point.

The suggestion of using the evolved players fighting against each other as a performance

measure is confusing, as this is the precise way that coevolution works. Plotting the graph of

this measure would provide no measurable improvement, as it changes with the opposition

population each generation. It is for this exact reason that Johnson et. al. (whose research this

work was based upon) chose to use a 'expert' as a measurement technique. The use of a static

mechanism as a measurement metric was also addressed by other research which has been

mentioned in the literature review.

	TITLE: Coevolving a Computer Player for Resource Allocation Games - Using the game of TEMPO as a test space
	Contents
	Abstract
	Declaration
	Acknowledgements
	List of Tables
	List of Figures
	List of publications

	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 The game of TEMPO
	Chapter 4 Literature Review
	Chapter 5 The TEMPO Coevolutionary System
	Chapter 6 Short and Long Term Memory in Coevolution
	Chapter 7 Intelligence and Counter Intelligence
	Chapter 8 Adapting to Human game-play
	Chapter 9 Conclusions and FutureWork
	Bibliography
	Addendum

