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Abstract

In many occupations such as welding, workers are exposed to a combination of several
hazards. One of these is the exposure to fumes, particularly those produced from
welding processes involving electrical arcs. The inhalation of welding fume can cause
both temporary side effects and longer term health complications. These health effects
lower the productivity and quality of life of the welder which in turn costs the employer

through reduced worker productivity and potential compensation.

Current techniques of fume measurement determine bulk quantity of formation without
regard to fume plume dissipation into the work place. While some research has
been conducted into dissipation, measurements near the welding arc have proven
difficult and either numerical or salt water modelling have been used. Such modelling
aims to replicate the welding process but is ultimately detached from the actual
welding variables involved and does not provide data on fume concentration. Since
welder exposure is determined by both fume concentration and dissipation into the
workplace measurement techniques which could provide both would be considered
highly desirable.

In the field of combustion research a number of different laser techniques are used
to image soot particulates in flames. These techniques include laser scattering, laser
extinction and laser induced incandescence. As yet none of these techniques have found
application to the measurement or imaging of particulate matter in arc welding fume
plumes. In the work presented here these techniques have been investigated for welding

fume measurements of concentration and dissipation.

Laser scattering was used successfully to image the fume plume close to the welding
arc of actual gas metal and flux cored arc welding processes. The resulting images
provided relative fume concentration maps that were quantified when combined with
measurements from laser extinction. Laser induced incandescence, while successfully
applied to the imaging of soot concentration in flames, was found to have limited

capabilities when applied to welding fume particulates.

Fume box measurements were undertaken for GMAW and FCAW to determine actual
FFR in response to changes in welding variables. The results were in general agreement

with those obtained from laser techniques and referenced in literature.

The fume plume images collected from in-situ laser measurements were compared with

those from previous modelling of plume shape, radial spread and virtual origin.

Laser diagnostics demonstrated a number of capabilities not available with traditional
fume measurements. The findings of this research provide unique insight into fume
dissipation. Such findings can be applied to minimise the quantity of fume, the

transmission to the breathing zone and ultimately worker exposure in the workplace.
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