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Abstract

Meshes and hypercubes are two most important communication and computation struc-

tures used in parallel computing. Network embedding problems for meshes and hyper-

cubes on traditional network architectures have been intensively studied during the past

years. With the emergence of new network architectures, the traditional network em-

bedding results are not enough to solve the new requirements. The main objective of

this thesis is to design efficient network embedding schemes for realizing meshes and

hypercubes on a group of future network architectures. This thesis is organized into two

parts.

The first part focuses on embedding meshes/tori on a group of double-loop networks

by evaluating the traditional embedding metrics, since double-loop networks have been

intensively studied and proven to have many desirable properties for future network ar-

chitecture. We propose a novel tessellation approach to partition the geometric plane

of double-loop networks into a set of parallelogram tiles, called P-shape. Based on

the characteristics of P-shape, we design a simple embedding scheme, namely P-shape

embedding, that embeds arbitrary-shape meshes and tori on double-loop networks in a

systematic way. A main merit of P-shape embedding is that a large fraction of embed-

ded mesh/torus edges have edge dilation 1, resulting in a low average dilation. These

are the first results, to our knowledge, on embedding meshes and tori on general double-

loop networks which is of great significance due to the popularity of these architectures.

Our P-shape construction bridges between regular graphs and double-loop networks,

and provides a powerful tool for studying the topological properties of double-loop net-

works.

In the second part, we study efficient embedding schemes for realizing hypercubes

on a group of array-based WDM optical networks by analyzing the new embedding met-

ric of wavelength requirement, as WDM optical networking is becoming a promising

technology for deployment in many applications in advanced telecommunication and

parallel computing. We first design routing and wavelength assignments of both bidi-

rectional and unidirectional hypercubes on WDM optical linear arrays, rings, meshes
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and tori with the consideration of communication directions. For each case, we iden-

tify a lower bound on the number of wavelengths required, and design the embedding

scheme and wavelength assignment algorithm that uses a provably near-optimal number

of wavelengths. To further reduce the wavelength requirement, we extend the results

to WDM ring networks with additional links, namely WDM chordal rings. Based on

our proposed embedding schemes, we provide the analysis of chord length with optimal

number of wavelengths to realize hypercubes on 3-degree and 4-degree WDM chordal

rings. Furthermore, we propose an embedding scheme for realizing dimensional hyper-

cubes on WDM optical arrays by considering the hypercubes dimension by dimension,

called lattice embedding, instead of embedding hypercubes with all dimensions. Based

on lattice embedding, the number of wavelengths required to realize dimensional hyper-

cube on WDM arrays can been significantly reduced compared to the previous results.

By our embedding schemes, many communications and computations, originally de-

signed based on hypercubes, can be directly implemented in WDM optical networks,

and the wavelength requirements can be easily derived using our obtained results.

Keywords: Network Embedding, Parallel Computing, Optical Networks, Mesh,

Hypercube, Double-loop Networks
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Chapter 1

Introduction

Network embedding is widely used as a method for simulations between networks of

different topological structures. The concept of network embedding has proven to be a

successful one in understanding relationships between different architectures [76][111]

[80]. This chapter introduces the concept of network embedding, and provides the pre-

liminary knowledge used in this thesis.

1.1 Network Embedding

1.1.1 Definitions and Embedding Metrics for Network Embedding

One of the essential issues in evaluating a network is to study the graph embedding

problem, which is a technique in graph theory [124]. Graph embedding has applications

in a wide variety of computational situations [125] [71] [58] [98]. For example, the flow

of information in a parallel algorithm defines a program graph, and embedding this into

a networks is to organize the computation on the networks. Other problems that can be

formulated as graph embedding problems are laying out circuits on chips, representing

data structures in computer memory, and finding efficient program control structures.

Network embedding has many important applications in parallel processing, and

provides the theoretical foundation for evaluating the relative performance of two dif-

ferent classes of interconnection networks [80] [71]. Networks are often organized into

15
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various architectures, which can be represented as graphs. Network embedding in par-

allel computing concerns mapping the nodes of a guest graph G, which represents the

communication requirement of a parallel algorithm, to the nodes of a host graph H ,

which models a static network. That is, the nodes in the guest graph represent the

processes of a parallel task and the edges represent the need for data communication

between the corresponding nodes.

Network embedding of one interconnection network into another is a very important

issue in the design and analysis of parallel architectures [76]. Processor utilization and

communication time are two important considerations in selecting data structures and

algorithms for architectures assembled out of a large number of processors. Communi-

cation is one of the most expensive resources in such an architecture, and its efficient

utilization is imperative [70]. In studying the efficient utilization of the communication

system, the communication needs of the computations are modeled by a graph, which is

usually referred to as the guest graph. This graph discloses the interaction between the

data elements of the computation. Similarly, the topology of the architecture is captured

by a host graph. Each vertex represents a processor with local storage and each edge a

communication link between processors. The guest graph is embedded in the host graph

for execution.

Through network embedding, the algorithms originally developed for one architec-

ture can be directly mapped to another architecture. If the properties and structure of the

underlying graph are used effectively, the computation and communication speeds can

be significantly improved. There is much motivation behind embedding other parallel

architectures [64]. First, efficient parallel algorithms may exist for some architectures

which suit the needs of these algorithms perfectly, and we may wish to implement these

algorithms on other network architectures. Second, the proof of embedding for an ar-

chitecture shows that all algorithms should be implemented in new architecture with

a level of efficiency determined only by the cost associated with the embedding. Fur-

thermore, since the embedded architecture is usually easier to understand and visualize,

it is often easier to design algorithms for the simpler architecture. In this sense, the

embedded architecture can be considered as an abstraction from the guest architecture,
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where the irrelevant connections are masked out. Finally, embedded architectures can

be considered as parallel data structures for parallel architectures. Besides the inherent

mathematical interest for network embedding problems, motivation for this study is de-

rived from many concerns of computer science that can be effectively modeled by the

following graph theoretical abstraction [46].

An embedding of a graph G = (VG, EG), called guest graph, into a graph H =

(VH , EH), called host graph, is a mapping f : G → H consisting of two mappings

fV : VG → VH and fE : EG → PH , where PH denotes the set of paths in the graph H .

The mapping fE maps edge (u, v) ∈ EG to a path p ∈ PG connecting fV (u) and fV (v)

[67].

Using an embedding of guest network G into host network H , one can automatically

transform any algorithms developed for a multiprocessor system connected by G into an

algorithm for the multiprocessor system connected by H . Efficiency of an embedding

is commonly measured by expansion, dilation and congestion [80]. These embedding

parameters, defined as follows [68] [67] [46], strongly influence the effectiveness of the

simulation.

• Expansion of the embedding is |VG|/|VH |, which is the ratio of the number of

nodes in the guest graph compared to the number of nodes in the host graph.

• Edge dilation of edge eG ∈ EG under an embedding f is the length of the path

fE(eG), where the length of a path p is the number of its edges. Let E[fE(eG)]

denote the set of edges in the path fE(eG). The dilation of edge eG ∈ EG under

an embedding f is the length of the path fE(eG): dilf (eG) =| E[fE(eG)] |.

• Dilation of an embedding f is the maximum dilation of an edge in G: dilf (G) =

max∀eG∈EG
dilf (eG).

• Average dilation has been used as a standard performance metric in practical

evaluations of embedding [35], and represents the average length of an edge

in guest network corresponding to a link in the host networks: adilf (G) =

1
|EG|

∑
∀eG∈EG

dilf (eG).
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• Edge Congestion of an edge eH ∈ EH , cong(eH), is the number of paths in

{fE(eG) | eG ∈ EG} that contains eH .

• Congestion of an embedding is the maximum congestion over all edges in H .

The delay is caused by the sum of dilation and congestion [80]. Dilation is the max-

imum distance in H between adjacent vertices (processes) in G and congestion is the

maximum load on the edges (communication links) of H . A good mapping is said to

exist when adjacent processors in the guest network are mapped to reasonably close

processors in the host network (i.e. small dilation). Furthermore, the paths between

adjacent processors in the guest network are chosen in such a way that the congestion

at each host node and across each host edge is moderately small (i.e. small edge con-

gestion). In the case of mapping guest networks onto smaller hosts, the processors of

the host have to be assigned to about the same number of processes from the guest (i.e.

small expansion). The general goal of graph embeddings is, given a guest graph G

and a host graph H , to find an embedding function f that minimizes the dilation and

congestion.

Network embedding problems on different types of topologies have been studied on

various architectures over the past few decades. Embeddings of networks such as rings,

meshes, complete trees, binomial trees, pyramids, X-trees, hypercubes and so on, have

been investigated by numerous researchers. Most of the results are surveyed in [37],

[80], [77] and [76]. Some embedding results are shown as follows. In [62], embed-

dings of complete binary trees into butterfly networks were studied. In [6], embedding

of an arbitrary binary tree into the star graph was designed. The problem of embedding

complete binary trees in product graphs was discussed in [44]. In [5], the embedding

for fault-tolerant capabilities of networks whose underlying topology is k-array n-cube

was studied. In [94], Monien demonstrated how to embed an arbitrary binary tree with

dilation 11 and optimal expansion into an X-tree. In [66], it is proven that the com-

plete binary tree can be embedded into the square grid of the same size with almost

optimal dilation. In [13], the embedding of caterpillars, which is a special type of trees

where vertices of degree 3 or greater lie on a single path, into the hypercube was exam-
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ined. In [78], it is shown that large cube-connected-cycles and butterfly networks can be

simulated very efficiently on smaller ones. In [111], the general relation, bounds and in-

equalities were discussed for the studied parameters and their special cases stressing the

similarity and duality between them instead of discussing the results on specific graphs.

1.1.2 Embeddings of Meshes and Hypercubes

Meshes and Hypercubes are two of the most important and popular structures used in

parallel computing. One of the biggest reasons for the popularity of meshes and hyper-

cubes is their ability to efficiently embed a large number of parallel structures.

1.1.2.1 Meshes

Mesh is the best-known and easiest-to-build interconnection network for parallel com-

puters, as it enjoys efficient VLSI layouts, simplicity of topology, and a large number

of parallel algorithms that can be efficiently executed on mesh. For example, most of

the problems, which utilize parallel processing, use n-dimensional matrices as one of

the primary data structure. This is especially true in the area of numerical analysis,

image processing, computer vision and pattern recognition. These applications require

operations which utilize data from the point of view of the mesh topology, and most

of the matrix algorithms use a mesh connected abstraction. Thus efficient embedding

of meshes is an important issue of any general purpose interconnection network [110].

Figure 1.1 shows a 2-dimensional 4× 4 mesh.

Figure 1.1: A 4× 4 mesh

Many results have been obtained for embedding of meshes. In [119], [47], [92] and

[45], embeddings from 2-dimensional meshes into other 2-dimensional meshes were
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discussed. Embeddings from 2-dimensional meshes into hypercubes were studied in

[112] [86], and 3-dimensional meshes into hypercubes in [113] and [26]. In [96], 3-

dimensional meshes embedded in hypercubes with link and/or node failures were inves-

tigated. In [69], embeddings of multidimensional meshes into minimal Boolean cubes

were addressed by graph decomposition. In [46], many to one embeddings from meshes

into cylinders, tori, and hypercubes were studied. In [41] and [49], embeddings of

meshes in crossed cubes, which are important variants of hypercubes, were designed

with dilation 1. In [123], embedding of meshes in Mobius cubes was proposed, as Mo-

bius cubes form a class of hypercube variants. In [110], embedding algorithms were de-

signed for mapping n-dimensional meshes onto a star graph of degree n with expansion

1 and dilation 3; and it highlighted that an n-degree star graph can efficiently simulate an

n-dimensional mesh. In [103], a class of algorithms were developed for mesh structures

embedded in rotator graphs, which were proposed as an alternative to the star and pan-

cake graphs for multiprocessor interconnection networks. In [50], simple and snake-like

embeddings were designed for meshes and tori networks onto 4 degree chordal rings. In

the first part of this thesis, the embeddings for 2-dimensional meshes/tori on a family of

double-loop networks are systematically studied, in such a way that a large fraction of

embedded mesh/torus edges have edge dilation 1 with a low average dilation.

1.1.2.2 Hypercubes

Figure 1.2: An 8-node hypercube

Hypercube structure is a widely used and well-known interconnection model since

it possesses many attractive properties [80][114]. The n-dimensional hypercube Hn is a

graph with 2n nodes, each node with a distinct binary string x1x2...xn on the set {0, 1}.
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Two nodes are linked by an edge if and only if their strings differ in exactly one bit.

Hypercube features low diameter and high connectivity, as it requires O(nlogn) wires

to interconnect O(n) processors, and has a diameter of O(logn). Figure 1.2 shows a

3-dimensional hypercube.

Hypercube is one of the most flexible and powerful parallel architectures, which

is well-suited for both special-purpose and general-purpose tasks, and can efficiently

simulate any other network of the same size [80]. Furthermore, it has been shown to

support an extremely large and rich class of algorithms during the last two decades.

Specifically, a large number of parallel algorithms can be directly implemented on the

hypercube without significantly affecting the number of processors or running time.

Hence, hypercube is an excellent and popular choice for the traditional architecture of a

multi-purpose parallel machine. In [80], the properties and the usefulness of hypercube

have been intensively researched. It is shown that hypercube can efficiently simulate

all arrays, binary tree, and meshes of trees. In fact, the hypercube contains or nearly

contains almost every network yet discovered for parallel computation. Moreover, it

has been shown that hypercubes offer very efficient non-blocking solutions for all-to-all

broadcast operations, which would be very attractive for control plane implementation.

Together with the hypercube, an interesting and powerful class of networks is commonly

known as hypercubic networks. The most popular derivative networks are the butterfly,

shuffle-exchange graph, de Bruijin graph, Benes network, and cube-connected-cycles

(CCC). Another reason that hypercubic networks are so commonly used in parallel ma-

chines is that they can efficiently simulate any bounded-degree communication network.

This is because hypercubic networks can solve arbitrary message-routing problems in

O(logN) steps [80].

Hypercube is one of the most versatile and efficient interconnection networks yet

discovered for parallel computation. One of the biggest reasons for the popularity of the

hypercube is its ability to efficiently embed many parallel architectures. The embedding

of other graphs into hypercube has been given much attention during the past decade

because it has many applications on parallel computers of hypercube structure [24][25].

Embeddings of meshes into hypercubes have been studied in [24] and [25]. Embed-
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dings of trees into hypercubes have been discussed in [67], [63], [15] and [16]. In [130],

fault-tolerant cycle embeddings of hypercubes were designed. In [12], embeddings of

star networks into hypercubes were investigated. In [25], an embedding scheme for an

infinite class of two-dimensional grids embedded in hypercubes was developed. In [65],

a new embedding method, based on matrix transformations, was proposed for optimally

embedding hierarchical hypercube networks into hypercubes. In [68] and [70], embed-

ding hyperpyramids into hypercubes was studied. On the other hand, the embeddings

of hypercubes on other networks have also been of great interest. In [56], embedding

hypercubes into pancake, cycle prefix and substring reversal networks were studied. In

[41] and [49], the embedding problems on crossed cube, which is an important variant

of the hypercube, have been analyzed in recent years. In [14], the problem of embed-

ding the n-dimensional hypercube into a rectangular grid with 2n vertices was studied

to minimize the congestion. Other related research includes embedding hypercubes on

de Bruijn graphs [2], Cayley graphs [93].

1.1.3 Challenges for Embedding on Double-loop Networks

Loop networks were studied in the literature as well as used in practical applications

(Illiac IV, 802.5 token ring, the fiber distributed data interface (FDDI) network, the dis-

tributed queue dual bus (DQDB) with redundancy, SILK rings, and synchronous optical

network (SONET) ring)[102][39]. Double loop networks are extensions of the ring net-

works and are widely used in the design and implementation of local area networks and

parallel processing architectures [73]. In the design and implementation of local area

networks, the ring topology has been used frequently due to its simplicity, expendabil-

ity and regularity. The switching mechanism at each node can easily be implemented

using building blocks of the same specification. Moreover, a token or message can be

passed over the ring in a uniform way. However, the ring network has a low degree of

reliability and hence very high vulnerability. More specifically, the connectivity of an

unidirectional ring network of n nodes is 1 since the breakdown of any node i would

disable any directed path from node i − 1 to node i + 1 taken modulo n. Another way
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of measuring the performance is the maximum distance among any pair of nodes. A

large distance would contribute to the transmission delay between these two nodes. One

common way to improve the performance of a network is to increase its connectivity

and decrease its diameter. That can be done by adding links to the network. A popular

variation of the ring network is the double-loop network [87].

Double-loop networks have become popular in the design of computer networks

and distributed memory multiprocessor systems [61]. Many researchers are interested

in the double-loop networks (see [73], [28], [27], [61], [87], [102], [36], [121], [39]

and [128]), which have been researched and proven to have many desirable properties

for future network architecture such as scalability, fixed node degree, node symmetry

(i.e. vertex transitivity), regularity, reasonable diameter, and reliability. The diameter

problem on double-loop networks was studied in [32] and [3]. The message routing

and fault-tolerant message routing problems on double-loop networks were discussed

in [40], [36], [61], [87] and [102]. The permutation routing problem on double-loop

networks was discussed in [39]. In [121], the fault tolerant embedding of rings on

double-loop networks was studied, and the hamiltonian cycle problem on double-loop

networks with exactly one faulty element was solved.

Although double-loop networks are widely used in the design and implementation

of local area networks and parallel processing architectures [73], little work has been

done on the embedding problems of double-loop networks due to the complexity of

double-loop networks. As a large number of parallel algorithms, originally designed on

existing structures, can be applied to double-loop networks by embedding techniques,

it is of great practical significance to investigate the embedding results on double-loop

networks. Although meshes and double-loop networks have all been widely studied and

used in parallel computing, the embedding for meshes and tori on double-loop networks

was not well studied. Since meshes have the same node degree with double-loop net-

works, it is of great theoretical interest to find how meshes and tori can be embedded

on double-loop networks from the topological point of view. Therefore, the problem of

embedding meshes on double-loop networks has both practical and theoretical signifi-

cance.



24

In [50], simple and snake-like embeddings of meshes and tori networks onto degree-

four chordal rings, which is equivalent to a special case of double-loop networks, were

designed. However, the embedding method is limited and its performance is not satis-

factory because the average dilation becomes prohibitively large when the system size

increases. In this thesis, we propose an efficient scheme to embed meshes on double-

loop networks using a novel tessellation approach to partition the geometric plane of

double-loop networks into a set of parallelogram tiles, called P-shape, which is a pow-

erful tool to illustrate the embedding on double-loop networks. As a bridge between

regular graphs and double-loop networks, P-shape provides a new way of geometrical

representation of double-loop networks.

1.2 Network Embedding on Optical Networks

1.2.1 WDM Optical Networks

1.2.1.1 WDM Technology and RWA Problem

Optical networks offer the possibility of interconnecting hundreds to thousands of users,

covering local to wide areas, and providing capacities exceeding substantially those of

conventional technologies [8]. Traditional networks use the electrical form to switch

signals which can be modulated electronically at a maximum bit rate of the order of 10

Gbps, while the optical fiber bandwidth is about 10 Tbps, thus several orders of magni-

tude higher. Optics is thus emerging as a key technology in state of the art communica-

tion networks and is expected to dominate many applications, such as video conferenc-

ing, scientific visualization and real-time medical imaging, highspeed super-computing

and distributed computing.

Multi-wavelength communication, which is implemented through Wavelength Di-

vision Multiplexing (WDM), has become a promising technology for many emerging

networking and parallel/distributed computing applications because of its huge band-

width [34][138]. In WDM optical networks, the bandwidth in optical fiber is partitioned

into multiple data channels, in which different stream of data can be transmitted simul-
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Figure 1.3: A WDM network consisting of wavelength routers interconnected by 
pointto-point fiber-optic links [1] 
 
 
taneously using different wavelengths. Once the data stream has been transmitted in 

the form of light, it continues without conversion to electronic form until it reaches its 

destination. In general, an optical WDM network consists of routing nodes 

interconnected by point-to-point fiber links (Figure 1.3 [1]), which can support a 

certain number of wavelengths. Each wavelength can carry a separate stream of data. 

To efficiently utilize the bandwidth resources and to eliminate the high cost and 

bottleneck caused by optoelectrical conversion and processing at intermediate nodes, 

end-to-end lightpaths are usually set up between each pair of source-destination 

nodes. A connection or a lightpath in aWDMnetwork is an ordered pair of nodes (x; 

y) corresponding to transmission of a packet from source x to destination y. For a 

packet transmission, a transmitter at the source must be tuned to the same wavelength 

as the receiver at the destination for the duration of the packet transmission and no 

data stream collision may occur at any fiber. 

 
Optical bandwidth is the number of available wavelengths, and the wavelength 

resource is very limited. State of the art technology allows several hundreds of 

wavelengths per fiber in the laboratory, while the available wavelengths are much less 

in manufacturing. However, there is no anticipation for dramatic progress in the near 

future. Thus, one of the most important issues to be solved in WDM optical networks 

is to establish communication between pairs of nodes so that the total number of 

wave- 
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lengths used is minimized. The resulting problem is referred to as Routing and Wave-

length Assignment (RWA) [134], which is a key problem for increasing the efficiency of

wavelength-routed all-optical networks. If the number of wavelengths required to realize

an all-optical process in one round is greater than the available number of wavelengths,

then several all-optical rounds are needed [8]. Routing and Wavelength Assignment

problem is defined below:

Given a physical network structure and the required connections, the problem of

RWA is to select a suitable path and wavelength among many possible choices for each

connection so that no two paths sharing a link are assigned the same wavelength. There-

fore, routing and wavelength assignment for the connections are subject to the following

two constraints [134]:

1. Wavelength continuity constraint: a lightpath must use the same wavelength on

all the links along its path from source to destination node.

2. Distinct wavelength constraint: all lightpaths using the same link (fiber) must be

assigned distinct wavelengths.

As illustrated in Figure 1.3 [1], a connection between node A and node C is carried

on wavelength λ1, but a connection between node B and node D must be carried on

different wavelength λ2.

Due to these two constraints, traditional embedding techniques, which pay attention

to the congestion of the embedding, are not sufficient to minimize the number of wave-

lengths required to realize communication patterns on WDM optical networks. While

the number of wavelengths in a real network is very limited, the objective of RWA is

to minimize the number of wavelengths for realizing a communication requirement by

taking into consideration both routing options and wavelength assignment options. Nu-

merous studies have been conducted on the RWA problem [34][134]. Several RWA

schemes have been proposed that differ in the assumptions on the traffic pattern, avail-

ability of the wavelength converters, and desired objectives. The traffic assumptions

generally fall into one of two categories: static or dynamic. In static RWA models, it

is assumed that the demand is fixed and known, i.e. all the lightpaths that are to be

set up in the network are known beforehand. Even in the simpler static case, typical
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proposed formulations for optimal lightpath establishment turn out to be difficult mixed

integer linear programs. In particular, the optimal static lightpath establishment problem

without wavelength converters was proven to be NP-complete in [115] by showing the

equivalence of the problem to the graph-coloring problem.

1.2.1.2 Optical Architectures for Parallel Computing

Current development activities indicate that WDM network will be deployed mainly

as a backbone network for large regions, e.g. for nationwide or global. A number of

experimental prototypes have been and are currently being developed, deployed, and

tested mainly by telecommunication providers including a plethora of startup compa-

nies. It is anticipated that the next generation of the Internet will employ WDM-based

optical backbones. As optics becomes a major networking media in all communications

needs, optical interconnects will inevitably play an important role in interconnecting

processors in parallel and distributed computing systems [131]. Currently, copper wires

are the most cost effective and reliable interconnect in parallel machines. However, as

machines grow more powerful, wire density becomes critical making fiber possible al-

ternatives due to their small wire size. On a single optical fiber, information/data can be

transmitted concurrently, and over 1000 high bandwidth (100-200 Mb/s) independent

channels or busses can be supported in parallel. Fiber links allow a number of high

speed serial links to replace a large number of electrical lines, and the use of fiber is

space saving.

Advances in optical technologies have made it possible to implement optical inter-

connections in future massively parallel processing systems [82][88]. There are many

desirable characteristics of optical interconnects, such as high speed, high bandwidth,

high reliability, longer interconnection lengths, low power requirements, and possibly a

significant reduction in design complexity through the use of multiple access techniques

and wavelength division multiplexing techniques. The effectiveness of optical intercon-

nects has been extensively examined [88][42][83]. As mentioned in [91], all-optical

technology is an attractive way to support the ever-growing demand of fast interconnec-

tions in multiprocessor systems. All-optical communication benefits from a number of
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good characteristics such as no optoelectronic conversion, high noise immunity, and low

latency. Moreover, WDM mechanism theoretically enables an aggregate system capac-

ity of several terabits per second on just one physical fiber, and is a promising alternative

to multiple bus and fixed topology systems with respect to scalability, modularity, and

reconfigurability [17].

Parallel processing using WDM optical interconnections poses new challenges. New

system configurations need to be designed, data communication schemes based on new

resource metrics need to be investigated, and algorithms for a wide variety of applica-

tions need to be developed under the novel computation models using optical intercon-

nections. The parallel transmission characteristic offered by WDM optical technology

provides the means for implementing parallel communication among a large number of

processors. As mentioned in [17], using WDM-based networks for communication has

many advantages over the conventional electric bus and interconnect, as outlined below.

• Bandwidth: The total usable bandwidth of a fiber can be multiplexed into approx-

imately 200 WDM channels, each operating at 1 gigabit per second.

• Scalability: Power loss on a common bus grows linearly with the number of pro-

cessors on that bus.

• Modularity: In most single-hop systems, a single node can be added to the net-

work at any time without redesigning the entire system. However, in most multi-

hop systems, this is not possible.

• Reliability: Optical fiber is an inherently low loss medium, and the length of fiber

needed for a multiprocessor interconnect is sufficiently small so that there is no

need for optical amplification.

• Arbitrary virtual topologies: By fixing the transmitters and receivers of each pro-

cessor to the proper wavelength, any virtual multihop topology may be created.

A WDM-based multiprocessor could even be divided into two or more subnets,

each used for independent computations.
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• Reconfigurability: The transmitters and receivers can be retuned dynamically at

the user or the operating system level, allowing the system to switch between

virtual topologies dynamically.

• Protocol transparency: Each channel may be operated independently and may use

a different protocol for communication. There is no fixed frame length or data

configuration requirement on the multiple channels in a WDM network.

• Muticasting: Broadcasting and multicsting are easily facilitated in any WDM

based interconnect.

Many studies have been conducted on optical interconnection network for parallel

computing. In [82], parallel computing using optical interconnections was discussed

from high-level architecture design and algorithmic points of view, and pointed out di-

rections for further research and development. In [23], an optical interconnection net-

work, Gemini, was designed for parallel processing. The following are three examples

of optical architectures proposed for parallel computing.

• Multiple Channel Architecture (MCA)

Multiple Channel Architecture (MCA)[126][137][101] was a proposed architec-

ture which uses fiber optic communications to overcome many of the problems

associated with interconnection networks. Multiple Channel Architecture (MCA)

is an optical interconnection strategy for parallel processing. The architecture

seeks to exploit the high bandwidth available in optical communications by sup-

porting multiple virtual buses or selectable channel on a single fiber. Arbitrary

interconnection patterns and machine partitions can be emulated via appropriate

channel assignment.

• Hybrid Multiprocessing Using WDM Optical Fiber Interconnections

Hybrid multiprocessing using WDM optical fiber interconnections [22] is almost

similar to the MCA except that it uses receivers and transmitters tuned to fixed

frequencies rather than using of tunable components. The design of a wavelength
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division multiplexed fiber optic bus for multiprocessors allows both the shared

memory model and the distributed memory model to be supported efficiently.

Some of the engineering issues are also discussed in the design of WDM fiber

bus approaches for cutting the cost of the optical components.

• Spanning Multichannel Linked Hypercube (SMLH)

In [89], a new scalable interconnection topology called the Spanning Multichan-

nel Linked Hypercube (SMLH) was proposed along with an optical implemen-

tation methodology that combines both the advantages of free space optics with

those of wavelength division multiplexing techniques. The SMLH uses the hyper-

cube topology as a basic building block and connects such building blocks using

two-dimensional multichannel links. The SMLH topology supports many com-

munication patterns found in different classes of computation, such as bus-based,

mesh-based, and tree-based problems as well as hypercube-based problems.

However, optical technology is not yet as mature as conventional technology, and

most of these machines are still in their experimental stages and are not yet commercially

used. There are limits as to how sophisticated optical processing at each node can be

done [43]. Below are some limitations for the WDM-based multiprocessor.

• Cost: While optical fiber is relatively inexpensive, the optical components, such

as transmitters and receivers, are prohibitively expensive. As the technology im-

proves, and these devices become mass produced for local and metropolitan area

network use, they are expected to become affordable [17].

• Optical Storage: Optical media is more durable and less vulnerable to environ-

mental conditions. On the other hand, it offer lower storage capacities. One

important problem need to be effectively solved is light storage. A lot of light

storage techniques are still in experimental stage. With the development of new

effective storage methods, WDM-based multiprocessor architecture is expected to

replace the traditional multiprocessor architecture.
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Figure 1.4: Difference between congestion and RWA [133] 

 
 
1.2.2 Embedding from Logical Topology to Physical Topology 
 
The connectivity of the traffic pattern is represented by the logical topology, which is 

a graph consisting of the nodes in the network with an edge between two nodes if a 

connection is set up between the two nodes using some wavelength and path in the 

physical topology. The logical topology consists of the same set of nodes as the 

physical topology. The edges of the logical topology correspond to the set of 

lightpaths that are established over the physical topology. This model has been widely 

used in analysis the communication problems in optical networks [129][79][109]. A 

logical topology can be embedded into a physical topology by establishing logical 

connections. Two nonadjacent nodes in the host network can be connected by a 

lightpath to form a logically adjacent pair of nodes in the guest network. This problem 

of embedding a desired logical topology on a given physical topology (fiber network) 

has been formally stated in [95]. As optical fiber has a high transmission rate, the 

dilation of embedding is not that critical due to low latency. One of the most 

important metrics in optical network embedding is the number of wavelengths, as 

wavelength is the main resource in optical networks. 

 
In [8], graph problems arising from WDM in all-optical networks have been studied 

in the graph theory point of view. The optical network can be modeled as a directed 

graph G(V;E). Nodes in V are switches and edges in E are links. Given a network G 

and communication pattern G0, the congestion for embedding G0 in G is the minimum 
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among all the embedding schemes for maximum number of paths in G′ that use the

links in G. Let Cong(G′, G) denote the congestion of graph G′ embedded in graph G,

and λe(G
′, G) denote the number of wavelengths required for realizing communication

pattern of G′ in optical network G by embedding scheme e. The relevance between

congestion and the number of wavelengths is shown by the following lemma [8]:

Lemma 1. λe(G
′, G) ≥ Cong(G′, G).

In other words, to solve a given RWA problem, one has to use a number of wave-

lengths at least equal to the congestion of the embedding. In general, minimizing the

number of wavelengths is not the same problem as minimizing congestion of embed-

ding. In fact, RWA problem is much harder due to the further requirement of wave-

lengths assignment [8]. In order to obtain equality in Lemma 1, the optimal solution for

RWA is to find a routing and wavelength assignment scheme such that the equality is

achieved.

Traditional network embeddings that minimize the congestion for a given commu-

nication pattern are not adequate for minimizing the number of wavelengths (channels)

to realize the communication requirement [134]. The wavelength requirement is usually

larger than the congestion of network embedding. As shown in Figure 1.4, the conges-

tion of embedding the communications is 2, while the number of wavelengths required

is 3. To efficiently realize a logical topology in an optical network, both routing and

channel assignment options must be taken into consideration.

Much work concerning WDM networks is based on the static model [1] [11] [57]

[108] [99]. In this model, the route of each request is given and the problem is to find

the minimum number of wavelengths to satisfy a given request set. Since wavelength

converters are still expensive and difficult to implement, most of the literature on the

RWA problem considers networks without any wavelength converters. A summary of

graph theoretical problems associated with routing in optical networks can be found

in [8] and [58]. There is a vast literature dealing with the problem of minimizing the

number of wavelengths to set up lightpaths for (classes of) communication requests.

Related results for all-to-all and multicast communication realized on optical networks
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are summarized below.

All-to-all broadcast (gossiping) is a fundamental communication application on

computer/communication networks. All-to-all routing on a single hop model has been

studied for rings, tori, meshes, hypercubes, and trees of rings in [9], [11], [117] and

[135]. The number of wavelengths needed in a d-dimensional torus with n nodes in

each dimension was obtained in [9]. In [11], all-to-all communication realized on rings

was studied. In [117], the number of wavelengths for realizing all-to-all communication

on some special product graphs were derived. In [97], all-to-all routing for a family of

chordal rings of degree 4 was studied. In [135], the problem of scheduling all-to-all

personalized connections in WDM rings was discussed. All-to-all communication real-

ized on multi-hop optical networks was also studied in [85], [60] and [100]. In [100],

the uniform all-to-all routing problem for a symmetric directed ring was studied, and

the numbers of wavelengths were derived for a uniform 2-hop, 3-hop and 4-hop model

respectively. In [60], the all-to-all routing problem was studied in several specific mulit-

hop WDM optical networks including lines, rings, 2-D square tori, and 3-D square tori.

In [85], a generic method was proposed for realizing all-to-all routing for a given net-

works with k-hop routing.

Currently, many bandwidth-intensive applications require multicast services for ef-

ficiency purposes. In particular, as wavelength division multiplexing (WDM) technique

emerges as a promising solution to meet the rapidly growing demands on bandwidth in

present communication networks, supporting multicast at the WDM layer becomes an

important yet challenging issue [107]. In [139] and [107], the wavelength requirement

for a multicast connection in some special topology networks, such as rings, meshes,

and hypercubes, was analyzed. Finding multi-trees for a multicast connection was also

discussed in [59] and [106]. A greedy algorithm was proposed in [106] to find multi-

trees, such that each tree uses the same wavelength and the total cost of multi-trees is

minimized. In [136], a set of algorithms were designed to construct a source-based

multicast light-forest consisting of one or more multicast trees to minimize the number

of wavelengths and the number of hops. Multicast wavelength assignment with wave-

length conversion in WDM networks was studied in [140] and [104]. In [81], the routing
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problem to minimize wavelength cost is formalized as the wavelength cover problem in

which a multiλ-light-tree is to be found for the given multicast request. The routing

problem to minimize both wavelength cost and wavelength conversion cost was stud-

ied in [84]. A further generalization was made by considering the transmission delay

in [118]. In [141], the conversion delay instead of transmission delay was taken into

account. A survey on multicast realizing on optical networks has been conducted in

[38].

Besides all-to-all and multicast communications, there are many results on other

communication patterns designed to embed on optical networks. In [20], the optimal

embeddings were designed for complete graphs, meshes, and hypercube on WDM op-

tical passive star networks with tunable transmitters of limited tuning range and fixed

wavelength receivers. In [19], the problem of embedding a virtual de Bruijn topology

in a physical optical passive star time and wavelength division multiplexed (TWDM)

network was studied. In [105] and [106], permutation embedding and scheduling in

multiplexed optical networks with regular topologies were discussed.

1.2.3 Challenges for Embedding Hypercubes on WDM Optical Net-

works

Hypercube has become one of the most popular communication patterns shared by a

large number of computational problems [80]. Moreover, hypercube is one of the most

flexible and powerful parallel architectures, which has been shown to support an ex-

tremely large and rich class of algorithms during the last two decades. Therefore, hy-

percube has received considerable attention due to its good topological characteristics

(small diameter, regularity, high connectivity, simple control and routing, symmetry, and

fault tolerance) and its ability to efficiently permit the embedding of numerous topolo-

gies, such as rings, trees, meshes, and shuffle-exchange, among others [80]. However,

a drawback of the hypercube is its lack of scalability, which limits its use in building

large size systems out of smaller size systems. The lack of scalability of the hypercube

stems from the fact that the node degree is not bounded and varies as log N , where N
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is the total number of nodes. This property makes the hypercube cost prohibitive for

large N due to the inherent drawbacks such as the high cost and complexity of building

large hypercubes [114]. Since WDM divides the bandwidth of an optical fiber into mul-

tiple wavelength channels so that multiple devices can transmit on distinct wavelengths

through the same fiber concurrently, physical topologies for realizing hypercube con-

nections can be significantly simplified by realizing the connections of hypercube on

WDM optical networks. Therefore, the existing results on hypercube can be incorpo-

rated into the optical networks with simple topologies such as linear array and rings by

taking advantages of the parallel transmission characteristic of optical communication.

In addition, the computational efficiency can be improved compared to the traditional

electric networks, because optical technology can provide for parallel computing sys-

tems with an enormous amount of bandwidth and low latency. Many studies have been

conducted by combining the optical fiber technology and hypercube. In [20], [120]

and [122], hypercube on WDM partitioned optical passive star networks was studied. In

[91], a solution for embedding a virtual unidirectional incomplete hypercube into optical

networks was presented. In [132], wavelength assignments for hypercube communica-

tions on mesh-like optical networks were studied. However, the results obtained in [132]

were based on a traditional standard embedding scheme. As mentioned in [132], opti-

mal node numbering (and its RWA) is a much more complex problem. In Chapters 3,

4 and 5, we study the embeddings of hypercubes on a class of WDM optical networks,

and improve on the previous results.

1.3 Main Contributions

In this thesis, we study the embedding of meshes and hypercubes on a group of future

network architectures. The main contents and contributions are summarized below.

1.3.1 Embedding Meshes/Tori on Double-loop Networks

In Chapter 2, we study the embeddings of meshes/tori on a group of double-loop net-

works by evaluating the traditional embedding metrics, since double-loop networks have
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been intensively studied and proven to have many desirable properties for future network

architecture. The key contributions of this part are summarized as follows.

• We propose a novel tessellation approach to partition the geometric plane of

double-loop networks into a set of parallelogram shaped tiles, called P-shape,

which is a powerful tool to illustrate the embedding of meshes and tori on double-

loop networks. As a bridge between regular networks and double-loop networks,

P-shape provides a new way of geometrical representation of double-loop net-

works.

• We construct P-shape for DL(N ; 1, s), and show that meshes and tori can be

embedded on DL(N ; 1, s) by simply embedding the nodes of meshes and tori on

the nodes in P-shape, called P-shape embedding, which significantly improves the

previous scheme [50] on DL(N ; 1, s).

• We further extend the construction of P-shape to the general case of

DL(N ; s1, s2), thus allowing meshes and tori to be embedded on DL(N ; s1, s2)

in a systematic way. To the best of our knowledge, this is the first result for em-

bedding meshes and tori on DL(N ; s1, s2).

• We evaluate the embedding metrics of dilation, average dilation and congestion,

and derive the conditions for achieving optimal or near-optimal embeddings of

meshes and tori on double-loop networks. Our results show that a large fraction

of edges in meshes and tori have dilation 1 by P-shape embedding, resulting in

a low average dilation. In addition, the performance of our P-shape embedding

depends on the parameters of P-shape, instead of the system size.

1.3.2 Embedding Hypercubes on WDM Optical Networks

The second part is based on embedding hypercubes on a class of array-based WDM

optical networks by analyzing the new embedding metric of wavelength requirement.

Optical networks offer the possibility of interconnecting hundreds to thousands of
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users, and represent a promising technology for many emerging networking and par-

allel/distributed computing applications. The key contributions are summarized below.

• We study routing and wavelength assignment for embedding hypercubes on

WDM optical networks including linear arrays and rings with the consideration

of communication directions. Specifically, we analyze this problem for both bidi-

rectional and unidirectional hypercubes. In each case, we identify a lower bound

on the number of wavelengths required, and design the embedding scheme and

wavelength assignment algorithm that uses a provably near-optimal number of

wavelengths. In addition, we extend the results to meshes and tori. The results

regarding bidirectional cases have improved on the previous results [133].

• We design an embedding scheme for hypercubes on WDM optical chordal ring

networks of degree 3, and derive the number of wavelengths required for different

chord length. Based on embedding scheme of double cycle embedding, we also

provide the analysis of chord length with an optimal number of wavelengths to

realize hypercube communications on 3-degree chordal rings.

• We design the embedding schemes of symmetric embedding and cyclic permuta-

tion embedding schemes for hypercubes on 4-degree WDM optical chordal ring

networks, and derive the numbers of wavelengths required. Based on our pro-

posed embedding schemes, we analyze chord length with the optimal number of

wavelengths to realize hypercubes on 4-degree chordal rings.

• We design an embedding scheme for realizing parallel FFT (dimensional hyper-

cube) on WDM optical linear array by considering the hypercube communication

dimension by dimension. Based on our proposed embedding scheme, called lat-

tice embedding, the number of wavelengths required to realize parallel FFT com-

munication pattern on optical linear array has been significantly reduced com-

pared to the previous results [31] [29].
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1.4 Impact of This Research

This thesis analyzes the efficient solutions on network embedding for meshes and hy-

percubes on a group of network architectures, which have great potential to be used in

the future. This work has more theoretical practical significance. From the graph theory

point of view, we provide solutions for the network embedding problems of meshes/tori

on double-loop networks. As previous solutions are only proposed on some special case

of double-loop graphs, our work is the first solution for embedding meshes/tori on gen-

eral double-loop graphs. We also provide embedding solutions for hypercubes on array-

based optical networks by analyzing the wavelength requirement with the consideration

of communication directions, since previous results are only based on the bidirectional

cases. In addition, we also design the embedding schemes for hypercubes on 3-degree

and 4-degree chordal ring graphs, which has not been discussed in graph embedding the-

ory as far as we know. All these results are of great theoretical interest from the graph

theory point of view. Graph embedding problems have a wide variety of applications

such as laying out circuits on chips, representing data structures in computer memory,

and finding an efficient program control structure. Our proposed embedding solutions

have great potential theoretical usefulness in future applications.

Meshes and hypercubes are two most important architectures used in traditional net-

work architectures. An extremely large number of algorithms and applications are de-

signed based on these topologies in practice. Double-loop networks have been inten-

sively studied and proven to have many desirable properties for future network architec-

ture, and WDM optical networks are promising technologies that may be deployed in

many applications in parallel computing. It is of practical importance to investigate the

embedding problems for meshes and hypercubes on these topologies for future archi-

tectures, since the algorithms originally developed for one architecture can be directly

mapped onto another architecture under an embedding. If the properties and structure of

the underlying graph are used effectively, the computation and communication speeds

can be significantly improved. Our solutions not only provide an evaluation of two

architectures, but also identify the feasibility of embedding performance, which will in-
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struct the implementation of the virtual topology or algorithms to the physical topology

in practice.

1.5 Thesis Outline

This chapter provides the important preliminaries and concepts used in this thesis, which

is organized as follows.

In Chapter 2, network embeddings of meshes/tori on a family of double-loop net-

works are proposed.

In Chapter 3, network embeddings of hypercubes on a group of simple WDM optical

networks are studied including linear array, rings, meshes and tori.

Extensions for embedding hypercubes on optical chordal ring of degree 3 and degree

4 are discussed in Chapter 4.

In Chapter 5, the efficient realization of n-dimensional hypercube embedded on op-

tical linear arrays is discussed.

Chapter 6 concludes this thesis and discusses the directions for future work.



Chapter 2

Embedding of Meshes and Tori on

Double-Loop Networks

In this chapter, we address the embedding of meshes/tori on double-loop networks by

proposing a novel tessellation approach to partition the geometric plane of double-loop

networks into a set of parallelogram tiles, called P-shape. Based on the characteristics

of P-shape, we design a simple embedding scheme, namely P-shape embedding, that

embeds meshes and tori on double-loop networks in a systematic way. Under P-shape

embedding, we evaluate the embedding metrics of dilation, average dilation and con-

gestion, which depend heavily on the parameters of P-shape. In particular, we derive the

families of double-loop networks that can achieve optimal and near optimal embedding

of a given mesh or torus using our P-shape embedding.

2.1 Introduction

Double loop computer networks are extensions of ring networks and are widely used

in the design and implementation of local area networks and parallel processing archi-

tectures [10] [73]. Wong and Coppersmith [127] introduced the network DL(N ; 1, s)

with each node i connected to node i + 1 (mod N) and node i + s (mod N), where

i = 0, 1, ..., N − 1. Fiol et al. [51] extended DL(N ; 1, s) to DL(N ; s1, s2), generally

known as the double-loop network, with each node i connected to i + s1 (mod N) and

40
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i+s2 (mod N). A great deal of research on routing [102][87][36], diameters [73][127]

and designs of optimal double-loop has been intensively conducted because of their rel-

evance to the design of some interconnection and communication computer networks

[27]. However, the embedding problems on double-loop networks has not been well

studied due to the topological complexity of double-loop networks. Although L-shape

[28] for double-loop networks has been regarded as an important tool for studying the

diameter and distance properties of double-loop networks, it is difficult to use L-shape

to study the embedding problems for regular graphs on double-loop networks due to the

asymmetry of L-shape. As far as we know, no efficient method exists for embedding

regular graphs on double-loop networks.

Meshes and tori networks represent the communication structures of many applica-

tions in scientific computations as well as the topologies of many large-scale intercon-

nection networks [90]. The issue of embedding meshes and tori networks has gained

considerable attention in the area of parallel processing, which has been discussed in

Chapter 1. However, the embedding for meshes and tori on double-loop networks was

not well studied, although meshes, tori and double-loop networks have all been widely

studied and used in a large number of parallel algorithms, originally designed on meshes

and tori, can be applied to double-loop networks. Since meshes and tori have the same

node degree with double-loop networks, it is of great interest to find how meshes and tori

can be embedded on double-loop networks from the topological point of view. There-

fore, the problem of embedding meshes and tori on double-loop networks has both prac-

tical and theoretical significance. In [50], simple and snake-like embedding of meshes

and tori networks onto degree-four chordal rings, which is equivalent to a special case

of double-loop networks, i.e. DL(N ; 1, s), was designed. However, the embedding

method is limited and the performance is not satisfactory because the average dilation

becomes prohibitively large with the increase of the system size. In this chapter, we

devise a novel tessellation technique to study the problem of embedding meshes and

tori on double-loop networks. The key contributions of this work are summarized as

follows.

(1) We propose a novel tessellation approach to partition the geometric plane of
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double-loop networks into a set of parallelogram shaped tiles, called P-shape.

(2) We construct P-shape for DL(N ; 1, s), and improve the previous scheme [50] on

DL(N ; 1, s).

(3) We further extend the construction of P-shape to the general case of

DL(N ; s1, s2). To the best of our knowledge, this is the first result for embedding

meshes and tori on DL(N ; s1, s2).

(4) We evaluate the embedding metrics of dilation, average dilation and congestion,

and derive the conditions for achieving optimal or near-optimal embeddings of meshes

and tori on double-loop networks.

2.2 Preliminaries

2.2.1 Double-loop Networks

DL(N ; 1, s) has N nodes numbered from 0 to N − 1, and 2N links with each node

i connected to i + 1 (mod N) and i + s (mod N), where i = 0, 1, ..., N − 1. For

DL(N ; s1, s2), each node i connected to i + s1 (mod N) and i + s2 (mod N), where

s1 and s2 are called steps of double-loop network, and the links i → i + s1 (mod N)

and i → i + s2 (mod N) are called s1-link and s2-link respectively, where s1 6= s2 and

s1, s2 ≤ N/2. It is well known that DL(N ; s1, s2) is strongly connected if and only if

gcd(N, s1, s2) = 1, where gcd denotes the greatest common divisor.

Double-loop networks can be visualized in a geometric manner [51]. With each

node occupying a unit square on the plane, the nodes horizontally next to its left side

and right side square are i−s1 (mod N) and i+s1 (mod N) respectively, and vertically

next to its lower side and upper side square are i − s2 (mod N) and i + s2 (mod N)

respectively, as shown in Figure 2.1.

For a given DL(N ; s1, s2), Cheng and Hwang [32] proposed an O(log N) algo-

rithm to compute an L-shape tile, which periodically tessellates the geometrical plane

of DL(N ; s1, s2). L-shape has been intensively studied to compute the diameter, and

to find a shortest path for any two nodes for double-loop networks [27][28]. Figure 2.2
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Figure 2.1: Geometric representation of i and its neighbors for DL(N ; 1, s) and
DL(N ; s1, s2)

shows an example of DL(16; 1, 3) and its L-shape tiles.

Figure 2.2: DL(16; 1, 3) and its L-shape

2.2.2 Meshes and Tori

Let M(m1,m2) and T (m1,m2) represent an m1×m2 mesh and torus respectively with

m1 columns numbered from 0 to m1 − 1, and m2 rows numbered from 0 to m2 − 1.

Assume the node on the pth row and qth column is identified by (p, q), where 0 ≤ p ≤
m2− 1 and 0 ≤ q ≤ m1− 1. In this chapter, we assume N = m1×m2, and node (p, q)

has index p×m1 + q. Let e[(p, q), (p′, q′)] denote the edge which connects nodes (p, q)

and (p′, q′).

For M(m1,m2), the set of row edges can be denoted by R = {e[(p, q), (p, q+1)]|0 ≤
p ≤ m2 − 1, 0 ≤ q ≤ m1 − 2}, and the set of column edges by C = {e[(p, q), (p +

1, q)]|0 ≤ p ≤ m2 − 2, 0 ≤ q ≤ m1 − 1}.
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T (m1, m2) can be obtained from M(m1,m2) by adding the wrap-around edges of

row around edge set, Ra = {e[(p, m1−1), (p, 0)]|0 ≤ p ≤ m2−1}, and column around

edge set Ca = {e[(m2 − 1, q), (0, q)]|0 ≤ q ≤ m1 − 1}.

We denote the dilation for row edges on M(m1,m2) embedded on double-

loop networks by Dil(er), where er ∈ R, and dilation of column edges by

Dil(ec), where ec ∈ C. So, average dilation for embedding M(m1,m2)

on double-loop networks, denoted by ADil(M(m1,m2), DL), can be calculated

by: ADil(M(m1,m2), DL) =
∑

er∈R Dil(er)+
∑

ec∈C Dil(ec)

2m1m2−m1−m2
. Similarly, the aver-

age dilation for embedding T (m1,m2) on DL(N ; s1, s2) can be calculated by:

ADil(T (m1,m2), DL) =
∑

er∈R∪Ra Dil(er)+
∑

ec∈C∪Ca Dil(ec)

2m1m2
.

2.3 Construction of P-shape on Double-loop Networks

2.3.1 Motivation for Construction of P-shape

Figure 2.3: Tessellations of the geometrical plane using L-shape and P-shape

As M(m1, m2) can be divided into m2 arrays with m1 nodes in each array, the key

of embedding M(m1,m2) is to find the efficient way of embedding a group of arrays on

double-loop networks. Due to the asymmetry and uniqueness (defined by the double-

loop network) of L-shape shown in Figure 2.3 (a), it is difficult to embed a given size
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(m1 × m2) mesh/torus to L-shape because of the difficulties of decomposing m2 seg-

ments with m1 consecutive nodes on each segment within the area of L-shape. There-

fore, we need to look for a new construction of double-loop networks that can enable

this embedding. For this purpose, we propose a novel tessellation approach by finding

a set of parallelogram tiles, called P-shape, each being composed of m2 segments with

m1 consecutive nodes on each segment. As illustrated in Figure 2.3 (b), P-shape is cen-

trosymmetric and periodically tessellates the geometric plane of double-loop networks.

Figure 2.4: Embedding of M(4, 4) on DL(16; 1, 4).

Figure 2.5: Embedding of M(4, 4) on DL(16; 1, 3) in parallelogram tiles

To illustrate the construction of P-shape, we first give 3 simple examples of embed-

ding M(4, 4) on DL(16; 1, 4), DL(16; 1, 5) and DL(16; 1, 3) in the following. Figure

2.4 shows that M(4, 4) can be embedded on DL(16; 1, 4) perfectly with dilation 1 and

congestion 1 by simply embedding the nodes of M(4, 4) in row major indexing onto the

nodes of DL(16; 1, 4) with the same index. However, it can be easily proven that there is

no dilation 1 embedding of M(4, 4) on DL(16; 1, 3) or DL(16; 1, 5). As shown in Fig-
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Figure 2.6: Embedding for row and column edges of M(4, 4) on DL(16; 1, 3)

ure 2.5, there exists a parallelogram shape tile, which is composed of 4 disjoint arrays

with 4 horizontally consecutive nodes of DL(16; 1, 3) on each array. In addition, the up-

per side neighbor array shifts one node square distance right to its lower side neighbor

array. By embedding the nodes of M(4, 4) (indicated in the brackets) on DL(16; 1, 3)

within the parallelogram area, a one-to-one mapping can be constructed. By adjusting

the positions for the nodes of M(4, 4) on the arrays of DL(16; 1, 3), 3 column edges on

each column and at least 2 row edges on each row have dilation of 1, as shown in Figure

2.6 (grid edges crossed by solid lines). Similarly, a one-to-one embedding from M(4, 4)

to a parallelogram shape tile on DL(16; 1, 5) can be constructed with upper side neigh-

bor array shifts one node square distance left to its lower side neighbor array, as shown

in Figure 2.7. By this embedding, 3 row edges on each row and at least 2 column edges

on each column have dilation of 1, as shown in Figure 2.8.

Figure 2.7: Embedding of M(4, 4) on DL(16; 1, 5) in parallelogram tiles.
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Figure 2.8: Embedding for row and column edges of M(4, 4) on DL(16; 1, 5).

The common idea of these 3 examples is to construct a one-to-one mapping from

the nodes of M(4, 4) to the nodes of double-loop networks in parallelogram tiles in

a way that a large number of the neighboring nodes of meshes are embedded on the

neighboring nodes of double-loop networks, and a large number of edges have dilation

1. Our task is to find such a parallelogram shape tile, which we call P-shape on a

given double-loop networks for embedding a given mesh or torus, so that the efficient

embedding can be constructed.

2.3.2 Parameters of P-shape for Double-loop Networks

To construct P-shape on the geometric plane of double-loop networks, the following

properties must be satisfied:

1) Each node of double-loop networks only appears once on P-shape.

2) The same P-shape copies periodically tessellate the geometric plane of double-

loop networks.

We first introduce the following important parameters for the construction of P-

shape.

2.3.2.1 Base m1 and Height m2

We define P-shape of double-loop networks to be composed of m2 disjoint horizontal

segments numbered from 0 to m2−1 from bottom to top with m1 nodes on each segment,

where the ith segment is called tier i. We call m1 and m2 base and height of P-shape
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respectively. Let (i, j) denote the jth (0 ≤ j ≤ m2)−1 node on the ith (0 ≤ i ≤ m1)−1

tier, and I(i, j) denote node index of double-loop networks located on (i, j) of P-shape.

Without loss of generality, we assume node 0 of double-loop networks is located on

(0, 0) of P-shape.

2.3.2.2 Shift τ

We assume the (i + 1)th tier shifts horizontally from the ith tier by τ nodes distance,

which we call shift of P-shape. Define τ > 0 if the (i + 1)th tier shift to the right side

of the ith tier, τ < 0 if to the left side, and τ = 0 without shift. In addition, we assume

|τ | < m1. As shown in Figure 2.4, 2.5 and 2.7, τ = 0, 1,−1 for P-shape of M(4, 4)

embedded on DL(16; 1, 4), DL(16; 1, 3), and DL(16; 1, 5) respectively. It is easy to see

that node (i, j) can connect node (i + 1, j) by passing through τ horizontal links, and 1

vertical link. Alternatively, if node (i, j) and node (i + 1, j′) are connected by a vertical

link on a P-shape, j′ = j− τ , where 0 ≤ i ≤ m2− 2, τ ≤ j ≤ m1− 1 when τ ≥ 0, and

0 ≤ j ≤ m1 − τ − 1 when τ < 0.

2.3.2.3 Copy Distance h

Figure 2.9: Tessellation of the plane using P-shape and the lattice points occupied by
node 0

Due to the circular property of double-loop networks, the same copies of P-shape
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appear periodically on the tessellation plane of double-loop networks. The distance be-

tween the neighbor P-shape copies is an important characteristic for the partition of tes-

sellation plane. As shown in Figure 2.9, the same copy of P-shape appears periodically

along two dimensions of
−→
U and

−→
V in the geometric plane of double-loop networks. We

assume the upside and right are positive directions. Assign label (0, 0) to one P-shape

copy, and label (u, v) to the copy which is u copy distance along
−→
U direction and v

copy distance along
−→
V direction, where u and v are integers. It is easy to see that the

vertical geometric distance between the neighbor copy along the
−→
U direction is height

m2, and horizontal geometric link distance is τm1. We define the vertical geometric

link distance between the neighbor copy of the
−→
U direction is h, where−m2

2
< h ≤ m2

2
.

Assume h < 0 if the right neighbor copy is located on the upper side of its left copy,

h > 0 if on the lower side of its left copy, and h = 0 if on the same horizontal level.

Figure 2.10 shows four scenarios for different τ and h. As P-shape can be

determined by geometric parameters of m1, m2, τ and h, we denote P-shape by

Pshape(m1,m2, τ, h) for simplicity.

Figure 2.10: Pshape(m1,m2, τ, h)
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2.3.3 Node Distance

Let Xu,v((i
′, j′), (i, j)) and Yu,v((i

′, j′), (i, j)) denote the geometric horizontal and ver-

tical distance of node (i′, j′) on copy (u, v) and node (i, j) on copy (0, 0). By the

definitions of shift τ and copy distance h, the geometric distance between node (i′, j′)

on copy (u, v) and node (i, j) on copy (0, 0), denoted by XYu,v((i
′, j′), (i, j)), can be

calculated by the following lemma.

Lemma 2. XYu,v((i, j), (i
′, j′)) = Xu,v((i

′, j′), (i, j)) + Yu,v((i
′, j′), (i, j)), where

Xu,v((i
′, j′), (i, j)) = |j′− j +(i′− i+um2)τ +v(m1− τh)|, and Yu,v((i

′, j′), (i, j)) =

|i′ − i + um2 − vh|.

Proof. It is easy to see the geometric horizontal and vertical distance between node

(i′, j′) on copy (u, v) and node (i, j) on copy (0, v) are Xu((i, j), (i
′, j′)) = j′ −

j + (i′ − i + um2)τ , and Yu((i, j), (i
′, j′)) = i′ − i + um2 respectively. The ge-

ometric horizontal and vertical distance distance between node (i′, j′) on copy (u, v)

and node (i, j) on copy (u, 0) are Xv((i, j), (i
′, j′)) = j′ − j + (i′ − i)τ + v(m1 −

τh) and Yv((i, j), (i
′, j′)) = i′ − i − vh respectively. So, XYu,v((i, j), (i

′, j′)) =

Xu,v((i
′, j′), (i, j)) + Yu,v((i

′, j′), (i, j)) = |Xu((i, j), (i
′, j)) + Xv((i

′, j), (i′, j′))| +

|Yu((i, j), (i
′, j))+Yv((i

′, j), (i′, j′))| = |j′− j +(i′− i+um2)τ +v(m1− τh)|+ |(i′−
i) + um2 − vh|.

By Lemma 2, the shortest distance between node I(i, j) and I(i′, j′) on double-loop

networks, denoted by Dist(I(i, j), I(i′, j′)), can be obtained in the following lemma.

Lemma 3. Dist(I(i, j), I(i′, j′)) = minu,v∈ZXYu,v((i, j), (i
′, j′)).

2.4 Embedding of Meshes on P-shape of DL(N ; 1, s)

We first introduce the properties of Pshape(m1,m2, τ, h) for DL(N ; 1, s), and then de-

sign the embedding scheme, P-shape embedding, for meshes on Pshape(m1,m2, τ, h).

By P-shape embedding, the embedding metrics including expansion, dilation, average

dilation and congestion are evaluated. Furthermore, we discuss the results in different

cases.
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2.4.1 Pshape(m1,m2, τ, h) for DL(N ; 1, s)

Property 1. Pshape(m1,m2, τ, h) for DL(N ; 1, s) satisfies τ = km1 − s, where k =

bs/m1c or ds/m1e.

Proof. By Lemma 2, the geometric vertical and horizontal distance between node (i, j)

on P-shape copy (u, v) and copy (u+1, v) is m2 and τm2 respectively. So, I(i, j)+(τ×
1 + s)×m2 (mod N) = I(i, j). Thus (τ + s)×m2 = kN , where k is an integer. As

N = m1m2, τ +s = km1. So, τ = km1−s. As |τ | < m1, bs/m1c ≤ k ≤ ds/m1e.

By Property 1, the following corollaries can be obtained.

Corollary 1. Let s = αm1 + β, where α = bs/m1c and 0 < β < m1.

Pshape(m1,m2, τ, h) for DL(N ; 1, s) satisfies,

(1) if m1|s, τ = 0 (k = s/m1).

(2) if m1 - s, τ = −β < 0 (k = α) or τ = m1 − β > 0 (k = α + 1).

Corollary 2. For Pshape(m1,m2, τ, h) on DL(N ; 1, s), I(i, j) = ikm1 + j (mod N),

where 0 ≤ i ≤ m2 − 1, 0 ≤ j ≤ m1 − 1.

Proof. According to our assumption, I(0, 0) = 0. As node (0, 0) can reach node (i, j)

on one P-shape by passing through s-links vertically for i times and 1-links horizontally

for iτ + j times, I(i, j) = 0+ is+ iτ + j (mod N) = is+ i(km1− s)+ j (mod N) =

ikm1 + j (mod N).

Property 2. Pshape(m1,m2, τ, h) for DL(N ; 1, s) exists if and only if gcd(k, m2) = 1.

Proof. Necessity: Prove that if gcd(k, m2) 6= 1, there exists node of DL(N ; 1, s) which

appears more than once on one P-shape copy. Suppose that gcd(k, m2) = δ 6= 1 such

that k = aδ and m2 = bδ. By Corollary 2, I(i, j) = ikm1 + j (mod N) = iaδm1 + j

(mod N). Assume i ≥ b, and i = i1 + i2b, where 0 ≤ i1 ≤ b− 1 and 1 ≤ i2 ≤ δ − 1.

Thus, I(i, j) = (i1 + i2b)aδm1 + j (mod N) = i1km1 + i2am2m1 + j (mod N) =

i1km1 + i2aN + j (mod N) = i1km1 + j (mod N) = I(i1, j). So, I(i, j) = I(i1, j)

and i 6= i1 contradicting the fact that each node of DL(N ; 1, s) only appears once on

one P-shape copy.
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Sufficiency: Prove that if gcd(k,m2) = 1, each node on DL(N ; 1, s) must appear

once on P-shape. For ∀(i, j) and ∀(i′, j′) on a P-shape, i 6= i′ or j 6= j′. As 0 ≤ i, i′ ≤
m2 − 1 and 0 ≤ j, j′ ≤ m1 − 1, |i − i′| < m2 and |j − j′| < m1. If gcd(k, m2) = 1,

m2 - (i−i′)k, and N - (i−i′)km1. So, N - (i−i′)km1+(j−j′). As I(i, j)−I(i′, j′) =

(j − j′) + (i− i′)km1 (mod N) 6= 0, I(i, j) 6= I(i′, j′).

Property 3. For Pshape(m1, m2, τ, h) of DL(N ; 1, s), |h| is the smallest integer satis-

fying h = tm2+1
k

, where t is an integer and −m2

2
< h ≤ m2

2
.

Proof. By Lemma 2, the geometric vertical and horizontal distance between node (i, j)

on P-shape copy (u, v) and node (i, j) on copy (u, v + 1) are −h and m1 − τh respec-

tively. So, I(i, j) + m1 − τh− hs (mod N) = I(i, j). Thus khm1 −m1 = tN , where

t is an integer. So, h = tm2+1
k

. Suppose that there exist integers h, t and δ such that

h = tm2+1
k

and (δ − 1)m2 + m2/2 < h ≤ δm2 + m2/2. So there must be integers h′

and t′ such that h′ = h− δm2 = (t−δk)m2+1
k

= t′m2+1
k

and −m2

2
< h′ ≤ m2

2
.

2.4.2 Node Mapping Function

Assume fτ is a function of one-to-one mapping from M(m1,m2) to

Pshape(m1,m2, τ, h).

fτ : (p, q) → (p, q − τp (mod m1)), where 0 ≤ p ≤ m2 − 1, 0 ≤ q ≤ m1 − 1.

Mapping function fτ have the following characteristics:

1) First Row Consecutive Characteristic: Nodes (0, q) on row 0 of meshes are em-

bedded on node (0, q) on tier 0 of P-shape.

2) Row Consecutive Characteristic: Nodes on the pth row of meshes are embedded

on the pth tier of P-shape. Row neighboring nodes (p, q) and (p, q+1) (0 ≤ q ≤ m1−2)

are embedded on neighboring nodes connected by a horizontal link on the pth tier if

q+1−τp (mod m1) 6= 0, or embedded on (p, m1−1) and (p, 0) respectively on the pth

tier if q +1− τp (mod m1) = 0. We define node set RCZ = {(i, j)|0 ≤ j ≤ m1− 2},

called Row Consecutive Zone (RCZ), as shown in Figure 2.11. If (p, q) is embedded

on RCZ, the row neighboring nodes (p, q) and (p, q + 1) are embedded on neighboring

nodes connected by a horizontal link on the pth tier. Assume R = R̄ ∪ R̂, where R̄ =
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{e[(p, q), (p, q +1))|fτ (p, q) ∈ RCZ}, and R̂ = {e[(p, q), (p, q +1))|fτ (p, q) ∈ RCZ}.

It is easy to calculate that |R̂| = (m2−1)(1− gcd(m1,τ)
m1

) and |R̄| = m1m2+ m2gcd(m1,τ)
m1

−
gcd(m1,τ)

m1
+ 1.

Figure 2.11: Row and Column Consecutive Zone

3) Column Consecutive Characteristic: Node on the pth row and qth column of

meshes are embedded on node q− τp (mod m1) of the pth tier of P-shape. The column

neighboring nodes (p, q) and (p + 1, q) (0 ≤ p ≤ m2 − 2) are embedded on the neigh-

boring nodes connected by a vertical link if τ ≤ q − τp (mod N) ≤ m1 − 1(τ > 0) or

0 ≤ q − τp (mod N) ≤ m1 − τ − 1(τ < 0). We define node set CCZ = {(i, j)|τ ≤
j ≤ m1 − 1} if τ ≥ 0, or CCZ = {(i, j)|0 ≤ j ≤ m1 − τ − 1} if τ < 0, called Col-

umn Consecutive Zone, as shown in Figure 2.11. If (p, q) is embedded on CCZ, column

neighboring nodes (p, q) and (p+1, q) are embedded on neighboring nodes connected by

a vertical link. Assume C = C̄ ∪ Ĉ, where C̄ = {e[(p, q), (p, q + 1)]|fτ (p, q) ∈ CCZ},

and Ĉ = {e[(p, q), (p + 1, q)]|fτ (p, q) ∈ CCZ}. Thus |Ĉ| = |τ |(m2 − 1) and

|C̄| = (m1 − τ)(m2 − 1).

We call such an embedding P-shape embedding, which ensures that nodes on the

same row of meshes are embedded on the same tier. Moreover, nodes connected by a

horizontal link between the neighboring tiers are column neighboring nodes of meshes.
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2.4.3 Expansion, Dilation and Congestion

2.4.3.1 Expansion

According to our assumption, the number of nodes in M(m1,m2) is equal to that in

double-loop networks. That is, N = m1m2. So, expansion for embedding M(m1,m2)

on N -node double-loop networks is 1.

2.4.3.2 Dilation and Average Dilation

Dilation of an edge is the distance in DL(N ; 1, s) between the nodes that host the two

neighboring nodes of M(m1,m2). By P-shape embedding, Dil(er) = Dist(fτ (p, q +

1), fτ (p, q)) = Dist((p, q + 1 − τp (mod N)), (p, q − τp (mod N))), and Dil(ec) =

Dist(fτ (p + 1, q), fτ (p, q)) = Dist((p + 1, q − τ(p + 1) (mod N)), (p, q − τp

(mod N))). Let ēr, ēc, êr and êc denote the edges in R̄, C̄, R̂ and Ĉ respectively.

The dilations of the edges for embedding M(m1,m2) on Pshape(m1,m2, τ, h) can be

obtained in the following theorems.

Theorem 1. Dil(ēr) = Dil(ēc) = 1.

Proof. As q− τp (mod m1) 6= 0, by Lemma 3, Dil(ēr) = minu,v∈Z |um2− vh|+ |1 +

um2τ + v(m1 − τh)| = 1 when u = v = 0. Similarly, Dil(ēc) = minu,v∈Z |1 + um2 −
vh|+ |um2τ + v(m1 − τh)| = 1.

Theorem 2. Dil(êr) = minu,v∈Zr(u, v) and Dil(êc) = minu,v∈Zc(u, v), where

r(u, v) = |um2−vh|+ |m1−1+um2τ +v(m1− τh)| and c(u, v) = |1+um2−vh|+
|m1 + um2τ + v(m1 − τh)|.

Proof. As q − τp (mod m1) = 0, Dil(êc) = Dist(fτ (p, q), fτ (p, q + 1)) =

Dist((p,m1 − 1), (p, 0) = minu,v∈Z(|um2 − vh| + |m1 − 1 + um2τ + v(m1 − τh)|)
by Lemma 3. Similarly, it can be calculated that Dil(êc) = minu,v∈Z(|1 +um2− vh|+
|m1 + um2τ + v(m1 − τh)|).

By Theorem 1 and 2, the follow corollaries can be obtained. Corollary 3 proves

that a large number of edges on meshes can achieve dilation 1 by P-shape embedding.
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Corollary 4 gives the upper bound for the edge dilation of row and column edges on

meshes embedded on double-loop networks by P-shape embedding. The conditions for

obtaining optimal embedding for M(m1,m2) on DL(N ; s1, s2) are derived by Corollary

5.

Corollary 3. By P-shape embedding of M(m1,m2) on Pshape(m1,m2, τ, h), m1−|τ |
m1

fraction of column edges and at least m1−2
m1−1

fraction of row edges have dilation 1. The

fraction of the edges on M(m1,m2) with dilation 1 by P-shape embedding is at least

1− (|τ |+1)m2−|τ |
2m1m2−m1−m2

, which increases with the decrease of |τ |.

Proof. According to the row and column consecutive characteristics, |C̄|
|C| =

(m1−|τ |)(m2−1)
m1(m2−1)

= m1−|τ |
m1

and |R̄|
|R| > m2(m1−2)

m2(m1−1)
= m1−2

m1−1
. So, |C̄|+|R̄|

|C|+|R| >

(m1−|τ |)(m2−1)+m2(m1−2)
2m1m2−m1−m2

= 1− (|τ |+1)m2−|τ |
2m1m2−m1−m2

.

Corollary 4. Dil(êr) ≤ m1 − 1, and Dil(êc) ≤ m1 + 1. In the worst case, the average

dilation is approximately 3+|τ |
2

.

Proof. By Theorem 2, Dil(êr) ≤ r(0, 0) = m1 − 1, and Dil(êc) ≤ c(0, 0) = m1 + 1.

So, ADil(M(m1,m2), DL) = |R̄|+|R̂|×min r(u,v)+|C̄|+|Ĉ|×min c(u,v)
2m1m2−m1−m2

= 1 +
(m2−1)((1− gcd(m1,τ)

m1
)(min r(u,v)−1)+|τ |(min c(u,v)−1))

2m1m2−m1−m2

≤ 1 +
(m2−1)((1− gcd(m1,τ)

m1
)(m1−2)+|τ |m1)

2m1m2−m1−m2

< 1 + (m2−1)(m1−2+|τ |m1)
2m1m2−m1−m2

= 1 + (1+|τ |)m1m2−(1+|τ |)m1−2(m2−1)
2m1m2−m1−m2

≈ 3+|τ |
2

.

Corollary 5. If m1|s and gcd( s
m1

,m2) = 1, P-shape embedding for M(m1,m2) on

DL(N ; 1, s) is optimal with dilation 1 and congestion 1.

Proof. By Corollary 1, if m1|s, τ = 0 and k = s
m1

. According to Property 2, P-shape

exists if and only if gcd( s
m1

,m2) = 1. By P-shape embedding, f = (p, q). That is,

node (p, q) of M(m1,m2) is embedded on node (p, q) of P-shape. As τ = 0, there is no

shift between the neighboring tiers. It is easy to see each P-shape copy is a rectangular

shaped tile when τ = 0, which can host M(m1,m2) perfectly. Therefore, dilation and
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congestion for all edges of M(m1,m2) on DL(N ; s1, s2) are 1. In this case, P-shape

embedding is optimal, which preserves adjacency [80].

2.4.3.3 Congestion

Congestion of an edge is the number of the edges in M(m1, m2) embedded on one edge

in DL(N ; 1, s). We assume the routing path of êr is from copy (0,0) to copy (u, v) first

Figure 2.12: (a) X(êc) < τ and (b) Y (êc) > τ

passing through X(êr) horizontal links, and then through Y (êr) vertical links; and êc

first passing through Y (êc) vertical links, and then through X(êc) horizontal links, as

shown in Figure 2.12. By P-shape embedding, edge congestion of the vertical links and

horizontal links, denoted by Cong(lv) and Cong(lh) respectively, can be calculated by

the following theorem.

Theorem 3. Cong(lv) = dY (êc)+Y (êr)−1
m1/τ

e + 1 and Cong(lh) = bX(êc)+X(êr)
m1

c +

min(τ, X(êr)) + 1.

Proof. As each vertical link, connecting the neighboring tiers of P-shape, hosts one col-

umn edge of meshes, these vertical links have congestion of at least 1. In addition,
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the number of edges in ec ∈ Ĉ and er ∈ R̂ passing through the vertical links can be

calculated by dY (êc)+Y (êr)−1
m1/τ

e. So, Cong(lv) = dY (êc)+Y (êr)−1
m1/τ

e + 1. Similarly, each

horizontal link, connecting the neighboring nodes in each tiers of P-shape, has conges-

tion of at least 1. As shown in Figure 2.12, the maximum number of edges in ec ∈ Ĉ

passing through the horizontal links is X(êc) if X(êc) < τ , and τ if X(êc) ≥ τ . So,

Cong(lh) = bX(êc)+X(êr)
m1

c+ min(τ, X(êr)) + 1.

Corollary 6. By P-shape embedding, edge congestion of the vertical links is in the range

of [1, 2τ ], and edge congestion of the horizontal links is in the range of [1, τ + 2].

Proof. It is easy to prove from the fact that 1 ≤ Y (êc) + Y (êr) < 2m1 and 0 ≤
X(êc) + X(êr) < 2m1.

2.4.4 Case Analysis

2.4.4.1 s < m1

Theorem 4. P-shape(m1,m2,m1 − s, 1) exists if s < m1.

Proof. If s < m1, k = 1 by Property 1. As gcd(1,m2) = 1, P-shape exists by Property

2. So, τ = m1 − s. By Property 3, h = 1.

Theorem 5. If s < m1,

Dil(êr) ≤ min(ρ1 + ρ2, ρ1 − ρ2 + s + 1) ≤ m1−1
s

+ s+1
2

, where ρ1 = m1−1
s

and

ρ2 = m1 − 1 (mod s), and

Dil(êc) ≤ min(γ1 + γ2 + 1, γ1 − γ2 + s + 2) ≤ m1

s
+ s+1

2
+ 1 , where γ1 = m1

s
and

γ2 = m1 (mod s).

Proof. By Theorem 2 and Theorem 4, Dil(êr) = minu,v∈Zr(u, v), where r(u, v) =

|um2−v|+|m1−1+um2τ+vs|. Dil(êr) ≤ minv∈Zr(0, v) = minv∈Z |v|+|m1−1+vs|.
If s|(m1 − 1), Dil(er) ≤ m1−1

s
. If s - (m1 − 1), assume m1 − 1 = ρ1s + ρ2, where

ρ1 = m1−1
s

and ρ2 = m1 − 1 (mod s). It can be proven that Dil(êr) ≤ min(ρ1 +

ρ2, ρ1 − ρ2 + s + 1) ≤ m1−1
s

+ s+1
2

.

Similarly, Dil(êc) = minu,v∈Z |1 + um2 − v| + |m1 + um2τ + vs|. Dil(êc) ≤
minv∈Zc(0, v) = minv∈Z |1 − v| + |m1 + vs|. If s|m1, Dil(êc) ≤ m1

s
+ 1. If s - m1,
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assume m1 = γ1s + γ2, where γ1 = m1

s
and γ2 = m1 (mod s). It can be proven that

Dil(ec) ≤ min(γ1 + γ2 + 1, γ1 − γ2 + s + 2) ≤ m1

s
+ s+1

2
+ 1.

Corollary 7. If s < m1, Dil(êr) ≈ m1

s
and Dil(êc) ≈ m1−1

s
. P-shape embedding is

near optimal when s is near m1.

2.4.4.2 s > m1

Theorem 6. If s > m1,

Dil(êc) ≤




(m1−1)|∆|
d

+ ∆+|h|
2

, if ∆ ≥ 0,

−(m1−1)|h|
∆

+ ∆−|h|
2

, if ∆ < 0,

and

Dil(êr) ≤




m1|h|
∆

+ m1−τh+|h|
2

, if ∆ ≥ 0,

m1|h|
∆

+ m1−τh+|h|
2

, if ∆ < 0,

where ∆ = m1 − τh.

Proof. By Theorem 2, Dil(er) ≤ minv∈Zr(0, v) = minv∈Z |vh|+|m1−1+v(m1−τh)|,
and Dil(ec) ≤ minv∈Zc(0, v) = minv∈Z |1−vh|+ |m1 +v(m1− τh)|. It can be proven

similarly with Theorem 5.

Corollary 8. Dil(êr) ≈ | (m1−1)h
∆

| and Dil(êc) ≈ |m1h
∆
|. P-shape embedding is near

optimal when |∆| is near m1|h|.

It can be seen from the above discussion, the embedding performance of P-shape

embedding depends heavily on the parameters of P-shape. Table 2.1 shows an example

for embedding M(8, 16) embedded on DL(8× 16; 1, s), where 2 ≤ s ≤ 9.

2.5 Embedding of Tori on P-shape of DL(N ; 1, s)

As T (m1,m2) can be obtained from M(m1,m2) by adding wrap-around edges of Ra

and Ca, we study the embedding of edges in Ra and Ca on P-shape(m1,m2, τ, h).
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s τ h Dil(êr) Dil(êc) Adil Cong(lv) Cong(lh)
2 6 1 4 5 2.7 7 2
3 5 1 3 5 2.4 5 3
4 4 1 3 3 1.5 4 2
5 3 1 3 5 1.7 2 4
6 2 1 2 4 1.4 2 3
7 1 1 1 3 1.1 2 2
8 0 1 − − 1 1 1
9 −1 1 3 1 1.1 2 2

Table 2.1: M(8, 16) embedded on DL(8× 16; 1, s)(2 ≤ s ≤ 9)

By P-shape embedding, node mapping function fτ also ensures the neighboring nodes

(p,m1 − 1) and (p, 0) on tori, where 0 ≤ p ≤ m2 − 1, connected by row edge ea
r ∈ Ra,

are embedded on neighboring nodes of the pth tier if fτ (p,m1 − 1) ∈ CCZ, or embed-

ded on (p,m1 − 1) and (p, 0) respectively on the pth tier if fτ (p,m1 − 1) ∈ CCZ. We

denote Ra = R̄a ∪ R̂a, where R̄a = {e[(p,m1− 1), (p, 0))|fτ (p,m1− 1) ∈ RCZ}, and

R̂a = {e[(p,m1 − 1), (p, 0))|fτ (p,m1 − 1) ∈ RCZ}. Thus |R̄ ∪ R̄a| = m1m2 −m2,

|R̂∪ R̂a| = m2. We denote Ca = C̄a∪ Ĉa, where C̄a = {e[(m2−1, q), (0, q))|fτ (m2−
1, q) ∈ CCZ}, and R̂a = {e[(p,m1 − 1), (i, 0))|fτ (m2 − 1, q) ∈ CCZ}. |C̄ ∪ C̄a| =

m1m2 − |τ |m2, and |Ĉ ∪ Ĉa| = |τ |m2.

Theorem 7. Dil(ēa
r) = 1 and Dil(êa

r) = minu,v∈Zr(u, v).

Proof. By P-shape embedding, Dist(fτ (p,m1 − 1), fτ (p, 0)) = Dist((p,m1 − 1 −
τp (mod m1)), (p, 0 − τp (mod m1))). If τp (mod m1) 6= 0, Dist(fτ (p,m1 −
1), fτ (p, 0)) = 1. If τp (mod m1) = 0, Dist(fτ (p,m1 − 1), fτ (p, 0)) =

Dist((p,m1 − 1), (p, 0)) = minu,v∈Zr(u, v) calculated by the same way for Dil(er)

on M(m1, m2).

Theorem 8. If τm2 (mod m1) = 0, Dil(ēa
c) = 1 and Dil(êa

c) = minu,v∈Zc(u, v).

Proof. By P-shape embedding, nodes (m2−1, q) and (0, q), connected by round column

edges on T (m1,m2), are embedded on (m2 − 1, q − τm2 + τ (mod m1)) and (0, q)

respectively. By Lemma 2, Dist(fτ (m2− 1, q), fτ (0, q)) = minu,v∈Z |1 + (u− 1)m2−
vh|+|−εm1+um2τ+v(m1−τh)|, where q−τm2+τ (mod m1) = q−τm2+τ−εm1.

If τm2 (mod m1) = 0, q + τ (mod m1) = q − τm2 + τ − εm1. If 0 ≤ q ≤
m1 − τ − 1(τ > 0) or −τ ≤ q ≤ m1 − 1(τ < 0), εm1 = −τm2 and Dist(fτ (m2 −
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1, q), fτ (0, q)) = 1. Otherwise, Dist(fτ (m2 − 1, q), fτ (0, q)) = minu,v∈Zc(u, v) calcu-

lated by the same way for Dil(ec) on M(m1,m2).

Theorem 9. If τm2 (mod m1) = 0, the average dilation is no more than 3+|τ |
2
− 1

m1
for

embedding T (m1, m2) on DL(N ; 1, s).

Proof. By Theorem 8, ADil(T (m1,m2), DL) =

|R̄∪R̄a|+|R̂∪R̂a|×min r(u,v)+|C̄∪C̄a|+|Ĉ∪R̂a|×min c(u,v)
2m1m2

≤ 1+ (1+|τ |)m2m1−2m2

2m1m2
= 3+|τ |

2
− 1

m1
.

If τm2 (mod m1) 6= 0, Dil(e[(m2 − 1, q), (0, q)]) = minu,v∈Zc′(u, v), where

c′(u, v) = |1 + (u − 1)m2 − vh| + | − εm1 + um2τ + v(m1 − τh)| and q − τm2 + τ

(mod m1) = q − τm2 + τ − εm1.

Corollary 9. By P-shape embedding for T (m1,m2), m1−1
m1

fraction of row edges and at

least (m1−|τ |)(m2−1)
m1m2

fraction of column edges have dilation 1. The fraction of the edges

on T (m1,m2) with dilation 1 by P-shape embedding is at least 1 − m1+(|τ |+1)m2−|τ |
2m1m2

,

which increases with the decrease of |τ |.

Proof. For T (m1,m2),
|C̄|

|C|+|Ca| > (m1−|τ |)(m2−1)
m1m2

and |R̄|+|R̄a|
|R|+|Ra| = m2(m1−1)

m2m1
= m1−1

m1
. So,

|C̄|+|R̄|+|R̄a|
|C|+|R|+|Ca|+|Ra| > (m1−|τ |)(m2−1)+m2(m1−1)

2m1m2
= 1− m1+(|τ |+1)m2−|τ |

2m1m2
.

Corollary 10. If τ = 0, Dil(ea
c) = 1 and Dil(ea

r) = min(|h|+ 1,m1− 1). If τ = 0 and

h = 1, P-shape embedding for T (m1,m2) on DL(N ; 1, s) is optimal with Dil(ea
c) = 1

and Dil(ea
r) = 2.

Proof. If τ = 0, it is easy to obtain by Lemma 2. It can be proven there is no dilation 1

embedding for tori embedded on double-loop networks.

Corollary 11. For embedding T (m1,m2) on DL(N ; 1, s) with |τ | = 1, the average

dilation is 1 + 1
m1

, which is near optimal with the increasing of m1.

2.6 Construction of P-shape for DL(N ; s1, s2)

For DL(N ; 1, s), the difference between the horizontal neighboring nodes on the tes-

sellation plane is 1. That is, node index is consecutive on each tier of P-shape.
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For the sake of simplicity, we assume s1 is the horizontal difference on the tessel-

lation plane of DL(N ; s1, s2). Our designed P-shape for DL(N ; 1, s) can be ex-

tended to DL(N ; s1, s2). Since the parameters of DL(N ; s1, s2) is more flexible than

DL(N ; 1, s), the construction of P-shape for DL(N ; s1, s2) is much more difficult.

2.6.1 Pshape(m1,m2, τ, h) for DL(N ; s1, s2)

Property 4. Pshape(m1,m2, τ, h) for DL(N ; s1, s2) satisfies τ = (Km2+k)m1−s2

s1
,

where k and K are integers.(d−s1 + s2/m1 (mod m2)e < k < bs1 + s2/m1

(mod m2)c, d−s1m1+s2−km1

N
e < K < b s1m1+s2−km1

N
c.)

Proof. Similar with the proof for P-shape of DL(N ; 1, s), x + (τ × s1 + s2) × m2

(mod N) = x, where x(0 ≤ x ≤ N − 1). So, τs1 + s2 (mod N) = km1. As

−m1s1+s2 (mod N) < τs1+s2 < m1s1+s2 (mod N), d−s1+s2/m1 (mod m2)e <

k < bs1 + s2/m1 (mod m2)c. Assume τs1 + s2 = KN + km1, τ = (Km2+k)m1−s2

s1
,

where d−s1m1+s2−km1

N
e < K < b s1m1+s2−km1

N
c.

By Lemma 4, τ can be calculated by the following Algorithm 1.

Algorithm 1: Pshape(m1,m2, τ, h) on DL(N ; s1, s2)

For k = d−s1 + s2

m1 (mod m2)
e to bs1 + s2

m1 (mod m2)
c

For K = d−s1m1+s2−km1

N
e to b s1m1+s2−km1

N
c

τ = (Km2+k)m1−s2

s1
;

If τ is an integer, break.

The time complexity of this algorithm is O(m2 × 2m1s1

N
) = O(s1).

Corollary 12. For Pshape(m1,m2, τ, h) on DL(N ; s1, s2), I(i, j) = ikm1 + js1

(mod N), where 0 ≤ i ≤ m2 − 1, 0 ≤ j ≤ m1 − 1.

Property 5. For Pshape(m1,m2, τ, h) of DL(N ; s1, s2), left copy distance |h| is the

smallest integer satisfying h = tm2+s1

k
, where t is an integer and −m2

2
< h ≤ m2

2
.

Property 6. Pshape(m1, m2, τ, h) for DL(N ; s1, s2) exists if and only if gcd(k, m2) =

1 and gcd(m1, s1) = 1.
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Proof. The proof for the condition of gcd(k, m2) = 1 is similar with Property 2. Ne-

cessity: As the horizontal difference is s1, there are N
gcd(N,s1)

nodes , i, i + s1, i +

2s1, ..., i + N
gcd(N,s1)

s1 where 0 ≤ i ≤ gcd(N, s1), periodically appeared on the plane

of DL(N ; s1, s2). To construct Pshape(m1,m2, τ, h), N
gcd(N,s1)

should be an integer

which can be divided by m1. If gcd(s1,m1) = 1, N
gcd(N,s1)

= N
gcd(m2,s1)

, which must

be an integer. It can be proved that τ = (Km2+k)m1−s2

s1
exist if gcd(m1, s1) 6= 1.

Sufficiency: Prove that if gcd(m1, s1) = 1, each node on DL(N ; s1, s2) must appear

once on one P-shape. For ∀(i, j) and ∀(i′, j′) on a P-shape, i 6= i′ or j 6= j′. As

0 ≤ i, i′ ≤ m2 − 1 and 0 ≤ j, j′ ≤ m1 − 1, |i − i′| < m2 and |j − j′| < m1. If

gcd(m1, s1) = 1, m1 - (j − j′)s1. As N - (i− i′)km1, N - (i− i′)km1 + (j − j′)s1. So

I(i, j)− I(i′, j′) = (j − j′) + (i− i′)km1 (mod N) 6= 0, and I(i, j) 6= I(i′, j′).

Theorem 10. If m1|s2, gcd( s2

m1
, m2) = 1 and gcd(s1,m1) = 1, P-shape embedding for

M(m1, m2) on DL(N ; s1, s2) is optimal with dilation 1 and congestion 1.

It can be seen that the edge dilation, average dilation and congestion for embedding

M(m1, m2) and T (m1,m2) on Pshape(m1,m2, τ, h) for DL(N ; s1, s2) are the same

for embedding M(m1,m2) and T (m1,m2) on Pshape(m1,m2, τ, h) for DL(N ; 1, s).

That is, the embedding performance depends on the parameters of P-shape, once P-

shape is constructed on double-loop networks.

2.6.2 Pshape(m1,m2, τ, g · h) for DL(N ; s1, s2) if gcd(s1,m1) 6= 1

By Property 6, the condition of the construction of P-shape is gcd(s1,m1) = 1.

If gcd(s1,m1) > 1 and gcd(s1, N)|m2, we construct Pshape(m1,m2, τ, g · h) for

DL(N ; s1, s2) as follows, where d = gcd(s1,m1), g = gcd(s1, N).

1) Construct Pshape(m1,m2/g, τ, h) for DL(N/g; s1/d, s2).

2) Construct sub-Pshape(m1,m2/g, 0, h) in each tier of Pshape(m1, g, τ, h).

Figure 2.13 shows Pshape(4, 6, 1, h) for DL(24; 2, 3), which can be constructed

from Pshape(4, 3, 1, 1) for DL(12; 1, 3) with sub-Pshape(4, 2, 0, h) in each tier of

Pshape(4, 3, 1, 1), since gcd(1, 2) = 2.
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Figure 2.13: Pshape(4, 6, 1, 1, 2) for DL(24; 2, 3)

Accordingly, node mapping function fτ/g for M(m1,m2) on Pshape(m1,m2, τ, g ·
h) can be extended as,

fτ/g : (p, q) → (p, q − τp/g (mod m1)), where 0 ≤ p ≤ m2 − 1, 0 ≤ q ≤ m1 − 1.

Mapping function fτ/g have the following characteristics:

2) Row Consecutive Characteristic: The row neighboring nodes (p, q) and (p, q +1)

(0 ≤ q ≤ m1 − 2) on meshes are embedded on neighboring nodes connected by a

horizontal link of the pth tier of P-shape if q + 1− τp/g (mod m1) 6= 0, or embedded

on (p, 0) and (p,m1 − 1) of P-shape respectively if q + 1 − τp/g (mod m1) = 0. We

denote R = R̄ ∪ R̂, where R̄ = {e[(p, q), (p, q + 1))|q + 1 − τp/g (mod m1) 6= 0},

and R̂ = {e[(p, q), (p, q + 1))|q + 1 − τp/g (mod m1) = 0}. 3) Column Consecutive

Characteristic: The column neighboring nodes (p, q) and (p+1, q) (0 ≤ p ≤ m2−2) on

meshes are embedded on the neighboring nodes connected by a vertical link between the

neighbor subtiers if p (mod g) < g − 1, or between the neighbor tiers if p (mod g) =

g − 1 and τ ≤ q − τp/g (mod N) ≤ m1 − 1(τ > 0) or 0 ≤ q − τp (mod N) ≤
m1 − τ − 1(τ < 0). We denote C = C̄ ′

1 ∪ C̄ ′
2 ∪ Ĉ ′, where

C̄ ′
1 = {e[(p, q), (p, q + 1))|p (mod g) < g − 1},

C̄ ′
2 = {e[(p, q), (p, q + 1))|p (mod g) = g − 1 and τ ≤ q − τp/g (mod N) ≤

m1 − 1(τ > 0) (0 ≤ q − τp/g (mod N) ≤ m1 + τ − 1(τ < 0))},
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Ĉ ′ = {e[(p, q), (p + 1, q))|p (mod g) = g − 1 and 0 ≤ q − τp/g (mod N) ≤
τ − 1(τ > 0) (m1 + τ ≤ q − τp/g (mod N) ≤ m1 − 1(τ < 0))}.

The following theorem can be similarly obtained.

Theorem 11. Dil(ēr) = Dil(ēc) = 1, Dil(êr) = minu,v∈Z rg(u, v) and Dil(êc) =

minu,v∈Z cg(u, v), where rg(u, v) = |um2− vhg|+ |m1− 1+um2τ + v(m1− τh)| and

cg(u, v) = |1 + um2 − vhg|+ |m1 + um2τ + v(m1 − τh)|.

If gcd(s1,m1) = d > 1 and gcd(s1, N) - m2, P-shape can be constructed by chang-

ing m2 as base, or changing s2 as the horizontal step to satisfy gcd(si, N)|mj , where

i = 1 or 2 and j = 1 or 2. For example, if gcd(s2,m2) = 1, Pshape(m2,m1, τ, h)

can be constructed on DL(N ; s2, s1); If gcd(s2, m2) = d > 1 and gcd(s2, N)|m1,

Pshape(m2,m1, τ, g · h) can be constructed. As gcd(N, s1, s2) = 1 for DL(N ; s1, s2),

it can be proved that the scenario of gcd(si, N) - mj for both i = 1, 2 and j = 1, 2 hap-

pens with very little chance under strict conditions. Even if this case happens, dummy

nodes can be added to satisfy gcd(si, N
′)|m′

j , which requires si − 1 dummy tiers added

in the worst case. Since si is usually very small compared with the size of the networks

in practical, the expansion rate is no larger than 1 + si−1
mj

, which is near 1.

In summary, P-shape on DL(N ; s1, s2) can be constructed using the following Al-

gorithm 2.

Algorithm 2: P-shape construction for DL(N ; s1, s2)

d = gcd(s1,m1), g = gcd(s1, N).
If d = 1

Calculate τ for Pshape(m1,m2, τ, h) on DL(N ; s1, s2);
If d 6= 1

If m2

g
is an integer

Calculate τ for for Pshape(m1,
m2

g
, τ, h, g) on DL(N

g
; s1

g
, s2) ;

If m2

g
is not an integer

Output(”adding dummy nodes”).
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2.7 Extended P-shape on DL(N ; 1, s) and DL(N ; s1, s2)

It can be seen from Property 2 and Property 6 that P-shape for DL(N ; 1, s) or

DL(N ; s1, s2) is constructed on the condition that gcd(k, m2) = 1. In this section, we

design the extended P-shape, which is not restricted by the condition of gcd(k, m2) = 1.

To construct the extended P-shape, we fist give the following lemmas.

Lemma 4. If s > m1 and m1 - s, there exist two and only two, −m1 < τ1 < 0 and

0 < τ2 < m1, satisfying τ1 = k1m1 − s = bs/m1cm1 − s < 0 and τ2 = k2m1 − s =

ds/m1em1 − s > 0, where k2 − k1 = 1 and τ2 − τ1 = m1.

Lemma 5. If m1 - s2, there exist two and only two, −m1 < τ1 < 0 and 0 < τ2 < m1,

satisfying τi = (Kim2+ki)m1−s2

s1
, where k2 − k1 = s1 − (K2 −K1) and τ2 − τ1 = m1.

By Lemma 4 and 5, if gcd(ki,m2) = 1 (i = 1 or 2), Pshape(m1,m2, τi, h) can be

constructed for DL(N ; 1, s) or DL(N ; s1, s2) using only one τi. If gcd(k1,m2) 6= 1 and

gcd(k2,m2) 6= 1, the extended P-shape, denoted by Pshape(m1,m2, τ1, τ2, h), can be

constructed using both τ1 and τ2 as follows, where gcd(k1,m2) = κ.

1) Construct Pshape(m1,m2/κ, τ1, h1) for DL(N/κ; 1, s) or DL(N/κ; s1, s2).

2) Construct sub-Pshape(m1, κ, τ2, h2) for DL(m1κ; 1, s) or DL(m1κ; s1, s2) on

each tier of P-shape1(m1,m2/κ, τ1, h1).

As shown in Figure 2.14, for embedding M(4 × 6) on DL(24; 1, 11), it can be

calculated that k1 = 2, τ1 = −3, and k2 = 3, τ2 = 1. As gcd(2, 6) = 2 6= 1

and gcd(2, 6) = 3 6= 1, we first construct Pshape(4, 3,−3, h1), and then construct a

sub-Pshape(4, 2, 1, h2) on each tier of Pshape(4, 3,−3, h1). We denote the horizontal

distance between the (i + 1)th tier and the ith tier is τ(i), where 1 ≤ i ≤ m2 − 1.

For Pshape(m1,m2, τ1, τ2, h), τ(i) = τ1 if i (mod κ) = 0, and τ(i) = τ2 if i

(mod κ) 6= 0. The node mapping function for embedding M(m1,m2) or T (m1, m2) on

Pshape(m1,m2, τ1, τ2, h) can be extended as:

fτi
: (p, q) → (p, q −∑p

i=1 τi (mod m1)).

Corollary 13. The embedding function fτi
for Pshape(m1,m2, τ1, τ2, h) is equivalent

to fτ1 : (p, q) → (p, q − τ1p (mod m1)) or fτ2 : (p, q) → (p, q − τ2p (mod m1)).
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Figure 2.14: Construction of Pshape(4, 6,−3, , 1, h2) on DL(24; 1, 11)

Proof. As τ2 − τ1 = m1 by Lemma 4, q − ∑i=p
i=1 τi (mod m1) = q − τ2p + p

κ
τ2 −

τ1 (mod m1) = (q − τ2p) (mod m1). Similarly, q − ∑i=p
i=1 τi (mod m1) = q − τ1p

(mod m1).

Based on the construction of the extended P-shape, the edge dilations for extended

P-shape embedding can be calculated by the following theorems.

Theorem 12. Dil(êr) = minv∈Z |m1 + vτ2κ|+ |vκ|.

Theorem 13. Dil(êc) =





minv∈Z | −m1 + vτ2κ|+ |1 + vκ|; if p + 1 (mod κ) = 0;

minv∈Z |m1 + vτ2κ|+ |1 + vκ|; if p + 1 (mod κ) 6= 0.

2.8 Comparison

2.8.1 P-shape vs. L-shape

The major differences between the traditional L-shape and our proposed P-shape are

listed as follows:

(1) L-shape is asymmetric, whereas P-shape is centrosymmetric, thus enabling other

regular graphs to be embedded on double-loop networks in a regular and systematic

way.
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(2) L-shape concerns double-loop network’s own properties, whereas P-shape is de-

signed to exploit the relationships between double-loop networks and other regular net-

works. Therefore, P-shape can act as a bridge between double-loop networks and other

regular networks.

(3) For a given double-loop network, there is a unique L-shape, whereas different

P-shape constructions can be made on different base lengths for the same double-loop

network, thus providing more choices on the construction of P-shape.

These differences show that P-shape is more flexible than L-shape in terms of ex-

ploiting the relative performance between double-loop networks and other topologies.

2.8.2 P-shape Embedding vs. Simple and Snake-like Embedding

In [50], the embedding performance of simple and snake-like embedding was studied

for meshes and tori on chordal ring of degree four, which is a special class of double-

loop networks. Advantages of P-shape embedding compared with simple and snake-like

embedding can be demonstrated as follows.

(1) P-shape embedding is more scalable. Simple and snake-like embedding can

only be implemented on DL(N ; 1, s), and can not be extended to DL(N ; s1, s2). P-

shape embedding can be used on DL(N ; 1, s) introduced in Section 2.4 and Section

2.5. Moreover, P-shape embedding can be extended on DL(N ; s1, s2) shown in Section

2.6. Furthermore, the extended P-shape tessellation approach in Section 2.7 ensures that

P-shape embedding always exists on DL(N ; 1, s).

(2) P-shape embedding has a larger number of edges with dilation 1 than simple and

snake-like embedding. Table 2.2 shows the number of edges with dilation 1 in meshes

and tori by simple, snake-like and P-shape embedding. As 0 ≤ |τ | ≤ m1−1, the number

of edges with dilation 1 by P-shape embedding is about double of that by simple and

snake-like embedding in the best case, and about the same with simple and snake-like

embedding in the worst case.

(3) P-shape embedding has more optimal cases than simple and snake-like embed-

ding. For simple embedding, the optimal case for M(m1,m2) on DL(N ; 1, s) with
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N ′ M(m1 ×m2)
Simple m1m2 −m2

Snake-like m1m2 − 1
P-shape ≥ 2m1m2 − (|τ |+ 2)m2 −m1 + |τ |

Table 2.2: Number of edges (N ′) with dilation 1 in meshes by simple, snake-like and
P-shape embedding

dilation 1 and average dilation 1 only happens if and only if s = m1. For snake-like

embedding, it is impossible to achieve optimal embedding in any case. It can be seen

from Corollary 5 that P-shape embedding for M(m1, m2) on DL(N ; 1, s) is optimal in a

group of cases when m1|s and gcd( s
m1

,m2) = 1. For example, the dilation and average

dilation of embedding M(4, 15) on DL(4 × 15; 1, 8) are 1 by Corollary 5, whereas the

dilation and average dilation of simple embedding for M(4, 15) on DL(4× 15; 1, 8) are

4 and 2.96 respectively, and snake-like embedding are 5 and 2.19.

2.9 Conclusion

Due to the topological complexity of double-loop networks, little work has been done

on embedding other types of networks on double-loop networks. For the purpose of

embedding meshes and tori onto double-loop networks, which is of great significance

in both theory and applications for the popularity of these networks and the desirable

property of equal node-degree, we proposed a novel tessellation method of P-shape to

partition the the geometric plane of double-loop networks, since the traditional L-shape

is not symmetric to illustrate the embedding of regular graphs.

Based on the characteristics of P-shape, we designed P-shape embedding, which

ensures that a large number of edges in meshes or tori have dilation 1. Furthermore,

we evaluated the dilation, average dilation and congestion of P-shape embedding, and

derived the conditions for achieving the optimal embedding (dilation 1 and congestion

1) and near optimal embedding (dilation near 1). Our results show that the proposed P-

shape is a useful theoretical tool for analyzing the embedding problems on double-loop

networks as a bridge between double.
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2.10 Application Extensions

Some applications of this work may be extended in the following ways.

2.10.1 Large Meshes

Figure 2.15: Partition of M ×N mesh

According to the definition of P-shape embedding, it is assumed that the number of

nodes in meshes is equal to that in double-loop networks. If the number of nodes in

meshes is larger than that of double-loop networks, it is easy to partition the meshes

into a group of small meshes, such that the number of ”super” nodes in the partitioned

meshes is equal to that in the double-loop networks by considering each small mesh as

a ”super” node. In this way, the embedding scheme can be constructed similarly.

For example, given an M ′×N ′ mesh and an m×n-node double-loop network, where

M ′ × N ′ > m × n, the M ′ × N ′ mesh can be partitioned into an m × n mesh, where

M ′ = M1+M2+ . . .Mi . . .+Mm−1+Mm and N ′ = N1+N2+ . . . Ni . . .+Nn−1+Nn,

as illustrated in Figure 2.15. In this way, the M ′×N ′ mesh is partitioned into an m× n

mesh with each ”super” node composed of a group of nodes. Thus, the embedding

can be easily extended by embedding each ”super” node on the node of double-loop

networks by P-shape embedding.
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2.10.2 Embedding Other Topologies on Double-loop Networks

As mentioned in Chapter 1, a large number of embedding problems on meshes have been

studied. It is easy to see that the embedding problems of other topologies on double-loop

networks may be solved in two steps by combining two embedding functions illustrated

as the following Algorithm:

Algorithm Embedding Topology Gx on Double-loop Network.

(1) Embedding Gx on mesh;

/*results obtained by previous results on embedding Gx on mesh*/

(2) Embedding mesh on double-loop network;

/*results obtained by our results in this chapter*/

2.10.3 Other Application Extensions

For the future research, the properties of P-shape, which may help to analyze other

routing and embedding problems, can be further investigated. One open problem is to

extend our methods to the embedding of high dimensional meshes on multi-loop net-

works DL(N ; s1, s2, ..., sn−1, sn), which has a higher degree of technical complexity.

Also, if the double-loop networks are connected by optical fibers, the congestion pro-

vided by our results can be regarded as the lower bound of the wavelength requirement.

However, the advantage of our scheme is small dilation, which represents short com-

munication latency. Due to the complexity of double-loop networks, the embedding

schemes which can provide efficient communication bandwidth will be more complex.

Furthermore, our proposed technique provides a way for matrix mapping onto double-

loop networks, since it is well-known that the mapping of matrix on meshes has been

extensively studied in the past years.



Chapter 3

Embedding of Hypercubes on

Array-based WDM Optical Networks

In this chapter, we first study routing and wavelength assignment for realizing hyper-

cubes on WDM optical networks including linear arrays and rings with the consid-

eration of communication directions. Specifically, we analyze this problem for both

bidirectional and unidirectional hypercubes. For each case, we identify a lower bound

on the number of wavelengths required, and design the embedding scheme and wave-

length assignment algorithm that uses a provably near-optimal number of wavelengths.

In addition, we extend the results to meshes and tori.

3.1 Introduction

Optical communication, in particular, Wavelength Division Multiplexing (WDM) tech-

nique, has become a promising technology for many emerging networking and par-

allel/distributed computing applications because of its huge bandwidth [34][138]. In

WDM optical networks, the bandwidth in optical fiber is partitioned into multiple data

channels, in which different messages can be transmitted simultaneously using different

wavelengths. In general, an optical WDM network consists of routing nodes intercon-

nected by point-to-point fiber links, which can support a certain number of wavelengths.

Each wavelength can carry a separate stream of data. To efficiently utilize the bandwidth
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resources and to eliminate the high cost and bottleneck caused by optoelectrical con-

version and processing at intermediate nodes, end-to-end lightpaths are usually set up

between each pair of source-destination nodes. A connection or a lightpath in a WDM

network is an ordered pair of nodes (x, y) corresponding to transmission of a packet

from source x to destination y. Routing and wavelength assignment for the connections

are subject to the following two constraints [134]:

1. Wavelength continuity constraint: a lightpath must use the same wavelength on

all the links along its path from source to destination node.

2. Distinct wavelength constraint: all lightpaths using the same link (fiber) must be

assigned distinct wavelengths.

If there is no wavelength converter facility available in the network, a connection

must use the same wavelength throughout its path. Due to the wavelength-continuity

constraint, traditional embedding techniques, which pay attention to the congestion of

the embedding, are not sufficient to minimize the number of wavelengths required to

realize communication patterns on WDM optical networks. The resulting problem is re-

ferred to as Routing and Wavelength Assignment (RWA) [134], which is a key problem

for increasing the efficiency of wavelength-routed all-optical networks. Given a physi-

cal network structure and the required connections, the problem of RWA is to select a

suitable path and wavelength among many possible choices for each connection so that

no two paths sharing a link are assigned the same wavelength. RWA tries to minimize

the number of wavelengths to realize a communication requirement by taking into con-

sideration both routing options and wavelength assignment options. There has been a

great deal of research on RWA problem for various communications, such as all-to-all

and multicast communications, which has been extensively discussed in Chapter 1.

Hypercube has become one of the most popular communication patterns shared by

a large number of computational problems [80]. However, the number of connections

for each node is a logarithmic function of the total number of nodes. Therefore, hyper-

cube networks is not a good candidate for very large scale due to the port limitations.

Since WDM divides the bandwidth of an optical fiber into multiple wavelength channels,

physical topologies for realizing hypercube connections can be significantly simplified
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by realizing the connections of hypercube through different channels concurrently on

WDM optical networks. As optical technology can provide for parallel computing sys-

tems with an enormous amount of bandwidth and low latency, the existing results on

hypercube can be incorporated into the optical networks by taking advantages of the

parallel transmission characteristic of optical communication. As mentioned in Chap-

ter 1, hypercubes realized on optical networks have attracted a lot of attentions. In

[20][120][122], hypercube on WDM partitioned optical passive star networks was stud-

ied. In [91], a solution for embedding a virtual unidirectional incomplete hypercube into

optical networks was presented. In [132], wavelength assignments for hypercube com-

munications on mesh-like optical networks were studied. However, the results obtained

in [132] were based on traditional standard embedding scheme. As mentioned in [132],

optimal node numbering (and its RWA) is a much more complex problem. Different

from the traditional standard embedding used in [132], we provide the lower bounds of

wavelengths irrespective of different node numbering. In addition, those results in [132]

are only applicable for realizing bidirectional hypercubes on bidirectional networks.

Due to the lack of bidirectional electrical/optical converters, unidirectional topolo-

gies are often used to reduce the hardware cost. We study routing and wavelength as-

signments for both bidirectional and unidirectional hypercubes on a class of optical

WDM networks including linear arrays, rings, meshes and tori with the consideration

of communication directions. Moreover, we discuss the above problems for rings and

tori with both bidirectional and unidirectional cases. We identify lower bounds on the

numbers of wavelengths required for hypercubes on the optical networks, and develop

the embedding schemes and wavelength assignment algorithms.

The main differences between our work and that in [132] are summarized as follows.

1. Different with the traditional embedding scheme used in [132], we derive the

lower bounds on the number of wavelengths for realizing bidirectional hypercube

on WDM optical networks irrespective of embedding schemes.

2. By taking advantage of the freedom of the embedding, we design a simple em-

bedding scheme and wavelength assignment for realizing bidirectional hypercube
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on WDM bidirectional rings, which reduce the wavelength requirement in [132].

3. The study in [132] is based on bidirectional hypercube realized on bidirectional

networks. As the unidirectional hypercube can save wavelength resource com-

pared to the bidirectional case, we further derive the results for unidirectional

hypercubes. Moreover, we discuss the problem on unidirectional rings and tori

which can save network resource compared to the bidirectional networks.

3.2 Bidirectional Hypercube and Unidirectional Hyper-

cube

Assume the number of nodes in hypercube communication is N = 2n. Two nodes are

connected in hypercube if and only if their binary representations differ by exactly 1 bit.

A connection in hypercube is called a dimensional i connection [80] if it connects two

nodes that differ in the ith bit position.

For bidirectional hypercube, two nodes of x and y, whose binary representations

differ by the ith bit position, are connected by two dimensional i connections of (x, y)

and (y, x). We define Hb
n as bidirectional hypercube communications, and DIM b

n,i,

where 0 ≤ i ≤ n − 1, as the set of all the corresponding dimensional i connections.

That is,

Hb
n =

⋃n−1
i=0 DIM b

n,i, DIM b
n,i = {(j, j + 2i), (j + 2i, j)|j mod 2i+1 < 2i}.

For Hb
n, there are n× 2n = N log N connections and 2n connections in DIM b

n,i for

each i(0 ≤ i ≤ n− 1).

Unidirectional hypercube [33] proposed by Chou and Du preserves most of the nice

characteristics of conventional hypercubes such as short diameter, short average distance

and efficient routing equivalent to bidirectional hypercube. Many studies [72][122] were

based on the unidirectional hypercube proposed in [33]. We denote the unidirectional

hypercube by Hu
n . For the communication pattern of Hu

n , each connection is assigned a

fixed direction. The port of node j for dimensional i connection is assigned a polarity

according to the following function [33]:
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P (i, j) = (−1)bn−1+bn−2+...+b1+b0+i,

where bn−1bn−2 . . . b1b0 is the binary representation of node j in Hu
n . The direction of

each dimensional i connection is from positive port to negative port. Hu
4 is shown in

Figure 3.1.

Figure 3.1: 3-D view of unidirectional hypercube (N = 16)

Hu
n and the corresponding dimensional i connections, denoted by DIMu

n,i, are de-

fined as follows,

Hu
n =

⋃n−1
i=0 DIMu

n,i, DIMu
n,i = {(j+, j−)|P (i, j+) = 1, P (i, j−) =

−1, (j+, j−) ∈ DIM b
n,i}.

For Hu
n , there are n × 2n−1 = (N log N)/2 connections and 2n−1 connections in

DIMu
n,i for each 0 ≤ i ≤ n− 1.

The congestion of embedding hypercube on linear array, denoted by Cong(Hn, Ln),

is the minimum over all embedding schemes of the maximum number of hypercube

edges that pass any edge of the linear array, which can be obtained by the following

lemma [14].

Lemma 6. Cong(Hn, Ln) =





(2N − 2)/3, if n is even;

(2N − 1)/3, if n is odd.

3.3 Hypercubes on WDM Linear Arrays

In this section, the WDM linear arrays are referred to bidirectional WDM linear arrays

denoted by Lb
n.
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3.3.1 Bidirectional Hypercubes on Linear Arrays

3.3.1.1 Lower Bound

In [132], the results were derived based on the traditional embedding scheme which

is to embed the ith node of hypercube onto the ith node of the networks. We show that

the following lower bound on the number of wavelengths holds irrespective of embed-

ding schemes.

Lemma 7. The number of wavelengths required to realize bidirectional hypercube com-

munications on bidirectional linear arrays is no less than b2N/3c. That is, for ∀e,
λe(H

b
n, L

b
n) ≥ b2N/3c.

Proof. According to the definition of congestion, no matter what the embedding scheme

is used, there exists such a cut on a bidirectional linear array that partitions the nodes

of Lb
n into two sets, S1 and S2, such that at least Cong(Hn, Ln) connections in Hb

n

originating at nodes in S1 and terminating at nodes in S2, and Cong(Hn, Ln) connec-

tions in Hb
n originating at nodes in S2 and terminating at nodes in S1. Since there is

1 link connecting from S1 to S2 and 1 link from S2 to S1, each of these 2 links must

be used at least Cong(Hn, Ln) times, regardless of the embedding and routing schemes

used. By Lemma 1 and Lemma 6, the number of wavelengths required, for ∀e, satisfies

λe(H
b
n, L

b
n) ≥ b2N/3c.

3.3.1.2 Wavelength Assignment Algorithm

By Lemma 10, it is easy to see the result for realizing bidirectional hypercube by tra-

ditional embedding derived in [132] can achieve the optimal number of wavelengths

among all embeddings. Similar with the idea used in [132] on traditional embedding

scheme, we provide a proof and wavelength assignment algorithm, which are simpler.

Theorem 14. The number of wavelengths required to realize bidirectional hypercube

communications on bidirectional linear arrays is b2N/3c.
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Figure 3.2: Cycle1(i, j) using wavelength 1 and Cycle2(i, j) using wavelength 2

Proof. Assume the nodes of Lb
n are numbered from 0 to N − 1 from left to right. Em-

bed the ith node of Hb
n on the ith node of Lb

n. Let j, j + 2i, j + 2i+1, j + 2i + 2i+1 be

the four nodes forming a 2-dimensional sub-cube H2 with eight connections in dimen-

sions i and i + 1. As illustrated in Figure 3.2, four of the connections (j, j + 2i), (j +

2i, j + 2i + 2i+1), (j + 2i + 2i+1, j + 2i+1) and (j + 2i+1, j) (forming a clockwise cycle

denoted by Cycle1(i, j)) can be realized by one wavelength and the other four connec-

tions, (j, j +2i+1), (j +2i+1, j +2i +2i+1), (j +2i +2i+1, j +2i) and (j +2i, j) denoted

by Cycle2(i, j), in the opposite direction can be realized by another wavelength. For

each i(0 ≤ i ≤ n − 2), the connections in DIM b
n,i ∪ DIM b

n,i+1 are routed on 2n−i−2

disjoint subarrays. Since the wavelengths can be reused between subarrays, the to-

tal number of wavelengths required to realize the connections in DIM b
n,i ∪ DIM b

n,i+1

is (2 × 2n/4)/2n−i−2 = 2i+1. For n is even, λ(Hb
n, L

b
n) = λ(

⋃n−1
i=0 DIM b

n,i, L
b
n) =

λ(
⋃

i=0,2,4,..n−2(DIM b
n,i ∪DIM b

b,i+1), L
b
n) = 21 + 23 + 25 + . . . + 2n−1 = 2N/3− 2/3.

For n is odd, λ(Hb
n, L

b
n) = λ(

⋃n−1
i=0 DIM b

n,i, L
b
n) = λ(

⋃
i=1,3,5,...,n−2(DIM b

n,i ∪
DIM b

n,i+1), L
b
n) + λ(DIM b

n,0, L
b
n) = 22 + 24 + 26 + . . . + 2n−1 + 1 = 2N/3 − 1/3,

since one wavelength is sufficient to realize DIM b
n,0.

Therefore, there exists a wavelength assignment algorithm described in Algorithm

1, which requires b2N/3c wavelengths.
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Algorithm 1: Assign Hb
n Lb

n

(1) For i = n− 2 downto 0 step 2

(2) for k = 0 to 2n−i−2 − 1

(3) for j = k · 2i+2 to k · 2i+2 + 2i+1

(4) assign one wavelength unused to Cycle1(i, j)

(5) assign another one wavelength unused to Cycle2(i, j)

/*assign wavelengths for DIM b
n,i ∪DIM b

n,i+1*/

(6) If i = −1 /*if n is odd*/

(7) assign one wavelength to DIM b
n,0

3.3.2 Unidirectional Hypercubes on Linear Arrays

Figure 3.3 illustrates the 2-D representation for Hu
4 showed in Figure 3.1.
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Figure 3.3: 2-D view of unidirectional hypercube (N = 16)

3.3.2.1 Lower Bound

Lemma 8. The number of wavelengths required to realize unidirectional hypercube

communications on bidirectional linear arrays is no less than bN/3c if n is even and

dN/3e if n is odd. That is, for ∀e, λe(H
u
n , Lb

n) ≥



bN/3c, if n is even;

dN/3e, if n is odd.
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Proof. No matter what the embedding scheme is used, there exists such a cut on a

bidirectional linear array that partitions the nodes of Lb
n into two sets, S1 and S2, such

that at least Cong(Hn, Ln) connections in Hu
n either originating at nodes in S1 and

terminating at nodes in S2, or originating at nodes in S2 and terminating at nodes in S1.

Since there is 1 link connecting from S1 to S2 and 1 link from S2 to S1, one of the 2

links must be used at least dCong(Hn, Ln)/2e times, regardless of the embedding and

routing schemes used. By Lemma 1 and Lemma 6, the number of wavelengths required,

for ∀e, satisfies λe(H
u
n , Lb

n) ≥



bN/3c if n is even;

dN/3e if n is odd.

3.3.2.2 Wavelength Assignment Algorithm

Property 7. For the connections of DIMu
n,i ∪DIMu

n,j in Hu
n , any nodes are embedded

in a cycle of length four if and only if i + j is odd [33].

Property 8. For Hu
n , the connections in DIMu

n,i ∪ DIMu
n,i+1 consist of N/4 cycles of

length four, for each 0 ≤ i ≤ n− 2.

Proof. By Property 7, all the connections in DIMu
n,i and DIMu

n,i+1 are embedded in a

cycle of length four, since i+(i+1) = 2i+1 is always odd. For each 0 ≤ j ≤ N−1, if

P (i, j) = 1, then P (i, j +2i) = −1, P (i+1, j +2i) = 1, P (i+1, j +2i +2i+1) = −1,

P (i, j+2i+2i+1) = 1, P (i, j+2i+1) = −1, P (i+1, j+2i+1) = 1 and P (i+1, j) = −1.

Thus, connections of (j, j + 2i), (j + 2i, j + 2i + 2i+1), (j + 2i + 2i+1, j + 2i+1) and

(j + 2i+1, j) can form one directed cycle. Similarly, if P (i, j) = −1, (j, j + 2i+1), (j +

2i+1, j + 2i + 2i+1), (j + 2i + 2i+1, j + 2i) and (j + 2i, j) can form one cycle. Thus,

there are N/4 such cycles of length four in DIMu
n,i ∪DIMu

n,i+1.

Theorem 15. The number of wavelengths required to realize unidirectional hypercube

communications on bidirectional linear arrays is bN/3c if n is even and dN/3e if n is

odd.

Proof. Embed the ith node of Hu
n on the ith node of Lb

n. According to Property 8,

DIMu
n,i ∪DIMu

i+1 consists of N/4 cycles. For the four connections of each cycle, two
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connections are routed from left to right and the other two are from right to left. In

addition, the two connections in the same direction do not share any link of Lb
n. Thus,

the same wavelength can be realized to each cycle. For each i, DIMu
n,i ∪ DIMu

n,i+1

are routed on 2n−i−2 disjoint subarrays and the cycles on each subarray with 2i+2

nodes do not share any links with the cycles on the other subarray. Therefore, the

number of wavelengths required to realize DIMu
n,i ∪ DIMu

n,i+1 is 2i. For n is even,

λ(Hu
n , Lb

n) = λ(
⋃n−1

i=0 DIMu
n,i, L

b
n) = λ(

⋃
i=0,2,4,...,n−2(DIMu

n,i ∪ DIMu
n,i+1), L

b
n) =

20+22+24+. . .+2n−2 = N/3−1/3. For n is odd, λ(Hu
n , Lb

n) = λ(
⋃n−1

i=0 DIMu
n,i, L

b
n) =

λ(
⋃

i=1,3,5,...,n−2(DIMu
n,i ∪DIMu

u,i−1), L
b
n) + λ(DIMu

n,0, L
b
n) = 21 + 23 + 25 + . . . +

2n−2 + 1 = N/3 + 1/3, since one wavelength is sufficient to realize DIMu
n,0.

Therefore, there exists a wavelength assignment algorithm described in Algorithm

2, which requires bN/3c wavelengths if n is even and dN/3e if n is odd.

The wavelength assignment algorithms for bidirectional hypercube communications

and unidirectional hypercube communications on linear arrays, which achieve the lower

bounds with respect to the number of wavelengths, are optimal by embedding the ith

node of hypercube on the ith node of linear arrays.

Algorithm 2: Assignment Hu
n Lb

n

(1) For i = n− 2 downto 0 step 2

(2) for k = 0 to 2n−i−2 − 1

(3) for j = k · 2i+2 to k · 2i+2 + 2i

(4) if P (i, j) = 1

(5) assign one wavelength unused from λ1 to Cycle1(i, j)

(6) else

(7) assign one wavelength unused from λ2 to Cycle2(i, j)

/*assign wavelengths for DIMu
n,i ∪DIMu

n,i+1*/

(8) If i = −1 /*if n is odd*/

(9) assign one wavelength to DIMu
n,0
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3.4 Hypercubes on WDM Rings

For bidirectional rings, there are two possible paths for a connection between any two

nodes: clockwise or counter-clockwise. We denote the bidirectional ring by Rb
n with N

nodes numbered from 0 to N − 1 clockwise.

For unidirectional ring, the path for a connection between any two nodes is unique.

Without loss of generality, we assume the direction of unidirectional ring is clockwise.

We denote the unidirectional ring by Ru
n with N nodes numbered from 0 to N − 1

clockwise.

3.4.1 Bidirectional Hypercubes on Bidirectional Rings

3.4.1.1 Lower Bound

By Lemma 1, the number of wavelengths required to realize Hb
n on Rb

n is no less

than the congestion of embedding Hb
n on Rb

n, regardless of which embedding scheme e

is used. That is,

Lemma 9. λe(H
b
n, Rb

n) ≥ Cong(Hb
n, Rb

n).

One lower bound for the number of wavelengths required to realize Hb
n on Rb

n is

derived in the following lemma.

Lemma 10. The number of wavelengths required to realize bidirectional hypercube

communications on bidirectional rings is no less than bN/3c if n is even and dN/3e if

n is odd. That is, for ∀e, λe(H
b
n, Rb

n) ≥



bN/3c, if n is even;

dN/3e, if n is odd.

Proof. Irrespective to what the embedding scheme is used, there exists such a cut on a

bidirectional ring that partitions the nodes of Rb
n into two sets, S1 and S2, such that at

least Cong(Hn, Ln) connections in Hb
n originate at nodes in S1 and terminate at nodes in

S2. Since there are 2 links connecting from S1 to S2, one of these 2 links must be used

at least dCong(Hn, Ln)/2e times, regardless of the embedding and routing schemes



82

used. Symmetrically, at least Cong(Hn, Ln) connections in Hb
n originate at nodes in

S2 and terminate at nodes in S1. Since there are also 2 links connecting from S2 to S1,

one of these 2 links must be used at least dCong(Hn, Ln)/2e times. By Lemma 6 and

Lemma 9 , the number of wavelengths required to realize Hb
n on Rb

n, for ∀e, satisfies

λe(H
b
n, R

b
n) ≥ Cong(Hb

n, Rb
n) ≥ dCong(Hn, Ln)/2e =




bN/3c, if n is even;

dN/3e, if n is odd.

3.4.1.2 Wavelength Assignment Algorithm

We propose the embedding scheme of Hb
n on Rb

n as follows.

Assume η is a function of one-to-one mapping from the node of Hb
n to the node of

Rb
n. Define

η(i) =





i, if 0 ≤ i ≤ N/2− 1;

3N/2− 1− i, if N/2 ≤ i ≤ N − 1.

In other words, by the embedding η, the nodes of Hb
n from 0 to N/2− 1 are mapped

onto the nodes of Rb
n from 0 to N/2 − 1 in ascending order one by one, and the nodes

of Hb
n from N/2 to N − 1 onto the nodes of Rb

n from N − 1 to N/2 in descending order

one by one. We assume all the connections are routed by the shortest path.

Theorem 16. By the embedding scheme of η, the number of wavelengths required to

realize bidirectional hypercube communications on bidirectional rings is b5N/12c. That

is, λη(H
b
n, R

b
n) = b5N/12c.

Proof. By embedding scheme of η, connections in Hb
n−DIM b

n,n−1−DIM b
n,n−2 embed-

ded on Rb
n can be regarded as four Hb

n−2 embedded on four bidirectional linear arrays

with 2n−2 nodes, denoted by Subarrayi(i = 0, 1, 2, 3), as illustrated in Figure 3.4. Since

Subarray0, Subarray1, Subarray2 and Subarray3 are disjoint and the connections in

each subarray do not share links with the connections in other subarrays by the shortest

path, wavelengths can be reused and the same set of wavelengths can be assigned to

each subarray. By Theorem 14, the number of wavelengths required for each subarray

with 2n−2 nodes is bN/6c.
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Subarray1

Subarray0 Subarray3

Subarray2

Figure 3.4: Hb
n embedded on Rb

n by embedding scheme of η

For the connections in DIM b
n,n−1 ∪DIM b

n,n−2, (i, i + 2n−2), (i + 2n−2, i + 2n−2 +

2n−1), (i + 2n−2 + 2n−1, i + 2n−1), (i + 2n−1, i) do not share any links on the ring by the

shortest path and can be realized using one wavelength λi, for each 0 ≤ i ≤ 2n−2 − 1.

Since connections of (i, i + 2n−1), (i + 2n−1, i + 2n−2 + 2n−1), (i + 2n−2 + 2n−1, i +

2n−2), (i + 2n−2, i) are routed in the opposite direction, the same wavelength λi can be

assigned to these connections. So, N/4 wavelengths are required to realize the connec-

tions in DIM b
n,n−1 ∪DIM b

n,n−2.

Therefore, the number of wavelengths required to realize Hb
n on Rb

n is bN/6c +

N/4 = b5N/12c by the embedding scheme of η using wavelength assignment of Algo-

rithm 3.

By taking advantage of the freedom of the mapping, this result of b5N/12c can

reduce the wavelength requirement (b7N/12c) in [132]. In addition, it is equal to the

conjecture for congestion of hypercube embedded on cycle in [48]. If the conjecture is

held, our scheme is optimal.
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Algorithm 3: Assign Hb
n Rb

n(n > 2)

(1) For i = 0, 1, 2, 3

(2) apply Assign Hb
n−2 Lb

n−2(n > 0) for Subarrayi

/*apply Theorem 14 using the same set of wavelengths for each i*/

(3) For i = 1 to 2n−2

(4) assign λi to connections of (i, i + 2n−2), (i + 2n−2, i + 2n−2 +

2n−1), (i + 2n−2 + 2n−1, i + 2n−1),(i + 2n−1, i)

(5) assign λi to connections of (i, i+2n−1), (i+2n−1, i+2n−2+2n−1),(i+

2n−2 + 2n−1, i + 2n−2),(i + 2n−2, i)

/*assign wavelengths for DIM b
n,n−1 ∪DIM b

n,n−2*/

The congestion of embedding hypercube on cycle has been studied as the problem of

cyclic cutwidth for hypercube [48]. As far as we know, the problem of cyclic cutwidth

for hypercube is still an open problem [48][116]. The best lower bound known for

the cyclic cutwidth for hypercube, denoted by ccw(Qn) in [48], is ccw ≥ 1
2
lcw(Qn).

lcw(Qn) is referred to cutwith of hypercube which is equal to congestion of hypercube

on linear array. Although the cyclic cutwidth hypercube has not been discovered, a

conjecture, ccw(Qn) = b5N/12c, has been made in [48]. So far as has been tested,

this conjecture has been held [4][21][75]. In [132], the number of wavelengths required

is b7N/12c for realizing Hb
n on Rb

n. Our embedding scheme is very simple, and the

wavelength assignment algorithm for Hb
n realized on Rb

n outperforms the previous result

in [132]. In addition, the number of wavelengths achieves the lower bound with respect

to the conjecture for the cyclic cutwidth of hypercube.

3.4.2 Unidirectional Hypercubes on Bidirectional Rings

3.4.2.1 Lower Bound

Lemma 11. The number of wavelengths required to realize unidirectional hyper-

cube communications on bidirectional rings is no less than dN/6e. That is, for

∀e, λe(H
u
n , Rb

n) ≥ dN/6e.
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Proof. No matter what embedding scheme is used, there exists such a cut on a bidi-

rectional ring that partitions the nodes of Rb
n into two sets, S1 and S2, such that at

least Cong(Hn, Ln) connections in Hu
n either originating at nodes in S1 and termi-

nating at nodes in S2, or originating at nodes in S2 and terminating at nodes in S1.

Since there are 2 links connecting from S1 to S2 and 2 links from S2 to S1, one of

the 4 links must be used at least dCong(Hn, Ln)/4e times, regardless of the embed-

ding and routing schemes used. Therefore, the congestion of embedding Hu
n on Rb

n

is no less than dCong(Hn, Ln)/4e. Using the result of Lemma 6, Cong(Hu
n , Rb

n) ≥
dCong(Hn, Ln)/4e = dN/6e. By Lemma 1, the number of wavelengths required to

realize Hu
n on Rb

n, for ∀e, satisfies λe(H
u
n , Rb

n) ≥ Cong(Hu
n , Rb

n) ≥ dN/6e.

3.4.2.2 Wavelength Assignment Algorithm

Theorem 17. By the embedding scheme of η, the number of wavelengths required to

realize unidirectional hypercube communications on bidirectional rings is b5N/24c if n

is even and d5N/24e if n is odd.

Subarray2

Subarray3Subarray0

Subarray1

Figure 3.5: Hu
n embedded on Rb

n by η

Proof. Similar with the proof of Theorem 16, connections in Hu
n − DIMu

n,n−1 −
DIMu

n,n−2 embedded on Rb
n by embedding scheme η can be regarded as four Hu

n−2

embedded on four bidirectional linear arrays of 2n−2 nodes, denoted by Subarrayi(i =
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0, 1, 2, 3), as illustrated in Figure 3.5. By Theorem 15, the number of wavelengths re-

quired for each subarray is bN/12c if n is even and dN/12e if n is odd.

By Property 8, all the connections in DIMu
n,n−1 ∪ DIMu

n,n−2 form N/4 cycles of

length four. If P (n − 2, j) = 1, connections of (j, j + 2n−2), (j + 2n−2, j + 2n−2 +

2n−1), (j + 2n−2 + 2n−1, j + 2n−1), (j + 2n−1, j) do not share any links on Rb
n by the

embedding scheme of η and can be realized clockwise using one wavelength. If P (n−
2, j) = −1, connections of (j, j + 2n−1), (j + 2n−1, j + 2n−2 + 2n−1), (j + 2n−2 +

2n−1, j + 2n−2), (j + 2n−2, j) can be realized counter-clockwise using one wavelength.

It can be examined that N/8 cycles are routed clockwise and N/8 cycles are routed

counter-clockwise. Thus, N/8 wavelengths are sufficient to realize the connections in

DIMu
n,n−1 ∪DIMu

n,n−2.

Therefore, the number of wavelengths required by embedding scheme η to realize

Hu
n on Rb

n is bN/12c+ N/8 = b5N/24c if n is even and dN/12e+ N/8 = d5N/24e if

n is odd.

Assume Cycle1(i, j) = {(j, j + 2i), (j + 2i, j + 2i + 2i+1), (j + 2i + 2i+1, j +

2i), (j + 2i, j)} and Cycle2(i, j) = {(j, j + 2i+1), (j + 2i+1, j + 2i + 2i+1), (j +

2i + 2i+1, j + 2i), (j + 2i, j)}. Thus, Cycle1(n − 2, j) is the set of connections

in DIMu
n,n−1 ∪ DIMu

n,n−2 routing clockwise and Cycle2(n − 2, j) is that routing

counter-clockwise. Let λ1 = λ2 be sets of wavelengths. We describe the wavelength

assignment algorithm of Hu
n on Rb

n in the following Algorithm 4.
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Algorithm 4: Assign Hu
n Rb

n(n > 2)

(1) For i = 0, 1, 2, 3

(2) apply Assign Hu
n−2 Lb

n−2(n > 0) for Subarrayi

/*apply Theorem 15 using the same set of wavelengths for each i*/

(3) For j = 1 to 2n−2

(4) if P (n− 2, j) = 1

(5) assign one wavelength unused from λ1 to Cycle1(n− 2, j)

(6) else

(7) assign one wavelength unused from λ2 to Cycle2(n− 2, j)

/*assign wavelengths for DIMu
n,n−1 ∪DIMu

n,n−2*/

3.4.3 Bidirectional Hypercubes on Unidirectional Rings

3.4.3.1 Lower Bound

Lemma 12. The number of wavelengths required to realize bidirectional hyper-

cube communications on unidirectional rings is no less than (N log N)/2. That is,

λe(H
b
n, R

u
n) ≥ (N log N)/2.

Proof. For the bidirectional hypercube communications, if (x, y) ∈ Hb
n, then (y, x) ∈

Hb
n. Since the routing for each connection is unique in a unidirectional ring, each link

on Ru
n must be passed through either by (x, y) or by (y, x) at least once. In all, there

are n × 2n−1 such connection pairs for Hb
n. No matter what embedding scheme is

used to embed the node of Hb
n on Ru

n, each link on Ru
n must be passed through by at

least (N log N)/2 connections of Hb
n. So, the congestion in this case is no less than

(N log N)/2. By Lemma 1, λe(H
b
n, Ru

n) ≥ Cong(Hb
n, R

u
n) ≥ (N log N)/2.

3.4.3.2 Wavelength Assignment Algorithm

Theorem 18. The number of wavelengths required to realize bidirectional hypercube

communications on unidirectional rings is (N log N)/2.

Proof. If connection (x, y) is routed in the opposite direction with (y, x) along the ring,

these two connections do not share any links and one wavelength can be assigned to



88

(x, y) and (y, x). Since there are (N log N)/2 such connection pairs in Hb
n, (N log N)/2

wavelengths are sufficient for Ru
n to realize Hb

n.

Therefore, the necessary and sufficient number of wavelengths for Ru
n to realize Hb

n

is (N log N)/2. The wavelength assignment algorithm is described in Algorithm 5.

Algorithm 5: Assign Hb
n Ru

n(n > 2)

(1) For i = 1 to n

(2) for j = 0 to 2n − 1

(3) if j mod 2i+1 < 2i

(4) assign wavelength λij to (j, j + 2i), (j + 2i, j)

3.4.4 Unidirectional Hypercubes on Unidirectional Rings

3.4.4.1 Lower Bound

Lemma 13. The number of wavelengths required to realize unidirectional hypercube

communications on unidirectional rings is no less than blog N/2c ×N/4.

Proof. Since the routing for each connection is unique in Ru
n, each link must be passed

through by each cycle at least once. By Property 8, if n is even, DIMu
n,0 ∪ DIMu

n,1,

DIMu
n,2 ∪ DIMu

n,3, ... , DIMu
n,n−2 ∪ DIMu

n,n−1 form log N/2 × N/4 cycles. If n is

odd, DIMu
n,0 ∪DIMu

n,1, DIMu
n,2 ∪DIMu

n,3,..., DIMu
n,n−3 ∪DIMu

n,n−2 form (log N −
1)/2×N/4 cycles. No matter what embedding scheme is used to embed Hu

n on Ru
n, each

link on Ru
n must be passed through by the connections of Hu

n at least blog N/2c ×N/4

times. Thus, Cong(Hu
n , Ru

n) ≥ blog N/2c ×N/4. By Lemma 1, for ∀e, λe(H
u
n , Ru

n) ≥
Cong(Hu

n , Ru
n) ≥ blog N/2c ×N/4.

3.4.4.2 Wavelength Assignment Algorithm

We design the embedding scheme θ for Hu
n embedded on Ru

n as follows.

Give a label to each node of Hu
n by the following method. Assume the label of node

u is l, where 0 ≤ l ≤ 3. If a connection is from u to v, then the label for v is (l + 1)
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mod 4. If the connection is from v to u, then the label for v is (l − 1) mod 4. Give label

0 to node 0 initially. It can be proven that each node of Hu
n has a unique label by this

method and N/4 nodes are assigned to the same label. The label of each node for Hu
4 is

showed on Figure 3.6.

Subarray1

Subarray0 Subarray3

Subarray2
Label:1

Label:0 Label:3

Label:2

Figure 3.6: Routing of cycle in Hu
n by θ on Ru

n

The embedding scheme for Hu
n embedded on Ru

n is defined as follows. Divide

Ru
n into 4 subarrays, denoted by Subarray0, Subarray1, Subarray2 and Subarray3

clockwise, with N/4 nodes on each subarray. Embed the N/4 nodes with label l onto

Subarrayl regardless of what order of these nodes on the subarray. We denote this em-

bedding scheme by θ, which ensures the communication distance of all connections is

less than the diameter of the ring.

Theorem 19. By the embedding scheme θ, the number of wavelengths required to realize

unidirectional hypercube communications on unidirectional rings is d log N
2
e ×N/4.

Proof. According to the definition of θ, all the connections are routed from the nodes

in Subarrayl to Subarray(l+1)mod4. The 4 connections of each cycle are routed along

the four nodes labeled by the order of 0, 1, 2, 3 clockwise. Thus, each of these 4 connec-

tions in one cycle does not share links with the other 3 connections as illustrated in Fig-

ure 3.6. Therefore, one wavelength can be assigned to the 4 connections in one cycle. If

n is even, N log N/8 wavelengths are sufficient to realize the N log N/8 cycles formed

by DIMu
n,0 ∪ DIMu

n,1, DIMu
n,2 ∪ DIMu

n,3, ... , DIMu
n,n−2 ∪ DIMu

n,n−1. If n is odd,
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(N−1) log N/8 wavelengths are sufficient to realize the (N−1) log N/8 cycles formed

by DIMu
n,0 ∪DIMu

n,1, DIMu
n,2 ∪DIMu

n,3,..., DIMu
n,n−3 ∪DIMu

n,n−2. For the connec-

tions in DIMu
n,n−1, it can be examined that N/4 connections are routed from nodes

in Subarray0 to Subarray1 and N/4 connections are from Subarray2 to Subarray3.

Since these two groups of connections do not share any links of the ring with each other,

N/4 wavelengths are sufficient to realize these connections. So, NlogN/8 + N/4 and

(N − 1) log N/8 + N/4 wavelengths are sufficient to realize Hu
n on Ru

n if n is even and

odd respectively.

Therefore, by the embedding scheme θ, the number of wavelengths required to real-

ize Hu
n on Ru

n is d log N
2
e ×N/4 using wavelength assignment of Algorithm 6.

Algorithm 6: Assign Hu
n Ru

n(n > 2)

(1) For i = 0 to n− 2, step 2

(2) for j = 0 to 2n−2

(3) if P (i, j) = 1

(4) assign one wavelength unused from λ1 to Cycle1(i, j)

(5) else

(6) assign one wavelength unused from λ2 to Cycle2(i, j)

(7) If i = n− 1 /*if n is odd*/

(8) for j = 0 to 2n−1

(9) if P (n− 1, j) = 1

(10) assign one wavelength unused from λ1 to (j, j + 2n−1)

(11) else

(12) assign one wavelength unused from λ2 to (j + 2n−1, j)

3.5 Hypercubes on WDM Meshes and Tori

For 2-dimensional meshes or tori with N = 2n nodes, each row and column must con-

tain a power of two number of nodes. Because hypercube communications can not be

realized on unidirectional meshes, we only consider bidirectional meshes in this chap-
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ter. We will discuss tori in two cases, since hypercube communications can be real-

ized on both bidirectional tori and unidirectional tori. We denote the 2-dimensional

meshes, 2-dimensional bidirectional tori and 2-dimensional unidirectional tori with

N = 2m × 2n−m nodes by M b
m,n−m, T b

m,n−m and T u
m,n−m respectively.

More generally, we denote r-dimensional meshes, r-dimensional bidirectional tori

and r-dimensional unidirectional tori with 2n1 × 2n2 × ... × 2nr nodes by M b
n1,n2,...,nr

,

T b
n1,n2,...,nr

and T u
n1,n2,...,nr

respectively, where r ≥ 2, n1 + n2 + . . . + nr = n and

n1 ≤ n2 ≤ . . . ≤ nr.

3.5.1 Bidirectional Hypercubes on WDM Meshes

3.5.1.1 Lower Bound

Lemma 14. Cong(Hb
n,M b

n1,n2,...,nr
) = Cong(Hb

nr
, Lb

nr
)[14].

Lemma 15. The number of wavelengths required to realize bidirectional hypercube

communications on 2n1 × 2n2 × . . .× 2nr meshes is no less than b2nr+1/3c.

Proof. By Lemma 6 and Lemma 14, the number of wavelengths required to realize

Hb
n on M b

n1,n2,...,nr
, for ∀e, satisfies λe(H

b
n,M

b
n1,n2,...,nr

) ≥ Cong(Hb
n,M

b
n1,n2,...,nr

) =

Cong(Hb
nr

, Lb
nr

) ≥ b2nr+1/3c.

3.5.1.2 Wavelength Assignment

Assume the node of M b
m,n−m on the P th row and Qth column is identified by (P, Q),

where 0 ≤ P ≤ 2m − 1 and 0 ≤ Q ≤ 2n−m − 1. For 0 ≤ j ≤ 2n − 1, let x = j/2n−m

and y = j mod 2n−m. Embed the jth node of Hb
n onto node (x, y) of M b

m,n−m. Thus,

the number of wavelengths required for realizing Hb
n on M b

m,n−m can be obtained by the

following theorem.

Theorem 20. The number of wavelengths required to realize bidirectional hypercube

communications on 2m × 2n−m bidirectional meshes is b2max(m,n−m)+1/3c.
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Proof. As the connections in
⋃n−m−1

i=0 DIM b
i only take place within the nodes on each

row by the shortest path, and the connections in
⋃n−1

i=n−m DIM b
i only take place within

the nodes on each column, realizing Hb
n on M b

m,n−m is to realize Hb
n−m on Lb

n−m in

each row and Hb
m on Lb

m in each column, which requires b2n−m+1/3c wavelengths for

each row and b2m+1/3c for each column respectively by Theorem 14. So the theorem

holds.

Wavelength assignment algorithm of Hb
n on M b

m,n−m is described in Algorithm 7.

Algorithm 7: Assign Hb
n M b

m,n−m

(1) For i = 0 to 2m−1

(2) apply Assign Hb
n−m Lb

n−m for rowi

(3) For j = 0 to 2n−m−1

(4) apply Assign Hb
m Lb

m for columnj

We assign the identification of (x1, x2, . . . , xr) to each node of M b
n1,n2,...,nr

, where

0 ≤ x1 ≤ 2n1 , 0 ≤ x2 ≤ 2n2 , . . . , 0 ≤ xr ≤ 2nr . Embed the jth node of Hb
n on

the node (x1, x2, . . . , xr) of M b
n1,n2,...,nr

, where xi = (j mod 2Σr
k=ink)/2Σr

k=i+1nk and

1 ≤ i ≤ r. Thus, the number of wavelengths required for realizing Hb
n on M b

n1,n2,...,nr

can be obtained by the following theorem.

Theorem 21. The number of wavelengths required to realize bidirectional hypercube

communications on 2n1 × 2n2 × . . .× 2nr bidirectional meshes is b2nr+1/3c.

Proof. For 1 ≤ i ≤ r, as the connections in
⋃Σi

k=1nk−1

j=Σi−1
k=1nk−1

DIM b
j only take place within

the nodes on the ith dimension of M b
n1,n2,...,nr

by the shortest path, realizing Hb
n on

M b
n1,n2,...,nr

is to realize Hb
ni

on Lb
ni

on the ith dimension of M b
n1,n2,...,nr

, which requires

b2ni+1/3c wavelengths for the ith dimension of M b
n1,n2,...,nr

by Theorem 14. The theo-

rem holds because n1 ≤ n2 ≤ . . . ≤ nr.

Wavelength assignment algorithm of Hb
n on M b

n1,n2,...,nr
is described in Algorithm 8.
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Algorithm 8: Assign Hb
n M b

n1,n2,...,nr

(1) For i1 = 0 to 2n−n1−1

(2) apply Assign Hb
n1

Lb
n1

for Dim1

(3) For i2 = 0 to 2n−n2−1

(4) apply Assign Hb
n2

Lb
n2

for Dim2

...
...

(2nr − 1) For ir = 0 to 2n−nr−1

(2nr) apply Assignment Hb
nr

Lb
nr

for Dimr

For the case of n1 = n2... = nr = n/r, the result can be obtained as follows.

Corollary 14. The number of wavelengths required to realize bidirectional hypercube

communications on 2n/r × 2n/r × . . .× 2n/r bidirectional meshes is b2 r
√

2n/3c.

3.5.2 Unidirectional Hypercubes on WDM Meshes

3.5.2.1 Lower Bound

Lemma 16. The number of wavelengths required to realize unidirectional hypercube

communications on 2n1 × 2n2 . . .× 2nr meshes is no less than b2nr/3c if nr is even and

d2nr/3e if nr is odd.

Proof. No matter what embedding scheme is used, there exists such a link (x, y) on

a bidirectional mesh, such that at least Cong(Hb
n,M

b
n1,n2,...,nr

) connections in Hu
n ei-

ther passing through in the direction from x to y, or in the direction from y to x. Re-

gardless of which embedding and routing scheme is used, the congestion of embed-

ding Hu
n on M b

n1,n2,...,nr
is no less than dCong(Hb

n,M
b
n1,n2,...,nr

)/2e. By Lemma 6 and

Lemma 14, the number of wavelengths required to realize Hu
n on M b

n1,n2,...,nr
, for ∀e, sat-

isfies λe(H
u
n ,M b

n1,n2,...,nr
) ≥ Cong(Hu

n ,M b
n1,n2,...,nr

) ≥ dCong(Hb
n,M

b
n1,n2,...,nr

)/2e =

dCong(Hb
nr

, Lb
nr

)/2e ≥



b2nr/3c if n is even;

d2nr/3e if n is odd.
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3.5.2.2 Wavelength Assignment

By the same embedding scheme mentioned in the bidirectional case, the results can

be obtained as follows.

Theorem 22. The number of wavelengths required to realize unidirectional hypercube

communications on 2m × 2n−m bidirectional meshes is b2max(m,n−m)/3c if max(m,n−
m) is even and d2max(m,n−m)/3e if max(m,n−m) is odd.

Proof. Similar with the proof of Theorem 7, realizing Hu
n on M b

m,n−m is to realize Hu
n−m

on Lb
n−m in each row and Hu

m on Lb
m in each column. By Theorem 15, the number of

wavelengths on each row is b2n−m/3c if n−m is even and d2n−m/3e if n−m is odd,

and the number of wavelengths on each column is b2m/3c if m is even and d2m/3e if m

is odd. So the theorem holds.

Same as the bidirectional case, the above theorem can be easily extended to r-

dimensional meshes as follows.

Theorem 23. The number of wavelengths required to realize unidirectional hypercube

communications on 2n1 × 2n2 . . .× 2nr bidirectional meshes is b2nr/3c if nr is even and

d2nr/3e if nr is odd.

Corollary 15. The number of wavelengths required to realize unidirectional hypercube

communications on 2n/r × 2n/r × . . . × 2n/r bidirectional meshes is b r
√

2n/3c if n/r is

even and d r
√

2n/3e if n/r is odd.

3.5.3 Bidirectional Hypercubes on WDM Bidirectional Tori

Since a torus can be considered as a mesh with wraparound links, each dimension of

a torus has the similar property with a ring. Same with the way of proving the results

for the meshes, the results for realizing Hb
n on tori can be easily obtained as follows by

applying the previous results obtained in Section 3.4.
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Lemma 17. The number of wavelengths required to realize bidirectional hypercube

communications on 2n1 × 2n2 × ...× 2nr bidirectional tori is no less than b2nr/3c if nr

is even and d2nr/3e if nr is odd.

The one-to-one embedding scheme η for Hb
n on T b

m,n−m can be described as follows.

Let x = j/2n−m and y = j mod 2n−m, where 0 ≤ x ≤ 2m − 1 and 0 ≤ y ≤
2n−m − 1. Map the jth node of Hb

n on node (x, y) of T b
m,n−m if 0 ≤ x ≤ 2m−1 − 1

and 0 ≤ y ≤ 2n−m−1 − 1, on node (x, 3 × 2n−m − 1 − y) if 0 ≤ x ≤ 2m−1 − 1 and

2n−m−1 ≤ y ≤ 2n−m − 1, on node (3 × 2m − 1 − x, y) if 2m−1 ≤ x ≤ 2m − 1 and

0 ≤ y ≤ 2n−m−1−1, and on node (3×2m−1−x, 3×2n−m−1−y) if 2m−1 ≤ x ≤ 2m−1

and 2n−m−1 ≤ y ≤ 2n−m − 1. By this embedding scheme, the following result can be

obtained.

Theorem 24. The number of wavelengths required to realize bidirectional hypercube

communications on 2m × 2n−m bidirectional tori is b5× 2max(m,n−m)/12c.

Proof. Realizing Hb
n on T b

m,n−m can be regarded as realizing Hb
n−m on Rb

n−m in each

row and Hb
m on Rb

m in each column. By Theorem 16, the numbers of wavelengths on

each row and column are b5× 2n−m/12c and b5× 2m/12c respectively. So the theorem

holds.

The above theorem can be easily extended to r-dimensional bidirectional tori as

follows.

Theorem 25. The number of wavelengths required to realize bidirectional hypercube

communications on 2n1 × 2n2 × ...× 2nr bidirectional tori is b5× 2nr/12c.

Corollary 16. The number of wavelengths required to realize bidirectional hypercube

communications on 2n/r × 2n/r × . . .× 2n/r bidirectional tori is b5 r
√

2n/12c.

For the following cases, the results can be easily obtained by the way similar with

the previous results, the proofs are omitted for the sake of simplicity.
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3.5.4 Unidirectional Hypercubes on WDM Bidirectional Tori

Lemma 18. The number of wavelengths required to realize unidirectional hypercube

communications on 2n1 × 2n2 × ...× 2nr bidirectional tori is no less than d2nr/6e.

Theorem 26. The number of wavelengths required to realize unidirectional hypercube

communications on 2m×2n−m bidirectional tori is b5×2max(m,n−m)/24c if max(m,n−
m) is even, d5× 2max(m,n−m)/24e if max(m,n−m) is odd.

Theorem 27. The number of wavelengths required to realize unidirectional hypercube

communications on 2n1 × 2n2 × ...× 2nr bidirectional tori is b5× 2nr/24c if nr is even

and d5× 2nr/24e if nr is odd.

Corollary 17. The number of wavelengths required to realize unidirectional hypercube

communications on 2n/r × 2n/r × . . .× 2n/r bidirectional tori is b5 r
√

2n/24c if n is even

and d5 r
√

2n/24e if n is odd.

3.5.5 Bidirectional Hypercubes on WDM Unidirectional Tori

Lemma 19. The number of wavelengths required to realize bidirectional hypercube

communications on 2n1 × 2n2 × ...× 2nr unidirectional tori is no less than nr × 2nr−1.

Theorem 28. The number of wavelengths required to realize bidirectional hypercube

communications on 2m × 2n−m unidirectional tori is max(m,n−m)× 2max(m,n−m)−1.

Theorem 29. The number of wavelengths required to realize unidirectional hypercube

communications on 2n1 × 2n2 . . .× 2nr unidirectional tori is nr × 2nr−1 .

Corollary 18. The number of wavelengths required to realize bidirectional hypercube

communications on 2n/r × 2n/r × . . .× 2n/r unidirectional tori is n r
√

2n/2r.

3.5.6 Unidirectional Hypercubes on WDM Unidirectional Tori

Lemma 20. The number of wavelengths required to realize unidirectional hypercube

communications on 2n1×2n2×...×2nr unidirectional tori is no less than bnr/2c×2nr−2.
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Theorem 30. The number of wavelengths required to realize unidirectional hyper-

cube communications on 2m × 2n−m unidirectional tori is dmax(m,n − m)/2e ×
2max(m,n−m)−2.

Theorem 31. The number of wavelengths required to realize unidirectional hypercube

communications on 2n1 × 2n2 × ...× 2nr unidirectional tori is dnr/2e × 2nr−2.

Corollary 19. The number of wavelengths required to realize unidirectional hypercube

communications on 2n/r × 2n/r × . . .× 2n/r unidirectional tori is dn/2re × r
√

2n/4.

3.6 Comparisons

Figure 3.7: Wavelength requirement for Hb
n and Hu

n on Rb
n

Figure 3.7 shows the wavelength requirement for bidirectional hypercubes and uni-

directional hypercubes on bidirectional rings when 3 ≤ n ≤ 8. As can be seen, our

result for bidirectional hypercubes on bidirectional rings outperforms the previous re-

sult in [132]. Since the number of connections in bidirectional hypercube is twice of that

in unidirectional case, the number of wavelengths required for unidirectional hypercube

realized on WDM rings is about half of that for bidirectional case.
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Figure 3.8: Wavelength requirement for Hb
n and Hu

n on Ru
n

Figure 3.8 shows the wavelength requirement for bidirectional hypercubes and uni-

directional hypercubes on unidirectional rings when 3 ≤ n ≤ 8. The number of wave-

lengths required for unidirectional hypercube realized on unidirectional rings is about

one-fourth of that for bidirectional case.

From Figure 3.7 and Figure 3.8, we can see that the numbers of wavelengths required

for hypercubes on optical bidirectional rings are less than those on optical unidirectional

rings. However, the bidirectional optical networks require much higher hardware cost

than the corresponding unidirectional case.

3.7 Conclusion

In this chapter, we discussed routing and wavelength assignment of bidirectional and

unidirectional hypercube communications on a class of WDM optical networks includ-

ing linear arrays, rings, meshes and tori. For each type of optical networks, we iden-

tified a lower bound on the number of wavelengths required, and designed an embed-

ding scheme and wavelength assignment algorithm which uses a provably near-optimal

number of wavelengths. In addition, our results for bidirectional hypercube realized on

bidirectional rings and meshes improved the known results in [132]. Our results are

listed in Table 3.1.
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Hb
n Hu

n

Lb
n b2N/3c bN/3c (log N is even), dN/3e (log N is odd)

Rb
n b5N/12c b5N/24c (log N is even), d5N/24e (log N is odd)

Ru
n (NlogN)/2 dlogN/2e ×N/4

M b
n1,n2,...,nr

b2nr+1/3c b2nr/3c (nr is even), d2nr/3e (nr is odd)
T b

n1,n2,...,nr
b5× 2nr/12c b5× 2nr/24c (nr is even), d5× 2nr/24e (nr is odd)

T u
n1,n2,...,nr

nr × 2nr−1 dnr/2e × 2nr−2

Table 3.1: Numbers of wavelengths for directional hypercubes on optical WDM net-
works

Recently, laboratory experiments have achieved 1000 channels per fiber (NTT Net-

work Innovation Laboratories, NTT Photonics Laboratories). With the results of our

work, realizing the 1024-node bidirectional hypercube communication on linear array,

bidirectional ring, 32 × 32 mesh, 32 × 32 bidirectional tori and 32 × 32 unidirectional

tori requires 682, 426, 21, 13 and 80 wavelengths respectively, and realizing 1024-node

unidirectional hypercube communication requires 341, 213, 10, 6 and 24 wavelengths

respectively. Considering the number of processors and the capacity of the fiber links in

practice, we can select the proper WDM networks to realize hypercube communications

according to our results.

Since hypercube communication represents a common communication pattern

shared by a large number of computational problems, our results have both theoretical

and practical significance which increases with the growth of the popularity of WDM

optical networks. In practice, the existing algorithms performed on hypercube archi-

tectures can be adapted to WDM optical networks using no more than the wavelengths

obtained by our results.

3.8 Application Extensions

Some interesting future research directions are listed as follows.
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3.8.1 Realizing All-to-all Communication

It is known that the minimum numbers of wavelengths for realizing all-to-all broad-

casting in one-hop of optical routing on rings and the two-dimensional tori of N nodes

are O(N2) and O(N3/2) respectively [11]. In multihop WDM optical networks, rout-

ing algorithms which realize all-to-all communications in k-hops (k ≥ 2) by O(N1+1/k)

wavelengths on rings, O(N1+1/(2k)) wavelengths on the 2D tori were proposed in [60]. It

is well known that hypercube structure can be used to efficiently simulate all-to-all com-

munication. By performing hypercube communications in log N -hops, it can be antici-

pated that all-to-all communication can be realized using O(N) wavelengths on WDM

optical linear arrays and rings, and O(N1/r) wavelengths on r-dimensional meshes and

tori. This problem is of great practical interest to be further investigated.

3.8.2 Large Hypercubes

In practical, the number of nodes in hypercube is larger than that of optical networks. In

this case, it is easy to partition the hypercube into sub-hypercubes, such that the number

of ”super” nodes in the partitioned hypercube is equal to that in the optical networks.

By partitioning the hypercube, similar embedding schemes and wavelength assignment

algorithms can be used.

For example, given a 2n′ node hypercube and a 2n node optical networks, where

n′ > n, the 2n′ node hypercube can be partitioned into a 2n ”super” hypercube, with each

”super” node composed of 2n′−n nodes. Thus, the embedding can be easily constructed

by embedding each ”super” node on the node of optical networks by our wavelength

assignment algorithms.

3.8.3 Realizing Hypercubic Networks

In the hypercube family, the butterfly networks, cube-connected-cycles, Benes̆ net-

works, shuffle-exchange graph, and the de Bruijn graph are the most important and

best known networks for variants of hypercube. Other hyercubic networks including the

omega networks, the flip networks, the baseline networks, banyan networks and delta
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networks also closely related to hypercube in structure. By the embedding technique,

these hypercubic networks can also be mapped to optical networks, such that the orig-

inally designed algorithms can be incorporated to optical networks by extending our

designed wavelength assignment algorithms.

Moreover, it is shown that these hypercubic networks can be used to efficiently sim-

ulate a hypercube with the same number of processors, even though they have sub-

stantially fewer wires [80]. Since fewer wires are required for most of the hypercubic

networks compared with hypercube, the wavelength requirement for these networks can

be reduced compared with our obtained results. So, our results provide an upper bound

for the wavelength requirement of hypercubic networks.

3.8.4 Other Application Extensions

In this chapter, we consider the single-hop optical networks, since hypercube connec-

tions are realized in one hop and there are no wavelength conversions. Actually, the

wavelength requirement for realizing hypercube in multi-hop optical networks can not

be significantly reduced, since our results are optimal or near-optimal based on the fact

that the wavelength requirements are close to the congestion of the embedding. It is of

great theoretical and practical interest to investigate the wavelength requirement on other

type of future optical networks. In Chapter 4, we further study the embedding problem

of realizing hypercubes on chordal ring networks, in order to reduce the wavelength

requirement. Moreover, we further study the embedding of dimensional hypercubes on

optical networks dimension by dimension in Chapter 5, since all the dimensions are

considered in this chapter.



Chapter 4

Embedding Hypercubes on Optical

WDM Chordal Rings

In this chapter, we study routing and wavelength assignment for realizing hypercubes

on WDM ring networks with additional links, namely chordal rings, to reduce the wave-

length requirement. We design the embedding schemes and derive the numbers of wave-

lengths required on WDM chordal ring networks of both degrees 3 and 4. Based on

our proposed embedding schemes, we provide the analysis of chord length with op-

timal number of wavelengths to realize hypercubes on 3-degree and 4-degree chordal

rings. Results show that the wavelength requirement for realizing hypercubes on optical

chordal ring networks is significantly lower than that on optical ring networks. In ad-

dition, our research also provide solutions for embedding hypercubes on chordal rings

from graph embedding theory point of view.

4.1 Introduction

In Chapter 3, we discussed the wavelength requirement for embedding hypercubes on

array-based WDM optical networks. Specifically, we improved the results of [132] and

extended those to the unidirectional hypercube. However, the numbers of wavelengths

required to realize hypercubes on the topologies discussed in [132] and [30] are large if

the number of nodes in hypercubes is large. In order to further reduce the number of re-

102
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quired wavelengths, we design the embedding of hypercubes realized on optical chordal

ring networks. Chordal ring networks have been intensively studied to efficiently solve

a lot of distributed problems [27][128]. In addition, it has been used for both local area

computer networks and large area communication networks [74]. As chordal rings have

good properties such as low diameter, high connectivity and efficient routing, wave-

length routed optical networks with chordal ring topology have been investigated in

[55], [52], [53] and [54]. In [97], all-to-all communication realized on 4-degree optical

chordal rings was considered. In this chapter, we further provide the results for wave-

length requirement of hypercubes on chordal ring networks of degree 3 and degree 4.

As described in [3], a chordal ring is basically a ring network, in which each node has

an additional link, called a chord. The number of nodes in a chordal ring is assumed to

be even, and nodes are indexed as 0, 1, 2, . . . , N −1 around the N -node ring. Each even

numbered node i(i = 0, 2, . . . , N − 2) is connected to a node (i + M) mod N , where

M is the chord length, which is assumed to be positive odd. Thus, the chordal ring

consists of a ring of length N formed by the ring-edges of (i, (i + 1) mod N), where

0 ≤ i ≤ N − 1, and of chords formed by the chord-edges of (i, (i + M) mod N) with

chord length of M . For 4-degree chordal rings, each node i is connected by a chord of

length M to node (i + M) mod N . Note that this implies that there is also a chord

from i to (i−M) mod N .

In this chapter, we denote the N -node 3-degree and 4-degree optical chordal rings

with chord length of M by CR(N,M, 3) and CR(N,M, 4) respectively. Without loss

of generality, we assume M ≤ N − 1.

4.2 Hypercubes on Chordal Rings of Degree 3

In order to construct the embedding scheme from hypercubes to 3-degree chordal ring,

we assume CR(N, M, 3) has N = 2n nodes with chord length M = 2m− 1. Figure 4.1

shows a 3-degree chordal ring of CR(32, 7, 3). We assume each link in the network

is bidirectional and composed of a pair of unidirectional links with one link in each

direction. For Hn, if (x, y) ∈ Hn, then (y, x) ∈ Hn. Assuming that these two com-
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munications can be realized by two lightpaths in the same path of opposite directions

passing through different fiber links, the same wavelength can be assigned to these two

lightpaths. In this case, we can ignore the problem of communication directions in Hn

and denote the communications in the ith dimension by DIM i
n.

Figure 4.1: CR(32, 7, 3)

Our main idea is to find an efficient way of decomposing the chordal rings into

a set of array-based subgraphs. In [7], a method for decomposing 3-degree chordal

rings is introduced, which will be particularly helpful for the design of our wavelength

assignment scheme as follows. As described in [7], a 3-degree chordal ring can be

decomposed into a set of a = bN/(M + 1)c disjoint cycles, denoted by C0, . . . Ca−1,

with M + 1 nodes on each cycle. We call theses cycles inner cycles, where

Ci = {i(M + 1), i(M + 1) + 1, . . . , i(M + 1) + M}.

By this decomposition approach, CR(N,M, 3) consists of 2n−m cycles, labeled

from 0 to 2n−m−1, with 2m nodes on each cycle. For example, CR(32, 7, 3) as shown in

Figure 4.1 can be decomposed into 4 cycles C0, C1, C2, C3 shown in Figure 4.2. Given

a cycle Ci, a node with label i(M + 1) + j is said to be the jth node of cycle Ci, where

i = 0, . . . , 2n−m and j = 0, . . . , 2m. Note that the node 0 of Ci is adjacent to node 1

and m of Ci. Moreover, for each i, 0 ≤ i ≤ a − 1, cycles Ci and Ci+1 are connected

by (M + 1)/2 edges. Among these edges, (M − 1)/2 edges are chord-edges and one

edge is ring-edge. It can also be observed that for any even value j, the jth vertex in Ci

is adjacent to the (j − 1)th vertex in Ci+1 by a chord-edge.

According to this decomposition scheme, CR(N, M, 3) can be decomposed into
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2n−m cycles with 2m nodes on each cycle. For example, CR(32, 7, 3) as shown in

Figure 4.1 can be decomposed into 4 inner cycles C0, C1, C2, C3 shown in Figure 4.2 as

follows.

C0 = {0, 1, 2, 3, 4, 5, 6, 7};
C1 = {8, 9, 10, 11, 12, 13, 14, 15};
C2 = {16, 17, 18, 19, 20, 21, 22, 23};
C3 = {24, 25, 26, 27, 28, 29, 30, 31}.
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Figure 4.2: Decomposition of CR(32, 7, 3)

Base on the decomposition of chordal rings, we assume the jth node of CR(N, M, 3)

is identified by (x, y), where x = j mod (M + 1) and y = j/(M + 1). In other words,

the jth node of CR(N, M, 3) is on the xth node of the yth cycle, where 0 ≤ x ≤ 2m− 1

and 0 ≤ y ≤ 2n−m − 1. For the sake of simplicity, we define a ⊕i b = (a + b) mod

2i and a ªi b = (a − b) mod 2i. As the degree of each node (x, y) of CR(N,M, 3) is

3, two edges are connected to each node on cycle Cy, which we call inner cycle edges,

and the other one is connected to cycle Cyªn−m1 or Cy⊕n−m1, which is called outer cycle

edge. For the connecting of outer cycle edges, the following lemma can be derived.

Lemma 21. For a given node (x, y) on CR(N,M, 3), if x = 0, node (x, y) is connected

to node (M, y ªn−m 1); if x = M , (x, y) is connected to (0, y ⊕n−m 1). For 1 ≤ x ≤
M − 1, if x is even, (x, y) is connected to (x ªm 1, y ⊕n−m 1); if x is odd, (x, y) is
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connected to (x⊕m 1, y ªn−m 1).

Proof. If x = 0, ((yªn−m1)×(m+1)+m)⊕n1 = y×(m+1)+0. It can be concluded

that (x, y) and (M, yªn−m) is connected by a ring-edge. If x = M , ((y⊕n−m 1)× (m+

1)+0)⊕n1 = y×(m+1)+m. Also, (x, y) and (0, y⊕n−m) is connected by a ring-edge.

For 1 ≤ x ≤ m−1, if x is even, (y×(m+1)+x)⊕nm = (y⊕n−m1)×(m+1)+xªm1.

It can be concluded that (x, y) is connected to (x ªm 1, y ⊕n−m 1) by a chord-edge.

Similarly, if x is odd, (yªn−m 1)× (m + 1) + x⊕m 1)⊕n m = y× (m + 1) + x. Also,

(x, y) is connected to (xªm 1, y ⊕n−m 1) by a chord-edge.

By Lemma 21, for each x = 1, 3, ..., M − 2, nodes (x, 0), (x + 1, 0), (x, 1), (x +

1, 1), (x, 2), (x+1, 2), ..., (x, 2n−m−1) and (x+1, 2n−m−1) can be connected node by

node into one cycle; Nodes (0, 0), (M, 0), (0, 1), (M, 1), (0, 2), (M, 2), ..., (0, 2n−m− 1)

and (M, 2n−m − 1) can be connected into one cycle. In total, there are (M + 1)/2 such

disjoint 2n−m+1-node cycles, denoted by Oi, which we call outer cycles in contrast to

the inner cycles. It can be observed that there are some edges which belong to both

inner cycles and outer cycles. For these edges, we call them interconnected edges. For

example, CR(32, 7, 3) as shown in Figure 4.1 can be decomposed into 4 outer cycles

O0, O1, O2, O3 shown in Figure 4.2 as follows.

O0 = {1, 2, 9, 10, 17, 18, 25, 26};
O1 = {3, 4, 11, 12, 19, 20, 27, 28};
O2 = {5, 6, 13, 14, 21, 22, 29, 30};
O3 = {0, 7, 8, 15, 16, 23, 24, 31}.

In order to define the embedding scheme of Hn on CR(n,m), we label the jth node

of Hn by (X, Y ), where X = j mod (M + 1) and Y = j/(M + 1). Embed node

(X, Y ) of Hn on node (η(X), η(Y )) of CR(N,M, 3). It can be proven by Lemma 21

that two node connected by each connection in Hn must be embedded on either the same

inner cycle or the same outer cycle of CR(N,M, 3). Thus, route all the communication

lightpaths within the corresponding outer cycles or inner cycles by the shortest path. We
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call such an embedding scheme for Hn on CR(N,M, 3) double cycle embedding.

For example, node 20 (labeled by (4, 2)) of H5 is embedded on node 29 (labeled

by (7, 3)) of CR(5, 3), and node 16 (labeled by (0, 2)) of H5 is embedded on node

24 (labeled by (0, 3)) of CR(32, 7, 3). It can be seen that hypercube connection of

(16, 20) is embedded on the same inner cycle. By double cycle embedding, connection

of (16, 20) is routed along the inner cycle of C3 by the path from node 29 to node 24 on

CR(32, 7, 3) passing through nodes 30 and 31 by the shortest path.

By double cycle embedding, the following theorem is held.

Theorem 32. By double cycle embedding, the number of wavelengths required to realize

Hn on CR(N,M, 3) is b5× (2n−m+1 + 2m)/12− 1c.

Proof: The communications on each of the 2m-node inner cycle can be regarded as

the communications of Hm on 2m-node ring. So, the number of wavelengths required

for inner cycle edges are λη(Hm, Rm). For the communications on the outer cycles,

the communications on each outer cycle can be regarded as the communications of two

Hn−m overlapped on the 2n−m+1-node outer cycle, which requires 2λη(Hn−m, Rn−m)

wavelengths. Therefore, the number of wavelengths required for the interconnected

edges is λη(Hm, Rm) + 2λη(Hn−m, Rn−m). By Theorem 16, the theorem is held.

It can be easily to see that the number of wavelengths for realizing a given hypercube

on chordal ring decreases with the increasing of chord length first, and then increase

after it reaches a minimum value. The following theorem shows the minimum value

of the wavelengths required on the chordal ring the corresponding chord length by our

embedding scheme for a given hypercube.

Theorem 33. By double cycle embedding, the minimum number of wavelengths to real-

ize Hn on N -node chordal ring is b5 ×√2N/6 − 1c when m = (n + 1)/2 if n is odd,

and b5×√N/4− 1c when m = n/2 or m = n/2 + 1 if n is even.

Proof. As b5 × (2n−m+1 + 2m)/12 − 1c ≥ b5 × 2 ×√2n−m+1 × 2m/12 − 1c = b5 ×
√

2n+1/6− 1c = b5×√2N/6− 1c, the minimum value can be obtained if and only if

2n−m+1 = 2m. For n is odd, the minimum number can be achieved if m = (n + 1)/2.



108

The minimum number for n is even, b5×√N/4− 1c, can be obtained when m = n/2

or m = n/2 + 1.

For the convenience of the comparisons given in the following section, we call such

chordal rings optimal 3-degree chordal rings, with respect to our scheme, which can

realize the hypercubes with the minimum numbers of wavelengths.

4.3 Hypercubes on Chordal Rings of Degree 4

We consider embedding Hn into CR(N,M, 4) in two cases: 1) M = 2m and 2) M =

2m − 1.

4.3.1 Symmetric Embedding

Figure 4.3: CR(16, 4, 4)

CR(2n, 2m, 4) can be decomposed into a set of 2m disjoint 2n−m-node cycles,

Rc
0, . . . R

c
2m−1, which we call chord-cycles, since these chord-cycles are all connected

by chord-edges. We define the set of chord-cycles Rc as follows.

Rc = {Rc
i (V

c
i , Ec

i )|i = 0, 1, ..., 2m − 1};

V c
i = {i + k × 2m|k = 0, 1, ..., 2n−m − 1};

Ec
i = {(v, (v + 2m) mod 2n)|v ∈ Vi}.

V c
i and Ec

i are the set of nodes and edges in chord-cycle of Rc
i respectively.



109

7(7)6(6)5(5)4(4)3(3)2(2)1(1)0(0)

4(4) 6(6) 7(7) 8(12) 9(13) 10(14) 11(15)

8(12) 9(13) 10(14)11(15) 12(8) 13(9) 14(10)15(11)

12(8) 13(9) 14(10) 15(11) 0(0) 1(1) 2(2) 3(3)

R2R0

L1

R3

5(5)

7(7)6(6)5(5)4(13)3(3)2(2)1(1)0(0)

4(4) 6(6) 7(7) 8(8) 9(9) 10(10)

8(12) 9(13) 10(14)11(15) 12(8) 13(9) 14(10)15(11)

12(8) 13(9) 14(10) 15(11) 0(0) 1(1) 2(2) 3(3)

5(5) 11(14)

L0

L2

L3

L1

L2

L3

L0

R1 R2R0 R3R1

L1

L0

L2

L3

L1

L2

L3

L0

Figure 4.4: Geometrical representation for CR(16, 4, 4)

CR(2n, 2m, 4) can also be decomposed into a set of 2m disjoint 2n−m-node linear ar-

rays, Lr
0, . . . , L

r
2n−m−1, which we call ring-lines, since these ring-lines are all connected

by ring-edges in CR(2n, 2m, 4). We define the set of ring-lines Lr as follows.

Lr = {Lr
i (V

r
i , Er

i )|i = 0, 1, ..., 2n−m − 1};

V r
i = {i× 2m + k|k = 0, 1, ..., 2m − 1};

Er
i = {(v, v + 1)|v ∈ Vi and v 6= (i + 1)× 2m − 1}.

V r
i and Er

i are the set of nodes and edges in ring-line of Lr
i respectively. It should

be noted that Rc
i and Lr

j are edge-disjoint for each i and j. For example, CR(16, 4, 4)

shown in Figure 4.3 can be decomposed into the following chord-cycles and ring-lines.

Rc
0 : 0 → 4 → 8 → 12 → 0;

Rc
1 : 1 → 5 → 9 → 13 → 1;

Rc
2 : 2 → 6 → 10 → 14 → 2;

Rc
3 : 3 → 7 → 11 → 15 → 3.

Lr
0 : 0 → 1 → 2 → 3;

Lr
1 : 4 → 5 → 6 → 7;

Lr
2 : 8 → 9 → 10 → 11;

Lr
3 : 12 → 13 → 14 → 15.

The geometrical representation [18] for CR(16, 4, 4) shown in Figure 4.4 illustrates
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the decomposition of Rc
0, R

c
1, R

c
2, R

c
3 and Lr

0, L
r
1, L

r
2, L

r
3.

Assume j is a node of hypercube and j mod 2m = i. We define ηcr is a function of

one-to-one mapping from the node of Hn to the node of CR(2n, 2m, 4) as follows.

ηcr(i) = 2m × η(bi/2mc) + i mod 2m

Embed the ith node of Hn onto node ηcr(i) of CR(2n, 2m, 4). It is easy to see that

ηcr(i) = i when 0 ≤ i ≤ 2n−1 − 1. We call such an embedding symmetric embedding.

We define the routing scheme as follows. For the connection of (u, v) in Hn, if node u

and v are embedded on the same chord-cycle Rc
i , route the connection by the shortest

path of Rc
i . If u and v are embedded onto the same ring-line Lr

j , route the connection

along the edges of Lr
j . We call such a routing scheme R-L routing. In other words, by the

symmetric embedding and R-L routing, each connection in Hn must be embedded on

either the same chord-cycle or the same ring-line. We define λsym(Hn, CR(2n, 2m, 4))

as the number of wavelengths required to realize Hn on CR(2n, 2m, 4) by the symmetric

embedding and R-L routing scheme.

Theorem 34. By the symmetric embedding and R-L routing scheme, the num-

ber of wavelengths required to realize hypercubes on 2n-node 4-degree chordal

rings with chord length of 2m is max(b2m+1/3c, b5 × 2n−m/12c). That is,

λsym(Hn, CR(2n, 2m, 4)) =




b5× 2n−m−2/3c, if m < n/2;

b2m+1/3c, if m ≥ n/2.

Proof: For the dimensional k connection of (u, v) in DIMk
n , v = u + 2k if u

mod 2k+1 < 2k. By the symmetric embedding, node u and node v are embedded in the

same Lr
i if k < m, and u and v are in the same Rc

j if k ≥ m. By the R-L routing scheme,

communications in ∪m−1
k=0 DIMk

n routed within the corresponding Lr
i can be regarded as

Hm realizing on linear array of Lm, and communications in ∪n−1
k=mDIMk

n within the

corresponding Rc
j can be regarded as Hn−m realizing on ring of Rn−m by η(bi/2mc).

By Theorem 16 and Theorem 14, the theorem is held.

It can be seen from Theorem 34 that λsym(Hn, CR(2n, 2m, 4)) decreases with the

increasing of m when m < n/2, and increases with the increasing of m when m ≥
n/2. We derive the results of the minimum of λsym(Hn, CR(2n, 2m, 4)) in the following

theorem.
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Theorem 35. By the symmetric embedding and R-L routing scheme, the minimum num-

ber of wavelengths to realize Hn on N -node chordal ring is b2√N/3c when m = n/2

if n is even with chord length of
√

N , and b5 ×√2N/12c when m = (n − 1)/2 if n is

odd with chord length of
√

N/2.

Proof: If n is even, λsym(Hn, CR(2n, 2n/2−1, 4)) = b5 × 2n/2−1/3c =

b5√N/6c and λsym(Hn, CR(2n, 2n/2, 4)) = b2n/2+1/3c = b2√N/3c. So,

λsym(Hn, CR(2n, 2n/2, 4)) < λsym(Hn, CR(2n, 2n/2−1, 4)). Therefore, the min-

imum number of wavelengths, b2√N/3c, is obtained when m = n/2. If

n is odd, λsym(Hn, CR(2n, 2(n−1)/2, 4)) = b5 × 2(n+1)/2/12c = b5√2N/12c
and λsym(Hn, CR(2n, 2(n+1)/2, 4)) = b2(n+1)/2+1/3c = b2√2N/3c. Thus,

λsym(Hn, CR(2n, 2(n−1)/2, 4)) < λsym(Hn, CR(2n, 2(n+1)/2, 4)). So, the minimum

number of wavelengths, b5√2N/12c, is obtained when m = (n− 1)/2.

Theorem 34 and Theorem 35 show the results for symmetric embedding with chord

length of 2m, which is always even. In the following, we analyze cyclic permutation

embedding with odd chord length of 2m − 1.

4.3.2 Cyclic Permutation Embedding

Figure 4.5: CR(16, 3, 4)

CR(2n, 2m − 1, 4) can be decomposed into a set of 2n−m disjoint 2m-node cycles,

Rrc
0 , . . . Rrc

2n−m−1, which we call ring-chord-cycles, since these ring-chord-cycles are
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Figure 4.6: Geometrical representation for CR(16, 3, 4)

connected by 2m − 1 ring-edges and 1 chord-edge. We define the set of ring-chord-

cycles Rrc as follows.

Rrc = {Rrc
i (V rc

i , Erc
i )|i = 0, 1, ..., 2n−m − 1};

V rc
i = {i× 2m + k|k = 0, 1, ..., 2m − 1};

Erc
i = {(v, v + 1)|v ∈ Vi and v 6= (i + 1) × 2m − 1}⋃{(v, v − 2m + 1)|v =

(i + 1)× 2m − 1}.

CR(2n, 2m − 1, 4) can also be decomposed into a set of 2m disjoint 2n−m-node

linear arrays, Lr
0, . . . , L

r
2m−1, which we call chord-lines, since these ring-lines are all

connected by chord-edges of CR(2n, 2m − 1, 4). We define the set of chord-lines Lc as

follows.

Lc = {Lc
i(V

c
i , Ec

i )|i = 0, 1, ..., 2m − 1};

V c
i = {(i× 2m − k × (2m − 1)) mod 2n|k = 0, 1, ..., 2n−m − 1};

Ec
i = {(v, (v + 2m − 1) mod 2n)|v ∈ Vi and v 6= i× 2m}.

For example, CR(16, 3, 4) shown in Figure 4.5 can be decomposed into the follow-

ing ring-chord-cycles and ring-lines.

Rrc
0 : 0 → 1 → 2 → 3 → 0

Rrc
1 : 4 → 5 → 6 → 7 → 4;

Rrc
2 : 8 → 9 → 10 → 11 → 8;

Rrc
3 : 12 → 13 → 14 → 15 → 12;
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Lr
0 : 0 → 13 → 10 → 7;

Lr
1 : 4 → 1 → 14 → 11;

Lr
2 : 8 → 5 → 2 → 15;

Lr
3 : 12 → 9 → 6 → 3.

The geometrical representation for CR(16, 3, 4) shown in Figure 4.6 illustrates the

decomposition of Rrc
0 , Rrc

1 , Rrc
2 , Rrc

3 and Lc
0, L

c
1, L

c
2, L

c
3. It should be noted that Rrc

i and

Lc
j are edge-disjoint for each i and j.

We define the 1-1 mapping from the elements of reversal node order [31] Xn for VHn

to the elements of ordered nodes on linear array VLn as a permutation over VLn with 2n

elements. In [31], the definition of Xn is based on the definition of Gray Code [80]. The

cyclic permutation Pt from Xn to VLn with offset t can be written as:

Pt(Xn[i]) = VLn [i + t] for i = 0, 1, ..., 2n − 1, and

Pt(Xn[i]) = VLn [i + t− 2n] for i = 2n − t + 1, 2n − t + 2, ..., 2n − 1.

Wavelength requirement by cyclic permutation Pt can be derived in the following

lemma, and the proof is omitted.

Lemma 22. The maximum number of wavelengths required to realizing 2n-node hy-

percubes on 2n-node optical linear arrays by cyclic permutation Pt with offset t ∈
{1, ..., 2n − 1} is 2× b5N/12c.

Based on cyclic permutation Pt, we propose cyclic permutation embedding scheme

for the nodes of Hn on the nodes of CR(2n, 2m − 1, 4) as follows. Assume θ is a

function of one-to-one mapping from the node of Hn to the node of CR(2n, 2m − 1, 4).

Let δ1(i) = Xn−m[bi/2mc] and δ2(i) = η(i mod 2m). Define

θ(i) = 2n − 2m × δ1(i) + (δ1(i) + δ2(i)) mod 2m.

We call such an embedding cyclic permutation embedding. For example, the nodes

i of H4 are embedded on the nodes θ(i) of CR(16, 3, 4) as follows: θ(0) = 0, θ(1) = 1,

θ(2) = 3, θ(3) = 2, θ(4) = 13, θ(5) = 14, θ(6) = 12, θ(7) = 15, θ(8) = 7, θ(9) = 4,

θ(10) = 6, θ(11) = 5, θ(12) = 10, θ(13) = 11, θ(14) = 9 and θ(15) = 8. (The numbers
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in the brackets of Figure 4.5 represent the nodes of H4.) By cyclic permutation embed-

ding, each node pair connected by one hypercube edge must be embedded on either

the same ring-chord-cycle or the same chord-line. We define λcp(Hn, CR(2n, 2m, 4)) as

the number of wavelengths required to realize Hn on CR(2n, 2m − 1, 4) by the cyclic

permutation embedding and R-L routing scheme.

Theorem 36. By cyclic permutation embedding and R-L routing scheme, the num-

ber of wavelengths required to realize hypercubes on 2n-node chordal rings of 4-

degree with chord length of 2m − 1 is max(b5 × 2n−m+1/12c, b5 × 2m/12c). That

is, λcp(Hn, CR(2n, 2m − 1, 4))=





2× b5× 2n−m/12c, if m ≤ n+1
2

;

b5× 2m/12c, if m > n+1
2

.

Proof: Communications in ∪m−1
k=0 DIMk

n routed within the corresponding Rrc
i can

be regarded as Hm realizing on ring of Rm by η(bi/2n−mc), and communications in

∪n−1
k=mDIMk

n routed within the corresponding Lc
j can be regarded as Hn−m realizing on

linear array of Ln−m by cyclic permutation mapping Pj with offset j. By Lemma 21

and Lemma 22, the theorem holds.

Similar with the proof of Theorem 35, the following Theorem can be obtained.

Theorem 37. By cyclic permutation embedding and R-L routing scheme, the minimum

number of wavelengths to realize Hn on N -node chordal ring is 2 × b5√N/12c when

m = n/2 or m = n/2 + 1 if n is even with chord length of
√

N − 1 or 2
√

N − 1, and

b5√2N/12c when m = (n + 1)/2 if n is odd with chord length of
√

2N − 1.

4.4 Comparisons

Figure 4.7 shows the wavelength requirement for realizing H9, H10 and H11 on 512-

node 3-degree chordal ring, 1024-node 3-degree chordal ring and 2048-node 3-degree

chordal ring respectively, with different chord length 2m − 1 (m = 2, 3, . . . , n − 1).

It can be seen that the number of wavelengths for realizing H9 on 512-node 3-degree

chordal ring achieves its minimum value when its chord length equals 31. For realizing

H10 on 1024-node 3-degree chordal ring, the minimum value is achieved when the chord
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length equals 31 or 63. It reaches the minimum for H11 realized on 2048-node 3-degree

chordal when the chord length equals 63.

Figure 4.7: Wavelengths for 3-degree chordal ring with different chord length

Figure 4.8: Two embedding schemes for H9

Figure 4.8 shows the wavelength requirement for H9 realized on 4-degree chordal

rings with different chord lengths by symmetric embedding and cyclic permutation em-

bedding. By Theorem 34 and Theorem 36, it can be concluded that cyclic permutation

embedding outperforms symmetric embedding when m > (n + 1)/2, and symmetric

embedding outperforms cyclic permutation embedding when m ≤ (n + 1)/2. The re-

sults of the two embedding schemes on 4-degree chordal rings are shown in Table 4.1.

Table 4.2 shows the wavelength requirement for realizing Hn on rings, 3-degree chordal
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Scheme 1 Scheme 2
chord length 2m 2m − 1
embedding symmetric cyclic permutation
λ(m < n

2
) b5× 2n−m−2/3c 2× b5× 2n−m/12c

λ(m = n
2
) b2n/2+1/3c 2× b5× 2n/2/12c

λ(m = n+1
2

) b2(n+3)/2/3c 2× b5× 2(n+1)/2/12c
λmin(m > n+1

2
) b2m+1/3c b5× 2m/12c

λmin (n is even) b2√N/3c 2× b5√N/12c
Mmin(n is even)

√
N

√
N − 1, 2

√
N − 1

mmin(n is even) n/2 n/2, n/2 + 1

λmin(n is odd) b5√2N/12c b5√2N/12c
Mmin(n is odd)

√
N/2

√
2N − 1

mmin(n is odd) (n− 1)/2 (n + 1)/2

Table 4.1: Hypercubes embedded onto optical 4-degree chordal rings

N 8 16 32 64 128 256 512 1024

Ring 3 6 13 26 53 106 213 426
CR(N,M, 3) 3 5 6 10 13 20 26 40
CR(N,M, 4) 1 2 3 5 6 10 13 21

Table 4.2: Wavelengths for realizing Hn on rings, 3-degree and 4-degree chordal rings

rings and 4-degree chordal rings when 3 ≤ n ≤ 10. As can be seen, the numbers of

wavelengths for realizing hypercubes on 3-degree and 4-degree chordal rings are much

less than that on rings, since the wavelength requirement for ring is O(N) and that on

chordal ring is O(
√

N). It can also be observed that the number of wavelengths for

realizing hypercubes on 4-degree chordal rings is about half of that on 3-degree chordal

rings, although the wavelength requirements for N -node 3-degree chordal rings and 4-

degree chordal have the same complexity of O(
√

N).

4.5 Conclusion

In this chapter, we discussed routing and wavelength assignment of hypercubes on 3-

degree and 4-degree optical chordal ring networks. We proposed embedding schemes

for analyzing the numbers of wavelengths required to realize hypercubes on chordal

ring of degree 3 and degree 4 with different chord length. Based on our embedding
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schemes, the numbers of wavelengths required were derived and the analysis for the

minimum number of wavelengths was also provided. The wavelength requirement for

realizing hypercube on WDM chordal ring networks is O(
√

N), which is much less

than the requirement of O(N) on WDM ring networks. Our embedding approaches

also have theoretical significance of providing solutions for hypercubes embedded on

chordal rings, which is a graph embedding problem in graph theory.

4.6 Application Extensions

4.6.1 Embedding Hypercubes on Chordal Rings of Degree n

In this chapter, the wavelength requirements for embedding hypercubes on chord ring

networks of degrees 3 and 4 are considered. The embedding schemes designed in this

chapter provide solutions for embedding hypercubes on chordal ring graphs of degree

3 and degree 4. It can be seen that the embedding complexity is increased with the

increasing of the degree of chordal ring graphs. One open problem is to find the solution

for embedding hypercubes on n-degree chordal ring graphs.

4.6.2 Realizing All-to-all Communication on Chordal Rings

In [97], all-to-all communication realized on 4-degree optical chordal rings was con-

sidered. As far as we know, there is no results for studying all-to-all communication on

3-degree optical chordal rings. As mentioned in Chapter 1 and Chapter 3, hypercube can

provide an efficient way to simulate all-to-all communication. By combining our results

in this chapter, one interesting future work can be considered to solve the problem of

realizing all-to-all communication on 3-degree chord ring networks.



Chapter 5

Lattice Embedding for Parallel FFT

(Dimensional Hypercube) on WDM

Linear Array

In Chapter 3 and Chapter 4, the embedding schemes designed for hypercubes on op-

tical architectures are based on the consideration of all hypercube dimensions. In this

chapter, we design an embedding scheme for realizing parallel FFT communication pat-

tern, defined as dimensional hypercube, on linear arrays by considering the hypercubes

dimension by dimension. Based on our proposed embedding scheme, called lattice

embedding, the number of wavelengths required to realize parallel FFT (dimensional

hypercubes) on WDM linear arrays has been significantly reduced compared to the pre-

vious results [31][29].

5.1 Introduction

Fast Fourier Transform (FFT) plays an important role in numerous scientific and tech-

nical applications. While the application fields of FFT are growing rapidly, the amount

of data to be transformed is also increasing tremendously. Hence, there has been a great

interest in implementing FFT on parallel computers and some parallel computers have

been specially designed to perform FFT computations [80].

118
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FFT developed by Cooley and Tukey in the mid-60s is a method of computing the

discrete Fourier transform which reduces the number of operations for an N-point com-

plex vector from O(N2) to O(Nlog2N). The data-flow graph induced by an N-point

FFT computation is usually described by means of the so-called butterfly representation

[80]. The butterfly representation of FFT algorithm is a diagram made up of blocks rep-

resenting identical computational units (butterflies) connected by arrows that show the

flow of data between the blocks. Assuming that N is the length of the sequence to be

transformed (N is an integer power of two), then the diagram with N(log2N + 1) nodes

arranged in N rows and log2N + 1 columns is made of log2N stages of N/2 butterflies

each.

Generally, FFT is implemented stage by stage, i.e. any stage of calculation cannot

proceed until all the results of its previous stage have been completed. In this chapter,

we consider one dimensional data sequence of size N = 2n. If each data is assigned

a binary representation, the communications during the ith (1 ≤ i ≤ n) stage of the

butterfly must take place between the nodes whose binary representations differ in the

ith bit. If the butterfly representation is viewed as a process graph, i.e. each row of the

butterfly is implemented by a process and each arrow by a communication channel, it

is apparent that the butterfly communication pattern can map onto a WDM hypercube

perfectly those links connecting the nodes having an address that differs by only one bit

at each stage. However, if a WDM hypercube is used, only the ith dimensional links

are occupied with one wavelength during the ith stage whereas other (n − 1) × 2n−1

links are vacant during this stage, which may lead to wasting of wavelength channels.

As we know, a connection in the hypercube is called a dimensional i connection [80] if

it connects two nodes that differ in the ith bit position, where 1 ≤ i ≤ n. In a network

of size 2n, the set DIMi is defined as the set of all dimension i connections and Hn is

defined as the hypercube which contains all connections. That is, Hn =
⋃n

i=1 DIMi and

DIMi = {(j, j + (−1)bj/2n−ic × 2n−i)|0 ≤ j ≤ 2n − 1}. With input data distributed on

processors, the set of all communications during n stages of parallel FFT is equivalent to

Hn, and the set of communications during the ith stage is equivalent to DIMi. Clearly,

parallel FFT has a regular communication pattern which we call dimensional hypercube
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Figure 5.1: FFT3

denoted by FFTn(n ≥ 2). Figure 5.1 shows a simple example of FFT3. For FFTn,

if (x, y) ∈ FFTn, then (y, x) ∈ FFTn. Assuming that these two communications can

be realized by two lightpaths in the same path of opposite directions passing through

different fiber links, the same wavelength can be assigned to these two lightpaths. In

this case, we can ignore the problem of communication directions in FFTn.

Since the n stages of parallel FFT should be implemented stage by stage, the number

of wavelengths required to realize FFTn on optical WDM networks is the maximum

number among the wavelengths required by the n stages. That is, λe(FFTn, line) =

max1≤i≤n

(
λe(DIMi, line)

)
.

It should be noted that dimensional hypercube (FFTn) is not equivalent to hyper-

cube (Hn), since the number of wavelengths required to realize FFTn on the WDM

optical networks is not equal to that required to realize Hn. Different from the embed-

ding schemes for all hypercube dimensions designed in Chapters 3 and 4, the objective

of wavelength assignment for embedding dimensional hypercube is to embed each di-

mension of hypercube, such that the maximum wavelength requirement of dimensional i

connections, for 1 ≤ i ≤ n, is minimized. In other words, this problem arising from the

wavelength assignment of FFTn, which focuses on minimizing the wavelength require-

ment of each dimensional connections, is different from the embedding of hypercube to

minimize wavelength requirement which considers all the connections on hypercube.
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In [31], the problem of wavelength assignment for realizing parallel FFT commu-

nication pattern on a class of regular optical WDM networks was addressed and two

schemes, sequential mapping and shift-reversal mapping, were proposed. In [29], an

improved scheme, called cross embedding, was designed. However, the wavelength

requirement for realizing parallel FFT communication is O(N) in [31] and [29]. To

further reduce the wavelength requirement, we design a new scheme for the wavelength

assignment of parallel FFT communication pattern on WDM linear arrays, which re-

quires O(2n/
√

n) wavelengths for large n. Therefore, by lattice embedding, the number

of wavelengths required to realize parallel FFT communication pattern on WDM linear

arrays significantly improves the known result in [31].

5.2 Lattice Embedding of Parallel FFT on WDM Linear

Arrays

5.2.1 Lattice Embedding

We design a new embedding scheme on linear arrays, lattice embedding, which is based

on the lattice form of hypercube. Firstly, we introduce the following properties of hy-

percube in a form of lattice.

Hypercube can be represented in a form of lattice, as shown in Figure 5.2. As we

know, for the hypercube with 2n nodes, each node corresponds to an n-bit binary repre-

sentation, and two nodes are linked with a connection if and only if their binary repre-

sentations differ in precisely one bit. For the lattice form of 2n-node hypercube, there

are n+1 node rows connected by the hypercube connections. If the rows are numbered

from top to bottom in ascending order starting from 0, the binary representations of the

nodes on the kth row, for 0 ≤ k ≤ n, have k 1s and n − k 0s. In addition, hypercube

connections only exist between the nodes on two neighborhood rows. Such a lattice

form of hypercube also has the following properties:

Property 9. Hypercube with 2n nodes can be represented in a form of lattice with
(

n
k

)

nodes on the kth row for 0 ≤ k ≤ n.
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Figure 5.2: H5 represented as a lattice

Proof. As the number of nodes whose binary representations have k 1s among n bits is
(

n
k

)
, it is easy to know the number of nodes on the kth row of the hypercube lattice is

(
n
k

)
.

Property 10. Hypercube with 2n nodes can be represented in a form of lattice with

n × (
n−1

k

)
connections connecting the nodes of the kth row and the (k+1)st row, for

0 ≤ k ≤ n− 1.

Proof. Since the number of 1s on the kth row and (k+1)st row are k and k + 1 respec-

tively, node u on the kth row connects with those nodes on the (k+1)st row whose binary

representations have k 1s on the same positions with u. As the number of nodes on the

(k+1)st row with k 1s on the same positions as u is n− k, each node on the kth row has

n− k connections with the nodes on the (k+1)st row. Therefore, the number of connec-

tions between the nodes of the kth row and (k+1)st row is (n−k)×(
n
k

)
= n×(

n−1
k

)
.

Property 11. Hypercube with 2n nodes can be represented in a form of lattice with
(

n−1
k

)
dimensional i connections, for 1 ≤ i ≤ n, connecting the nodes of the kth row

and the (k + 1)th row for 0 ≤ k ≤ n− 1.

Proof. If node u is on the kth row whose ith bit is 0, then u must connect with one of the

nodes on the (k+1)st row by dimensional i connection. It is easy to know the number of
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nodes on the kth row, whose binary representations have k 1s and ith bit is 0, is
(

n−1
k

)
.

Therefore, the number of dimensional i connections, for 1 ≤ i ≤ n, connecting the

nodes of the kth row and the (k + 1)th row is
(

n−1
k

)
.

It can be seen from the above properties that the number of dimensional i connections

is identical with each i(1 ≤ i ≤ n).

Assume that the nodes of WDM linear arrays are numbered from left to right in as-

cending order starting from 0, and that the links are numbered from left to right starting

from 1. Define each node numbering of Hn by a function η : VHn 7→ {0, 1, ..., 2n − 1}
which is a one-to-one mapping from the nodes of Hn to the nodes of an 2n-node lin-

ear array. Let R(u) = k if node u is on the kth row of hypercube lattice. Embed

the nodes of the 2n-node hypercube lattice from row 0 to row n onto the 2n-node

linear array from left to right node by node. That is to say, if R(u) < R(v), then

η(u) < η(v). We call the above embedding way lattice embedding. Let en(k) =
∑k

i=0

(
n
i

)
=

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ ...+

(
n
k

)
. By the definition of lattice embedding, the node

on the row 0 of hypercube lattice is mapped onto node 0 of the linear array, and nodes

on the kth row of 2n-node hypercube lattice, for 1 ≤ k ≤ n, are mapped between node

en(k − 1) and node en(k) − 1 on the 2n-node linear array. That is to say, if R(u) = k,

then en(k − 1) ≤ η(u) ≤ en(k)− 1.

5.2.2 Wavelength Assignment

Let ωij
l be the number of wavelengths required by lattice embedding to realize FFTn

on the jth link of the linear arrays during the ith stage and ωi
l be the maximum number

of wavelengths required among all the links of the linear arrays during the ith stage.

Therefore, the number of wavelengths required to realize FFTn by lattice embedding,

denoted by ωl, is

ωl = max
1≤i≤n

ωi
l = max

1≤i≤n
( max
1≤j≤2n−1

ωij
l )

By lattice embedding, the following results can be obtained.

Theorem 38. By lattice embedding, the number of wavelengths required to realize

FFTn is not less than
(

n−1
b(n−1)/2c

)
.
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Proof. By Property 10 and Property 11, all the hypercube connections are only be-

tween the nodes of the kth row and the (k + 1)th row with
(

n−1
k

)
dimensional i con-

nections, for 0 ≤ k ≤ n − 1 and 1 ≤ i ≤ n. So, the number of dimensional i

connections passing through link en(k) are
(

n−1
k

)
. Therefore, the number of wave-

lengths required to realize FFTn by lattice embedding satisfies, ωl = max1≤i≤n ωi
l

= max1≤i≤n(max1≤j≤2n−1 ωij
l ) ≥ max0≤k≤n−1

(
n−1

k

)
=

(
n−1

b(n−1)/2c
)
.

Theorem 39. By lattice embedding, the number of wavelengths required to realize

FFTn is not more than
(

n
bn/2c

)
.

Proof. On the kth row of the hypercube lattice for 1 ≤ k ≤ n − 1, there are
(

n−1
k−1

)

nodes, whose ith bit is 1, connecting the nodes on the (k − 1)th row by dimensional i

connections and
(

n−1
k

)
nodes, whose ith bit is 0, connecting the nodes on the (k + 1)th

row by dimension i connections. Therefore, the number of dimensional i connections

passing thought the links from en(k − 1) + 1 to en(k) − 1 is not more than the sum

of the maximum number of dimensional i connections between the kth row with its

two neighborhood rows. Therefore, the number of wavelengths required to realize

FFTn satisfies, ωl = max1≤i≤n(max1≤j≤2n−1 ωij
l ) ≤ max1≤k≤n−1(

(
n−1

k

)
+

(
n−1
k−1

)
) =

max1≤k≤n−1

(
n
k

)
=
(

n
bn/2c

)
.

As n! ∼ √
2πn(n/e)n for large n according to Stirling’s Formula, it can be calcu-

lated from Theorem 38 and Theorem 39 that realizing FFTn requires O(2n/
√

n) wave-

lengths for large n. It can be concluded that lattice embedding outperforms the known

embedding approaches in [31]. The following Theorems show a rough estimation of the

number of wavelengths required to realize FFTn on linear arrays.

Theorem 40. The minimum number of wavelengths required to realize FFTn on 2n-

node linear array by lattice embedding is
(

n−1
b(n−1)/2c

)
+ 1.

Proof. If en(k − 1) ≤ j ≤ en(k) − 1 for some 1 ≤ k ≤ n − 1, let ωij
l1 be the number

of dimensional i connections between nodes in U = {u|en(k− 1) ≤ η(u) ≤ j − 1} and

nodes in U ′ = {u′|R(u′) = k + 1}, and ωij
l2 be the number of dimensional i connections

between nodes in V = {v|j ≤ η(v) ≤ en(k) − 1} and nodes in V ′ = {v′|R(v′) =
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k− 1}. As the connections only take place between the neighborhood rows, the number

of dimension i connections passing through the jth link on the linear array is ωij
l1 + ωij

l2.

Define η−1(j) as the node of FFTn which is mapped onto the jth node of the linear

array. Let θi(u) = 1 if the ith bit of u is 1 and θi(¬u) = 1 if the ith bit of u is 0. From

the properties of hypercube lattice, it is easy to know that u connects with a node in

V ′ = {v′|R(v′) = k − 1} by dimensional i connection if θi(u) = 1, or with a node

in U ′ = {u′|R(u′) = k + 1} by dimensional i connection if θi(¬u) = 1. Therefore,

ωij
l1 =

∑η−1(j−1)

u=η−1(en(k−1)) θi(¬u) and ωij
l2 =

∑η−1(en(k)−1)

u=η−1(j) θi(u).

As the number of nodes whose ith bit is 0 in U
⋃

V is
(

n−1
k

)
, and that in U is ωij

l1,

the number of nodes in V whose ith bit is 1 can also be calculated by ωij
l2 = (en(k) −

j)− (
(

n−1
k

)− ωij
l1) = en(k)− (

n−1
k

)
+ ωij

l1 − j.

Therefore, the number of wavelengths required to realize

FFTn on linear arrays can be calculated by the following equa-

tion: ωl = max1≤i≤n,1≤k≤n−1(maxen(k−1)≤j≤en(k)−1(ω
ij
l1 + ωij

l2)) =

max1≤i≤n,1≤k≤n−1(maxen(k−1)≤j≤en(k)−1(2ω
ij
l1 + en(k) − (

n−1
k

) − j)) =

max1≤i≤n,1≤k≤n−1(maxen(k−1)≤j≤en(k)−1(2ω
ij
l1 + en(k)− (

n−1
k

)− j)).

For n is even, ωl = max{2 ∑η−1(j−1)

u=η−1(en(n/2−1)) θi(¬u) + en(n/2) − (
n−1
n/2

) − j :

1 ≤ i ≤ n, en(n/2 − 1) ≤ j ≤ en(n/2) − 1}. Since each node has n/2 0s

on the (n/2)th row,
∑n

i=1

∑η−1(j−1)

u=η−1(en(n/2−1)) θi(¬u) = n
2
× (j − en(n/2 − 1)). So,

max1≤i≤n(
∑η−1(j−1)

u=η−1(en(n/2−1)) θi(¬u)) ≥ d n
2
×(j−en(n/2−1))

n
e. By the above equations, it

can be calculated that ωl ≥ max{2×d n
2
×(j−en(n/2−1))

n
e+en(n/2)−(

n−1
n/2

)−j, en(n/2−
1) ≤ j ≤ en(n/2)− 1} =

(
n−1

n/2−1

)
+ 1.

Similarly, it can be calculated that for n is odd, ωl ≥
(

n−1
(n−1)/2

)
+ 1.

From the proof of Theorem 40, it can be observed that the minimum number of

wavelengths required by lattice embedding can be achieved if the 0s are distributed as

much as evenly among the n bits of the number of 0s on the nodes before each node j

for en(n/2− 1) ≤ j ≤ en(n/2)− 1.

For n is even, the number of 0s of the nodes in U = {u|en(n/2 − 1) ≤ η(u) ≤
en(n/2)−1} is n/2. If u is in U , ¬u must be in U . So, U = {ui

∨¬ui|1 ≤ i ≤ (
n

n/2

)
/2}.

Thus, there are
(

n
n/2

)
/2 such node pairs in U . The minimum number of wavelengths re-
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Figure 5.3: Comparisons on the number of wavelengths

quired by lattice embedding can be archived by mapping the nodes in U on the 2n-node

linear array pair by pair. That is to say, the number of wavelengths required is
(

n−1
n/2−1

)
+1

if we map u1,¬u1, u2,¬u2, ..., u( n
n/2)/2,¬u( n

n/2)/2 onto the node from en(n/2 − 1) to

en(n/2) − 1 respectively. For example, the number of wavelengths required to real-

ize FFT4 on 16-node linear array is 4, if the nodes 0011, 1100, 0101, 1010, 1001, 0110

on FFT4 are mapped onto the nodes of 5, 6, 7, 8, 9, 10 on the 16-node linear array

respectively. The minimum number by lattice embedding can be discussed simi-

larly for n is odd. For example, if n = 5, the nodes of FFT5 which are mapped

onto the nodes of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 on the 32-node linear array can be

00011, 01100, 10001, 00110, 11000, 00101, 01010, 10100, 01001, 10010 respectively.

It can be seen from Figure 5.3 that lattice embedding outperforms the previous em-

bedding approaches to realize parallel FFT communication on linear arrays with respect

to the number of wavelengths.

5.3 Conclusion

In this chapter, we proposed a new scheme, lattice embedding, for wavelength assign-

ment of parallel FFT (dimensional hypercubes) on WDM linear arrays. By lattice em-

bedding, the number of wavelengths required to realize parallel FFT on WDM linear

arrays significantly improves the known result in [31] and [29]. Our results have a

clear significance for applications because FFT represents a common communication
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pattern shared by a large class of scientific and engineering problems and WDM op-

tical networks as a promising technology in networking has an increasing popularity.

Our proposed embedding method also provides a new approach to the hypercube layout

problem considering connections dimension by dimension rather than all connections

as in the traditional approach.

5.4 Application Extensions

In the case if the the number of nodes in dimensional hypercube (parallel FFT) is larger

than that on linear array, it is easy to divide the nodes for parallel FFT computation into

small groups such that the number of groups in the partitioned parallel FFT is equal

to that on the linear array. In this way, it is easy to see the similar embedding scheme

can be implemented. For example, given a 2n′ node FFT computation and a 2n node

linear array, where n′ > n, the 2n′ FFT computation nodes can be divided into a 2n FFT

groups, with each group containing 2n′−n FFT nodes. Thus, the lattice embedding can

be easily applied by embedding all the nodes in each group on one node of linear array.

Another interesting issue is to extend the lattice embedding and derive the number

of wavelengths required for dimensional hypercube on other types of WDM optical net-

works. An open problem is to find the lower bounds for this problem and the improving

schemes which can achieve the lower bounds.



Chapter 6

Conclusion and Future Work

This chapter provides a summary of this thesis. Possible extensions of this work are also

discussed.

6.1 Summary

We studied network embedding problems of meshes on a family of double-loop net-

works and hypercubes on a class of array-based WDM optical networks, both of which

are promising future networks architectures. This thesis is mainly composed of two

parts. By evaluating the traditional embedding metrics, the first part is focused on sys-

tematically solving the problems of embedding meshes and tori on a family of double-

loop networks, which have desirable characteristics and great potential to be widely

used in the future. The second part is focused on addressing the embedding of hyper-

cubes on a class of array-based optical networks by analyzing the metric of wavelength

requirement which has been an important problem with the increasing of the popularity

of optical networks. The main contents and contributions are summarized as follows:

6.1.1 Embedding Meshes/Tori on Double-loop Networks

In Chapter 2, we designed the embedding scheme for meshes and tori on a family of

double-loop networks. Different with the traditional tessellation approach of L-shape

128
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[28], we proposed a novel tessellation approach to partition the geometric plane of

double-loop networks into a set of parallelogram tiles, called P-shape. Based on the

characteristics of P-shape, we designed a simple embedding scheme, namely P-shape

embedding, that embeds meshes and tori on double-loop networks in a systematic way

resulting in a low average dilation. The major differences between the traditional L-

shape and our proposed P-shape are listed as follows:

(1) L-shape is asymmetric, whereas P-shape is centrosymmetric, thus enabling other

regular graphs to be embedded on double-loop networks in a regular and systematic

way.

(2) L-shape concerns double-loop network’s own properties, whereas P-shape is de-

signed to exploit the relationships between double-loop networks and other regular net-

works. Therefore, P-shape can act as a bridge between double-loop networks and other

regular networks.

(3) For a given double-loop network, there is a unique L-shape, whereas different

P-shape constructions can be made on different base lengths for the same double-loop

network, thus providing more choices on the construction of P-shape.

We constructed P-shape for DL(N ; 1, s), and showed that meshes and tori can be

embedded on DL(N ; 1, s) by simply embedding the nodes of meshes and tori on the

nodes in P-shape, called P-shape embedding, which significantly improves the previous

scheme [50] on DL(N ; 1, s). We further extended the construction of P-shape to the

general case of DL(N ; s1, s2). To the best of our knowledge, this is the first result for

embedding meshes and tori on DL(N ; s1, s2). Our results show that a large fraction

of edges in meshes and tori have dilation 1 by P-shape embedding, resulting in a low

average dilation. Advantages of P-shape embedding compared with simple and snake-

like embedding [50] can be demonstrated as follows.

(1) P-shape embedding is more scalable. Simple and snake-like embedding can

only be implemented on DL(N ; 1, s), and P-shape embedding can be used on both

DL(N ; 1, s) and DL(N ; s1, s2).

(2) P-shape embedding has a larger number of edges with dilation 1 than simple and

snake-like embedding.
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Hb
n Hu

n

Lb
n b2N/3c bN/3c (log N is even), dN/3e (log N is odd)

Rb
n b5N/12c b5N/24c (log N is even), d5N/24e (log N is odd)

Ru
n (NlogN)/2 dlogN/2e ×N/4

M b
n1,n2,...,nr

b2nr+1/3c b2nr/3c (nr is even), d2nr/3e (nr is odd)
T b

n1,n2,...,nr
b5× 2nr/12c b5× 2nr/24c (nr is even), d5× 2nr/24e (nr is odd)

T u
n1,n2,...,nr

nr × 2nr−1 dnr/2e × 2nr−2

Table 6.1: Directional hypercubes on optical WDM networks

(3) P-shape embedding has more optimal cases than simple and snake-like embed-

ding.

6.1.2 Embedding Hypercubes on WDM Optical Networks

In Chapter 3, we studied routing and wavelength assignment for realizing hypercubes

on WDM optical networks including linear arrays and rings, meshes and tori with the

consideration of communication directions for both bidirectional and unidirectional hy-

percube communications. For each case, we identified a lower bound on the number of

wavelengths required, and designed the embedding scheme and wavelength assignment

algorithm that uses a provably near-optimal number of wavelengths. The related results

are listed in Table 6.1.

In Chapter 4, we designed embedding scheme for hypercubes on optical chordal

ring networks of degree 3, and derived the number of wavelengths required for different

chord length. We also designed the embedding schemes of symmetric embedding and

cyclic permutation embedding schemes for 4-degree chordal ring networks, and derived

the numbers of wavelengths required. The results of the two embedding schemes on

4-degree chordal rings are shown in Table 6.2.

In Chapter 5, we designed an embedding scheme for realizing parallel FFT (dimen-

sional hypercubes) on optical linear arrays by considering the hypercubes dimension

by dimension different with the consideration of all dimensions in Chapter 3 and 4.

Based on our proposed embedding scheme, called lattice embedding, the number of

wavelengths required to realize dimensional hypercubes on linear arrays has been sig-
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Scheme 1 Scheme 2
chord length 2m 2m − 1
embedding symmetric cyclic permutation
λ(m < n

2
) b5× 2n−m−2/3c 2× b5× 2n−m/12c

λ(m = n
2
) b2n/2+1/3c 2× b5× 2n/2/12c

λ(m = n+1
2

) b2(n+3)/2/3c 2× b5× 2(n+1)/2/12c
λmin(m > n+1

2
) b2m+1/3c b5× 2m/12c

λmin (n is even) b2√N/3c 2× b5√N/12c
Mmin(n is even)

√
N

√
N − 1, 2

√
N − 1

mmin(n is even) n/2 n/2, n/2 + 1

λmin(n is odd) b5√2N/12c b5√2N/12c
Mmin(n is odd)

√
N/2

√
2N − 1

mmin(n is odd) (n− 1)/2 (n + 1)/2

Table 6.2: Hypercubes embedded onto optical 4-degree chordal rings

nificantly reduced compared with the previous results [31][29].

6.2 Future Research

The research of this thesis can be extended in various ways. Additional work may either

extend the applicability of the techniques or improve the results. The Following are a

number of future research directions that are related to this thesis.

• Further Research on P-shape Properties

Our designed P-shape is a helpful tool for constructing the embedding of regular

graphs on double-loop networks. For future research, it is of great interest to

further investigate the properties of P-shape, which may help to analyze other

routing and embedding problems. Some embedding problems for other topologies

on double-loop networks may be studied by using P-shape tessellation approach.

One open problem is to extend our methods to the embedding of high dimensional

meshes on multi-loop networks DL(N ; s1, s2, ..., sn−1, sn), which has a higher

degree of technical complexity.

• State-of-art Implementation on Optical Networks
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As mentioned in Chapter 1, state-of-art technology allows for a limited number of

wavelengths, and the engineering problem is to establish communication between

pairs of nodes so that the total number of wavelengths used is minimized. For

increasing the efficiency of wavelength-routed optical networks, our proposed so-

lutions are based on the definition of Routing and Wavelength Assignment (RWA)

[134]. If the number of wavelengths required to realize an all-optical process in

one round is greater than the available number of wavelengths, then several all-

optical rounds are accomplished [8]. In this case, the efficiency of implementation

need to be considered and the algorithms need to be designed for future research.

• Fault Tolerant All-to-All Communications on WDM Optical Networks

It has been proven that hypercube has some desirable properties to simulate all-

to-all communication with good fault tolerant characteristic. Another interesting

application is to realize fault tolerant all-to-all communications on WDM opti-

cal networks by implementing hypercube communications on optical networks in

log N steps. Since hypercube has good topological characteristics such as small

diameter, high connectivity, simple routing and fault tolerance, future research

can be conducted to analyze the wavelength requirement and fault tolerance per-

formance for realizing all-to-all communications on WDM optical networks by

combining and extending our results.

• Application on Large Meshes and Hypercubes

According to the definitions of the embedding functions in this thesis, it is as-

sumed that the number of nodes in the guest graphs (meshes and hypercubes) is

equal to that in the host graphs. If the number of nodes in the meshes and hyper-

cubes is larger than that of host graphs, our embedding can be extended to apply.

This is because it is easy to partition a mesh or hypercube into a group of small

meshes or hypercubes, such that the number of super nodes in the partitioned

mesh or hypercube is equal to that in the host graph by considering each small

mesh or hypercube as a super node. In this way, the embedding schemes can be

constructed similarly. One of the most important reasons is that the partitioned
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mesh or hypercube has the same topological properties with the original mesh or

hypercube. This problem can be further studied to examine the expansion of the

embedding.

• Realizing Other Topologies

As mentioned in Chapter 1, many results have been obtained on the embedding

problems for meshes and hypercubes. It is easy to see that the embedding of

topology Gx on double-loop networks or optical networks may be constructed in

two steps: firstly, embedding Gx on mesh/hypercube using the previous results;

and secondly, embedding mesh/hypercbue on double-loop networks/optical net-

works using the results obtained in this thesis. By combining the previous results

and our embedding schemes, future research can be conducted for realizing other

topologies on double-loop networks and optical networks.

• Improvement of Results

The improvement of our proposed embedding schemes need to be investigated,

and optimal solutions for some of the problems need to be identified in the future.

Future research can be conducted to determine whether the lower bound can be

identified, and whether the embedding schemes are optimal.
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