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Abstract

Over the last forty or so years interest in the study of wing-tip vortices has increased,

primarily due to the introduction of larger passenger aircraft and their subsequent

interaction with smaller aircraft. The vortices generated by these larger aircraft

present a problem in two main areas; the wake hazard problem, where other aircraft

can be subjected to the large tangential velocities of the vortex, and the interaction

with ground based features of vortices created during landing and take-off. The first

of these is particularly dangerous close to the ground when aircraft are in a high lift

configuration at take-off and landing. As the vortices effectively scale with aircraft

wing span, significant encounters between large vortices and smaller aircraft have

been documented over the years. An example of one such documented wake vortex

interaction incident can be found in Ogawa [45].

In this study, the system of vortices are described as classical Batchelor vortices

(or linear superpositions thereof) which are then subjected to small perturbations.

By discretising the domain and solving for the eigenvalues of the system it is possible

to ascertain the stability characteristics of the flow as a function of the system

parameters which include the axial wave-number, the spacing of the vortices, their

cross-flow decay rate and their axial strength.

We first consider the inviscid instability of multiple tip vortices, an approxima-

tion which is valid in the limit of large Reynolds numbers. In this limit the stability

of the flow is dominated by the axial component of the basic vortex flow. The gov-

erning equations of continuity and momentum are reduced to a second order partial

differential equation (PDE). This equation is solved numerically to determine which

vortex configurations produce the greatest instability growth rate. These results are

extended to consider the effect of compressibility on the inviscid instability. Finally

xiii



we consider the effects of viscosity on the stability of the full Batchelor similarity

solution which results in a second order PDE in four dependent variables.

The stability equations are solved both globally (for the entire eigenspectra)

and locally (for a single eigenvalue in a pre-determined region) using codes that

run in both serial and parallel form. The numerical methods are based on pseudo-

spectral discretisation (Chebyshev polynomials for Cartesian and radial directions

and Fourier for azimuthal) in the global scheme, the eigenvalues being recovered

either with a QZ algorithm or a shift-and-invert Arnoldi algorithm. For the local

scheme, fourth order centred finite-diffences are used in conjunction with an iterative

eigenvalue recovery method.



Chapter 1

Literature Review

1.1 Introduction

Lifting surfaces by their very nature produce tip vortices. For a surface to produce

lift it must create a pressure differential between the top and bottom surfaces. In

a standard lifting surface such as an aircraft wing, a high pressure zone is created

beneath the wing and low pressure above. The air surrounding the wing will always

try to equalise the pressure; the high pressure air flowing around the path of least

resistance, the wing-tips, to the low pressure region. The circular motion of this flow,

combined with free stream flow created by the aircraft’s forward motion produces

what is known as a wing-tip vortex. An aircraft produces two counter-rotating wing-

tip vortices, one for each wing (figure 1.1). Secondary vortices may be produced by

other features of the aircraft including (primarily) the inboard flaps, the engines,

landing gear and any other protruding features.

Wing-tip vortices pose a considerable hazard. In a condition of high lift (large

pressure differential), usually found during landing or take-off, vortices are at their

largest being of a scale proportional to the aircraft’s wingspan and hence the size

of the aircraft [22]. The nature of modern international airports result in situations

in which many aircraft are usually found in close proximity. If a following aircraft

were to interact with these trailing vortices, depending on the relative size of the

two aircraft, it could experience large and sudden rolling moments. Experiments

documented by Condit and Tracy [7] showed that the encountering aircraft was

1



1.1. INTRODUCTION 2

quickly expelled from the wake and that steady flight was recoverable with little

effort. Whilst this would seem to diminish the hazard associated with wake vortex

interaction, it should be pointed out that this is particularly dangerous when the

aircraft is close to the ground as is the case during landing and take-off where the

following aircraft cannot tolerate large excursions from its flight path. An example

of one such documented wake vortex interaction incident can be found in Ogawa

[45].

Air Flow Wing-tip Vortex

High Pressure Region

Low Pressure Region

Figure 1.1: Wing-tip vortex creation on a lifting surface [22].

A further problem associated with wing-tip vortices is induced drag. Induced

drag, which is essentially the result of the energy required to create the tip vortices,

counts for approximately 35% of the total drag on an aircraft [22, 26]. The most

obvious result of increased drag, apart from the aerodynamic effects, is greater fuel

consumption. The benefits of reducing the size and strength of wing-tip vortices are

therefore obvious.

At present, airports around the world require specific spacing between aircraft

landing and taking off to allow trailing vortices to dissipate to a safe level [7, 55], an

example of which can be found in the Civil Aviation Authority Circular [2] which

details the requirements at Heathrow Airport, one of the world’s busiest. Being

able to manage the vortices from aircraft would allow the spacing to be optimised

or reduced, thus potentially giving the airport greater traffic handling capabilities,

saving both time and money. By controlling the creation of vortices, drag could be

reduced, which would result in significant fuel savings resulting in cheaper operating

costs which could in turn be passed on to the consumer or increase airline profits.

A reduction in fuel consumption by aircraft would also be beneficial in terms of

environmental impact and would allow longer distances to be travelled between re-

fueling stops. The ability to manage aircraft trailing vortices could also significantly
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reduce the occurrence of roof and ground damage in areas directly beneath the

landing path.

Many possible methods of managing wing-tip vortices have been proposed. These

include the reduction of the amount of slip around the wing-tip by wing modifications

such as winglets or wing fences as discussed by Nosenchuck et al. [44]. Crouch [9]

describes several methods in detail including both passive and active control. Crow

[11] discussed a method of active control during landing whereby front flaps (or

flaperons) in conjunction with the ailerons would be used to excite an instability

by oscillating at the wavelength of the fastest growing unstable mode. This was

seen as a more preferable alternative so far as passenger comfort is concerned than

a ‘porpoising’ motion of the entire plane! Luffsey [40] describes further potential

methods for wake vortex dissipation such as bleeding compressed air from the engines

into the vortex cores and various wing modifications along with several possible

methods of wake control by ground based processes.

Savaş [50] details tow tank experiments using triangular shaped outboard flaps

to generate a region of high lift and hence the standard form of a counter-rotating

vortex pair on the same side of the aircraft but also notes that significant structural

modifications are required to implement this scheme. One of the more unorthodox

suggestions was by Menkes and Abernathy [42] which involves removal of the wake

vortex itself close to the ground by means of placing suction blowers in ditches

around the runway to draw the vortices down more rapidly.

Rennich and Lele [48] examined the careful manipulation of vortex placement

into configurations of high strain in order to excite the Crow [10] instability to

promote a faster vortex breakdown than would naturally occur. Over the last few

decades this has been the most popular method of approaching the trailing-vortex

problem. Vortices that are more unstable dissipate quicker than those that are sta-

ble and so lend themselves to this type of approach. Implementing methods that

induce instabilities (by means of a small perturbation into the trailing vortices) and

hence accelerate their transition to turbulence, would effectively accelerate their de-

cay [44]. Orlandi et al. [46] have suggested that one such method of introducing

these perturbations is through heating within or between the vortices which could

be achieved via redirection of some portion of exhaust gas. Vortex interaction has
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also been shown as an effective way to amplify instabilities which result in faster dis-

sipation rates [8]. In order to benefit from this, careful placement of wing structures

could promote the required vortex interaction.

The aim of this research is to investigate the type of trailing vortices and the

various mechanisms by which they become unstable. The research will aim to build

upon current knowledge, whilst examining avenues to alternative approaches. Due

to the nature of the problem, the work will be carried out using mathematical,

numerical and computational techniques utilising the perturbation theory alluded

to earlier. It should be noted at this stage that throughout the literature the terms

wing-tip vortex, trailing vortex and wake-vortex are all used to describe the swirling

flow produced by the interaction of a finite lifting surface moving through a fluid

and are used interchangeably throughout this study.

1.2 General Outline

Research has been performed on lift producing bodies and their associated vortices

since they were first discovered and used for practical purpose. Since the pioneering

work of Kelvin, Lamb and Prandtl there has been much interest in the field of vortex

stability and many researchers have analysed the theoretical aspects of vortices and

the causes of transition to turbulence. Over the years there has appeared a vast array

of literature covering almost all feasible aspects of vortex behaviour. It is therefore

essential for this particular study to identify those areas that are of importance to

the particular problem at hand.

In the literature there are two preferred methods of developing the equations

with which to analyse trailing line vortices. The first of these is the linearisation

and simplification of the general governing equations in their primitive form with the

introduction of small perturbations as pioneered by Batchelor [3] and subsequently

used by many researchers such as Brown [6], Lessen et al. [38], Mayer and Powell [41]

and Duck and Foster [15] to name but a few. The general form of the perturbations

introduced throughout the literature for a single vortex with a dependance on the

azimuthal wave-number can be written as follows (1.2.1),

(Up, Vp, Wp) = {Up(r), Vp(r), Wp(r)}eiα(x−ct)−inθ, (1.2.1)
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with α, n, c being the axial and azimuthal wave-numbers and the complex phase

velocity (the eigenvalue) respectively. The form used in this study for application

to multiple vortices is detailed in section 2.2.1 where the vortices are perturbed by

disturbances of the same axial wave-number.

The second method is to use the vorticity equations to develop a system for

analysis as used by Crow [10] and the vortex filament approach applied to a pair

of vortices by Widnal et al. [66], Jimenez [29] and Crouch [8] and for a four vortex

system by Fabre et al. [20]. A comprehensive review of these methods can be found

in Theofilis [62]. Further computational tools include Direct Numerical Simulation

(DNS) as used by Orlandi et al. [46], Abid et al. [1] and Laporte and Corjon [33],

Large Eddy Simulations (LES) performed by Gerz and Holzäpfel [21], Sipp et al.

[53] and Lewellen and Lewellen [39] to examine how turbulence affects the decay

of trailing vortices, Computational Fluid Dynamics (CFD) as found in Czech et al.

[12] and of course, experiments such as Singh and Uberoi [52], Nosenchuck et al.

[44] and Devenport et al. [14].

Further to this perturbation method is the representation of the multiple vortex

configuration by introduction of a single vortex into a strain field analysed asymp-

totically by Le Dizés [34] and using DNS by Jacquin and Pantano [28] and Ryan and

Sheard [49]. In essence, a second vortex (or multiple vortices) applies a strain field

on the original, or primary vortex, which can be used to examine the destabilising

effect on the vortex due to a variety of external parameters.

Also, different mathematical models of vortices are used, the most prevalent

(but not limited to) are the Rankine (constant vorticity), Lamb-Oseen or Batchelor

(essentially a Lamb-Oseen vortex with a Gaussian axial field) type vortices. Whilst

the Batchelor vortex is most commonly used, several authors, including Fabre et al.

[17] and Sipp et al. [53] build their analysis around Rankine vortices. Spalart [55]

states that the Rankine vortex is a poor approximation of a realistic flow and whilst

the classic Batchelor similarity solution is far from perfect in its approximation of

a real flow, from a mathematical stand-point it is still a useful tool for the study of

the physics (linear stability) of three-dimensional slender vortices [19].

Whilst much work has gone into understanding the mechanism behind the gen-

eration and stability of trailing line vortices, there appears to be a shortfall when it
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comes to describing a global solution for the problem of controlling these vortices.

Solutions obtained to date are specific to certain vortex placements and initial con-

ditions and whilst the analytical results do occasionally align themselves with those

obtained experimentally, this is only when stringent control conditions are met,

conditions which are inappropriate for an inter-continental aircraft which may ex-

perience a wide range of conditions in a single flight. More recent work sets out

to identify further causes and types of instabilities and how these can be gener-

ated by vortex manipulation. Considerable effort is now being placed on the use

of increased computing power to solve large-scale eigenvalue problems both in two

and three dimensions to the degrees of accuracy required in such complex systems

[25, 55, 62].

As computing power has increased, the study of trailing line vortices has been

extended from a single vortex to multiple vortex systems (and allowing larger scale

DNS, LES), better describing the physics of real-life situations. From the work of

Crow [10] in which a pair of counter-rotating vortices (representing the outer wing-

tip vortices) were analysed, Crouch [8] looked at the case of two co-rotating vortices,

thus simulating vortices created by a wing-tip and an inboard flap (for example) on

the same side of the aircraft. To further this, Fabre and Jacquin [18] and Fabre

et al. [20] analysed a system of four vortices, two opposing sides of the Crouch

[8] analysis using a vortex filament approach, better still representing a complete

aircraft trailing vortex system.

1.3 Findings To Date

The work of Batchelor [3] on the axial flow of trailing line vortices could be described

as the first modern work detailing wing-tip vortices. Batchelor developed a similarity

solution for the full Navier-Stokes equations leading to a set of equations which

describe the axial and azimuthal components of a basic vortex flow in a system

of cylindrical polar co-ordinates (known colloquially as the Batchelor or q-vortex).

The Batchelor vortex has since been almost universally used in the linear stability

analysis of trailing vortex problems.

Crow [10] described a mechanism by which a pair of counter-rotating tip vortices
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interact and how this leads to long wave-length instabilities. Crow showed that after

formation, a pair of vortices oscillate sinusoidally in a plane ≈ 45◦ to the horizontal.

These oscillations amplify until, at various points, the two vortices interact to form

a series of individual vortex rings. Since referred to as the Crow instability, this

long wave-length instability has been further studied by Rennich and Lele [48] and

Fabre and Jacquin [18] in an effort to identify ways in which to further excite the

instability to promote a more rapid transition to turbulence. Importantly though,

whilst the Crow instability will on its own cause vortex break-down [48], the time-

frame over which this instability grows is too long for it to be an efficient mechanism

for trailing-vortex dissipation [18]. An interesting point to note from the article by

Rennich and Lele [48] is the so-called Rennich and Lele Criterion which states that,

for a four-vortex system of span ratio x = b2/b1 and circulation ratio y = Γ2/Γ1, an

expression for determining a vortex system with a rigidly translating mean system

is given by

x3 + 3yx2 + 3x + y = 0, (1.3.1)

which, for the majority of multiple-vortex studies since, has been used to describe

the relative strength and spacing of a four-vortex system. It is interesting to note

that Rennich and Lele [48] show that only a small percentage of aircraft meet this

criterion when the relative spacing of the wing-tips and inboard flaps are considered.

This spacing is also comparable to the spacing of the wing-tips and rear horizontal

stabilisers (elevators) but these authors do not specify a criterion for circumstances

when vortex configurations are not co-linear.

1.3.1 Inviscid Stability Analysis

Whilst not directly applicable to a vortex flow problem, the work of Batchelor and

Gill [4] on the inviscid stability of jets is an early example of a stability anaylsis

for a complex flow. It is also the basis of the boundary conditions for all studies

implementing equation (1.2.1). Furthermore, asymptotic analysis of the governing

equations when substituted with the basic flow of Batchelor [3] shows that for an

inviscid problem at leading order, the vortex essentially behaves as a jet with a

Gaussian axial profile [64].
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As has already been discussed, both Crow [10] and Widnal [66] used vorticity

methods to examine the stability of a pair of counter-rotating vortices. However,

the work of Lessen et al. [38] is more pertinent to the present study. By linearising

the governing equations and applying Batchelor’s similarity solution, the stability

characteristics of a single vortex were analysed with respect to varying axial and

azimuthal wave-numbers and it was found that negative azimuthal wave-numbers

were, in general, more unstable than their positive counterparts for small values of

swirl. Duck and Foster [15] examined a similar flow using an iterative numerical

method and found that in addition to those modes cited by Lessen et al. [38],

a further spectrum of unstable modes existed including several modes at higher

azimuthal wave-numbers (for a given swirl value) that exhibited greater growth

rates than the most unstable modes at the previously analysed lower azimuthal

wave-numbers.

The asymptotic expansion of the linear inviscid stability problem by Leibovich

and Stewartson [36] aimed to derive a sufficient condition for the instability of colum-

nar vortices through comparison of their asymptotic theory to numerically derived

results for positive n using a Batchelor vortex as the basis. They state that the

most dangerous modes are those with a positive azimuthal wave-number. Whilst

this may seem to contradict the earlier statement regarding the work of Lessen et

al. [38] and negative azimuthal wave-numbers being dominant, due to these au-

thors’ translation and inversion of the axial velocity profile (see section 4.3.1), their

negative azimuthal wave-numbers are equivalent to the positive wave-numbers of

Leibovich and Stewartson [36]. Their asymptotic results yield a value of swirl above

which all modes are stabilised as q ≈ 1.6 (where q is the swirl parameter defined

in detail in section 4.3.1), which matched those of the primary mode of Lessen et

al. [38] and their own numerical results. Like Duck and Foster [15], Leibovich and

Stewartson [36] encountered problems with their numerical schemes near the neu-

tral curve due to ‘mode jumping’ [31]. That is, for very small values of imaginary

component of the eigenvalue (defined more specifically in section 2.4.3) ci, it is not

possible to consistently track an individual mode whose eigenvalue may only differ

marginally to that of its structurally different counterpart.

The inviscid near-neutral stability of a trailing vortex was investigated by Stew-
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artson and Capell [58] and Stewartson and Brown [57], with the former looking

at ring-modes (moderate n-values) and the latter at centre-modes (high n-values).

This led them to find a dependance of the eigenvalues on the axial wave-number

normalised with respect to the azimuthal wave-number and also a dependance on

the swirl parameter (q), where instabilities were found at higher than previously

reported values of q, up to q ≈ 2.31. Khorrami [30] reported that the higher inviscid

modes found by Duck and Foster [15] persist to much lower Reynolds numbers. The

inviscid work of Mayer and Powell [41] follows much the same lines as previous work

concentrating on the non-negative azimuthal wave-numbers for a large variation in

q. Using a spectral collocation technique they reported that n = 1 has the largest

unstable region and surmised that the location and region of the previously reported

maximum disturbance growth rate was incorrect.

More recent work by Heaton [24] applied a Batchelor vortex to a theory of inviscid

centre-modes using a localised numerical scheme and stated that most previous

instabilities found either through numerical work or asymptotically can be loosely

described as centre-modes. Heaton [24] also numerically verified Stewartson and

Brown’s [57] asymptotic assertion that the upper neutral point is at a higher swirl

(q ≈ 2.31) than previously stated and made the claim that previous numerical results

surrounding the neutral curve at this point are in error. Essentially, the majority of

inviscid work over the last forty or so years revolves around the stability of a single

Batchelor-style trailing vortex aiming to establish a set of values for swirl (q), axial

and azimuthal wave-numbers (α, n) for which various modes of differing degrees of

instability can be identified.

1.3.2 Viscous Stability Analysis

In the follow-up paper to [38], Lessen and Paillet [37] expanded their research to

include viscous effects on a single Batchelor vortex. The basic flow remained un-

changed, only the governing equations differed to include the relevant parameters

in order to examine the effect of the Reynolds number on the stability of several

modes. The location of the points of neutral stability were found and the assertion

that increased swirl has a stabilising effect was made. Whilst these results were sig-
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nificant in the field of vortex stability and have been used to verify many subsequent

works, it has been shown that some of the results lack the degree of accuracy that

might be expected from today’s researchers [19, 32, 41]. Stewartson [56] presented

an asymptotic theory to describe the stability of a vortex at large Reynolds numbers

and large azimuthal wave-numbers in order to link the results of the viscous work of

Lessen and Paillet [37], that indicated the most unstable modes can be found at low

azimuthal wave-numbers, to the inviscid case of Lessen et al. [38], where the most

unstable modes were found to occur at n � 1. Stewartson found that viscosity has

a stabilising role by reducing the critical swirl value from which a vortex is stable

and predicts a finite azimuthal wave-number to provide the most unstable mode.

Khorrami [32] presented an informative study of the application of spectral col-

location techniques to the stability of swirling flows; among other flows the Batch-

elor vortex was explored and results were given that showed good agreement with

previously published work. What is useful about this paper however, is that it

demonstrates the applicability of spectral methods to the problem of viscous linear

stability. In a follow-up paper Khorrami [30] used these spectral techniques to study

the viscous stability of a Batchelor vortex at moderate to high Reynolds numbers.

Khorrami [30] found two long-wave viscous modes of instability at n = 0, 1 with

growth rates an order of magnitude smaller than inviscid modes, thus contradicting

earlier work which stated viscosity has a purely stabilising effect. Mayer and Powell

[41] in the second part of their paper discussed the viscous instabilities of the Batch-

elor vortex where the existence of destabilising viscous modes was examined further

and documented in more detail with a critical Reynolds number for the axisymmet-

ric mode (n = 0) found to be close to that of Khorrami [30]. Duck and Khorrami

[16] discussed these viscous modes further and presented an asymptotic analysis that

agreed with the viscous modes found by Khorrami [30]. Further work by Khorrami

[31] traced the behaviour of the asymmetric (n = 1) viscous mode near the upper

neutral curve. Several more recent papers discuss these viscous instabilities fur-

ther and examine them with variations in one or more of the dependent parameters

(Fabre and Jacquin [19] for example), essentially building a more thorough picture

of the results initially presented by Khorrami [30].

One of the first studies to introduce the concept of a linear stability analysis
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of a multiple wake-vortex system (where equation (1.2.1) was replaced by equation

(2.2.25) of chapter 2) using an Euler equation approach (as opposed to a vorticity

method) was Jacquin et al. [27] whose results were further detailed in Hein and

Theofilis [25]. A linear superposition of the Batchelor vortex profile was used to

build the basic flow which was then iterated numerically to produce a flow that

satisfies the steady Navier-Stokes equations. A Chebyshev discretisation scheme

was used with a clustering modification algorithm that aims to re-cluster the grid

points about the origin. A shift-and-invert Arnoldi algorithm was used to extract

the eigenvalue spectrum for one, two and four vortex configurations and used to

show that the stability characteristics of the Batchelor vortex are significantly al-

tered by the addition of extra, counter-rotating vortices (or vortex pairs). A similar

approach to that used by Hein and Theofilis [25] is used in this study. Denier and

Stott [13] provided an asymptotic analysis of the dominant wave mode finding the

critical Reynolds number, azimuthal wave-number and swirl number for short wave

disturbances in a trailing vortex. They found that the most unstable mode has an

azimuthal wave-number of O(Re
2

5 ) and axial wave-number of O(Re
2

5 ).

1.3.3 Compressible Stability Analysis

As speeds approach the supersonic realm (1 ≤ M ≤ 5) and increase further into

the hypersonic region (M > 5) it is unrealistic to assume in our model that the

density remains constant and hence the flow is incompressible. Therefore, for a

more accurate representation of a real flow, compressibility should be re-introduced

to the governing equations.

Compressible boundary-layers have been shown to be unstable to both inviscid

and viscous perturbations [54]. As we are in effect utilising a boundary-layer type

approximation in the formation of our basic flow it is appropriate to include some re-

view of previous compressible boundary-layer stability work before discussing vortex

flows directly. Smith and Brown [54] investigated the stability of an inviscid Blasius

boundary-layer at large Mach numbers. They observed a vorticity mode where the

wave-number becomes a continuous function of the Mach number as M → ∞, hence

giving a compressibility dependent mode that is the most dominant mode at high
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Mach numbers.

Stott and Duck [59] were one of the first to examine the stability of a compress-

ible vortex flow whereby compressibility was added via the inclusion of two further

equations; namely the energy equation and an ideal gas law. Stott and Duck [59]

showed that Batchelor’s similarity solution for a swirling incompressible vortex flow

was also a viable solution for a compressible flow. They examined the inviscid case

and found that, as the Mach number is increased the growth rates generally decrease

and predicted that the original family of modes will stabilise when M = O(|n| 12 )
where n is the azimuthal wave-number. They also pointed out the possible exis-

tence of dominant unstable modes that are purely a result of fluid compressibility

and which don’t exist at lower Mach numbers.

Stott and Duck [60] extended their previous work to include viscous effects in

which they find that the key Mach number for maximum instability growth rate

is dependent on the wave-number and that, to the Reynolds numbers that their

computations were performed, the effect of increasing the Mach number is generally

a stabilising one.

1.4 Research Objectives

Trailing vortices are ubiquitous in all areas of aeronautics and present consider-

able challenges from both a design and management perspective. By exploring the

stability of multiple trailing vortex systems, the dominant forms of instability can

potentially be identified and the critical parameters (such as vortex strength and

relative spacing) for the onset of instability can be examined. These results can be

used to develop techniques for alleviation of the wake-vortex hazard through active

promotion of transition to turbulence within the flow.

Even with the advancements in the understanding of trailing vortices and the

improvement in mathematical and numerical tools, it would be naive to think that

any single piece of research in this particular field would lead directly to a solution

(or at least alleviation) of the wake-vortex problem. Whilst most researchers begin

their studies with some reference to applying their methods to the alleviation of the

wake-vortex hazard, this is somewhat tempered by the understanding that due to
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the range of variable parameters and modelling assumptions required, the work is

contributing to the wider picture; to build a complete knowledge base with which to

tackle the problem. As such the over-riding aim of this thesis is to further advance

the understanding of the fundamental fluid dynamical behaviour of trailing vortices.

Unlike most previous work however, the current study will aim to analyse the

multiple vortex stability problem through manipulation of the primitive governing

equations of motions and not the more common vortex filament method. Initailly

an inviscid two-dimensional flow in the form of an asymptotic representation of the

Batchelor similarity solution [3] and linear super-positions thereof will be examined

where we show that for high Reynolds numbers (inviscid flow), the amount of swirl

in the cross-flow components of our basic flow is negligible in terms of a leading-

order stability analysis. This enables us to simplify the governing equations to a

single, linear elliptic partial differential equation for the perturbation pressure. The

resulting equation is solved as a generalised eigenvalue problem where the eigenvalues

determine the stability characteristics of the system. This work is then extended to

include the effects of compressibility and so to investigate what effect a variation

in density (in terms of the dimensionless Mach number) has on the growth rates

of the dominant unstable modes. The incompressible analysis is then extended to

include viscous effects where the critical Reynolds number for neutral stability (for

a particular set of parameters) is sought.

A large portion of the following research is devoted to developing and character-

ising the various numerical methods and tools used in the analysis, it seemed only

appropriate to do so considering the large percentage of time devoted to developing

and implementing these methods. The building blocks of the following research are

the numerical methods, mathematical models, assumptions and computer modelling

tools for without these, it would not be possible to further this research. The time

taken for the computer to produce the numerical results pales when considered along

side the time spent developing the methods by which to obtain these results.





Chapter 2

Stability Equations

2.1 Introduction

In order to perform a linear stability analysis on a system consisting of one or more

vortices, the governing equations are chosen to be the Navier-Stokes equations for

the three spatial directions with the fourth equation being that of continuity. For

the analysis that follows it is desirable to have these equations documented in both a

Cartesian (x, y, z) and cylindrical polar (r, θ, x) co-ordinate basis as both co-ordinate

systems are used in this study. It is worth noting here that in all cases, x is the

axial direction and y, z in Cartesian co-ordinates or r, θ in polar co-ordinates, form

the cross-flow directions. For this analysis buoyancy and other ‘body’ forces can be

neglected as it is assumed that the fluid density is constant.

2.2 Cartesian Co-ordinates

The governing equations in Cartesian co-ordinates are the three-dimensional conti-

nuity equation and the (x∗, y∗, z∗) momentum equations

∂u∗

∂x∗
+

∂v∗

∂y∗
+

∂w∗

∂z∗
= 0, (2.2.1)

Du∗

Dt∗
= − 1

ρ∗

∂p∗

∂x∗
+ ν∗∇2u∗, (2.2.2)

Dv∗

Dt∗
= − 1

ρ∗

∂p∗

∂y∗
+ ν∗∇2v∗, (2.2.3)

15
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Dw∗

Dt∗
= − 1

ρ∗

∂p∗

∂z∗
+ ν∗∇2w∗, (2.2.4)

where

D∗

Dt∗
=

∂

∂t∗
+ u∗ ∂

∂x∗
+ v∗ ∂

∂y∗
+ w∗ ∂

∂z∗
, (2.2.5)

and (u∗, v∗, w∗), p∗, (x∗, y∗, z∗), t∗ are the dimensional units of velocity, pressure, dis-

tance and time respectively, ν∗ is the kinematic viscosity and ρ∗ is the fluid density.

2.2.1 Derivation of the Disturbance Equations

In order to assess the stability characteristics of the flow we introduce disturbances

to the steady-state flow that are significantly smaller in magnitude relative to the

basic flow quantities and examine whether they will grow or decay. The disturbances

whose specific form will be defined later can be written as,

u∗ = û + u′(x∗, y∗, z∗, t∗), (2.2.6)

v∗ = v̂ + v′(x∗, y∗, z∗, t∗), (2.2.7)

w∗ = ŵ + w′(x∗, y∗, z∗, t∗), (2.2.8)

p∗ = p̂ + p′(x∗, y∗, z∗, t∗), (2.2.9)

where (û, v̂, ŵ, p̂) is the undisturbed basic flow and pressure and u′, v′, w′, p′ are

the dimensional disturbances. We can substitute equations (2.2.6) – (2.2.9) into

equations (2.2.1) – (2.2.4) and write the equation for the axial component (the

cross-sectional components are derived in the same manner) such that

∂

∂t∗
(û + u′) + (û + u′)

∂

∂x∗
(û + u′) + (v̂ + v′)

∂

∂y∗
(û + u′)

+(ŵ + w′)
∂

∂z∗
(û + u′) = − 1

ρ∗

∂

∂x∗
(p̂ + p′) + ν∗∇2(û + u′),

∂û

∂t∗
+

∂u′

∂t∗
+

[

û
∂û

∂x∗
+ û

∂u′

∂x∗
+ u′ ∂û

∂x∗
+ u′ ∂u′

∂x∗

]

+

[

v̂
∂û

∂y∗

+ v̂
∂u′

∂y∗
+ v′ ∂û

∂y∗
+ v′ ∂u′

∂y∗

]

+

[

ŵ
∂û

∂z∗
+ ŵ

∂u′

∂z∗
+ w′ ∂û

∂z∗

+ w′ ∂u′

∂z∗

]

= − 1

ρ∗

[

∂p̂

∂x∗
+

∂p′

∂x∗

]

+ ν∗
[

∇2û + ∇2u′
]

. (2.2.10)
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It is assumed that the steady state basic flow is already a solution of the governing

equations and as such this can be removed from our disturbed system so that we

are left with

∂u′

∂t∗
+ û

∂u′

∂x∗
+ u′ ∂û

∂x∗
+ u′ ∂u′

∂x∗
+ v̂

∂u′

∂y∗
+ v′ ∂û

∂y∗

+ v′ ∂u′

∂y∗
+ ŵ

∂u′

∂z∗
+ w′ ∂û

∂z∗
+ w′ ∂u′

∂z∗
= − 1

ρ∗

∂p′

∂x∗
+ ν∗∇2u′. (2.2.11)

By defining Ls, a cross-sectional length scale and Us, an axial component of velocity

and using them to scale the respective dimensional variables such that

(u∗, v∗, w∗) = U∗
s (û + u′, v̂ + v′, ŵ + w′)

= U∗
s (U + Up, V + Vp, W + Wp), (2.2.12)

and

(x∗, y∗, z∗) = L∗
s(x, y, z), (2.2.13)

with the following non-dimensional expressions for time, perturbation pressure and

the Reynolds Number,

t∗ =
L∗

st

U∗
s

, p∗ = ρ∗U∗2
s (P + Pp), Re =

U∗
s L∗

s

ν∗
, (2.2.14)

equation (2.2.11) can be written as

∂Up

∂t
+ U

∂Up

∂x
+ Up

∂U

∂x
+ Up

∂Up

∂x
+ V

∂Up

∂y

+ Vp
∂U

∂y
+ Vp

∂Up

∂y
+ W

∂Up

∂z
+ Wp

∂U

∂z
+ Wp

∂Up

∂z

= −∂Pp

∂x
+

1

Re

(

∂2Up

∂x2
+

∂2Up

∂y2
+

∂2Up

∂z2

)

. (2.2.15)

Equation (2.2.15) is now a dimensionless form of (2.2.2) and equations (2.2.3) and

(2.2.4) can be treated similarly resulting in our non-dimensional system of equations

for the perturbation quantities

∂Up

∂x
+

∂Vp

∂y
+

∂Wp

∂z
= 0, (2.2.16)

∂Up

∂t
+ U

∂Up

∂x
+ Up

∂U

∂x
+ Up

∂Up

∂x
+ V

∂Up

∂y
+ Vp

∂U

∂y
+ Vp

∂Up

∂y

+ W
∂Up

∂z
+ Wp

∂U

∂z
+ Wp

∂Up

∂z
= −∂Pp

∂x
+

1

Re
∇2Up, (2.2.17)
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∂Vp

∂t
+ U

∂Vp

∂x
+ Up

∂V

∂x
+ Up

∂Vp

∂x
+ V

∂Vp

∂y
+ Vp

∂V

∂y
+ Vp

∂Vp

∂y

+ W
∂Vp

∂z
+ Wp

∂V

∂z
+ Wp

∂Vp

∂z
= −∂Pp

∂y
+

1

Re
∇2Vp, (2.2.18)

∂Wp

∂t
+ U

∂Wp

∂x
+ Up

∂W

∂x
+ Up

∂Wp

∂x
+ V

∂Wp

∂y
+ Vp

∂W

∂y
+ Vp

∂Wp

∂y

+ W
∂Wp

∂z
+ Wp

∂W

∂z
+ Wp

∂Wp

∂z
= −∂Pp

∂z
+

1

Re
∇2Wp. (2.2.19)

We have already stated that the disturbances are significantly smaller in magnitude

than the basic flow and as such, to leading order, we can neglect multiples of these

quantities (or derivatives thereof). The fact that the streamwise length scale of the

vortex is long such that x � 1 compared to (y, z) = O(1) allows us to employ a

boundary-layer type approximation. For our basic flow components (U, V, W ), we

therefore assume that

∂

∂x
� ∂

∂y
,

∂

∂z
. (2.2.20)

Equations (2.2.16) – (2.2.19) reduce to

∂Up

∂x
+

∂Vp

∂y
+

∂Wp

∂z
= 0, (2.2.21)

∂Up

∂t
+ U

∂Up

∂x
+ Vp

∂U

∂y
+ Wp

∂U

∂z
+ V

∂Up

∂y
+ W

∂Up

∂z

= −∂Pp

∂x
+

1

Re
∇2Up, (2.2.22)

∂Vp

∂t
+ U

∂Vp

∂x
+ V

∂Vp

∂y
+ W

∂Vp

∂z
+ Vp

∂V

∂y
+ Wp

∂V

∂z

= −∂Pp

∂y
+

1

Re
∇2Vp, (2.2.23)

∂Wp

∂t
+ U

∂Wp

∂x
+ V

∂Wp

∂y
+ W

∂Wp

∂z
+ Vp

∂W

∂y
+ Wp

∂W

∂z

= −∂Pp

∂z
+

1

Re
∇2Wp. (2.2.24)

Following Hall and Horseman [23] (see also Tatsumi and Yoshimura [61] and Hein

and Theofilis [25]), we consider disturbances with axial and temporal dependence

proportional to exp[iα(x − ct)] such that

(Up, Vp, Wp, Pp) = {Up(y, z), Vp(y, z), Wp(y, z), Pp(y, z)}eiα(x−ct), (2.2.25)
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where α = streamwise (or axial, real) wavenumber, c = the corresponding (complex)

phase speed of the disturbance and hence the frequency, ω = αc. Equations (2.2.21)

– (2.2.24) can now be written as

iαUp +
∂Vp

∂y
+

∂Wp

∂z
= 0, (2.2.26)

iα(U − c)Up + Vp
∂U

∂y
+ Wp

∂U

∂z
+ V

∂Up

∂y
+ W

∂Up

∂z

= −iαPp +
1

Re

(

−α2Up +
∂2Up

∂y2
+

∂Up

∂z2

)

, (2.2.27)

and similarly for y and z momentum equations

iα(U − c)Vp + Vp
∂V

∂y
+ Wp

∂V

∂z
+ V

∂Vp

∂y
+ W

∂Vp

∂z

= −∂Pp

∂y
+

1

Re

(

−α2Vp +
∂2Vp

∂y2
+

∂Vp

∂z2

)

, (2.2.28)

iα(U − c)Wp + Vp
∂W

∂y
+ Wp

∂W

∂z
+ V

∂Wp

∂y
+ W

∂Wp

∂z

= −∂Pp

∂z
+

1

Re

(

−α2Wp +
∂2Wp

∂y2
+

∂Wp

∂z2

)

. (2.2.29)

Equations (2.2.26) – (2.2.29) are the reduced, dimensionless viscous stability equa-

tions. It is worth noting that in most single vortex stability analyses, the (real)

azimuthal wave-number n is incorporated into the disturbance as a parameter to

further specify the mode being sought; for example through disturbances of the

form exp[iα(x − ct) + inθ]. With a single vortex the perturbations have a distinct

θ-dependence, however when further vortices are superimposed onto the original (or

the original vortex is moved away from the co-ordinate origin) this θ-dependence is

lost and as such the basic flow is written as a function of θ; U(y, z; θ). The result of

this is that eigenvalues and corresponding modes are found for all values of n and

with no specific method of identifying a particular azimuthal wave-number, subse-

quent comparisons to previously published work on a single vortex is left to visual

methods or comparing individual eigenvalues.

2.3 Cylindrical Polar Co-ordinates

The governing equations in polar co-ordinates consist of the three-dimensional con-

tinuity equation and the polar momentum equations, where (v∗, w∗, u∗) are the (di-
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mensional) velocity components in the cylindrical polar coordinates (r∗, θ, x∗), t∗,

p∗ again denote dimensional time and pressure and ρ∗ and ν∗ the fluid density and

kinematic viscosity respectively. Again, with body forces neglected, the governing

equations are

1

r∗
∂(r∗v∗)

∂r∗
+

1

r∗
∂w∗

∂θ
+

∂u∗

∂x∗
= 0, (2.3.1)

∂u∗

∂t∗
+ v∗∂u∗

∂r∗
+

w∗

r∗
∂u∗

∂θ
+ u∗∂u∗

∂x∗
= −∂p∗

∂x∗

+ ν∗

[

1

r∗
∂

∂r∗

(

r∗
∂u∗

∂r∗

)

+
1

r∗2
∂2u∗

∂θ∗2
+

∂2u∗

∂x∗2

]

, (2.3.2)

∂v∗

∂t∗
+ v∗∂v∗

∂r∗
+

w∗

r∗
∂v∗

∂θ
− w∗2

r∗
+ u∗ ∂v∗

∂x∗
= −∂p∗

∂r∗
+ ν∗

[

1

r∗
∂

∂r∗

(

r∗
∂v∗

∂r∗

)

− v∗

r∗2
+

1

r∗2
∂2v∗

∂θ∗2
− 2

r∗2

∂w∗

∂θ
+

∂2v∗

∂x∗2

]

, (2.3.3)

∂w∗

∂t∗
+ v∗∂w∗

∂r∗
+

w∗

r∗
∂w∗

∂θ
− v∗w∗

r∗
+ u∗∂w∗

∂x∗
= − 1

r∗
∂p∗

∂θ

+ ν∗

[

1

r∗
∂

∂r∗

(

r∗
∂w∗

∂r∗

)

− w∗

r∗2
+

1

r∗2
∂2w∗

∂θ∗2
+

2

r∗2
∂v∗

∂θ
+

∂2w∗

∂x∗2

]

. (2.3.4)

2.3.1 Derivation of the Disturbance Equations

As with the derivation of the equations in a Cartesian frame, disturbances of the

form u∗ = û + u′(r∗, θ, x∗, t∗), etc are considered. Again, the steady-state basic flow

can be eliminated from the governing equations as it is assumed to be a solution,

leaving only the disturbed flow (v′, w′, u′). Defining characteristic scales r∗s , a typical

radial length scale and U∗
s , a typical axial speed, we can then define non-dimensional

variables

(r∗, θ, x∗) = r∗s(r, θ, x), (2.3.5)

and

(v∗, w∗, u∗) = U∗
s (v̂ + v′, ŵ + w′, û + u′)

= U∗
s (V + Vp, W + Wp, U + Up). (2.3.6)
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As before, the non-dimensional time, perturbation pressure and the non-dimensional

variable, the Reynolds Number are given by

t∗ =
r∗st

U∗
s

, p∗ = ρ∗U∗2
s (P + Pp), Re =

U∗
s r∗s
ν∗

. (2.3.7)

Substitution into (2.3.1) – (2.3.4) and retaining only those terms that are of first

order in the disturbance quantities yields

Vp

r
+

∂Vp

∂r
+

1

r

∂Wp

∂θ
+

∂Up

∂x
= 0, (2.3.8)

∂Vp

∂t
+ U

∂Vp

∂x
+

W

r

∂Vp

∂θ
= −∂Pp

∂r
+

1

Re

[

1

r

∂Vp

∂r
+

∂2Vp

∂r2
− Vp

r2

+
1

r2

∂2Vp

∂θ2
− 2

r2

∂Wp

∂θ
+

∂2Vp

∂x2

]

, (2.3.9)

∂Wp

∂t
+ U

∂Wp

∂x
+

W

r

∂Wp

∂θ
+ Vp

∂W

∂r
+

Wp

r

∂W

∂θ
+

WVP

r
= −1

r

∂Pp

∂θ

+
1

Re

[

1

r

∂Wp

∂r
+

∂2Wp

∂r2
− Wp

r2
+

1

r2

∂2Wp

∂θ2
+

2

r2

∂Vp

∂θ
+

∂2Wp

∂x2

]

, (2.3.10)

∂Up

∂t
+ Vp

∂U

∂r
+

W

r

∂Up

∂θ
+

Wp

r

∂U

∂θ
+ U

∂Up

∂x

= −∂Pp

∂x
+

1

Re

[

1

r

∂Up

∂r
+

∂2Up

∂r2
+

1

r2

∂2Up

∂θ2
+

∂2Up

∂x2

]

, (2.3.11)

where we have denoted the basic flow by (V, W, U) = (0, WB, UB). As with the

Cartesian case, we consider perturbations of the form

(Vp, Wp, Up, Pp) = (Vp, Wp, Up, Pp)e
iα(x−ct).

In what follows it proves convenient to define

L =

[

1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂θ2
− α2

]

.

Equations (2.3.8) – (2.3.11) can then be written as

Vp

r
+

∂Vp

∂r
+

1

r

∂Wp

∂θ
+ iαUp = 0, (2.3.12)

iα(UB − c)Vp +
WB

r

∂Vp

∂θ
= −∂Pp

∂r
+

1

Re
L(Vp) −

Vp

r2Re
− 2

r2Re

∂Wp

∂θ
, (2.3.13)
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iα(UB − c)Wp +
WB

r

∂Wp

∂θ
+ Vp

∂WB

∂r
+

Wp

r

∂WB

∂θ
+

WBVP

r

= −1

r

∂Pp

∂θ
+

1

Re
L(Wp) −

Wp

r2Re
+

2

r2Re

∂Vp

∂θ
, (2.3.14)

iα(UB − c)Up +
WB

r

∂Up

∂θ
+ Vp

∂UB

∂r
+

Wp

r

∂UB

∂θ
= −iαPp +

1

Re
L(Up), (2.3.15)

which are the non-dimensional system of equations governing the linearised stability

of our trailing line vortex base flow.

2.4 Constructing the Eigenvalue Problem

2.4.1 Inviscid (Rayleigh) Instability

For the inviscid problem it proves convenient to derive the equation in its Cartesian

form and then convert to polar co-ordinates. In the inviscid limit, Re formally

approaches infinity and hence the components of the governing equations that are

multiplied by Re−1 can be neglected at leading order. It will be shown in section

4.3 that for this inviscid stability analysis it is acceptable to disregard the azimuthal

components of the basic flow. Re-writing equations (2.2.26) – (2.2.29) in this inviscid

form gives

iαUp +
∂Vp

∂y
+

∂Wp

∂z
= 0, (2.4.1)

iα(U − c)Up + Vp
∂U

∂y
+ Wp

∂U

∂z
= −iαPp, (2.4.2)

iα(U − c)Vp = −∂Pp

∂y
, (2.4.3)

iα(U − c)Wp = −∂Pp

∂z
. (2.4.4)

Differentiating (2.4.3) with respect to y and (2.4.4) with respect to z and combining

the results gives

(U − c)

[

∂2

∂y2
+

∂2

∂z2
− α2

]

Pp − 2

[

∂U

∂y

∂

∂y
+

∂U

∂z

∂

∂z

]

Pp = 0. (2.4.5)
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Equation (2.4.5) is often referred to as the two-dimensional Rayleigh equation in

Cartesian co-ordinates. By defining

J =

[

∂2

∂y2
+

∂2

∂z2
− α2

]

and H =

[

∂U

∂y

∂

∂y
+

∂U

∂z

∂

∂z

]

,

we can re-write (2.4.5) in the form

(UJ − 2H)Pp = cJPp. (2.4.6)

This is now a generalised eigenvalue problem in the form Ax = cBx. The eigen-

functions, x (or equivalently [Pp]) can only exist if α and ω are constrained to

satisfy the dispersion relation, D[α, ω] = 0. It is more convenient for our subsequent

two-dimensional analysis to convert the governing equation into cylindrical polar

co-ordinates. This can be achieved by setting

r2 = y2 + z2, y = r cos θ, z = r sin θ. (2.4.7)

Equation (2.4.5) can be re-written as the two-dimensional Rayleigh equation in

cylindrical polar co-ordinates

(UB−c)

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− α2

]

Pp−2

[

∂UB

∂r

∂

∂r
+

1

r2

∂UB

∂θ

∂

∂θ

]

Pp = 0. (2.4.8)

As for the Cartesian case, we define

K =

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− α2

]

and R =

[

∂UB

∂r

∂

∂r
+

1

r2

∂UB

∂θ

∂

∂θ

]

,

and can re-write (2.4.8) as

(UK − 2R)Pp = cKPp. (2.4.9)

Again, this is now a Generalised eigenvalue problem in the form Ax = cBx, subject

to D[α, ω] = 0.

2.4.2 Viscous Problem

We note that to derive our eigenvalue problem for the viscous instability, equations

(2.2.26) – (2.2.29) require no further reduction and represent an eigenvalue problem

Ax = λBx with the eigenfunctions, x in terms of the four perturbation quantities

(Up, Vp, Wp, Pp) and an eigenvalue λ = ω = αc. In this case the eigenvalue problem

can be written as
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,

where

Q = iαU + V
∂

∂y
+ W

∂

∂z
− 1

Re

(

−α2 +
∂2

∂y2
+

∂2

∂z2

)

. (2.4.10)

Unlike the inviscid case where the stability equation in Cartesian co-ordinates can be

easily transformed to cylindrical polar form by applying the relevant relationships, in

the viscous case it proves far more involved and as such a derivation of the equations

from the full equations of motion in cylindrical polar co-ordinates is preferred. As in

the Cartesian case, equations (2.3.12) – (2.3.15) represent an eigenvalue problem in

terms of the four perturbation quantities (Up, Vp, Wp, Pp) and an eigenvalue ω such

that it can be written in the generalised form Ax = λBx with the eigenfunctions x

as
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,

where

Q = iαUB +
WB

r

∂

∂θ
− 1

Re

(

1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂θ2
− α2

)

, (2.4.11)

and

M =
∂WB

∂r
+

WB

r
− 2

r2Re

∂

∂θ
, N =

1

r

∂WB

∂θ
+

1

r2Re
. (2.4.12)

An alternative method of producing an eigenvalue problem from the governing equa-

tions is to rearrange them to form two equations in two unknowns, namely the

cross-flow perturbation quantities [Vp, Wp]. The resulting equations are effectively

a two-dimensional version of the Orr-Sommerfeld and Squire equations [62] which
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were first solved numerically by Tatsumi and Yoshimura [61] for Plane Poiseuille

flow through a rectangular duct. The derivation of the Cartesian version of these

equations can be found in Appendix B along with the final equation in polar co-

ordinates. Whilst this system produces a smaller eigenvalue problem in terms of

the size of the corresponding matrices, the presence of fourth order derivatives will

usually require a larger domain to ensure the higher derivatives of the perturbation

cross-flow components decay to zero. This will undoubtedly also require the use

of significantly more grid resolution to accurately resolve the flow and hence the

savings made in using this formulation are likely to be lost by the increased problem

size resulting from more discretised grid points [62].

2.4.3 Characterisation of the Flow Instability

It is useful to define the terms used to categorise whether a flow is stable or unsta-

ble. We have stated that, in the inviscid case, the eigenvalue is the complex phase

velocity, c = cr + ci, where cr is the wave speed and ci describes the amplification or

damping of the oscillation. For the viscous case, the complex frequency, ω = ωr +ωi

is the eigenvalue where ω = αc ≡ αcr + αci. We define αcr as being the wave

frequency and αci as the temporal growth rate of the oscillation. It is the sign of the

temporal growth rate that determines the flow stability characteristics. As, for this

analysis, the axial wave-number α is always considered to be positive, the stability

characteristics of the flow can be defined as follows;

ci < 0 The flow is stable,

ci > 0 The flow is unstable,

ci = 0 The flow is neutrally stable.





Chapter 3

Numerical Methods

3.1 Introduction

Due to their complexity, the set of equations derived in chapter 2 are unable to

be solved analytically and whilst asymptotic solutions based, for example, on a

short-wave or long-wave approximation can provide a leading order behaviour of

the system, the most appropriate method of obtaining detailed information about

the stability characteristics of this complex system is through some form of numerical

analysis. The particular methods employed here involve discretising the governing

equations over a closed domain to produce differentiation matrices which describe

the components of the final generalised eigenvalue problem Ax = cBx or linear

equation Ax = b.

3.1.1 Inviscid Disturbances

The governing equations for an inviscid analysis, derived in section 2.4.1, become

a second order partial differential equation (PDE) written in cylindrical polar co-

ordinates (r, θ, x) (or in Cartesian co-ordinates (y, z, x)) in terms of the perturbed

pressure, Pp, the basic flow and respective eigenvalue such that L(y, z; U, c)Pp = 0

where L is a second order linear operator.

Two distinct numerical methods are employed for the inviscid case; a global

pseudo-spectral eigenvalue solver, where in this sense global means that it solves for

all eigenvalues and corresponding eigenfunctions over the entire domain, and a local

27
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finite-difference iterative solver which converges onto a single eigenvalue targeted

from an intial guess.

The first incarnation of the global code was written using the commercial matrix

algebra software, MATLABTM based on the pseudo-spectral methods of Trefethen

[65] and refined to our particular problem utilising the inbuilt MATLABTM func-

tion eig.m which employs a QZ algorithm to obtain the eigenvalues/functions. A

subsequent version was written in Fortran 90 to allow portability to larger capacity

machines for higher resolution runs without the need for an individual MATLABTM

licence. LAPACK (Linear Algebra PACKage) fortran routines obtained from Netlib

were used to compute the eigenvalues. Both ‘global’ codes were tested and shown

to produce the same results for a variety of parameters thus providing a useful test

of the integrity of these codes.

Computational expense in terms of both processor time and memory play a

large part in determining the effectiveness and viability of global solvers to large

scale eigenvalue problems. This particular case is no different and whilst the global

solver is sufficient in the inviscid regime to give stability results to an acceptable

accuracy, an iterative local solver is used to verify the integrity of these results and

improve the converged accuracy without exceeding machine memory or experiencing

excessive run times. An iterative solver based on the work of Otto and Denier [47]

using finite-differences was written in Fortran 90 for this purpose. Results from the

‘global’ codes were used to test the integrity of the ‘local’ code.

3.1.2 Viscous Disturbances

The viscous eigenvalue problem, derived in section 2.4.2, consists of a set of four

equations with the frequency ω being the eigenvalue and the perturbation quantity

[Up, Vp, Wp, Pp] the corresponding eigenfunction. The resulting problem remains

second order in terms of the size of the largest derivative but has a leading matrix

dimension of [4(Ny − 1)(Nz − 1)].

The viscous code has been written in both Cartesian and cylindrical polar co-

ordinates to allow for a variety of verification methods to be utilised and for cross-

checking of results. Although it is beyond the scope of this particular study, it is
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worth noting that the two different co-ordinate basis codes allow for most regular

(and infinite domain) stability geometries to be studied, especially when considered

with some form of grid transformation.

Problems with machine memory arose when the resolution was increased towards

an acceptable level. The discretisation employed for the viscous problem uses sub-

stantially more memory than is required in the inviscid problem as all four perturbed

quantities are used in the eigenvalue problem rather than the single perturbed pres-

sure as in the inviscid case. With typical matrices consisting of 106 double-precision

complex variables, allocated processor memory is quickly used up. Parallel Fortran

90 versions of both codes were written to not only save on processor memory by

distributing data across multiple processors but in doing so, also speed up the com-

putation time. As will be explained later, ScaLAPACK, PBLAS and ARPACK (an

implementation of the implicitly restarted Arnoldi algorithm) were used to solve the

eigenvalue problem in parallel. Further to the Cartesian and polar global codes, by

combining the finite-difference iterative scheme and the parallelisation methods of

the global code, a large scale iterative local solver was developed that allows greater

accuracy and speed without the need for a parallel global (eigenvalue) solution rou-

tine.

3.2 Spectral Discretisation

The pseudo-spectral discretisation scheme used and discussed in detail below is based

on the work of Trefethen [65] whereby the domain is divided up using a number of

distinct polynomials. The discussion of the differentiation process which follows

is in reference to the radial direction in cylindrical polar co-ordinates. The same

methodology is applied to the (y, z)-plane (x being the axial or streamwise direction)

when discretising in Cartesian co-ordinates.

3.2.1 Radial Discretisation

The radial domain is the bounded and non-periodic region, r ∈ [−1, 1]. Algebraic

polynomials which produce an irregular grid (preferably clustered at the boundaries;
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we approximate our infinite domain by a semi-infinite bounded domain) are used

for the discretisation. Of these, Chebyshev polynomials are the simplest and given

by

rj = cos

(

jπ

N

)

, j = 0, 1, · · · , N. (3.2.1)

These are the equi-spaced points on one half-circle, projected down onto a horizontal

plane (figure 3.1). Following Trefethen [65], the Chebyshev spectral differentiation

matrix is, for N > 1, a two-dimensional matrix, DN , of size (N + 1)× (N + 1). DN

is indexed from 0 to N by the differentiation matrix row/column indices (i, j) as

follows

(DN)ij =
ci

cj

(−1)i+j

(ri − rj)
, i 6= j, i, j = 0, · · · , N, (3.2.2)

(DN)ii = −
N
∑

j=0
j 6=1

(DN )ij, (3.2.3)

ci/j =







2 , i/j = 0 or N

1 , otherwise,
(3.2.4)

with the resulting differentiation matrices have no specific order except for the an-

tisymmetry condition [65],

(DN)ij = −(DN)N−i,N−j. (3.2.5)

As an example, a Chebyshev spectral differentiation matrix for N = 5 is given below,

D5 =





























8.5000 −10.4721 2.8944 −1.5279 1.1056 −0.5000

2.6180 −1.1708 −2.0000 0.8944 −0.6180 0.2764

−0.7236 2.0000 −0.1708 −1.6180 0.8944 −0.3820

0.3820 −0.8944 1.6180 0.1708 −2.0000 0.7236

−0.2764 0.6180 −0.8944 2.0000 1.1708 −2.6180

0.5000 −1.1056 1.5279 −2.8944 10.4721 −8.5000





























.
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Figure 3.1: Chebyshev points, rj , j = 1, · · · , N [65].

3.2.2 Azimuthal Differentiation

The domain is discretised in the azimuthal direction using trigonometric polynomi-

als, the periodic nature of the computational space (the interval [0, 2π] corresponds

to the computational domain) is particularly suited to this type of disretisation. The

interval h, representing the discretisation of the domain [0, 2π] over N points, can

be described as h = 2π/N which can be visualised as the projection of the points at

the crests of the basis function onto the horizontal (θ) axis as shown in figure 3.2.

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

θ

v

h

2h 2π

Figure 3.2: The periodic grid function eiNθ/2, N = 6 [65].
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Now, following Trefethen [65], the Discrete Fourier Transform (DFT) is written

as

v̂k = h
N
∑

j=1

e−ikθjvj , k = −N

2
, · · · ,

N

2
, (3.2.6)

and accordingly, the inverse Discrete Fourier Transform (iDFT) is

vj =
1

2π

N/2
∑

k=−N/2+1

eikθj v̂k, j = 1, · · · , N, (3.2.7)

where we can say, v̂−N/2 = v̂N/2 so that

vj =
1

2π

N/2
∑′

k=−N/2

eikθj v̂k, j = 1, · · · , N, (3.2.8)

where the prime indicates k = ±N/2 are multiplied by 1/2. We therefore have

p(θ) =
1

2π

N/2
∑′

k=−N/2

eikθv̂k, θ ∈ [0, 2π]. (3.2.9)

Following Trefethen [65] we can interpolate the grid function v by expressing it as

a linear combination of translated delta functions obtained through expansion of

(3.2.9) such that,

δj =







1 , j = 0

0 , j 6= 0.
(3.2.10)

From the DFT, δ̂k = h for each k,

p(θ) =
h

2π

N/2
∑′

k=−N/2

eikθ =
h

2π
cos

(

θ

2

)

sin
(

Nθ
2

)

sin
(

θ
2

) . (3.2.11)

Therefore, if we set

SN =
h

2π

sin
(

πθ
h

)

tan
(

θ
2

) , (3.2.12)

which can also be written in terms of a series expansion

SN = 1 +

(

− π2

6h2
− 1

12

)

θ2 +

(

π4

120h4
− 1

120
+

2π2 + h2

144h2

)

θ4

+O(θ5), (3.2.13)
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we obtain an expression for the interpolant at each position, θ. Now, if we take

the derivatives of SN and employ the substitution θ = jh we can derive the entries

of the differentiation matrices for any position θj. Also we note the trigonometric

relationship, sec2 θ = 1 + tan2 θ. For the first derivative

S ′
N(θj) =

1

2

cos(πj)

tan
(

jh
2

) , (3.2.14)

with the respective series expansion being

S ′
N(θj) = 2

(

− π2

6h2
− 1

12

)

θ + 4

(

π4

120h4
− 1

120
+

2π2 + h2

144h2

)

θ3

+O(θ4),

S ′
N(θj) =











1
2
(−1)j cot

(

jh
2

)

, j 6= 0

0 , j = 0,

and similarly for subsequent derivatives.

The second derivative;

S ′′
N(θj) = −1

2
(−1)j sec2

(

jh
2

)

tan2
(

jh
2

) , (3.2.15)

S ′′
N(θj) = 2

(

− π2

6h2
− 1

12

)

+ 12

(

π4

120h4
− 1

120
+

2π2 + h2

144h2

)

θ2

+O(θ3),

S ′′
N(θj) =















−1
2

(−1)j

sin2( jh
2
)

, j 6= 0

− π2

3h2 − 1
6

, j = 0.

The third derivative;

S ′′′
N(θj) = −

(

π2

2h2

)

(−1)j

tan
(

jh
2

) +
3(−1)j

4

[

sec4
(

jh
2

)

tan3
(

jh
2

) − sec2
(

jh
2

)

tan
(

jh
2

)

]

, (3.2.16)

S ′′′
N(θj) = 24

(

π4

120h4
− 1

120
+

2π2 + h2

144h2

)

θ + O(θ2),

S ′′′
N(θj) =















−
(

π2

2h2

)

(−1)j

tan( jh
2
)

+ 3(−1)j

4 cos( jh
2
)

[

1

sin3( jh
2
)
− 1

sin( jh
2
)

]

, j 6= 0

0 , j = 0.
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The fourth derivative;

S
(IV )
N (θj) =

(π

h

)2 (−1)j

sin2
(

jh
2

) − 3

2

(−1)j

sin4
(

jh
2

)

cos2
(

jh
2

)

+
5

2

(−1)j

sin2
(

jh
2

)

cos2
(

jh
2

) − (−1)j

cos2
(

jh
2

) , (3.2.17)

S
(IV )
N (θj) = 24

(

π4

120h4
− 1

120
+

2π2 + h2

144h2

)

+ O(θ),

S
(IV )
N (θj) =















(

π
h

)2 (−1)j

sin2( jh

2
)
− (−1)j

2 cos2( jh

2
)

[

3

sin4( jh

2
)
− 5

sin2( jh

2
)

+ 2

]

, j 6= 0

π4

5h4 − 1
5

+ 2π2+h2

6h2 , j = 0.

The values of SN (θj) (and its derivatives) are the entries of one column of the

differentiation matrix. They form the N th column of the N × N differentiation

matrix. The other entries are the same as the N th column but on corresponding

diagonals. It should be noted that for the odd derivatives there is a loss of symmetry

about the diagonal of the differentiation matrix

D
(odd)
N (i, j) = −D

(odd)
N (j, i). (3.2.18)

The Fourier spectral differentiation matrices for the first and second derivatives can

be written as follows

Dθ =





























0
. . . −1

2
cot 1h

2

−1
2
cot 1h

2

. . . 1
2
cot 2h

2

1
2
cot 2h

2

. . . −1
2
cot 3h

2

−1
2
cot 3h

2

. . .
...

...
. . . 1

2
cot 1h

2

1
2
cot 1h

2

. . . 0





























, D2
θ =





























. . .
...

. . .

. . . −1
2
csc2

(

2h
2

) . . .

. . . 1
2
csc2

(

1h
2

) . . .

. . . − π2

3h2 − 1
6

. . .

. . . 1
2
csc2

(

1h
2

) . . .

. . .
...

. . .





























.

3.2.3 Grid Clustering

Whilst one of the main advantages to using pseudo-spectral numerical methods is

undoubtedly the higher degree of accuracy for a lower number of collocation points

(and hence, decreased computational expense), the scale of the eigenvalue problem

considered here results in regular exhaustion of computational resources. This is

amplified by the fact that Chebyshev collocation method concentrates grid points
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about the outer regions of our domain, whereas for the vortex problem we ideally

want the grid points concentrated near the centre (or close to the vortices). For

this reason it was found necessary to include some form of grid clustering in the

algorithm. Several methods were investigated, a logarithmic algorithm

rc =
log(1 + s1(1 + r)) − log(1 + s1(1 − r))

log(s2)
, s > 1, (3.2.19)

where s1 = 2(s− 1) and s2 = 1 + 2s1, and a trigonometric algorithm similar to that

used by [25],

rc =
tan

(

sπr
2

)

tan
(

πr
2

) , 0 < s < 1. (3.2.20)

In both cases rc is the new set of clustered grid points and s is the clustering param-

eter, with range as shown. The respective derivatives of the clustering functions are

used to adjust the differentiation matrices accordingly. Of the two methods outlined

above, the trigonometric algorithm of Hein and Theofilis [25] (3.2.20) proved to be

the most effective in terms of delivering a good degree of points clustered about the

origin whilst maintaining adequate resolution in the domain extremities. Figure 3.3

illustrates the degree by which the clustering parameter, s changes the positioning

of the Chebyshev points using equation (3.2.20). It can be seen from this figure that

relatively high values of s are required to ‘pull’ the points away from the boundaries.

The validity of the clustering routine is illustrated in figures 3.4 – 3.6, which show

the eigenspectra for the stability of plane Poiseuille flow (PPF) in a pipe which was

used to verify the axial component of the viscous polar code (see section 3.7.3).

Whilst there are some small differences in the results, in general, the structure

of the spectrum is unchanged. It is worth noting that pseudo-spectral clustering

is not required for plane Poiseuille flow as the grid points are naturally clustered

about the regions of interest, namely the boundaries. The differences seen in figure

3.4 can be attributed to the progressive relocation of grid points away from the

boundaries which in turn results in a decreased resolution of, what are, viscous

wave modes (stable). Despite this however, the well documented PPF results used

in this case illustrate that the clustering algorithm does not alter the structure of

the eigenspectra. The number of grid points used was (Nr, Nθ) = (61, 32).
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Figure 3.3: Different rates of grid clustering Chebyshev points using equation

(3.2.20). (a) No clustering. (b) s = 0.8. (c) s = 0.95.
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Figure 3.4: Plane Poiseuille flow in a pipe obtained using a pseudo-spectral numerical

code with no grid clustering.

Due in part to the success of the clustering mechanism, which is effectively a

mapping algorithm, it is possible to further hypothesise future developments utilising

this technique. The most interesting, and perhaps useful of these is the application

to linear stability analysis within domains of non-uniform (or irregular) boundaries.

Rather than move the existing Chebyshev grid points within the existing domain it

should be possible to transpose them to an altogether different domain via a mapping

algorithm. This is beyond the scope of this study but is worthwhile considering for

future applications.



CHAPTER 3. NUMERICAL METHODS 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

ωr

ω
i

Figure 3.5: Psuedo-spectral grid clustering in Plane Poiseuille pipe flow, s = 0.2.
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Figure 3.6: Psuedo-spectral grid clustering in Plane Poiseuille pipe flow, s = 0.5.

3.3 Finite-Difference Discrestisation

For the local problem, a finite-difference method based on the work of Otto and

Denier [47] was developed to be used over the bounded Cartesian domain shown in

figure 3.7.

3.3.1 Finite-Difference Scheme

A five point finite-difference stencil in both the horizontal (y) and vertical (z) di-

rections is used to create a nine point, two-dimensional stencil (figure 3.8) which is

used to discretize the governing equations resulting in fourth-order accuracy. The

number of intervals is Ny,z, whilst the number of grid points is Ny,z + 1. Figure 3.9
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illustrates a five point stencil in the y-direction (and similarly for the z-direction).

(y(1), z(1))

(y(1), z(Nz + 1))

(y(Ny + 1), z(1))

(y(Ny + 1), z(Nz + 1))

Ny,max

Nz,max

−Ny,max

−Nz,max

Figure 3.7: Computational domain of the vortex system in Cartesian co-ordinates.

P(i,j+2)

P(i,j+1)

P(i,j)

P(i,j−1)

P(i,j−2)

P(i+2,j)

P(i+1,j)P(i−1,j)

P(i−2,j)

Figure 3.8: Computational stencil of the finite-difference scheme used herein.

∆̄1

∆̄2 ∆̄3

∆̄4

yi−2 yi−1 yi yi+1 yi+2

Figure 3.9: A one-dimensional, five point finite-difference stencil.
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From figure 3.9 we can define

∆̄1 = yi−2 − yi, (3.3.1)

∆̄2 = yi−1 − yi, (3.3.2)

∆̄3 = yi+1 − yi, (3.3.3)

∆̄4 = yi+2 − yi. (3.3.4)

Now, if we expand about the point yi using a Taylor series expansion, we can write

the function at each of the four surrounding points in terms of yi such that

fi−2 = fi + (yi−2 − yi)f
′

i + (yi−2 − yi)
2 f

′′

i

2!
+ . . . , (3.3.5)

fi−1 = fi + (yi−1 − yi)f
′

i + (yi−1 − yi)
2 f

′′

i

2!
+ . . . , (3.3.6)

fi = fi, (3.3.7)

fi+1 = fi + (yi+1 − yi)f
′

i + (yi+1 − yi)
2 f

′′

i

2!
+ . . . , (3.3.8)

fi+2 = fi + (yi+2 − yi)f
′

i + (yi+2 − yi)
2 f

′′

i

2!
+ . . . . (3.3.9)

The function at a particular point can be expressed in terms of the five point stencil

(figure 3.9) with the function values of the surrounding points being multiplied by

weighting functions depending on their proximity to the grid point of interest. The

function can be written as

F = aifi−2 + bifi−1 + cifi + difi+1 + eifi+2, (3.3.10)

where the f ’s can be substituted with equations (3.3.5) – (3.3.9). Truncating at

f (iv) for fourth-order accuracy gives

F = [ai + bi + ci + di + ei]fi

+ [ai(∆̄1) + bi(∆̄2) + di(∆̄3) + ei(∆̄4)]f
′

i

+ 1
2
[ai(∆̄1)2 + bi(∆̄2)2 + di(∆̄3)2 + ei(∆̄4)2]f

′′

i

+ 1
6
[ai(∆̄1)3 + bi(∆̄2)3 + di(∆̄3)3 + ei(∆̄4)3]f

′′′

i

+ 1
24

[ai(∆̄1)4 + bi(∆̄2)4 + di(∆̄3)4 + ei(∆̄4)4]f
(iv)
i , (3.3.11)
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which can be written in the matrix form























1 1 1 1 1

(∆̄1) (∆̄2) 0 (∆̄3) (∆̄4)

1

2
(∆̄1)2 1

2
(∆̄2)2 0 1

2
(∆̄3)2 1

2
(∆̄4)2

1

6
(∆̄1)3 1

6
(∆̄2)3 0 1

6
(∆̄3)3 1

6
(∆̄4)3

1

24
(∆̄1)4 1

24
(∆̄2)4 0 1

24
(∆̄3)4 1

24
(∆̄4)4













































ai

bi

ci

di

ei























= V, (3.3.12)

where

V = [0, 1, 0, 0, 0]T for first derivative, (3.3.13)

V = [0, 0, 1, 0, 0]T for second derivative, (3.3.14)

V = [0, 0, 0, 1, 0]T for third derivative, (3.3.15)

V = [0, 0, 0, 0, 1]T for fourth derivative. (3.3.16)

The stencil weightings, ai, bi, ci, di, ei can be found for each point in the discretised

domain by solving the linear system (3.3.12). The points at (and near) the bound-

aries require special attention due to the lack of defined grid points external to the

boundary. In order to calculate ∆̄ at these points it is useful to situate ‘imaginary’

points external to the domain that are the internal near-boundary points mirrored

about the boundary and hence have the same spacing as their counterparts within

the boundary (figure 3.10).

...........

y1 y2 y3 yN−1 yN yN+1

∆(1) ∆(1)∆(2) ∆(2) ∆(3) ∆(N)∆(N)∆(N − 1) ∆(N − 1)∆(N − 2)

Figure 3.10: A one-dimensional stencil including ‘imaginary’ points (non-filled cir-

cles) external to the computational domain.

From figure 3.10 we can state the relationship between the grid points relevant
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to the boundaries in the usual way as,

∆(1) = y3 − y2,

∆(2) = y2 − y1,

∆(N − 1) = yN − yN−1,

∆(N) = yN+1 − yN .

∆̄ at all grid points can be defined by

∆̄ y1 y2 yN yN+1

∆̄1 −∆(2) − ∆(1) −∆(1) − ∆(1) −∆(N-2) − ∆(N-1) −∆(N-1) − ∆(N)

∆̄2 −∆(1) −∆(1) −∆(N-1) −∆(N)

∆̄3 ∆(1) ∆(2) ∆(N) ∆(N)

∆̄4 ∆(1) + ∆(2) ∆(2) + ∆(3) ∆(N) + ∆(N) ∆(N) + ∆(N-1)

with all other grid points being calculated as follows;

∆̄ yi → yi−2 i = 3, · · · , N

∆̄1 −∆(i-2) − ∆(i-1)

∆̄2 −∆(i-1)

∆̄3 ∆(i)

∆̄4 ∆(i) + ∆(i+1)

Therefore, for the points on or near the boundaries the function F can be written

F = c1f1 + d1f2 + e1f3, i = 1, (3.3.17)

F = b2f1 + c2f2 + d2f3 + e2f4, i = 2, (3.3.18)

F = aNfn−2 + bNfN−1 + cNfN + dNfN+1, i = N, (3.3.19)

F = aN+1fN−1 + bN+1fN + cN+1fN+1, i = N + 1, (3.3.20)

where
a1 = a2 = b1 = dN+1 = eN = eN+1 = 0.

The stencil weightings can be ordered in matrix form to produce a differentiation

matrix for the one-dimensional stencil, y1, · · · , yN+1 that when multiplied by the
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vector containing y grid points will produce a vector of derivatives, the order of

which depends on the choice of V . The differentiation matrix, D, is constructed

from the stencil weighting as,















































c1 d1 e1 0 0 0 · · · · · · · · · · · · 0

b2 c2 d2 e2 0 0 · · · · · · · · · · · · 0

a3 b3 c3 d3 e3 0 · · · · · · · · · · · · 0

0 a4 b4 c4 d4 e4 0 · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · · · · · · · 0 aN−2 bN−2 cN−2 dN−2 eN−2 0

0 · · · · · · · · · · · · 0 aN−1 bN−1 cN−1 dN−1 eN−1

0 · · · · · · · · · · · · 0 0 aN bN cN dN

0 · · · · · · · · · · · · 0 0 0 aN+1 bN+1 cN+1





























































































y1

y2

y3

y4

...

yN−2

yN−1

yN

yN+1















































,

resulting in a classical penta-diagonal matrix. Similarly there exists a matrix for

each of the higher order derivatives. These can also be calculated by (D
′

)n but is

less preferable than the method outlined above as the resulting matrix is in general

non-sparse and therefore will require substantially more computational effort to solve

the resulting linear system. For the two-dimensional domain there will be

y − direction ⇒ first derivative, Dy(Ny+1,Ny+1),

⇒ second derivative, Dyy(Ny+1,Ny+1).

z − direction ⇒ first derivative, Dz(Nz+1,Nz+1),

⇒ second derivative, Dzz(Nz+1,Nz+1).

and similarly for higher order derivatives. The process of constructing two-dimensional

differentiation matrices from the one-dimensional matrices derived above is detailed

in Appendix A.

3.3.2 Boundary Conditions

In our formulation of the stability equation we are forcing the value of the function P

at the boundary to zero (ie, Dirichlet boundary conditions) and as such the deriva-

tive ∂P
∂y

|y=b′dry = ∂P
∂y

|y=b′dry = 0. Therefore, we can employ a pseudo-Neumann

boundary condition which can be implemented directly by setting the correspond-
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ing entries in the differentiation matrices equal to zero. Figure 3.11 shows a one-

dimensional discretised domain, where to employ the boundary conditions we set

P1 = PN+1 = 0.

. . . . . . . . . . . . .

P1 P2 P3 PN−1 PN PN+1

Figure 3.11: Discretized one-dimensional grid.

Therefore, the columns of A (in the linear system AP = B) associated with

P1 and PN+1 can also be set to zero and as we are now only interested in P2 −
PN , the solutions, B1 and BN+1 can also be ignored. We now only need examine

a system that is (N − 1) × (N − 1) in size. This is of particular advantage in

the two-dimensionial case where due to the use of the Kronecker tensor product

to construct the two-dimensional differentiation matrices, the final computational

domain is reduced by 2(Nz + Ny) points which can make a significant difference in

terms of computational expense for very large systems. The final system of equations

is then (still using one-dimensional notation)

A(2,2)P2 + A(2,3)P3 + · · · + A(2,N-1)PN-1 + A(2,N)PN = B2

A(3,2)P2 + A(3,3)P3 + · · · + A(3,N-1)PN-1 + A(3,N)PN = B3

...
...

...
...

...

A(N-1,2)P2 + A(N-1,3)P3 + · · · + A(N-1,N-1)PN-1 + A(N-1,N)PN = BN-1

A(N,2)P2 + A(N,3)P3 + · · · + A(N,N-1)PN-1 + A(N,N)PN = BN.

3.3.3 Grid Clustering

Most simple finite-difference schemes consist of evenly spaced grid points. Often

in such situations, computational time can be wasted by performing calculations

of unnecessarily high accuracy to ensure adequate resolution about the regions of

interest. To overcome this, the derivation of the finite-difference scheme is such

that a variation in the grid-point spacing can easily be implemented. There are

many ways of clustering grid points in desired locations, but for the problem at

hand, clustering about the origin in both the y and z axes (to varying degrees) is

sufficient.
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Let the set of grid points be, y = y1, y2, · · · , yN , yN+1 where, y1 = −Ny,max

and yN+1 = Ny,max and for an evenly spaced grid, the spacing, δ = (2Ny,max)/Ny.

Therefore, we can write

yi = −Ny,max − (i-1)δ, i = 1, · · · , Ny+1, (3.3.21)

which, for the grid clustering function being used, must be scaled from −Ny,max ≤
yi ≤ Ny,max to −1 ≤ yi ≤ 1 so that yi can be written

yi =
−Ny,max − (i-1)δ

Ny,max

, i = 1, · · · , Ny+1. (3.3.22)

Therefore, the set of clustered grid points (ȳi) are calculated as

ȳi =
s|yi| − 1

s − 1
, i = 1, · · · , Ny+1, (3.3.23)

where s is the stretching (or clustering) parameter and yields ȳi = 1, · · · , 0, · · · , 1.

Finally, all values ȳi = 1, · · · , ȳi = 0 are multiplied by −1 to restore the set of

grid points on the negative side of the origin and the resulting vector ȳi is multiplied

by Ny,max to restore the set of values to cover the full domain. The results of

applying the clustering technique to an evenly spaced grid are shown in figure 3.12.

Here a stretching factor s = 5 is used to illustrate the degree of clustering that

is attainable and how it concentrates the grid points in the regions inhabited by a

typical four-vortex configuration with the primary (z = 0) vortices at the extremities

of their placement for computational purposes. It should be remembered that if the

clustering is too severe there will be insufficient points in the outer regions of the

domain to accurately resolve the disturbance field and so the degree of clustering

should be chosen specific to the individual problem being examined.

3.3.4 Basic Flow

The basic flow components (these can be U, V, W and derivatives thereof) are also

organised into column vectors consisting of Ny − 1 blocks with Nz − 1 entries.

Each entry is placed on the corresponding main diagonal of an (Ny − 1)(Nz − 1)

square matrix. For example, the non-dimensional axial velocity U is given by
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U =



























































U(1,1) 0 · · · · · · · · · · · · · · · · · · · · · · · · 0

0 U(1,2) 0
...

...
. . .

. . .
. . .

...
... 0 U(1,Nz-1) 0

...
... 0 U(2,1) 0

...
...

. . .
. . .

. . .
...

... 0 U(2,Nz-1) 0
...

...
. . .

. . .
. . .

...
... 0 U(Ny-1,1) 0

...
...

. . .
. . .

...

0 · · · · · · · · · · · · · · · · · · · · · · · · 0 U(Ny-1,Nz-1)



























































.

It should also be noted that the component α2 (which has the constant value on each

diagonal) is dealt with in the same way. Note that the subscripts are representative

of the position of the individual basic flow component in the one-dimensional grid

in (y, z) co-ordinate notation and not traditional vector notation (row, column).
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Figure 3.12: Comparison of concentration of grid points with four-vortex system.

(a) No clustering, (b) s = 5.

3.3.5 Governing Equation

The discretisation of the governing equation is treated the same for both the inviscid

(compressible and incompressible) and viscous models used in this study. The gen-

eralised eigenvalue problem is rearranged to form a linear system. For the inviscid
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case this is
[

(U − c)

(

∂2

∂y2
+

∂2

∂z2
− α2

)

− 2

(

∂U

∂y

∂

∂y
+

∂U

∂z

∂

∂z

)]

Pp = 0, (3.3.24)

and for the viscous case,
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= 0,

where

Q = iαU + V
∂

∂y
+ W

∂

∂z
− 1

Re

(

−α2 +
∂2

∂y2
+

∂2

∂z2

)

. (3.3.25)

The homogeneous discretised equation results in a square matrix of the form

AP = 0. (3.3.26)

3.3.6 Iterative Procedure

The iterative technique used to recover the eigenvalues and eigenfunctions follows

the work of Otto and Denier [47] for the solution of a non-separable elliptic, linear

partial differential equation. Essentially the algorithm normalises at a point in the

representing linear matrix, internal to the domain, and aims to exploit the fact that

the differential equation has not been satisfied at this point. A simple iterative

procedure is then used to converge on the eigenvalue at this point which leads to

the solution of the entire system. The non-homogeneous matrix equation AP = B

represents a system of linear equations

A(1,1)P1 + A(1,2)P2 + · · · + A(1,k)Pk + · · · + A(1,N-1)PN-1 + A(1,N)PN = B1

A(2,1)P1 + A(2,2)P2 + · · · + A(2,k)Pk + · · · + A(2,N-1)PN-1 + A(2,N)PN = B2

...
...

...
...

...
...

A(k,1)P1 + A(k,2)P2 + · · · + A(k,k)Pi + · · · + A(k,N-1)PN-1 + A(k,N)PN = Bk

...
...

...
...

...
...

A(N,1)P1 + A(N,2)P2 + · · · + A(N,k)Pk + · · · + A(N,N-1)PN-1 + A(N,N)PN = BN ,

where B1, · · · , BN = 0 for the homogeneous solution. Note that in this case N

represents a matrix dimension of (Ny − 1) × (Nz − 1).
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At a particular point, we set Pk = 1 and replace the disretised equation at this

point with this condition. This is the normalisation of the equation at Pk. A suit-

able choice for this point is typically where the pressure field attains its maximum

absolute value (max{|Pk|}). As this is generally not known a priori either an ed-

ucated guess can be made as to the location or, more preferably, a low resolution

study can be performed using a suitable global solver. This will provide both an

initial estimate of the eigenvalue sought and a good indication of the location of

(max{|Pk|}). Note that in this sense, the point Pk in the vector P is representative

of the point Pkj in the two-dimensional computational domain. We write

A(1,1)P1 + A(1,2)P2 + · · · + A(1,k)Pk + · · · + A(1,N-1)PN-1 + A(1,N)PN = 0

A(2,1)P1 + A(2,2)P2 + · · · + A(2,k)Pk + · · · + A(2,N-1)PN-1 + A(2,N)PN = 0
...

...
...

...
...

...

A(k−1,1)P1 + A(k−1,2)P2 + · · · + A(k−1,k)Pk + · · · + A(k−1,N-1)PN-1 + A(k−1,N)PN = 0

0 + 0 + · · · + Pk + · · · + 0 + 0 = 1

A(k+1,1)P1 + A(k+1,2)P2 + · · · + A(k+1,k)Pk + · · · + A(k+1,N-1)PN-1 + A(k+1,N)PN = 0
...

...
...

...
...

...

A(N,1)P1 + A(N,2)P2 + · · · + A(N,k)Pk + · · · + A(N,N-1)PN-1 + A(N,N)PN = 0.

We now let the ‘normalised’ A matrix = Ā, and P̄ and B̄ be the modified P and B

matrices respectively, therefore

Ā P̄ = B̄. (3.3.27)

The new (normalised) function matrix P̄ is obtained by solving the linear system

(3.3.27). We want to satisfy the discretised equation at the point k such that

A(k,1)P1 + · · ·+ A(k,k)Pk + · · · + A(k,N)PN = Bk = 0. (3.3.28)

To obtain Bk we use the original matrix A so that

A P̄ = B, (3.3.29)

where Bk 6= 0 unless the initial eigenvalue guess is exactly an eigenvalue of the

system

A(k,1)P̄1 + · · ·+ A(k,k)P̄k + · · · + A(k,N)P̄N 6= 0. (3.3.30)

Now, in order to find an eigenvalue and corresponding eigenfunction of the system

we iterate on c (eigenvalue) for L(c, Pk) = Bk = 0 to within some desired tolerance.



3.3. FINITE-DIFFERENCE DISCRESTISATION 48

A simple method of performing the iteration is a secant method which requires two

initial guesses (c−1 and c−2) to start the procedure

ck = ck−1 −
L(ck−1)(ck−1 − ck−2)

L(ck−1) − L(ck−2)
, k = 1, 2, · · · , N. (3.3.31)

3.3.7 Parameter Variation

One particularly useful aspect of an iterative local solver is its ability to track a spe-

cific eigenvalue over a range of parameters. If a parameter study is to be performed,

such as a variation in α, it is advantageous (if the parameter steps are sufficiently

small) to re-set the point of normalisation to the maximum absolute value of the

previous parameter’s function. This reduces the number of iterations required to

achieve eigenvalue convergence and scales the maximum function value to unity.

One such application is the tracking of the curve of neutral stability for a set of

parameters (done specifically in the viscous case, chapter 6) from a starting eigen-

value found using the global method. Some subtle additions are required to be made

to the iterative process in order to successfully track around the neutral curve, specif-

ically a second iterative process is needed after each eigenvalue convergence iteration

to ensure that the value then converges onto the neutral curve. Further details are

given in section 3.6.5. In chapter 5, parameter stepping is used to examine the

effects of compressibility on the stability of particular configurations by using the

Mach number as the stepping parameter.

The global code, whilst being computationally expensive is quite efficient at

finding the whole spectra of values for a low resolution grid. The particular value

of interest (and some small variation thereof to act as the second required starting

value) can be iterated upon in the local solver and the parametric variable initially

can be the number of grid points thus enabling the eigenvalue of interest to be

tracked up to a grid resolution that will provide adequate numerical convergence for

the study being undertaken. Then, as the desired resolution is reached, the number

of grid points is fixed and other parameters of interest can be varied. It should be

noted however, that care needs to be taken when deciding upon the resolution of

the global solver to produce the starting values as spurious or inaccurate eigenvalues

may be found that may not converge as the resolution increases. A balance between
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adequate (lower) resolution and computational time must, as always, be found.

3.4 Implementation of Serial Codes

All the eigenvalue solvers used in this study are written in either MATLABTM or

Fortran 90 and are designed to produce a single or set of eigenvalues and their re-

spective eigenfunctions. All the computer codes used have been written specifically

for the analysis of this study with the exception of the intrinsic Fortran, MATLABTM

and LAPACK subroutine libraries. The serial codes have been run on several ma-

chines of varying capacity including an Apple G4 laptop, G5 dual quad-core and in

multiple serial form on the South Australian Partnership for Advanced Computing

(SAPAC) Linux cluster ‘Hydra’ with up to 2Gb of main memory. Computation

times for a single set of parameters vary from 1 hour to 8 or more hours depending

on the machine load and problem size.

3.4.1 Global Solvers

In section 3.7.3 it is shown that the viscous model in both pseudo-spectral and

finite-difference forms produced numerically correct values, however, the number

of grid points required for accurate convergence increases substantially when an

azimuthal component is added into the basic flow. Significant grid clustering (0.8 <

s < 0.975 in the Chebyshev discretised domains) was used in order to produce

results of sufficient starting accuracy with acceptable computational expense. This

enabled the solvers to be run in serial mode on many processors on the SAPAC

supercomputers representing various parameter adjustments, producing results that

would have been unobtainable (due to time constraints) on a single processor.

3.4.2 Local Solvers

The iterative local solvers (inviscid and viscous) are implemented in serial form in

the same way as the global code, the difference being in the solution of a linear

system as opposed to the eigenvalue problem (as mentioned earlier).
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3.5 Implementation of Parallel Codes

Parallel implementation of both the global spectral solver and the local finite-

difference solver for the viscous case is developed so as to overcome problems such

as lack of local memory for large grid resolutions and excessive run times. The basis

of the code remains the same as the serial form except parallel BLAS (Basic Linear

Algebra Subprograms) routines are used in place of the serial versions. Whilst the

method of obtaining the relevant eigenvalues and eigenfunctions may differ (the QZ

algorithm is not used, Arnoldi iteration is used exclusively for the global case), the

basics of distribution remain consistent. All parallel codes are run on the SAPAC

Linux cluster ‘Hydra’ using 8 dual processor nodes each with 2Gb main memory.

Whilst the number of processors is 16, actual computational scalability is around

10 times greater (in terms of global problem size) than the fastest available serial

machine due mainly to the external memory requirements of the numerous parallel

subroutines. The computational time scale varies with increased problem size but at

(Nr, Nθ) = (80, 32), which is the maximum achievable serially in polar co-ordinates,

the parallel code is approximately 12 times faster in terms of computational time,

the loss (as intuitively we might expect the computational time to scale with the

number of processors) being due to the inherent cost associated with communication

over a large number of nodes.

3.5.1 Global Spectral Solver

The distribution of information is fixed over the 16 processors in a 4×4 block cyclic

distributed processor grid. The numerical details are distributed evenly across the

processor grid and the program makes use of routines that distribute the information

in the problem construction stage to avoid having to store large global matrices on

all processors. The parallel routines used are from the ScaLAPCK and PARPACK

libraries. In polar co-ordinates, Nr is the number of points in the radial direction,

Nθ is the number of points in the azimuthal (or angular) direction. It is important

to note that in order to maintain even data distribution across all 16 processors

distributed in a 4× 4 processor grid the global size of the problem must be divisible

by four. To ensure this, the requirements set out below must be met.
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Cartesian:

Global problem size = 2(Ny − 1)(Nz − 1) × 2(Ny − 1)(Nz − 1)).

Local problem size (largest) = (Ny + 1) × (Ny + 1) for Ny larger than Nz.

• Both Ny and Nz must be odd.

• The product (Ny − 1) × (Nz − 1) must be divisible by 8.

Polar:

Global problem size = 2(Nr − 1)Nθ × 2(Nr − 1)Nθ.

Local problem size (largest) = 2Nr × 2Nr.

• Nr must be odd.

• The product (Nr − 1) × Nθ must be divisible by 8.

The code is set up to accommodate a variety of basic flows, the details of these

can be found in section 6.3. Further basic flows can be added as required. Imple-

mentation of the parallel routines is identical for codes of both co-ordinate bases

and as such, for clarity, further reference is made only to the Cartesian problem.

3.6 Parallel Code Details

The parallel discretisation of the governing equations uses the PBLACS (Parallel

Basic Linear Algebra Communication Subprograms) which arrange the processor

grid into as much of a square formation as is possible depending on the number of

processors being used. In this particular case, 16 processors are used to ensure a

block-cyclic processor grid of 4 × 4 (figure 3.13).

By ensuring that the number of collocation points nominated at the call of the

routine meets the requirements set out previously, each processor in the grid will

receive the same amount of evenly distributed data making for a more intuitive

problem lay-out.
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Figure 3.13: PBLACS 16 node processor grid.

3.6.1 Two-dimensional Differentiation Matrices

In order to produce two-dimensional differentiation matrices, a Kronecker tensor

product is used (see Appendix A). Essentially, an algorithm was written to take the

one dimensional differentiation matrices and convert them into a two dimensional,

fully distributed format. That is, the global two-dimensional matrix does not exist

on any one processor, rather the individual processor reads which element it is in the

processor grid and computes only its portion of the two-dimensional matrix. In this

way the storage requirements for each individual processor are kept to a minimum.

The two-dimensional array of grid points is restructured into a one-dimensional

vector of size (Ny − 1)(Nz − 1) in (Ny − 1) block form.

3.6.2 Basic Flow

The description and types of basic flow employed in this study are detailed in section

6.3. The basic flow computed by all of these routines produces axial U , horizontal

V and vertical W components of velocity as a vector of size (Ny − 1)(Nz − 1). The

ScaLAPACK PBLAS routine PZGEMV (matrix – vector) is used to produce velocity

derivatives by multiplication of the velocity vector by the respective differentiation

matrix. In the processor grid, only the first column of processors 0, 4, 8 and 12 are

used to store vector information, all other entries are zero.
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The vectors representing the velocity derivatives are then transformed into two-

dimensional matrices with the entries of the vector placed on the diagonals of the

matrix. The ScaLAPACK redistribution routine PZGEMR2D is used to redistribute

the data found in localised diagonal form on processors 0, 4, 8 and 12 to global

diagonal form on processors 0, 5, 10 and 15. Figure 3.14 illustrates this process.

The following sections are included to finalise the parallel distribution and solution

of the viscous stability equation and to also highlight the work that went into the

final development stage of the parallel global solver.

12
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15

0

4

8

Figure 3.14: Processor redistribution of velocity vectors.

3.6.3 Redistribution of data to full dimensions

Whilst the processor grid remains the same, namely 16 processors, the way which

the data is transfered to each processor is now different. Unlike previously where

every distributed matrix had a portion on each of the 16 processors, now each of

the previously built matrices will be described by only one processor. This enables

the full problem to be built on the same 16 processor grid as has already been

established. The processor grid as passed to the full problem is shown in figure 3.15.

3.6.4 Solving the Eigenvalue Problem

Whilst the equation is formed as a generalised eigenvalue problem, the fact that the

governing matrices are (usually) neither symmetric or Hermitian positive-definite

(as prescribed by the ARPACK routine for the solution of a generalised problem)
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Figure 3.15: Redistribution of already distributed data to full dimensions as passed

to processor 0. Similarly for all other processors.

results in a necessary conversion to standard form. This is done most simply by

inverting the B matrix and multiplying by A, an operation that is achieved with

little computational over-head using parallel ScaLAPACK algorithms (it is accept-

able to do this due to the existing ‘full’ nature of the matrices; we are not taking

a sparse set of matrices and creating a ‘full’ matrix through this process). For the

problem at hand however, the B matrix is singular and as such has no inverse. For

singular or ill-conditioned matrices a slightly different approach is required to con-

vert the generalised eigenvalue problem to a standard one. The process is a spectral

transformation [35] as follows. Starting with our generalised form

Ax = λBx, (3.6.1)

subtracting σBx from both sides gives

Ax− σBx = λBx − σBx,

or

(A − σB)−1Bx =
1

λ − σ
x,

which can be written as

Âx = µx, (3.6.2)

where

Â = (A− σB)−1B and µ =
1

λ − σ
.
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Equation (3.6.2) can be solved as a standard eigenvalue problem for the eigenval-

ues µ using a regular interface, reverse-communication routine. A shift-and-invert

interface is not required as the shift parameter, σ, is already included in the deriva-

tion of (3.6.2). The eigenvalues can then be transformed to those of (3.6.1) using

the relationship

λj = σ +
1

µj

. (3.6.3)

The spectral transformation ensures that the eigenvalues µ of the standard prob-

lem (3.6.2), when transformed to the eigenvalues, λ, of the original problem (3.6.1),

converge most rapidly near the shift value σ [35]. By setting the parameter ‘which’

to ‘LM’, the ARPACK routine focusses on eigenvalues of the standard problem that

are of largest magnitude and when substituted into (3.6.3), produce eigenvalues of

the original system that are closest to σ. There are several other user-defined prop-

erties that can be set to enhance the prospect of finding eigenvalues in the desired

region, all of which are listed in the ARPACK manual [35].

An alternative method of dealing with the singular nature of the B matrix is

to introduce a small, artificial perturbation pressure εωPp (where ε � 1) into the

continuity equation which serves to remove, or eliminate, the matrix singularity. We

have shown this to produce identical eigenvalues to those produced by the previous

method, however, this artificial term does tend to produce more spurious eigenvalues

generally characterised by their large values [32].

3.6.5 Local Finite Difference Solver

The parallel version of the local iterative solver is built from a combination of the

serial iteration scheme and the parallel distribution of differentiation matrices. The

matrices are constructed using the same five-point FD stencil and reformed into

two-dimensions by the algorithm outlined in section 3.6.1. The advantage of this

method is that the process remains purely parallel as no specific eigenvalue solver

is required; the iteration takes place over the distributed processor grid allowing for

fast computational times.

A further use of this method is to track a neutral stability curve, or more specif-

ically, a particular mode over a range of parameters. This is achieved with the
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addition of a second iteration step for each parameter iteration. The selected pa-

rameter, say the Reynolds number, will be stepped until the desired location is

reached, in this case close proximity to the neutral stability curve. Then there will

be an iteration on the Reynolds number (by searching for the purely real eigenvalue)

and the subsequent convergence iterations to find the appropriate eigenvalue. This

continues until the point on the neutral curve is found. A further parameter step

can then be made to find an adjacent point on the curve, and so forth.

3.7 Testing of Numerical Methods

As is always the case with a new numerical computer algorithm, it is necessary to

test it against published (and credible) results to establish the degree by which the

accuracy of the results produced can be verified and trusted. Considerable weight is

placed on ensuring both the numerical stability and accuracy of the pseudo-spectral

methods used in the inviscid analysis as these methods transfer directly to the

more complicated viscous problem, thus we can be sure that the theory behind our

numerical schemes is sound and concentrate on verifying the coding of the complex

mathematical derivations that form the eigenvalue problem. It is worth stating

that when we talk about the available resolution, we are refering to the amount of

computing resources allocated to the program. In the inviscid case this is a single

processor, however in the viscous case the available resolution refers to the size of

the problem achievable on sixteen processors (being the limit reliably accessible at

the time). Should greater resolutions be required for future work, the code would

need to be re-written to accommodate this.

3.7.1 Testing Inviscid Global Solver

The inviscid version of the global eigenvalue solver is written in polar co-ordinates

and aims to compute a set of eigenvalues and corresponding eigenfunctions, satisfy-

ing the two-dimensional Rayleigh equation,

(U − c)

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− α2

]

Pp − 2

[

∂U

∂r

∂

∂r
+

1

r2

∂U

∂θ

∂

∂θ

]

Pp = 0. (3.7.1)



CHAPTER 3. NUMERICAL METHODS 57

Code symmetry

The code was run with a reduced number of collocation points (to restrict the time

of the study to a manageable length) at various positions in order to ascertain

the stability of the numerics and any inherent symmetries. Initially outputs were

compared from vortex located in positions mirrored across either the y or z-axis.

Then, diagonal symmetry was examined, with results compared as mirrored across

a diagonal (ie; (3, 1) and (−3,−1)). These results showed that the code exhibited

symmetry for vortex placement either side of the z = 0 axis (as expected) and as

such we only need examine vortex placement in either the +z or −z domains.

Evaluating Numerical Stability

To test the numerical stability of the code, a single Batchelor type vortex which has

an axial component of velocity

U = e−ar2

, (3.7.2)

is placed at the origin. This is consistent with the axial velocity profile used by

Lessen and Paillet [38] when computing similar eigenvalues (with a = 1). The

values published therein will be used to evaluate the legitimacy and accuracy of the

global eigenvalue solver. The code is to be tested initially by artificially introducing

an eigenfunction P and an eigenvalue c into equation (3.7.1) and running the code,

ensuring that one of the eigenvalues produced is the artificial eigenvalue used. The

degree of spectral collocation required to achieve this to a satisfactory accuracy will

determine the numerical stability of the code. The artificial eigenfunctions can be

produced by letting

Pp(r, θ) = Pp(r)e
ikθ, (3.7.3)

where

Pp(r) = r4e−ar2

, r2 = y2 + z2, y = r sin θ, z = r cos θ,

therefore

Pp(r, θ) = Pp(y, z) = ((y − y0)
2 + z2)2e−a((y−y0)2+z2)eikθ,
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Pp(r, θ) = (r2 − 2y0r sin θ + y2
0)

2e−a(r2−2y0r sin θ+y2

0
)eikθ. (3.7.4)

For convenience we set

B = r2 − 2y0r sin θ + y2
0,

therefore (3.7.4) can be written as

Pp(r, θ) = B2e−aBeikθ, (3.7.5)

and the subsequent derivatives with respect to r and θ are

Pp,r(r, θ) = [(2r − 2y0 sin θ)(2B − aB2)]e−aBeikθ,

Pp,rr(r, θ) = [(2r − 2y0 sin θ)2(a2B2 − 4aB + 2)

+ 2(2B − aB2)]e−aBeikθ,

Pp,θ(r, θ) = [2By0r cos θ(aB − 2) + ikB2]e−aBeikθ,

Pp,θθ(r, θ) = [4y2
0r

2 cos2 θ(2 − 4aB + a2B2) + 4Biky0r cos θ(aB − 2)

+ 2By0r sin θ(2 − aB) − B2k2]e−aBeikθ.

For clarity, let

LP = Pp,rr(r, θ) +
1

r
Pp,r(r, θ) +

1

r2
Pp,θθ(r, θ) − α2Pp(r, θ), (3.7.6)

and substituting (3.7.6) into (3.7.1) gives us

(U − c)LP − 2(UrPp,r +
1

r2
UθPp,θ) = 0, (3.7.7)

where c = cr + ici. Equation (3.7.7) can be satisfied by choosing

(ULP − 2UrPp,r) −
2

r2
UθPp,θ = crLP + iciLP , (3.7.8)

with one possible solution of (3.7.8) being

Ur =
ULP − crLP

2Pp,r
=

(U − cr)LP

2Pp,r
, (3.7.9)

Uθ = −icir
2LP

2Pp,θ

, (3.7.10)
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where an appropriate expression for U is equation (3.7.2) and c is an arbitrary, user

defined eigenvalue, either real or complex.

The results showed good (and remarkably quick) convergence for k = 1 and

k = 2 with a completely real eigenvalue c, whilst for odd values of k the convergence

was somewhat slower. For these tests the number of collocation points in the radial

direction (Nr) was varied and the number of collocation points in the azimuthal

direction (Nθ) was kept at 4. Further tests, varying Nθ as well as Nr revealed

convergence for a reduced Nr when Nθ was increased.

Tests using complex eigenvalues were also performed and seemed to marginally

increase the convergence rate of the odd integer k runs. Finally, slower decay rates,

represented by the parameter a, were used and it was found that the rate of con-

vergence was increased substantially with a slower decay rate. The computational

domain is over a radial distance of rmax = 10. It was noted that as the vortex was

moved away from the origin, the number of collocation points required to achieve

satisfactory convergence increased due mainly to the removal of the inherent sym-

metry of the problem. The results of this exercise prove that the code converges

and can be expected to produce correct and consistent eigenvalues.

Comparison to Published Data

The final part of the verification process was to reproduce published values that

have been confirmed through independent studies. As outlined earlier, a range of

eigenvalues for a single vortex located at the origin can be found in Lessen and

Paillet [38]. Figure 3.16 displays the results obtained from running the modified

test code with (Nr, Nθ) = (80, 32) and rmax = 3 as in Lessen and Paillet [38], and

q = 0 over a range of α. The eigenvalues used for comparison are those of n = ±1.

For α = 1, a high resolution run was performed to ensure convergence of the code

when reproducing the eigenvalues published by Lessen and Paillet [38]. These results

are given in table 3.1.

It can be seen from the figures and the corresponding tabulated eigenvalues that

the global pseudo-spectral code does find eigenvalues that match those obtained

by Lessen and Paillet [38] to an acceptable accuracy. These results allow further

analysis of more complex vortex systems to proceed with confidence that the code
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will produce accurate results. It should be noted however, that whilst the results of

Lessen and Paillet [38] are reproduced here, their inherent accuracy remains suspect

due to their particularly small value of rmax. This has also been pointed out by

subsequent authors such as Khorrami et al. [32], Mayer and Powell [41] and Fabre

and Jacquin [19] but despite this, many authors have used the results of Lessen and

Paillet [38] as a benchmark for showcasing the integrity of their numerical schemes.
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Figure 3.16: Eigenvalues from the global pseudo-spectral code equivalent to q = 0.

Source Eigenvalue

Lessen and Paillet 0.55+0.03i

Matlab code 0.5456+0.0344i

Fortran code 0.54565+0.0344i

Table 3.1: A comparison of the present results to those of Lessen & Paillet [38].

3.7.2 Testing Numerical Algorithms

As part of the verification process the various numerical algorithms used, both those

written specifically for this study and those obtained through other means and

adapted, had to be checked to ensure correct operation. As a result of the successful
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reproduction of published results by the inviscid code (section 3.7.1), the LAPACK

QZ eigenvalue routine ZGGEV.f became the basis for comparison. The validity of

higher order differentiation matrices was proven by accurate reproduction of both

plane Poiseuille duct and Hagen-Poiseuille pipe flow results. The algorithms that

were checked either directly or indirectly by this process were grid clustering routines

and the serial and parallel eigenvalues solvers ARPACK and P ARPACK.

Clustering

Duct flow results obtained using ZGGEV.f were reproduced using trigonometric

clustering of pseudo-spectral Chebyshev points, section 3.2.3.

ARPACK

For the same A and B matrices in the generalised eigenvalue problem, the

ARPACK shift-and-invert routines produced a set of values, all of which could be

found in the entire spectrum as produced by ZGGEV.f.

P ARPACK

Using the same parameter variables and grid sizing, the parallel code produced

eigenvalues identical to those produced by the serial form of ARPACK. As there

is no compatible distinctly parallel ‘full-spectrum’ solver, the code was modified to

pass the distributed matrices and solve on a single processor thus producing a full

set of values using distributed matrices. All results from these two parallel methods

correlated, the set of values found by the Arnoldi algorithm being found in the entire

spectra recovered by the QZ algorithm. Figure 3.17 is a comparison between the

results recovered by the QZ algorithm (dots) and the Arnoldi method (circles) from

which it can be seen there is complete agreement.

3.7.3 Testing Viscous Global Solver

The accuracy of the viscous solver is tested first in its serial form for the ease of which

the results of the full-spectrum eigenvalue solver can be compared to published values

and then in parallel form to examine the convergence behaviour of the eigenvalues

as the resolution is increased beyond that which is achievable on a single processor.
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Figure 3.17: Comparison between QZ (dots) and Arnoldi (circles) methods for a

single vortex using spectral transformation to standard form in the Arnoldi case.

Axial flow in a Rectangular Duct

One method used to test the accuracy of the discretisation process and the derivation

of the axial component of the stability equations was to reproduce published results

for stability in a rectangular duct. A duct flow was chosen to validate the Cartesian

discretisation (a pipe flow was selected for polar co-ordinates) where there exists

sufficient results with which to verify our numerical process.

The results for plane Poiseuille flow (PPF) in a duct are widely known and

provide an adequate benchmark for comparison. For our analysis, the work of

Theofilis et al. [63] reproduces the classic PPF form for a large aspect ratio duct

using a pressure gradient driven flow and solves similar governing equations in a

similar fashion, also using ARPACK’s shift-and-invert routines. The basic flow used

satisfies the Poisson equation

∂2U(y, z)

∂y2
+

∂2U(y, z)

∂z2
= −∂p

∂x
= c, (3.7.11)

where, as in Theofilis et al. [63] the axial pressure gradient is taken to be constant

and set to c = −2. The Poisson equation must be solved subject to the boundary

conditions U(y = −Nmax, z) = U(y = Nmax, z) = U(y, z = 1) = U(y, z = −1) = 0.



CHAPTER 3. NUMERICAL METHODS 63

As is pointed out by Theofilis et al. [63], the Poisson equation may also be solved

in a series form such that

U(y, z) = 1 − z2 − 4

(

2

π

) ∞
∑

n=0

(−1)n

(2n + 1)3

cosh[(2n + 1)πy/2] cos[(2n + 1)πz/2]

cosh[(2n + 1)πNmax/2]
.

(3.7.12)

The plane Poiseuille basic flow when Nmax → ∞ is U(z) = 1− z2. As with Theofilis

et al. [63] however, in this analysis the numerical discretisation matrices produced

firstly with the pseudo-spectral numerical scheme and then secondly with the finite-

difference numerical scheme are used to solve equation (3.7.11) and produce our

basic axial duct flow. It is obvious that the pseudo-spectral numerical scheme is

more suited to this type of flow due to the clustering of grid points around the

boundaries, the duct walls, where the no-slip boundary condition is applied. The

derivatives of the basic flow are obtained through multiplication by the respective

differentiation matrices. It is important to note that whilst this is acceptable for

the numerically derived duct flow it isn’t always safe to do so. Care should be taken

to ensure that the derivatives of the basic flow do in-fact decay to zero over the

domain otherwise numerical inaccuracies may occur. For a base flow prescribed by

an analytic function it is best, if possible, to prescribe the analytic derivatives rather

than using multiplication by the differentiation matrices.

In order to replicate the results of Theofilis et al. [63] for Re = 1000, the duct

aspect ratio was set at 100 by setting Nmax in the y-direction to 100 and Nmax in the

z-direction to be 1. Figure 3.18 shows the eigenvalue spectra recovered by the two

equation fourth order derivative model using pseudo-spectral discretisation. Further

plots showing the eigenvalue spectra produced using the four-parameter pseudo-

spectral code and two-parameter finite-difference code can be found in Appendix

D.

Figure 3.18 can be seen to exhibit the classical profile of PPF with the spectra

forming a 45◦ band for the first mode with ωi ≈ −0.3 and then forming a distinctive

band of eigenvalues for varying growth rates at ωr ≈ 0.67. Figure 3.18 corresponds

well to those presented in Theofilis et al. [63]. The fact that the general form of

the PPF spectra is produced however, demonstrates that the viscous global code is

effective at producing results relating to the axial component of a basic flow.
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Figure 3.18: Plane Poiseuille flow in a large aspect ratio duct using a pseudo-spectral

numerical scheme with dependent parameters [V, W ]. Circles represent the results

of Theofilis et al. [63].

Axial flow in a Circular Pipe

Similar to the duct problem, the axial flow in a circular pipe can be used to check the

integrity of the viscous polar code. There has been much work over the years into

this area with more recent papers producing increasingly more accurate results. In

the same vein as before, the two-dimensional polar pseudo-spectral codes (two and

four parameter versions) written for this study are used to find the entire spectra

of eigenvalues (encompassing all azimuthal wave-numbers n) which can be com-

pared to the one-dimensional results for nominated n-values published previously

by Schmid and Henningson [51] and Meseguer and Mellibovsky [43] and also recov-

ered using a one-dimensional code written from the same set of governing equations

as the two-dimensional code being tested. For these examples we chose Re = 3000

which corresponds to the results of Schmid and Henningson [51] and Meseguer and

Mellibovsky [43]. The basic flow is written as

U(r) = 1 − r2, (3.7.13)
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with the flow in the azimuthal direction being zero, noting the similarity to the

plane Poiseuille flow for a large aspect ratio duct. Figure 3.19 shows the eigenvalue

spectra generated using the four parameter code, (a), with those values produced

by the one-dimensional code for n = 0, 1, · · · , 25, (b).
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Figure 3.19: Hagen-Poiseuille flow in a pipe of radius 1, found using a two-

dimensional pseudo-spectral numerical scheme implementing the four equation

method (a) and a quasi one-dimensional code based on the same set of equations

(b).

Again, as with the duct flow we can see that figure 3.19 exhibits the expected

eigenvalue spectra with the eigenvalues more resolved about the ωr = 0.67 than in

most other regions, however, the classic 45o form of the PPF profile can still be

seen. Exact recovery of this portion of the spectra suffers from a lack of available

grid resolution in the two-dimensional global version of the code but the fact that

the expected form is achieved suggests the numerical methods behind the scheme

are correct.

Single Batchelor Vortex Located at the Origin

Whilst the results previously presented in section 3.7.3 demonstrate the numerical

integrity of the discretisation scheme, they only illustrated the solution accuracy

with respect to the axial component of basic flow. Whilst we are confident that

the numerical discretisation is correct (as the same approach is used as with the
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axial components) it is desirable to finalise the verification process by ensuring the

cross-flow components themselves are correct. This is done using the Batchelor

(or q) vortex, as derived in detail in section 5.3, situated at the co-ordinate origin.

Equations (6.3.11) – (6.3.13) with n = 1, and with γ and a normalised to unity with

the vortex situated at the co-ordinate origin read

U = e−(y2+z2), (3.7.14)

V =
qz

(y2 + z2)
[1 − e−(y2+z2)], (3.7.15)

W =
−qy

(y2 + z2)
[1 − e−(y2+z2)]. (3.7.16)

To illustrate the effectiveness of our numerical scheme we present in figure 3.20

the eigenspectra for those values of axial wave-number α, swirl q and Reynolds

number Re used by Hein and Theofilis [25]. It should be noted that these authors

do not provide specific values for their results and some aspects of their numerical

method is omitted (such as the exact number of spectral collocation points or the

parameters of the Arnoldi method). However, as an illustrative tool it is useful to

compare results. We can see that the general form and magnitude of the eigen-

value spectra produced herein (figure 3.20) is similar to that presented by Hein and

Theofilis [25] except that we produce a more defined and dense structure close to

the neutral axis (shown to be correct by comparison to our quasi one-dimensional

code). This could be attributed to the aforementioned authors selectively presenting

results at specific locations using a targeted Arnoldi approach and only recovering

a few eigenvalues at a time. The two unstable modes (ωn=1 = 0.02855 + 0.11854i

and ωn=−1 = 0.02835 + 0.00962i) found in [25] can be seen although as will be ex-

plained later, these have not converged to the exact values at the available resolution.

Differences in numerical techniques notwithstanding, the results display significant

similarity. A comparison with the Cartesian results can be found in Appendix D.

Finally, we present in tables 3.2 – 3.5 a comparison of the first ten least-stable

eigenvalues recovered by our four-parameter, two-dimensional (parallel) ‘global’ code

((Nr, Nθ) = (77, 56)), with those recovered using a quasi one-dimensional code (Nr

sufficient for a minimum of 8 decimal place convergence) derived from the same set
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of governing equations for n = 0, 1, 2, 3 respectively. The latter code has reproduced

all listed values of Schmid and Henningson [51] and Meseguer and Mellibovsky [43]

for Hagen-Poiseuille flow, all values published in Khorrami et al. [32] pertaining

to the flow in a swirling pipe and the single Batchelor vortex results of Mayer and

Powell [41], Khorrami [30] and Fabre and Jacquin [19] to name but a few. We

see that for the axisymmetric case, the comparative results are very good and that

those for the higher, non-axisymmetric modes n 6= ±1 are also very good. For

n = ±1 there is poor correlation in all but the first few modes. The difference is

due to the number of extra grid points required in the azimuthal direction to resolve

these significantly more complex modes. Figure 3.21 illustrates the compatibility

for n = −10, · · · , 0, · · · , 10.
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Figure 3.20: Eigenvalue spectra recovered using parameters matching those of Hein

and Theofilis [25] for an isolated Batchelor vortex at the co-ordinate origin.

We can conclude from this that the components that make up our numerical

scheme are correct and will produce correct and consistent results if, with the avail-

able resolution, we restrict our analysis to regions about the neutral axis where we
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can safely say the solution has converged. We can however, look further away from

the neutral axis to gain an insight into the behaviour of the stability of the system

providing we qualify the results by stating that, for the available resolution, con-

vergence to the level of accuracy prescribed above, is not guaranteed nor can it be

obtained with the existing computational resources at our disposal. Preference is

to be given to the code written in cylindrical polar co-ordinates due to the greater

accuracy achievable per number of grid points.
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Figure 3.21: A comparison of the eigenvalue spectra recovered by the two-

dimensional polar ‘global’ code (dots) and quasi one-dimensional code (circles) using

parameters matching those of Hein and Theofilis [25] for a single Batchelor vortex.
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quasi one-dimensional ‘global’

-0.0000097601061 - 0.0018073663994i -0.0000097681697 - 0.0018073430540i

0.0000057931427 - 0.0018160673396i 0.0000058045524 - 0.0018160241657i

-0.0000307171987 - 0.0019514013397i -0.0000307583673 - 0.0019513231622i

0.0000145711035 - 0.0019801685084i 0.0000146269489 - 0.0019800123366i

-0.0000576961447 - 0.0021747588783i -0.0000578162757 - 0.0021746200423i

0.0000232584361 - 0.0022385985425i 0.0000234152938 - 0.0022382386180i

-0.0000838939477 - 0.0024713158204i -0.0000841352478 - 0.0024711103692i

0.0000309890677 - 0.0025900561352i 0.0000313056215 - 0.0025893880027i

-0.0001004100881 - 0.0028409007174i -0.0001008400659 - 0.0028406599847i

0.0000379834519 - 0.0030328982167i 0.0000385338431 - 0.0030318015657i

Table 3.2: Comparison between the results of the two-dimensional ‘global’ and quasi

one-dimensional codes for the axisymmetric case, n = 0.

quasi one-dimensional ‘global’

0.0003659888983 - 0.0018647230811i 0.0003697537209 - 0.0018693280591i

0.0004619340702 - 0.0020351257915i 0.0004768027079 - 0.0020293675699i

0.0005756284228 - 0.0021273501976i 0.0005245838722 - 0.0021089946745i

0.0006734145521 - 0.0023757943842i 0.0006321610689 - 0.0023797195791i

0.0007772053144 - 0.0024782625586i -

0.0008738472024 - 0.0027918770828i -

0.0009747736306 - 0.0029145997323i -

0.0010702535461 - 0.0032850412409i -

0.0011697442095 - 0.0034340908272i -

0.0012644088854 - 0.0038558679541i -

Table 3.3: Comparison between the results of the two-dimensional ‘global’ and quasi

one-dimensional codes for the non-axisymmetric case, n = 1.
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quasi one-dimensional ‘global’

0.0006569692230 - 0.0019421161736i 0.0006566921083 - 0.0019419875015i

0.0007886904969 - 0.0021518674196i 0.0007883603212 - 0.0021517552552i

0.0009608422734 - 0.0022913262340i 0.0009603360072 - 0.0022909628257i

0.0010939604118 - 0.0025805519182i 0.0010935762032 - 0.0025803925144i

0.0012474791130 - 0.0027274561778i 0.0012467050082 - 0.0027267212507i

0.0013790358329 - 0.0030813353793i 0.0013786108659 - 0.0030811684979i

0.0015262853783 - 0.0032482802941i 0.0015252009204 - 0.0032470480841i

0.0016565082516 - 0.0036584022009i 0.0016560500030 - 0.0036582490426i

0.0018007046982 - 0.0038519012824i 0.0017992180150 - 0.0038500729030i

0.0019302237827 - 0.0043130647754i 0.0019297318539 - 0.0043129437666i

Table 3.4: Comparison between the results of the two-dimensional ‘global’ and quasi

one-dimensional codes for the non-axisymmetric case, n = 2.

quasi one-dimensional ‘global’

0.0009306332149 - 0.0020205036875i 0.0009299620041 - 0.0020200165297i

0.0010893405533 - 0.0022586812718i 0.0010885797319 - 0.0022582543419i

0.0013082184227 - 0.0024401761855i 0.0013071197876 - 0.0024390632441i

0.0014676960048 - 0.0027587869462i 0.0014668558088 - 0.0027582379669i

0.0016602600793 - 0.0029442424159i 0.0016587290895 - 0.0029422482551i

0.0018178852488 - 0.0033271464471i 0.0018169722417 - 0.0033265550087i

0.0020009612790 - 0.0035318547525i 0.0019989828689 - 0.0035287713088i

0.0021572011033 - 0.0039706385120i 0.0021562281324 - 0.0039700510385i

0.0023354749277 - 0.0042016684248i 0.0023329207270 - 0.0041974072179i

0.0024910221247 - 0.0046913258821i 0.0024900034831 - 0.0046908358087i

Table 3.5: Comparison between the results of the two-dimensional ‘global’ and quasi

one-dimensional codes for the non-axisymmetric case, n = 3.



Chapter 4

Inviscid Flow

4.1 Introduction

Now that we have defined the governing equations and the numerical methods by

which we are going to solve them in the previous two chapters, we turn our at-

tention to an incompressible, inviscid stability analysis of several common vortex

configurations.

Although no practical flow is inviscid, the study of inviscid flows allows us to

solve simplified problems that lead to a basic understanding of the dynamics of the

system at hand. It is possible to justify the use of inviscid theory for high Reynolds

number flows near a boundary by noting that the boundary layer is thin compared

to the axial length scale of the instability. Whilst a vortex flow does not interact

with a boundary, we show in section 4.3.2 that, to leading order, the equations

governing the flow in the inviscid limit reduce to a simple diffusion equation for

which boundary layer approximations are valid.

For this particular study, as the dynamic viscosity of the fluid is small and the

speeds and defining length scales are quite large, the use of the inviscid model to

approximate the stability characteristics of the flow is entirely acceptable. However,

it shouldn’t be forgotten that it is an approximation and that whilst the Reynolds

number may be high, it is never infinite and as such viscosity will play some small role

be it stabilising or otherwise. The adoption of inviscid theory allows the governing

equations to be simplified down to a single equation, the two-dimensional Rayleigh

71
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equation, in terms of the perturbation pressure (the dependent variable) and c, the

eigenvalue.

4.2 Governing Equations

For our inviscid stability analysis, the governing perturbation equation derived in

section 2.4.1 is equation (2.4.8), which we reproduce here for convenience,

(U − c)

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− α2

]

Pp − 2

[

∂U

∂r

∂

∂r
+

1

r2

∂U

∂θ

∂

∂θ

]

Pp = 0. (4.2.1)

4.3 Basic Flow

Whilst the governing equations are relatively standard across many aspects of fluid

dynamical stability problems, it is the choice of the basic flow that makes the prob-

lem specific. For this study the Batchelor [3] vortex (or multiples thereof) is chosen

to represent the trailing vortex flow from an aircraft wing-tip (or tips in the case

of multiple vortices). Throughout the literature, the Batchelor vortex is used al-

most exclusively for studies involving wing-tip vortex stability. In what follows we

provide a derivation of the Batchelor vortex resulting in the axial and cross-flow

components together with an asymptotic analysis that shows only the axial compo-

nent is relevant to leading order in this inviscid stability study (which is similar to

the method used by Timoshin and Smith [64]). An analytical derivation of the axial

basic flow component based on the results of the asymptotic theory is developed by

first deriving Batchelor’s similarity solution for a single vortex and then expanding

this to a multiple vortex solution.

4.3.1 Batchelor’s Similarity Solution

The (dimensional) equations governing a steady axis-symmetric flow in cylindrical

polar co-ordinates (from equations (2.3.2) – (2.3.4)) are

u∗∂u∗

∂x∗
+ v∗∂u∗

∂r∗
= − 1

ρ∗

∂p∗

∂x∗
+ ν∗∇∗2u∗, (4.3.1)
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u∗ ∂v∗

∂x∗
+ v∗∂v∗

∂r∗
− w∗2

r∗
= − 1

ρ∗

∂p∗

∂r∗
+ ν∗

(

∇∗2v∗ − v∗

r∗2

)

, (4.3.2)

u∗∂w∗

∂x∗
+ v∗∂w∗

∂r∗
− v∗w∗

r∗
= ν∗

(

∇∗2w∗ − w∗

r∗2

)

, (4.3.3)

where

∇∗2 =
∂2

∂x∗2
+

∂2

∂r∗2
+

1

r∗
∂

∂r∗
. (4.3.4)

Following Batchelor [3], we consider flow fields where axial gradients are significantly

smaller in magnitude than those found in the radial direction which suggests the

following boundary-layer type approximation

∂

∂x∗
� ∂

∂r∗
, v∗ � u∗. (4.3.5)

The two-dimensional Laplacian reduces to

∇∗2 =
∂2

∂r∗2
+

1

r∗
∂

∂r∗
, (4.3.6)

and from (4.3.2) we have

1

ρ∗

∂p∗

∂r∗
=

w∗2

r∗
. (4.3.7)

As the pressure is uniform (p∞) some distance from the axis (far from the vortex),

equation (4.3.7) can be integrated to give

p∞ − p∗

p∞
=

∫ ∞

r∗

C∗2

r∗3
dr∗, (4.3.8)

where C∗ = r∗w∗. Now, for the solution far downstream of the trailing edge (the

focus of our study), Batchelor notes that |u∗ − U∞| � U∞. The equations of

motion (4.3.1) – (4.3.3) are now, with the implementation of these approximations,

reduced to the equations that Batchelor [3] derived in his similarity solution for an

incompressible flow, namely

U∞
∂u∗

∂x∗
= − 1

ρ∞

∂p∗

∂x∗
+ ν∞

(

∂2u∗

∂r∗2
+

1

r∗
∂u∗

∂r∗

)

, (4.3.9)

p∞ − p∗

p∞
=

∫ ∞

r∗

C∗2

r∗3
dr∗, (4.3.10)
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U∞
∂w∗

∂x∗
= ν∞

(

∂2w∗

∂r∗2
+

1

r∗
∂w∗

∂r∗
− w∗

r∗2

)

. (4.3.11)

Batchelor demonstrated that these have the solution

u∗ = U∞ − C2
∞

8µ∞x∗
log

(

x∗U∞

ν∞

)

e−η +
C2

∞

8ν∞x∗
Q(η) − LU2

∞

8ν∞x∗
e−η, (4.3.12)

v∗ = 0, (4.3.13)

w∗ =
C∞

r∗
(1 − e−η). (4.3.14)

Here, C∞ is the value of C∗ at large r∗, L is a constant with the dimensions of area

and representing the characteristic area of the object being studied, the similarity

variable η is given by

η =
U∞r∗2

4ν∞x∗
, (4.3.15)

and

Q(η) = e−η(log(η) + ei(η) − 0.807) + 2ei(η) − 2ei(2η), (4.3.16)

with

ei(η) =

∫ ∞

η

e−ξ

ξ
dξ, (4.3.17)

where ξ = 2η
1

2 . If we now follow the non-dimensionalisation of Lessen et al. [38] we

can show that the term involving Q(η) in (4.3.12) is significantly smaller than the

other term involving C2
∞ for large Re and as such the velocity scales by

Us =
C2

∞

8µ∞x∗
log

(

x∗U∞

ν∞

)

e−η +
LU2

∞

8ν∞x∗
e−η, (4.3.18)

and the length by

rs =

(

4ν∞x∗

U∞

)
1

2

. (4.3.19)

The non-dimensional basic flow can be written as

(U, V, W ) =

(

U∞

Us
− e−r2

, 0,
q

r
(1 − e−r2

)

)

, (4.3.20)
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where the swirl parameter, q is the inverse of the Rossby number such that

q =
C∞

2πUsrs
, (4.3.21)

and

r =
r∗

rs

= η
1

2 . (4.3.22)

It is important to note that Batchelor’s similarity solution is valid “...for the flow in

a trailing vortex far downstream.” Thus, by this statement we can assume x∗ � 1

which from (4.3.19) implies that rs � 1 (rs ∝ x∗ 1

2 ) and as such, from (4.3.21) the

swirl parameter q is found to be small (q � 1) for this inviscid analysis.

As was initially shown by Lessen and Paillet [38], and later by Fabre and Jacquin

[19], and for the compressible case by Stott and Duck [59], only the real component

of the eigenvalue in (4.2.1) is affected by the translation and inversion of the axial

velocity profile. We therefore set

U = e−r2

. (4.3.23)

It should be noted however, that whilst many authors use this simplification (and

it is justifiably correct to do so), Khorrami [30] also points out that the removal of

the quantity U∞/Us and subsequent inversion of the axial velocity profile causes the

sign of the unstable azimuthal wave-number to change. Whilst this is important

to keep this in mind it has no bearing on the present analysis due to the global

nature of our analysis, we solve the disturbance equation for the entire spectra of n

values and do not stipulate our unstable modes by their azimuthal wave-numbers.

For comparative purposes, in studies that set U∞/Us = 1, a factor of α is added to

the real component of the complex phase velocity, c.

In what follows we present an alternative derivation of the basic flow that will

show that the derivation and subsequent simplification of the Batchelor similarity

solution to a one-dimensional flow in terms of the axial component for our far-field

analysis at high Reynolds numbers (as encountered in an inviscid analysis) is a valid

one.
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4.3.2 Leading Order Asymptotic Analysis

If we assume that the flow far from the wing-tip is uniform and given by (u∗, v∗, w∗) =

Us(U, V, W ) which can be normalised at some distance far from the vortices by

(u∗, v∗, w∗) = U∞(1, 0, 0), we can define a Reynolds number as Re = U∞Ls/ν, where

Ls is a typical length scale in the cross-section and ν is, as before, the kinematic

viscosity. The long streamwise length scale of Batchelor can then be formalised

by defining non-dimensional variables via (x∗, y∗, z∗) = Ls(Re x, y, z) where Re is

used as the axial length scale where the dimensional variations occur at O(Re) as

opposed to O(1) in the cross-section. We also define time and pressure in terms of

the free-stream velocity as non-dimensional variables, t∗ = Lst/U∞ and p∗ = ρ∗U2
∞P

respectively. With this non-dimensionalisation, the continuity equation becomes

1

Re

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0, (4.3.24)

from which it can be seen that for conservation of mass, ∂V/∂y and ∂W/∂z must be

of O(Re−1) which in turn implies that V and W are both of O(Re−1) (since y and

z are both of O(1)). Following the work of Batchelor [3] we then assume that the

vortex flow consists of the undisturbed uniform flow plus a small correction where

ε � 1 so that the total velocity field can be written as

(u∗, v∗, w∗) = U∞(1 + εUp, εRe−1Vp, εRe−1Wp), (4.3.25)

and

p∗ = ρ∗U2
∞(P + δPp), (4.3.26)

where δ is some small (constant) scaling parameter that will be defined shortly.

Assuming that the flow is steady, we can non-dimensionalise by substitution of

(4.3.25) and the relevant length scales into (4.3.1) to yield

(1 + εUp)ε

Re

∂Up

∂x
+

ε2Vp

Re2

∂Up

∂y
+

ε2Wp

Re2

∂Up

∂z
= − 1

Re

∂

∂x
(P + δPp)

+
ε

Re

(

1

Re2

∂2Up

∂x2
+

∂2Up

∂y2
+

∂2Up

∂z2

)

,

which can be re-arranged to give

ε
∂Up

∂x
+ ε2Up

∂Up

∂x
+

ε2Vp

Re

∂Up

∂y
+

ε2Wp

Re

∂Up

∂z
= − ∂

∂x
(P + δPp)

+
ε

Re2

∂2Up

∂x2
+ ε

∂2Up

∂y2
+ ε

∂2Up

∂z2
. (4.3.27)
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We have already stated that far from the vortices the pressure can be approximated

as a constant, that is, it equalises with the surrounding air pressure free of the

influences of the wing interaction. Therefore the axial leading order pressure gradient

can also be approximated as zero. Equating terms in powers of ε and reciprocal

powers of Re we can see that, to leading order, (4.3.27) can be approximated by a

convection-diffusion equation in terms of the axial perturbation velocity Up,

∂Up

∂x
=

∂2Up

∂y2
+

∂2Up

∂z2
. (4.3.28)

We have shown that ∂Pp/∂x ≈ 0 for our basic flow, therefore for the governing

equations to remain valid (four equations in four unknowns) the pressure terms

must be included in the perturbation portion of the vertical and cross-sectional

equations. Equations (4.3.2) and (4.3.3) become respectively

(1 + εUp)ε

Re2

∂Vp

∂x
+

ε2Vp

Re3

∂Vp

∂y
+

ε2Wp

Re3

∂Vp

∂z
= −δ

∂Pp

∂y

+
ε

Re2

(

1

Re2

∂2Vp

∂x2
+

∂2Vp

∂y2
+

∂2Vp

∂z2

)

, (4.3.29)

(1 + εUp)ε

Re2

∂Wp

∂x
+

ε2Vp

Re3

∂Wp

∂y
+

ε2Wp

Re3

∂Wp

∂z
= −δ

∂Pp

∂z

+
ε

Re2

(

1

Re2

∂2Wp

∂x2
+

∂2Wp

∂y2
+

∂2Wp

∂z2

)

.(4.3.30)

It can be seen that for equations (4.3.29) and (4.3.30) to be valid at leading order

(O(Re−2)), ∂Pp/∂y and ∂Pp/∂z must be of a compatible size. Therefore, an appro-

priate approximation for δ is δ ≈ ε/Re−2 and as such (to leading order) equations

(4.3.29) and (4.3.30) become

∂Vp

∂x
= −∂Pp

∂y
+

∂2Vp

∂y2
+

∂2Vp

∂z2
, (4.3.31)

∂Wp

∂x
= −∂Pp

∂z
+

∂2Wp

∂y2
+

∂2Wp

∂z2
. (4.3.32)

If we consider that our analysis is focussed on a region significantly downstream

from the wing edge and that we are seeking short wave-length disturbances (where

the disturbance grows over a length scale much smaller than the variation in x)

at very high Reynolds numbers, the fact that the axial velocity component is an

O(Re) larger than the radial and azimuthal terms is sufficient to justify the use of

only the axial component of the basic flow to ascertain the leading order stability
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characteristics of the vortex flow. In order to establish the validity of this analysis,

the same non-dimensional variables are applied to the Batchelor equations derived

in section 4.3.1.

Now, if we take (the Batchelor) equations (4.3.9) – (4.3.11) and non-dimensionalise

using the relationships derived earlier in this section we obtain

(1 + εUp)ε
∂Up

∂x
= ε

∂2Up

∂r2
+

ε

r

∂Up

∂r
, (4.3.33)

δ
∂Pp

∂r
=

ε2

Re2

Wp

r
, (4.3.34)

(1 + εUp)
ε

Re

∂Wp

∂x
=

ε

Re

∂2Wp

∂r2
+

ε

rRe

∂Wp

∂r
− ε

Re

Wp

r2
, (4.3.35)

where as before we set δ = (ε/Re)2. If we now look at equations (4.3.33) – (4.3.35)

to leading order in powers of ε and reciprocal powers of Re we can see that equations

(4.3.34) and (4.3.35) are at least an O(Re) smaller than (4.3.33) and as such, in this

inviscid (high Re) analysis it is acceptable to only consider the axial component of

the perturbed flow. We are left with a diffusion type equation in terms of the axial

perturbation velocity,

∂Up

∂x
=

∂2Up

∂r2
+

1

r

∂Up

∂r
, (4.3.36)

which is the polar equivalent of equation (4.3.28).

4.3.3 Analytical Derivation of Axial Basic Flow

Further to the derivation of the axial component of basic flow described earlier, as

(4.3.36) takes the form of a typical convection-diffusion equation it is acceptable to

seek solutions of the form commonly associated with this type of equation, namely

Uv(x, r) = A(x)e−b(x)r2

, (4.3.37)

where A(x) and b(x) are scale parameters that depend on the axial position of

the basic flow only. Substituting (4.3.37) into (4.3.36) gives, upon cancelling the

common e−br2

term

∂A

∂x
− A

∂b

∂x
r2 = 4Ab2r2 − 4Ab. (4.3.38)
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From (4.3.38) we can see that as A and b are dependent only on the axial position

x, it is acceptable to equate terms with radial dependance so that

− ∂b

∂x
= 4b2,

which can be integrated to yield

−1

b
= 4x + C,

where C is some constant of integration which, without loss of generality, can be set

equal to zero. Thus,

b(x) = − 1

4x
, (4.3.39)

which, when substituted into (4.3.38) gives

∂A

∂x
= −A

x
,

or

ln |A| = − ln |x| + D,

where again, D is a constant that can, without loss of generality, be set equal to

zero and so

A(x) =
1

x
. (4.3.40)

Therefore, a basic flow that satisfies (4.3.36) is

Uv(x, r) =
1

x
e−r2/4x, (4.3.41)

where, due to the short wave-length nature of the instabilities, the parameters de-

termining the amplitude and e-folding distance can be assumed to be constant in

terms of this two-dimensional analysis, and as such we set γ = 1/x and a = 1/4x

giving

Uv(r) = γe−ar2

, (4.3.42)

or in Cartesian co-ordinates,

Uv(y, z) = γe−a(y2+z2). (4.3.43)
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If we note here that equation (4.3.36) is linear, it is easy to show that linear combi-

nations of the solution (4.3.41) are also solutions by examination of equation (4.3.42)

such that any linear combination is simply defined by a value of γ. We may also

infer without any loss of generality that a vortex offset from the co-ordinate origin

such as Uv(y, z) = γe−a[(y−y1)2+(z−z1)2] is also an acceptable solution of (4.3.28).

4.3.4 Dominant Growth Rates

Looking at many of the figures of growth rate versus swirl that have been produced

in the literature over the years, it would be quite easy to assume categorically

that increased swirl always produces a larger instability growth rate. Whilst this

statement is essentially correct, it neglects a fundamental component of Batchelor’s

[3] similarity solution. We see that whilst C tends rapidly to a constant, Co (C∞ in

equation (4.3.12)) as r → ∞, it is still explicitly dependent of the axial position, x,

and as such is not actually constant in terms of the entire flow field. The swirl decays

exponentially with x (the axial distance from the wing-tip) and therefore, for q to be

O(1) in the far field where our analysis is taking place (being the location of most

interest in terms of the wake-vortex hazard problem and where Batchelor defines

his similarity solution), at the wing-tip or several chord lengths back, q would need

to be exponentially large which is unrealistic in a real aircraft trailing flow even in

high-lift configurations.

The asymptotic analysis given previously shows that, in the far field (x → ∞)

the azimuthal components of the basic flow (and hence the swirl dependent quan-

tities) are of an O(Re−1) smaller than the axial component. We can then assume

without loss of generality that in the far field, the swirl q has decayed to a level

that renders it less important in terms of a stability analysis than the axial velocity

component. For most of the previously published work on swirling inviscid flows to

be interpreted correctly with regards to a realistic aircraft wake, a secondary plot

illustrating the axial position corresponding to each particular value of the swirl

parameter q would be a useful way of clarifying what could perhaps be described as

a common misconception.

Figure 4.1 is an example of this concept, noting that the growth rates and their
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respective axial placement and swirl rates are purely schematic and do not corre-

spond to any particular flow. The figure shows the dominant growth rates (and

associated swirl) for a particular set of axial positions and clearly shows the concept

of the ‘globally’ smaller growth rates being dominant as x → ∞. Effectively this

means that whilst it is true that the addition of swirl can produce the largest insta-

bility growth rates in a global sense, these instabilities are only relevant for values of

swirl that would occur in the near-field. These instabilities are of academic interest

due to the fact that the basic flow used in their calculation (Batchelor’s [3] similarity

solution is derived for the flow in a trailing vortex far downstream; asymptotically

large x) is not valid at the small to moderate values of x which yield moderate values

of swirl.

q → 0q = 0.2q = 0.6q = 1.2

x

y

z

Figure 4.1: Schematic of the axial position of dominant growth rates and their

respective swirl rates.

4.4 Computational Domain

We now turn our attention to the numerical methods that will be employed in solving

equation (4.2.1). Working in cylindrical polar co-ordinates (r, θ, x), the computa-

tional domain is a circular region on the y, z-plane with an outer boundary at rmax.

The various vortices are placed within this boundary as illustrated in figure 4.2.
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Figure 4.2: Computational domain showing multiple vortex placement.

4.5 Numerical Results

The following results are obtained using the global spectral solver outlined in section

3.2 on the cylindrical polar domain with a boundary set at rmax = 8. This was

found to adequately capture the basic flow decay whilst maintaining a manageable

problem size (with respect to the number of collocation points required for eigenvalue

convergence) in terms of computational expense. Furthermore, unless otherwise

stated the parameters γ1 (axial strength of the primary vortex) and a1 (decay rate

of the primary vortex) are set equal to unity in all our inviscid, incompressible

analyses. It should also be noted that for the single vortex placement, y1 = 0.001

was used to avoid numerical problems that may be associated with y1 = 0. In the

results that follow, s is the clustering parameter defined in section 3.2.3.

The differentiation matrices have the homogeneous Dirichlet boundary condi-

tions enforced explicitly, that is, the outer rows and columns of the matrices referring

to the grid points on the boundaries are set to zero (and subsequently removed, see

section 3.3.2). Therefore, we require the function being multiplied by the differenti-

ation matrix to also decay to zero at the boundaries. If, as in the case of the inviscid

basic flow, the flow decays to below machine working precision at the boundaries
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the respective differentiation matrices can be used to compute the derivatives of this

flow. Care was taken to ensure that the flow has decayed below machine precision

thus limiting the effect of numerical inaccuracies which would otherwise occur.

4.5.1 Single Vortex Numerical Convergence

For the single vortex analysis, used primarily as a basis for comparison with previ-

ously published work, a convergence history is given for α = 0.64 (which was the

wave-number of largest instability growth rate found prior to the introduction of

grid clustering) for variation in Nr (table 4.1) with Nθ = 24 and for variation in

both Nr and Nθ (table 4.2).

Nr Eigenvalue, s = 0.9

40 0.49401772 + 0.07905681i

50 0.49422412 + 0.07893369i

60 0.49424021 + 0.07897890i

70 0.49423090 + 0.07898033i

80 0.49423093 + 0.07897850i

90 0.49423131 + 0.07897844i

100 0.49423121 + 0.07897840i

110 0.49423115 + 0.07897862i

120 0.49423132 + 0.07897863i

130 0.49423127 + 0.07897851i

140 0.49423124 + 0.07897863i

150 0.49423134 + 0.07897857i

160 0.49423126 + 0.07897868i

170 0.49423118 + 0.07897863i

180 0.49423118 + 0.07897852i

Table 4.1: Convergence history of most unstable eigenvalue for a single vortex,

varying Nr with Nθ = 24.
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(Nr, Nθ) Eigenvalue, s = 0 Eigenvalue, s = 0.9

(40,16) 0.47093447 + 0.06171516i 0.49401794 + 0.07905622i

(50,20) 0.50683114 + 0.08077313i 0.49422386 + 0.07893360i

(60,24) 0.49302841 + 0.08543821i 0.49424021 + 0.07897890i

(70,28) 0.48940204 + 0.07663830i 0.49423098 + 0.07898049i

(80,32) 0.49727297 + 0.07783315i 0.49423119 + 0.07897870i

(90,36) 0.49426103 + 0.08073476i 0.49423159 + 0.07897878i

(100,40) 0.49311499 + 0.07852179i 0.49423168 + 0.07897895i

(110,44) 0.49485441 + 0.07855596i 0.49423177 + 0.07897928i

Table 4.2: Convergence history of most unstable eigenvalue for a single vortex vary-

ing (Nr, Nθ).

It can be seen that for the single vortex problem, convergence to five or six

significant figures occurs at approximately (Nr, Nθ) = (80, 32) when grid clustering

is used, with a higher degree of convergence occurring at higher grid resolutions

as expected. It is also apparent that for the single vortex, grid clustering recovers

smaller unstable modes for fewer grid points (results not presented here).

4.5.2 Two-Vortex Numerical Convergence

For the two vortex problem, a convergence history for an increase in both spatial

parameters for no clustering and for s = 0.8 are given. For the clustered values,

convergence to five or six significant figures is reached very quickly in both the

real and imaginary components of the eigenvalue at this particular vortex spacing.

Again, these results illustrate that the chosen number of grid points is sufficiently

accurate for graphical illustration purposes.

4.5.3 Four-Vortex Numerical Convergence

Table 4.4 is a convergence history of the most unstable eigenvalue found for the

four-vortex configuration. From the convergence histories presented, it can be seen

that the number of grid points used to establish the stability characteristics of the
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flow, (Nr, Nθ) = (80, 32), is acceptable from an accuracy standpoint, especially when

the computational time required to perform such large region sweeps is considered.

Table 4.5 illustrates the convergence of the same eigenvalue at the accuracy presented

subject to several degrees of grid clustering parameter s.

(Nr, Nθ) Eigenvalue, s = 0 Eigenvalue, s = 0.8

(40,16) 0.50363261 + 0.17202150i 0.50520484 + 0.17304474i

(50,20) 0.50593810 + 0.17316223i 0.50521573 + 0.17302209i

(60,24) 0.50504026 + 0.17308132i 0.50521563 + 0.17302038i

(70,28) 0.50522775 + 0.17300490i 0.50521559 + 0.17302061i

(80,32) 0.50521892 + 0.17301160i 0.50521554 + 0.17302074i

(90,36) 0.50521686 + 0.17302804i 0.50521546 + 0.17302092i

(100,40) 0.50521353 + 0.17301912i 0.50521538 + 0.17302109i

(110,44) 0.50521595 + 0.17302133i 0.50521531 + 0.17302129i

Table 4.3: Convergence history of most unstable eigenvalue for a two-vortex config-

uration with α = 0.8 and varying (Nr, Nθ).

We see that grid clustering for the multiple vortex case, unlike the single vortex

case which had a significant effect, for the values in table 4.4 the accuracy is only

affected beyond four decimal places for s = 0.8 once the number of grid points in the

radial direction reaches about 70. If we compare this with the extended clustering

convergence history in table 4.5 it becomes apparent that a higher level of clustering

only improves the convergence of the eigenvalue to five or six significant figures of its

current value at a particular number of grid points and not to those results obtained

using the higher number of grid points outlined in table 4.4. This would seem to

indicate that beyond Nr ≈ 80, especially when combined with a degree of clustering,

the number of grid points in the radial direction has little effect on the convergence

of the eigenvalue.

The influence of the domain size is shown in table 4.6 with s = 0.8. It becomes

fairly clear that whilst the eigenvalues do not converge completely (a fact discussed

later), there is no significant effect on the value for any domain sizes larger than

rmax = 8.
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(Nr, Nθ) Eigenvalue, s = 0 Eigenvalue, s = 0.8

(40,16) 0.37525551 + 0.13670591i 0.37659569 + 0.13652172i

(50,20) 0.38993202 + 0.13912887i 0.38984032 + 0.13942809i

(60,24) 0.39333029 + 0.13336267i 0.39314144 + 0.13333451i

(70,28) 0.39084047 + 0.13279322i 0.39085973 + 0.13272446i

(80,32) 0.39126799 + 0.13343808i 0.39128817 + 0.13344530i

(90,36) 0.39141647 + 0.13297546i 0.39141389 + 0.13298379i

(100,40) 0.39116107 + 0.13306711i 0.39115779 + 0.13306562i

(110,44) 0.39126572 + 0.13315980i 0.39126647 + 0.13315874i

Table 4.4: Convergence history of most unstable eigenvalue for a four-vortex config-

uration.

s Eigenvalue

0.2 0.39127663 + 0.13345982i

0.4 0.39128321 + 0.13344032i

0.6 0.39128817 + 0.13344530i

0.8 0.39128738 + 0.13344594i

0.9 0.39128761 + 0.13344602i

0.95 0.39128730 + 0.13344333i

Table 4.5: Convergence of presented eigenvalues for a four-vortex configuration sub-

ject to varying degrees of grid clustering (Nr, Nθ) = (80, 32).

It is likely that for the four-vortex case, the resolution in θ becomes more im-

portant in order to resolve this complex flow. Table 4.7 presents the convergence

history for varying Nθ with Nr = 80 and s = 0.8 and shows an improved con-

vergence to around five significant figures; (Nr, Nθ) = (80, 60) is the limit of the

resolution possible on a single processor (that is available) but as before we can see

that the eigenvalue remains unchanged to three or four significant figures from the

more manageable problem size (Nr, Nθ) = (80, 32).
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(Nr, Nθ) Eigenvalue, rmax = 12 Eigenvalue, rmax = 16

(40,16) 0.37647743 + 0.13647637i 0.37560232 + 0.13724076i

(50,20) 0.38982144 + 0.13941502i 0.38981165 + 0.13919496i

(60,24) 0.39314094 + 0.13333863i 0.39326877 + 0.13325726i

(70,28) 0.39086005 + 0.13272633i 0.39089617 + 0.13278305i

(80,32) 0.39128707 + 0.13344542i 0.39126516 + 0.13345336i

(90,36) 0.39141349 + 0.13298353i 0.39141052 + 0.13297684i

(100,40) 0.39115727 + 0.13306539i 0.39116000 + 0.13306366i

(110,44) 0.39126595 + 0.13315852i 0.39126644 + 0.13315973i

Table 4.6: Convergence history of most unstable eigenvalue for a four-vortex config-

uration for variation in rmax.

Nθ Eigenvalue

32 0.39128817 + 0.13344530i

36 0.39141385 + 0.13298378i

40 0.39115780 + 0.13306563i

44 0.39126650 + 0.13315875i

48 0.39127832 + 0.13308314i

52 0.39124037 + 0.13309895i

56 0.39125812 + 0.13311209i

60 0.39125926 + 0.13310030i

Table 4.7: Convergence of eigenvalues for increasing Nθ with Nr = 80, s = 0.8.

The convergence histories given above show that, to the computational accuracy

used in the following four vortex analysis ((Nr, Nθ) = (80, 32)), the eigenvalues are

converged to within graphical accuracy. It has also been shown that a degree of grid

clustering in the radial direction helps to improve the convergence of these values to

a certain extent. However, it is apparent that the numerical scheme cannot converge

on the eigenvalue beyond this degree of accuracy without significantly increasing the

resolution in the azimuthal direction. Of all the methods used, a variation of the
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azimuthal spatial parameter combined with clustering of the radial direction is the

best method of improving the degree of convergence.

As the grid clustering algorithm has a negligible effect on the computational

time, the inviscid analysis was run employing clustering. It should also be pointed

out that the level of grid clustering could be tailored to the specific problem, for

example, a problem involving a single vortex will benefit from a greater amount of

clustering (as shown previously) than a four-vortex problem whose outer limits are

located further away from the co-ordinate origin. In what follows, all eigenvalues

are quoted to the number of decimal points they were found to converge to at the

resolution used.

4.6 A Single Vortex at the Co-ordinate Origin

It has been shown by Lessen et al. [38], and in results re-produced in section 3.7.1

that for a vortex with q = 0 (as is essentially the case in this inviscid analysis) as

the axial wave-number is increased to approximately α = 1.2, the vortex becomes

neutrally stable, that is, the growth rate αci → 0. Figure 4.3 is an illustration of

the basic flow for a single vortex used in this analysis.

The variation with α of the eigenvalues of the most unstable mode can be found in

figure 4.4 which is a higher resolution plot of the imaginary component of figure 3.16

which reproduces the results of Lessen et al. [38] with a more appropriate domain

boundary size and grid clustering parameter of s = 0.9. It is clear that whilst the

domain size of Lessen et al. [38] is widely considered to be insufficient, comparison

with figure 4.4 shows it to be a close representation of the instability when compared

to what is found using a more appropriate (ie larger) computational domain. It is

also interesting to note that for the n = 1 mode in question, the greatest instability

as found by Lessen et al. [38] is when q = 0, the value of swirl which, from our

leading order asymptotic analysis (see section 4.3.2), would be expected to produce

the greatest inviscid instability.

Figure 4.5 is a plot of the growth rate of the most unstable mode producing a

maximum growth rate of αci = 0.05054 at α ≈ 0.65. The curve displays a smooth

transition throughout the unstable range of α. A number of other unstable modes
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Figure 4.3: Axial component of inviscid basic flow for a single Batchelor vortex

located at the co-ordinate origin.
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Figure 4.4: The most unstable mode of a single vortex for a range of α.

were recovered with growth rates at least a factor of two smaller than the two most

unstable. The second most unstable mode only varies from the first by an order

of O(10−6) in both the real and imaginary components as listed in table 4.8, but
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despite the closeness of the eigenvalues the plots of the respective eigenfunctions in

figure 4.6 show them to be distinct modes.
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Figure 4.5: Growth rate of single Batchelor vortex at origin.

Mode 1 0.495649 + 0.077775i

Mode 2 0.495648 + 0.077774i

Table 4.8: Single vortex, unstable eigenvalues.

In figure 4.6, we present plots of the amplitudes of the perturbation pressure

Pp(y, z) from a single vortex with α = 0.65 corresponding to the two most unstable

eigenvalues at the point of maximum instability growth rate. Stable complex conju-

gate eigenvalues of the two unstable modes found are also present, each exhibiting

a similar modal structure to their unstable counterparts.

4.7 Two-Vortex Configuration

The two-vortex model consists of only the primary vortices (y1 in figure 4.2), posi-

tioned on the z = 0 axis. The variable parameters γ and a are set equal to 1. Figure

4.7 represents the superposed basic flow of a typical two-vortex configuration. For
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the purpose of analysis the wave-number α and the horizontal placement y2 are var-

ied. Our aim is to determine the configuration of vortices which promote the largest

instabilities and the corresponding growth rates.
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Figure 4.6: Two most unstable eigenmodes representing the perturbation pressure

for single Batchelor vortex at origin. (a) Mode 1, (b) Mode 2.
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Figure 4.7: Axial component of inviscid basic flow for a typical two-vortex configu-

ration. ‘×’ marks the vortex positions of the basic flow.

In figure 4.8 we present a contour plot of the ‘global’ (maximum) growth rate.

From this figure we can clearly identify the parameter region in which the growth

rate of the instability is at its greatest. The region is well defined in terms of vortex

placement and axial wave-number. Whilst a change to a second dominant mode is
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evident in the plot as the vortex spacing increases (around y = 1.2), the size of this

new dominant mode is almost an order of magnitude smaller than the first mode.

The plot then clearly demonstrates that, for this particular set of parameters, the

most unstable mode occurs for (y, α) ≈ (0.8, 0.86).
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Figure 4.8: Contours of ‘global’ growth rate for varying vortex positions at z = 0

for a two-vortex configuration.

Figure 4.9 is a local growth rate plot taken through y = 0.8 as described by

the dashed line on figure 4.8. It is worth noting that as α increases, the curve

appears to asymptote towards a non-zero growth rate rather than the expected

behaviour of αci = 0 at α ≈ 1.8. This behaviour is typical of resolution issues that

are encountered at higher wave numbers when attempting to resolve a near-neutral

mode of instability as a result of the critical layer which arises at positions (y, z)

where U = cr. We also note that at α ≈ 1.55 the mode presented in this figure

ceases to be the most dominant with the secondary mode becoming more unstable.

In figure 4.10 we present a plot of the maximum instability versus the location

of the two vortices. Here we see that the two-vortex system produces a maximum

instability at approximately y = 0.8 for the most unstable mode with this set of

parameters. The first point to note is that as the vortices approach each-other,
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the instability changes form and approaches the value for a single vortex of double

strength located at the origin, as is to be expected. This was verified by running the

code with a single vortex of double axial strength. The second interesting point is

that the plot exhibits a distinct turning point after y ≈ 1.3 and it becomes obvious

when comparing figures 4.10 and 4.8 for the appropriate value of α that at the

spacing y ≈ 1.3 the ‘first’ tracked mode is no longer dominant and a modal shift has

occurred which is discussed in more detail later. The greatest instability is found

at y = 0.78 and corresponds to a growth rate of 0.139507 from which we find that

(α, y) = (0.86, 0.78) results in an eigenvalue of c1 = 0.529072 + 0.162217i for this

configuration.
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Figure 4.9: ‘Local’ growth rate for most unstable vortex position in a two-vortex

configuration. y ≈ ±0.8 corresponding to a maximum growth rate of 0.139461 with

α = 0.86.

Figure 4.11 below plots the first eight unstable modes arranged in order of the

imaginary component of the eigenvalue. The curve in figure 4.10 can clearly be

seen but it also shows the extension of this mode beyond the value of y where the

previously less dominant second mode becomes the most unstable.
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Figure 4.10: Inviscid instability of the most dominant mode for varying vortex

placement in a two-vortex configuration.
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Figure 4.11: Inviscid instability of the first eight modes recovered in order of highest

imaginary component for varying vortex placement in a two-vortex configuration.

As was mentioned earlier, a change in the most unstable (or dominant) mode

can be seen in the results. By plotting the amplitude of the perturbation pressure
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(the eigenfunction) for values at a few intervals of vortex placement along the y-axis

with α = 0.86, a modal transition can be seen to take place as is illustrated in the

shape of the functions plotted in figure 4.12. As noted earlier, this occurs at y ≈ 1.3.
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Figure 4.12: Plots of the magnitude of the most rapidly growing perturbation pres-

sure eigenfunction for α = 0.86 and various values of y for two-vortex system. Shown

are (a) y = 1.0, (b) y = 1.2, (c) y = 1.4, and (d) y = 1.6 with a change in dominant

mode at y ≈ ±1.3.

4.8 Four-Vortex Configuration

Turning our attention to a four-vortex configuration (representing the wing-tip and

a single inboard vortex, for example) as set out in figure 4.2, the position of the

primary (wing-tip) vortices are fixed at (y1, z1) = (±2, 0) with the set of parameters

γ2 and a2 set at 0.5 and 1 respectively, γ1 and a1 are set to unity (as in section
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4.7). The secondary vortex positions and α are the problem variables with positions

moved about the computational domain and the eigenvalues corresponding to the

most unstable mode (largest positive imaginary component of c) found for each

position and value of α. The problem’s geometry ensures symmetry about the z-

axis whist the results show that symmetry exists about the y-axis and therefore only

a single quadrant of the domain need be analysed.

Figure 4.13 illustrates the axial velocity (the only velocity component relevant to

our inviscid analysis, see section 4.3.2) for a typical four-vortex layout similar to that

described in figure 4.2. Vortex placements are (y1, z1) = (±2, 0), (y2, z2) = (±1, 1),

and shows the extent of merging of the axial velocity at these vortex locations.
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Figure 4.13: Axial component of basic flow for a typical four-vortex configuration.

‘×’ marks the vortex positions of the basic flow.

Figures 4.14 and 4.15 show contours of varying instability for the secondary

vortices, progressively moved about the interior of the domain with the parameters

γ2 = 0.5 and a2 = 1, for the first (figure 4.14) and second (figure 4.15) most unstable

modes. It can be readily seen from the figures that the configuration of greatest

instability for the most dominant mode (mode 1) is located at (y2, z2) ≈ (0.35, 0)

which corresponds to an eigenvalue of c1 = 0.39127 + 0.13344i with α = 1. For the

second mode (mode 2), a similar position of instability can be seen although this is



CHAPTER 4. INVISCID FLOW 97

more evenly spread from y2 = 0 to the vortex position of maximum instability than

the localised area of instability for mode 1.

It can be seen from figures 4.14 and 4.15 that the greatest inviscid instability

lies when the inboard vortices approach one-another and consequently move away

from the fixed primary vortices. This would seem to indicate that it is preferable

to force the secondary vortices to interact with each-other rather than their respec-

tive outboard counterparts in order to produce the greatest trailing vortex system

instability.
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Figure 4.14: Contour plot of instability of the most dominant mode for varying

secondary vortex placement in a four-vortex configuration. Maximum instability

when c1 = 0.39127 + 0.13344i at α = 1.

The first four perturbation pressure eigenfunctions Pp(y, z) corresponding to the

choice (y2, z2) = (±0.35, 0) are illustrated in figure 4.16. With this vortex spacing,

the two inboard vortices have merged into a single elliptically shaped vortex, whereas

the outboard vortices maintain their separate identities.

Figure 4.17 is a global growth rate plot for the set of parameters being analysed,

global in this sense being the +y2 half of the computational domain. It would be

expected that the growth rates would be mirrored about the z−axis if we were to

show the −y2 components.
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Figure 4.15: Contour plot of instability of the second most dominant mode for

varying secondary vortex placement in a four-vortex configuration.

It can be seen that the region of largest instability growth occurs when (y2, α) ≈
(0.35, 0.9) and is strongly correlated to the interaction of the two secondary vortices

when they are situated in close proximity to one another. Figures 4.14 and 4.15

demonstrate that the most unstable configuration of our four-vortex system is found

when all four vortices are co-linear (ie; when z2 = 0). As the secondary vortices are

moved away from the origin, the diminishing interaction between them causes the

growth rate to drop. At y2 ≈ 0.9 it would appear that the effect on the growth rate

from secondary vortex interaction is minimal with interaction between the respective

primary and secondary vortices being the dominant factor in the magnitude of the

growth rate from this point on.

Figure 4.18 is the local (ie, for a particular vortex placement) temporal growth

rate plot taken through the y2 position of maximum instability (y2 ≈ 0.35) as

indicated by the dashed line on figure 4.17. It shows a typical growth rate plot with a

maximum of αci = 0.13557 at α = 0.9. As α increases the curve asymptotes towards

a non-zero growth rate which, as noted earlier, is an artefact of the numerical scheme

due to the singular nature of the eigenvalue problem at the near-neutral modes.
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Figure 4.16: (a)–(d): eigenfunctions representing the perturbation pressure |p(y, z)|
for the first four modes, with (y2, z2) = (±0.35, 0), which is the most unstable choice

of secondary vortex locations in a four-vortex configuration.

It can be seen from figure 4.19, which is a plot of the instability for varying the

position of the secondary vortices at α = 0.9, that there is a change in the dominant

mode, firstly after y2 ≈ 0.9 and then again at y2 ≈ 1.5. The figure further refines

the parameters for (maximum) instability at (α, y2) = (0.9, 0.36) with a resulting

eigenvalue of c1 = 0.37596 + 0.15063i.

The first eight unstable modes in order of the magnitude of the imaginary com-

ponent of the eigenvalue for a variation in the y-position of the secondary vortices

can be found in figure 4.20. As with the two-vortex case, the curve in figure 4.20

clearly shows the extension of this mode beyond the value of y where the previously

less dominant second mode becomes the most unstable. These modes and others

can clearly be traced in this plot.
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Figure 4.17: Contours of ‘global’ growth rate for varying secondary vortex positions

at z2 = 0 in a four-vortex configuration.
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Figure 4.18: ‘Local’ growth rate for most unstable secondary vortex position in four-

vortex configuration. (y2, z2) ≈ (±0.35, 0) corresponding to a maximum growth rate

of 0.13557 at α = 0.9.
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Figure 4.19: Inviscid instability of the most dominant mode for varying secondary

vortex placement in a four-vortex configuration.
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Figure 4.20: Inviscid instability of the first eight modes recovered in order of highest

imaginary component for varying secondary vortex placement in four-vortex config-

uration.
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In figure 4.21 we plot the eigenfunctions of the most unstable eigenvalue for

sequential positions of y2. It can clearly be seen that between y2 = 0.75 and y2 = 1.0

the shape of the function undergoes a change from symmetric about the y = 0 axis

to symmetric about both y and z. This corresponds to the variation in the growth

rate shown in figure 4.17.
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Figure 4.21: Plots of the magnitude of the most rapidly growing perturbation pres-

sure eigenfunction for α = 0.9 and various values of y2 for four-vortex system. Shown

are (a) y2 = 0.5, (b) y2 = 0.75, (c) y2 = 1.0, and (d) y2 = 1.25 with a change in

dominant mode at y2 ≈ ±0.9.
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4.9 Discussion

It has been demonstrated that the most unstable configuration of a four-vortex

system occurs when the axes of the vortices are colinear. The relative spacing of

the vortex pairs which leads to the largest growth rate, for an inviscid disturbance

to the flow, is also found. The presence of a second pair of vortices, inboard to the

primary pair, is shown to affect the growth rate of the inviscid instability of the

primary vortex system. If there was no effect from the secondary vortices we would

expect the two plots to be identical with the primary system being dominant. This

is not the case as can be seen when comparing figure 4.9 for the two-vortex case

with the corresponding figure 4.18 for the four-vortex case, although, for this set of

parameters, we have found that the magnitude of the growth rate remains similar

for both the two-vortex system and the four-vortex system. Furthermore, as the

relative vortex spacing is changed, the dominant form of instability (that is, the

fastest growing mode) changes from that which would arise in the case of a simple

two-vortex model of an aircraft wing, as is shown by comparing the shape of the

modes in figures 4.12 and 4.21.

If we extend the placement of the secondary vortex in the four-vortex case past

the point at which it coincides with the primary vortex placement, as found in figure

4.22, several interesting points arise. Firstly, the dominant mode at y2 ≈ 2 appears

to be almost symmetric about y2 = 2 which would suggest that for this particular

mode, the vortex pairs on the opposing sides of the z-axis are having limited influence

on the stability characteristics of each-other. However, if we compare the instability

at y1 = y2 = 2 for the four-vortex case with a single vortex using γ = 1.5 to simulate

one pair of vortices only, we produce a maximum instability of c = 0.79920+0.06493i

as opposed to c = 0.81002 + 0.07994i, the difference would suggest that there is

some degree of interaction between the vortex pairs. Finally, if we compare these

results to a two-vortex configuration with y = 2 and γ = 1.5 this results in c =

0.81002 + 0.07994i which is, as expected, the same. This shows that there is some

interaction between the vortex pairs in the four-vortex case that contributes to a

larger instability than would otherwise be present if there was no interaction.
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4.10 Parameter Variations

In the previous section, γ2 and a2 were chosen to produce secondary vortices of

comparable dimension but with half the axial strength of the primary vortices.

Here the vortex axial strength parameter γ2 and the decay rate a2 of the secondary

vortices are varied from the values chosen above for the detailed analysis, to examine

the change in respective position of the first and second most unstable modes with

these parameters. As with the previous analysis, the primary vortex position and

the axial wave-number remain unchanged at (y1, α) = (2, 1), whilst the position

(y2, z2) is varied.
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Figure 4.22: Inviscid instability of the first eight modes recovered in order of highest

imaginary component for varying secondary vortex placement up to and past y2 = 2

in four-vortex configuration.

4.10.1 The case γ2 = 0.5, a2 = 0.5

With this choice of parameters the axial strength of the secondary vortices remains

unchanged whilst the decay rate is reduced to half of that used previously. From

figure 4.23 it is apparent that the reduction in the relative size of the secondary

vortices results in them having a diminished effect on the overall system instability

for the most unstable mode. The region of greatest instability has moved to include a
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region consisting of approximately 0 < y2 < 0.35 although the maximum instability

is now found at (y2, z2) = (0, 0) corresponding to an eigenvalue of c = 0.53317 +

0.12288i. This is equivalent to an equi-spaced three-vortex problem in which each

vortex is of equal strength, the centre vortex being smaller in dimension. The second

most unstable mode shown in figure 4.24 however, has a much less defined region of

instability with almost any z-position at y2 ≈ 0 producing the greatest instability.

There is also a small region of instability seen at (y2, z2) ≈ (1.25, 0) which, using

the previous analysis as a benchmark, represents a change in the dominant mode at

this location.

4.10.2 The case γ2 = 1.0, a2 = 0.5

The strength of the secondary vortices γ2 is increased to match that of the primary

ones whilst the decay rate is again reduced to half on the previous value. Figures

4.25 and 4.26 present contour plots of the instabilities for the first and second most

unstable modes respectively. What is interesting about the region of instability in

figure 4.25 is that the location and magnitude of the greatest instability resembles

that of the two-vortex system with the vortices positioned such that at (y2, z2) =

(0.75, 0) with c = 0.83270+0.16276i. It is also interesting to note here the significant

change in the real component of the eigenvalue. This would indicate that the inboard

vortices significantly contribute to the overall instability of the system and that by

increasing the strength of these vortices the instability of the system depends more

on the secondary vortices than the primary ones alone. Figure 4.26 also suggests

that the greatest instability of the second mode arises when the inboard vortices are

moved closer together and away from the primaries.

4.10.3 The case γ2 = 1.0, a2 = 1.0

Continuing on from section 4.10.2 where we explored the influence of the secondary

vortices by increasing γ2 and decreasing a2, we now observe the effects of increasing

both parameters to the same level as the primary vortices. From the previous results

we would expect this to increase the systems dependence on the secondary vortices

further. From figure 4.27 we see this is indeed the case for the most unstable mode.

Whilst the configuration of the vortices which produces the most unstable mode
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is similar, (y2, z2) = (0.65, 0), the magnitude of the instability is noticeably larger,

c = 0.61239 + 0.20593i with the region of greatest instability being more focussed

about the secondary vortex position that produces the greatest instability. The

second most unstable mode (figure 4.28) appears to display several regions where

the instability is quite large and this would seem to suggest that whilst the primary

mode is quite specific in its region of instability, the secondary exhibits a less well

defined region of maximum instability for a range of (y2, z2).

It can be seen from the three variations in the parameters governing the sec-

ondary vortex that they have a significant effect on not just the magnitude but also

the location of the greatest system instability and it goes some way to describing

the importance of the secondary vortices in determining the overall stability of the

four-vortex system.

4.11 Concluding Remarks

It is interesting to note the results of the four-vortex stability analysis when consid-

ered in the realm of a real-life application. Our results demonstrate that the most

unstable configuration occurs when all four vortices are co-linear. If we are to look

at modern commercial aircraft design, ‘winglets’ or curved up wing edges that are

designed to restrict the amount of high-pressure air rolling up around the wing edge

in order to maximise lift efficiency are becoming more prevalent. Either through

experimental design or chance, they also have the effect of raising the level of the

wing-tip vortex (when combined with the wing’s natural flex due to lift) to approxi-

mately in line with those produced by the aircraft’s lateral tail-plane thus producing

the co-linear configuration that has been found here to be the most unstable. Ob-

viously lateral spacing is important, but it would seem that for a typical Boeing

747 shown in figure 4.29, with respect to the dimensions used in this study puts the

secondary vortices at y2 ≈ 0.7 which in terms of figure 4.19 for the most unstable

mode still represents a region of relatively high instability at c = 0.32766+0.11771i

for α = 0.9. One possible way of improving the correlation between aircraft dimen-

sions and the theory presented here would be the addition of ‘winglets’ that not only

extend up but also outwards, effectively increasing the primary vortices spacing.
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Figure 4.23: Contours of inviscid instability of the most dominant mode for varying

secondary vortex placement with γ2 = 0.5, a2 = 0.5.
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Figure 4.24: Contours of inviscid instability of the second most dominant mode for

varying secondary vortex placement with γ2 = 0.5, a2 = 0.5.
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Figure 4.25: Contours of inviscid instability of the most dominant mode for varying

secondary vortex placement with γ2 = 1.0, a2 = 0.5.
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Figure 4.26: Contours of inviscid instability of the second most dominant mode for

varying secondary vortex placement with γ2 = 1.0, a2 = 0.5.
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Figure 4.27: Contours of inviscid instability of the most dominant mode for varying

secondary vortex placement with γ2 = 1.0, a2 = 1.0.
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Figure 4.28: Contours of inviscid instability of the second most dominant mode for

varying secondary vortex placement with γ2 = 1.0, a2 = 1.0.
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Figure 4.29: Relevant dimensions of a typical Boeing 747-400 (source: Boeing).



Chapter 5

Compressible Inviscid Flow

5.1 Introduction

We now aim to expand the inviscid analysis of the multiple vortex flows into the

compressible regime. Our inviscid analysis makes the assumption that air is in-

compressible at any Reynolds number. Whilst this may hold true for low, subsonic

speeds such as those encountered in landing and taking off situations, it is not nec-

essarily the case in cruising when aircraft approach supersonic speeds. The aim of

this chapter is to examine the effect of compressibility on the trailing vortex con-

figurations whose stability characteristics have been found and documented for the

inviscid case (see sections 4.6 – 4.8). In each case the Mach number is increased up

to and beyond the supersonic and towards the hypersonic regime (M > 5) to estab-

lish at which point the inviscid modes cease to be unstable. Our analysis also aims

to explore whether any stability characteristics arise which are purely dependent on

the fluid compressibility.

5.2 Governing Equations

The governing equations for a compressible flow consist of those used for the analysis

of an incompressible swirling flow plus the addition of two further equations, namely

the energy equation and an equation of state, to describe the compressibility of the

flow. In terms of (dimensional) cylindrical polar co-ordinates (r∗, θ, x∗), following

111
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the notation of Stott and Duck [59], the governing equations are

∂ρ∗

∂t∗
+

ρ∗v∗

r∗
+

∂(ρ∗v∗)

∂r∗
+

1

r∗
∂(ρ∗w∗)

∂θ
+

∂(ρ∗u∗)

∂x∗
= 0, (5.2.1)

ρ∗Du∗

Dt∗
= −∂p∗

∂x∗
+

∂

∂r∗

(

µ∗

[

∂v∗

∂x∗
+

∂w∗

∂r∗

])

+
1

r

∂

∂θ

(

µ∗

[

∂u∗

∂x∗
+

1

r

∂w∗

∂θ

])

+
∂

∂x∗

(

2µ∗∂u∗

∂x∗
+ λ∗∇.u∗

)

+
1

r∗

(

µ∗

[

∂v∗

∂x∗
+

∂w∗

∂r∗

])

, (5.2.2)

ρ∗

[

Dv∗

Dt∗
− w∗2

r∗

]

= −∂p∗

∂r∗
+

∂

∂r∗

(

2µ∗∂v∗

∂r∗
+ λ∗∇.u∗

)

+
1

r∗
∂

∂θ

(

µ∗

[

1

r∗
∂v∗

∂θ

+ r∗
∂

∂r∗

(

u∗

r∗

)])

+
∂

∂x∗

(

µ∗

[

∂v∗

∂x∗
+

∂w∗

∂r∗

])

+
1

r∗

[(

2µ∗∂v∗

∂r∗

+ λ∗∇.u∗) −
(

2µ∗

[

1

r∗
∂w∗

∂θ
+

v∗

r∗

]

+ λ∗∇.u∗

)]

, (5.2.3)

ρ∗

[

Dw∗

Dt∗
− v∗w∗

r∗

]

= − 1

r∗
∂p∗

∂θ
+

∂

∂r∗

(

µ∗

[

1

r∗
∂v∗

∂θ
+ r∗

∂

∂r∗

(

u∗

r∗

)])

+
∂

∂θ

[

2µ∗

(

1

r∗
∂w∗

∂θ
+

v∗

r∗

)

+ λ∗∇.u∗

]

+
∂

∂x∗

(

µ∗

[

∂u∗

∂x∗

+
1

r∗
∂w∗

∂θ

])

+
2

r∗

(

µ∗

[

1

r∗
∂v∗

∂θ
+ r∗

∂

∂r∗

(

u∗

r∗

)])

, (5.2.4)

ρ∗Dh∗

Dt∗
− Dp∗

Dt∗
= Φ∗ +

∂

∂x∗

(

κ∗∂T ∗

∂x∗

)

+
1

r∗
∂

∂r∗

(

κ∗r∗
∂T ∗

∂r∗

)

+
1

r∗2
∂

∂θ

(

κ∗∂T ∗

∂θ

)

, (5.2.5)

p∗γM∗2 = ρ∗T ∗, (5.2.6)

where the Eulerian operator is defined by

D

Dt∗
=

∂

∂t∗
+ u∗ ∂

∂x∗
+ v∗ ∂

∂r∗
+

w∗

r∗
∂

∂θ
, (5.2.7)

and the viscous dissipation parameter is given by

Φ∗ = 2µ∗

[

(

∂u∗

∂x∗

)2

+

(

∂v∗

∂r∗

)2

+

(

1

r∗
∂w∗

∂θ
+

v∗

r∗

)2

+
1

4

(

∂u∗

∂r∗
+

∂v∗

∂x∗

)2

+
1

4

(

∂w∗

∂x∗
+

1

r∗
∂u∗

∂θ

)2

+
1

4

(

1

r∗
∂v∗

∂θ
+ r∗

∂

∂x∗

(

w∗

r∗

))2
]

+ (λ∗ − 2

3
µ∗)(∇.u∗)2. (5.2.8)
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The coefficients λ∗ and µ∗ are the first coefficients of viscosity and dynamic viscosity

respectively where λ∗ can be defined by λ∗ = µ∗
2 + 2

3
µ∗ where µ∗

2 is the second

coefficient of viscosity. It is also useful to define the following quantities;

Reynolds Number, Re =
ρ∗
∞U∗

s l

µ∗
∞

. (5.2.9)

Mach Number, M =
U∗

s

(γR∗T ∗
∞)1/2

. (5.2.10)

Prandtl Number, σ =
µ∗cp

κ∗
. (5.2.11)

It can also be stated that, for an ideal gas, the enthalpy h is a function of temperature

only and as such the specific heat (at constant pressure), cp can be written as

cp =
dh

dT
,

∆h = cp∆T.

If we assume that the temperature is constant, then the enthalpy is also constant

resulting in

h = cpT. (5.2.12)

In equations (5.2.1) – (5.2.11), u∗ = (u∗, v∗, w∗) are the (dimensional) velocity com-

ponents in the axial, radial and azimuthal directions x∗, r∗, θ respectively. ρ∗, T ∗

and p∗ are the dimensional density, temperature and pressure fields of the flow, γ

is the ratio of the specific heats, R is the gas constant for an ideal gas, κ∗ is the

coefficient of heat conduction and as usual, µ∗ is the dynamic viscosity of the fluid.

A subscript ∞ represents the value of the parameter in the free stream, that is, a

long distance down-stream or away from the vortex centre. It will also be of value

in what follows to define the following relationships;

R =
1

γM2
, (5.2.13)

cp =
1

(γ − 1)M2
. (5.2.14)
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5.3 Basic Flow

The basic flow for a trailing-line vortex used in this analysis is that which was first

described by Batchelor [3] and his similarity solution for an incompressible flow

derived in detail in section 4.3.1. Here we aim to show that the same similarity

solution is still valid in a compressible regime. Our derivation follows that of Stott

and Duck [59]. For the far-field solution, we seek steady, axisymmetric flows such

that

∂

∂t∗
≡ 0,

∂

∂θ
≡ 0. (5.3.1)

This analysis also requires the flow field to have axial gradients which are much

smaller in magnitude than those in the radial direction thus allowing us to utilise a

boundary-layer type approximation

∂

∂x∗
� ∂

∂r∗
, v∗ � u∗. (5.3.2)

Therefore, when (5.3.1) and (5.3.2) are substituted into equations (5.2.1) – (5.2.6)

along with the relationships (5.2.12) and (5.2.13) we are left with

∂

∂x∗
(ρ∗u∗) +

∂

∂r∗
(ρ∗v∗) +

ρ∗v∗

r∗
= 0, (5.3.3)

ρ∗u∗∂u∗

∂x∗
+ ρ∗v∗∂u∗

∂r∗
=

1

r∗
∂

∂r∗

(

r∗µ∗∂u∗

∂r∗

)

− ∂p∗

∂x∗
, (5.3.4)

ρ∗w∗2

r∗
=

∂p∗

∂r∗
, (5.3.5)

ρ∗u∗∂w∗

∂x∗
+ ρ∗v∗∂w∗

∂r∗
+ ρ∗ v∗w∗

r∗
=

∂

∂r∗

(

µ∗r∗
∂

∂r∗

(

w∗

r∗

))

+ 2µ∗ ∂

∂r∗

(

w∗

r∗

)

, (5.3.6)

ρ∗cp

(

u∗∂T ∗

∂x∗
+ v∗∂T ∗

∂r∗

)

= µ∗

(

w∗2

r∗2
− 2w∗

r∗
u∗∂w∗

∂r∗
+

(

u∗∂w∗

∂r∗

)2

+

(

u∗∂u∗

∂r∗

)2
)

+
1

r

∂

∂r∗

(

κ∗r∗
∂T ∗

∂r∗

)

+ u∗ ∂p∗

∂x∗
+ v∗∂p∗

∂r∗
, (5.3.7)

p∗ = ρ∗RT ∗. (5.3.8)
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For the far-field analysis we observe that far downstream of the tailing edge the

values of the axial velocity and temperature are approximately the same as those of

the free stream, U∞ and T∞ respectively and so, following Batchelor [3] and Stott

and Duck [59] we note the approximations

|u∗ − U∞| � U∞, |T ∗ − T∞| � T∞. (5.3.9)

Now, again following Stott and Duck [59], T ∗, ρ∗ and p∗ are developed asymptotically

as

T ∗ = T∞(1 + T1 + · · · ), (5.3.10)

ρ∗ = ρ∞(1 + ρ1 + · · · ), (5.3.11)

p∗ = p∞(1 + p1 + · · · ), (5.3.12)

where |T1|, |ρ1|, |p1| � 1 and it can be assumed that viscosity is a function of tem-

perature only, which implies that, to leading order, µ∗, ρ∗ and T ∗ are constants.

Therefore, by applying the afore-mentioned approximations to equations (5.3.1) –

(5.3.6) we are left with, at leading order,

U∞
∂u∗

∂x∗
= − 1

ρ∞

∂p∗

∂x∗
+ ν∞

(

∂2u∗

∂r∗2
+

1

r∗
∂u∗

∂r∗

)

, (5.3.13)

p∞ − p∗

p∞
=

∫ ∞

r∗

C∗2

r∗3
dr∗, (5.3.14)

U∞
∂w∗

∂x∗
= ν∞

(

∂2w∗

∂r∗2
+

1

r∗
∂w∗

∂r∗
− w∗

r∗2

)

, (5.3.15)

ρ∞cpU∞T∞
∂T1

∂x∗
= µ∞

(

w∗2

r∗
− 2w∗2

r∗
∂w∗

∂r∗
+

∂w∗

∂r∗

)

+
T∞

r∗
∂

∂r∗

(

κ∗r∗
∂T1

∂r∗

)

+ ρ∞U3
∞

∂p1

∂x∗
. (5.3.16)

Equations (5.3.13) – (5.3.15) are identical to equations (4.3.9) – (4.3.11), with equa-

tion (5.3.16) representing the contribution of the compressibility of the flow. We

therefore note, as Stott and Duck [59] have done before us, that to leading order the

velocity profile of Batchelor [3] does not change with compressibility. Also, it can
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be shown that, as in Stott and Duck [59], the equations for p1 and T1 can be solved

to give

p1 =
C2

∞

8x∗ρ∞U∞ν∞

[

(1 − e−η)2

η
+ 2ei(η) − 2ei(2η)

]

, (5.3.17)

T1 =
e−

−σξ2

4

x∗

(

A

2
ei(

1

4
σξ2) + B +

(γ − 1)M2
∞C2

∞

8U∞ν∞

[

ei

(

(
1

4
σ − 1

4
)ξ2

)

+

∫

(

−8σ
e

σξ2

4

ξ2
+ 16σ

e
1

4
(σ−1)ξ2

ξ2
+

8σπ
1

2

ξ
e

σξ2

4 erf(
ξ

2
) − 8

e(σ
4
− 1

2
)ξ2

ξ2

− 4
σ2π

1

2

x∗
e

σξ2

4 erf(
ξ

2
1

2

)

)

dξ +

∫

e
σξ2

4

∫

1

ξ1

(

−2σ

(

−2e
ξ2
1

4 + 2

− ξ2
1e

σξ2
1

4
ei(

ξ2
1

4
) + ξ2

1e
σξ2

1

4
ei(

ξ2
1

2
)

)

+
e−σξ2

1

4

ξ1

)

dξ1dξ

])

, (5.3.18)

where A and B are constants, erf(z) is the error function and ei(z) is the exponential

integral. Following the notation of Stott and Duck [59] ξ = 2η
1

2 and the subscript

ξ1 allows us to differentiate between two integrals involving ξ.

For the purposes of this stability analysis we can neglect the quantities p1, T1,

ρ1 as they are found to be approximately O(1/(logx∗)2) smaller than the non-

dimensionalised leading order terms and so the appropriate basic flow for this com-

pressible inviscid analysis is identical to that of the incompressible case,

(U, V, W ) =

(

U∞

Us

− e−r2

, 0,
q

r
(1 − e−r2

)

)

. (5.3.19)

5.4 Stability Equations

The set of governing equations are as follows, taking the inviscid form of equations

(5.2.1) – (5.2.6)

∂ρ∗

∂t∗
+

ρ∗v∗

r∗
+

∂(ρ∗v∗)

∂r∗
+

1

r∗
∂(ρ∗w∗)

∂θ
+

∂(ρ∗u∗)

∂x∗
= 0, (5.4.1)

∂u∗

∂t∗
+ u∗ ∂u

∂x∗
+ v∗∂u∗

∂r∗
+

w∗

r∗
∂u∗

∂θ
= − 1

ρ∗

∂p∗

∂x∗
, (5.4.2)

∂v∗

∂t∗
+ u∗ ∂v∗

∂x∗
+ v∗∂v∗

∂r∗
+

w∗

r∗
∂v∗

∂θ
− w∗2

θ

r∗
= − 1

ρ∗

∂p∗

∂r∗
, (5.4.3)



CHAPTER 5. COMPRESSIBLE INVISCID FLOW 117

∂w∗

∂t∗
+ u∗∂w∗

∂x∗
+ v∗∂w∗

∂r∗
+

w∗

r∗
∂w∗

∂θ
− v∗w∗

r∗
= − 1

ρ∗r∗
∂p∗

∂θ
, (5.4.4)

ρ∗

[

∂h∗

∂t∗
+ u∗∂h∗

∂x∗
+ v∗∂h∗

∂r∗
+

w∗

r∗
∂h∗

∂θ

]

=
∂p∗

∂t∗
+u∗ ∂p∗

∂x∗
+ v∗∂p∗

∂r∗
+

w∗

r∗
∂p∗

∂θ
, (5.4.5)

p∗γM∗2 = ρ∗T ∗. (5.4.6)

Equations (5.2.1) – (5.2.6) can be non-dimensionalised in the same way as in section

(2.3) and in a similar fashion we subject the basic state to small perturbations of

the form,

(u, v, w, p, T, ρ) = {U(r, θ), V (r, θ), W (r, θ), po(r, θ), To(r, θ), ρo(r, θ)}

+ ε{Up(r, θ), Vp(r, θ), Wp(r, θ), Pp(r, θ), τ(r, θ), Γ(r, θ)}eiα(x−ct), (5.4.7)

where the general basic state (which was described in detail in section 5.3) is given

by

(U, V, W ) = (U(r, θ), 0, W (r, θ)). (5.4.8)

Substituting (5.4.7) into (5.4.1) – (5.4.6) and retaining terms linear in ε yields the

disturbance equations

− iαcΓ +
ρoVp

r
+ Vpρ

′
o + ρoV

′
p +

1

r
[WΓθ + ΓWθ

+ Wpρo,θ + ρoWp,θ] + U iαΓ + ρoiαUp = 0, (5.4.9)

ρo[−iαcUp + U iαUp + VpU
′ +

W

r
Up,θ +

Wp

r
Uθ]

+
ΓW

r
Uθ = −iαPp, (5.4.10)

ρo[−iαcVp + U iαVp +
W

r
Vp,θ −

2WWp

r
] − ΓW 2

r
= −P ′

p, (5.4.11)

ρo[−iαcWp + U iαWp + VpW
′ +

W

r
Wp,θ +

Wp

r
Wθ +

VpW

r
]

+
ΓW

r
= −1

r
Pp,θ, (5.4.12)

ρocp[−iαcτ + U iατ + VpT
′
o +

W

r
τθ +

Wp

r
T ′

o] +
ΓcpW

r
To,θ

= −iαcPp + U iαPp + Vpp
′
o +

W

r
Pp,θ +

Wp

r
po,θ, (5.4.13)
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PpγM2 = ρoτ + ΓTo, (5.4.14)

where a superscript of a prime indicates a derivative by r and a subscript of θ

indicates a derivative by θ.

Following the work of Stott and Duck [59], we have been able to show that a

basic flow consisting of a typical Batchelor vortex is, unchanged to leading order, by

the effects of compressibility. This allows us to state that Batchelor’s [3] similarity

solution for an incompressible inviscid flow is also valid for our compressible inviscid

flow. Following this, we can also state that, without loss of generality, the leading

order asymptotic analysis of this similarity solution obtained in section 4.3 with

regards to Batchelor’s [3] equations is valid for this compressible extension of the

inviscid work. From section 5.3 we can take our basic state to be

U = e−r2

, V = 0, W = 0,

ρo = 1, po =
1

γM2
, To = 1.

Therefore, equations (5.4.9) – (5.4.14) become

iα(U − c)Γ + iαUp +
Vp

r
+

∂Vp

∂r
+

1

r

∂Wp

∂θ
= 0, (5.4.15)

iα(U − c)Up + Vp
∂U

∂r
+

Wp

r

∂U

∂θ
= −iαPp, (5.4.16)

iα(U − c)Vp = −∂Pp

∂r
, (5.4.17)

iα(U − c)Wp = −1

r

∂Pp

∂θ
, (5.4.18)

τ − (γ − 1)M2Pp = 0, (5.4.19)

PpγM2 = τ + Γ. (5.4.20)

Equations (5.4.15) – (5.4.20) can be combined to form a single equation in terms of

the perturbation pressure, Pp,

(U − c)

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− α2

]

Pp − 2

[

∂U

∂r

∂

∂r
+

1

r2

∂U

∂θ

∂

∂θ

]

Pp

+ α2(U − c)3M2Pp = 0. (5.4.21)
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It can be seen that equation (5.4.21) is our standard two-dimensional inviscid Rayleigh

equation (4.2.1) with an additional component that takes into account the compress-

ible nature of the flow.

5.5 Numerical Methods

It is possible to solve the non-linear eigenvalue problem (5.4.21) in a global sense,

in a similar fashion to that of the original incompressible inviscid problem with a

Chebyshev pseudo-spectral collocation scheme, by employing a transformation (due

to the (U − c)3 component) to a linear problem by way of a quadratic conversion

parameter or companion matrix [5, 32]. Stott and Duck [59] reported a large amount

of spurious eigenvalues using this method. For this reason, and also to preserve

resolution with the available computational facilities, equation (5.4.21) is best solved

using the iterative finite-difference method outlined in section 3.3. For reference, the

Cartesian computational domain is included here again in figure 5.1 with a typical

four-vortex configuration indicated by the positions y1, y2, z1, z2.
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Figure 5.1: The four-vortex configuration whose stability we investigate. Here y and

z are Cartesian coordinates in the cross-section; the axial co-ordinate, x, is directed

out of the plane of the page.
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As the inviscid results of sections 4.6 – 4.8 are obtained using the global pseudo-

spectral code, whereas the compressible results extended from these are to be found

via the local finite-difference code, the following figures aim to illustrate the compati-

bility of the two numerical methods. The (global) pseudo-spectral code in cylindrical

polar co-ordinates uses (Nr, Nθ) = (80, 32) with a clustering parameter of s = 0.9

for the single vortex and s = 0.8 for both the two and four-vortex cases. The (local)

finite-difference code uses up to (Ny, Nz) = (81, 81) with a clustering parameter of

(sy, sz) = (8, 8) for the single vortex and (sy, sz) = (6, 8) for the two and four-vortex

cases noting that the clustering algorithm used in each case is different.

Figures 5.2, 5.3 and 5.4 are the curves of greatest instability found in sections

4.6, 4.7 and 4.8 respectively with the results obtained using the finite-difference

code superimposed as a dashed curve (and also marked accordingly). It can be seen

that for the single vortex case agreement is good with only a small deviation of the

FD curve after α > 0.9 and around α = 0, for the two-vortex case (y = ±0.8),

the comparison is excellent except for the deviation after α ≈ 1.45 and α < 0.2.

The four-vortex configuration ((y1, z1) = (±2.0, 0), (y2, z2) = (±0.35, 0)) is much the

same with a slight discrepancy for α < 0.2 and α > 1.5. We therefore restrict our

analysis to the regions of 0.08 ≤ α ≤ 0.88 for the single vortex, 0.3 ≤ α ≤ 1.4

for the two-vortex configuration and 0.3 ≤ α ≤ 1.4 for four vortices thus ensuring

that for the extent of the analysis we can state with confidence that both numerical

schemes are consistent (to at least four significant figures). The deviation of the

curves at large α can be attributed to the issues that arise due to the critical layer

as explained in more detail in section 4.7 where the two numerical methods behave

differently.

These results give us confidence that the solution (i.e. eigenvalues) for the com-

pressible problem are accurately captured using the finite-difference approach.

5.6 Inviscid Stability for M > 0

The fact that equation (5.4.21) mimics our governing inviscid equation with only

the addition of a single term representing the effect of compressibility means that

the process of tracking the effects of an unstable mode through the compressible
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Figure 5.2: Comparison of pseudo-spectral (solid) and finite-difference (dashed)

inviscid instability results for a single vortex with M = 0.
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Figure 5.3: Comparison of pseudo-spectral (solid) and finite-difference (dashed)

inviscid instability results for a two-vortex configuration with M = 0.
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Figure 5.4: Comparison of pseudo-spectral (solid) and finite-difference (dashed)

inviscid instability results for a four-vortex configuration with M = 0.

region is a relatively straight forward process. Minor modifications to the finite

difference code, using the Mach number as the continuation parameter, allow us to

track the mode as the Mach number is increased. Starting values are those listed

for the vortex configurations outlined in sections 4.7 and 4.8, found using a global

numerical scheme with a second starting value for the iteration scheme being a small

deviation from this in both the real and imaginary components. Initially the number

of grid points is used as a continuation parameter to increase the accuracy of the

starting values and then the Mach number is varied.

5.6.1 A Single Vortex Flow

The effects of compressibility on a single Batchelor vortex have been studied in detail

by Stott and Duck [59] for a variety of azimuthal wave-numbers and (non-zero) swirl

rates. As this particular inviscid analysis is concerned with vortices that effectively

have q = 0 for the entire spectra of n-values it is interesting to follow the unstable

single vortex modes found in section 4.6 through the compressible regime. From

section 4.6 we can see that for the wave-number corresponding to the maximum
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growth rate of the most unstable mode, α = 0.65, the ‘starting’ growth rate is

0.050554 which corresponds to an eigenvalue of c = 0.495649 + 0.077775i which is

found as c = 0.49531 + 0.07791i by the finite difference iterative code and stepped

through the compressible regime in figure 5.5.

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

M

α
c i

Figure 5.5: Growth rate (αci) versus Mach number (M) for a single vortex at

α = 0.65.

It is apparent from figure 5.5 that increasing the Mach number has a stabilis-

ing effect on the unstable mode presented here. Although the numerical scheme

encountered difficulties resolving the equation close to ci = 0 it is apparent that

the transition to a neutrally stable state occurs at M ≈ 2.3. The effect on the real

component of the eigenvalues is shown in figure 5.6. In order to ensure that we are

observing the transition of the same (ie first or most unstable) incompressible mode,

figure 5.7 plots the normalised modal amplitudes at M = 0 and M = 2.0 from which

it can be seen, despite some small ‘stretching’ of the mode (perhaps as a result of

boundary interactions at higher Mach numbers; the choice of Nmax is governed by

the trade-off between resolution and the requirement of a larger boundary for high

Mach numbers), they are in fact the same mode.

Figure 5.8 extends the compressibility analysis for a single vortex to all unstable

values of α (in the range mentioned earlier) from which it can be seen that increasing
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M has a stabilising effect. For low wave-numbers, the most unstable mode at M = 0,

whilst reducing in instability, remains unstable up to very high values of M . The

figure also shows a smooth transition from unstable towards stable throughout the

entire α − M region with the approximate neutral curve superimposed as a dashed

line.

0 0.5 1 1.5 2 2.5
0.306

0.308

0.31

0.312

0.314

0.316

0.318

0.32

0.322

0.324

M

c r

Figure 5.6: The real component of the eigenvalue (cr) versus Mach number (M) for

a single vortex at α = 0.65.
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Figure 5.7: Normalised amplitude of eigenmodes for the single vortex growth rates

given in figure 5.5 at (a) M = 0, (b) M = 2.0.

It is difficult to accurately compare (or reproduce) the results of Stott and Duck
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[59] due to their use of a one-dimensional code with the azimuthal wave-number as a

parameter and a non-zero q. However, a visual comparison of the shape of the curve

and magnitude of the growth rates and Mach numbers shows that the curves for

a single Batchelor vortex produced herein agree qualitatively with Stott and Duck

[59].
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Figure 5.8: Instability (ci) for single vortex versus Mach number (M) and wave-

number (α).

5.6.2 Two-Vortex Flow

The maximum growth rate of the primary two-vortex mode found previously at

(α, y) = (0.86, 0.78) is 0.139507 corresponding to c1 = 0.529072+0.162217i which is

found as c = 0.51550+ 0.16202i using rmax = 8 in the finite difference code. For the

second and third modes (at their maximum growth rates) we find the eigenvalues

c = 0.70835 + 0.07767i for c2 = 0.705575 + 0.080529i at α = 0.46 and c = 0.92491 +

0.05052i for c3 = 0.930655+0.052500i at α = 0.50. The curves of the growth rates for

the first three modes are given in figure 5.9 along with their extension, at maximum

αci, into the compressible regime in figure 5.10. The effect of compressibility on the
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real component of the eigenvalues is shown in figure 5.11.
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Figure 5.9: Growth rate (αci) versus wave-number (α) of the first three unstable

modes for a two-vortex configuration with M = 0.
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Figure 5.10: Growth rate (αci) versus Mach number (M) of the three most unstable

modes for a two-vortex configuration at α = 0.86, 0.46, 0.50 respectively.
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Here the initial starting error at small M is obvious, however as is shown in

section 5.5 both numerical schemes converge quickly thereafter. A further small

initial deviation is seen when the boundary is extended to rmax = 20 as the grid

points are now stretched over a larger area.
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Figure 5.11: The real component of the first three unstable eigenvalues (cr) versus

Mach number (M) for a two-vortex configuration at α = 0.86, 0.46, 0.50 respectively.

In a similar manner to the single vortex case, compressibility has a stabilising

effect on the most unstable modes. Unlike the plot of instability decay for a single

vortex however, the two-vortex configuration exhibits a change in the rate of decay

which enables the instability to exist to higher Mach numbers than might be ex-

pected if we use the behaviour of the single vortex case as a guide. We find that

as the growth rate decreases, the ability of the code to accurately track the mode

is lost. This is common through all (studied) values of α as can be seen in figure

5.13. Figure 5.12 illustrates the normalised modal amplitudes of the most unstable

mode at M = 0, 2.0, 2.5, 3.5 along the curve of figure 5.10. We can see that whilst

the structure of the mode is essentially the same, ie; symmetric about z = 0, as

M > 1.8, some distortion of the mode takes place as M increases. It appears that

the increase in Mach number has the effect of increasing the spatial range of the
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decay of the pressure perturbation which is why, as was pointed out earlier, a larger

Nmax than is used for the incompressible case is required.
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Figure 5.12: Normalised amplitude of eigenmodes for the two-vortex growth rates

given in figure 5.10 for the most unstable mode at (a) M = 0, (b) M = 2.0, (c)

M = 2.5 and (d) M = 3.5.

Figure 5.13 provides the picture of the effects of compressibility on the primary

mode as found in the two-vortex configuration over the studied α − M domain. It

is apparent that the general form of the stabilising effect of compressibility is found

throughout all values of α with the Mach number required to stabilise the flow

growing exponentially as α → 0. The dashed line represents a level of ci = 0.03,

the point at approximately which the numerical scheme ceased to resolve a smooth

curve.
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Figure 5.13: Instability (ci) versus Mach number (M) and wave-number (α) for the

most unstable two-vortex mode.

5.6.3 Four-Vortex Flow

In the most unstable four-vortex configuration, for which (y2, z2) ≈ (0.36, 0), the

growth rate of the primary mode is 0.13557 which corresponds to c1 = 0.37596 +

0.15063i at α = 0.9, M = 0, with the iterative starting result being c = 0.37588 +

0.15039i again, with rmax = 8. For the subsequent modes we find eigenvalues of c =

0.43303+0.10117i for c2 = 0.43329+0.10368i at α = 0.78 and c = 0.68850+0.07262i

for c3 = 0.69009 + 0.07485i at α = 0.56. The growth rates corresponding to these

modes are given in figure 5.14. The slight discrepancy in these values is explained

earlier but is negligible in terms of the graphical representation presented here.

As in the two-vortex case, we see a similar result in terms of the effect of com-

pressibility on the growth rates given in figure 5.15, with the real component of the

eigenvalue shown in figure 5.16. It is also worth noting that, whilst the growth rate
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of the primary mode of the four-vortex system is marginally less than that of the

two-vortex system, the appearance of the extra vortices does seem to extend the in-

stability through to a higher range of M . As before the numerical scheme is not well

defined near ci = 0 and the nature of the curve makes it impossible to accurately

determine the point of neutral stability. Figure 5.17 plots the normalised modal

amplitudes of the most unstable mode at M = 0, 2.7, 3.7, 4.8 from which we can see

a similar ‘stretching’ of the decay of pressure perturbation as the Mach number is

increased, to that of the previous vortex configurations.

Again, it is apparent from figure 5.18 that the general form of the primary mode

curve in figure 5.15 continues throughout the entire range of α, and, as was the case

for the two-vortex system, approaches a stable state for all M in the range of α

studied.
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Figure 5.14: Growth rate (αci) versus wave-number (α) of the first three unstable

modes for a four-vortex configuration with M = 0.
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Figure 5.15: Growth rate (αci) versus Mach number (M) of the three most unstable

modes for a four-vortex configuration at α = 0.9, 0.78, 0.56 respectively.
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Figure 5.16: The real component of the first three unstable eigenvalues (cr) versus

Mach number (M) for a four-vortex configuration at α = 0.9, 0.78, 0.56 respectively.
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Figure 5.17: Normalised amplitude of eigenmodes of the most unstable mode for

the four-vortex growth rates given in figure 5.15 at (a) M = 0, (b) M = 2.7, (c)

M = 3.7 and (d) M = 4.8.

5.7 Discussion

It should be remembered that we have tracked the effect of compressibility on the

most unstable inviscid incompressible mode found in chapter 4. From Stott and

Duck [59] we know that the most unstable single vortex mode persists to higher

M for large azimuthal wave-numbers of which, due to our two-dimensional global

analysis, we are unable to specify.

We have shown that for the single vortex case, the curves illustrating the reduc-

tion in instability as the Mach number increases are stabilised and that the most

unstable (incompressible) mode heads towards a definite point of neutral stability

which, although not being resolved exactly, can be extrapolated to a close approxi-

mation. Each of these individual curves displays the characteristics of similar curves

(for non-zero swirl numbers) that appear in the literature. For both multiple vortex
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configurations studied here, a different shape of stability curve is observed. We see

that whilst the multiple vortex curves behave similarly to those of the single vortex

at low Mach numbers, as we increase M further, a change in the rate of instability

decay is seen, thus prolonging the instability of the mode longer than would be ex-

pected if we were to use the behaviour of the single vortex mode as a guide. We have

also presented evidence that compressibility will cause the eigenmode to expand in

the computational domain, demonstrating that, spatially, the mode perturbations

persist further from the co-ordinate origin.
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Figure 5.18: Instability (ci) versus Mach number (M) and wave-number (α) for the

most unstable four-vortex mode.

In general, it has been shown that the most unstable inviscid modes are stabilised

by the inclusion of compressibility from which we can infer with some confidence

that compressibility has a stabilising effect on all unstable inviscid modes. We also

note that, for increasing M , an increasingly large domain than would ordinarily be

expected for an inviscid stability analysis is required in order to ensure that the

boundary conditions are explicitly satisfied. This makes the approximation of a
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distinct transition to stability difficult (primarily for the multiple vortex cases) and

as such only an indication of where the numerical scheme starts to become unresolved

has been presented. However, we can state with confidence that increased computing

resources, allowing for sufficient numerical accuracy, would only aid in the detection

of the point of transition to stability and not qualitatively change the general results

presented here.



Chapter 6

Viscous Flow

6.1 Introduction

In order to better capture the important physics of instabilities in wake vortices,

we now consider the extension of the inviscid (incompressible) model studied earlier

to include the effects of viscosity. The basic flow is three dimensional as the cross-

flow components previously neglected in the inviscid analysis of section 4.3 become

important to the stability characteristics of the flow at finite Reynolds numbers.

This will enable examination of lower Reynolds number problems near the critical

point of neutral stability for a variety of modes.

6.2 Disturbance Equations

From section 2.4.2 we find that the viscous disturbance equations, when written in

the form of an eigenvalue problem are, in Cartesian co-ordinates,
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where
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Equivalently in cylindrical polar co-ordinates,
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6.3 Basic Flow

6.3.1 Linear Superposition of Batchelor Vortices

A linear superposition of Batchelor vortices is used in various configurations with one

or two vortex pairs. The basic flow is the similarity solution derived by Batchelor [3]

and presented in section 4.3.1 and subsequently, when written in terms of cylindrical

polar co-ordinates the flow is given by

U = γe−ar2

, (6.3.1)

V = 0, (6.3.2)

W = −q

r
(1 − γe−ar2

). (6.3.3)

For vortices situated away from the co-ordinate origin we replace r with (r − rn)

where we note that rn is the vortex placement and also note the relationships,

r2
n = y2

n + z2
n, yn = rn sin θ, zn = rn cos θ, (6.3.4)

with,

(r − rn)2 = r2 − 2rrn + r2
n,
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and using the relationship sin2 θ + cos2 θ = 1 we find that,

rn = yn sin θ + zn cos θ, (6.3.5)

we can derive the relationships

(r − rn)2 = r2 − 2r(yn sin θ + zn cos θ) + y2
n + z2

n, (6.3.6)

(r − rn) = r − yn sin θ − zn cos θ. (6.3.7)

Our basic flow, consisting of multiple vortices situated away from the co-ordinate

origin can be written as

U =

N
∑

n=1

γne−an(r2−2ryn sin θ−2rzn cos θ+y2
n+z2

n), n = 1, ...,∞, (6.3.8)

V = 0, (6.3.9)

W = −
N
∑

n=1

qn[1 − γne
−an(r2−2ryn sin θ−2rzn cos θ+y2

n+z2
n)]

r − yn sin θ − zn cos θ
, n = 1, ...,∞, (6.3.10)

where γ is the axial strength parameter, a is the decay rate and N is the number of

vortices. The mean velocity profiles are illustrated in figure 6.1 with both γ and a set

equal to unity and n = 1 for a single vortex located at the co-ordinate origin. The

basic flow for use in the Cartesian implementation of the viscous stability equation

solver where the variables are the same as above is

U =

N
∑

n=1

γne−an[(y−yn)2+(z−zn)2], n = 1, ...,∞, (6.3.11)

V =

N
∑

n=1

qn(z − zn)[1 − γne−an[(y−yn)2+(z−zn)2]]

(y − yn)2 + (z − zn)2
, n = 1, ...,∞, (6.3.12)

W = −
N
∑

n=1

qn(y − yn)[1 − γne−an[(y−yn)2+(z−zn)2]]

(y − yn)2 + (z − zn)2
, n = 1, ...,∞. (6.3.13)

6.4 Computational Domain

For each co-ordinate system, vortex placement is essentially the same as that shown

in figure 4.2 for the inviscid instability analysis, the difference being the shape of the
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domain, either −Nr,max ≤ r ≤ Nr,max for polar or between −Ny,max ≤ y ≤ Ny,max

and −Nz,max ≤ z ≤ Nz,max in the case of the Cartesian system (see figure 3.7).

Unlike the inviscid case, where the cross-flow perturbation components are of an

order of magnitude smaller than the axial flow and so it was that the decay of the

axial component was the determining factor in choosing the size of the computa-

tional domain, the finite Reynolds numbers in the viscous case bring all perturbation

quantities to a similar order requiring a significantly larger domain size. Mayer and

Powell [41] state that they find a domain size of O(10) to be sufficient for six-figure

accuracy and use 20 ≤ r ≤ 50 except for very low Reynolds numbers or long-wave

disturbances. In Hein and Theofilis [25], their Cartesian domain is set to approx-

imately Nmax = 40 (equivalent to rmax = 40 in our polar domain) for the single

vortex case and slightly higher for the multiple vortex cases. Our analysis uses

similar sized domains.
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0
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1.5
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2.5
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U, W

r

U(r) = e−r2

W (r) = q(1 − e−r2

)/r

Figure 6.1: Mean velocity profiles for axial (U) and azimuthal (W) basic flow in

cylindrical polar co-ordinates.
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6.5 Numerical Methods

For the viscous problem it proved convenient to produce codes firstly in Cartesian

and then cylindrical polar co-ordinates. This was done initially due to a num-

ber of problems encountered (and later overcome) with implementing the polar

co-ordinate version of the code. It also allowed for various cross-checking to be

performed between the two quite distinct implementations of the numerical scheme.

The Cartesian code was also adaptable to use either pseudo-spectral techniques or

finite-differences, whilst the polar form used spectral methods exclusively. As was

outlined in section 3.7.3, values recovered from both versions were able to be ver-

ified against published results for plane Poiseuille flow in a duct, Hagen-Poiseuille

flow in a pipe, and for the general structure found in the single Batchelor vortex

stability analysis. The convergence histories following are for the polar code with

the Cartesian case as detailed in Appendix C. It is important to note here that the

differentiation matrices used to discretise the system of equations are identical to

those used in the inviscid analysis in chapter 4 and described in detail in section

3.2; the accuracy of these has been demonstrated in section 3.

6.5.1 Single Vortex Numerical Convergence

Whilst the integrity of the numerical scheme is assured as a result of our earlier

benchmarking, it is useful to provide a convergence history of the eigenvalues for

changes in spectral accuracy and degree of grid clustering. In doing this we provide

information on the lowest resolution required for acceptable accuracy (to aid in

efficient use of computational resources) and also give a clearer picture of the range

of convergence.

Figure 6.2 is a plot of the smallest stable eigenvalues found by setting the

ARPACK shift parameter σ = 0 − 0i (to find eigenvalues about the neutral axis)

for (Nr, Nθ) = (51, 28); (61, 32); (71, 42); (81, 52) with sr = 0.97, from which it can

be seen that good convergence is reached right from (Nr, Nθ) = (51, 28) for the first

30 or so modes. The values α = 0.418, q = 0.475 and Re = 100 correspond to those

used by Hein and Theofilis [25] and provide a useful visual comparison with the

results presented herein. Increasing the spectral accuracy does improve the conver-
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gence further, but this involves large increases in run times and stretches available

computer resources to their limits.
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Figure 6.2: Convergence of eigenvalues for the viscous stability of a single vortex.

(Nr, Nθ) = (51, 28), (61, 32), (71, 42), (81, 52) in descending size of marker, the •
corresponding to the case (81, 52).

The fact that good numerical convergence occurs near the neutral stability axis is

particularly useful for the analysis that follows as we are interested in locating regions

of neutral stability for various vortex configurations and following their respective

neutral curves. Looking at the eigenvalues for a range of (Nr, Nθ), table 6.1 shows

that, for the two ‘least-stable’ modes, approximately eight decimal place convergence

is achievable from (Nr, Nθ) = (41, 24) in both the real and imaginary components

using a clustering parameter of sr = 0.97.

Table 6.2 gives the convergence history of the same least-stable modes for a

variation in the grid clustering rate from zero through to very heavy clustering

about the co-ordinate origin with (Nr, Nθ) = (61, 32). The results indicate that in

both cases, a high degree of convergence is seen at sr = 0.95 but the eigenvalue

appears to be relatively well resolved for lower degrees of clustering. To further

illustrate the numerical convergence of the scheme for those values found closest to
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the neutral axis, convergence histories of the subsequent four modes are given in

tables 6.3 and 6.4 showing the effect of an increase in spectral accuracy.

(Nr, Nθ) ‘Mode 1’ ‘Mode 2’

(41,24) -0.00000979032 - 0.00180730689i 0.00000583294 - 0.00181594761i

(51,28) -0.00000977657 - 0.00180733018i 0.00000581530 - 0.00181599549i

(61,32) -0.00000977253 - 0.00180733399i 0.00000581037 - 0.00181600582i

(71,42) -0.00000976959 - 0.00180733964i 0.00000580649 - 0.00181601753i

(81,52) -0.00000976735 - 0.00180734513i 0.00000580342 - 0.00181602813i

Table 6.1: Convergence history of the two least-stable eigenvalues for a single vortex,

varying (Nr, Nθ).

s ‘Mode 1’ ‘Mode 2’

0 -0.00000958838 - 0.00181135941i 0.00000703256 - 0.00181472788i

0.5 -0.00001299084 - 0.00181056539i 0.00000731066 - 0.00181436248i

0.6 -0.00001255333 - 0.00180856800i 0.00000824824 - 0.00181564272i

0.7 -0.00001230743 - 0.00180684156i 0.00000712883 - 0.00181719066i

0.8 -0.00000897364 - 0.00180595265i 0.00000502059 - 0.00181663903i

0.9 -0.00000979456 - 0.00180738334i 0.00000582731 - 0.00181602352i

0.95 -0.00000977114 - 0.00180734609i 0.00000580923 - 0.00181601767i

0.97 -0.00000977253 - 0.00180733399i 0.00000581037 - 0.00181600582i

Table 6.2: Convergence history of the two least-stable eigenvalues for a single vortex,

varying the clustering parameter, s.

It is also useful to observe the effects of increasing the number of grid points in

the azimuthal direction on the convergence of the eigenvalues. As the modes become

more complex in structure (associated with higher azimuthal wave-numbers) more

grid points will be required, however for those values that are found around the

neutral axis, the maximum number of azimuthal grid points with Nr = 81 is shown

to be sufficient at resolving both real and imaginary components of the eigenvalue

to a significant degree of accuracy as demonstrated by the results presented in table
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6.5. If we compare table 6.5 to table 6.1 we see that the imaginary component of

the second mode converges faster using a larger Nr, even with the smaller value of

Nθ. This would suggest that for the following analysis, a high number of grid points

in r is required combined with a manageable number of points in θ.

(Nr, Nθ) ‘Mode 3’ ‘Mode 4’

(41,24) 0.00035589648 - 0.00186044698i -0.00036661513 - 0.00186561797i

(51,28) 0.00032196067 - 0.00176234959i -0.00036940265 - 0.00186565761i

(61,32) 0.00037953703 - 0.00187419939i -0.00037111090 - 0.00186042891i

(71,42) 0.00037126874 - 0.00187025928i -0.00036571556 - 0.00185974913i

(81,52) 0.00036912128 - 0.00186890603i -0.00036469955 - 0.00186170426i

Table 6.3: Convergence history of the third and fourth least-stable eigenvalues for

a single vortex, varying (Nr, Nθ).

(Nr, Nθ) ‘Mode 5’ ‘Mode 6’

(41,24) 0.00065614028 - 0.00194155601i -0.00065613646 - 0.00194155976i

(51,28) 0.00065654564 - 0.00194191463i -0.00065654324 - 0.00194191723i

(61,32) 0.00065657933 - 0.00194193481i -0.00065657807 - 0.00194193639i

(71,42) 0.00065665044 - 0.00194196802i -0.00065664969 - 0.00194196906i

(81,52) 0.00065671719 - 0.00194199928i -0.00065671670 - 0.00194200001i

Table 6.4: Convergence history of the fifth and sixth least-stable eigenvalues for a

single vortex, varying (Nr, Nθ).

Figure 6.3 shows the eigenvalue spectra of Hein and Theofilis [25] (using the pa-

rameters of Mayer and Powell [41]) with particular emphasis on the unstable modes.

In section 3.7.3 we established that the two-dimensional global code recovers correct

stable values at relatively low grid resolutions, here we examine the convergence of

unstable values. Firstly, we can see that numerical convergence is far from that for

the stable values. The plot in figure 6.3 and corresponding values in table 6.6 show

that whilst the values are not exact, they are generally within 0.01 (with the real

components approaching an accuracy of ±0.005) of the values of Mayer and Powell
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[41] and subsequently recovered using our one-dimensional, n-dependent code. This

enables us to state with some confidence that whilst the neutral curves produced

hereafter are not exact, they are a close representation of where we would expect

the converged values to be found.

(Nr, Nθ) ‘Mode 1’ ‘Mode 2’

(81,24) -0.00000976735 - 0.00180734513i 0.00000580342 + -0.00181602813i

(81,32) -0.00000976735 - 0.00180734513i 0.00000580342 + -0.00181602813i

(81,40) -0.00000976735 - 0.00180734513i 0.00000580342 + -0.00181602813i

(81,48) -0.00000976735 - 0.00180734513i 0.00000580342 + -0.00181602813i

(81,52) -0.00000976735 - 0.00180734513i 0.00000580342 + -0.00181602813i

Table 6.5: Convergence history of the first and second least-stable eigenvalues for a

single vortex, varying Nθ.
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Figure 6.3: Eigenvalue spectra for the parameters of Mayer and Powell [41] (dots):

Nr = 120, obtained with a one-dimensional code compared with those obtained

using a two-dimensional code; + : (Nr, Nθ) = (50, 24), × : (Nr, Nθ) = (80, 52).
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Nr = 120 (Nr, Nθ) = (50, 24) (Nr, Nθ) = (81, 52)

-0.029367 + 0.008576i -0.034563 + 0.004998i -0.031528 + 0.007662i

0.028351 + 0.009616i 0.041709 + 0.012382i 0.036989 + 0.006046i

Table 6.6: The two unstable eigenvalues of the Mayer and Powell [41] parameters

as found using the one-dimensional code compared to those results obtained using

the two-dimensional code.

6.5.2 Two-Vortex Numerical Convergence

As with the single vortex case, the values of Hein and Theofilis [25] are used as our

benchmark to check convergence. Again, convergence with respect to a variation

in the number of grid points and gradual increase in the clustering parameter is

examined. Figure 6.4 represents the spectra of least-stable values as found by setting

the vortices at (y, z) = (2.0, 0).
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Figure 6.4: Convergence of eigenvalues for the viscous stability of a two-vortex

configuration. (Nr, Nθ) = (51, 28), (61, 32), (71, 42), (81, 52) in descending size of

marker, the • corresponding to the case (81, 52).

Again, as expected from the results of the single vortex study, good convergence
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is limited to those values that are least stable at grid resolutions achievable using the

computational resource available. Table 6.7 gives the two least-stable eigenvalues

for the same variation in (Nr, Nθ) as was used earlier. The clustering for the two-

vortex configuration is set at sr = 0.95; the value sr = 0.95 was chosen so as to

slightly relax the clustering in the plane of the two vortices as they sit away from

the origin. It can be seen that again, five significant figures convergence is achieved

at relatively low grid resolutions with at least six significant figures convergence for

a higher number of grid points.

(Nr, Nθ) ‘Mode 1’ ‘Mode 2’

(41,24) -0.00015216290 - 0.00189727128i 0.00015204415 - 0.00189738281i

(51,28) -0.00015216504 - 0.00189739030i 0.00015198122 - 0.00189742099i

(61,32) -0.00015225425 - 0.00189768836i 0.00015214529 - 0.00189745625i

(71,42) -0.00015295714 - 0.00189767394i 0.00015472039 - 0.00189618982i

(81,52) -0.00015215702 - 0.00189786790i 0.00015156123 - 0.00189765844i

Table 6.7: Convergence history of the two least-stable eigenvalues for a two-vortex

configuration, varying (Nr, Nθ).

(Nr, Nθ) ‘Mode 3’ ‘Mode 4’

(41,24) 0.00063861283 - 0.00191824514i -0.00063865035 - 0.00191834047i

(51,28) 0.00063884106 - 0.00191818958i -0.00063876346 - 0.00191872101i

(61,32) 0.00063875515 - 0.00191823128i -0.00063904498 - 0.00191772035i

(71,42) 0.00064118119 - 0.00191342791i -0.00063943174 - 0.00191535376i

(81,52) 0.00063902597 - 0.00191696204i -0.00063758393 - 0.00191766873i

Table 6.8: Convergence history of the third and fourth least-stable eigenvalues for

a two-vortex configuration, varying (Nr, Nθ).

The convergence histories of four further modes are given below for comparison.

It should be noted that for all the convergence histories proceeding and following,

the mode numbers stated are purely arbitrary and assigned only by descending

order of magnitude of the imaginary component of the eigenvalue as obtained from



6.5. NUMERICAL METHODS 146

the initial resolution study. Hence, a mode listed as five for example, may have

an imaginary component less than that of the subsequent mode six by the time

adequate convergence is realised.

(Nr, Nθ) ‘Mode 5’ ‘Mode 6’

(41,24) 0.00119348664 - 0.00203020983i -0.00119369010 - 0.00203046518i

(51,28) 0.00119323659 - 0.00203056447i -0.00119422428 - 0.00203024708i

(61,32) 0.00119321576 - 0.00203100265i -0.00119287833 - 0.00203082166i

(71,42) 0.00119596281 - 0.00203761761i -0.00119788587 - 0.00203353546i

(81,52) 0.00119247744 - 0.00203010867i -0.00119264956 - 0.00203144941i

Table 6.9: Convergence history of the fifth and sixth least-stable eigenvalue for a

two-vortex configuration, varying (Nr, Nθ).

As in the single vortex case we finish the convergence study by examining the

effect the number of grid points in the azimuthal direction has on the convergence

at the highest value of Nr used previously. As before, we see that for the values

shown, Nr is the governing spatial parameter for the convergence of the least-stable

values and Nθ does little to improve the results further.

(Nr, Nθ) ‘Mode 1’ ‘Mode 2’

(81,24) -0.00015272674 - 0.00189781524i 0.00015223718 - 0.00189727238i

(81,32) -0.00015197893 - 0.00189749315i 0.00015199639 - 0.00189761554i

(81,40) -0.00015214774 - 0.00189749626i 0.00015198105 - 0.00189764559i

(81,48) -0.00015196625 - 0.00189739461i 0.00015203856 - 0.00189771140i

(81,52) -0.00015215702 - 0.00189786790i 0.00015156123 - 0.00189765844i

Table 6.10: Convergence history of the first and second least-stable eigenvalues for

a two-vortex configuration, varying Nθ.

6.5.3 Four-Vortex Numerical Convergence

For the four-vortex case, convergence of a configuration where all four vortices are

co-linear is examined. Whilst the system is not restricted to this configuration,
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it provides a means for comparison with published results. The vortices are at

(y1, y2) = (5, 0.7), a2 = 0.5 and q2 = −0.19 corresponding to the ratios of Hein and

Theofilis [25], α = 0.3 and Re = 100. The clustering was reduced to sr = 0.93 to

allow for the extra ‘spread’ of the primary vortices. Figure 6.5 illustrates the region

of convergence of the eigenvalues showing the now familiar convergence of least-

stable values at manageable problem dimensions. In figure 6.5 we can see that the

numerical convergence of the eigenvalue is poor about ωr = 0 but as we move away

from this axis, much faster convergence is realised. We would expect that as the

resolution is increased further (beyond what is capable in this study), the eigenvalues

approaching ωr = 0 would become more resolved. The fact that the primary vortices

are spaced relatively far apart with the clustering parameter relaxed to compensate

for this, contributes further to the resolution problem. However, we can see from

the figure that as we move away from the real axis, good eigenvalue convergence is

obtained at relatively low grid resolutions.
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Figure 6.5: Convergence of eigenvalues for the viscous stability of a four-vortex

configuration. (Nr, Nθ) = (51, 28), (61, 32), (71, 42), (81, 52) in descending size of

marker, the • corresponding to the case (81, 52).
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In table 6.11 we follow those least stable modes that remain as the resolution

is increased, where we see a similar pattern of numerical convergence to that ob-

served previously; approximately four significant figures at the starting resolution

and approaching five or six significant figures as the resolution increases with some

fluctuation in predominantly the real component. Whilst this degree of accuracy

is acceptable for illustration purposes, variations in the amount of clustering may

provide slightly better results.

(Nr, Nθ) ‘Mode 3’ ‘Mode 4’

(41,24) -0.00037150331 - 0.00089234691i 0.00070827163 - 0.00090571903i

(51,28) -0.00039469804 - 0.00091499517i 0.00067373574 - 0.00094588024i

(61,32) -0.00039686323 - 0.00090044395i 0.00074950321 - 0.00092949619i

(71,42) -0.00036361627 - 0.00089823189i 0.00066299307 - 0.00084369963i

(81,52) -0.00038521019 - 0.00091411661i 0.00077204848 - 0.00099602207i

Table 6.11: Convergence history of the third and fourth least-stable eigenvalues for

a four-vortex configuration, varying (Nr, Nθ).

As before, we present convergence histories of some further eigenvalues to il-

lustrate, in this case, that the convergence of the numerical scheme improves as ω

moves away from the purely imaginary. We see that for the modes still close to the

neutral axis but having a real component of O(10−4) or greater, the convergence is

greatly improved.

(Nr, Nθ) ‘Mode 5’ ‘Mode 6’

(41,24) 0.00039512849 - 0.00092729386i -0.00076088958 - 0.00105306498i

(51,28) 0.00039869219 - 0.00093449241i -0.00075842193 - 0.00105231836i

(61,32) 0.00039239419 - 0.00092442545i -0.00076043632 - 0.00105225592i

(71,42) 0.00038316494 - 0.00094139865i -0.00076097031 - 0.00105223551i

(81,52) 0.00039632745 - 0.00092033773i -0.00075970119 - 0.00105250559i

Table 6.12: Convergence history of the fifth and sixth least-stable eigenvalues for a

four-vortex configuration, varying (Nr, Nθ).
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(Nr, Nθ) ‘Mode 7’ ‘Mode 8’

(41,24) 0.00076011216 - 0.00105376238i -0.00110120696 - 0.00116453259i

(51,28) 0.00075839949 - 0.00105300488i -0.00110201957 - 0.00116481865i

(61,32) 0.00076050172 - 0.00105144663i -0.00110092052 - 0.00116496984i

(71,42) 0.00076049988 - 0.00105203374i -0.00110187457 - 0.00116418143i

(81,52) 0.00075956851 - 0.00105425746i -0.00110240423 - 0.00116518162i

Table 6.13: Convergence history of the seventh and eighth least-stable eigenvalue

for a four-vortex configuration, varying (Nr, Nθ).

Table 6.14 documents the convergence of the third and sixth least stable eigen-

values found at (Nr, Nθ) = (81, 24) as Nθ is increased with Nr fixed. We can see

that these values exhibit the same convergence to only four or five significant figures

as in table 6.11. However, as is also the case with the subsequent modes, increased

convergence is seen as the eigenvalues move away from the ωr = 0 axis.

(Nr, Nθ) ‘Mode 3’ ‘Mode 6’

(81,24) 0.00039977700 - 0.00091215334i 0.00076092045 - 0.00105153408i

(81,32) 0.00040328533 - 0.00095814607i 0.00076059605 - 0.00104910178i

(81,40) 0.00039284729 - 0.00091980759i 0.00076348406 - 0.00105486634i

(81,48) 0.00039365252 - 0.00092332449i 0.00076514855 - 0.00098139497i

(81,52) 0.00039632745 - 0.00092033773i 0.00075956851 - 0.00105425746i

Table 6.14: Convergence history of the third and sixth least-stable eigenvalues for a

four-vortex configuration, varying Nθ.

For the remainder of this section we use (Nr, Nθ) = (51, 24) for the production

of our neutral curves. The reasons for this are two-fold. First, we have shown

that for stable modes, the convergence of the eigenvalue is not greatly improved

upon within the range of grid resolutions available, and secondly, this grid size is

the maximum which can be performed on an available single processor machine,

allowing for multiple Re-steps to be run concurrently thus reducing the overall time

required to produce a single neutral curve.



6.6. A COMPARISON OF LOCAL AND GLOBAL CODES 150

6.6 A Comparison of Local and Global Codes

Figure 6.6 shows the neutral curve obtained by locally tracking a particular mode

using the finite-difference iterative methods outlined in section 3.3, superimposed

over a plot of the ωi = 0 contour generated using the global pseudo-spectral solver

for a single Batchelor vortex. The pseudo-spectral solver was used to provide a

starting value for the local code.

In order to concentrate the available resolution closer to the vortex centres,

rmax = 8 was used whereby the axial component of velocity has decayed to zero and

the azimuthal component is essentially a potential vortex as Wp → q/r (but has not

decayed to zero as is explicitly required by the boundary conditions). The domain

size and azimuthal resolution (as the global results are from a two-dimensional code

and not n-dependent) impact on the accuracy of the results at low axial wave-

numbers where the additional demands on the domain size is introduced due to the

slow decay rate of the disturbance in the large r limit.

It can be seen in figure 6.6 that the solid line representing a neutral curve pro-

duced using the finite-difference iterative code closely follows a similar contour pro-

duced by the pseudo-spectral global code with greater agreement as the wave-number

increases. The dashed curves of the global solver are shown to be unresolved at this

resolution for wave-numbers less than α ≈ 0.8. It is also obvious from the results

of the global code that the solid curve would likely level out as the Reynolds num-

ber is increased and that a second neutral curve exists at higher wave-numbers and

Reynolds numbers but has not been reproduced by the local code here.

Figure 6.6 was produced as an example of what could be achieved when certain

concessions are made at the limit of the resolution that our computational resources

allow which is why only a single curve is discussed. For this reason, the results

following consist of global results only which have been shown to be adequately

accurate about the region of neutral stability. The disadvantage of this is the com-

putational time needed to obtain these results and the lack of exact convergence

onto the neutral curve. Despite this however, the results are indicative of the curves

of neutral stability for the vortex configurations and parameters tested.
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Figure 6.6: Neutral curve generated using local code (solid line) superimposed on

the neutral level contours generated using the global pseudo-spectral code.

6.7 A Single Vortex at the Co-ordinate Origin

Unlike the inviscid case where we searched the parameter space for regions of max-

imum instability, the number of extra parameters in the finite Reynolds number

problem make such a study significantly more challenging. The ARPACK routine

that is used to compute the eigenvalues makes use of a shift-and-invert Arnoldi pro-

cess that returns a few eigenvalues in the region of a ‘shift’ value that satisfies a user

specified criterion such as largest magnitude or smallest real component, etc. The

search for a maximum unstable eigenvalue is therefore made difficult as these values

are always clustered about our ‘shift’ parameter, and not simply the most unstable

values of the system. In light of the large amount of previous research into the linear

stability of a single Batchelor vortex we will not present results beyond that which

can be found in sections 3.7.3 and 6.5.1, and concentrate on the multiple vortex

configurations only. It is also useful, in order to best describe particular features of

the neutral stability curves presented, that we define that part of the curve whose

wave-number, α falls above the nose of the curve (critical Reynolds number, Recr)

as the upper branch, and that which falls below, the lower branch.
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6.8 Two-Vortex Configuration

In order to reduce the number of degrees of freedom in our parameter space, we

restrict ourselves to the parameter set used in the inviscid analysis and use the

axial wave-number, α, the swirl rate, q and Reynolds number as our variables. The

vortices are placed at (y, z) = (±2, 0) unless otherwise stated. This will be the

same as the primary vortex spacing to be presented subsequently for the four-vortex

case, allowing us to examine the general effect a secondary set of vortices has on the

region of neutral stability. The axial strength and decay parameters are, as before,

set to unity.

We have endeavoured to find those neutral stability curves which exhibit the low-

est critical Reynolds numbers for each set of parameters explored. Due to limitations

in the iterative process, some modes that clearly cross the neutral axis at certain

wave-numbers are not able to be tracked at others. Further to this, we believe that

the sets of individual eigenvalues predominantly situated at low Reynolds numbers

and higher growth rates are artefacts of the numerical scheme and are spurious. We

also see examples where well structured modes suddenly stop or start. These are

unlikely to be spurious as they persist through several steps of the wave-number,

but rather require a much smaller Reynolds number resolution to obtain the detail

between the current Reynolds number step size. Therefore, the curves shown are

for modes where we could obtain a smooth and continuous curve.

6.8.1 The Swirl q = 1.0

Figure 6.7 shows the growth rates of eight modes situated near the neutral axis for

α = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and 5 ≤ Re < 500 as labelled. Clearly, there are several

distinct modal patterns that, in the sense of this global two-dimensional analysis,

are categorised by the magnitude of their imaginary components. It can be seen

that in several regions of Re , a transition from stable to unstable is observed. By

dividing the α−Re domain into discrete ‘slices’ of α and varying Re we can build up

a complete stability map of the vortex problem for a given set of parameters. Only

a single slice is shown in each plot though, as clarity is lost when several modes at

every α step are shown on the same diagram.
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Figure 6.7: The growth rates of eight modes near the neutral axis for a two-vortex

configuration with q = 1.0 recovered using a two-dimensional global analysis. (a)

α = 0.5, (b) α = 0.6, (c) α = 0.7, (d) α = 0.8, (e) α = 0.9, (f) α = 1.0.

If we focus our attention near Re ≈ 200 and Re ≈ 320 as shown in closer detail in

figure 6.8 for α = 1.0, we can see that two of the ‘smoother’ modal structures become

unstable as Re is increased. The notation A and B is consistently used throughout

the following plots. We can ‘manually’ track these particular modes over the range

of α, distinguishing the mode being tracked from others when two become very close
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by considering the value of the real part of the eigenvalue. By refining the Reynolds

number we can determine the critical Reynolds number for which ωi ≤ 10−6 (thus

ensuring that the maximum error in the Re − α position of the neutral curve is

that of the numerical scheme itself as described earlier) and deem this to be a point

on the neutral curve. Note that this is the limit of the accuracy of our scheme as

detailed in section 6.5. Examining ωr at each α-step allows us to be confident we

are tracking the same mode. Admittedly, this process is labour intensive but as we

are working in regions that have been shown to converge at lower grid resolutions,

the time taken is more acceptable than would otherwise be the case if we had to

perform the iterations at maximum available resolution.
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Figure 6.8: The growth rates of eight modes near the neutral axis for a two-vortex

configuration at α = 1.0 recovered using a two-dimensional global analysis.

Two curves generated in this way, representing the neutral stability of the two-

vortex system, can be seen in figure 6.9 corresponding to the two modes in figure

6.8; the corresponding wave-speeds are given in 6.10. Whilst there are many more

modes relating to the eigenvalues at each α − Re step, the ones given were the

clearest found using the process described. We can see that they are distinct modes

that, at these parameters, exhibit a critical Reynolds number that is significantly
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higher than has been found for a single Batchelor vortex at similar parameters (see

refs [37, 56] among others) whilst remaining in a similar region of α.
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Figure 6.9: Curves of neutral stability for a viscous two-vortex system, q = 1, found

using the same parameters as used in the two-vortex inviscid analysis.

We were unable to track the curves below α ≈ 0.2 but from figure 6.9, the curves

appear to asymptote towards α ≈ 0.15. It is interesting to examine the behaviour

of the curves as α is increased beyond the critical Reynolds number (upper branch).

Compared to published neutral stability curves for a single Batchelor vortex, the

two-vortex curves span a much larger range of α. We can speculate that this is

due to the increased instability of a two-vortex system over the single vortex case,

however, it should also be noted that ωr is increasing beyond the range where we

can be confident that our numerical scheme has converged for the resolution used

as detailed in section 3.7.3.

We choose to examine several further values of swirl, chosen due to their signif-

icance in the stability of an isolated Batchelor vortex. The values chosen are to be

the upper neutral limits of q =
√

2 as found by Stewartson and Brown [57] and later

by Denier and Stott [13], and q = 2.31 as found recently by Heaton [24]. These

values were obtained from an inviscid analysis.
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Figure 6.10: Curves of ωr vs Re for a viscous two-vortex system with q = 1, found

using the same parameters as used in the two-vortex inviscid analysis.

6.8.2 The Swirl q =
√

2

In what follows we set the swirl parameter to q =
√

2. Figure 6.11 displays the eight

least stable modes from which we can see a more consistent pattern of modes than

is found in figure 6.7, all following a similar shape and relatively closely spaced. For

our analysis, we chose to follow the mode that appears as the second least stable over

most of the domain shown and crosses the neutral axis at Re ≈ 130 as illustrated

more clearly in figure 6.12, marked as A.

We can see from figure 6.13 that the curve formed is smooth and continuous

throughout the wave-numbers displayed. We find the critical Reynolds number to

be at α ≈ 1.2 on the nose of the curve. Similarly to the previous case, we encounter

problems tracking the curve as it approaches a constant wave-number in the lower

branch. This is emphasised in figure 6.14, the plot of ωr, from which we can see at

a Reynolds number of approximately 130 the curve appears to diverge. We could

speculate that this is due to mode crossing, however, we do not recover a second

eigenvalue with a similar wave-speed at this point.
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Figure 6.11: The growth rates of eight modes near the neutral axis for a two-vortex

configuration with q =
√

2 recovered using a two-dimensional global analysis. (a)

α = 0.5, (b) α = 0.6, (c) α = 0.7, (d) α = 0.8, (e) α = 0.9, (f) α = 1.0.
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Figure 6.12: The growth rates of eight modes near the neutral axis for a two-vortex

configuration with q =
√

2 at α = 1.0 recovered using a two-dimensional global

analysis.
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Figure 6.13: A curve of neutral stability for a viscous two-vortex system with q =
√

2,

found using the same parameters as used in the two-vortex inviscid analysis.
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Figure 6.14: A curve of ωr vs Re for a viscous two-vortex system, q =
√

2, found

using the same parameters as used in the two-vortex inviscid analysis.

6.8.3 The Swirl q = 2.31

As the swirl number is increased from
√

2 to 2.31, we can see that the growth rates of

the least stable modes (figure 6.15) are very similar, consisting of a distinct dominant

mode that appears to have a rapid transition through neutral stability, followed by

one or two well defined modes with the rest being very similar and located near the

neutral axis.

As before we choose to follow the unstable mode that crosses the neutral axis

at Re ≈ 120 when α = 1.0, marked A in figure 6.16, due to it being well defined

about the neutral axis. However, figure 6.17 shows a region just above the nose of

the curve where the curve fails to maintain a smooth form, a feature also exhibited

in the real component, figure 6.18. This behaviour is quite unexpected as we find

only one distinct near-neutral mode at each α−Re combination. We believe this is

more likely due to the numerical limitations alluded to earlier although the general

shape of the curve is not adversely affected. Unlike the case where q =
√

2, however,

at lower wave-numbers we see a continuous smooth transition towards a constant

value in both the real and imaginary components of ω.
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Figure 6.15: The growth rates of eight modes near the neutral axis for a two-vortex

configuration with q = 2.31 recovered using a two-dimensional global analysis. (a)

α = 0.5, (b) α = 0.6, (c) α = 0.7, (d) α = 0.8, (e) α = 0.9, (f) α = 1.0.
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Figure 6.16: The growth rates of eight modes near the neutral axis for a two-vortex

configuration with q = 2.31 at α = 1.0 recovered using a two-dimensional global

analysis.
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Figure 6.17: A curve of neutral stability for a viscous two-vortex system with q =

2.31, found using the same parameters as used in the two-vortex inviscid analysis.
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Figure 6.18: A curve of ωr vs Re for a viscous two-vortex system, q = 2.31, found

using the same parameters as used in the two-vortex inviscid analysis.

6.8.4 The Swirl q = 2.31, with y = 0.8

In our inviscid analysis, we established that a two-vortex configuration was at its

most unstable when the vortex spacing was y = 0.8 from the origin. Here we present

a neutral curve found using this spacing and a swirl value of q = 2.31. In figure

6.19 we can see that the pattern of modes are significantly more localised about

the neutral axis than for y = 2. Figure 6.20 shows, for α = 1.0, a single dominant

mode, marked as A, becoming unstable at Re ≈ 160 . Further modes which become

unstable at higher Reynolds numbers are generally too close numerically to each-

other for this type of ‘manual’ iteration to be effective.

In figures 6.21 and 6.22 we present plots of the neutral curve and real component

of the eigenvalue respectively, for the mode in figure 6.19 that becomes neutrally

stable at Re ≈ 160. If we compare these plots with those for the same value of

swirl at y = 2 we can see that in figure 6.19 the narrower spacing has the effect of

producing a more distinct set of curves which, as the Reynolds number is increased,

approach a constant, stable value. At low Reynolds numbers, this stable form can be
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seen for both vortex separation distances. We might expect that as the separation

distance progressively narrows towards the point where a single, double strength

vortex is approximated, the unstable curves seen in figure 6.19 will all become stable

at the Reynolds numbers examined here.
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Figure 6.19: The growth rates of eight modes near the neutral axis for a two-vortex

configuration with q = 2.31 and y = 0.8 recovered using a two-dimensional global

analysis. (a) α = 0.5, (b) α = 0.6, (c) α = 0.7, (d) α = 0.8, (e) α = 0.9, (f) α = 1.0.
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Figure 6.20: The growth rates of eight modes near the neutral axis for a two-

vortex configuration with q = 2.31 and y = 0.8 at α = 1.0 recovered using a

two-dimensional global analysis.
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Figure 6.21: A curve of neutral stability for a viscous two-vortex system with q =

2.31 anad y = 0.8, using the same parameters as the two-vortex inviscid analysis.
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Figure 6.22: A curve of ωr vs Re for a viscous two-vortex system, q = 2.31 and

y = 0.8, found using the same parameters as used in the two-vortex inviscid analysis.

6.9 Four-Vortex Configuration

We now present curves of neutral stability for a four-vortex configuration with the

primary (outboard) vortices being represented by the two-vortex configuration stud-

ied previously (y = 2). Secondary vortices are placed at (y2, z2) = (0.35, 0) as used

in the inviscid analysis.

6.9.1 The Swirl q = 1.0

Figure 6.23 gives the eight least stable modes recovered close to neutral stability

for α as stated. As with the two-vortex case there exist several clearly defined

modes that undergo a transition from a state of stability to instability. We then

follow the curves belonging to the growth rate curves found at Re ≈ 150 and 250

highlighted in figure 6.24 as A and B respectively which are given in figures 6.25

and 6.26 for ωi and ωr respectively. We can see that from figure 6.25, both curves

exhibit critical Reynolds numbers between 1.0 ≤ α ≤ 1.3. We see evidence of the
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disjointedness experienced in section 6.8.2 for the curve A as we approach lower

wave-numbers which can be attributed to numerical difficulties in tracking these

modes along the lower branch of the neutral curve. Importantly though, the critical

Reynolds numbers for both curves can be ascertained as Recr ≈ 152.3 and 250.6 at

α = 1.1 in both cases.
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Figure 6.23: The growth rates of eight modes near the neutral axis for a four-vortex

configuration with q = 1.0 recovered using a two-dimensional global analysis. (a)

α = 0.5, (b) α = 0.6, (c) α = 0.7, (d) α = 0.8, (e) α = 0.9, (f) α = 1.0.
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Figure 6.24: The growth rates of eight modes near the neutral axis for a four-vortex

configuration with q = 1.0 at α = 1.0 recovered using a two-dimensional global

analysis.
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Figure 6.25: Curves of neutral stability for a viscous four-vortex system with q = 1.0,

found using the same parameters as used in the four-vortex inviscid analysis.
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Figure 6.26: Curves of ωr vs Re for a viscous four-vortex system with q = 1.0, found

using the same parameters as used in the four-vortex inviscid analysis.

6.9.2 The Swirl q =
√

2

As with the previous analyses, we present the growth rates of the eight least stable

modes through 5 ≤ Re < 500 for a number of values of α in figure 6.27 and for

α = 1.0 in figure 6.28, followed by the neutral curve and curve of ωr for the first

continuous mode that crosses the neutral axis. In figure 6.28 this can be seen to

cross ωi = 0 at Re ≈ 105.

From figure 6.29 we can obtain a critical Reynolds number at α ≈ 1.25 with

the lower portion of the curve approaching a constant value. It is probable that,

from the disjointed nature of the curve at Re ≈ 130 on the lower branch (noting

the similarity between this and the two-vortex case for q =
√

2 in section 6.8.2), a

smaller α step size would be better suited to resolve the lower branch of the neutral

curve.

If we then compare the neutral curve plots for the two-vortex case (figure 6.13)

with that of the four-vortex configuration for q =
√

2 (figure 6.29) we can see that

the shape of the curves are very similar and that the secondary vortices in the four-

vortex configuration has the effect of lowering the critical Reynolds number slightly.
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The real components of the eigenvalues are of a similar magnitude in both the two

and four-vortex configurations which leads us to believe that we are seeing the effects

of including a secondary set of vortices on the four-vortex neutral curve and not just

an altogether different mode.
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Figure 6.27: The growth rates of eight modes near the neutral axis for a four-vortex

configuration with q =
√

2 recovered using a two-dimensional global analysis. (a)

α = 0.5, (b) α = 0.6, (c) α = 0.7, (d) α = 0.8, (e) α = 0.9, (f) α = 1.0.
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Figure 6.28: The growth rates of eight modes near the neutral axis for a four-vortex

configuration with q =
√

2 at α = 1.0 recovered using a two-dimensional global

analysis.
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Figure 6.29: Curves of neutral stability for a viscous four-vortex system with q =
√

2,

found using the same parameters as used in the four-vortex inviscid analysis.
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Figure 6.30: Curves of ωr vs Re for a viscous four-vortex system with q =
√

2, found

using the same parameters as used in the four-vortex inviscid analysis.

6.10 Conclusions

We have utilised a two-dimensional, global numerical scheme that has been shown

to be accurate near the neutral stability limit, however, computational limitations

mean that large global studies such as those presented here have to be performed

at a lower resolution for them to be feasible in terms of computational time. The

results presented allow us to identify some general trends in the stability of multiple

vortex configurations. These facts notwithstanding, the curves of neutral stability

produced herein are expected to be a good representation of the true form and

provide a useful insight into the viscous stability of multiple tip vortices.

The introduction of a second pair of vortices modifies the stability characteristics

of the flow by appearing to lower the critical Reynolds number of the first trackable

mode. We also see that for q = 1, the four-vortex case produces curves whose nose

is spread over a greater range of α but are less defined for lower wave-numbers as

opposed to the well defined two-vortex curves at low α. For q =
√

2, the curves

of the two and four-vortex configurations are quite similar in form yet the four-
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vortex curve still displays a lower Recr. Our results indicate that a second pair of

vortices has a destabilising effect whose influence will depend on the spacing of the

secondary vortex pair and the value of swirl (the lower the swirl, the more the flow

is destabilised as seen by the larger range of α).



Chapter 7

Concluding Remarks

This study has aimed to provide a comprehensive description of the linear stabil-

ity analysis of multiple component axial and swirling flows, primarily the wing-tip

vortex problem as modelled using the classical Batchelor (or q) vortex. The results

presented are for this category of basic flow, however, the methods used are not

restricted to this case and can readily be applied to many different forms of steady

flow (such as the pipe Hagen-Poiseuille flow used to verify the codes) over a closed

domain where the shape and focus of the discretisation grid can be controlled by

applying an appropriate grid transformation algorithm.

Results have been presented that outline particular vortex configurations and

parameters that are effective at increasing the system instability as in the inviscid

case, that explain what happens to these instabilities as the aircraft speed increases

and also where the transition from stable to unstable occurs for particular viscous

modes. But where do these results fit into the overall wake vortex hazard problem?

It was stated in the introduction that no single piece of research will be the

defining solution to this particular problem, the preceding study is no exception to

this, however, in terms of an inviscid analysis we have identified a set of parameters

that will lead to faster vortex dissipation. Until now, two-dimensional global studies

of viscous instabilities in a vortex flow have been limited to either a single Batchelor

vortex or simply the recovery of the eigenspectra of multiple vortex configurations.

Our work is the first to produce a series of curves of neutral stability for the multiple

vortex case using a two-dimensional global approach and as such provide predictions
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for the critical Reynolds number of such flows.

In light of the previous comments, several recommendations to the progression

of this work can be made. It would be of great interest to attempt to reproduce

some of the results experimentally, the nature of the inviscid basic flow lends itself

to replication by experimentalists. Whilst it would be difficult to obtain specific

stability values, observing the transition to turbulence of various configurations of

vortices would be more straight forward. In terms of the viscous stability analysis

presented here, it would be useful to produce a full range of neutral stability curves

for the multiple vortex configurations and, as has been done extensively for a single

Batchelor vortex, explore the values of swirl for which the flow remains unstable.

The results of this study indicate that it is much higher than for a single vortex.

Perhaps though, the most important future development in terms of the numerical

treatment of the wake vortex problem will be the improvement in computational

techniques and resources to allow for much larger, more accurate viscous stability

studies to be undertaken in more realistic time-frames.



Appendix A

A.1 Constructing Two-dimensional Differentiation

Matrices

Using the one-dimensional differentiation matrices derived for both the ‘local’ and

‘global’ codes, a two-dimensional differentiation matrix can now be constructed

which will allow the discretisation of the governing equation. Figure A.1 illustrates

a simplified discretised domain.
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Figure A.1: Example of a small two-dimensional discretised domain

Suppose an appropriate differentiation matrix for the above domain in both the y

and the z directions is;

D =











a 0 0

0 b 0

0 0 c











.
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It is convenient to order the values at each grid point as a vector of Ny block rows

with each column containing Nz entries. The vector P will then be

P =
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.

In the one-dimensional case, the differentiation matrices act as follow
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.

So, in the two-dimensional case, the one-dimensional differentiation matrix with

respect to y is written as

D(2D)
y = Dy ⊗ Iz =
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and with respect to z

D(2D)
z = Iy ⊗ Dz =
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(z1)
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(z3)

where ⊗ defines the Kronecker tensor product. Therefore, to construct our two-

dimensional differentiation matrix we combine the directional two-dimensional ma-

trices such that,

D(2D) = D(2D)
y + D(2D)

z = (Dy ⊗ Iz) + (Iy ⊗Dz),

and similarly for higher order derivatives.





Appendix B

B.1 Derivation of Two-parameter Viscous Eigen-

value Problem

B.1.1 Cartesian Co-ordinates

Starting with equations (2.2.26) – (2.2.29), the reduced governing equations in their

complete form are

iαUp +
∂Vp

∂y
+

∂Wp

∂z
= 0, (B-1)

iα(U − c)Up + Vp
∂U

∂y
+ Wp

∂U

∂z
+ V

∂Up

∂y
+ W

∂Up

∂z

= −iαPp +
1

Re

(

−α2Up +
∂2Up

∂y2
+

∂Up

∂z2

)

, (B-2)

iα(U − c)Vp + Vp
∂V

∂y
+ Wp

∂V

∂z
+ V

∂Vp

∂y
+ W

∂Vp

∂z

= −∂Pp

∂y
+

1

Re

(

−α2Vp +
∂2Vp

∂y2
+

∂Vp

∂z2

)

, (B-3)

iα(U − c)Wp + Vp
∂W

∂y
+ Wp

∂W

∂z
+ V

∂Wp

∂y
+ W

∂Wp

∂z

= −∂Pp

∂z
+

1

Re

(

−α2Wp +
∂2Wp

∂y2
+

∂Wp

∂z2

)

. (B-4)

Differentiating (B-2) with respect to y yields

iα(U − c)
∂Up

∂y
+ iα

∂U

∂y
Up +

∂U

∂y

∂Vp

∂y
+

∂2U

∂y2
Vp +

∂U

∂z

∂Wp

∂y
+

∂2U

∂z∂y
Wp

+
∂V

∂y

∂Up

∂y
+ V

∂2Up

∂y2
+

∂W

∂y

∂Up

∂z
+ W

∂2Up

∂z∂y

= −iα
∂Pp

∂y
+

1

Re

(

−α2 ∂

∂y
+

∂3

∂y3
+

∂3

∂z2∂y

)

Up, (B-5)

179



APPENDIX B. 180

and similarly differentiating (B-2) with respect to z gives

iα(U − c)
∂Up

∂z
+ iα

∂U

∂z
Up +

∂U

∂y

∂Vp

∂z
+
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1

Re

(

−α2 ∂
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+

∂3

∂y2∂z
+

∂3

∂z3

)

Up. (B-6)

Multiplying (B-3) by iα gives

− α2(U − c)Vp + iα

(

∂V

∂y
Vp +

∂V

∂z
Wp + V

∂Vp

∂y
+ W

∂Vp

∂z

)

= −iα
∂Pp

∂y
+

iα

Re

(

−α2 +
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∂y2
+

∂2

∂z2

)

Vp, (B-7)

and similarly multiplying (B-4) by iα gives

− α2(U − c)Wp + iα

(

∂W

∂y
Vp +

∂W

∂z
Wp + V

∂Wp
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)
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iα

Re

(

−α2 +
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∂z2

)

Wp. (B-8)

Now, subtracting (B-7) from (B-5) yields

iα(U − c)
∂Up

∂y
+ iα

∂U

∂y
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)

Vp. (B-9)

From (B-1) we write

Up = − 1

iα

(

∂Vp

∂y
+

∂Wp

∂z

)

, (B-10)

from which we can obtain the following derivatives;

∂Up

∂y
= − 1

iα

(

∂2Vp

∂y2
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∂2Wp

∂z∂y

)

, (B-11)

∂2Up
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= − 1

iα

(

∂3Vp

∂y3
+

∂3Wp

∂z∂y2

)

, (B-12)

∂3Up

∂y3
= − 1

iα

(

∂4Vp

∂y4
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∂4Wp

∂z∂y3

)

, (B-13)
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∂2Up

∂z∂y
= − 1
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, (B-14)
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, (B-16)
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(
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, (B-17)

∂3Up

∂z3
= − 1

iα

(
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, (B-18)

∂3Up

∂y2∂z
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iα

(

∂4Vp
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∂4Wp

∂z2∂y2

)

. (B-19)

Substituting (B-10) – (B-19) into equation (B-9), expanding the (U − c) term and

separating the coefficients of Vp and Wp, we are left with the left hand side of the

equation in the form

− U
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Let,

A2 =

(

∂2

∂y2
− α2

)

,

A1 = −UA2 + {· · · } .

where {· · · } represents the portion of equation (B-20) that is found between the

braces. The right hand side of the equation then becomes
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Let,

B2 =
∂2

∂z∂y
,

B1 = UB2 + {· · · } .

Therefore we can write the final equation as

−A1Vp + B1Wp = c(A2Vp + B2Wp). (B-22)

Similarly subtracting equation (B-8) from (B-6) gives
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where we can substitute expressions for Up (and the relevant derivatives) into equa-

tion (B-23), expanding the (U − c) term and separating the coefficients of Vp and

Wp, the left hand side of the equation becomes
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Let,

A4 =

(

∂2

∂z2
− α2

)

,

A3 = −UA4 + {· · · } .

and the right hand side,
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Let,

B4 =
∂2

∂y∂z
,

B3 = UB4 + {· · · } .

Therefore we can write

A3Wp − B3Vp = c(−A4Wp − B4Vp). (B-26)

Equations (B-22) and (B-26) can be arranged into a matrix equation to form a

Generalised Eigenvalue Problem of the form Ax = cBx. The eigenfunctions x (or

[Vp; Wp]) can only exist if α and ω are constrained to satisfy the Dispersion Relation,

D[α, ω; R] = 0, where R is some system parameter, such as the Reynolds number.

We write





−A1 B1

B3 −A3









Vp

Wp



 = c





A2 B2

B4 A4









Vp

Wp



 . (B-27)

If we write equations (B-22) and (B-26) in terms of their linear operators

(A1 + cA2)Vp = (B1 − cB2)Wp, (B-28)

(A3 + cA4)Wp = (B3 − cB4)Vp, (B-29)

our two equations (with the cross-flow components removed) take the form as used

by Tatsumi and Yoshimura [61], which can be thought of as a two-dimensional

extension of the one-dimensional Orr-Sommerfeld equation. Using the terminology

of Tatsumi and Yoshimura [61] we write

E(y, z)Vp = O(y, z)Wp, (B-30)

E(z, y)Wp = O(z, y)Vp. (B-31)

where E and O are the linear operators derived previously which under closer ex-

amination, are equivalent with the spatial parameters y and z switched.
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B.1.2 Cylindrical Polar Co-ordinates

Starting with equations (2.3.12) – (2.3.15) we first differentiate (2.3.15) with respect

to r
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∂r
+ iα

∂U
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and differentiate (2.3.15) with respect to θ
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Multiplying (2.3.13) by iα gives

−α2(U − c)Vp +
iαW

r

∂Vp

∂θ
= −iα

∂Pp

∂r
+

iα

Re
L(Vp) −

2iα

r2Re

∂Wp

∂θ
, (B-34)

and similarly multiplying (2.3.14) by iαr gives

− α2r(U − c)Wp + iα

(

W
∂Wp

∂θ
+ r

∂W

∂r
Vp +

∂W

∂θ
Wp + WVp

)

= −iα
∂Pp

∂θ
+

iαr

Re
L(Wp) −

2iα

rRe

∂Vp

∂θ
. (B-35)

Now, if we subtract equation (B-34) from (B-32) we obtain

iα(U − c)
∂Up

∂r
+ iα

∂U

∂r
Up +

(

1

r

∂W

∂r
− W

r2

)

∂Up

∂θ
+

W

r

∂2Up

∂θ∂r

+
∂U

∂r

∂Vp

∂r
+

∂2U

∂r2
Vp +

1

r

∂U

∂θ

∂Wp

∂r
− 1

r2

∂U

∂θ
Wp

+
1

r

∂2U

∂θ∂r
Wp + α2(U − c)Vp −

iαW

r

∂Vp

∂θ
=

1

Re

[

1

r

∂2Up

∂r2

− 1

r2

∂Up

∂r
+

∂3Up

∂r3
− 2

r3

∂2Up

∂θ2
+

1

r2

∂3Up

∂θ2∂r
− α2∂Up

∂r

]

− iα

Re
L(Vp) +

2iα

r2Re

∂Wp

∂θ
. (B-36)

From equation (2.3.12) we write

Up = − 1

iα

(

Vp

r
+

∂Vp

∂r
+

1

r

∂Wp

∂θ

)

, (B-37)
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from which we can obtain the following derivatives

∂Up

∂r
= − 1

iα

(

1

r

∂Vp

∂r
− Vp

r2
+

∂2Vp

∂r2
− 1

r2

∂Wp

∂θ
+

1

r

∂2Wp

∂θ∂r

)

, (B-38)

∂Up

∂θ
= − 1

iα

(

1

r

∂Vp

∂θ
+

∂2Vp

∂r∂θ
+

1

r

∂2Wp

∂θ2

)

, (B-39)

∂2Up

∂r2
= − 1
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1
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, (B-40)

∂2Up

∂θ2
= − 1

iα

(

1

r

∂2Vp

∂θ2
+

∂3Vp

∂r∂θ2
+

1

r
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∂θ3

)

, (B-41)

∂3Up

∂r3
= − 1
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(

1

r

∂3Vp

∂r3
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r2

∂2Vp

∂r2
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, (B-42)

∂3Up

∂θ2∂r
= − 1
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, (B-43)

∂2Up
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∂3Up
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∂3Up

∂θ3
= − 1
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1
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∂θ3
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∂4Vp

∂r∂θ3
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∂4Wp

∂θ4
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. (B-46)

Substituting (B-37) – (B-46) into equation (B-36), expanding the (U − c) term and

separating the coefficients of Vp and Wp, we are left with the left hand side of the

equation in the form
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Let,
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r
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The right hand side becomes
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Let,

B2 =

(

− 1

r2
+

1

r

∂

∂r

)

∂

∂θ
,

B1 = UB2 + {· · · } .

We can then write the full equation as

A1Vp − B1Wp = c(A2Vp − B2Wp). (B-49)

Subtracting equation (B-35) from (B-33) gives
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, (B-50)

where we can substitute expressions for Up (and derivatives thereof) into equation

(B-50), expanding the (U − c) term and separating the coefficients of Vp and Wp,
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where once again we write the left hand side of the equation as
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Let,
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,

A3 = UA4 + {· · · } .

The right hand side is written in the form
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Let,

B4 =

(

1

r

∂2

∂θ2
− α2r

)

,

B3 = UB4 + {· · · } .

We can then write the full equation as

A3Vp − B3Wp = c(A4Vp − B4Wp). (B-53)

Equations (B-49) and (B-53) can be arranged into a matrix equation to form a

Generalised Eigenvalue Problem of the form Ax = cBx, subject to D[α, ω; R] = 0;




A1 −B1

A3 −B3









Vp

Wp



 = c





A2 B2

A4 −B4









Vp

Wp



 . (B-54)

Unlike the Cartesian form, the four linear operators are unable to be written in terms

of an odd and even operator with the order of the differentiation terms reversed.





Appendix C

C.1 Numerical Convergence of Cartesian Pseudo-

spectral code

Here we present a convergence study of the accuracy of the least stable eigenvalues

recovered using the Cartesian based pseudo-spectral code.

C.1.1 Single Vortex Numerical Convergence

Figure C.1 is a plot of the smallest stable eigenvalues found by setting the ARPACK

shift parameter σ = 0−0i (to find eigenvalues about the neutral axis) for (Ny, Nz) =

(51, 51); (55, 55); (61, 61); (65, 65) and (sy, sz) = (0.975, 0.975), from which it can be

seen that good convergence is reached at (Ny, Nz) = (51, 51) for the first 10 or

so modes. The values α = 0.418, q = 0.475 and Re = 100 correspond to those

used by Theofilis et al. [25] and are a useful visual comparison with the results

presented herein. Increasing the spectral accuracy does improve the convergence for

more stable modes but a significant increase in the number of grid points is required

to resolve these further which in turn involves excessive run-times and significant

memory overheads.

Looking at the eigenvalues for a range of (Ny, Nz), table C.1 shows that, for the

two ‘least-stable’ modes, approximately 5 decimal place convergence is achievable

with (Ny, Nz) = (41, 41) and six decimal place accuracy with (Ny, Nz) = (61, 61) in

both the real and imaginary components using (sy, sz) = (0.95, 0.95).

Table C.2 gives the convergence history of the same least-stable modes for a

variation in the grid clustering rate from none, through to very heavy clustering
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about the co-ordinate origin with (Ny, Nz) = (61, 61). The results indicate that in

both cases a high degree of convergence is seen at (sy, sz) = (0.95, 0.95) but the

eigenvalue appears to be relatively well resolved for lower degrees of clustering. At

(sy, sz) = (0.975, 0.975) the values appear to diverge, perhaps indicating that too

few points are left in the outer regions with this much concentration.
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Figure C.1: Convergence of eigenvalues for the viscous stability of a single vortex.

In descending size of marker, (Ny, Nz) = (a) (51, 51), (b) (55, 55), (c) (61, 61) and

(d) (65, 65) - dots.

(Ny, Nz) ‘Mode 1’ ‘Mode 2’

(41,41) 0.00000074 - 0.00178885i 0.00000379 - 0.00197827i

(45,45) 0.00000058 - 0.00178896i 0.00000296 - 0.00197937i

(51,51) 0.00000062 - 0.00178941i 0.00000078 - 0.00197953i

(55,55) 0.00000042 - 0.00178961i 0.00000037 - 0.00198069i

(61,61) -0.00000002 - 0.00178987i 0.00000053 - 0.00198312i

(65,65) -0.00000013 - 0.00179015i 0.00000015 - 0.00198436i

Table C.1: Convergence history of the two least-stable eigenvalues for a single vortex,

varying (Ny, Nz).
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s ‘Mode 1’ ‘Mode 2’

0 -0.00000834 - 0.00179135i -0.00002418 - 0.00198499i

0.5 -0.00000362 - 0.00179561i -0.00001182 - 0.00198899i

0.6 -0.00000201 - 0.00179664i -0.00000756 - 0.00200246i

0.7 -0.00000218 - 0.00179927i -0.00000915 - 0.00201017i

0.8 -0.00114239 - 0.00179469i -0.00000754 - 0.00180501i

0.9 -0.00001640 - 0.00179716i -0.00005115 - 0.00200524i

0.95 -0.00000144 - 0.00179283i -0.00000469 - 0.00199318i

0.975 -0.00000002 - 0.00178987i -0.00000053 - 0.00199312i

Table C.2: Convergence history of the two least-stable eigenvalues for a single vortex,

varying the clustering parameter, s.

To further illustrate the numerical convergence of the scheme for those values

found closest to the neutral axis, convergence histories of the subsequent four modes

are given below relative to an increase in spectral accuracy.

(Ny, Nz) ‘Mode 3’ ‘Mode 4’

(41,41) -0.00058215 - 0.00200927i 0.00058392 - 0.00201160i

(45,45) -0.00057786 - 0.00201482i 0.00057878 - 0.00201597i

(51,51) -0.00057746 - 0.00202132i 0.00057807 - 0.00202166i

(55,55) -0.00057807 - 0.00202441i 0.00057851 - 0.00202436i

(61,61) -0.00057957 - 0.00202735i 0.00057975 - 0.00202707i

(65,65) -0.00058050 - 0.00202831i 0.00058059 - 0.00202803i

Table C.3: Convergence history of the third and fourth least-stable eigenvalues for

a single vortex, varying (Ny, Nz).

C.1.2 Two-Vortex Numerical Convergence

Figure C.2 represents the spectra of least-stable values as found by setting the

vortices at (y, z) = (2.0, 0). As before we see good convergence near the point of

neutral stability.
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(Ny, Nz) ‘Mode 5’ ‘Mode 6’

(41,41) 0.00090789 - 0.00216179i -0.00090804 - 0.00216223i

(45,45) 0.00096037 - 0.00219336i -0.00096085 - 0.00219333i

(51,51) 0.00099048 - 0.00218168i -0.00099052 - 0.00218148i

(55,55) 0.00099987 - 0.00218591i -0.00099984 - 0.00218576i

(61,61) 0.00101607 - 0.00218673i -0.00101596 - 0.00218666i

(65,65) 0.00102145 - 0.00218436i -0.00102136 - 0.00218437i

Table C.4: Convergence history of the fifth and sixth least-stable eigenvalue for a

single vortex, varying (Ny, Nz).
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Figure C.2: Convergence of eigenvalues for the viscous stability of a two-vortex

configuration. In descending size of marker, (Ny, Nz) = (a) (51, 51), (b) (55, 55), (c)

(61, 61) and (d) (65, 65) - dots.

Table C.5 gives the two least-stable eigenvalues for the same variation in (Ny, Nz)

as was used earlier. The clustering for the two-vortex configuration is set at (sy, sz) =

(0.93, 0.95), sy = 0.93 was chosen to slightly relax the clustering in the plane of two

vortices as they sit away from the origin. It can be seen that again, five decimal

place convergence is achieved at relatively low grid resolutions with six decimal place
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convergence for a higher number of grid points.

(Ny, Nz) ‘Mode 1’ ‘Mode 2’

(41,41) 0.00000472 - 0.00180671i 0.00000571 - 0.00204316i

(45,45) 0.00000480 - 0.00180707i 0.00000925 - 0.00204615i

(51,51) 0.00000319 - 0.00180664i 0.00001350 - 0.00204530i

(55,55) 0.00000317 - 0.00180643i 0.00001304 - 0.00204501i

(61,61) 0.00000399 - 0.00180659i 0.00000949 - 0.00204387i

(65,65) 0.00000380 - 0.00180647i 0.00000923 - 0.00204370i

Table C.5: Convergence history of the two least-stable eigenvalues for a two-vortex

configuration, varying (Ny, Nz).

The convergence histories of four further modes are given below for comparison.

It should be noted that for all the convergence histories proceeding and following,

the mode numbers stated are purely arbitrary and assigned only by descending order

of magnitude of the imaginary component of the eigenvalue as obtained from the

initial resolution study.

(Ny, Nz) ‘Mode 4’ ‘Mode 5’

(41,41) -0.00287834 - 0.00252238i 0.00293804 - 0.00252701i

(45,45) -0.00284181 - 0.00246741i 0.00285589 - 0.00245802i

(51,51) -0.00280657 - 0.00249042i 0.00281019 - 0.00248474i

(55,55) -0.00281453 - 0.00250991i 0.00281886 - 0.00250503i

(61,61) -0.00283033 - 0.00250667i 0.00283611 - 0.00249923i

(65,65) -0.00282734 - 0.00250058i 0.00283142 - 0.00249201i

Table C.6: Convergence history of the fourth and fifth least-stable eigenvalues for a

two-vortex configuration, varying (Ny, Nz).

C.1.3 Four-Vortex Numerical Convergence

The vortices are at (y1, y2) = (5, 0.7) with a2 = 0.5 and q2 = −0.19 corresponding

to the ratios of Theofilis et al. [25], α = 0.3 and Re = 100. The clustering param-
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eters were left the same as for the two-vortex case and appear to be appropriate

for the four-vortex configuration. Figure C.3 illustrates the region of convergence

of the eigenvalues showing the now familiar convergence of least-stable values at

manageable problem dimensions.

(Ny, Nz) ‘Mode 3’ ‘Mode 8’

(41,41) 0.00003491 - 0.00246221i -

(45,45) 0.00003245 - 0.00244688i 0.00005551 - 0.00313659i

(51,51) 0.00001937 - 0.00244734i 0.00005043 - 0.00302383i

(55,55) 0.00001908 - 0.00244570i 0.00004482 - 0.00300738i

(61,61) 0.00002536 - 0.00244479i 0.00003073 - 0.00299789i

(65,65) 0.00002396 - 0.00244321i 0.00002988 - 0.00299496i

Table C.7: Convergence history of the third and eighth least-stable eigenvalue for a

two-vortex configuration, varying (Ny, Nz).
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Figure C.3: Convergence of eigenvalues for the viscous stability of a four-vortex

configuration. In descending size of marker, (Ny, Nz) = (a) (51, 51), (b) (55, 55), (c)

(61, 61) and (d) (65, 65) - dots.
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In table C.8 we see a similar pattern of numerical convergence; approximately

five decimal places at the starting resolution and approaching six decimal places as

the resolution increases with some fluctuation in predominantly the real component.

(Ny, Nz) ‘Mode 1’ ‘Mode 2’

(41,41) 0.00001289 - 0.00096099i 0.00004293 - 0.00117880i

(45,45) 0.00001981 - 0.00096266i 0.00003993 - 0.00118049i

(51,51) 0.00001213 - 0.00096111i 0.00002262 - 0.00118277i

(55,55) 0.00001203 - 0.00096110i 0.00003326 - 0.00118286i

(61,61) 0.00000940 - 0.00096149i 0.00002258 - 0.00118953i

(65,65) 0.00001193 - 0.00096115i 0.00002676 - 0.00118199i

Table C.8: Convergence history of the two least-stable eigenvalues for a four-vortex

configuration, varying (Ny, Nz).

As before, we present convergence histories of some further eigenvalues to illus-

trate the convergence of the numerical scheme as ωi → 0.

(Ny, Nz) ‘Mode 3’ ‘Mode 4’

(41,41) 0.00069685 - 0.00121913i -0.00069794 - 0.00122124i

(45,45) 0.00069716 - 0.00121982i -0.00069701 - 0.00122069i

(51,51) 0.00069755 - 0.00122197i -0.00069718 - 0.00122209i

(55,55) 0.00069834 - 0.00122365i -0.00069807 - 0.00122374i

(61,61) 0.00070001 - 0.00122572i -0.00069987 - 0.00122576i

(65,65) 0.00070102 - 0.00122651i -0.00070097 - 0.00122670i

Table C.9: Convergence history of the third and fourth least-stable eigenvalues for

a four-vortex configuration, varying (Ny, Nz).
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(Ny, Nz) ‘Mode 5’ ‘Mode 6’

(41,41) 0.00128230 - 0.00141518i -0.00128216 - 0.00141588i

(45,45) 0.00125472 - 0.00139888i -0.00125469 - 0.00139943i

(51,51) 0.00123321 - 0.00141259i -0.00123317 - 0.00141294i

(55,55) 0.00123195 - 0.00141849i -0.00123192 - 0.00141873i

(61,61) 0.00123173 - 0.00141741i -0.00123166 - 0.00141754i

(65,65) 0.00123034 - 0.00141560i -0.00123026 - 0.00141571i

Table C.10: Convergence history of the fifth and sixth least-stable eigenvalue for a

four-vortex configuration, varying (Ny, Nz).



Appendix D

D.1 Further Detail of Viscous Code Verification

D.1.1 Axial flow in a Rectangular Duct

In figures D.1 and D.2, the eigenvalue spectra for flow in a duct recovered by the

two-equation, fourth order derivative model using finite-difference discretisation and

those eigenvalues recovered using the four-equation, second order derivative model

implementing pseudo-spectral discretisation are shown respectively corresponding

to the parameters outlined in section 3.7.3.

The results presented in figure D.1, although producing the ‘primary’ modes,

suffer from a lack of grid resolution about the boundaries hence the lack of further

modes in this figure. The results in figure D.2 demonstrate a more defined band

of values about ωr ≈ 0.67 consisting of multiple values relating to each of the four

eigenfunctions.

D.1.2 Axial flow in a Circular Pipe

Figure D.3 shows the eigenvalue spectra recovered for Hagen-Poiseuille flow in a pipe

by the two-equation pseudo-spectral code. The one-dimensional values of Schmid

and Henningson [51] (and recovered by a one-dimensional, n-dependent code written

for this study) are superimposed as circles.

D.1.3 A Single Batchelor Vortex Located at the Origin

To further test the validity of the numerical methods used for the analysis in this

study, we computed eigenvalue spectra for a single Batchelor vortex from two dis-
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tinctly different codes (namely the Cartesian and polar co-ordinate codes) and com-

pared these for a set of determining parameters. It should also be remembered that

due to the symmetry used in the discretisation of the polar domain, at an equiv-

alent resolution, we would expect this scheme to produce more accurate results.

Figure D.4 shows the spectra of figure 3.20 in section 3.7.3, from the polar code

with the Cartesian spectra of the same parameters superimposed as circles. We can

see that the least stable modes are in close agreement and that the entire structure

of the spectra is consistent, the differences being due to the reduced accuracy of the

Cartesian code.

In figure D.5 we present a comparison of the eigenvalue spectra produced using

the one-dimensional code for a variety of azimuthal wave-numbers (circles) with

those recovered using the two-dimensional ‘global’ code. We can see that for this set

of parameters, α = 1, q = 0.8,Re = 1000, good agreement is observed for the least-

stable values where ωi > −0.0014. This is consistent with other parameter choices

and gives us confidence that in the vicinity the neutral stability axis (ωi = 0), our

results are correct.
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Figure D.1: Plane Poiseuille flow in a large aspect ratio duct using a finite-difference

numerical scheme with dependent parameters [V, W ]. Circles represent the results

of Theofilis et al. [63].
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Figure D.2: Plane Poiseuille flow in a large aspect ratio duct using a pseudo-spectral

numerical scheme with dependent parameters [U, V, W, P ]. Circles represent the

results of Theofilis et al. [63].
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Figure D.3: Hagen-Poiseuille flow in a pipe of radius 1, found using a pseudo-spectral

numerical scheme implementing the two-equation method. Circles represent the

results of Schmid and Henningson [51].
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Figure D.4: A comparison of the eigenvalue spectra recovered by the polar codes

(dots) and Cartesian code (circles) using parameters matching those of Hein and

Theofilis [25] for a single Batchelor vortex.
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Figure D.5: A comparison of the eigenvalue spectra recovered by the polar ‘global’

code (dots) and one-dimensional, n-dependent code (circles) using parameters α =

1, q = 0.8,Re = 1000, for a single Batchelor vortex.
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