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Abstract

Meshes and hypercubes are two most important communication and computation struc-
tures used in parallel computing. Network embedding problems for meshes and hyper-
cubes on traditional network architectures have been intensively studied during the past
years. With the emergence of new network architectures, the traditional network em-
bedding results are not enough to solve the new requirements. The main objective of
this thesis is to design efficient network embedding schemes for realizing meshes and
hypercubes on a group of future network architectures. This thesis is organized into two
parts.

The first part focuses on embedding meshes/tori on a group of double-loop networks
by evaluating the traditional embedding metrics, since double-loop networks have been
intensively studied and proven to have many desirable properties for future network ar-
chitecture. We propose a novel tessellation approach to partition the geometric plane
of double-loop networks into a set of parallelogram tiles, called P-shape. Based on
the characteristics of P-shape, we design a simple embedding scheme, namely P-shape
embedding, that embeds arbitrary-shape meshes and tori on double-loop networks in a
systematic way. A main merit of P-shape embedding is that a large fraction of embed-
ded mesh/torus edges have edge dilation 1, resulting in a low average dilation. These
are the first results, to our knowledge, on embedding meshes and tori on general double-
loop networks which is of great significance due to the popularity of these architectures.
Our P-shape construction bridges between regular graphs and double-loop networks,
and provides a powerful tool for studying the topological properties of double-loop net-
works.

In the second part, we study efficient embedding schemes for realizing hypercubes
on a group of array-based WDM optical networks by analyzing the new embedding met-
ric of wavelength requirement, as WDM optical networking is becoming a promising
technology for deployment in many applications in advanced telecommunication and
parallel computing. We first design routing and wavelength assignments of both bidi-

rectional and unidirectional hypercubes on WDM optical linear arrays, rings, meshes
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and tori with the consideration of communication directions. For each case, we iden-
tify a lower bound on the number of wavelengths required, and design the embedding
scheme and wavelength assignment algorithm that uses a provably near-optimal number
of wavelengths. To further reduce the wavelength requirement, we extend the results
to WDM ring networks with additional links, namely WDM chordal rings. Based on
our proposed embedding schemes, we provide the analysis of chord length with optimal
number of wavelengths to realize hypercubes on 3-degree and 4-degree WDM chordal
rings. Furthermore, we propose an embedding scheme for realizing dimensional hyper-
cubes on WDM optical arrays by considering the hypercubes dimension by dimension,
called lattice embedding, instead of embedding hypercubes with all dimensions. Based
on lattice embedding, the number of wavelengths required to realize dimensional hyper-
cube on WDM arrays can been significantly reduced compared to the previous results.
By our embedding schemes, many communications and computations, originally de-
signed based on hypercubes, can be directly implemented in WDM optical networks,
and the wavelength requirements can be easily derived using our obtained results.

Keywords: Network Embedding, Parallel Computing, Optical Networks, Mesh,
Hypercube, Double-loop Networks
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