Uranium metallogeny in the North Flinders Ranges region of South Australia

Pierre-Alain Wülser

Department of Geology and Geophysics Adelaide University

This thesis is submitted in the fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, Adelaide University

June 2009

REFERENCES

A

Allen, S. R., McPhie, J., Ferris, G. & Simpson, C. (2008). Evolution and architecture of a large felsic Igneous Province in western Laurentia: the 1.6 Ga Gawler Range Volcanics, South Australia. *Journal of Volcanology and Geothermal Research* 172, 132-147.

Alley, N. F. & Frakes, L. A. (2003). First known Cretaceous glaciation: Livingston Tillite Member of the Cadna-owie Formation, South Australia. *Australian Journal of Earth Sciences* 50, 139-144.

Alpers, C. N., Rye, R. O., Nordstrom, D. K., White, L. D. & King, B.-S. (1992). Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-hypersaline Australian lakes. *Chemical Geology* 96, 203-226.

An, Z., Bowler, J. M., Opdyke, N. D., Macumber, N. D. & Firman, J. B. (1986). Paleomagnetic stratigraphy of Lake Bungunnia: Plio-Pleistocene precursor of aridity in the Murray basin, southeastern Australia. *Paleogeography, Paleoclimatology, Paleoecology* 54, 219-239.

Andersen, T. (2002). Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb. *Chemical Geology* 192, 59-79.

Arancibia, G., Matthews, S. J. & Arce, C. P. d. (2006). K-Ar and ⁴⁰Ar/³⁹Ar geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. *Journal of the Geological Society, London* 163, 107-118.

B

Bajo, C., Rybach, L. & Weibel, M. (1983a). Extraction of uranium and thorium from Swiss granites and their microdistribution - 1. Extraction of uranium and thorium. *Chemical Geology* 39, 281-297.

Bajo, C., Rybach, L. & Weibel, M. (1983b). Extraction of uranium and thorium from Swiss granites and their microdistribution - 1. Microdistribution of uranium and thorium. *Chemical Geology* 39, 299-318.

Bakker, R. J. & Elburg, M. A. (2006). A magmatic-hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): from diopside-titanite pegmatites to hematite-quartz growth. *Contributions to Mineralogy and Petrology* 152, 541-569.

Barbarin, B. (1999). A review of the relationships between granitoids types, their origins and their geodynamic environments. *Lithos* 46, 605-626.

Bea, F. (1996). Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal melts. *Journal of Petrology* 37, 521-552.

Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. (2002). Igneous zircon: trace element composition as an indicator of source rock type. *Contributions to Mineralogy and Petrology* 143, 602-622.

Benbow, M. C., Callen, R. A., Bourman, R. P. & Alley, N. F. (1995). Tertiary: deep weathering, ferricrete and silcrete. In: Drexel, J. F. & Preiss, W. V. (eds.) *The Geology of South Australia*. Adelaide: South Australia Geological Survey, 201-207.

Bird, M. I., Andrew, A. S., Chivas, A. R. & Lock, D. E. (1989). An isotopic study of surficial alunite in Australia: 1. Hydrogen and sulphur isotopes. *Geochimica et Cosmochimica Acta* 53, 3223-3237.

Bird, M. I., Chivas, A. R. & McDougall, I. (1990). An isotopic study of surficial alunite in Australia: 2. Potassiumargon geochronology. *Chemical Geology* 80, 133-145.

Blundy, J. & Wood, B. (2003). Mineral partitioning of Uranium, Thorium and their Daughters. In: Rosso, J. J. & Ribbe, P. H. (eds.) *Uranium-Series Geochemistry*. Washington: Mineralogical Society of America, 59-123.

Blackburn, W. H., Metcalf, R. V. & Ragland, P. C. (1994). Geochemical evolution of the Precambrian Old Rag Granite, Virginia, U.S.A.: testing a U-Th exploration model. *Chemical Geology* 111, 177-206.

Blight, P. G. (1977). Uraniferous Metamorphics and "Younger" granites of the Paralana area, Mount Painter Province, South Australia: a petrographical and geochemical study. University of Adelaide, Adelaide. Hons Thesis.

Bons, P. D. & Rössiger, J. (2008). The Geology of the Mt. Gee area, Mount Painter Inlier, South Australia. Section Mineralogy and Geodynamics, Institut for Geosciences, Eberhard Karls University. 23 p.

Breiter, K., Müller, A., Leichmann, J. & Gabasova, A. (2005). Textural and chemical evolution of a fractionated granitic system: the Podlesi stock, Czech Republic, *Lithos* 80, 323-345.

Brewer, A. M. (1978). A geochemical study of the mineralisation in the Parabarana Copper Propect, northern Flinders, Ranges, South Australia. University of Adelaide, Adelaide. B. Sc. (Hons) Thesis.

Briot, P. (1983). L'environnement hydrogéochimique du calcrête uranifère de Yeelirrie (Australie Occidentale). *Mineralium Deposita* 18, 191-206.

Broughton, A. C. (1925). Radio-active ilmenite, near Mount Painter, Northern Flinders Ranges. *Transactions of the Royal Society of South Australia* 49, 101-102.

Brugger, J., Long, N., McPhail, D. C. & Plimer, I. (2005). An active amagmatic hydrothermal system: The Paralana hot springs, Northern Flinders Ranges, South Australia. *Chemical Geology* 222, 35-64.

Brunt, D. A. (1978). Uranium in Tertiary stream channels, Lake Frome area, South Australia. *Australasian Institute of Mining and Metallurgy Proceedings* 266, 79-90.

Bryan, S. E., Ewart, A., Stephens, C. J., Parianos, J. & Downes, P. J. (2000). The Whitsunday volcanic province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province. *Journal of Volcanology and Geothermal Research* 99, 55-78.

Burns, P. C. (1999). The crystal chemistry of uranium. In: Burns, P. C. & Finch, R. J. (eds.) Uranium Mineralogy, geochemistry and the environment. Blacksburg, Victoria: Mineralogical Society of America.

Burtt, A., Conor, C. & Robertson, S. (2004). Curnamona - an emerging Cu-Au province. MESA Journal 33, 9-17.

С

Callen, R. A. (1974). Geology of the Frome 1:250 000 Geological Map and adjacent regions. *Department of Mines, South Australia, Geological Survey Report* 74/25.

Callen, R. A. (1975). The stratigraphy, sedimentology and uranium deposits of Tertiary rocks, Lake Frome area, South Australia. University of Adelaide, Adelaide. Master's thesis.

Callen, R. A., Alley, N. F. & Greenwood, D. R. (1995a). Tertiary: interior non-marine basins - Lake Eyre basin. In: Drexel, J. F. & Preiss, W. V. (eds.) *The Geology of South Australia*. Adelaide: South Australia Geological Survey, 188-194.

Callen, R. A., Sheard, M. J., Benbow, M. C. & Belperio, A. P. (1995b). Quaternary: Alluvial fans and piedmont slope deposits. In: Drexel, J. F. & Preiss, W. V. (eds.) *The Geology of South Australia*. Adelaide: South Australia Geological Survey, 241-243.

Callen, R. A. & Tedford, R. H. (1976). New late Cainozoic rock units and depositional environments, Lake Frome area, South Australia. *Royal Society of South Australia Transactions* 100, 125-167.

Cameron, E. (1990). Yeelirrie uranium deposit (Western Australia). In: Hughes, F. E. (ed.) *Geology of the Mineral Deposits of Australia and Papua New Guinea*. Melbourne: Australian Institute of Mining and Metallurgy, 1625-1629.

Campana, B., Coats, R. P., Horwitz, R. & Thatcher, D. (1961a). 1:63'360 Gardiner sheet, Geological Atlas of South Australia.

Campana, B., Coats, R. P., Horwitz, R. & Thatcher, D. (1961b). 1:63'360 Moolawatana sheet, Geological Atlas of South Australia.

Campana, B., Coats, R. P., Horwitz, R. & Thatcher, D. (1961c). 1:63'360 Paralana sheet, Geological Atlas of South Australia.

Campana, B., Coats, R. P., Horwitz, R. & Thatcher, D. (1961d). 1:63'360 Umberatana sheet, Geological Atlas of South Australia.

Cardona, J. P. M., Mas, J. M. G., Bellón, A. S., Domínguez-Bella, S. & López, J. M. (2005). Surface textures of heavymineral grains: a new contribution to provenance studies. *Sedimentary Geology* 174, 223-235.

Chabiron, A., Cuney, M. & Poty, B. (2002). Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia). *Mineralium Deposita* 38, 127-140.

Chamberlain, K. R. & Bowring, S. A. (2000). Apatite-feldspar U-Pb thermochronometer: a reliable, mid-range (~450°C), diffusion-controlled system. *Chemical Geology* 172, 173-200.

Cherniak, D. J. (2000). Pb diffusion in rutile. Contributions to Mineralogy and Petrology 139, 198-207.

Charoy, B. & Raimbault, L. (1994). Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. *Journal of Petrology* 35, 919-962.

Cheng, H., Edwards, R. L., Murrell, M. T. & Benjamin, T. M. (1998). Uranium-thorium-protactinium dating systematics. *Geochimica et Cosmochimica Acta* 62, 3437-3452.

Cherniak, D. J. (2000). Pb diffusion in rutile. Contributions to Mineralogy and Petrology 139, 198-207.

Coats, R. P. (1973). Copley 1:250 000 Geological Map; Explanatory Notes. Department of Mines, Geological Survey of South Australia. 38 pp.

Coats, R. P. & Blissett, A. H. (1971). Regional and Economic Geology of the Mount Painter Province. Adelaide: A. B. James, Government Printer. Bulletin 43, 426 pp.

Coats, R. P., Horwitz, R., Crawford, A. R., Campana, B. & Thatcher, D. (1969). 1: 125'000 Mount Painter Province.

Cojan, I. & Renard, M. (1997). Sédimentologie. Paris: Masson. 418 pp.

Compston, W., Crawford, A. R. & Bofinger, V. M. (1966). A radiometric estimate of the duration of sedimentation in the Adelaide Geosyncline, South Australia. *Journal of the Geological Society of Australia* 13, 229-276.

Cooper, J. A., Johnson, G. I. & Thornton, G. D. (1982). A set of odd zircon U/Pb Discordia intercepts. 5th International Conference on Geochronology, Cosmochronology and Isotope geology. Nikko National Park, Japan, 229-276.

Cuney, M. & Friedrich, M. (1987). Physicochemical anc crystal-chemical controls on accessory mineral paragenesis in granitoids: implications for uranium metallogenesis. *Bulletin de Minéralogie* 110, 235-247.

Curtis, J. L., Brunt, D. A. & Binks, P. J. (1990). Tertiary Paleochannel Uranium Deposits of South Australia. In: Hughes, F. E. (ed.) *Geology of the Mineral Deposits of Australia and Papua New Guinea*. Melbourne: Australian Institute of Mining and Metallurgy, 1631-1636.

D

David, T. W. E. (1950). The geology of the Commonwealth of Australia. London: Edward Arnold. Volume 1, 747 p. De Caritat, P. & Kirste, D. (2005). Hydrogeochemistry applied to mineral exploration under cover in the Curnamona Province. *MESA Journal* 37, 13-17.

Dekov, V. M., Damyanov, Z. K., Kamenov, G. D., Bonev, I. K. & Bogdanov, K. B. (1999). Native copper and alpha-copper-zinc in sediments from TAG hydrothermal field (Mid-Atlantic Ridge, 26°N): nature and origin. *Marine Geology* 161, 229-245.

Dharma Rao, C. V. & Reddy, U. V. B. (2006). Petrology and geochemistry of Paleoproterozoic A-type granite at Kanigiri in the Nellore-Khammam schist belt, Andhra Pradesh, India. *Journal of Asian Earth Sciences* 30, 1-19.

Draper, J. J. (1974). The geochemistry of Lake Frome, a playa lake in South Australia. BMR J. Aust. Geol. Geophys. 1, 83-104.

Drexel, J. F. & Major, R. B. (1990). Mount Painter uranium-rare earth deposits. *Monograph Series, Australasian Institute of Mining and Metallurgy*. 14, 993-998

Drexel, J. F. & Major, R. B. (1987). Geology of the uraniferous breccias near Mount Painter, South Australia and revision of rock nomenclature. *Quarterly Geological Notes Geological Survey of South Australia*. 104, 14-24

Drysdall, A. R., Jackson, N. J., Ramsay, C. R., Douch, C. J. & Hackett, D. (1984). Rare element mineralisation related to Precambrian alkali granites in the Arabian Shield. *Economic Geology* 79, 1366-1377.

\boldsymbol{E}

Elburg, M. A., Bons, P. D., Dougherty-Page, J., Janka, C. E., Neumann, N. & Schaefer, B. (2001). Age and metasomatic alteration of the Mount Neill Granite at Nooldoonooldoona Waterhole, Mount Painter Inlier, South Australia. *Australian Journal of Earth Sciences* 48, 721-730.

Elburg, M. A., Bons, P. D., Foden, J. & Brugger, J. (2003). A newly defined Late Ordovician magmatic-thermal event in the Mt Painter Province, northern Flinders Ranges, South Australia. *Australian Journal of Earth Sciences* 50, 611-631.

Ellis, G. K. (1980). Distribution and Genesis of Sedimentary Uranium near Curnamona, Lake Frome, South Australia. *The American Association of Petroleum Geologists Bulletin (AAPG)* 64, 1643-1657.

\boldsymbol{F}

Fanning, C. M. (1995). Geochronological synthesis of the southern Australia. Part 1. The Curnamona Province. Department of Mines and Energy.

Fanning, C. M., Teale, G. S. & Robertson, R. S. (2003). Is there a Willyama Supergroup sequence in the Mount Painter Inlier? In: Peljo, M. (ed.) *Broken Hill Exploration Initiative*. Broken Hill, Australia: Geoscience Australia, 38-41.

Fehn, U., Cathles, L. M. & Holland, H. D. (1978). Hydrothermal convection and uranium deposits in abnomally radioactive plutons. *Economic Geology* 73, 1556-1566.

Foden, J., Elburg, M. A., Dougherty-Page, J. & Burtt, A. (2006). The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana assembly.

Foden, J., Elburg, M. A., Turner, S. P., Sandiford, M., O'Callaghan, J. & Mitchell, S. (2002). Granite production in the Delamerian Orogen, South Australia. *Journal of the Geological Society, London* 159, 557-575.

Förster, H.-J. (2006). Composition and origin of intermediate solid solutions in the system thorite-xenotime-zirconcoffinite. *Lithos* 88, 35-55. Foster, D. A., Murphy, J. M. & Gleadow, A. J. W. (1994). Middle Tertiary hydrothermal activity and uplift of the northern Flinders Ranges, South Australia: insights from the apatite fission-track thermochronology. *Australian Journal of Earth Sciences* 41, 11-17.

G

Geisler, T., Pidgeon, R. T., Kurtz, R., van Bronswijk, W. & Schleicher, H. (2003). Experimental hydrothermal alteration of partially metamict zircon. *American Mineralogist* 88, 1496-1513.

Goldhaber, M. B. (1977). Evaluation of X-ray photoelectron spectroscopy as a technique for analysis of uranium in ore samples. U.S. Geological Survey. Open-File Report 77-798, 25 p.

Goldhaber, M. B., Hemingway, B. S., Mohagheghi, A., Reynolds, R. L. & Northrop, H. R. (1987). Origin of coffinite in sedimentary rocks by sequential adsorption-reduction mechanism. *Bulletin de Minéralogie* 110, 131-144.

Gong, W. L., Ewing, R. C., Wang, L. M. & Xie, H. S. (1995). Crichtonite structure type (AM₂₁O₃₈ and A₂M₁₉O₃₆) as a host phase in crystalline waste form ceramics. *Materials Research Society Symposium Proceedings* 353, 807-815.

Goodenough, K. M., Upton, B. G. J. & Ellam, R. M. (2000). Geochemical evolution of the Ivigtut granite, South Greenland: a fluorine-rich "A-type" intrusion. *Lithos* 51, 205-221.

H

Haapala, I., Frindt, S. & Kandara, J. (2007). Cretaceous Gross Spitzkoppe and Klein Spitzkoppe stocks in Namibia: Topaz-bearing A-type granites related to continental rifting and mantle plume. *Lithos* 97, 174-192.

Hansley, P. L. & Fitzpatrick, J. J. (1989). Compositional and crystallographic data on REE-bearing coffinite from the Grants uranium region, northwestern New Mexico. *American Mineralogist* 74, 263-270.

Hawthorne, F. C. & Oberti, R. (2006). On the classification of amphiboles. The Canadian Mineralogist 44, 1-21.

Haynes, R. W. (1975). Beverley sedimentary Uranium orebody, Frome embayment, South Australia. In: Metallurgy, A. I. o. M. a. (ed.) *Economic Geology of Australia and Papua New Guinea*. Melbourne, 808-813.

Heathgate Resources Pty Ltd (1998). Beverley Uranium Mine, Environmental Impact Statement. Heathgate Resources Pty Ltd.

Heathgate Resources Pty Ltd (2005). Annual Environment Report 2004. Heathgate Resources Pty Ltd. 35 Hébert, R. (1998). Guide de pétrologie descriptive, Nathan, Paris, 160 p.

Heier, K. S. & Rogers, J. J. W. (1963). Radiometric determination of thorium, uranium and potassium in basalts and two magmatic differentiation series. *Geochimica et Cosmochimica Acta* 27, 137-154.

Heinhorst, J., Lehmann, B., Ermolov, P., Serykh, V. & Zhurutin, S. (2000). Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-hydrothermal ore systems of Central Kazakhstan. *Tectonophysics* 328, 69-87.

Hergt, J., Woodhead, J. & Schofield, A. (2007). A-type magmatism in the Western Lachlan Fold Belt? A study of granites and rhyolites from the Grampians region, Western Victoria. *Lithos* 97, 122-139.

Hobday, D. K. & Galloway, W. E. (1999). Groundwater processes and sedimentary uranium deposits. *Hydrogeology Journal* 7, 127-138.

Hochman, M. B. M. & Ypma, P. J. M. (1987). The accretionary Migration of Uranium in Tertiary Sandstones -Thermoluminescence Evidence from the Beverley Deposit, South Australia. *Uranium* 3, 245-259.

Ι

Idnurm, M. & Heinrich, C. A. (1993). A paleomagnetic study of hydrothermal activity and uranium mineralization at Mount Painter, South Australia. *Australian Journal of Earth Sciences* 40, 87-101.

Itaya, T., Arribas, A. & Okada, T. (1996). Argon release systematics of hypogene and supergene alunite based on progressive heating experiments from 100 to 1000°C. *Geochimica et Cosmochimica Acta* 60, 4525-4535.

J

Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. *Chemical Geology* 211, 47-69.
Jambor, J. L. & Roberts, A. C. (2000). New Mineral Names: Tongxinite. *American Mineralogist* 85, 263-266.
Janeczek, J. (1991). Composition and origin of coffinite from Jachymov, Czechoslovakia. *Neues Jahrbuch für Mineralogie: Monatshefte* 1991, 385-395.

Johnson, G. I. (1980). The geology of the Mount Babbage Inlier, northern Mount Painter province, South Australia - a petrological, geochemical and geochronological study. University of Adelaide, Adelaide. B. Sc. (Hons) thesis.

Jung, S., Mezger, K. & Hoernes, S. (1998). Petrology and geochemistry of syn- to post-collisional metaluminous Atype granites - a major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. *Lithos* 45, 147-175.

K

Katongo, C., Koller, F., Klötzli, U. S., Koeberl, C., Tembo, F. & De Waele, B. (2003). Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian-Zambesi belt, Zambia: Implications for tectonic setting and regional correlation. *Journal of African Earth Sciences* 40, 219-244.

Kaufman, A., Ku, T.-L. & Luo, S. (1995). Uranium-series dating of carnotites: concordance between ²³⁰Th and ²³¹Pa ages. *Chemical Geology* 120, 175-181.

Ker, D. S. (ed.) (1966). The hydrology of the Frome Embayment in South Australia. Adelaide: Department of Mines of South Australia: Geological Survey, 98 pp.

Killeen, P. G. & Heier, K. S. (1975). A uranium and thorium enriched province of the Fennoscandian shield in southern Norway. *Geochimica et Cosmochimica Acta* 39, 1515-1524.

Kleeman, A. W. (1946). An age determination on Samarskite from Mount Painter, South Australia. *Transactions of the Royal Society of South Australia* 70, 175-177.

Klötzli, U. S., Koller, F., Scharbert, S. & Höck, V. (2001). Cadomian Lower-Crustal Contributions to Variscan Granite Petrogenesis (South Bohemian Pluton, Austria): Constraints from Zircon typology and Geochronology, whole-rock, and feldspar Pb-Sr isotope systematics. *Journal of Petrology* 42, 1621-1642.

Kovalenko, V. I., Yarmolyuk, V. V., Kozlovsky, A. M., Kovach, V. P., B., S. n. E., Kotov, A. b. & Vladykin, N. V. (2007). Two types of magma sources of rare-metal alkali granites. *Geology of Ore Deposits* 49, 442-466.

Krieg, G. W. (1985). Dalhousie 1:250 000 Geological Map; Explanatory Notes. Department of Mines, Geological Survey of South Australia.

Krieg, G. W., Alexander, E. M. & Rogers, P. A. (1995). Mesozoic: Jurassic-Cretaceous epicratonic basins: Eromanga basin. In: Drexel, J. F. & Preiss, W. V. (eds.) *The Geology of South Australia*. Adelaide: South Australia Geological Survey, 101-127.

L

Labhart, T. P. & Rybach, L. (1974). Granite und Uranvererzungen in den Schweizer Alpen. International Journal of Earth Sciences 63, 135-147.

Lang, A. H., Griffith, J. W. & Steacy, H. R. (1962). Canadian deposits of uranium and thorium. Ottawa. 324 p.

Lee, S.-G., Shin, S.-C., Jin, M.-S., Ogasawara, M. & Yang, M. K. (2005). Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the north eastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history. *Precambrian Research* 139, 101-120.

Li, G., Peacor, D. R., Essene, E. J., Brosnahan, D. R. & Beane, R. E. (1992). Walthierite, Ba_{0.5}Al₃(SO₄)₂(OH)₆ and huangite, Ca_{0.5}Al₃(SO₄)₂(OH)₆, two new minerals of the alunite group from the Coquimbo region, Chile. *American Mineralogist* 77, 1275-1284.

Liégeois, J.-P., Navez, J., Hertogen, J. & Black, R. (1998). Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. *Lithus* 45, 1-28.

Long, D. T., Fegan, N. E., McKee, J. D., Lyons, W. B., Hines, M. E. & Macumber, P. G. (1992). Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrell, Victoria, Australia. *Chemical Geology* 96, 183-202.

Lottermoser, B. G. & Plimer, I. R. (1987). Chemical variation in tourmalines, Umberatana, South Australia. Neues Jahrbuch für Mineralogie: Monatshefte 1987, 314-326.

Lottermoser, B. G. (1988). A carbonatitic diatreme from Umberatana, South Australia. *Journal of the Geological Society, London* 145, 505-513.

Ludbrook, N. H. (1966). Cretaceous biostratigraphy of the Great Artesian Basin of South Australia. South Australia Geological Survey Bulletin 40, 233 pp.

Ludwig, K. R. (1979). Age of uranium mineralization in the Gas Hills and Croops Gap district, Wyoming as indicated by U-Pb isotope apparent ages. *Economic Geology* 74, 1654-1668.

Ludwig, K. R. & Grauch, R. I. (1980). Coexisting coffinite and uraninite in some sandstone-host uranium ores of Wyoming. *Economic Geology* 75, 296-302.

M

Mann, A. W. & Deutscher, R. L. (1978a). Genesis principles for the precipitation of carnotite in calcrete drainage in Western Australia. *Economic Geology* 73, 1724-1737.

Mann, A. W. & Deutscher, R. L. (1978b). Hydrogeochemistry of a calcrete-containing aquifer near Lake Way, Western Australia. *Journal of Hydrology* 38, 357-377.

Marsland-Smith, A. (2005). Geological setting and mineralogy of uranium mineralisation at the Beverley deposit, Frome Basin, SA. In: Taylor, G. F. (ed.) 4th Sprigg Symposium; Uranium; Exploration, deposits, mines and minewaste disposal geology. Sydney: Geological society of Australia.

Martin, H. A. (1990). The palynology of the Namba formation in the Wooltana-1 bore, Callabonna basin (Lake Frome), South Australia and its relevance to Miocene grasslands in central Australia. *Alcheringa* 14, 247-255.

Mattinson, J. M. (2005). Zircon U-Pb chemical abrasion ("CA-TIMS") method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. *Chemical Geology* 220, 47-66.

Mawson, D. (1928). A brief résumé of present knowledge relating to the igneous rocks of South Australia. Journal of Australasian Ass. Advmt. Sci. 3, 230-274.

Mawson, D. (1944). The nature and occurrence of uraniferous mineral deposits in South Australia. *Transactions of the Royal Society of South Australia* 68, 334-358.

Mawson, D. & Dallwitz, W. B. (1945). The soda-rich leucogranites cupolas of Umberatana. *Transactions of the Royal Society of South Australia* 69, 22-49.

Mazdab, F. K. (2003). The diversity and occurrence of potassium-dominant amphiboles. *The Canadian Mineralogist* 41, 1329-1344.

McConachy, G., McInnes, D. & Paine, J. (2006). Airborne Electromagnetic signature of the Beverley Uranium deposit, South Australia. In: Geophysicists, S. o. E. (ed.) *SEG - 66th Annual Meeting*. New Orléans, 790-794.

McCulloch, M. T. (1988). Petrology, geochronology and isotope geochemistry of the post-1820 Ma granites of the Mount Isa Inlier: mechanisms for the generation of Proterozoic anorogenic granites. *Precambrian Research* 40/41.

McLaren, S., Dunlap, W. J., Sandiford, M. & McDougall, I. (2002). Thermochronology of the high heat-producing crust at Mount Painter, South Australia: Implications for tectonic reactivation of continental interiors. *Tectonics* 21, X1-X17.

McLaren, S., Sandiford, M., Powell, R., Neumann, N. & Woodhead, J. (2006). Palaeozoic Intraplate Crustal Anatexis in the Mount Painter Province, South Australia: Timing, Thermal Budgets and the Role of Crustal Heat Production. *Journal of Petrology* X, X(1-12).

McLennan, S.-M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin, B. R. & McKay, A. D. (eds.) *Geochemistry and mineralogy of rare earth elements*. *Reviews in Mineralogy*, 169-200.

McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. *Australian Journal of Botany* 49, 271-300.

Mezger, K., Hanson, G. N. & Bohlen, S. R. (1989). High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes. *Earth and Planetary Science Letters* 96, 106-118.

Mitchell, M. M., Kohn, B. P., O'Sullivan, P. B., Hartley, M. J. & Foster, D. A. (2002). Low-temperature thermochronology of the Mount Painter Province, South Australia. *Australian Journal of Earth Sciences* 49, 551-563.

Montel, J.-M., Veschambre, M. & Nicollet, C. (1994). Datation de la monazite à la microsonde électronique. *Comptes Rendus de l'Académie des Sciences - Isotopic Geochemistry* 318, 1489-1495.

Monecke, T. Kempe, U., Monecke J., Sala, M. and D. Wolf, D. (2002). Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. *Geochimica et Cosmochimica Acta* 66, 1185-1196.

Muir, R. J., Ireland, T. R., Weaver, S. D., Bradshaw, J. D., Waight, T. E., Jongens, R. & Eby, G. N. (1997). SHRIMP U-Pb geochronology of the Cretaceous magmatism in northwest Nelson-Westland, South Island, New Zealand. *New Zealand Journal of Geology and Geophysics* 40, 453-463.

\boldsymbol{N}

Nachit, H., Razafimahefa, N., Stussi, J.-M. & Carron, J.-P. (1985). Composition chimique des biotites et typologie magmatique des granitoïdes. *Comptes Rendus de l'Académie des Sciences - Seire II* 301, 813-818.

Nagudi, B., Koeberl, C. & Kurat, G. (2003). Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. *Journal of African Earth Sciences* 36, 73-87.

Neumann, N. (1996). Isotopic and geochemical characteristics of the British Empire Granite as indicators of magma provenance and processes of melt generation in the Mount Painter Inlier, South Australia. University of Adelaide, Adelaide. B.Sc (Hons) Thesis. 38 pp.

Neumann, N. (2001). Geochemical and isotopic characteristics of South Australian Proterozoic granites; implications for the origin and evolution of high heat-producing terrains. University of Adelaide, Adelaide. PhD Thesis. 135 pp.

Neumann, N., Sandiford, M. & Foden, J. (2000). Regional geochemistry and continental heat flow; implications for the origin of the South Australian heat flow anomaly. *Earth and Planetary Science Letters* 183, 107-120.

Noble, R. J., Just, J. & Johnson, J. E. (1983). Catalogue of South Australian Minerals - 1983. Adelaide: D.J. Woolman, Government Printer. Handbook No. 7, 248 pp.

Novgorodova, M. I., Tsepin, A. I. & Dmitriyeva, M. T. (1980). Zinc-rich variety of native copper. International Geology Review (IGR) 22, 1447-1450.

Р

Parrish, R. R. (1990). U-Pb dating of monazite and its application to geological problems. *Canadian Journal of Earth Sciences* 27, 1431-1450.

Paul, E. (1998). The geometry and controls on basement involved deformation in the Adelaide Fold belt, South Australia. University of Adelaide, Adelaide. PhD.

Paul, E., Flöttmann, T. & Sandiford, M. (1999). Structural geometry and controls on basement-involved deformation in the northern Flinders Ranges, Adelaide Fold Belt, South Australia. *Australian Journal of Earth Sciences* 46, 343-354.

Pearce, J. A., Harris, N. B. W. & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *Journal of Petrology* 25, 956-983.

Peiffert, C., Cuney, M. & Nguyen-Trung, C. (1994). Uranium in granitic magmas: Part 1. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H₂O-Na₂CO₃ system at 720-770 °C, 2 kbar. *Geochimica et Cosmochimica Acta* 58, 2495-2507.

Peiffert, C., Nguyen-Trung, C. & Cuney, M. (1996). Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H₂O-Na_X (X= Cl,F) system at 770°C, 2 kbar. *Geochimica et Cosmochimica Acta* 60, 1515-1529.

Pettke, T., Audétat, A., Schaltegger, U. & Heinrich, C. A. (2005). Magmatic-to-hydrothermal crystallization in the W– Sn mineralized Mole Granite (NSW, Australia) Part II: Evolving zircon and thorite trace element chemistry. *Chemical Geology* 220, 191-213.

Petrik, I., Broska, I., Lipka, J. & Siman, P. (1995). Granitoid allanite-(Ce): substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carparthians, Slovakia). *Geol. Carpathica* 46, 79-94.

Pidgeon, R. T. (1979). Report on the U-Pb age of monazite samples 930, 931 and 932 (from the Mount Painter area). South Australian Department of Mines and Energy. Open File Envelope,

Potts, P. J. (1987). A Handbook of Silicate Rock Analysis. London: Academic & Professional. 622 pp.

Preiss, W. V. (1995). Delamerian Orogeny. In: Drexel, J. F. & Preiss, W. V. (eds.) *The Geology of South Australia - The Phanerozoic*. Adelaide: Department of Mines and Energy of South Australia, 45-61.

Preiss, W. V. (2000). The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. *Precambrian Research* 100, 21-63.

Preiss, W. V., Belperio, A. P., Cowley, W. M. & Rankin, L. R. (1993). Neoproterozoic. In: Drexel, J. F., Preiss, W. V. & Parker, A. J. (eds.) *The Geology of South Australia : Volume 1 The Precambrian*. Adelaide: Department of Mines and Energy, South Australia, 171-204.

Pupin, J.-P. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology 73, 207-220.

R

Raimbault, L., Cuney, M., Azencott, C., Duthou, J. L. & Joron, J. L. (1995). Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralisation in the granite at Beauvoir, French Massif-Central. *Economic Geology* 90, 548-576.

Reid, A. J., Payne, J. L. & Wade, B. P. (2006). A new geochronological capability for South Australia: U-Pb zircon dating via LA-ICPMS. *MESA Journal* 42, 27-31.

Rich, R. A., Holland, H. D. & Petersen, U. (1977). Hydrothermal uranium deposits: Elsevier Scientific Publishing Co. 264 p.

Rogers, J. J. W., Ragland, P. C., Nishimori, R. K., Greenberg, J. K. & Hauck, S. A. (1978). Varieties of granitic uranium deposits and favourable exploration areas in the Eastern United States. *Economic Geology* 73, 1539-1555.

Rollinson, H. (1993). Using geochemical data: evaluation, presentation, interpretation. Singapore: Longman Scientific & Technical. 352 p.

Rubatto, D. & Hermann, J. (2007). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. *Chemical Geology* 241, 38-61.

Rubin, J. N., Henry, C. D. & Price, J. G. (1989). Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. *American Mineralogist* 74, 865-869.

S

Sandiford, M., Hand, M. & McLaren, S. (1998). High geothermal gradient metamorphism during thermal subsidence. *Earth and Planetary Science Letters* 163, 149-165.

Sawlowicz, Z. (1990). Native lead in the Polish Kupferschiefer. Neues Jahrbuch für Mineralogie: Monatshefte 1990, 376-382.

Schaefer, B. (1993). Isotopic and geochemical constraints on Proterozoic crustal growth from the Mt Painter Inlier. *University of Adelaide*, Adelaide. Honours thesis.

Scott, D. J. & St-Onge, M. R. (1995). Constraints on Pb closure temperature in sphene based on rocks from the Ungava orogen, Canada: implications for geochronology and P-T-t path determinations. *Geology* 23, 1123-1126.

Senior, B. R. & Mabbutt, J. A. (1979). A proposed method of defining deeply weathered rock units based on regional geological mapping in south-west Queensland. *Journal of the Geological Society of Australia* 28, 491-500.

Sheard, M. J. & Callen, R. A. (2000). 1: 250'000 Callabonna map sheet.

Sheard, M. J., Fanning, C. M. & Flint, R. B. (1992). Geochronology and definition of Mesoproterozoic volcanics and granitoids of the Mount Babbage Inlier, Northern Flinders Ranges. *Quarterly Geological Notes - Geological Survey of South Australia* 123, 18-32.

Sheard, M. J. & Flint, R. B. (1992). Cretaceous wave-polished granite surfaces, northern Mount Babbage Inlier, South Australia. *Quarterly Geological Notes - Geological Survey of South Australia* 122, 19-23.

Simpson, E. S. (1908). Tantalum and niobium in Australia. Journal of Australasian Ass. Advmt. Sci. 11, 442-455.

Sircombe, K. N. (1999). Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. *Sedimentary Geology* 124, 47-67.

Smith, A. (1992). Geology of the Yudnamutana Gorge - Paralana Hot Springs Area and Genesis of Mineralisation at the Hodgkinson Prospect, Mount Painter Province, South Australia. University of Adelaide, Adelaide. B.Sc. (Honours).

Smith, D. R., Noblett, J., Wobus, R. A., Unrush, D., Douglass, J., Beane, R., Davis, C., Goldman, S., Kay, G., Gustavson, B., Saltoun, B. & Stewart, J. (1999). Petrology and geochemistry of late-stage intrusions of the A-type, mid-Proterozoic Pikes Peak batholith (Central Colorado, USA): implications for petrogenetic models. *Precambrian Research* 98, 271-305.

Sonehara, T. & Harayama, S. (2007). Petrology of the Nohi Rhyolite and its related granitoids: A late Cretaceous large silicic igneous field in central Japan. *Journal of Volcanology and Geothermal Research* 167, 57-80.

Sprigg, R. C. (1984). Arkaroola - Mount Painter in the Northern Flinders Ranges, SA: *The last billion years*: Arkaroola Pty Ltd, Australia.

Stacey, J. S. & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters* 26, 207-221.

Stephenson, A. E. (1986). Lake Bungunnia - a Plio-Pleistocene megalake in southern Australia. *Paleogeography, Paleoclimatology, Paleoecology* 57, 137-156.

Stewart, K. & Foden, J. (2001). Mesoproterozoic Granites of South Australia. Adelaide University, report. 139 p.

Stieff, L. R., Stern, T. W. & Sherwood, A. M. (1956). Coffinite, a uranous silicate with hydroxyl substitution - a new mineral. *American Mineralogist* 41, 675-688.

Stoffregen, R. E. & Alpers, C. N. (1987). Woodhousite and svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration. *The Canadian Mineralogist* 25, 201-211.

Storey, C. D., Jeffries, T. E. and Smith, M. (2006). Common lead-corrected laser ablation ICP-MS systematics and geochronology of titanite. *Chemical Geology* 227, 37-52.

T

Taylor, S.-S. & McLennan, S.-M. (1985). The Continental Crust: its Composition and Evolution: Blackwell S. 312 p. Thode, H. G. & Monster, J. (1965). Sulfur isotope geochemistry of petroleum, evaporites and ancient seas. *American Association of Petroleum Geologists Memoires* 4, 367-377.

Teale, G. S., Flood, R. H. & Shaw, S. E. (1995). A Devonian cordierite-bearing volcanic pebble from the Cretaceous Bulldog shale, South Australia. *Quarterly Geological Notes - Geological Survey of South Australia* 128, 17-23.

Teale, G. S. (1979). Revision of nomenclature for Palaeozoic intrusives of the Mount Painter Province, South Australia. *Transactions of the Royal Society of South Australia* 103, 95-100.

Teale, G. S. (1993). Paleoproterozoic: Mount Painter and Mount Babbage Inliers. In: Drexel, J. F. & Preiss, W. V. (eds.) *The Geology of South Australia*. Adelaide: South Australia Geological Survey, 93-100.

Teale, G. S. & Flint, R. B. (1993). Mesoproterozoic: Curnamona craton and Mount Painter Province. In: Drexel, J. F. & Preiss, W. V. (eds.) *The Geology of South Australia*. Adelaide: South Australia Geological Survey, 147-156.

Teale, G. S. & Lottermoser, B. G. (1987). Paleozoic granites of the Umberatana region, South Australia: the role of volatiles in the crystallization of some alkaline-peralkaline granites. *Geologische Rundschau* 76, 857-868.

Thornton, G. D. (1980). Geology, geochemistry and geochronology of the eastern Babbage Block, Mount Painter Province, South Australia. University of Adelaide, Adelaide.

Tollo, R. P., Alainikoff, J. N., Bartholomew, M. J. & Rankin, D. W. (2004). Neoproterozoic A-type granitoids of the central and southern Appalachians: intraplate magmatism associated with episodic rifting of the Rodinian supercontinent. *Precambrian Research* 128, 3-38.

Tropper, P., Manning, C. E. & Essene, E. J. (2002). The substitution of Al and F in titanite at high pressure and temperature: experimental constraints on phase relations and solid solution properties. *Journal of Petrology* 43, 1787-1814.

Trudinger, P. A., Chambers, L. A. & Smith, J. W. (1985). Low-temperature sulphate reduction: biological vs abiological. *Canadian Journal of Earth Sciences* 22, 1910-1918.

Turner, S. P. (1996). Petrogenesis of the late-Delamerian gabbroic complex at Black Hill, South Australia: implications for convective thinning of the lithospheric mantle. *Mineralogy and Petrology* 56, 51-89.

V

Van Achterbergh, E., Ryanm, C. G. & Griffin, W. L. (1999). GLITTER: On-line interactive data reduction for the laser ablation ICP-MS microprobe. In: Cambridge, M. (ed.) 9th V.M.Goldschmidt Conference, 305-306.

Veevers, J. J. (2006). Updated Gondwana (Permian - Cretaceous) earth history of Australia. Gondwana Research 9, 231-260.

Veksler, I. V., Thomas, R. & Schmidt, C. (2002). Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. *American Mineralogist* 87, 775-779.

Verts, L. A., Chamberlain, K. R. & Frost, C. D. (1996). U-Pb Sphene dating of metamorphism: the importance of sphene growth in the contact aureole of the Red Mountain Pluton, Laramie Mountains, Wyoming. *Contributions to Mineralogy and Petrology* 125, 186-199.

Villemant, B. & Palacin, P. (1987). Différentiation magmatique et mécanismes de concentration de l'uranium: exemple du volcanisme du Latium (Italie centrale). *Bulletin de Minéralogie* 110, 319-333.

Von Blanckenburg, F., Villa, I. M., Baur, H. & Steiger, R. H. (1989). time calibration of a PT-path from the Western Tauern Window, Eastern Alps: the problem of closure temperatures. *Contributions to Mineralogy and Petrology* 101, 1-11.

Vry, J. K. & Baker, J. A. (2006). LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. *Geochimica et Cosmochimica Acta* 70, 1807-1820.

W

Warren, J. K. (2000). Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. *Australian Journal of Earth Sciences* 47, 179-208.

Webb, A. W. (1976). Geochronology of the eastern basement rocks - Amdel progress report 13. PIRSA, Adelaide, Open File envelope 02136,

Webster, J., Thomas, R., Förster, H.-J., Seltmann, R. & Tappen, C. (2004). Geochemical evolution of halogenenriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. *Mineralium Deposita* 39, 452-472.

Weeks, A. D., Coleman, R. G. & Thompson, M. E. (1959). Summary of the ore Mineralogy. *Geological Survey* Professional Paper 320, 65-79.

Welch, S. A., Christy, A. G., Kirste, D., Beavis, S. G. & Beavis, F. (2007). Jarosite dissolution I - trace cation flux in acid sulfate soils. *Chemical Geology* 245, 183-197.

Whalen, J. B., Currie, K. L. & Chappell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology* 95, 407-419.

Willner, A. P., Sindern, S., Metzger, R., Ermolaeva, T., Kramm, U., Puchkov, V. & Kronz, A. (2003). Typology and single grain U/Pb ages of detrital zircons from Proterozoic sandstones in the SW Urals (Russia): early time marks at the eastern margin of Baltica. *Precambrian Research* 124, 1-20.

Wilson, A. (1960). The microdetermination of ferrous iron in silicate minerals by a volumetric and colorimetric method. *Analyst* 85, 823-827.

Wingate, M. T. D., Campbell, I. H., Compston, W. & Gibson, G. M. (1998). Ion-probe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and its implications for the breakup of Rodinia. *Precambrian Research* 87, 135-159.

Wopfner, H., Callen, R. A. & Harris, W. K. (1974). The lower Tertiary Eyre Formation of the south-western Great Artesian basin. *Journal of the Geological Society of Australia* 21, 17-52.

Wülser, P.-A., Meisser, N., Brugger, J., Schenk, K., Ansermet, S., Bonin, M. & Bussy, F. (2005). Cleusonite, (Pb,Sr)(U⁴⁺,U⁶⁺)(Fe²⁺,Zn)₂(Ti,Fe²⁺,Fe³⁺)₁₈(O,OH)₃₈, a new mineral species from the western Swiss Alps. *European Journal of Mineralogy* 17, 933-942.

Wülser, P.-A., Brugger, J. & Foden, J. (2005). U-Th-REE mobility in and around the Mt Painter & Mt Babbage Inliers, Northern Flinders Ranges (South Australia). In: Taylor, G. F. (ed.) *4th Sprigg Symposium - Uranium: exploration, deposits, Mines and Minewaste disposal geology*. Adelaide: Geological Society of Australia

Trace elements in zircons from the WC2 sediments

[m] Th/Pb 1σ [ppm] % [ppm] % </th <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
WC34-1 -2 637 139 1162 5.9 1135 7.1 17 4.4 0.7 10.1 2.9 16.5 46 20.2 0.4 18.7 0.6 16.7 0.1 13.5 WC34-2 -2 1185 255 837 6.6 1195 8.2 17 4.9 0.1 33.9 0.4 28.9 55 23.1 < 0.2 - 0.5 18.9 0.1 11.6 WC34-3 -2 1199 259 1077 5.9 1083 7.2 16 4.4 0.5 11.3 1.2 18.3 286 19.3 0.3 19.6 0.7 13.8 0.6 6.1 WC34-4 -2 778 172 9188 5.9 910 7.2 315 4.4 30.8 7.7 51.2 16.7 6249 19.5 22.0 5.4 10.1 4.2 9.9 5.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WC34-2 -2 1185 255 837 6.6 1195 8.2 17 4.9 0.1 33.9 0.4 28.9 55 23.1 < 0.2 - 0.5 18.9 0.1 11.6 WC34-3 -2 1199 259 1077 5.9 1083 7.2 16 4.4 0.5 11.3 1.2 18.3 286 19.3 0.3 19.6 0.7 13.8 0.6 6.1 WC34-4 -2 778 172 9188 5.9 910 7.2 315 4.4 330.8 7.7 51.2 16.7 6249 19.5 22.0 5.4 10.1 4.2 9.9 5.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WC34-3 -2 1199 259 1077 5.9 1083 7.2 16 4.4 0.5 11.3 1.2 18.3 286 19.3 0.3 19.6 0.7 13.8 0.6 6.1 WC34-4 -2 778 172 9188 5.9 910 7.2 315 4.4 330.8 7.7 51.2 16.7 6249 19.5 22.0 5.4 10.1 4.2 9.9 5.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WC34-4 -2 778 172 9188 5.9 910 7.2 315 4.4 330.8 7.7 51.2 16.7 6249 19.5 22.0 5.4 10.1 4.2 9.9 5.4	<pre><2 - 94 3.8 4 24.9 1 4.5 <2 - 1 4.1 5 86.1 6 3.9</pre>
	4 24.9 1 4.5 <2 - 1 4.1 5 86.1 6 3.9
WC34-5 -2 484 109 Camb. 922 6.0 1198 7.3 19 4.5 1.2 8.9 2.1 17.5 137 19.9 0.2 40.2 0.6 15.2 0.2 9.5	< 2 - 1 4.1 5 86.1 6 3.9
WC34-6 -2 297 68 Perm. 1390 6.1 1238 7.4 20 4.5 1.6 8.3 1.2 19.1 348 20.2 0.4 18.3 0.8 11.1 0.4 6.5	5 86.1 6 3.9
WC34-7 -2 2247 502 1310 6.2 1140 7.5 134 4.6 20.2 8.0 57 17.8 7635 20.5 2.9 6.5 13.0 4.1 7.0 5.5	
WC34-8 -2 621 148 2793 6.2 1374 7.7 30 4.6 156.6 8.1 12.1 18.2 1623 21.0 5.9 6.0 7.0 4.3 2.7 5.7	94 53.3 29 3.9
WC34-9 -2 1094 264 8573 6.4 3459 7.8 919 4.7 795.1 8.3 117 18.8 7018 21.6 40.6 6.8 13.3 9.5 12.2 6.3	< 2 - 134 4.0
WC34-10 -2 1202 296 1051 6.5 1219 8.0 16 4.8 22.7 8.5 2.1 19.9 387 22.1 1.0 10.6 0.9 10.4 0.5 7.0	< 2 - 5 4.1
WC35-1 -9 4377 1083 11258 7.1 2181 8.9 85 5.2 716 9.3 291.9 22.2 11291 24.9 40.7 7.4 16.1 6.4 13.9 6.7	< 2 - 209 4.2
WC35-2 -9 3249 851 15991 7.2 2531 9.1 245 5.3 768.4 9.5 219.2 23.0 7801 25.7 42.4 7.5 9.5 6.5 14.4 6.7	< 2 - 466 4.2
WC35-3 -9 627 180 694 7.5 1290 9.4 17 5.5 4 9.8 4 24.0 449 26.5 1.0 13.0 1.8 6.7 0.2 9.3	< 2 - 1 4.5
WC35-4 -9 3865 1054 2522 7.6 1534 9.7 35 5.6 123.6 10.0 73 24.8 15457 27.4 13.2 8.1 12.5 4.6 2.9 6.8	< 2 - 38 4.3
WC35-5 -9 6909 1799 3620 7.8 1721 9.9 28 5.8 145.2 10.2 80.3 25.7 17624 28.3 19.3 8.3 12.8 4.6 5.7 7.0	< 2 - 82 4.4
WC35-6 -9 958 298 1969 8.0 1508 10.2 58 5.9 90 10.5 23.4 26.7 3926 29.2 6.1 8.9 8.2 4.9 3.6 7.3	< 2 - 48 4.5
WC35-7 -9 1002 321 625 8.3 1345 10.5 20 6.1 6.5 10.9 3.5 27.8 2761 30.2 2.2 10.7 2.6 6.2 0.7 7.9	< 2 - 1 4.8
WC35-8 -9 1010 332 1208 8.4 1294 10.9 20 6.2 40.5 11.1 8.3 28.8 538 31.3 1.6 12.9 1.7 8.3 0.6 8.2	< 2 - 14 4.6
WC35-9 -9 3326 1058 4700 8.6 1527 11.2 677 6.4 431.6 11.3 121.7 29.8 51425 32.3 48.3 9.4 50.2 4.7 20.7 7.7	< 2 - 125 4.7
WC35-10 -9 751 263 754 8.9 1740 11.5 24 6.5 15.7 11.6 10.8 31.0 836 33.4 2.8 11.3 5.7 5.4 1.2 8.3	< 2 - 9 4.9
WC37-1 -13 550 204 Camb. 491 9.5 1222 12.2 28 6.9 2.6 12.5 4.6 33.3 1224 35.7 1.5 16.8 0.8 16.5 0.5 9.8	< 2 - 1 5.8
WC37-2 -13 5199 1/52 4/86 9.5 1977 12.5 380 7.1 360.6 12.5 61.6 34.4 4580 36.9 19.2 10.8 14.8 5.2 7.9 8.6	< 2 - 77 5.0
WC37-3 -13 /388 2416 1382 9.8 1365 12.9 36 /.3 /0.4 12.8 15.6 35.6 4184 38.1 5.3 11.6 6.0 5.8 2.1 9.2	< 2 - 15 5.2
WC37-4 -13 5262 1860 24/4 10.0 2285 13.2 66 7.5 125 13.1 89.9 36.9 4095 39.4 8.4 11.8 10.5 5.6 3.7 9.1	< 2 - 36 5.2
WC37-5 -13 14410 4204 2246 10.3 1359 13.6 36 7.7 129.8 13.4 42.4 38.1 1502 40.7 8.4 12.2 6.7 6.2 5.4 9.2	<2 - 31 5.3
WC37-6 -13 n.a. n.a. 4528 10.5 1352 14.0 253 7.9 378.7 13.7 120.4 39.4 43691 42.0 36.0 12.1 67.0 5.4 15.3 9.5	<2 - /6 5.4
WC37-7 -13 9966 3367 5153 10.8 2550 14.3 388 8.1 436.6 14.0 629.4 40.8 27910 43.4 42.9 12.5 22.9 5.6 13.6 9.7	< 2 - 90 5.5
WC38-1 -20 1067 /8 1457 3.1 1534 4.3 91 5.2 101.5 3.0 75.7 11.0 11588 11.9 5.0 5.2 16.0 3.6 3.7 3.5	<2 - >> -
WC30-2 -20 01/ 40 /91 3.2 1200 4.3 10 5.2 3.7 3.5 3.4 11.5 930 12.2 0.0 25.0 0.6 12.4 54.9 3.2	<2 - 29 3.4
WC30-3 -20 1200 92 304 3.3 10/7 4.3 343 3.2 13.8 3.2 40.4 11.3 2300 12.4 2.0 0.3 10.2 3.6 2.3 3.7	<2 - 3 3.7
WC30-5	<2 - 20 3.4
WC30-7 20 1403 104 2732 3.1 2220 4.3 30 3.3 100.3 3.0 120.9 11.0 5130 12.9 10.4 3.7 31.3 3.3 4.3 3.3 WC30 7 0.0 66 73 0.0 67 7 1.4 11 70	<2 - 29 3.4
WC30-7 -20 500 73 002 3.2 1333 4.4 10 5.3 3.7 30.3 12.0 1044 13.0 5.3 3.3 3.7 14.1 1.1 7.0	<2 - 5 5.0
WC30-0 -20 1043 79 421 3.0 1240 4.4 30 3.3 3.1 4.2 0.1 12.4 740 14.0 4.03 - 2.7 3.9 0.4 10.0 WC30 0 -0 95 7 Crot 262 3.9 1554 4.5 52 56 276 2.1 197 12.6 2522 14.4 10.7 4.0 2.7 6.0 15 5.7	< 2 - 1 0.0
WC201 25 609 49 666 2.2 1009 4.7 20 5.9 2.1.0 3.1 10.7 12.0 2.02 14.4 10.7 4.0 2.1 0.0 1.3 3.7	<2 - 4 0.0
WC30 2 25 2220 170 665 2 2 1000 4.7 20 3.0 24.0 3.1 14.0 10.0 073 10.5 (0.4 - 1.1 5.2 0.7 0.5 0.6 0.6 0.6 0.0	<2 - 3 3.0
WC30_2 -25 Z350 179 005 3.2 1729 4.7 15 3.9 10.4 3.1 27.4 14.0 307 10.4 3.4 - 4.2 4.0 0.0 0.9 WC30_2 - 5 Z755 346 2815 3.1 1312 4.8 116 6.0 211 3.0 110 6.1 4.4 26388 17.0 155 3.0 20.7 3.7 6.0 3.5	<2 - 3 3.7
WC30.4	<2 - 1 / 2
WC30.5	<2 - 6 37
WC39-6 -25 1389 116 451 34 1113 50 15 64 02 226 07 194 64 194 < 04 - < 03 - < 01 - < 03 - < 01 -	<2 - 1 57
WC39-7 - 25 1299 109 498 33 1082 51 14 66 1 55 38 165 147 199 < 05 - 0.4 256 < 0.1 -	<2 - 1 45
WC39-8 -25 736 63 586 32 1078 52 18 67 147 31 14 168 1087 20 6 10 188 33 51 04 110	<2 - 2 40
WC39-9	<2 - 2 41
WC39-10 -25 1003 88 982 3.2 1093 5.4 17 7.0 243 3.1 386 178 3650 224 13.8 4.2 6.4 4.4 1.8 4.4	<2 - 12 37
WC40-1 -42 814 74 318 3.8 1324 5.6 18 7.3 6.5 3.2 2.8 19.2 3225 24.3 < 0.5 - 1.9 6.7 0.3 9.5	<2 - 2 41
WC40-2 -42 4908 410 2962 3.1 1754 5.7 55 7.4 182.4 3.0 112.6 19.6 8611 25.4 9.8 4.8 9.0 4.3 4.3 3.7	< 2 - 46 3.8
WC40-3 -42 1179 109 4296 3.1 1389 5.8 17 7.6 0.4 11.8 7.7 20.3 122 26.6 < 0.5 - 0.3 29.4 < 0.1 -	<2 - 9 4.0

(1/9)

Trace elements in zircons from the WC2 sediments

	Level	Y	1σ	Nb	1σ	Mo	1σ	Sn	1σ	Sb	1σ	Ba	1σ	La	1σ	Ce	1σ	Pr	1σ	Nd	1σ	Sm	1σ	Eu	1σ	Gd	1σ	Tb	1σ
111004	[m]	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	% 10 F	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	<u>%</u>
WC34-1	-2	1331	5.8 5.0	2	5.6	1./	0.9	0.2	10.0	<0.03	-	0.2	12.9	-0.06	15.1	0	12.5	0.10	15.0	2	7.0	11	9.9	0.45	9.3	40	0.0	13	0.0
WC34-2	-2	0/0 nd	0.0	5	5.5	1.4	6.4	0.2	87	<0.03	12.8	0.3	10.5	<0.06	12.8	3	12.5	0.10	12.9	3	7.7	5	10.0	0.45	9.0	20	7.3	0 7	6.8
WC34-4	-2	821	59	261	5.5	17.6	5.1	3.0	4.3	7.0	4.3	36.1	10.5	61.6	13.0	522	12.5	111.3	12.7	845	6.7	743	9.8	124.5	8.8	1591	6.5	459	6.8
WC34- 5	-2	1510	5.9	10	5.6	1.6	6.7	0.0	11.6	~0.03		0.2	12.7	0.2	15.2	13	12.6	0.4	13.3	4	72	6	10.0	0.5	9.8	22	6.6	7	6.8
WC34- 6	-2	n.d.	-	4	5.7	1.7	6.5	0.2	7.4	0.15	9.3	0.9	11.1	3.3	13.2	20	12.7	2.0	12.6	15	6.9	16	10.0	1.7	9.4	61	6.6	17	6.9
WC34-7	-2	n.d.	-	17	5.7	1.6	7.1	2.6	4.3	0.21	8.2	25.7	11.0	10.2	13.5	139	12.9	9.5	12.8	67	6.9	52	10.2	8.8	9.2	148	6.7	40	7.0
WC34-8	-2	n.d.	-	44	5.8	2.4	6.0	1.2	4.6	0.4	5.6	10.6	11.2	46.7	13.7	656	13.1	57.3	13.0	336	7.0	221	10.3	32.5	9.4	367	6.8	101	7.1
WC34- 9	-2	n.d.	-	2230	5.9	7.3	11.1	12.9	5.0	2.1	9.8	58.1	11.5	182.8	14.0	3916	13.3	214.8	13.2	1463	7.2	1254	10.5	135.1	9.6	2874	6.9	888	7.3
WC34-10	-2	922	6.5	28	6.0	1.6	6.9	0.3	7.0	0.13	11.5	2.0	11.9	4.4	14.4	113	13.6	6.1	13.5	37	7.3	33	10.8	4.5	9.9	74	7.1	24	7.4
WC35- 1	-9	n.d.	-	131	6.5	8.2	8.8	4.5	5.8	3.2	6.2	56.0	13.0	2021.9	15.7	100	15.0	567.4	14.9	2659	8.0	1312	11.9	186.9	10.9	3003	7.7	881	8.1
WC35- 2	-9	n.d.	-	1929	6.6	50.3	6.2	15.1	4.9	3.2	5.7	62.8	13.3	343.8	16.1	1564	15.3	275.5	15.3	1734	8.1	1526	12.2	201.8	11.1	4125	7.9	1336	8.3
WC35- 3	-9	1257	7.3	27	6.8	1.6	7.5	0.3	7.8	0.07	19.1	0.5	14.1	1.2	16.8	22	15.8	1.4	15.6	9	8.5	10	12.6	1.3	11.6	35	8.2	12	8.6
WC35-4	-9	n.d.	-	160	6.9	6.2	6.5	10.8	4.8	2.5	4.9	12.8	14.0	98.3	17.0	206	16.2	51.4	16.2	259	8.6	178	12.9	28.4	11.8	417	8.4	127	8.8
WC35- 5	-9	n.d.	-	63	7.1	6.0	6.6	0.6	6.4	1.2	5.5	28.9	14.4	67.7	17.4	249	16.6	72.6	16.6	455	8.8	499	13.2	82.7	12.1	1007	8.6	296	9.0
WC35-6	-9	1534	7.9	63	7.3	2.2	7.7	0.9	5.8	0.21	8.5	22.2	14.8	52.2	17.9	440	17.0	42.5	17.1	242	9.0	192	13.6	29.0	12.5	424	8.8	117	9.3
WC35-7	-9	1359	8.1	19	7.4	2.0	7.7	0.5	6.5	0.21	8.7	1.0	15.5	1.6	18.2	23	17.5	1.1	17.9	7	9.3	8	14.1	0.9	13.5	32	9.1	12	9.5
WC35-8	-9	1422	8.3	42	7.6	1.8	8.0	0.4	7.7	0.04	34.1	2.7	15.7	16.8	18.8	84	17.9	15.0	18.1	//	9.4	60	14.3	10.2	13.2	163	9.3	52	9.8
WC35-9	-9	n.a.	-	222	7.8	14.4	7.1	11.4	5.3	1.2	5.9	65.9	16.0	205.7	19.3	1318	18.4	183.2	18.5	995	9.7	/91	14.7	114.0	13.6	1682	9.5	4/6	10.0
WC35-10	-9	11.U. 604	0.0	0	0.1	2.0	10.4	1.0	0.1	0.12	14.3	2.7	17.4	14.3	19.0	144	10.0	12.0	19.0	02	9.9	600	16.0	0.7	14.0	20	9.0	40	10.5
WC37- 2	-13	024 nd	9.2	1351	0.0 8.6	1.0	79	6.9	5.8	0.08	24.0	2.1	17.4	11/ 2	20.0	1372	20.2	1.0	20.1	678	10.7	547	16.2	0.7 89.9	15.7	1033	10.4	201	10.9
WC37-3	-13	n.d.	_	108	8.8	3.3	87	14	6.3	0.0	7.0	6.0	18.3	21.8	21.8	281	20.2	24.8	21.0	135	10.7	114	16.7	18.7	15.1	223	10.5	65	11.1
WC37-4	-13	n d	-	27	9.0	3.5	8.9	3.8	6.1	24	6.3	16.4	18.7	43.3	22.3	439	21.2	45.5	21.5	255	11.2	236	17.2	55.7	15.9	553	11 1	163	11.7
WC37- 5	-13	n.d.	-	433	9.2	3.5	9.1	3.4	6.3	0.9	7.3	16.1	19.2	36.8	22.8	374	21.6	43.4	22.0	232	11.4	191	17.6	33.4	16.3	332	11.3	94	11.9
WC37-6	-13	n.d.	-	79	9.4	9.7	8.8	10.3	6.2	2.5	6.9	35.5	19.6	108.3	23.3	1253	22.1	133.8	22.5	709	11.7	539	18.0	90.4	16.7	1079	11.6	296	12.2
WC37- 7	-13	n.d.	-	223	9.6	17.6	8.7	4.3	6.5	4.5	6.6	62.5	20.1	205.5	23.8	548	22.6	208.6	23.0	1023	11.9	758	18.4	98.6	17.1	1558	11.9	436	12.5
WC38- 1	-20	n.d.	-	16	3.1	2.0	5.9	1.1	4.3	0.25	8.1	14.9	3.3	160.4	5.2	448	3.8	143.2	7.0	939	4.5	525	3.8	44.7	4.2	722	3.4	150	4.6
WC38- 2	-20	1785	3.1	55	3.1	1.5	6.0	0.3	7.2	0.18	8.3	280.3	3.2	3.6	5.4	15	3.9	2.8	7.1	23	4.6	23	3.9	2.5	4.5	74	3.5	23	4.7
WC38- 3	-20	n.d.	-	83	3.1	1.5	6.4	15.3	3.4	0.5	5.1	6.1	3.5	5.4	5.4	79	3.8	6.1	7.1	40	4.6	32	3.9	5.2	4.4	74	3.5	23	4.7
WC38-4	-20	n.d.	-	136	3.1	5.4	4.4	2.8	3.5	1.3	3.7	32.4	3.3	206.7	5.3	332	3.8	105.6	7.2	663	4.6	578	3.8	93.5	4.3	1418	3.4	472	4.7
WC38- 5	-20	n.d.	-	213	3.1	5.0	4.6	2.2	3.8	1.8	3.6	18.9	3.3	75.8	5.3	732	3.9	115.4	7.2	1022	4.6	1597	3.8	376.4	4.3	3279	3.4	770	4.7
WC38- 7	-20	1144	3.1	69	3.1	1.5	6.5	0.7	5.0	1.3	3.7	<0.78	-	9.4	5.5	71	3.9	7.7	7.5	42	4.7	51	3.9	9.5	4.4	123	3.5	39	4.8
WC38-8	-20	1966	3.1	/	3.2	1.3	7.2	0.3	8.9	0.10	16.2	<0.51		1.6	6.1	27	4.0	2.7	7.9	21	4.9	24	4.1	3.5	4.8	92	3.5	26	4.9
WC38-9	-20	2912	3.1	32	3.1	1.7	6.3	0.4	7.1	0.08	22.1	6.2	5.5	29.8	5.6	217	4.0	20.1	1.1	103	4.8	/4	4.0	15.3	4.5	164	3.5	43	4.9
WC39-1	-25	n.a.	-	25	3.1	1.9	5.7	0.4	6.U	0.3	5.9	3.7	5.2	24.4	5.9	297	4.1	20.6	8.2	137	5.0	101	4.1	11.6	4.6	205	3.6	56	5.1
WC39-2	-25	n.a.	-	701	3.1	1.4	0.0	1.5	0.0	0.04	31.0	2.9	5.9	017.3	6.0	339	4.1	105.2	8.4 9.6	92	5.1 5.1	540	4.1	11.0 54.1	4.7	1024	3.0	202	5.2
WC39-3	-20	1005	21	20	2.1	10.1	4.4	1.0	4.1	0.20	9.4	20.0	15.0	217.7	6.2	392	4.2	195.5	0.0	956	5.1	11	4.2	17	4.7	1034	3.0	12	5.5
WC39-5	-25	n d	0.1	15	3.1	2.6	5.7	0.2	7.8	0.2	7.0	1.0	13.0	75.1	6.3	465	4.3	1.5	9.5	232	53	130	4.4	14.6	J.J 1 Q	254	3.7	77	5.5
WC39-6	-25	1275	3.1	3	3.2	1.3	7.0	0.0	14.5	0.0	32.5	<0.30		0.2	10.9	-05	4.5	40.0 0.4	10.3	5	5.8	9	4.6	0.7	6.5	41	3.7	13	5.6
WC39- 7	-25	1501	3.1	18	3.2	1.0	6.8	0.1	8.9	<0.04	- 02.0	<0.31	-	0.2	7.3	24	4.5	0.4	10.0	6	5.7	8	4.6	0.6	6.6	39	3.8	13	5.7
WC39- 8	-25	n.d.	-	41	3.1	1.8	6.3	0.2	9.6	0.07	17.8	0.8	13.8	11.2	6.8	98	4.5	12.3	9.7	73	5.6	67	4.5	11.4	5.2	127	3.8	35	5.8
WC39- 9	-25	1077	3.1	153	3.1	2.1	5.7	0.4	6.0	0.3	5.6	0.5	22.9	5.5	6.9	47	4.6	3.0	10.1	18	5.8	18	4.6	1.2	5.8	65	3.8	22	5.9
WC39-10	-25	n.d.	-	33	3.2	3.1	5.4	0.3	8.0	3.7	3.3	14.1	3.8	72.8	7.0	235	4.6	46.7	10.2	246	5.8	178	4.6	31.5	5.3	329	3.8	89	6.0
WC40- 1	-42	1182	3.1	13	3.2	1.7	6.4	0.3	8.1	0.10	14.6	1.0	9.8	1.0	7.7	23	4.8	1.2	11.1	10	6.2	15	4.8	1.3	5.9	56	3.9	18	6.3
WC40- 2	-42	n.d.	-	40	3.2	4.0	5.6	1.7	4.3	1.1	4.0	24.0	3.9	83.1	7.4	746	4.9	99.5	11.0	556	6.2	435	4.8	64.2	5.6	886	3.9	235	6.4
WC40-3	-42	1020	3.1	3	3.5	1.4	7.4	0.3	8.3	<0.03	-	0.5	17.4	24.2	7.6	73	4.9	5.4	11.4	21	6.4	7	5.1	1.4	6.1	23	4.1	7	6.5

(2/9)

APPE	END	DIX I	Ι			Trac	e ele	emen	its in	n zir	con	s from	m tl	ne W	/C2	sedi	mer	nts								(3	(9)			
	Level	Dy	1σ	Ho	1σ	Er	1σ	Tm	1σ	Yb	1σ	Lu	1σ	Hf	1σ	Та	1σ	W	1σ	Re	1σ	²⁰⁸ Pb !	1σ	Th	1σ	U	1σ	Th/U	Eu*	Ce*
	[m]	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[wt-%]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	ratio		
WC34- 1	-2	167	4.9	52	7.3	212	9.7	51	9.1	566	9.4	59	12.4	1.55	100	3	10.8	0.3	12.5	< 0.02	-	7.7	12.3	140	9.7	167	8.1	0.84	0.13	3.74
WC34- 2	-2	102	5.3	33	8.3	140	11.1	34	10.3	380	10.6	42	14.0	1.30	97	2	12.2	0.1	27.8	< 0.02	-	9.7	11.3	74	11.0	160	9.7	0.46	0.11	2.30
WC34- 3	-2	97	4.9	32	7.4	135	9.7	35	9.2	386	9.4	41	12.4	1.62	98	3	10.9	0.4	10.6	0.08	11.8	51.5	2.3	94	9.7	230	8.2	0.41	0.35	1.48
WC34-4	-2	4263	4.9	920	7.4	3208	9.8	697	9.2	5879	9.5	615	12.5	2.59	97	42	10.8	259	9.0	< 0.02	-	15.3	41.4	492	9.8	7150	8.3	0.07	0.15	10.31
WC34- 5	-2	99	4.9	34	7.5	148	9.9	39	9.3	432	9.6	47	12.6	1.94	96	8	11.0	0.2	14.4	< 0.02	-	8.8	21.6	227	9.9	499	8.4	0.46	0.17	1.84
WC34- 6	-2	201	4.9	61	7.5	241	10.0	58	9.4	609	9.7	67	12.7	1.56	95	2	11.0	0.3	10.9	< 0.02	-	16.1	6.9	213	10.0	168	8.5	1.27	0.31	3.32
WC34- 7	-2	397	5.0	100	7.7	361	10.2	80	9.5	807	9.8	84	12.9	1.52	95	6	11.3	0.9	10.0	0.03	28.8	15.5	13.4	638	10.1	542	8.7	1.18	0.35	2.97
WC34- 8	WC34-8 -2 955 5.0 22/ 7.8 856 10.4 211 9.7 2199 10.0 240 13.1 2.17 95 111 11.4 6 9.6 n.d 39.0 5.2 // 10.3 1822 8 WC34-9 -2 9193 5.1 2458 7.9 9670 10.6 1972 9.9 16063 10.2 2734 13.4 2.72 96 882 11.7 17 10.1 <0.03 - 21.7 24.3 731 10.5 8188 % WC34-10 -2 270 5.2 79 8.1 325 10.8 85 10.1 968 10.4 103 13.7 1.87 96 18 11.9 3 10.2 <0.02 - 7.8 38.4 228 10.7 1046															8.9	0.04	0.22	4.63											
WC34-9	NC34-9 -2 9193 5.1 2458 7.9 9670 10.6 1972 9.9 16063 10.2 2734 13.4 2.72 96 882 11.7 17 10.1 < 0.03 - 21.7 24.3 731 10.5 8188 9. NC34-10 -2 270 5.2 79 8.1 325 10.8 85 10.1 968 10.4 103 13.7 1.87 96 18 11.9 3 10.2 < 0.02 - 7.8 38.4 228 10.7 1046 9.															9.1	0.09	0.28	5.14											
WC34-10	VC34-9 -2 9193 5.1 2458 7.9 9670 10.6 1972 9.9 16063 10.2 2734 13.4 2.72 96 882 11.7 17 10.1 < 0.03 - 21.7 24.3 731 10.5 8188 9.1 VC34-10 -2 270 5.2 79 8.1 325 10.8 85 10.1 968 10.4 103 13.7 1.87 96 18 11.9 3 10.2 < 0.02 - 7.8 38.4 228 10.7 1046 9.4 10.5 8184 11.5 172 15.0 10.5 11.2 11.5 11.5 11.5 11.5 11.5 11.5 11															9.4	0.22	0.12	30.09											
WC35-1	-9	8691	5.6	2111	8.9	7644	11.9	1684	11.1	7921	11.5	1776	15.0	2.63	100	51	13.2	14	11.2	0.12	39.1	49.9	15.5	121	11.8	4906	10.6	0.02	0.29	0.02
WC35-2	-9	13700	5.7	2738	9.1	13030	12.3	2979	11.4	satur.	11.8	3463	15.4	4.28	102	1168	13.5	113	11.2	0.25	20.1	31.5	16.0	105	12.1	9886	11.0	0.01	0.25	1.19
WC35-3	-9	148	5.8	48	9.3	208	12.6	53	11.7	593	12.1	63	15.8	1.51	103	10	13.9	0.3	13.8	< 0.03	-	20.4	16.4	379	12.4	590	11.3	0.64	0.21	4.12
WC35-4	-9	1295	5.9	322	9.6	1280	13.0	347	12.0	4068	12.4	468	16.2	2.26	104	202	14.3	53	11.7	< 0.04	-	19.2	16.9	53	12.7	1602	11.7	0.03	0.32	0.68
WC35-5	-9	2600	6.1	564	9.8	1896	13.3	426	12.3	4288	12.8	399	16./	1.49	106	16	14.7	13	12.1	0.05	31.3	42.2	17.4	61	13.1	4975	12.1	0.01	0.36	0.83
WC35-6	-9	1088	0.2	209	10.1	957	13.7	221	12.0	2200	10.1	234	17.1	1.57	107	10	15.1	10	12.5	< 0.03	-	19.8	17.9	238	13.4	1004	12.5	0.32	0.31	2.19
WC35-7	-9	152	0.4 6 5	140	10.4	241	14.1	107	13.0	1475	13.5	140	10.0	1.00	109	12	15.5	1.2	10.1	< 0.03	-	34.3	10.4	394	13.8	1034	12.9	0.38	0.17	4.17
WC35-8	-9	149	6.6	1064	10.0	2954	14.5	800	13.3	0067	14.0	1022	10.0	1.20	112	212	10.9	0.9	12.0	< 0.03	24.4	30.0	19.0	100	14.1	16/1	12.3	0.41	0.31	1.23
WC35-10	-9	4439	6.9	1//	11.0	571	14.9	120	14.0	1200	14.2	154	10.5	1.45	114	512	16.9	0.7	1/0	0.00	24.4	22.0	20.0	240	14.0	620	14.2	0.07	0.30	2.52
WC37 1	-9	434	7 1	25	11.2	106	16.1	20	14.0	246	15.2	24	10.9	1.04	117	3	19.0	0.7	16.2	< 0.03	29.0	22.0	20.0	159	14.5	192	14.2	0.04	0.31	0.95
WC37- 2	-13	2671	7.1	637	12.1	2364	16.5	564	14.7	6056	15.5	608	20.4	1.02	118	168	18.2	71	14.9	0.05	30.4	93.8	21.1	187	16.0	2297	15.0	0.00	0.15	2 74
WC37-3	-13	624	74	152	12.1	564	17.0	143	15.5	1618	16.1	142	20.9	1.00	120	42	18.7	4	15.4	< 0.00	- 00	35.5	22.2	47	16.4	1876	15.9	0.00	0.36	2.83
WC37-4	-13	1615	7.5	420	12.4	1612	17.0	412	15.8	4543	16.5	448	21.3	1 59	121	16	19.2	7	15.7	< 0.02	-	35.1	22.7	69	16.8	2203	16.4	0.00	0.00	2.32
WC37-5	-13	869	7.7	211	13.0	744	17.8	185	16.2	2140	16.9	173	21.8	0.89	123	26	19.6	10	16.0	< 0.04	-	54.0	23.2	30	17.2	1644	16.8	0.02	0.41	2.19
WC37-6	-13	2656	7.9	609	13.3	2185	18.3	491	16.6	4998	17.3	479	22.3	1.18	124	29	20.1	11	16.5	< 0.04	-	73.1	23.8	<1.5		2147	17.3	< 0.01	0.36	2.44
WC37-7	-13	4018	8.0	973	13.6	3518	18.7	777	17.0	7574	17.7	754	22.8	1.33	126	73	20.6	14	16.8	< 0.04	-	87.2	24.3	80	18.0	4708	17.8	0.02	0.28	0.62
WC38-1	-20	1231	3.6	256	4.0	837	6.7	179	5.7	1606	4.4	167	4.8	2.04	27	8	3.9	1.2	4.4	< 0.04	-	46.8	3.5	505	4.1	2249	3.0	0.22	0.22	0.69
WC38- 2	-20	272	3.6	80	4.0	326	6.7	83	5.7	930	4.4	106	4.8	1.64	27	8	4.0	1.3	4.2	< 0.03	-	16.4	3.5	310	4.1	501	3.0	0.62	0.18	1.12
WC38- 3	-20	267	3.6	80	4.0	349	6.8	97	5.7	1124	4.4	118	4.8	1.85	27	34	3.9	4	3.6	< 0.02	-	53.7	3.5	488	4.1	1845	3.0	0.26	0.33	3.25
WC38-4	-20	5026	3.6	1269	4.0	4938	6.8	1164	5.7	satur.	4.5	1230	4.8	2.31	27	56	3.9	13	3.1	0.04	38.5	22.5	3.5	85	4.1	2269	3.0	0.04	0.32	0.53
WC38- 5	-20	5219	3.6	990	4.1	4350	6.9	935	5.8	satur.	4.5	1121	4.9	4.25	27	59	3.9	14	3.1	0.05	32.0	20.5	3.5	167	4.1	2904	3.0	0.06	0.50	1.83
WC38-7	-20	413	3.7	112	4.1	520	7.1	170	5.9	2295	4.6	277	5.0	2.71	28	139	3.9	5	3.3	0.05	26.9	41.6	3.5	497	4.2	1614	3.0	0.31	0.37	1.94
WC38-8	-20	313	3.7	98	4.2	394	7.2	97	6.0	1023	4.6	111	5.0	1.38	28	6	4.2	0.6	6.6	< 0.02	-	20.8	3.6	230	4.2	383	3.0	0.60	0.23	3.15
WC38- 9	-20	425	3.7	105	4.2	395	7.3	97	6.1	1016	4.7	123	5.1	1.99	28	13	4.1	0.6	6.5	< 0.03	-	6.2	3.7	850	4.2	945	3.0	0.90	0.42	2.07
WC39- 1	-25	560	3.8	135	4.3	503	7.7	119	6.4	1188	4.9	123	5.3	1.84	30	71	4.1	3	3.5	< 0.03	-	14.1	3.7	270	4.4	1189	3.0	0.23	0.41	3.10
WC39- 2	-25	438	3.9	113	4.4	444	7.9	114	6.5	1280	4.9	129	5.4	2.46	30	41	4.2	1.6	4.0	< 0.02	-	27.3	3.7	131	4.5	1168	3.0	0.11	0.31	4.90
WC39- 3	-25	3133	3.9	807	4.5	2957	8.1	637	6.7	4896	5.0	632	5.5	1.92	31	22	4.3	30	3.1	< 0.04	-	56.5	3.7	125	4.5	6743	3.1	0.02	0.22	0.45
WC39-4	-25	158	3.9	51	4.5	212	8.3	52	6.8	569	5.1	63	5.6	1.41	31	3	4.5	0.9	4.8	0.05	28.3	13.0	3.8	274	4.6	316	3.1	0.87	0.23	2.07
WC39- 5	-25	810	4.0	201	4.6	749	8.5	178	7.0	1764	5.2	154	5.7	1.64	32	7	4.4	1.8	4.1	< 0.02	-	37.8	3.8	509	4.7	1620	3.1	0.31	0.24	1.80
WC39- 6	-25	158	4.0	53	4.7	224	8.7	55	7.1	625	5.3	66	5.9	1.31	33	7	4.5	0.1	37.0	< 0.03	-	11.0	3.9	90	4.7	243	3.1	0.37	0.11	4.17
WC39-7	-25	176	4.1	62	4.7	275	8.9	70	7.3	779	5.4	80	6.0	1.55	33	11	4.5	0.1	15.3	< 0.03	-	53.9	3.8	475	4.8	1234	3.1	0.38	0.11	8.05
WC39-8	-25	342	4.1	89	4.8	347	9.1	86	7.5	943	5.5	90	6.1	1.66	34	15	4.6	1.0	4.7	< 0.02	-	39.3	3.9	620	4.9	1531	3.1	0.40	0.38	1.96
WC39-9	-25	252	4.2	67	4.9	262	9.3	64	7.6	687	5.6	65	6.2	1.62	35	31	4.6	10	3.1	< 0.03	-	26.1	3.9	431	5.0	1332	3.1	0.32	0.11	2.71
WC39-10	-25	824	4.2	195	5.0	710	9.6	176	7.8	1928	5.7	187	6.3	1.46	35	11	4.7	15	3.1	< 0.04	-	39.2	4.0	450	5.0	1686	3.1	0.27	0.40	0.94
WC40-1	-42	225	4.3	74	5.1	319	10.0	80	8.1	826	5.9	92	6.6	1.90	37	10	4.8	0.6	5.6	< 0.03	-	41.1	4.0	585	5.2	937	3.1	0.62	0.14	5.03
WC40-2	-42	2176	4.4	510	5.2	1858	10.3	425	8.3	3967	6.0	440	6.7	2.16	38	56	4.8	15	3.1	< 0.04	-	47.7	4.1	101	5.3	2247	3.1	0.05	0.32	1.92
WC40-3	-42	95	4.5	35	5.3	180	10.5	52	8.5	636	6.1	88	6.9	1.90	38	2	5.3	0.1	29.6	< 0.04	-	47.3	4.1	460	5.4	366	3.1	1.26	0.34	1.50

APPE	NDIX	ΧI		Trac	e ele	men	its in	zirc	cons f	ron	n the	WC	2 sed	imer	nts							(4	1/9)			
	Level	²⁰⁸ Pb/ ²³² Th	1σ		Ca	1σ	Sc	1σ	Ti	1σ	V	1σ	Mn	1σ	Fe	1σ	Cu	1σ	Zn	1σ	Ga	1σ	Se	1σ	Sr	1σ
	[m]	Age [Ma]	[Ma]		[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%
WC40- 4	-42	2161	199		787	3.2	1381	5.9	75	7.7	6.2	3.4	6.5	20.8	1550	27.7	8.4	5.1	4.1	5.3	7.1	3.7	< 2	-	21	3.9
WC40- 5	-42	797	77		394	3.6	1261	6.0	223	7.9	10	3.2	412.4	21.4	12119	28.9	< 0.6	-	20.9	4.2	4.8	3.8	< 2	-	3	4.3
WC40- 6	-42	2708	254		1225	3.1	1484	6.1	77	8.0	46.7	3.1	44.5	22.0	4161	30.2	7.4	5.3	6.1	4.9	2.4	4.2	< 2	-	16	4.0
WC40- 7	-42	532	54	Camb.	756	3.4	1440	6.2	21	8.2	17.9	3.2	13.7	22.7	1652	31.6	2.7	13.1	2.3	8.7	0.8	7.9	< 2	-	7	4.2
WC40- 8	-42	769	78		354	3.8	1367	6.3	16	8.4	1.2	5.4	0.6	30.2	131	33.1	< 0.6	-	0.6	19.0	< 0.1	-	< 2	-	1	5.6
WC40- 9	-42	7751	673		4529	3.1	1806	6.4	51	8.6	181	3.0	229.4	24.0	16288	34.5	17.3	4.7	36.1	4.3	4.3	3.9	< 2	-	69	4.1
WC40-10	-42	1015	106		309	3.8	1378	6.5	18	8.8	0.4	11.0	2.1	25.0	144	36.2	< 0.5	-	0.8	13.3	< 0.1	-	< 2	-	1	5.8
WC41-1	-48	2890	512		6990	3.9	306	4.9	2008	4.0	506.1	3.6	160.9	3.1	6689	8.8	34.2	7.2	57.5	5.4	39.6	3.9	< 2	-	136	3.3
WC41-2	-48	5354	898		1547	3.9	1346	4.9	29	4.0	117.4	3.6	22.9	3.1	1256	8.8	10.0	7.4	10.3	5.7	2.3	4.3	< 2	-	24	3.3
WC41-3	-48	3420	605		4503	3.9	2183	4.9	37	4.0	425.1	3.6	86.9	3.1	4742	8.9	24.3	7.3	20.0	5.6	10.9	4.0	< 2	-	94	3.3
WC41-4	-48	1293	244		1673	3.9	1257	5.0	15	4.0	1.1	4.8	5	3.6	45	9.9	< 0.3	-	< 0.3	-	0.2	9.7	< 2	-	3	3.5
WC41-5	-48	4959	867		3933	3.9	1475	5.0	61	4.0	324.9	3.6	176.1	3.1	2793	9.0	20.3	7.8	6.2	6.7	7.3	4.3	< 2	-	71	3.3
WC41-6	-48	4420	796		3036	4.0	1255	5.1	54	4.1	79.9	3.6	28.5	3.2	9701	9.1	27.6	7.9	17.8	5.8	18.0	4.1	< 2	-	139	3.3
WC41-7	-48	8985	1486		5419	4.0	1861	5.1	78	4.1	265.7	3.6	102.6	3.1	7413	9.3	17.2	8.3	11.3	6.0	6.6	4.2	< 2	-	101	3.4
WC41-8	-48	802	165		357	5.3	1377	5.2	27793	4.1	42.7	3.7	13	3.4	7557	9.4	6.0	9.7	7.2	6.8	1.5	5.4	< 2	-	9	3.5
WC41-9	-48	1016	213		1208	4.1	1057	5.3	121	4.2	105.9	3.7	93.1	3.1	35831	9.5	56.6	8.8	101.9	5.9	15.0	4.3	< 2	-	24	3.4
WC41-10	-48	5655	1086		3045	4.1	2006	5.4	69	4.2	377.7	3.7	43.2	3.1	10094	9.7	18.8	9.2	13.9	6.3	4.5	4.5	< 2	-	66	3.4
WC44- 1	-75	679	155		1096	4.3	1573	5.6	39	4.4	47.8	3.8	23.9	3.2	4338	10.1	3.6	12.1	5.6	7.5	1.7	5.2	< 2	-	14	3.5
WC44-2	-75	591	139		258	5.4	1314	5.7	16	4.4	3.5	4.0	4.8	3.7	699	10.3	< 0.5	-	1.3	14.3	4.1	4.7	< 2	-	3	3.8
WC44- 3	-75	886	213		714	4.5	1192	5.8	14	4.5	1.3	4.9	1.6	6.3	194	10.6	< 0.5	-	< 0.3	-	0.1	24.1	< 2	-	1	4.2
WC44- 4	-75	1065	263		102	9.7	1257	6.0	18	4.6	1.1	5.5	2.4	5.3	399	10.8	< 0.6	-	0.9	18.1	0.4	9.0	< 2	-	1	4.9
WC44- 5	-75	1126	285		230	5.7	1240	6.1	14	4.7	0.8	7.3	1.7	6.5	397	11.1	< 0.4	-	0.7	21.5	0.2	15.6	< 2	-	3	3.9
WC44- 6	-75	356	95		765	4.7	1311	6.3	29	4.7	36.2	4.0	25.3	3.2	3058	11.3	1.6	18.2	4.0	8.2	1.2	5.9	< 2	-	9	3.7
WC44- 7	-75	1176	315		402	5.3	1366	6.4	17	4.8	1.3	5.7	4.8	4.2	363	11.6	7.3	13.3	4.3	8.9	0.2	15.8	< 2	-	2	4.4
WC44- 8	-75	1092	301		139	7.7	1250	6.5	14	4.9	0.3	12.0	< 0.2	-	56	12.4	< 0.6	-	< 0.3	-	< 0.1	-	< 2	-	1	5.6
WC44- 9	-75	840	239		359	5.3	1238	6.7	69	5.0	10.7	4.2	130.8	3.2	7846	12.1	9.5	13.9	17.3	7.7	7.8	5.4	< 2	-	3	3.8
WC44-10	-83	1177	360		9131	4.9	1857	6.9	36	5.1	408.2	4.2	83.6	3.2	6446	12.4	25.1	14.3	57.0	7.8	11.3	5.5	< 2	-	185	3.7
WC46-1	-83	1895	541		96	10.8	1265	7.2	19	5.3	5.9	4.4	6	3.7	662	13.0	< 0.7	-	1.8	12.0	1.8	6.2	73	4.7	3	4.0
WC46-2	-83	1022	322		2261	5.2	1784	7.3	14	5.4	14.8	4.4	387.4	3.2	/19/	13.3	7.5	16.1	19.5	8.5	4.6	5.8	< 2	-	16	3.9
WC46-3	-83	1158	372		215	6.3	1284	7.5	16	5.5	0.3	14.3	2.2	5.1	118	13.8	< 0.6	-	0.6	22.0	< 0.3	-	< 2	-	< 0.2	
WC46-4	-83	949	314		340	5.8	1318	7.7	14	5.5	10.7	4.5	9.2	3.5	654	13.9	< 0.6	-	2.9	10.5	< 0.3	-	< 2	-	2	4.3
WC46-5	-83	14213	3557		3664	5.5	1320	7.8	84	5.6	1/1.9	4.6	/1.4	3.3	20391	14.2	53.2	17.5	36.2	9.0	3.7	6.8	< 2	-	86	4.0
WC46-6	-83	1219	421		345	6.1	1418	8.0	12	5.7	5.6	4.8	1.4	7.9	256	14.6	< 0.7	-	2.0	11.9	< 0.3		< 2	-	3	4.4
WC46-7	-83	1028	364		260	6.7	1293	8.2	17	5.9	10	4.7	10.6	3.5	2789	14.9	1.4	26.6	4.1	10.2	0.6	17.7	< 2	-	8	4.
WC46-8	-83	4039	1360		3792	5.8	1142	8.4	58	5.9	39.7	4.7	489.8	3.3	5883	15.2	7.8	19.6	1.2	10.1	7.2	6.7	< 2	-	58	4.
WC46-9	-83	862	321		603	6.1	1209	8.5	14	6.1	5.8	4.8	8.3	3.6	1003	15.6	1.1	30.0	1.0	17.7	0.3	24.2	< 2	-	2	4./
WC46-10	-83	956	362		1005	6.0	1399	8.7	17	6.1	39.2	4.9	9.6	3.5	1413	15.9	1.0	30.7	3.5	11.0	0.4	20.6	< 2	-	16	4.2
WC47-1	-84	/68	87		342	4.8	1370	4.9	18	3.6	14.7	4.0	18.6	3.3	989	6.7	< 1.2	-	7.4	5.7	2.9	4.2	< 2	-	/	4.3
WC47-2	-84	1433	160	0 1	113	13.3	1243	4.9	13	3.6	< 0.2	-	< 0.4	-	18	18.7	< 1.8	-	< 0.6	-	< 0.3	-	< 2	-	0	15.1
WC47-3	-84	356	41	Carb.	<36	-	1483	4.9	18	3.6	1.3	6.2	0.5	29.4	634	6.8	< 1.6	-	1.5	17.3	< 0.2	-	< 2	-	2	5.0
WC47-4	-84	274	32	Perm.	2/2	7.2	1/1/	5.0	18	3.6	4.9	4.5	9.8	3.8	219	7.2	< 2.0	-	1.2	23.1	< 0.2	-	< 2	-	2	4.8
WC47-5	-84	509	60	Camb.	984	4.4	1864	5.0	18	3.7	15.1	4.2	30.7	3.4	925	7.0	< 1.4	-	2.1	14.5	1.7	7.0	< 2	-	22	4.3
WC47-6	-84	145	18	Juras.	437	4.9	1901	5.1	17	3.7	9.7	4.2	28.3	3.3	362	7.2	< 1.1	-	2.3	10.6	0.3	26.8	< 2	-	6	4.6
WC47-7	-84	264	35	Perm.	<84	-	19/9	5.1	14	3.8	< 0.3	-	< 0.8	-	< 18		< 3.7	-	< 1.3		< 0.5	-	< 2	-	1	14.3
WC47-8	-84	1009	122	lune -	<40		1349	5.2	37	3.7	0.8	9.0	11.8	3.6	328	7.5	< 1.7	10.0	1.2	20.7	< 0.2	-	< 2	-	5	4.1
WC47-9	-84	151	20	Juras.	225	9.7	1691	5.3	15	3.8	2.6	5.3	5.4	5.1	84	9.3	9.7	12.6	1.9	18.0	< 0.3	-	< 2	-	2	5.5
W050 4	-84	440	5/	Silur.	148	12.8	1535	5.4	14	3.8	2.5	5./	0.9	22.0	135	8.6	< 1.9		< 0.8	-	< 0.1	-	< 2	-	1	/.
VVC50-1	-97	654	8/		533	7.4	1828	5.6	60888	3.8	780	4.4	74.2	3.4	66//1	8.2	23.9	11.1	33.1	b.2	16.1	3.9	< 2	-	28	4.7

APPE	ND	IX I]	Гrace	eler	ment	s in	zircon	ns fr	om t	the V	WC2	sed	imen	ts								(5/	9)			
	Level	Υ	1σ	Nb	1σ	Мо	1σ	Sn	1σ	Sb	1σ	Ba	1σ	La	1σ	Ce	1σ	Pr	1σ	Nd	1σ	Sm	1σ	Eu	1σ	Gd	1σ	Tb	1σ
	[m]	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%
WC40- 4	-42	n.d.	-	10	3.3	1.6	7.6	0.7	5.5	0.11	15.2	54.7	4.0	231.4	7.8	378	5.0	267.4	11.6	946	6.4	1408	4.9	160.3	5.8	2313	4.0	536	6.6
WC40-5	-42	2406	3.1	29	3.2	1.5	7.5	5.2	4.0	0.05	33.3	18.9	4.0	2.9	8.0	35	5.1	3.8	11.9	22	6.6	22	5.1	2.3	6.1	79	4.0	25	6.8
WC40-6	-42	n.d.	-	38	3.2	2.3	7.1	1.2	4.7	0.4	5.9	11.6	4.1	33.9	8.1	373	5.2	33.1	12.1	178	6.7	146	5.1	23.2	6.1	352	4.1	111	6.9
WC40- 7	-42	1494	3.1	6	3.6	1.6	9.3	0.7	6.8	0.5	6.9	4.7	5.1	9.9	8.4	94	5.3	1.1	12.5	43	6.9	40	5.3	7.3	6.3	91	4.2	27	7.0
WC40-8	-42	1159	3.1	105	3.2	1.5	7.9	0.4	7.5	0.05	35.6	<0.25	-	4.4	8.4	23	5.4	0.6	13.3	4	7.4	5	5.6	0.6	7.6	27	4.3	10	7.2
WC40-9	-42	1445	21	125	3.2	3.9	0.5	3.4	4.2	1.0	4.2	24.0 -0.17	4.2	00.0	0.0	/38	5.4	94.2	13.0	447	7.0	330	5.3 5.7	46.9	0.4 9.4	765	4.2	231	7.3
WC40-10	-42	nd	5.1	220	3.6	22.7	5.6	112.6	5 9	0.07 Q ()	10.7	55.5	12	100.3	3.4	173	1.8	18/ 7	3.5	1103	3.2	, 871	3.7	1/2.8	3.5	2157	4.5	634	/.4
WC41-2	-48	nd	_	53	3.6	3.5	5.0	1.0	6.7	0.0	11 1	10.7	4.2	51.5	3.4	256	4.8	38.9	3.5	219	3.2	152	3.8	26.0	3.5	379	3.4	119	4.1
WC41-3	-48	n d	-	53	3.6	7.0	5.7	1.0	6.5	0.0	11.2	25.5	4.2	135.5	3.4	409	4.8	117.0	3.5	636	3.2	419	3.8	69.1	3.5	992	3.4	304	4 1
WC41-4	-48	n.d.	-	4	3.7	1.4	7.1	0.3	10.6	< 0.03		1.7	4.7	13.3	3.5	69	4.9	3.5	3.7	20	3.3		4.0	1.6	3.9	27	3.4	8	4.2
WC41-5	-48	n.d.	-	558	3.6	6.2	6.1	2.1	6.7	1.2	11.3	55.5	4.3	93.5	3.5	199	4.9	86.9	3.6	534	3.2	383	3.8	62.3	3.5	994	3.4	319	4.1
WC41-6	-48	n.d.	-	46	3.7	4.4	6.2	3.5	6.3	0.09	19.4	54.2	4.4	153.5	3.5	254	4.9	106.6	3.6	1078	3.2	696	3.8	49.1	3.5	736	3.4	140	4.2
WC41-7	-48	n.d.	-	54	3.7	11.2	5.9	1.0	7.1	0.20	14.6	33.0	4.5	405.9	3.5	63	5.0	336.4	3.6	2019	3.2	1193	3.8	132.6	3.5	2261	3.4	557	4.2
WC41-8	-48	n.d.	-	257	3.7	8.9	6.2	492.3	6.4	1209.7	11.7	6.5	4.6	17.3	3.5	77	5.1	9.0	3.7	57	3.3	44	4.0	6.7	3.8	137	3.5	42	4.3
WC41-9	-48	n.d.	-	146	3.7	6.9	6.3	29.8	6.5	0.21	20.6	28.2	4.6	16.7	3.5	89	5.2	13.2	3.6	77	3.3	61	4.0	9.7	3.6	188	3.5	59	4.3
WC41-10	-48	n.d.	-	40	3.8	6.2	6.3	1.6	7.0	0.4	14.0	29.7	4.7	155.3	3.5	461	5.2	136.7	3.7	819	3.3	604	4.0	132.1	3.6	1450	3.5	410	4.4
WC44- 1	-75	n.d.	-	17	3.9	2.6	7.3	0.5	10.5	1.4	13.1	5.2	5.0	15.5	3.6	162	5.4	13.8	3.8	92	3.3	82	4.1	15.4	3.7	225	3.6	68	4.5
WC44- 2	-75	1177	4.7	47	3.9	2.0	7.5	0.4	10.0	0.13	20.9	51.1	5.1	2.2	3.9	40	5.5	1.9	3.9	14	3.5	12	4.3	1.8	4.2	36	3.6	12	4.6
WC44- 3	-75	1110	4.8	6	4.0	1.7	7.7	0.2	16.6	0.07	29.2	1.7	5.7	9.6	3.7	29	5.6	3.2	3.8	22	3.4	10	4.4	0.6	5.1	31	3.7	10	4.7
WC44- 4	-75	742	4.9	3	4.4	1.7	8.1	0.2	19.7	0.11	22.8	5.0	5.4	0.8	4.3	6	5.9	0.3	4.9	3	4.5	4	5.0	0.6	5.4	18	3.7	6	4.7
WC44-5	-75	n.d.	-	36	4.1	2.5	7.9	0.2	14.4	0.09	25.0	1.8	6.1	3.0	4.0	30	5.9	2.3	4.1	15	3.6	19	4.5	2.3	4.3	72	3.7	24	4.8
WC44-6	-75	n.d.	-	44	4.1	2.5	7.9	3.9	8.0	1.0	15.0	10.0	5.6	12.2	3.9	1/1	6.0	10.9	3.9	72	3.4	56	4.4	9.7	3.9	144	3.7	43	4.9
WC44- 7	-/5	n.d.	-	6	4.3	1./	9.6	0.5	10.7	0.14	23.0	2.3	6.2	0.8	4.8	8	6.2	0.3	5.5	4	4.7	6	5.2	0.5	6.7	34	3.8	11	5.0
WC44-8	-/5	1035	5.3	70	4.2	1.9	0.0	10.3	11.9	<0.05	20.1	20.2	10.0	1.1	4.2	13	0.3 6.4	0.4	4.7	3	4.4	4	5.2 4 7	0.2	11.5	23	3.9	20	5.0
WC44-9	-75	n.u.	-	212	4.2	10.7	0.0	10.4 E 7	0.0	0.15	16.7	104.0	6.0	102 5	4.0	30	6.4	140.0	4.2	21	3.0	21 607	4.7	2.1	4.3	1476	3.0	29	5.2
WC46- 1	-83	n.u. n.d	-	17	4.5	16	9.6	0.7	10.5	0.17	21.4	20.2	6.4	193.5	3.9 4.4	28	6.8	0.8	4.1	900	3.9	16	5.0	1.0	4.0	84	4.0	27	5.5
WC46-2	-83	n d	-	18	4.5	2.8	8.9	1.0	9.6	8.9	17.9	35.2	6.6	31.4	4 1	110	6.9	6.8	4.3	39	3.7	45	4.9	6.7	4.3	144	4.0	47	5.5
WC46-3	-83	n.d.	-	10	4.6	1.8	9.2	0.3	13.0	0.08	27.5	< 0.47	-	1.6	4.3	17	7.1	0.8	4.7	6	3.9	.0	5.2	0.5	8.9	42	4.1	14	5.6
WC46-4	-83	n.d.	-	27	4.6	2.0	9.7	0.6	11.1	0.08	31.2	< 0.37	-	2.5	4.4	27	7.2	1.7	4.5	13	3.8	14	5.2	2.1	4.7	56	4.1	18	5.8
WC46-5	-83	n.d.	-	790	4.7	8.1	9.1	4.9	10.2	2.8	19.4	12.9	7.1	229.7	4.2	376	7.4	117.9	4.5	605	3.7	386	5.1	27.8	4.4	843	4.1	263	5.8
WC46-6	-83	1973	6.6	10	4.8	1.7	10.0	0.5	11.7	<0.05	-	<0.32	-	1.4	4.5	45	7.5	1.2	4.7	9	3.9	12	5.4	3.9	4.7	51	4.2	16	6.0
WC46-7	-83	n.d.	-	8	4.9	2.5	9.9	0.3	14.0	0.12	26.2	6.4	7.5	103.1	4.3	108	7.7	39.7	4.6	359	3.7	87	5.3	n.d.	-	117	4.2	27	6.1
WC46-8	-83	n.d.	-	312	4.9	3.4	10.0	1.8	11.1	40.3	20.7	25.7	7.4	51.2	4.4	274	7.8	24.9	4.7	138	3.8	86	5.4	10.8	4.6	227	4.3	69	6.2
WC46- 9	-83	1309	7.0	22	5.0	1.9	10.8	0.3	15.1	0.3	22.0	3.5	8.0	13.9	4.5	52	7.9	5.2	4.8	31	3.9	19	5.6	2.8	5.0	59	4.4	17	6.3
WC46-10	-83	n.d.	-	5	5.0	2.1	10.7	0.3	15.1	0.09	28.4	4.0	8.0	41.3	4.5	246	8.1	24.2	4.8	166	3.9	123	5.6	39.2	4.7	303	4.4	70	6.4
WC47- 1	-84	n.d.	-	13	4.2	2.5	4.9	0.3	9.9	0.3	7.9	33.8	4.3	13.3	4.8	74	3.5	11.6	3.7	80	5.1	58	5.2	10.2	3.7	158	5.0	43	4.9
WC47-2	-84	696	6.0	4	4.4	1.2	9.8	0.2	20.2	<0.10	-	<0.28	-	<0.03	-	40	3.5	0.10	11.6	2	8.4	1	33.3	0.40	12.4	15	5.2	4	5.1
WC47-3	-84	1728	6.0	3	4.6	1.4	8.5	0.2	20.3	0.8	6.3	3.5	5.5	1.3	5.4	10	3.6	0.2	7.1	3	7.1	5	6.3	0.9	6.3	31	5.1	10	5.0
WC47-4	-84	2165	6.1	4	4.5	2.0	7.1	0.3	18.4	0.3	13.5	0.7	17.6	0.7	6.0	33	3.5	1.4	4.2	14	5.5	21	5.4	5.2	4.1	66	5.1	19	5.0
WC47-5	-84	n.d.	-	4	4.8	1.6	8.6	0.9	7.5	2.1	4.5	24.7	4.4	3.2	5.3	62	3.5	15.1	3.8	137	5.3	129	5.3	31.3	3.8	270	5.1	70	5.0
WC47-5	-84	2406	6.2	2	4.9	2.0	0.6	1.9	4.3	0.19	16.1	2.2	5.9	1.3	5.5	32	3.5	0.1	3.9	62	5.3	11	5.4	17.4	3.8	1/6	5.1	49	5.1
WC47-7	-84	2045	0.3	3	5.U	2.1	10.8	0.7	14.9	<0.19	-	<0.59	67	<0.08	-	11	0.C	0.11	20.2	2	10.5	6	7.4	1./1	0.4 6 F	3/	5.3 5.6	12	0.∠ ⊑ ⊑
WC47-8	-84	400	0.4 6.5	4	4.7 1 P	1./	0.U 0.7	0.5	127	<0.09	-	2.3	0./ 25.0	1./	5.5 6.5	20 25	3.0 3.6	1.5	5.0 / /	11	7.1 6.0	3	7.3	0.8	0.0 1.2	9 50	0.0 5.4	3	5.5 5.3
WC47-10	-04	310/	6.6	4 2	4.0	1.0	5.7 11 0	0.5	22.3	<0.11	-	0.5	17.6	0.7	8.5	25	3.6	1.3	4.4 5 3	ı ا م	6.3	10	6.1	3.0	4.2	67	55	22	54
WC50- 1	_97	n d	0.0	803	4.6	17.6	4.5	78.7	3.2	50.0	3.6	139.5	47	18.9	5.5	60	37	6.0		35	6.0	26	6 1	6.6	4.0	73	5.7	20	5.6
	57		-	000	4.0	17.0	7.5	10.1	0.2	00.0	0.0	100.0	7.7	10.0	0.0		0.7	0.0	7.1		0.0	20	0.1	0.0	7.7	, 5	0.7	20	0.0

APPE	ND	IX I				Trace	e ele	ment	ts in	n zirc	on	s fro	m t	he W	C2	sedi	me	nts								(6/	'9)			
	Level	Dy	1σ	Ho	1σ	Er	1σ	Tm	1σ	Yb	1σ	Lu	1σ	Hf	1σ	Та	1σ	W	1σ	Re	1σ	²⁰⁸ Pb !	1σ	Th	1σ	υÙ	1σ	Th/U	Eu*	Ce*
	[m]	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[wt-%]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	ratio		
WC40-4	-42	2889	4.5	667	5.4	3005	10.8	548	8.7	3133	6.3	487	7.0	1.54	39	3	5.3	0.9	4.9	0.05	31.9	47.8	4.2	248	5.5	334	3.1	0.74	0.27	0.36
WC40-5	-42	306	4.6	102	5.5	443	11.0	107	8.9	1088	6.4	128	7.2	1.67	40	9	5.1	0.5	7.0	< 0.04		48.5	4.2	705	5.6	854	3.1	0.83	0.17	2.44
WC40-6	-42	1215	4.6	314	5.6	1249	11.3	302	9.1	3085	6.5	325	7.3	1.89	41	9	5.2	7	3.3	0.03	43.8	35.4	4.3	144	5.7	1139	3.1	0.13	0.31	2.61
WC40-7	-42	291	4.7	77	5.7	338	11.6	94	9.3	1162	6.6	137	7.5	1.64	41	3	5.6	0.9	6.4	< 0.03	-	23.9	4.4	523	5.8	608	3.1	0.86	0.37	2.53
WC40-8	-42	134	4.8	48	5.8	223	11.8	56	9.5	600	6.8	71	7.6	1.88	42	6	5.4	0.3	11.0	< 0.04	-	23.3	4.4	350	5.9	518	3.1	0.68	0.17	3.43
WC40-9	-42	2360	4.8	599	5.9	2331	12.1	563	9.7	5558	6.9	672	7.8	2.93	43	208	5.4	17	3.1	< 0.04	-	70.8	4.5	89	6.0	2919	3.1	0.03	0.29	1.90
WC40-10	-42	173	4.9	62	6.0	280	12.4	68	9.9	716	7.0	85	7.9	1.79	44	4	5.5	0.1	30.6	< 0.03	-	17.4	4.6	197	6.1	320	3.1	0.62	0.09	6.43
WC41-1	-48	1341	4.5	166	3.7	1056	4.3	234	4.1	797	3.6	319	4.1	2.82	12	32	3.6	189	5.7	0.05	30.0	104.8	15.6	398	3.5	3459	5.4	0.12	0.32	0.21
WC41-2	-48	1224	4.5	314	3.7	1198	4.3	274	4.1	2379	3.6	304	4.1	1.87	12	25	3.6	5	5.9	0.03	37.5	27.6	15.6	53	3.5	1548	5.4	0.03	0.33	1.34
WC41-3	-48	2741	4.6	486	3.7	2426	4.3	497	4.1	satur.	3.6	590	4.1	1.84	12	17	3.6	9	5.8	< 0.03	-	33.6	15.7	107	3.5	2324	5.4	0.05	0.33	0.76
WC41-4	-48	95	4.6	32	3.7	142	4.3	34	4.2	370	3.7	46	4.2	1.11	13	2	3.9	0.1	23.7	< 0.03		15.4	15.9	136	3.5	79	5.5	1.73	0.32	2.35
WC41-5	-48	3307	4.6	585	3.7	2413	4.4	538	4.2	satur.	3.7	649	4.2	1.76	13	63	3.6	13	5.9	0.04	35.0	32.2	16.2	68	3.5	2468	5.5	0.03	0.31	0.52
WC41-6	-48	1102	4.7	242	3.7	809	4.4	172	4.2	1577	3.7	189	4.2	1.55	13	20	3.6	2	6.2	0.04	25.6	194.1	16.5	464	3.5	1553	5.6	0.30	0.21	0.47
WC41-7	-48	3285	4.7	539	3.8	2862	4.5	598	4.3	satur.	3.7	651	4.3	1.90	13	11	3.7	7	6.1	0.06	25.5	36.9	16.9	39	3.6	3305	5.7	0.01	0.25	0.04
WC41-8	-48	468	4.8	141	3.8	587	4.5	136	4.3	1335	3.7	188	4.3	1.86	13	302	3.7	490	6.1	0.09	24.5	54.1	17.4	782	3.6	1586	5.8	0.49	0.26	1.45
WC41-9	-48	622	4.9	166	3.8	639	4.6	142	4.4	1336	3.8	170	4.4	1.51	14	31	3.7	4	6.3	< 0.03		33.5	17.9	380	3.6	926	5.9	0.41	0.28	1.41
WC41-10	-48	3367	4.9	730	3.9	2837	4.6	619	4.4	satur.	3.8	813	4.4	4.17	14	306	3.7	13	6.4	0.05	32.7	30.4	18.4	55	3.6	2421	6.0	0.02	0.43	0.74
WC44-1	-75	714	5.1	208	3.9	854	4.8	201	4.5	2036	3.9	310	4.5	2.50	15	10	3.9	4	6.7	< 0.04	· .	36.7	19.6	628	3.7	1878	6.2	0.33	0.35	2.60
WC44-2	-75	134	5.2	43	4.0	194	4.9	48	4.6	499	3.9	70	4.6	1.83	15	12	3.9	2	7.3	< 0.03	-	13.9	20.2	274	3.7	715	6.4	0.38	0.27	4.60
WC44-3	-75	122	5.3	42	4.0	185	5.0	44	4.7	451	4.0	58	4.7	1.51	15	3	4.1	0.2	13.3	< 0.03		14.2	20.8	185	3.7	354	6.5	0.52	0.11	1.21
WC44- 4	-75	74	5.4	26	4.1	119	5.1	30	4.8	310	4.0	45	4.8	1.37	16	2	4.3	0.1	24.6	< 0.04		4.4	21.6	48	3.8	179	6.7	0.27	0.24	2.58
WC44- 5	-75	283	5.5	93	4.1	397	5.1	92	4.9	898	4.1	113	4.9	1.70	16	14	4.0	3	7.6	< 0.03	-	74.4	22.2	759	3.8	1863	6.8	0.41	0.19	2.65
WC44-6	-75	450	5.6	122	4.2	487	5.2	114	5.0	1091	4.1	144	4.9	1.90	17	12	4.1	3	7.6	< 0.03	-	17.5	22.9	576	3.9	945	7.0	0.61	0.33	3.47
WC44- 7	-75	146	5.8	52	4.3	235	5.3	52	5.0	498	4.2	76	5.0	1.64	17	3	4.2	0.1	23.3	< 0.04	-	17.2	23.6	167	3.9	361	7.1	0.46	0.11	3.61
WC44- 8	-75	109	5.9	40	4.3	179	5.4	42	5.1	408	4.2	56	5.1	1.70	17	7	4.2	0.1	25.5	< 0.04	-	20.6	24.3	217	4.0	577	7.3	0.38	0.05	4.34
WC44- 9	-75	362	6.0	121	4.4	541	5.5	127	5.2	1217	4.3	176	5.2	1.88	18	27	4.2	1.4	8.5	< 0.03	-	49.2	25.1	677	4.0	1539	7.5	0.44	0.15	2.25
WC44-10	-83	3106	6.1	261	4.4	2136	5.7	631	5.3	satur.	4.4	623	5.3	2.53	18	79	4.2	39	8.1	< 0.04	-	50.9	23.7	278	4.1	6947	7.7	0.04	0.08	8.18
WC46-1	-83	361	6.4	128	4.6	573	5.9	132	5.5	1242	4.5	177	5.5	1.61	19	6	4.3	0.6	10.1	< 0.03	-	46.8	29.7	496	4.2	600	8.0	0.83	0.29	0.06
WC46-2	-83	501	6.5	138	4.6	648	6.0	218	5.6	2626	4.6	538	5.6	2.98	20	31	4.4	7	8.7	< 0.03	-	23.3	28.1	263	4.2	4641	8.2	0.06	0.25	1.76
WC46-3	-83	183	6.7	65	4.7	291	6.1	68	5.7	653	4.6	90	5.7	1.52	20	5	4.5	0.4	10.8	< 0.03	-	26.8	28.8	266	4.3	609	8.4	0.44	0.08	3.67
WC46-4	-83	226	6.8	73	4.8	327	6.2	82	5.8	871	4.7	139	5.8	1.95	21	32	4.5	0.4	11.7	< 0.03	-	18.5	29.5	225	4.3	1183	8.6	0.19	0.23	3.08
WC46-5	-83	1998	7.0	463	4.9	1757	6.3	365	5.9	2506	4.8	405	5.9	1.79	21	51	4.6	26	9.4	< 0.04	-	77.1	30.3	44	4.4	2184	8.8	0.02	0.15	0.54
WC46-6	-83	209	7.1	75	4.9	354	6.4	91	6.1	943	4.8	133	6.0	1.78	21	6	4.7	0.1	27.1	< 0.04	-	30.0	31.1	282	4.4	530	9.0	0.53	0.49	8.01
WC46-7	-83	283	7.2	86	5.0	345	6.6	77	6.2	682	4.9	96	6.1	1.60	22	5	4.7	0.4	12.1	< 0.04	-	31.0	31.8	347	4.5	572	9.1	0.61	0.30	0.40
WC46-8	-83	794	7.4	250	5.1	1131	6.7	296	6.3	2788	5.0	441	6.2	1.81	22	39	4.8	16	10.0	< 0.04	-	31.8	32.6	84	4.6	3751	9.3	0.02	0.24	1.80
WC46- 9	-83	191	7.5	58	5.2	241	6.8	55	6.4	531	5.0	71	6.3	1.44	23	5	4.8	0.2	16.5	< 0.04	-	19.1	33.3	256	4.6	532	9.5	0.48	0.25	1.43
WC46-10	-83	635	7.7	150	5.2	538	6.9	118	6.5	1087	5.1	142	6.5	1.55	23	3	4.9	0.5	11.8	< 0.04	-	54.5	34.1	658	4.7	840	9.7	0.78	0.62	1.83
WC47- 1	-84	440	5.7	124	4.8	493	4.2	108	5.2	1012	5.6	145	4.6	1.55	6	8	4.5	0.7	6.2	0.04	35.0	36.2	6.3	547	5.1	1273	5.0	0.43	0.33	1.39
WC47- 2	-84	65	5.8	24	4.9	112	4.2	29	5.3	314	5.7	44	4.7	1.34	6	2	4.7	< 0.1	-	< 0.07	-	16.2	6.4	129	5.1	142	5.0	0.90	0.40	
WC47-3	-84	143	5.8	55	4.8	261	4.2	67	5.3	721	5.7	120	4.7	1.46	6	2	5.0	0.2	26.7	< 0.05	-	6.9	6.5	226	5.2	325	5.0	0.70	0.22	4.59
WC47-4	-84	212	5.8	71	4.9	318	4.3	79	5.3	825	5.7	134	4.7	1.78	6	2	5.1	0.1	36.2	< 0.07	-	11.9	6.6	510	5.2	452	5.1	1.13	0.42	7.80
WC47- 5	-84	695	5.9	188	4.9	714	4.3	155	5.4	1374	5.8	195	4.7	1.96	7	4	4.8	0.7	9.6	< 0.05	-	26.0	6.6	596	5.3	1121	5.1	0.53	0.51	2.08
WC47-6	-84	490	5.9	131	5.0	489	4.3	109	5.4	1020	5.9	128	4.8	1.85	7	2	5.2	0.4	10.7	< 0.04	-	9.1	6.8	741	5.3	1170	5.2	0.63	0.46	2.69
WC47- 7	-84	173	6.0	70	5.0	353	4.4	93	5.5	1014	5.9	208	4.8	2.70	7	2	5.7	< 0.2	-	< 0.15	-	5.5	8.0	243	5.4	433	5.3	0.56	0.36	
WC47- 8	-84	36	6.2	14	5.1	71	4.4	21	5.6	252	6.0	47	4.9	1.79	7	2	5.1	0.2	31.0	< 0.07	-	15.8	7.0	180	5.4	485	5.4	0.37	0.46	5.05
WC47-9	-84	201	6.2	73	5.2	349	4.5	89	5.7	935	6.1	160	5.0	1.53	8	2	5.4	< 0.1	-	< 0.09	-	5.7	7.6	443	5.5	470	5.5	0.94	0.55	6.17
WC47-10	-84	279	6.3	97	5.2	438	4.5	102	5.8	1036	6.2	159	5.0	1.54	8	1.3	5.9	< 0.1	-	< 0.08	-	14.3	7.4	379	5.6	351	5.6	1.08	0.34	12.95
WC50- 1	-97	225	6.6	75	5.4	348	4.7	84	6.0	836	6.5	149	5.2	1.83	9	75	5.0	103	4.0	< 0.14	-	56.2	7.7	999	5.8	529	5.9	1.89	0.46	1.52

APPE	NDI	ΧI		Trac	e ele	men	ts in	zirco	ons fr	om	the V	WC2	2 sedi	men	ts											
	Level	²⁰⁸ Pb/ ²³² Th	1σ		Ca	1σ	Sc	1σ	Ti	1σ	V	1σ	Mn	1σ	Fe	1σ	Cu	1σ	Zn	1σ	Ga	1σ	Se	1σ	Sr	1σ
	[m]	Age [Ma]	[Ma]		[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%
WC50- 2	-97	163	23	Juras.	524	6.4	1766	5.7	202	3.9	8.5	4.7	10.2	4.4	1310	8.5	< 2.7	-	4.4	13.4	1.4	12.6	< 2	-	4	5.3
WC50- 3	-97	224	32	Trias	247	7.2	1333	5.8	14	4.0	0.8	8.3	< 0.3	-	8	39.4	< 1.4	-	< 0.7	-	< 0.2	-	< 2	-	1	8.6
WC50-4	-97	246	40	Trias	313	6.7	1320	5.9	13	4.1	0.6	12.1	< 0.2	-	7	51.3	<0.84	-	< 0.4	-	< 0.1	-	< 2	-	0	19.0
WC50- 5	-97	213	32	Trias	269	8.4	1538	6.0	81	4.1	2	6.0	3.3	7.7	372	9.4	< 1.9	-	1.3	29.4	< 0.3	-	< 2	-	1	10.5
WC50- 6	-97	93	15	Cret.	6459	4.7	1435	6.2	18	4.1	1.2	7.1	22.8	3.6	146	10.0	< 1.6	-	< 0.8	-	< 0.2	-	< 2	-	14	5.0
WC50- 7	-97	325	52	Carb.	<64	-	1673	6.3	22	4.2	0.7	14.0	< 0.7	-	52	13.8	< 2.3	-	2.4	19.7	< 0.3		< 2	-	2	7.1
WC50- 8	-97	1006	159		7747	4.9	2151	6.4	81	4.3	92.8	4.9	580.6	3.5	5867	10.1	4.7	16.5	20.0	7.2	11.1	4.0	< 2	-	113	5.1
WC50- 9	-97	201	33	Trias	77	18.9	1456	6.6	15	4.3	0.4	14.2	< 0.3	-	71	11.6	< 1.2	-	< 0.5	-	< 0.2	-	< 2	-	1	7.5
WC50-10	-97	195	33	Jur.	41	37.2	1727	6.7	21	4.4	1.9	6.2	1.5	11.7	369	10.8	< 1.5	-	2.4	13.6	< 0.2	-	< 2	-	1	6.6
WC55-1	-110	371	67	Devon.	503	5.8	1256	7.0	74	4.6	5.7	5.5	8.5	4.1	1533	11.3	< 0.7	-	2.1	13.2	0.8	9.7	< 2	-	1	7.0
WC55-2	-110	515	94	Camb.	180	9.2	1619	7.2	16	4.6	1.9	6.5	9	4.2	119	12.1	< 1.0	-	1.1	24.8	0.4	21.6	< 2	-	2	6.3
WC55-3	-110	1023	190	Qualaxi	230	8.9	1756	7.4	14	4.8	0.2	29.0	0.6	32.2	16	24.9	< 1.4	-	1.3	24.6	< 0.2	-	< 2	-	1	10.5
W055-4	-110	467	100	Ordov.	197	9.4	1391	7.5	18	4.8	0.3	22.3	< 0.4	-	13	26.5	< 1.4	-	0.7	37.1	< 0.2	-	< 2	-	0	12.8
WC55-5	-110	103	20	Cret.	1021	6.2	2499	7.7	26	4.9	14.7	5.9	/6.5	3.9	/00	12.7	2.3	37.8	3.8	14.6	0.7	19.7	< 2	-	13	6.I
WC55-6	-110	200	150	Penn.	103	11.2	1441	7.9	14	5.0	0.3	23.4	< 0.4	-	< /	10.0	< 1.3	-	< 0.6	-	5.3	4.8	< 2	-	1	19.1
WC55-7	-110	/ 30	102	Ordov	<39	10.6	1400	0.0	10	5.1	0.9	0.0	< 0.4	-	247	10.0	< 1.3	-	< 0.0	-	< 0.2	-	< 2	-	1	9.3
WC55 0	-110	473	24	Crot	-38	10.0	1977	0.2 9.4	10	5.3	0.0	12.0	< 0.9	-	2/	29.0	< 2.7	-	< 1.3	-	< 0.4	-	< 2	-	1	10.0
WC55-10	-110	156	24	lurae	247	11.2	1587	8.6	10	5.0	0.0	14.6	< 0.4	_	71	43.0	< 1.2		< 1.3		< 0.2	_	~ 2		2	0.2
WC61-1	-121	297	68	Porm	32/	7.6	11/0	8.0	79	5.5	13.5	6.5	163	12	6174	1/ 8	4.5	16.6	5.1	10.8	+.0 / 6 6	4.6	~2	_	2	7.0
WC61- 2	-121	4887	1020	r enn.	6612	6.5	3552	0.J Q 1	79	5.6	332.8	6.6	190.5	12	23381	15.2	28.4	13.0	40.0	9.0	14.2	4.0	~2	_	153	6.9
WC61-3	-121	3509	773		1661	6.7	1600	9.3	50	5.7	107.6	6.7	20	4.3	1565	15.2	3.9	17.5	3.5	12.4	10	8.7	~2	-	29	7.0
WC61-4	-121	385	94	Devon	216	8.6	1229	9.5	15	5.9	11 7	6.9	72	4 7	1433	15.8	< 0.8	-	6.4	11.0	0.5	11.6	< 2	-	4	7.3
WC61-5	-121	938	229	Borom	63	21.9	1277	9.6	13	5.9	0.2	25.1	< 0.4	-	59	16.9	< 1.0	-	< 0.6		< 0.1		< 2	-	0	13.3
WC61-6	-121	1006	251		84	16.9	1360	9.8	16	6.1	0.2	21.9	< 0.4	-	26	19.5	< 1.1	-	< 0.6	-	< 0.1		< 2	-	Ő	12.5
WC61-7	-121	510	131	Camb.	281	8.5	1339	10.0	16	6.2	2.8	7.6	2.2	8.2	275	16.9	< 1.0	-	1.5	19.2	0.3	24.2	< 2	-	1	8.2
WC61-8	-121	961	249		420	7.9	1259	10.2	15	6.3	< 0.1	-	0.6	22.6	62	17.7	< 0.9	-	< 0.5	· -	< 0.1	-	< 2	-	0	12.6
WC61-9	-121	3001	752		3667	7.4	3474	10.4	213	6.4	410.2	7.5	75.1	4.5	12560	17.4	24.4	15.2	14.2	11.8	13.7	4.9	< 2	-	50	7.8
WC61-10	-121	384	105	Devon.	3665	7.5	2929	10.6	178	6.5	357.8	7.6	71.7	4.6	16327	17.8	39.1	15.3	27.4	11.8	13.9	5.0	< 2	-	58	7.9
WC64-1	-126	1564	858		132	11.0	1115	14.3	28	4.8	0.5	12.7	12.5	4.5	1280	7.1	< 1.4	-	0.9	26.4	1.5	5.8	< 2	-	0	7.1
WC64-2	-126	800	427		436	7.2	1375	14.4	23	4.8	34.3	7.5	17.7	4.4	4412	7.1	3.9	14.4	4.6	10.4	1.4	6.1	< 2	-	7	3.2
WC64-3	-126	3107	1503		1877	6.7	1708	14.5	52	4.8	115.7	7.6	144.6	4.3	3219	7.1	6.6	9.6	7.3	9.5	17.8	4.3	< 2	-	23	3.1
WC64-4	-126	1255	617		141	10.7	1221	14.7	12	4.9	0.5	14.0	2.2	8.2	50	8.9	< 1.2	-	< 0.5	-	< 0.1	-	< 2	-	0	11.2
WC64- 5	-126	1197	575		6143	6.8	2568	14.9	454	4.9	543.8	7.7	96.6	4.3	7624	7.2	20.8	4.5	13.9	9.1	6.9	4.6	< 2	-	102	3.0
WC64-6	-126	898	427		74	18.5	1134	15.1	13	4.9	5.5	7.9	9.4	4.7	669	7.4	< 1.3	-	1.9	15.1	0.4	15.6	< 2	-	2	4.2
WC64-7	-126	734	346		188	9.3	1223	15.4	19	5.0	6.3	8.1	0.8	19.0	1210	7.4	7.3	7.5	2.6	13.7	0.9	8.3	< 2	-	1	4.7
WC64-8	-126	738	345		860	7.3	1371	15.7	180	5.1	180	8.0	83.6	4.4	23212	7.5	33.7	3.4	28.5	9.2	7.1	4.7	< 2	-	18	3.1
WC64- 9	-126	919	426		184	9.7	1278	16.1	13	5.2	1.1	10.4	1.1	13.2	107	8.2	< 1.2	-	< 0.5		< 0.1	-	< 2	-	1	7.3
WC64-10	-126	1132	522		516	7.8	1267	16.4	30	5.2	59.4	8.4	8.6	4.9	560	7.8	< 1.3	-	3.6	11.3	0.5	12.5	< 2	-	12	3.1
WC70- 1	-130	892	416		188	13.1	1053	17.3	10531	5.4	99.8	8.7	2.7	10.0	1376	8.1	< 2.1	-	4.5	13.6	0.6	16.1	< 2	-	2	5.0
WC70-2	-130	806	382		332	8.6	1215	17.8	17	5.5	0.2	27.5	2.3	7.4	167	8.4	< 1.2		< 0.6		< 0.1		< 2	-	0	8.6
WC70-3	-130	1297	609		3002	8.2	2/12	18.3	96	5.7	2/4.2	9.1	59.2	4.8	5805	8.4	13.4	4.7	6.1	11.4	4.9	5.1	< 2	-	51	3.1
WC70-4	-130	6/1	324		42	28.9	1591	18.8	25	5.8	0.4	17.2	< 0.4	-	1/	16.0	< 1.2	-	0.6	35.0	< 0.1	-	< 2	-	0	7.0
WC70-5	-130	620	304		<33	-	12/5	19.3	61	5.9	0.7	12.4	< 0.4	-	98	9.1	< 1.1	-	10.0	28.8	< 0.1	-	< 2	-	100	5.8
	-130	3318	1528		4217	8.9	3011	19.9	105	6.0	496.5	9.8	116.0	5.0	4084	8.9	18.2	4.0	18.2	11.4	16.8	5.2	<2	-	103	3.0
	-130	1202	292	Trice	1/00	9.1	1/13	20.5	125	0.2	70.0	10.1	0.011	5.1	9035	9.1	6.00	3.1 10.0	21.0	0.11	/.b	5.4	< 2	-	101	3.0
	-130	219	106	Trice	034	9.6 10.5	20/0	21.0	3/	0.3	79.3	10.3	04.3	5.2	3/40	9.3	2.3	19.0	1.5	20.3	1.5	8.0	< 2	-	9	3.3
WC70 10	-130	240	120 208	Camb	299	10.5	1976	21.7	92	0.0 6.6	3U.8 2 0	10.6	0.2 10.4	5.6 5.5	395 1104	9.6	< 1.1	14.0	1.4	20.1 12.7	0.2	23.2	< 2	-	o A	3.∠ 2.5
WU/U-10	-130	003	290	Gamo.	590	10.0	13/0	22.3	90	0.0	J.Ö	10.9	10.4	0.0	1194	9.7	2.0	14.9	3.9	13.7	0.5	10.9	< 2	-	4	3.0

Trace elements in zircons from the WC2 sediments

1	(8/	9)
	01	~/

	Level	Y	1σ	Nb	1σ	Мо	1σ	Sn	1σ	Sb	1σ	Ba	1σ	La	1σ	Ce	1σ	Pr	1σ	Nd	1σ	Sm	1σ	Eu	1 σ ່	Gd	1σ	Tb	1σ
	[m]	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%
WC50-2	-97	2424	7.1	5	5.0	1.8	11.2	0.8	11.4	0.24	25.3	3.8	6.6	0.8	7.1	20	3.7	0.7	5.4	7	6.8	10	6.7	2.6	5.1	42	5.8	14	5.6
WC50-3	-97	2338	7.2	1	5.5	1.4	8.6	0.3	15.7	<0.08	-	<0.23	-	0.4	7.4	14	3.7	0.3	5.8	6	6.6	9	6.5	1.3	5.3	51	5.9	16	5.7
WC50-4	-97	769	7.4	1	6.6	1.6	9.9	0.3	16.8	<0.04	-	<0.13	-	0.1	16.5	17	3.8	0.12	12.1	2	10.3	4	8.1	0.92	7.7	22	6.2	6	6.1
WC50- 5	-97	744	7.6	2	5.7	1.5	10.5	0.4	19.1	<0.11	-	<0.32	-	0.4	7.8	14	3.8	0.3	7.1	2	8.9	3	8.1	1.0	6.9	14	6.3	5	6.1
WC50-6	-97	2016	7.8	3	5.2	1.8	7.8	0.5	12.0	<0.09	-	1.2	9.8	33.7	6.0	96	3.8	9.1	4.3	44	6.5	15	6.7	2.5	4.8	48	6.2	14	6.1
WC50-7	-97	2452	8.0	3	5.5	1.9	8.9	0.5	15.6	<0.14	-	0.7	21.7	0.3	9.8	4	4.1	0.3	7.6	5	7.7	9	7.2	0.5	11.4	60	6.4	21	6.2
WC50- 8	-97	n.d.	-	18	5.3	6.3	5.4	3.3	4.2	15.1	3.8	134.2	5.1	22.0	6.3	303	3.9	64.8	4.4	588	6.7	801	6.8	266.5	4.3	1855	6.5	520	6.3
WC50- 9	-97	1812	8.4	3	5.8	1.6	9.2	0.3	15.5	<0.07	-	0.6	15.2	0.4	8.5	42	4.0	0.9	5.2	14	7.1	22	7.1	7.0	4.6	86	6.6	24	6.5
WC50-10	-97	2281	8.6	4	5.5	1.7	8.1	0.5	11.2	<0.09	-	0.7	14.5	0.4	8.4	25	4.0	0.6	5.4	7	7.4	12	7.4	2.6	5.0	56	6.8	18	6.6
WC55- 1	-110	1147	9.0	4	5.9	1.4	8.6	0.3	13.9	<0.04	-	1.1	8.2	1.3	7.2	12	4.1	0.4	6.0	4	8.3	5	8.3	0.9	6.6	26	7.1	8	6.9
WC55- 2	-110	1365	9.3	2	6.1	1.6	8.8	0.4	14.2	0.09	38.4	1.6	7.5	1.0	7.5	26	4.1	2.8	5.0	26	7.6	24	7.7	12.2	4.7	56	7.2	14	7.0
WC55-3	-110	n.d.	-	1	6.6	1.8	9.1	0.3	17.8	<0.09	-	0.3	30.7	0.2	11.9	8	4.3	0.2	8.9	3	9.1	5	8.6	1.5	5.9	25	7.5	8	7.2
WC55-4	-110	181	9.7	2	6.0	1.5	8.5	0.5	11.2	<0.09	-	<0.23	-	0.1	15.7	16	4.3	0.2	7.2	4	8.4	7	8.3	2.4	5.1	17	7.6	3	7.3
WC55- 5	-110	n.d.	-	4	6.6	2.4	9.3	1.2	8.7	2.1	5.7	7.8	6.3	3.0	7.6	77	4.3	11.3	5.0	115	8.0	141	8.1	34.7	4.9	378	7.7	98	7.5
WC55-6	-110	n.d.	-	2	6.8	1.7	8.9	0.2	23.1	0.10	37.1	<0.21	-	0.0	30.6	11	4.4	0.2	9.8	3	9.9	5	9.3	1.5	6.2	21	8.0	6	7.7
WC55- 7	-110	n.a.	-	3	6.6	1./	8.4	0.3	18.2	0.14	24.4	<0.22	-	0.1	14.8	9	4.4	0.10	11.9	2	10.5	4	9.3	0.56	8.5	31	8.1	12	7.8
WC55-8	-110	1667	10.7	2	7.6	2.3	11.4	0.3	34.4	<0.18	-	<0.45	-	0.1	24.1	6	4.7	0.3	10.5	4	10.6	11	9.3	1.1	9.1	70	8.2	21	8.0
WC55-9	-110	1270	10.9	2	7.2	1.7	10.2	0.3	24.4	< 0.09	-	0.7	13.5	0.1	32.1	24	4.5	0.14	12.5	3	10.5	6	9.9	1.31	7.0	30	8.5	9	8.3
WC55-10	-110	1/23	11.2	2	7.4	1.0	15.4	0.5	21.2	<0.19	10 5	<0.45	- -	0.4	12.8	18	4.0	0.6	7.4	4	10.9	10	10.6	1.0	7.3	44	0.0	9	0.4
WC61-1	-121	1229 nd	11.7	24	0.9	2.9	0.0	5.4	3.9	0.19	16.5	44.0	0.5 6.7	104.2	0.0	23	4.7	2.5	5.6	15	9.3	13	9.5	106.6	5.7	40	0.9	14	0.7
WC61 2	101	n.u. n.d	-	170	7.0	10.7	5.0	1.0	3.0 6.1	30.7	4.0	94.0	6.7	24.5	0.7	100	4.7	24.2	5.0	100	9.3	160	9.0	20.0	5.5	209	9.0	126	0.0
WC61 4	101	n.u. n.d	-	11	7.1	1.0	7.2	0.4	11.0	0.3	14.0	1 /	0.9	5 1	0.0	400	4.0	4.5	5.7	30	9.5	21	10.0	29.0	5.0	030	9.2	20	9.0
WC61-5	-121	765	127	1/	7.0	1.0	9.0	-0.4 -0.1	11.0	~0.08	10.0	~0.17	0.0	0.1	21.2	10	4.5 1 Q	0.09	12.1	1	1/1	2	11.7	0.24	13.2	13	9.4	5	9.1
WC61-6	-121	1229	12.7	4	7.4	1.4	8.5	0.1	29.9	<0.00	_	0.17	29.5	0.1	15.8	18	5.0	0.00	9.1	3	11.0	5	10.8	0.24	7.3	29	9.8	10	9.5
WC61-7	-121	1095	13.2	19	77	1.0	8.2	0.4	11.9	0.2	21.6	0.5	16.1	4.8	9.6	26	5.1	20	6.1	11	10.3	8	10.8	0.00	7.5	27	10.0	9	97
WC61-8	-121	1092	13.5	10	79	1.5	8.6	0.2	24.4	<0.07		<0.15	-	13.4	9.7	32	5.2	3.7	6.1	22	10.5	8	11.0	0.0	13.2	28	10.1	9	9.9
WC61-9	-121	n.d.		116	7.9	30.3	6.1	3.5	4.3	41.2	5.0	11.7	7.4	89.8	9.9	238	5.2	134.9	6.2	789	10.6	607	11.0	99.6	6.1	1020	10.3	298	10.0
WC61-10	-121	n.d.	-	17	8.1	5.1	7.3	22.6	3.6	2.7	6.0	36.6	7.5	58.6	10.1	716	5.3	55.7	6.3	330	10.7	259	11.2	61.5	6.2	579	10.5	164	10.2
WC64-1	-126	639	8.0	4	3.5	1.6	16.8	0.9	12.6	<0.07	-	5.5	4.3	1.0	4.3	4	8.3	0.4	4.6	3	7.5	3	6.6	0.2	18.0	14	6.0	5	7.9
WC64-2	-126	1832	8.1	24	3.2	3.2	15.9	0.9	12.5	0.3	14.2	3.4	4.5	7.4	3.8	140	8.3	8.9	3.1	53	6.4	42	4.9	7.1	3.2	81	6.0	27	7.8
WC64-3	-126	n.d.	-	117	3.2	5.9	15.9	3.0	11.3	0.7	11.1	20.1	4.2	27.8	3.8	509	8.4	44.2	3.1	267	6.5	230	4.9	39.8	3.1	435	6.0	127	7.9
WC64-4	-126	945	8.3	5	3.4	1.8	16.8	0.3	18.1	<0.07	-	<0.12	-	1.2	4.4	7	8.5	0.5	4.4	4	7.2	4	6.1	0.3	9.4	22	6.2	7	8.0
WC64-5	-126	n.d.	-	141	3.2	16.8	16.1	4.4	11.7	0.6	12.2	52.0	4.2	298.3	3.8	443	8.6	212.9	3.1	1139	6.7	699	5.0	100.4	3.1	1512	6.2	450	8.2
WC64-6	-126	n.d.	-	16	3.3	1.9	17.3	0.8	13.4	0.2	21.9	1.1	6.8	1.6	4.3	28	8.8	2.0	3.5	16	6.9	20	5.2	2.1	4.0	89	6.3	28	8.3
WC64-7	-126	1241	8.8	16	3.3	1.4	18.4	0.4	16.6	0.11	27.7	1.3	6.3	0.7	5.2	28	9.0	0.5	4.6	5	7.8	6	6.0	0.7	6.5	30	6.5	10	8.6
WC64-8	-126	n.d.	-	94	3.2	14.0	17.0	3.8	12.3	1.1	10.5	18.5	4.4	28.1	4.0	373	9.2	25.4	3.2	154	7.1	119	5.3	20.7	3.1	300	6.6	91	8.7
WC64-9	-126	1699	9.3	19	3.3	1.6	18.6	0.5	15.9	<0.07	-	0.4	13.0	0.9	4.8	20	9.4	0.9	3.8	8	7.6	11	5.7	1.1	4.7	49	6.8	17	9.0
WC64-10	-126	n.d.	-	23	3.3	2.2	18.4	0.4	17.5	0.15	23.1	2.9	4.8	17.9	4.1	233	9.6	14.1	3.2	82	7.5	61	5.5	9.5	3.2	150	6.9	48	9.2
WC70- 1	-130	659	10.1	62	3.3	1.5	21.6	294.5	13.5	1.7	12.1	3.5	5.5	4.2	4.3	28	10.2	0.5	5.2	4	9.0	5	7.2	1.3	5.3	18	7.4	5	9.9
WC70-2	-130	631	10.4	3	3.6	1.5	19.9	0.2	27.5	<0.07	-	0.5	11.1	0.1	17.2	3	10.4	0.07	11.7	1	10.8	2	8.0	0.15	16.3	14	7.6	5	10.2
WC70-3	-130	n.d.	-	138	3.3	18.5	19.8	4.0	14.5	0.6	13.8	15.8	4.8	49.6	4.3	193	10.7	71.9	3.2	444	8.4	388	6.0	66.8	3.1	872	7.7	294	10.4
WC70- 4	-130	1910	10.4	3	3.7	1.8	21.2	0.3	19.7	<0.07	-	1.9	5.7	0.1	19.4	84	11.1	0.4	4.5	8	8.9	13	6.4	5.0	3.4	59	8.0	16	10.7
WC70- 5	-130	1346	11.4	26	3.3	1.7	21.8	0.6	17.6	0.08	37.8	0.2	31.5	5.9	4.6	26	11.4	2.1	3.5	11	9.1	6	7.0	0.2	15.9	29	8.2	10	11.1
WC70-6	-130	n.d.	-	67	3.4	8.0	21.6	3.3	15.8	3.7	13.4	30.0	5.1	196.4	4.5	643	11.7	152.2	3.3	858	9.3	580	6.6	99.6	3.1	1470	8.4	439	11.5
WC70-7	-130	n.d.	-	90	3.4	12.1	22.2	2.4	16.4	0.8	14.7	66.3	5.2	249.3	4.6	223	12.1	263.9	3.3	1553	9.6	1009	6.8	156.4	3.1	2614	8.7	746	11.9
WC70-8	-130	n.d.	-	8	3.5	2.3	23.2	2.1	17.0	4.9	14.2	6.2	5.5	8.9	4.8	192	12.5	9.4	3.4	69	9.9	70	7.0	18.0	3.2	171	9.0	46	12.3
WC70-9	-130	3276	13.0	18	3.5	2.0	24.0	0.9	18.1	<0.08	-	2.5	6.0	9.0	4.9	251	12.8	14.2	3.4	90	10.3	67	7.2	11.0	3.3	151	9.3	43	12.7
WC70-10	-130	1506	13.4	9	3.6	1.9	24.5	7.3	17.7	0.2	22.5	4.1	5.7	1.6	5.2	33	13.2	1.0	3.9	7	10.9	8	7.7	1.9	3.9	37	9.6	12	13.2

APPE	END	IX]	[7	Trace	e ele	emen	ts in	ı zir	con	s from	m tl	he W	'C2	sedin	ner	ıts								(9)	(9)			
	Level	Dy	1σ	Ho	1σ	Er	1σ	Tm	1σ	Yb	1σ	Lu	1σ	Hf	1σ	Та	1σ	W	1σ	Re	1σ	²⁰⁸ Pb !	1σ	Th	1σ	U	1σ	Th/U	Eu*	Ce*
	[m]	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[wt-%]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	[ppm]	%	ratio		
WC50-2	-97	183	6.7	67	5.5	334	4.7	83	6.1	859	6.6	162	5.3	1.84	9	2	6.0	0.5	15.0	< 0.12	-	6.3	8.4	458	5.9	391	6.0	1.17	0.39	6.64
WC50-3	-97	216	6.9	78	5.6	353	4.8	84	6.2	838	6.7	124	5.4	1.58	9	0.6	6.7	< 0.1	-	< 0.05	-	4.0	8.4	212	6.0	187	6.2	1.13	0.19	9.05
WC50-4	-97	79	7.1	28	5.8	124	4.9	33	6.4	336	6.9	46	5.5	1.46	10	0.7	8.0	< 0.1	-	< 0.03	-	2.0	10.3	93	6.2	92	6.3	1.01	0.29	32.97
WC50- 5	-97	63	7.2	25	5.8	136	5.0	39	6.5	479	7.0	92	5.6	1.73	10	1.1	6.5	< 0.2	-	< 0.08	-	9.9	8.7	545	6.3	682	6.5	0.80	0.45	9.73
WC50-6	-97	170	7.3	60	5.9	284	5.0	72	6.6	790	7.2	128	5.7	1.60	11	1.3	6.1	< 0.1	-	< 0.08	-	4.7	9.1	595	6.4	474	6.6	1.26	0.29	1.29
WC50-7	-97	277	7.5	100	6.1	441	5.1	103	6.8	978	7.4	146	5.8	1.95	11	2	6.0	< 0.1	-	< 0.11	-	8.7	9.3	313	6.6	470	6.8	0.67	0.07	3.47
WC50- 8	-97	4846	7.7	895	6.2	3746	5.2	796	6.9	2537	7.5	887	5.9	2.17	12	11	5.8	2	6.5	< 0.06	-	27.1	9.4	311	6.7	6485	7.0	0.05	0.67	1.88
WC50- 9	-97	268	7.9	86	6.3	381	5.3	95	7.1	1039	7.7	143	6.0	1.54	12	1.2	6.7	<0.10	-	< 0.06	-	9.5	9.8	559	6.9	268	7.2	2.09	0.49	16.58
WC50-10	-97	228	8.1	80	6.5	369	5.4	89	7.2	868	7.9	147	6.2	2.08	12	2	6.3	0.1	31.7	< 0.07	-	7.2	10.0	435	7.0	362	7.4	1.20	0.30	12.09
WC55- 1	-110	116	8.4	42	6.7	190	5.7	48	7.6	518	8.3	65	6.4	1.34	13	1.3	6.8	0.1	42.3	< 0.03	-	4.4	10.7	138	7.3	178	7.8	0.77	0.23	3.62
WC55- 2	VC55-2 -110 149 8.6 48 6.9 213 5.8 55 7.7 628 8.5 103 6.6 1.78 14 1.0 7.1 0.1 44.0 <0.05 - 8.9 10.8 201 7.5 223 8.0 0.90 1.0 VC55-3 -110 94 8.9 31 7.0 140 5.9 33 7.9 332 8.7 54 6.7 1.77 14 0.5 8.6 <0.13 - <0.07 - 7.3 11.2 82 7.7 61 8.2 1.34 0.4 VC55-4 -110 24 9.1 6 7.2 20 6.1 4 8.1 36 8.9 5 7.0 1.95 15 0.4 8.9 0.1 34.4 <0.07 - 1.3 13.6 33 7.9 50 8.4 0.67 0.0															1.02	3.56													
WC55- 3	WC55-2 -110 149 8.6 48 6.9 213 5.8 55 7.7 628 8.5 103 6.6 1.78 14 1.0 7.1 0.1 44.0 < 0.05															0.41	9.69													
WC55-4	-110	24	9.1	6	7.2	20	6.1	4	8.1	36	8.9	5	7.0	1.95	15	0.4	8.9	0.1	34.4	< 0.07	-	1.3	13.6	33	7.9	50	8.4	0.67	0.69	24.15
WC55- 5	-110	937	9.3	243	7.3	918	6.1	178	8.3	1491	9.1	241	7.0	2.25	15	1.1	8.0	2	7.1	< 0.10	-	11.5	11.7	1317	8.0	985	8.6	1.34	0.46	3.08
WC55-6	-110	73	9.5	26	7.5	115	6.2	29	8.5	319	9.3	50	7.1	1.85	16	1.1	7.7	0.1	43.7	< 0.06	-	3.3	12.4	135	8.2	166	8.9	0.82	0.45	29.21
WC55-7	-110	168	9.7	62	7.6	283	6.3	68	8.6	652	9.5	98	7.3	2.06	17	2	7.4	< 0.1	-	< 0.07	-	10.7	12.2	165	8.4	224	9.1	0.74	0.15	19.58
WC55-8	-110	213	9.9	55	7.8	205	6.5	41	8.8	349	9.7	52	7.4	2.37	17	1.4	8.7	< 0.2	-	< 0.15	-	5.0	13.3	123	8.6	470	9.3	0.26	0.12	6.92
WC55-9	-110	120	10.1	41	8.0	185	6.6	48	9.0	510	9.9	72	7.6	1.75	18	1.0	8.5	< 0.1	-	0.06	46.9	2.4	13.4	264	8.8	221	9.6	1.19	0.31	64.29
WC55-10	-110	118	10.4	45	8.1	219	6.7	58	9.2	623	10.1	11/	1.1	2.34	18	2	8.3	< 0.2	-	< 0.14	-	5.3	13.7	397	8.9	605	9.8	0.66	0.34	8.96
WC61-1	-121	149	10.8	43	8.4	181	7.0	41	9.6	403	10.6	58	8.0	1.57	19	/	7.7	3	6.0	< 0.06		9.7	13.6	381	9.3	526	10.3	0.72	0.35	2.03
WC61-2	-121	6456	11.0	690	8.6	4386	7.1	/5/	9.8	satur.	10.8	1041	8.2	2.26	20	26	7.8	61	5.7	0.04	57.5	51.2	13.9	109	9.5	3745	10.5	0.03	0.37	1.17
WC61-3	-121	1345	11.3	346	0.0	1362	7.2	322	10.0	3079	11.0	370	0.3	2.44	21	19	7.9	0	0.1	< 0.05	-	24.7	14.1	70	9.7	2802	11.0	0.03	0.35	3.33
WC61-4	-121	337	11.5	97	9.0	406	7.4	97	10.2	939	11.2	117	8.5	1./0	21	/	0.1	0.9	7.9	< 0.05	-	25.2	14.4	100	9.9	704	11.0	0.89	0.25	3.31
WC61-5	-121	120	10.0	21	9.1	130	7.5	33	10.4	504	11.4	45	0.0	2.10	22	9	0.2	< 0.1		< 0.07	-	10.0	14.7	100	10.1	144	11.3	0.27	0.10	31.20
WC61 7	101	100	12.0	40	9.3	100	7.7	30	10.0	301	11.7	60	0.0	0.10	22	2	0.7	0.1	33.3	< 0.00	-	10.9	15.0	120	10.5	144 560	11.0	0.67	0.19	30.30
WC61 8	101	116	12.2	41	9.5	100	7.0	45	11.0	440	10.1	60	0.1	1 90	20	6	9.0	0.0	9.J 25.4	< 0.00	-	16.1	15.5	102	10.5	521	12.0	0.04	0.17	2.01
WC61-9	-121	27/1	12.4	606	9.7	2121	7.5 8.1	43	11.0	4007	12.1	470	9.1	1.09	24	16	8.8	/11	6.4	< 0.05	_	51.1	15.8	193	10.7	6325	12.0	0.30	0.04	0.51
WC61-10	-121	1547	12.7	370	10.0	1386	8.2	307	11.2	2945	12.0	459	9.4	1.00	25	8	9.0	14	6.6	< 0.00	_	18.5	16.1	564	11 1	2235	12.5	0.00	0.33	2 94
WC64- 1	-126	61	9.5	22	10.0	96	12.2	22	10.1	228	9.7	30	10.4	1.04	23	14	10.9	< 0.1		< 0.05	-	6.8	45.8	50	10.8	141	4 1	0.35	0.40	1.65
WC64- 2	-126	275	9.6	73	11.0	291	12.3	71	10.3	711	9.8	89	11.0	2 15	24	15	10.5	3	5.8	< 0.00	-	25.0	43.0	362	10.0	1263	4.1	0.00	0.37	4 04
WC64-3	-126	1268	9.7	321	11.2	1213	12.5	282	10.4	2586	9.9	316	11.1	2.31	25	20	10.7	11	5.2	< 0.06	-	42.5	40.8	150	11.1	2340	4.1	0.06	0.38	3.40
WC64-4	-126	91	9.9	32	11.4	142	12.7	33	10.6	331	10.1	45	11.3	1.62	27	2	10.9	<0.1		< 0.04	-	10.4	39.0	95	11.3	252	4.2	0.38	0.10	2.29
WC64-5	-126	4208	10.1	900	11.6	3633	12.9	785	10.8	1818	10.3	948	11.5	3.29	28	108	11.1	25	5.2	0.11	25.0	51.9	37.5	498	11.5	4193	4.2	0.12	0.30	0.41
WC64-6	-126	329	10.3	108	11.8	451	13.2	105	11.0	1018	10.6	138	11.8	1.87	30	22	11.3	0.7	8.8	< 0.05	-	43.9	36.3	564	11.7	1336	4.2	0.42	0.15	3.66
WC64-7	-126	131	10.6	45	12.1	201	13.6	47	11.3	461	10.8	60	12.1	2.09	32	7	11.6	0.5	11.3	0.12	20.2	19.1	35.4	302	12.0	696	4.3	0.43	0.15	11.00
WC64-8	-126	944	10.9	253	12.4	995	13.9	233	11.6	2218	11.1	340	12.4	1.95	34	26	11.9	7	5.6	< 0.05	-	30.1	34.7	473	12.4	884	4.3	0.54	0.33	3.27
WC64- 9	-126	210	11.2	72	12.7	312	14.3	74	11.9	711	11.4	92	12.8	2.53	36	10	12.2	< 0.1	-	< 0.05	-	31.3	34.1	393	12.7	1184	4.4	0.33	0.15	5.03
WC64-10	-126	513	11.5	142	13.1	553	14.8	125	12.2	1186	11.8	137	13.2	2.27	39	10	12.6	3	6.3	< 0.05	-	46.0	33.6	467	13.1	1352	4.5	0.35	0.30	3.44
WC70-1	-130	61	12.3	22	13.9	102	15.8	28	13.0	316	12.6	49	14.0	1.97	46	6	13.5	574	5.8	< 0.09	-	9.4	32.9	121	14.0	137	4.6	0.89	0.45	4.39
WC70-2	-130	63	12.7	22	14.4	102	16.3	25	13.4	259	13.0	36	14.5	2.55	50	2	14.0	0.2	20.5	< 0.05	-	3.2	33.0	46	14.4	130	4.7	0.35	0.09	9.55
WC70-3	-130	3098	13.1	746	14.9	2914	16.8	627	13.9	2485	13.4	687	15.0	3.84	55	24	14.3	21	6.2	< 0.06	-	37.5	32.6	331	14.9	2986	4.8	0.11	0.35	0.76
WC70-4	-130	204	13.6	71	15.4	311	17.4	71	14.4	714	13.9	104	15.5	2.62	61	1.0	15.2	< 0.1	-	< 0.06	-	14.6	32.6	253	15.5	123	4.8	2.05	0.55	115.14
WC70- 5	-130	136	14.0	50	15.9	233	18.1	55	14.9	547	14.4	77	16.1	4.38	67	11	15.3	1.2	7.6	< 0.05	-	23.2	32.5	434	16.0	1217	4.9	0.36	0.04	1.72
WC70-6	-130	4344	14.5	1002	16.4	3672	18.7	772	15.4	3665	14.9	767	16.6	4.77	75	17	15.9	58	6.6	< 0.06	-	48.1	32.5	158	16.6	3153	5.0	0.05	0.33	0.87
WC70- 7	-130	6407	15.1	980	17.0	5408	19.4	1102	16.0	3777	15.5	1270	17.2	6.63	85	49	16.4	17	6.8	< 0.06	-	12.8	32.5	122	17.2	4978	5.1	0.02	0.29	0.20
WC70- 8	-130	487	15.6	124	17.6	489	20.1	122	16.5	1290	16.0	173	17.9	6.28	97	3	17.0	14	7.0	< 0.06	-	12.5	32.5	668	17.8	1438	5.2	0.46	0.50	4.93
WC70- 9	-130	453	16.2	125	18.2	502	20.8	110	17.1	1005	16.6	133	18.5	6.10	111	7	17.6	10	7.2	< 0.06	-	14.7	32.6	716	18.5	783	5.3	0.91	0.33	5.22
WC70-10	-130	152	16.8	52	18.8	240	21.5	58	17.7	597	17.2	86	19.2	5.90	130	3	18.3	3	7.8	< 0.06	-	9.8	32.7	203	19.2	233	5.4	0.87	0.34	6.09

Locality Name	Nr	Elements	Genesis	Primary	Secondary	Size		Easting	Northing	References
Arkaroola Ck 1 (Wywyana top contact, upstream Arkaroola pegmatite)		REE, Th, U	allanite in an actinolite garnet skarn with zircon, fluorite	Allanite-(Ce)		1		338220	6648680	Coats & Blissett 1971 p.267
Echo Camp (3 miles South of Mt Painter)		REE, Th, U	Actinolite-garnet rock (skarn)	Allanite-(Ce)		1		342100	6649600	Coats & Blissett 1971 p.163 ; Johnson J. E.
Magnetite-allanite-diopside-thorite skarn		REE, Th, U	Metasomatic: skarn in metacarbonates (Proterozoic)	Allanite, thorite, uraninite, U-rich rutile		2		369945	6683063	This work, Campana et al. 1961 (map)
Paragneiss with allanite		REE	metasomatic	Allanite		1		369896	6683078	This work
Silicified rhyolite		REE, Th, U	metasomatic	Allanite, thorite	Bastnaesite	1		360955	6692400	This work
Yerila Granite	363385	REE, Th, U	Metasomatic: Allanite gneiss(327 ppm U)	Allanite			1	359422	6693428	CRA Exploration
Yerila Granite	363292	REE, Th, U	Skarn : calcsilicate with allanite (1600 ppm Th, 452 ppm U)	Allanite			1	358812	6693393	CRA Exploration
Yerila Granite	363295	REE, Th, U	Skarn : calcsilicate with allanite (490 ppm U)	Allanite			1	358822	6693298	CRA Exploration
Biotite gneiss with allanite and fluorite		REE, Th, U	metasomatic	Allanite, thorite, uraninite, titanite- Y	Basnaesite, synchysite	3		360642	6693159	This work
Calcsilicate HSG	143015	REE, Th, U	Migmatite zone - metasomatic sediments (U = 370 ppm)	Allanite			1	350522	6662387	Blight, P. G. 1977
Calcsilicate HSG	143016	REE, Th, U	Migmatite zone - metasomatic sediments (U = 511 ppm)	Allanite			1	352350	6664652	Blight, P. G. 1977
Biotite gneiss with allanite and fluorite		REE, Th, U	metasomatic	Allanite		1		360763	6693515	This work
Hot Spring Creek (2 miles upstream HS)		REE, Th, U	Disseminated in gneiss (migmatite) & calcsilicate	Allanite-(Ce)		2		349698	6661612	Coats & Blissett 1971 p.163; Mawson 1926a, This work
Sunshine Peak area		REE, Th, U	Shear zone in gneiss (biotite-rich	Monazite-(Ce)		1		339381	6651990	Elburg et al. 2003
Monazite Hill	4308	REE, Th, Y	Lenses of monazite in biotite schist & pegmatitic gneiss (6-12 x 30-120m)	monazite-(Ce), xenotime-(Y), (2-7 % monazite)		1		349359	6661298	I. Youles 1969
Migmatitic biotite gneiss		REE,Th, U	Migmatite	Monazite		1		339590	6654570	This work
Migmatitic biotite gneiss		REE,Th, U	Migmatite	Monazite		2		353929	6666405	This work
Shear zone monazite lense		REE, Th	Hydrothermal	Monazite, thorite		2		353645	6666697	This work
SED-Badd		REE, U	Detrital concentrations in a creek	Monazite, xenotime, fergusonite, uraninite, allanite, columbite, uranmicrolite	cerite-(Ce), torneboemite, hollandite	1		361271	6691800	This work
Nr.10 Workings (Mount Painter region)	SAM G23810	REE, Th, U	Biotite schist & pegmatitic gneiss	Davidite-(La)		1		339675	6654725	This work; Mawson 1944; Broughton 1926; Broughton 1925
Pegmatite with muscovite (BE granite related)		REE, Y	Pegmatite	Monazite, xenotime		1		357500	6671275	This work

Locality Name	Nr	Elements	Genesis	Primary	Secondary	Size	Easting	Northing	References
Mount Pitt North slope		Y, REE	Biotite schist	Xenotime-(Y)		1	334450	6654475	Coats & Blissett 1971 p.165;Youles I. 1969
Betafite Mt Shanahan Prospet North		U	Veinlet	Betafite		1	345525	6672425	Coats & Blissett 1971 p.151 & 163, 266 ; Reyner M.L. & Pitman R.K.1954
Coats pegmatite	Nr 34595	U	Pegmatite vein in Yudnamutana Ck	Brannerite		1	346150	6658710	Coats & Blissett 1971 p.163 ; Coats 1959/25/09
Hot Spring Creek (lower section)		U, Th	Pegmatite vein - peralkaline aplite	Brannerite (microlite?)		2	350038	6661231	This work ; Johnson J.E. ? ; Coats & Blissett 1971, p.164
Metasomatite - U-rich	142909	U, Th	Migmatite zone : granitic alkaline melt, U>Th (U = 427 ppm)			1	350861	6662305	Blight, P. G. 1977
Jacob (Brannerite Hill)		U, Th	Pegmatitic vein, fault	Brannerite	gummite	3	354876	6668685	This work
Charlotte		U, Th	Quartz vein with brannerite and hematite	Brannerite	Gummite	1	354718	6668286	This work
Jacob 2		U, Th	Pegmatitic vein, fault	Brannerite	gummite	2	354895	6668736	This work
Nichols Nob Mine	3166	Cu, Au, Ni, U	Fault related veins	Uraninite, brannerite	Gummite, liebigite	2	279150	6645850	PIRSA, Noble et al. 1983, Mawson 1944
Mount Ogilvie Diggings	4330	Au, Ni, U	Fault related veins	Uraninite, brannerite	Gummite, liebigite, torbernite	2	275353	6644624	PIRSA, Noble et al. 1983, Mawson 1944
Gunsight Prospect	1934	U, Cu, Co, REE, V	Shear zone /skarn / granitic breccia	Allanite-(Ce), uraninite, monazite-(Ce)		3	371513	6681125	Teale 1993
Hematite - shear zone		U, Th	Hematite, biotite breccia with U minerals	Monazite, uraninite		1	354846	6668532	This work
Smiler Greenwood prospect	2059	U	Hematite breccia	Monazite-(Ce), fergusonite	Torbernite, gummite	2	342946	6656983	Coats & Blissett 1971 p.210
Mount Painter No.1 Workings	4332	U, REE	Hematite breccia	Monazite-(Ce), samarskite	torbernite	2	339328	6655641	Coats & Blissett 1971 p.210
Nr.2 Workings (Mount Painter region)	4333	U, REE	Hematite breccia with monazite Hydrothermal - pegmatititc	Samarskite, Euxenite-(Y), Monazite-(Ce)	Autunite?,Gummit e, Dewindtite, Uranophane, Uranosphaerite	2	339350	6655591	Coats & Blissett 1971 p.95, 163;Kleeman 1946; Mawson 1944; Brugger et al. 2004; Elburg et al. 2003
Mount Shanahan Uranium prospect	4348	U	Faut related quartz vein (~10 cm x 10 m) in the Freeling Heights Quartzite	Uraninite	Uranophane, metatorbernite	2	344158	6671768	Coats & Blissett 1971 p.150; Hughes 1957
Old Shamrock Copper Mine / Valley Prospect	2046 / 4418	Cu, U	Shear zone in the Wooltana volcanics (0.5 x 10 m)	Uraninite	Metatorbernite, torbernite, uranophane	1	342912	6663658	Coats & Blissett 1971 p.151; Campana H. & Johnson J.E. 1955
Schist in Wooltana volc.	368671	U	(unknown: U>>Th, 0.2% U)	Uraninite ?			342542	6663628	Marathon Petroleum
East Painter Nr.4 Workings	4225	U, REE	Hematite breccia	uraninite	Uranophane, torbernite	3	344492	6654650	Coats & Blissett 1971 p.165

Locality Name	Nr	Elements	Genesis	Primary	Secondary	Size	Easting	Northing	References
Gows Diggings (Brindana Gorge area)	2036	Cu, U, Au, Pb, Ag	ESE-trending shear zone, number of siliceous ironstone lodes	Uraninite ?			368652	6685125	
Paralana Hot Springs area	2050	U, Cu	Thin goethite veinlets near small breccia zones (1-3 m x ~0.5 m)	Uraninite	Torbernite	1	349947	6660778	Coats & Blissett 1971 p.164 ; Johnson J. E.; Broadhurst (1945a)
East Painter No.1 Workings	4222	U	Granitic/hematite breccia with sulfides	Uraninite	Torbernite	2	344376	6654964	
East Painter No.2 Workings	4223	U	Granitic/hematite breccia with sulfides	Uraninite	Torbernite	2	344484	6654982	
Mount Gee prospect	4322	U, REE	Hematite breccia	Uraninite, coffinite, monazite-(Ce)	Torbernite, metatorbernite, autunite	3	340159	6655405	Coats & Blissett 1971 p.212- 213
Mount Gee East Uranium occurrence	4321	U, REE	Hematite breccia	Uraninite, coffinite, monazite-(Ce)	Torbernite, metatorbernite, autunite	3	340641	6655172	Coats & Blissett 1971 p.212- 213
Hodgkinson Uranium prospect	4266	U	Breccia hematite mineralisation	Uraninite, thorite	Metatorbernite, torbernite	3	347894	6659628	Smith, A., 1992
"Radioactive schist" Mt Shanahan U prospect SW		U	Ferruginous biotite schist with hematite shear zone	Uraninite?		1	343120	6670370	Coats & Blissett 1971 p.266
Nr.6 Workings (Mount Painter region)	4337	U	Hematite ore / breccia, shear zone		Autunite Torbernite Gummite Uranophane	3	340111	6653931	Coats & Blissett 1971 p.
East Painter No.5 Workings	4226	U	Hematite breccia		Torbernite	2	344804	6655088	Coats & Blissett 1971 p.215
Mount Painter No.3 Workings	4334	U	Hematite breccia		Torbernite	2	339078	6655619	Coats & Blissett 1971 p.232
Mount Painter No.4 Workings	4335	U	Hematite breccia		Torbernite	1	339960	6655170	Coats & Blissett 1971 p.233
Mount Painter No.5 Workings	4336	U	Hematite breccia		Torbernite	1	340380	6654796	Coats & Blissett 1971 p.233
Mount Painter No.7 Workings	4338	U	Breccia zone / Quartz-hematite		Torbernite, gummite, metatorbernite	1	339359	6654007	Coats & Blissett 1971 p.247
Mount Painter No.8 Workings	4339	U	Granitic breccia /shear / no hematite ore		Torbernite	2	339644	6654850	Coats & Blissett 1971 p.248
East Painter No.3 Workings	4224	U	Breccia body (granitic/hematite)		Torbernite	2	344195	6655018	
West of East Painter prospect		U, REE	Hematite breccia		Uranophane Autunite	1	344050	6655570	Coats & Blissett 1971 p.165
Hematite Valley occurrence	4263	U			х		347774	6660354	
O'Sullivans	4369	U			х		347781	6659911	
Rolling stones	4385	U			х		346937	6659780	
Grogans Bluff Uranium occurrence	4259	U			х		347340	6658965	
Horn Uranium occurrence	4271	U					346893	6658632	
Hawthorn prospect	4261	U					346270	6658998	

Locality Name	Nr	Elements	Genesis	Primary	Secondary	Size	Easting	Northing	References
Breccia Nob uranium occurrence	4183	U					345494	6658177	
Turquoise Uranium occurrence	4403	U					344296	6657722	
Armchair Prospect	4150	U					342706	6657687	
Streitberg Uranium occurrence	4396	U					343326	6657607	
Mount Ward Uranium occurrence	4350	U					343297	6657237	
Bills Folly Prospect	4169	U					342119	6655715	
Minerva Heights Uranium occurrence	4305	U					339338	6653893	
Gum Tree Uranium occurrence	4260	U					339093	6653449	
Great Copper Bell Mine	2037	Cu, Mo, Au, U, Pb, Ag	shear hosted epigenetic quartz veins				373509	6682349	
Echidna Prospect	3202	U	U mineralisation occurring within a NW -SW trending lens of ferruginous granite breccia				342727	6658531	
East Painter 5A Uranium Mine	4227	U	Granitic sheared gneiss		Torbernite	2	344851	6655148	
Bentley Greenwood Prospect	2076	U	Torbernite in hematite in shear zone (43m on 4~10m wide) from migmatite		Torbernite	1	343959	6655905	
Commonwealth Mine	2119	Cu, U, Ag	Shear-zone /fault mineralised zone		Uranophane	1	341872	6659628	
British Empire Mine	2009	Cu, U	Shear-zone /fault mineralised zone		Kasolite	1	346297	6661008	Coats & Blissett 1971 p.165
Beverley	1932	U	Sandstone-hosted		Carnotite, Coffinite, uraninite	3	365000	6659150	
Parabarana Mine	3203	Cu, Zn, U, Au, Pb	Only minor secondary uranium.		Gummite	1	375385	6682371	Coats & Blissett 1971 p.165
Arkaroola Ck 2		Cu, U	disseminated in biotite schist in actinolite marble		Uranophane	1	337250	6648750	Coats & Blissett 1971 p.267
Four Mile West	8431	U	Sandstone-hosted		Coffinite, uraninite	3	355300	6664000	
Four Mile East	8431	U	Sandstone-hosted		Coffinite, uraninite	3	358000	6665500	
Mount Distance Prospect (Yerelina Ck)	8487	U	Sedimentay hosted U prospect		Carnotite		311300	6686900	
Leslie Talc deposit		Talc	on talc		Carnotite	1	350651	6691861	Coats & Blissett 1971 p.165
Billy Springs Mine area		Talc	on talc		Carnotite	1	353133	6688136	Coats & Blissett 1971 p.165
Wild Dog Mine	4436	U, Cu					330053	6654223	
Fault-breccia		U	Hydrothermal - epigenetic		Torbernite	1	353820	6664950	This work
Clay in Namba Fm	130905	U	Sedimentary hosted : 420 ppm U		Coffinite?		368592	6634548	Central Pacific Minerals

Whole-rock chemical analyses

	Allanite skarn (JB05-37)	Allanite skarn (JB05-36)	Yerila gneiss S.S.	Yerila gneiss Yer5 silicified	Yerila Gneiss (JB05-39)	Yerila - Terrapinna (CONTAC- YER)	Terapinna Granite (Terap2)	Metasediment in Terap (JB05- 38)	Hematite – Mt Shanahan (JB05-30)	Hematite Nr 2 Radium Ridge	Pegmatite brannerite – Hidden Valley	East Painter Prospect - breccia
-	PW8	PW36	PW28	PW16	PW23	PW27	PW17	PW18	PW3	**PW2	**PW6	PW1
SiO ₂	73.87	58.41	66.62	75.43	64.44	67.51	66.95	69.66	65.36	18.65	46.10	65.41
TiO ₂	0.39	0.57	0.60	0.38	0.78	0.79	0.60	0.58	0.16	<0.01	9.92	0.38
Al ₂ O ₃	9.77	17.77	13.45	13.59	13.50	13.93	14.67	13.72	2.00	<0.01	9.87	11.52
Fe ₂ O ₃	3.59	5.62	1.94	0.19	2.71	4.11	1.53	1.88	29.31	65.22	2.46	8.11
FeO	1.50	1.20	3.90	0.40	4.50	2.50	3.40	3.20	08.0	n.d.	n.d.	3.40
MaO	0.12	0.10	0.07	0.04	0.07	0.09	0.07	0.08	0.01	<0.01	0.17	0.18
lvigO CaO	0.26	0.65	0.72	0.12	1.81	0.83	1.05	0.46	0.66	<0.01	1.94	0.61
Na ₂ O	4.70	2.00	2.47	0.00 7.18	1.70	2.27	2 32	2.09	0.09	<0.05	~0.00	0.10
K ₂ O	2.59	7.73	5.85	0.39	6.12	3.88	6.13	4.84	0.87	< 0.05	8.21	7.84
P ₂ O ₅	0.05	0.06	0.12	0.08	0.15	0.19	0.20	0.15	0.11	4.85	0.12	0.23
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
UO ₂	0.02	0.01	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.50	11.39	0.01
BaO	0.03	0.05	0.04	0.01	0.08	0.05	0.16	0.21	0.02	0.02	0.23	0.06
ThO ₂	0.06	0.04	0.06	0.05	0.04	0.00	0.01	0.01	0.00	0.02	3.22	0.01
ZrO ₂	0.07	0.11	0.10	0.06	0.13	0.13	0.08	0.07	0.00	0.00	0.00	0.04
Rb₂O	0.01	0.04	0.05	0.00	0.05	0.03	0.04	0.02	0.00	0.00	0.00	0.02
Y ₂ O ₃	0.07	0.04	0.04	0.03	0.03	0.01	0.01	0.01	0.02	0.05	0.51	0.03
La_2O_3	0.03	0.09	80.0	0.01	80.0	0.01	0.01	0.02	0.00	3.14	0.07	0.10
	0.06	0.15	0.14	0.04	0.14	0.03	0.03	0.04	0.01	5.41	0.09	0.14
	0.03	0.06	0.05	0.01	0.06	1.03	0.01	0.02	0.00	0.32	2.65	0.05
S	0.01	0.07	0.00	0.01	0.01	0.00	0.01	0.09	0.40	0.02	0.23	0.14
Total	99.53	99.77	99.66	99.41	99.73	99.92	99.67	100.07	99.94	99.56	98.17	100.07
Nb	111	103	90	111	86	50	36	29	23	<15	<15	40
*Ta	6.8	6.3	5.0	6.9	4.7	3.9	2.4	2.2	4.9	n.d.	n.d.	3.3
Zr	545	800	722	468	998	935	591	515	181	<10<	<10<	325
Y Sr	519	323	2//	245	250	107	/4	63 117	19	360	4030	261
11	230	90 86	167	159	04 40	11	90	6	9 15	<9< 4410	<9< 100400	129
Rb	103	336	414	25	437	271	355	191	31	<10	<10	169
Th	515	385	501	476	375	34	45	47	17	210	28300	52
Pb	132	85	88	44	52	27	29	43	10	190	7850	14
Ga	23	28	25	22	26	25	23	21	11	<10<	<10	22
Zn	30	70	64	14	72	103	74	79	9	<10<	15	19
Ni	12	3 14	13	6	4	/ 8	9	10	16	<10<	<11<	111
Co	90	37	64	110	57		81	94	223	<20<	90	73
Cr	<2<	<2<	<2<	<2<	<2<	4	7	3	6	<10<	<10<	<2<
V	24	24	23	8	33	26	25	14	63	10<<	407	70
Ce	552	1252	1186	342	1190	237	235	322	<3<	46200	780	1180
Nd	262	499	453	89	496	125	100	139	<4<	11100	1100	455
Ва	310	439	366	45	682	442	1390	1919	158	200	2020	5/5
La Hf	200	14	10	6	15	104	109 Q	102	<4< 8	20000 n d	n d	003 6
Sc	8	<2<	4	8	7	17	3	5	<2<	n.d.	n.d.	<2<
As	5	7	9	8	. 7	9	8	9	6	<10<	340	5
*Mo	1.2	0.8	8.8	4.8	1.5	2.1	7.2	1.5	4.0	**<10<	**480	160.0
**Cd	<10<	<10<	17	<10<	17	<10<	<10<	<10<	<10<	238	<10<	<10<
*La	744.0	571.7	638.2	411.8	474.2	108.8	87.0	155.3	260.5	n.d.	n.d.	627.5
×Pr	1240.9	910.1	1134.1	62.2	857.0	170.2	145.2	258.4	362.5	n.a.	n.a.	1009.9
*Nd	464.8	343.1	371.6	215.4	334.9	112.5	63.7	117.3	121 9	n.u. n.d	n.u.	348.2
*Sm	80.1	61.1	56.3	22.1	57.7	26.2	14.0	22.4	16.6	n.d.	n.d.	52.6
*Eu	2.1	3.1	2.8	1.6	2.9	2.3	1.9	2.2	1.9	n.d.	n.d.	5.8
*Gd	85.3	52.9	50.3	30.1	47.3	23.7	13.0	16.2	10.1	n.d.	n.d.	46.0
*Tb	13.4	7.5	7.9	4.5	8.0	4.1	2.1	2.7	1.0	n.d.	n.d.	6.7
*Dy	88.1	45.2	45.1	31.5	44.1	21.1	14.2	11.3	5.5	n.d.	n.d.	41.1
⊓0 *⊑r	18.8	10.4	9.7	/.1 / 20	8.2	4.5	2.3	2.2	0.7	n.a.	n.a. n.d	9.2
Tm	51.4 69	20.2	20.0	20.4 3.0	20.7 3.0	9.7 1 4	0.0 0.8	4.0 0.6	2.1	n d	n.u. n.d	20.2
Yb	46.6	25.0	27.2	25.2	21.1	8.5	6.0	3.6	2.4	n.d.	n.d.	23.6
Lu	7.3	3.6	3.4	2.7	3.2	1.4	0.9	0.6	0.2	n.d.	n.d.	3.7
Fe ²⁺ /Fe ³⁺	0.46	0.24	2.23	2.34	1.85	0.68	2.47	1.89	0.03	n.d.	n.d.	0.47
Th/U	0.42	0.22	0.33	0.33	0.11	0.32	0.20	0.13	0.88	21.00	3.55	2.48
												-

*Major elements chemistry determined by XRF on melted discs (LiB*₂ O_4),, *ICP-MS for REE and some traces on the same discs and trace elements by XRF on pressed pellets.* Fe^{2+} *by spectrophotometry. *ICPMS data, **XRF UNIQUANT*

Whole-rock chemical analyses

	Amphibolite AMPH1 in Box Bore	Amphibolite 11 (Yerila)	Microgabbro Hidden Valley (JB05-10)	Amphibolite in Yerila (Amph9)	Leucogranite Hidden Valley	British Empire Granite	Hot Spring Gneiss à polycrase	Box Bore Gneiss (BB1)	Mt Neil granite fSED-RIVER	Mt Neil chlorite alteration – sulf.	Mt Neil granite Nooldoonool.
	PW26	PW25	PW19	PW20	PW21	PW31	PW29	PW37	PW22	PW38	PW30
SiO ₂	48.51	50.08	49.96	50.58	76.50	75.51	77.83	74.71	72.99	71.93	68.96
TiO ₂	2.41	1.73	1.54	1.63	0.02	0.06	0.24	0.33	0.33	0.39	0.42
Al ₂ O ₃	13.82	14.04	14.72	14.50	13.69	13.75	10.98	11.77	13.00	13.66	14.37
Fe ₂ O ₃	7.06	5.82	5.49	3.41	0.18	0.27	1.57	0.95	2.65	1.45	3.15
FeO	8.80	6.30	7.10	8.20	n.d.	0.30	1.20	1.60	0.80	1.60	1.20
MnO	0.12	0.22	0.20	0.17	0.02	0.02	0.03	0.03	0.01	0.02	0.03
MgO	5.16	6.71	6.02	7.24	0.11	0.14	0.28	0.34	0.13	0.48	0.19
CaO	4.31	10.61	9.80	11.10	0.32	0.54	1.26	1.07	0.83	0.43	1.73
Na ₂ O	1.73	2.43	2.68	0.97	5.57	3.33	2.91	2.36	3.21	2.68	3.70
K₂O	4.73	0.37	1.21	0.12	3.51	4.64	2.84	5.50	5.49	5.52	5.66
P ₂ O ₅	0.48	0.15	0.21	0.14	0.04	0.09	0.02	0.05	0.04	0.08	0.07
	0.01	0.06	0.04	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00
002 BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00
ThO	0.15	0.01	0.02	0.03	0.01	0.02	0.03	0.03	0.04	0.00	0.09
7rO₀	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.02	0.01	0.01	0.01
Bb ₂ O	0.04	0.01	0.02	0.01	0.00	0.01	0.00	0.04	0.00	0.03	0.10
Y2O2	0.07	0.00	0.00	0.00	0.00	0.04	0.02	0.00	0.04	0.00	0.00
La ₂ O ₃	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.01	0.02
Ce ₂ O ₃	0.01	0.00	0.01	0.00	0.00	0.00	0.03	0.04	0.04	0.03	0.04
Nd ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.01	0.02
LOI	2.22	1.22	0.71	1.36	0.08	0.78	0.56	0.83	0.59	1.20	0.38
S	0.04	0.00	0.14	0.02	0.00	0.03	0.00	0.01	0.01	0.01	0.01
Total	99.69	99.76	99.88	99.55	100.08	99.53	99.93	99.81	100.33	99.66	100.20
Nb *Te	36	10	14	9	8	21	63	36	49	36	58
"la 7r	1.6	1.0	1.0	1.1	2.8	4.7	0.5	3.3	3.5	3./	5.0
ZI V	200	107	109	94	14	43	300 76	125	477	303 71	166
Sr	87	160	109	158	6	54	58	31	38	42	79
U	10	2	4	4	11	17	130	50	19	36	19
Rb	667	18	42	9	253	330	188	515	330	320	259
Th	15	3	5	4	6	9	241	177	62	61	70
Pb	7	4	8	6	5	22	41	54	15	18	18
Ga	30	20	22	20	13	19	20	19	24	24	27
Zn	48	140	108	100	8	13	29	34	35	24	26
Ni	28	149	40	199	<2<	J 2	0	/ 8	9	7	4
Co	59	79	66	79	68	128	116	97	55	82	68
Cr	78	260	210	298	3	3	<2<	3	<2<	12	<2<
V	330	355	289	361	6	4	<2<	14	5	24	2
Ce	70	21	59	23	5	13	256	384	361	250	366
Nd	32	11	29	14	<4<	5	105	142	163	100	158
Ba	1379	54	212	247	88	180	227	271	399	566	838
La	47	11	25	8	<4<	8	180	194	159	122	168
Sc	0 44	>۱> 40	4	4 51	-2-	0 2	3	ر ۲	7	1	10
As	7	43	3	4	5	5	8	9	9	9	<3<
*Mo	0.5	0.4	1.0	<0.645	<1.955	2.5	0.8	0.8	2.5	1.8	2.0
**Cd	<10<	<10<	<10<	<10<	<10<	<10<	10	<10<	<10<	14	<10<
*La	39.5	10.7	30.4	6.8	3.1	6.0	235.7	191.8	113.3	115.1	170.2
*Ce	70.2	20.3	56.4	15.9	5.1	14.6	355.2	367.0	207.0	211.0	312.6
^Pr *Nd	8.5	2.8	6.7	2.4	0.3	1.5	38.7	35.7	25.3	21.0	34.6
*Sm	38.0	13.1	29.9	11.1	1.5	5.9 1.8	22.5	20.7	21.6	16.3	120.1 27.4
*Eu	12	11	17	1.0	<0.19	0.4	0.9	0.8	21.0	10.0	3.5
*Gd	10.1	3.8	8.4	3.6	<1.22	2.7	14.9	18.2	19.6	12.0	18.7
*Tb	2.3	1.0	1.4	0.8	<0.16	0.6	2.1	2.2	2.9	1.9	4.3
*Dy	14.7	5.4	8.8	4.3	0.9	1.8	14.6	14.7	21.7	13.2	25.7
*Ho	3.4	0.9	1.7	0.8	0.1	0.4	3.2	2.9	4.3	2.3	5.1
*Er T	9.8	2.6	6.2	2.7	0.0	1.9	8.9	7.2	11.6	7.0	14.2
i m Vh	1.6	0.3	0.8	0.4	0.2	0.1	1.5	1.5	1.4	1.0	1.8
u 1 1 1	10.8	3.3 0 4	6.1 A P	2.6	1.4 0つ	4.5 0 5	8.6 1 0	11.3	13.6	5.9	15.3
	1.7	1 20	1 44	2 67	n d	1 23	0.85	1.3	0.34	1 23	0.42
Fe-/Fe				2.07							
Th/U	0.67	0.67	0.80	1.00	1.83	1.89	0.54	0.28	0.31	0.59	0.27

2/4

APPEN	NDE	X III			Rock o	chemic	al an	alyses	- Yeri	la			3/4
Fraction	Whole	rock		K-felds	spar concei	ntrate	Quartz-	Oligoclase	± (Kfd)				Qz-PI-Kfd
Magnetic [Ampere]				1.0 A+	1.0 A+	1.0 A+	1.0 A+	1.0 A+	1.0 A+	1.0 A+	1.0 A+	1.0 A+	1.0 A+
Density				<2.62	<2.62	<2.62	2.62- 2.96	2.62- 2.96	2.62- 2.96	2.62- 2.96	2.62- 2.75	2.62- 2.75	<2.75
Size [mm]	bulk	2-5	1-2	2-5	¹ ⁄ ₂ -1	1⁄4 - 1⁄2	2-5	2.5	1-2	½ -1	¹ ⁄2 -1	1⁄2 -1	¹ ⁄2 -1
		H ₂ O wash	H ₂ O wash	H ₂ O wash	HCI 10% 10 min	HCI 10% 10 min	raw	HCI 10% 10 min	Water- abraded	HCI 10% 10 min	raw	HCI 10% 10 min	HCI 10% 10 min
SiO ₂	66.62	65.66	64.71	65.45	67.96	69.29	84.66	87.54	89.74	91.44	90.44	90.98	87.06
	0.60	0.55	0.52 14 95	0.07	0.03	0.02 15.98	0.08	0.09 6.34	0.05	0.06	0.05	0.04	0.02
Fe ₂ O ₃	1.94	6.06	5.51	0.83	0.11	0.09	0.97	0.68	0.70	0.37	0.60	0.28	0.14
FeO	3.90	-	-	-	-	-	-	-	-	-	-	-	-
MnO	0.07	0.08	0.07	0.02	0.00	0.01	0.02	0.02	0.02	0.01	0.02	0.01	0.01
MgO	0.72	2.19	0.75	0.23	0.01	0.11	0.15	0.08	0.09	0.06	0.07	0.01	0.01
NaoO	2.47	2.49	2.56	2 03	1 78	1.59	1.96	1.29	1.00	1.03	0.77	0.37	0.47
K ₂ O	5.85	5.90	6.25	11.30	12.09	11.48	1.54	1.23	0.93	1.37	1.25	1.23	3.43
P ₂ O ₅	0.12	0.11	0.10	0.03	0.01	0.01	0.03	0.01	0.02	0.01	0.03	0.00	0.01
BaO	0.04				0.09					0.01			
ThO ₂	0.06				0.00					0.00			
ZrO ₂	0.10				0.02					0.02			
	0.05				0.06					0.01			
1203 La2O2	0.04				0.00					0.00			
Ce ₂ O ₃	0.14				0.00					0.00			
Nd ₂ O ₃	0.05				0.00					0.00			
LOI	1.25	0.84	0.75	0.53	0.22	0.29	0.37	0.29	0.29	0.07	0.31	0.22	0.25
S	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l otal	99.77	98.26	98.75	98.77	100.09	99.27	98.76	99.25	99.25	99.98	98.38	97.93	98.28
ND *Ta	90 5.0	- 09	- 65	- 10	22	- 5		- 19	- 13	66	12		o -
Zr	722	674	579	132	128	122	216	214	184	154	193	178	140
Y	277	270	253	33	8	11	58	51	42	29	47	22	14
Sr	75	71	78	70	66	58	52	42	36	29	28	22	27
U	167	160	137	32	10	6	32	18	24	7	36	8	7
RD Th	414	409	413	507 103	582 20	486	93	73 78	59 105	33	68 118	33	151
Pb	88	71	74	92	57	52	26	17	16	19	23	11	16
Ga	25	24	25	20	20	17	14	11	9	8	8	5	9
Zn	64	55	49	16	13	4	8	3	5	9	10	0	0
Cu	7	4	4	3	<2<	0	3	0	0	9	4	1	5
Ni	13	8	9	3	4	1	1	3	1	<2<	8	0	3
Co	64	15	15	-	3	-	1	8	1	269	10	3	14
V	23	25	23	6	2	4	7	5	4	3	5	3	3
Ce	1186	951	787	116	29	11	180	47	129	<3<	185	8	8
Nd	453	366	304	45	6	1	68	22	49	<4<	71	4	3
Ba	366	426	459	818	843	818	124	100	73	125	95	94	255
La	681	491	412	69	1/	5	97	24	68	<4<	101	1	2
HI	10	12	11	- 2	0 4	- 0	2	1	1	-2-	1	0	0
As	9	6	6	4	<3<	4	8	13	12	<3<	15	15	11
*Mo	8.8	12	26	9	2.5	3	6	4	5	2.6	8	4	3
*La	638.2				9.8					6.2			
*Ce	1134				13.1					9.8			
*Pr	110.6				1.9					1.7			
^Nd *Sm	3/1.6				3.3					5.1			
500 *Fu	2.8				0.4					0.3			
*Gd	50.3				0.8					2.8			
*Tb	7.9				0.2					0.5			
*Dy	45.1				2.2					3.1			
*Ho	9.7				0.4					1.0			
*Er	25.0				0.9					3.7			
Yh	3.4 27.2				<0.15 1 2					0.4			
Lu	3.4				0.2					0.4			
Fe ²⁺ /Fe ³⁺	2.23				n.d.					n.d.			

Rock chemical analyses - Yerila

4/4

Fraction	Qz-Pl-Kfd				Qz-PI-Kf + HM's	Qz-PI-Kf + HM's	Biot-hast- HM's	Biotite	Biotite +titanite	K- hastingsite
Magnetic [Ampere]	1.0 A+	1.0 A+	1.0 A+	1.0 A+	1.0 A+	1.0 A+	0.2-0.3	0.2-0.3	0.3-0.6	0.27-0.34
Density	<2.96	<2.96	<2.96	<2.96	all	all	all	<3.32	<3.32	>3.32
Size [mm]	1/4 - 1/2	1/4 - 1/2	$^{1}/_{8} - ^{1}/_{4}$	$^{1}/_{8} - ^{1}/_{4}$	< ¹ / ₈	< ¹ / ₈	$^{1}/_{8} - ^{1}/_{4}$	1/4 - 1/2	1/4 - 1/2	1/4 - 1/2
	raw	HCI 10% 10 min	raw	HCI 10% 10 min	raw	HCI 10% 10 min				raw
SiO ₂	85.31	83.59	80.93	81.80	77.88	80.35	36.59	36.79	42.45	38.34
TiO ₂	0.05	0.04	0.08	0.04	0.26	0.15	1.50	1.71	1.53	1.25
Al ₂ O ₃	7.01	7.44	9.27	9.16	10.49	10.31	14.22	14.48	14.76	12.64
Fe ₂ O ₃	0.43	0.09	0.54	0.07	0.73	0.06	30.56	30.31	22.47	10.07
FeO										18.00
MnO	0.01	0.01	0.01	0.01	0.02	0.01	0.34	0.31	0.25	0.43
MgO	0.10	0.02	0.11	0.03	0.17	0.03	3.46	3.70	2.82	2.36
CaO	0.82	0.72	1.35	1.03	2.47	1.46	2.91	1.12	2.78	10.55
Na ₂ O	1.02	1.22	1.75	1.70	2.18	2.16	0.61	0.47	1.42	1.12
K ₂ O	3.89	3.84	4.01	4.05	3.88	3.88	6.35	7.52	5.85	2.28
P_2O_5	0.03	0.00	0.07	0.00	0.27	0.00	0.04	0.07	0.12	0.07
BaO										
ThO₂										
ZrO ₂										
Rb ₂ O										
Y ₂ O ₃										
La ₂ O ₃										
Ce ₂ O ₃										
Nd ₂ O ₃										
LOI	0.39	0.27	0.46	0.26	0.71	0.30	1.07	1.10	1.31	1.97
S	0.00	0.00	0.00	0.00	0.01	0.00	0.04	0.04	0.03	0.00
Total	99.06	97.25	98.58	98.16	99.04	98.71	97.69	97.61	95.79	99.07
Nb	12	10	18	12	50	31	183	200	203	
*Ta										
Zr	155	137	285	134	747	657	425	776	1000	
Y	45	19	75	25	214	70	283	185	463	
Sr	36	35	53	45	62	51	17	17	64	
Ŭ	30	6	51	6	97	10	208	203	327	
Bb	169	165	171	168	165	159	1232	1537	1045	
Th	90	16	117	14	228	15	464	486	1097	
Ph	36	21	42	21	49	23	72	61	98	
Ga	9	9	12	12	13	13	67	67	54	
Zn	19	0	14	0	17	0	322	338	233	
Cu	20	3	16	6	20	0	47	37	30	
Ni	26	1	78	1	123	3	375	232	141	
Co	20	•		•	.20	U	0.0			
Cr	12	3	12	4	11	11	645	412	129	
V	4	4	4	3	5	3	121	101	87	
v C.e	168	10	235	10	420	11	827	642	2739	
Nd	60	4	200	1	168	5	325	258	1039	
Ro	283	202	202	210	207	211	264	200	201	
La	200	200	101	2	21/	0	465	356	1/68	
La Lif	03	2	121	5	214	2	405	330	1400	
ПI 62	0	0	1	1	1	1	55	20	24	
30 Ac	9	7	11	9	11	7	1	23	7	
лъ *Мо	8	3	8	3	11	2	18	ے 16	, 14	
1010		5	0	0		~	10	10	14	

Chemical composition of the Yerila Gneiss S.S. and mineral separates by crushing/heavy liquids

Major elements chemistry determined by XRF on melted discs (LiB_2O_4), ICP-MS for REE and some traces on the same discs and trace elements by XRF on pressed pellets. Fe^{2+} by spectrophotometry

AFFEN	ΠΟΙΛ Ι	V E	MPA 2	anaiyse	es from	n the r	erna g	gneiss (IEK-	03)			Allan	ille-(C	e)		1/3	
	Allanite 1			Allanite 2			Allanite 3			Allanite 4			Allanite 5			Allanite 6		
	ala1_1	ala1_2	ala1_3	al2_alt	al2_rim	al2_cor	al3_1	al3_2	al3_4	al4_1	al4_3	al4_9	al5_1	al5_2	al5_3	al6_1	al6_2	al6_3
F	<0.50	<0.50	<0.50	0.63	<0.50	<0.50	0.63	<0.50	0.66	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MgO	0.19	0.24	<0.15	0.33	0.31	0.39	0.54	0.67	0.47	0.42	0.60	0.54	<0.15	0.24	<0.15	0.23	0.18	0.26
Al ₂ O ₃	16.86	15.03	15.77	15.16	15.25	13.68	13.94	12.58	12.62	14.61	13.96	14.21	15.63	15.98	16.45	15.59	16.16	15.75
SiO ₂	34.78	33.25	33.58	41.85	42.78	32.98	33.44	32.66	32.60	32.98	33.46	33.32	33.95	34.03	34.63	34.09	34.33	34.36
K₂O	<0.10	<0.10	<0.10	0.25	0.21	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
CaO	12.62	11.06	11.42	6.60	6.42	10.19	10.33	9.32	7.51	9.69	9.73	10.19	11.42	11.27	11.34	11.53	11.85	11.63
TiO ₂	0.87	1.38	0.64	2.41	2.27	1.40	1.48	1.64	1.60	1.40	1.28	1.58	1.49	1.17	0.94	1.05	1.08	0.99
MnO	0.37	0.36	0.41	<0.28	<0.28	0.42	<0.28	0.37	<0.28	0.35	0.35	0.33	0.37	0.39	<0.28	0.34	0.29	<0.28
FeO	13.78	15.38	15.00	3.74	3.81	16.19	15.77	16.70	12.28	15.66	16.34	15.73	15.36	15.18	14.96	15.42	14.94	14.99
Y_2O_3	0.47	0.34	0.36	0.36	0.21	<0.18	0.25	<0.18	0.27	<0.18	0.32	0.49	0.45	0.38	0.31	0.40	0.28	0.29
La ₂ O ₃	5.69	6.42	5.74	3.83	4.20	7.49	6.86	7.33	6.18	5.95	7.40	6.35	5.86	5.80	5.74	6.67	6.69	6.20
Ce ₂ O ₃	12.09	13.54	14.11	10.29	11.12	14.78	14.34	15.32	14.45	12.81	15.51	14.75	13.83	13.44	12.98	13.18	13.06	13.39
*(Nd-Gd) ₂ O ₃	3.20	3.56	4.18	3.23	3.46	3.65	3.74	3.99	4.13	3.43	4.05	4.20	3.98	3.82	3.62	3.26	3.19	3.60
ThO ₂	0.94	1.15	1.07	1.75	1.75	1.00	1.09	1.28	1.06	1.01	1.02	0.97	1.06	1.07	0.95	1.03	1.01	1.15
UO ₂	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18
Total	101.86	101.71	102.28	90.44	91.79	102.16	102.40	101.87	93.84	98.32	104.02	102.66	103.40	102.78	101.93	102.79	103.07	102.61
*calculated																		
Normalised o	n the basis o	of eight cati	ons															
F	0.000	0.000	0.000	0.203	0.000	0.000	0.188	0.000	0.217	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ma	0.025	0.033	0.000	0.050	0.045	0.055	0.076	0.096	0.073	0.060	0.083	0.075	0.000	0.032	0.000	0.032	0.024	0.036
AŬ	1.789	1.645	1.714	1.802	1.787	1.518	1.541	1.416	1.548	1.644	1.528	1.560	1.679	1.715	1.768	1.674	1.723	1.693
Si	3.131	3.086	3.097	4.222	4.255	3.104	3.136	3.119	3.392	3.149	3.108	3.104	3.094	3.099	3.158	3.106	3.105	3.134
K	0.000	0.000	0.000	0.033	0.027	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca	1.217	1.100	1.129	0.714	0.684	1.028	1.038	0.954	0.838	0.992	0.968	1.017	1.115	1.100	1.109	1.125	1.149	1.136
Ti	0.059	0.096	0.044	0.183	0.170	0.099	0.104	0.118	0.126	0.101	0.089	0.111	0.102	0.080	0.065	0.072	0.073	0.068
Mn	0.028	0.028	0.032	0.000	0.000	0.033	0.000	0.030	0.000	0.029	0.027	0.026	0.029	0.030	0.000	0.026	0.023	0.000
Fe	1.037	1.194	1.157	0.315	0.317	1.274	1.237	1.334	1.068	1.250	1.269	1.225	1.171	1.156	1.141	1.175	1.130	1.143
Y	0.023	0.017	0.018	0.019	0.011	0.000	0.012	0.000	0.015	0.000	0.016	0.024	0.022	0.018	0.015	0.019	0.014	0.014
La	0.189	0.220	0.195	0.143	0.154	0.260	0.237	0.258	0.237	0.209	0.253	0.218	0.197	0.195	0.193	0.224	0.223	0.209
Ce	0.380	0.439	0.454	0.363	0.386	0.486	0.469	0.511	0.525	0.427	0.503	0.480	0.440	0.427	0.413	0.419	0.413	0.426
Nd-Gd	0.103	0.118	0.138	0.116	0.123	0.123	0.125	0.136	0.154	0.117	0.134	0.140	0.130	0.124	0.118	0.106	0.103	0.117
Th	0.019	0.024	0.022	0.040	0.040	0.021	0.023	0.028	0.025	0.022	0.022	0.021	0.022	0.022	0.020	0.021	0.021	0.024
U	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
[REE,Th,U.Y]	0.714	0.818	0.827	0.681	0.714	0.889	0.868	0.933	0.956	0.775	0.928	0.883	0.810	0.787	0.759	0.790	0.773	0.790
[Ca + REE]	1.931	1.917	1.956	1.395	1.398	1.917	1.906	1.887	1.793	1.767	1.896	1.900	1.925	1.887	1.868	1.915	1.922	1.926
Fe ³⁺ (calc)	0.211	0.355	0.286	0.198	0.213	0.482	0.459	0.584	0.452	0.356	0.472	0.440	0.321	0.285	0.232	0.326	0.277	0.307
Fe ²⁺ (calc)	0.826	0.839	0.871	0.118	0.000	0.792	0.778	0.750	0.616	0.894	0.797	0.786	0.850	0.871	0.910	0.849	0.853	0.836
[Ti+Mg+Mn]	0.112	0.158	0.077	0.233	0.215	0.187	0.180	0.244	0.199	0.189	0.199	0.211	0.131	0.142	0.065	0.130	0.120	0.104
Si/Al	1.750	1.877	1.806	2.343	2.381	2.045	2.035	2.203	2.191	1.916	2.034	1.989	1.843	1.807	1.786	1.856	1.802	1.851
$Eo^{3+}/Eo(tot)$	0 203	0 298	0 247	0.627	1 000	0.379	0.371	0.438	0 423	0.285	0.372	0.359	0.274	0.247	0.203	0.278	0.245	0 268

APPEN		IV E	MPA	analys	es froi	n the	Yerila	gneiss	s (YEF	R- 03)			Alle	anite-(Ce)		27	5
	Allanite 7					Allanite 8						Allanite 9			Allanite 1	0		
	al7_1	al7_2	al7_7	al7_8	al7_9	al8_1	al8_2	al8_3	al8_5	al8_8	al8_9	al9_3	al9_4	al9_6	al10_1	al10_2	al10_3	al10_7
F	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MgO	0.32	0.23	0.28	0.29	0.24	0.24	0.32	0.29	0.30	0.40	0.24	0.26	0.25	0.22	0.56	0.47	0.55	0.58
Al ₂ O ₃	14.37	17.13	15.48	15.09	15.25	15.24	14.19	15.25	15.17	14.52	15.24	15.80	16.11	15.39	14.21	14.11	13.85	14.06
SiO ₂	33.72	34.92	34.14	33.86	32.91	33.18	33.30	33.53	33.94	33.15	32.53	33.71	33.71	33.97	33.78	33.52	33.60	34.57
K2O	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
CaO	9.72	12.38	10.77	10.55	10.74	10.62	10.58	11.40	11.75	10.69	10.96	10.95	11.44	10.75	10.71	10.68	10.88	10.64
TiO ₂	1.36	0.85	1.14	1.43	1.34	1.31	1.33	1.06	1.26	1.54	1.06	0.82	0.81	0.93	1.71	1.41	1.48	1.91
MnO	<0.28	<0.28	<0.28	0.34	<0.28	<0.28	0.44	<0.28	<0.28	0.35	0.35	0.33	<0.28	0.34	<0.28	0.43	0.33	0.34
-eO	14.90	14.35	15.42	15.37	15.46	15.42	15.81	15.49	15.37	15.79	15.64	15.57	15.57	14.37	16.75	16.13	17.06	16.82
Y ₂ O ₃	<0.18	0.29	0.29	0.26	0.30	0.41	0.40	0.39	0.34	0.43	0.30	0.20	<0.18	0.31	0.38	0.39	0.24	0.39
a_2O_3	7.62	6.30	7.00	7.25	7.05	7.16	6.16	6.60	5.68	6.78	6.01	6.49	6.16	6.37	6.33	5.85	6.64	6.71
Ce ₂ O ₃	14.75	12.63	14.66	14.34	14.05	14.23	13.94	13.81	13.78	14.10	14.06	14.51	14.02	14.35	14.66	14.93	15.50	15.04
(Nd-Gd) ₂ O ₃	3.57	3.16	3.83	3.55	3.50	3.53	3.89	3.61	4.05	3.66	4.02	4.01	3.93	3.99	4.17	4.54	4.43	4.16
ThO ₂	1.22	0.74	0.84	1.02	0.94	0.89	1.12	1.06	1.09	1.06	1.10	1.04	1.05	1.24	1.05	0.97	1.03	1.20
	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18
Total	101.54	102.98	103.85	103.33	101.78	102.24	101.47	102.47	102.72	102.45	101.50	103.71	103.03	102.22	104.29	103.44	105.59	106.43
calculated							-											
Normalised on	the basis of	of eight cat	ons															
F	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ma	0.045	0.031	0.038	0.040	0.034	0.033	0.044	0.039	0.041	0.056	0.034	0.036	0.034	0.030	0.076	0.064	0.074	0.078
4	1.603	1.804	1.668	1.637	1.676	1.670	1.567	1.655	1.636	1.589	1.676	1,700	1.731	1.684	1.531	1.536	1.486	1.491
Si	3,191	3.120	3.122	3.117	3.068	3.085	3.119	3.088	3.106	3.078	3.036	3.078	3.073	3.153	3.088	3.096	3.059	3.112
<	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca	0.986	1.185	1.055	1.041	1.073	1.058	1.062	1.125	1.152	1.064	1.096	1.071	1.117	1.069	1.049	1.057	1.062	1.026
Ti	0.097	0.057	0.078	0.099	0.094	0.092	0.093	0.073	0.087	0 107	0 074	0.057	0.055	0.065	0 117	0.098	0 101	0 129
Mn	0.000	0.000	0.000	0.027	0.000	0.000	0.035	0.000	0.000	0.027	0.027	0.026	0.000	0.026	0.000	0.033	0.026	0.026
e	1 179	1 072	1 179	1 183	1 205	1 1 9 9	1 238	1 193	1 176	1 226	1 220	1 189	1 187	1 1 1 5	1 281	1 246	1 299	1 266
Ŷ	0 000	0.014	0.014	0.013	0.015	0.020	0.020	0.019	0.017	0.021	0.015	0.010	0 000	0.015	0.019	0.019	0.011	0.019
	0.266	0 208	0.236	0 246	0 242	0.246	0.213	0 224	0 192	0 232	0 207	0 219	0 207	0.218	0.213	0 199	0 223	0.223
Ce	0.487	0.394	0.468	0.461	0.457	0.462	0.456	0.444	0.440	0.457	0.458	0.463	0.446	0.465	0.468	0.481	0.493	0.472
Nd-Gd	0.407	0.004	0.400	0.117	0.437	0.402	0.400	0.119	0.440	0.407	0.400	0.400	0.440	0.400	0.400	0.401	0.430	0.134
Th	0.026	0.101	0.120	0.117	0.117	0.117	0.100	0.110	0.102	0.121	0.104	0.101	0.120	0.102	0.100	0.100	0.144	0.104
111	0.020	0.013	0.010	0.021	0.020	0.013	0.024	0.022	0.023	0.022	0.020	0.022	0.022	0.020	0.022	0.020	0.021	0.020
J	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
REE,Th,U,Y]	0.900	0.731	0.861	0.857	0.851	0.864	0.842	0.828	0.804	0.854	0.837	0.844	0.803	0.857	0.858	0.870	0.892	0.872
Ca + REE]	1.886	1.916	1.916	1.898	1.923	1.922	1.904	1.953	1.955	1.917	1.933	1.914	1.920	1.926	1.907	1.927	1.954	1.898
e ³⁺ (calc)	0.397	0.196	0.332	0.363	0.324	0.330	0.433	0.345	0.364	0.411	0.324	0.300	0.269	0.316	0.469	0.464	0.514	0.509
⁻ e ²⁺ (calc)	0.782	0.876	0.847	0.820	0.881	0.869	0.805	0.847	0.812	0.815	0.896	0.889	0.918	0.799	0.812	0.782	0.785	0.757
Ti+Mg+Mn]	0.142	0.088	0.116	0.165	0.128	0.125	0.173	0.112	0.127	0.190	0.135	0.118	0.089	0.122	0.193	0.196	0.201	0.233
Si/Al	1.991	1.730	1.871	1.904	1.831	1.847	1.991	1.866	1.898	1.937	1.811	1.811	1.776	1.873	2.016	2.015	2.059	2.087
Fe ³⁺ /Fe (tot)	0.337	0 183	0 282	0.307	0 269	0 275	0.350	0 289	0.310	0.335	0 265	0 252	0 227	0.283	0.366	0.372	0.396	0 402

APPEN	IDIX I	V EM	PA ana	lyses fr	om the	Yerila	gneiss (YER-0	3)		All	anite-(Ce)		3/5	
	All. 10	All. 11	Allanite 12		Allanite 13			Allanite 14							Allanite 15	
	al10_12	al11_2	al12_1	al12_2	al13_1	al13_2	al13_3	al14_1	al14_2	al14_3	al14_4	al14_5	al14_6	al14_8	al15_1	al15_2
F	<0.50	<0.50	<0.50	<0.50	0.57	0.61	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.60	<0.50	<0.50
MgO	0.67	0.35	0.88	0.79	0.69	0.70	0.71	0.37	0.34	0.41	0.33	0.37	0.42	0.48	0.31	0.26
Al ₂ O ₃	13.29	14.17	13.47	13.39	13.41	13.74	14.07	14.23	14.36	14.61	15.04	15.09	14.32	14.55	14.63	15.29
SiO ₂	33.44	33.95	33.36	33.59	33.61	33.69	33.55	34.17	33.68	34.30	34.44	34.06	33.68	33.47	33.67	33.70
<₂O	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
CaO	9.90	10.71	9.50	9.53	10.00	10.15	9.96	10.71	10.73	10.94	11.10	11.24	10.87	10.65	10.92	10.84
TiO₂	1.78	1.84	1.87	1.91	1.83	1.67	1.88	1.29	1.46	1.63	1.54	1.20	1.39	1.57	1.13	1.18
<i>I</i> nO	0.46	0.52	<0.28	<0.28	0.42	0.43	<0.28	<0.28	0.45	<0.28	0.43	0.34	<0.28	<0.28	<0.28	0.36
eO	17.11	16.35	16.79	16.60	16.55	17.37	16.75	16.18	16.02	16.34	16.22	16.22	16.63	16.58	15.87	15.33
2O3	<0.18	0.30	0.28	0.27	0.37	0.33	0.29	0.38	0.32	0.41	0.44	0.38	0.30	0.29	0.32	0.37
.a ₂ O ₃	7.55	6.06	8.34	8.50	7.00	6.88	7.55	6.64	6.93	6.22	5.95	6.76	7.41	7.37	6.00	6.49
Ce ₂ O ₃	15.72	14.70	15.36	16.32	15.57	15.63	15.03	14.60	14.33	14.41	14.17	14.35	14.69	14.94	14.27	14.16
(Nd-Gd) ₂ O ₃	4.09	4.32	3.51	3.91	4.29	4.38	3.74	3.98	3.70	4.10	4.11	3.79	3.64	3.79	4.13	3.83
hO ₂	1.35	1.15	1.20	1.29	0.99	1.10	1.02	1.19	1.15	1.15	1.28	1.24	1.15	1.01	1.00	1.16
JO ₂	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18
otal	105.34	104.41	104.57	106.10	105.30	106.68	104.56	103.73	103.45	104.52	105.04	105.04	104.50	105.30	102.25	102.98
calculated																
ormalised on	the basis of	eight cations														
	0.000	0.000	0.000	0.000	0.168	0.177	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.174	0.000	0.000
/lg	0.092	0.048	0.121	0.108	0.095	0.095	0.097	0.051	0.046	0.056	0.044	0.049	0.057	0.065	0.043	0.035
1	1.444	1.527	1.472	1.456	1.458	1.474	1.525	1.544	1.560	1.565	1.597	1.607	1.545	1.569	1.599	1.659
d .	3.083	3.105	3.093	3.098	3.101	3.065	3.084	3.146	3.105	3.118	3.104	3.078	3.085	3.062	3.122	3.102
ί.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca	0.978	1.050	0.944	0.941	0.988	0.989	0.980	1.056	1.060	1.066	1.071	1.088	1.066	1.043	1.085	1.069
ī	0.124	0.126	0.131	0.133	0.127	0.115	0.130	0.089	0.101	0.111	0.104	0.082	0.096	0.108	0.079	0.082
Лn	0.036	0.040	0.000	0.000	0.033	0.033	0.000	0.000	0.035	0.000	0.033	0.026	0.000	0.000	0.000	0.028
e	1.319	1.250	1.302	1.280	1.277	1.322	1.287	1.246	1.235	1.242	1.222	1.226	1.273	1.268	1.231	1.180
<i>,</i>	0.000	0.015	0.014	0.013	0.018	0.016	0.014	0.018	0.016	0.020	0.021	0.018	0.015	0.014	0.016	0.018
a	0.257	0.205	0.285	0.289	0.238	0.231	0.256	0.225	0.236	0.208	0.198	0.225	0.250	0.249	0.205	0.220
Ce	0.506	0.469	0.497	0.525	0.502	0.496	0.482	0.469	0.461	0.457	0.446	0.453	0.470	0.477	0.462	0.455
Nd-Gd	0.135	0.141	0.116	0.129	0.141	0.142	0.123	0.131	0.122	0.133	0.132	0.122	0.119	0.124	0.137	0.126
Γh	0.028	0.024	0.025	0.027	0.021	0.023	0.021	0.025	0.024	0.024	0.026	0.026	0.024	0.021	0.021	0.024
U	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
REE.Th.U.Yl	0.926	0.853	0.938	0.984	0.920	0.908	0.897	0.869	0.858	0.842	0.823	0.844	0.878	0.884	0.841	0.844
Ca + REE1	1.903	1.903	1.882	1.925	1.908	1.897	1.877	1.925	1.918	1.908	1.895	1.932	1.944	1.928	1.926	1.913
e ³⁺ (calc)	0.556	0.473	0.528	0.544	0.542	0.526	0.475	0.456	0.440	0.435	0.403	0.393	0.455	0.431	0.401	0.341
e ²⁺ (calc)	0.763	0.777	0.773	0.736	0.735	0.795	0.812	0.789	0.795	0.807	0.820	0.833	0.819	0.837	0.831	0.840
Ti+Ma+Mn1	0.251	0.215	0.252	0.241	0.256	0.243	0.227	0.140	0.182	0.167	0.182	0.157	0.153	0.173	0.121	0.145
Si/Al	2 135	2 033	2 102	2 129	2 127	2 080	2 023	2 038	1 991	1 992	1 943	1 915	1 996	1 952	1 952	1 870
Eo ³⁺ /Eo (tot.)	0.421	0.378	0.406	0.425	0.424	0.308	0.369	0.366	0.356	0.350	0.330	0 321	0.357	0.340	0.325	0.280

APPEN	DIX IV	r	EMP	A analys	ses from	the Ye	rila gnei	ss (YER	R-03)		Al	lanite-(Ce)		4/5
	Allanite 15			2		Allanite 16	0	Allanite 17	,				Composite g	grains	
	al15_4	al15_6	al15_10	al15_al	al15_al2	al16_1	al16_2	al17	al17_1	al17_3	al17_6	al17_8	xx8_1	xx9_1	X_rim
F	<0.50	<0.50	<0.50	1.22	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MgO	0.26	0.25	0.23	0.35	0.41	0.52	0.72	0.25	0.50	0.45	0.31	0.47	0.38	0.42	0.45
AI_2O_3	15.24	15.59	15.81	16.57	16.73	13.48	13.46	13.47	14.59	14.46	14.84	14.80	14.48	14.62	15.32
SiO ₂	33.85	33.76	33.96	45.54	44.90	33.32	33.50	30.49	33.21	33.40	33.56	33.65	34.71	34.37	36.42
K₂O	<0.10	<0.10	<0.10	0.54	0.51	<0.10	<0.10	<0.10	0.14	<0.10	<0.10	<0.10	<0.10	<0.10	0.32
CaO	10.98	11.25	11.08	5.66	5.54	9.82	9.12	9.72	10.26	10.52	10.81	10.06	11.09	11.06	8.12
TiO ₂	1.31	0.94	1.02	1.81	1.64	1.71	1.57	0.74	1.16	1.61	1.27	0.94	1.61	1.40	3.07
MnO	<0.28	0.42	0.43	<0.28	<0.28	0.37	0.37	<0.28	<0.28	<0.28	0.34	0.33	<0.28	<0.28	0.35
FeO	16.05	15.54	15.64	3.38	3.05	16.66	15.71	14.59	16.50	15.95	15.93	16.22	16.57	16.38	6.06
Y_2O_3	0.42	0.31	0.40	0.56	0.58	0.28	0.25	<0.18	<0.18	0.51	0.39	0.30	0.29	0.33	0.56
La_2O_3	6.04	5.63	6.30	3.54	3.88	7.20	6.67	7.09	7.32	7.80	7.69	7.86	7.56	7.09	3.83
Ce ₂ O ₃	13.97	14.02	14.23	11.19	10.90	15.54	14.94	12.84	14.36	14.53	14.37	15.66	14.67	14.47	10.19
*(Nd-Gd) ₂ O ₃	3.97	4.20	3.96	3.82	3.51	4.17	4.13	2.87	3.52	3.37	3.34	3.90	3.55	3.69	3.18
ThO ₂	1.09	1.18	1.19	2.37	2.12	0.98	0.94	0.82	0.97	1.11	1.07	0.83	1.10	1.14	3.11
UO ₂	<0.18	<0.18	<0.18	<0.18	0.21	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18
Total	103.18	103.07	104.26	96.55	93.98	104.05	101.39	92.87	102.54	103.70	103.91	105.02	106.02	104.96	90.98
*calculated															
Normalised on	the basis of e	eight cations													
F	0.000	0.000	0.000	0.370	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.035	0.034	0.031	0.049	0.059	0.072	0.102	0.038	0.070	0.062	0.043	0.064	0.051	0.056	0.068
Al	1.645	1.680	1.690	1.861	1.902	1.478	1.504	1.624	1.596	1.574	1.605	1.600	1.536	1.562	1.827
Si	3.099	3.086	3.080	4.340	4.332	3.100	3.178	3.119	3.082	3.086	3.081	3.087	3.124	3.116	3.687
K	0.000	0.000	0.000	0.066	0.063	0.000	0.000	0.000	0.017	0.000	0.000	0.000	0.000	0.000	0.041
Ca	1.077	1.102	1.077	0.578	0.573	0.979	0.927	1.065	1.020	1.041	1.063	0.989	1.070	1.074	0.880
Ti	0.090	0.065	0.070	0.130	0.119	0.120	0.112	0.057	0.081	0.112	0.087	0.065	0.109	0.095	0.233
Mn	0.000	0.032	0.033	0.000	0.000	0.029	0.029	0.000	0.000	0.000	0.026	0.025	0.000	0.000	0.030
Fe	1.229	1.188	1.187	0.269	0.246	1.297	1.246	1.248	1.280	1.232	1.223	1.244	1.247	1.242	0.513
Y	0.021	0.015	0.019	0.028	0.030	0.014	0.012	0.000	0.000	0.025	0.019	0.014	0.014	0.016	0.030
La	0.204	0.190	0.211	0.124	0.138	0.247	0.233	0.268	0.251	0.266	0.260	0.266	0.251	0.237	0.143
Ce	0.447	0.448	0.451	0.372	0.367	0.505	0.495	0.458	0.465	0.469	0.460	0.501	0.461	0.458	0.360
Nd-Gd	0.130	0.137	0.128	0.130	0.121	0.139	0.140	0.105	0.11/	0.111	0.110	0.128	0.114	0.120	0.115
In	0.023	0.025	0.025	0.051	0.047	0.021	0.020	0.019	0.021	0.023	0.022	0.017	0.022	0.024	0.072
U	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
[REE,Th,U,Y]	0.824	0.814	0.834	0.707	0.707	0.925	0.901	0.850	0.853	0.894	0.872	0.927	0.862	0.854	0.720
[Ca + REE]	1.901	1.916	1.911	1.285	1.280	1.904	1.828	1.915	1.873	1.934	1.935	1.916	1.932	1.929	1.600
Fe ³⁺ (calc)	0.355	0.320	0.310	0.139	0.098	0.522	0.496	0.376	0.404	0.426	0.395	0.400	0.464	0.438	0.173
Fe ²⁺ (calc)	0.874	0.868	0.876	0.131	0.148	0.775	0.751	0.871	0.877	0.806	0.828	0.844	0.784	0.804	0.340
[Ti+Mg+Mn]	0.126	0.130	0.133	0.179	0.178	0.221	0.244	0.095	0.150	0.174	0.157	0.154	0.160	0.152	0.332
Si/Al	1.884	1.837	1.823	2.332	2.277	2.097	2.112	1.921	1.931	1.960	1.919	1.930	2.033	1.995	2.018
Fe ³⁺ /Fe (tot.)	0.289	0.270	0.262	0.515	0.399	0.402	0.398	0.302	0.315	0.346	0.323	0.322	0.372	0.353	0.337

	Average of	composition	or allanit	e crystals															
Label	All. 1	All. 2	All. 3	All. 4	All. 5	All. 6	All. 7	All. 8	All. 9	All. 10	All. 11	All. 12	All. 13	All. 14	All. 15	All. 16	All. 17	All. XX8	All. XX9
F	n.d.	n.d.	0.64	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.59	0.60	n.d.	n.d.	n.d.	n.d.	n.d.
MgO	0.21	0.39	0.56	0.52	0.24	0.22	0.27	0.30	0.25	0.56	0.35	0.83	0.70	0.39	0.26	0.62	0.40	0.38	0.42
Al ₂ O ₃	15.89	13.68	13.05	14.26	16.02	15.83	15.46	14.94	15.77	13.90	14.17	13.43	13.74	14.60	15.31	13.47	14.43	14.48	14.62
SiO ₂	33.87	32.98	32.90	33.26	34.20	34.26	33.91	33.27	33.80	33.78	33.95	33.48	33.62	33.97	33.78	33.41	32.86	34.71	34.37
CaO	11.70	10.19	9.06	9.87	11.35	11.67	10.83	11.00	11.04	10.56	10.71	9.52	10.03	10.89	11.01	9.47	10.27	11.09	11.06
TiO ₂	0.96	1.40	1.58	1.42	1.20	1.04	1.22	1.26	0.85	1.66	1.84	1.89	1.79	1.44	1.11	1.64	1.14	1.61	1.40
MnO	0.38	0.42	0.37	0.34	0.38	0.32	0.34	0.38	0.33	0.39	0.52	n.d.	0.43	0.41	0.40	0.37	0.33	n.d.	n.d.
FeO	14.72	16.19	14.91	15.91	15.17	15.12	15.10	15.58	15.17	16.77	16.35	16.69	16.89	16.31	15.69	16.19	15.84	16.57	16.38
Y_2O_3	0.39	n.d.	0.26	0.40	0.38	0.32	0.28	0.38	0.26	0.35	0.30	0.28	0.33	0.36	0.36	0.26	0.40	0.29	0.33
La ₂ O ₃	5.95	7.49	6.79	6.57	5.80	6.52	7.04	6.40	6.34	6.62	6.06	8.42	7.14	6.75	6.09	6.94	7.55	7.56	7.09
Ce ₂ O ₃	13.25	14.78	14.70	14.36	13.42	13.21	14.08	13.99	14.29	15.17	14.70	15.84	15.41	14.50	14.13	15.24	14.35	14.67	14.47
*(Nd-Gd) ₂ O ₃	3.65	3.65	3.96	3.90	3.81	3.35	3.52	3.79	3.98	4.28	4.32	3.71	4.13	3.87	4.02	4.15	3.40	3.55	3.69
ThO ₂	1.05	1.00	1.14	1.00	1.03	1.06	0.95	1.05	1.11	1.12	1.15	1.25	1.04	1.17	1.13	0.96	0.96	1.10	1.14
Total	102.02	102.17	99.92	101.81	103.00	102.92	103.00	102.34	103.19	105.16	104.42	105.34	105.84	105.26	103.29	102.72	101.93	106.01	104.97
*calculated																			
Normalised or	n the basis o	of eight catio	ons																
F	0.000	0.000	0.202	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.172	0.174	0.000	0.000	0.000	0.000	0.000
Mg	0.029	0.055	0.081	0.072	0.032	0.030	0.037	0.041	0.034	0.077	0.048	0.115	0.096	0.053	0.036	0.087	0.055	0.051	0.056
AĬ	1.716	1.518	1.502	1.577	1.721	1.697	1.677	1.632	1.705	1.498	1.527	1.464	1.485	1.570	1.655	1.491	1.600	1.536	1.562
Si	3.105	3.104	3.216	3.120	3.117	3.115	3.123	3.085	3.101	3.088	3.105	3.096	3.083	3.100	3.098	3.139	3.091	3.124	3.116
Ca	1.149	1.028	0.943	0.992	1.108	1.137	1.068	1.093	1.086	1.034	1.050	0.943	0.986	1.064	1.082	0.953	1.036	1.070	1.074
Ti	0.066	0.099	0.116	0.100	0.082	0.071	0.085	0.088	0.059	0.114	0.126	0.132	0.124	0.099	0.077	0.116	0.080	0.109	0.095
Mn	0.030	0.033	0.030	0.027	0.029	0.024	0.027	0.030	0.026	0.030	0.040	0.000	0.033	0.031	0.031	0.029	0.026	0.000	0.000
Fe	1.129	1.274	1.213	1.248	1.156	1.149	1.164	1.209	1.164	1.282	1.250	1.291	1.295	1.245	1.203	1.271	1.245	1.247	1.242
Y	0.019	0.000	0.014	0.020	0.018	0.016	0.014	0.019	0.013	0.017	0.015	0.014	0.016	0.017	0.018	0.013	0.019	0.014	0.016
La	0.201	0.260	0.244	0.227	0.195	0.219	0.240	0.219	0.215	0.223	0.205	0.287	0.242	0.227	0.206	0.240	0.262	0.251	0.237
Ce	0.424	0.486	0.502	0.470	0.427	0.419	0.453	0.453	0.458	0.484	0.469	0.511	0.493	0.462	0.452	0.500	0.471	0.461	0.458
Nd-Gd	0.120	0.123	0.138	0.130	0.124	0.109	0.116	0.126	0.130	0.140	0.141	0.122	0.135	0.126	0.132	0.139	0.114	0.114	0.120
Th	0.022	0.021	0.025	0.021	0.021	0.022	0.020	0.022	0.023	0.023	0.024	0.026	0.022	0.024	0.023	0.021	0.021	0.022	0.024
[REE,Th,U,Y]	0.786	0.889	0.923	0.869	0.786	0.784	0.843	0.838	0.838	0.887	0.853	0.961	0.908	0.857	0.831	0.913	0.887	0.862	0.854
[Ca + REE]	1.935	1.917	1.867	1.861	1.893	1.921	1.910	1.931	1.924	1.921	1.903	1.904	1.894	1.921	1.913	1.866	1.922	1.932	1.929
Fe ³⁺ (calc)	0.284	0.482	0.498	0.423	0.279	0.303	0.323	0.368	0.295	0.502	0.473	0.536	0.515	0.430	0.345	0.509	0.400	0.464	0.438
Fe ²⁺ (calc)	0.845	0.792	0.715	0.826	0.877	0.846	0.841	0.841	0.869	0.780	0.777	0.754	0.781	0.814	0.858	0.763	0.845	0.784	0.804
[Ti+Mg+Mn]	0.125	0.187	0.228	0.200	0.144	0.126	0.149	0.159	0.119	0.221	0.215	0.246	0.253	0.183	0.143	0.232	0.161	0.160	0.152
Si/Al	1.809	2.045	2.141	1.978	1.812	1.836	1.862	1.890	1.819	2.061	2.033	2.115	2.076	1.975	1.872	2.105	1.932	2.033	1.995
Fe ³⁺ /Fe (tot.)	0.252	0.379	0.411	0.339	0.242	0.264	0.277	0.304	0.254	0.392	0.378	0.416	0.397	0.346	0.287	0.400	0.321	0.372	0.353

APPENDIX IV EMPA analyses from the Yerila gneiss (YER-03)

Allanite-(Ce)

5/5

EMPA analyses from the Yerila gneiss (YER-03)Apatite

atite 1/1

Label	apa01	apa01_2	apa02	apa2_2	apa03	apa3_2	apa3_3	apa3_4	apa04	apa4_2	apa04_3	apa05	apa5_2	apa5_3	apa5_4	apa5_5	apa5_6	apa6	apa07	apa08	apa09	apa10
Al ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
SiO ₂	0.55	0.30	0.37	0.45	n.d.	0.79	0.60	0.37	0.82	2.05	1.75	0.86	0.25	0.45	0.22	0.24	0.28	0.72	1.04	0.41	n.d.	n.d.
P_2O_5	40.19	42.20	40.27	42.15	41.03	41.11	41.76	42.07	39.38	39.19	39.21	38.72	42.92	42.24	42.50	42.06	42.33	40.1	39.26	40.61	40.39	41.03
CaO	50.49	52.41	50.76	52.28	51.75	51.67	52.67	53.07	49.96	49.86	50.29	50.1	52.90	52.12	52.63	52.17	52.16	50.58	49.49	51.25	51.14	50.59
FeO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.05	0.05	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Y_2O_3	0.63	0.49	0.55	0.60	0.2	1.28	0.90	0.75	1.18	2.49	2.56	1.22	0.37	0.71	0.34	0.39	0.42	1.02	1.21	0.5	0.36	0.23
ZrO ₂	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Yb ₂ O ₃	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
HfO ₂	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
PbO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ThO ₂	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.03	n.d.	n.d.	0.07	0.07	n.d.	n.d.	n.d.	0.00	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
UO ₂	n.d.	n.d.	n.d.	0.04	n.d.	n.d.	0.04	0.04	n.d.	0.07	0.05	n.d.	n.d.	n.d.	0.04	n.d.	0.03	n.d.	n.d.	n.d.	n.d.	n.d.
Total	91.86	95.40	91.95	95.51	92.98	94.85	96.01	96.29	91.34	93.73	93.92	90.9	96.43	95.53	95.78	94.91	95.22	92.42	91	92.77	91.89	91.85
Normalis	ed to [P+8	Si] equals t	hree apfi	1																		
Si	0.048	0.025	0.032	0.037	0.000	0.067	0.050	0.031	0.072	0.174	0.150	0.077	0.020	0.038	0.018	0.020	0.023	0.062	0.091	0.035	0.000	0.000
Р	2.952	2.975	2.968	2.963	3.000	2.933	2.950	2.969	2.928	2.826	2.850	2.923	2.980	2.962	2.982	2.980	2.977	2.938	2.909	2.965	3.000	3.000
Ca	4.694	4.675	4.734	4.650	4.789	4.666	4.708	4.740	4.701	4.549	4.625	4.787	4.648	4.627	4.673	4.679	4.642	4.690	4.641	4.735	4.807	4.681
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.000	0.000	0.000	0.000	0.000	0.000
Y	0.029	0.022	0.025	0.026	0.009	0.057	0.040	0.033	0.055	0.113	0.117	0.058	0.016	0.031	0.015	0.018	0.018	0.047	0.056	0.023	0.017	0.011
lh 	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
U	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.001	0.000	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000
Label	apa11	apa12	apa13	apa15	apa16	apa17	apa18	apa19	apa20	apa21	apa22	apa23	apa24	apa25	apa26	apax2	zr45_1	zr60_3	zr60_4	ur13_1	zr45_4	zr46_1
Label Al ₂ O ₃	apa11 n.d.	apa12 n.d.	apa13 n.d.	apa15 n.d.	apa16 n.d.	apa17 n.d.	apa18 n.d.	apa19 n.d.	apa20 n.d.	apa21 n.d.	apa22 n.d.	apa23 n.d.	apa24 n.d.	apa25 n.d.	apa26 n.d.	apax2 n.d.	zr45_1 n.d.	zr60_3 n.d.	zr60_4 n.d.	ur13_1 n.d.	zr45_4 n.d.	zr46_1 n.d.
Label Al ₂ O ₃ SiO ₂	apa11 n.d. 0.59	apa12 n.d. 0.67	apa13 n.d. 1.31	apa15 n.d. n.d.	apa16 n.d. n.d.	apa17 n.d. 1.13	apa18 n.d. 0.39	apa19 n.d. n.d.	apa20 n.d. n.d.	apa21 n.d. 1.43	apa22 n.d. 0.77	apa23 n.d. 0.84	apa24 n.d. 0.75	apa25 n.d. 0.83	apa26 n.d. n.d.	apax2 n.d. 0.51	zr45_1 n.d. 1.49	zr60_3 n.d. 3.01	zr60_4 n.d. 3.21	ur13_1 n.d. 3.60	zr45_4 n.d. 3.13	zr46_1 n.d. 3.86
Label Al ₂ O ₃ SiO ₂ P ₂ O ₅	apa11 n.d. 0.59 40.76	apa12 n.d. 0.67 40.3	apa13 n.d. 1.31 38.84	apa15 n.d. n.d. 40.79	apa16 n.d. n.d. 40.96	apa17 n.d. 1.13 38.71	apa18 n.d. 0.39 40.47	apa19 n.d. n.d. 40.95	apa20 n.d. n.d. 41.43	apa21 n.d. 1.43 36.88	apa22 n.d. 0.77 39.4	apa23 n.d. 0.84 38.84	apa24 n.d. 0.75 38.96	apa25 n.d. 0.83 39.7	apa26 n.d. n.d. 40.98	apax2 n.d. 0.51 42.69	zr45_1 n.d. 1.49 40.70	zr60_3 n.d. 3.01 36.36	zr60_4 n.d. 3.21 40.77	ur13_1 n.d. 3.60 32.27	zr45_4 n.d. 3.13 35.53	zr46_1 n.d. 3.86 33.82
Label Al ₂ O ₃ SiO ₂ P ₂ O ₅ CaO	apa11 n.d. 0.59 40.76 51.01	apa12 n.d. 0.67 40.3 50.57	apa13 n.d. 1.31 38.84 48.9	apa15 n.d. n.d. 40.79 51.22	apa16 n.d. n.d. 40.96 51.03	apa17 n.d. 1.13 38.71 49.4	apa18 n.d. 0.39 40.47 51.51	apa19 n.d. n.d. 40.95 51.43	apa20 n.d. n.d. 41.43 51.85	apa21 n.d. 1.43 36.88 49.16	apa22 n.d. 0.77 39.4 50.19	apa23 n.d. 0.84 38.84 50.66	apa24 n.d. 0.75 38.96 50.57	apa25 n.d. 0.83 39.7 50.67	apa26 n.d. n.d. 40.98 51.17	apax2 n.d. 0.51 42.69 52.15	zr45_1 n.d. 1.49 40.70 50.72	zr60_3 n.d. 3.01 36.36 44.98	zr60_4 n.d. 3.21 40.77 42.54	ur13_1 n.d. 3.60 32.27 50.60	zr45_4 n.d. 3.13 35.53 44.8	zr46_1 n.d. 3.86 33.82 43.67
Label Al ₂ O ₃ SiO ₂ P ₂ O ₅ CaO FeO	apa11 n.d. 0.59 40.76 51.01 n.d.	apa12 n.d. 0.67 40.3 50.57 n.d.	apa13 n.d. 1.31 38.84 48.9 n.d.	apa15 n.d. n.d. 40.79 51.22 n.d.	apa16 n.d. 40.96 51.03 n.d.	apa17 n.d. 1.13 38.71 49.4 n.d.	apa18 n.d. 0.39 40.47 51.51 n.d.	apa19 n.d. n.d. 40.95 51.43 n.d.	apa20 n.d. 41.43 51.85 n.d.	apa21 n.d. 1.43 36.88 49.16 n.d.	apa22 n.d. 0.77 39.4 50.19 n.d.	apa23 n.d. 0.84 38.84 50.66 n.d.	apa24 n.d. 0.75 38.96 50.57 n.d.	apa25 n.d. 0.83 39.7 50.67 n.d.	apa26 n.d. 40.98 51.17 n.d.	apax2 n.d. 0.51 42.69 52.15 n.d.	zr45_1 n.d. 1.49 40.70 50.72 n.d.	zr60_3 n.d. 3.01 36.36 44.98 0.05	zr60_4 n.d. 3.21 40.77 42.54 0.05	ur13_1 n.d. 3.60 32.27 50.60 0.07	zr45_4 n.d. 3.13 35.53 44.8 n.d.	zr46_1 n.d. 3.86 33.82 43.67 n.d.
Label Al ₂ O ₃ SiO ₂ P_2O_5 CaO FeO Y_2O_3	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68	apa15 n.d. n.d. 40.79 51.22 n.d. 0.31	apa16 n.d. 40.96 51.03 n.d. 0.37	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29	apa19 n.d. n.d. 40.95 51.43 n.d. 0.48	apa20 n.d. 41.43 51.85 n.d. 0.27	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09	apa26 n.d. 40.98 51.17 n.d. 0.2	apax2 n.d. 0.51 42.69 52.15 n.d. n.d.	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d.	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d.	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d.	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d.	apa15 n.d. n.d. 40.79 51.22 n.d. 0.31 n.d.	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d.	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d.	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d.	apa19 n.d. n.d. 40.95 51.43 n.d. 0.48 n.d.	apa20 n.d. n.d. 41.43 51.85 n.d. 0.27 n.d.	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d.	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d.	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d.	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d.	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d.	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d.	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d.	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d.	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d.	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d.	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d.	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d.	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d.
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.a.	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.a.	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.a.	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.a.	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.a.	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.a.	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.a.	apa19 n.d. 40.95 51.43 n.d. 0.48 n.d. n.a.	apa20 n.d. n.d. 41.43 51.85 n.d. 0.27 n.d. n.a.	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.a.	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.a.	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.a.	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.a.	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.a.	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.a.	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. 0.12	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. 0.13	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.a.	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.a.
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.a. n.d.	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.a. n.d.	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.a. n.d. n.d.	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.a. n.d.	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.a. n.d. n.a.	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.a. n.d.	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.a. n.d.	apa19 n.d. 40.95 51.43 n.d. 0.48 n.d. n.a. n.d.	apa20 n.d. 41.43 51.85 n.d. 0.27 n.d. n.a. n.d. n.a.	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.a. n.d.	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.a. n.d.	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.a. n.d.	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.a. n.d.	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.a. n.d.	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.a. n.d.	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. 0.12 n.d.	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. 0.13 n.d.	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d.	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d.	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d.	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.a. n.d.	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.a. n.d.
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.a. n.d. n.d. n.d.	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.a. n.d. n.d. n.d.	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.a. n.d. n.d. n.d.	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.a. n.d. n.d. n.d.	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.a. n.d. n.d. n.d.	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.a. n.d. n.d. n.d.	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.a. n.d. n.d. n.d.	apa19 n.d. 40.95 51.43 n.d. 0.48 n.d. n.a. n.d. n.d. n.d.	apa20 n.d. 41.43 51.85 n.d. 0.27 n.d. n.a. n.d. n.d. n.d.	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.a. n.d. n.d. n.d.	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.a. n.d. n.d. n.d.	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.a. n.d. n.d. n.d.	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.a. n.d. n.d. n.d.	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.a. n.d. n.d. n.d.	apa26 n.d. n.d. 40.98 51.17 n.d. 0.2 n.d. n.a. n.d. n.d. n.d.	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. 0.12 n.d. n.d. n.d.	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. 0.13 n.d. n.d. n.d.	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. n.d. n.d.	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. n.d.	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. n.d. n.d.	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.a. n.d. n.d. n.d.	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.a. n.d. n.d. n.d.
$\begin{tabular}{ c c c c } \hline Label \\ \hline Al_2O_3 \\ SiO_2 \\ P_2O_5 \\ CaO \\ FeO \\ Y_2O_3 \\ ZrO_2 \\ Yb_2O_3 \\ ZrO_2 \\ Yb_2O_3 \\ HfO_2 \\ PbO \\ ThO_2 \end{tabular}$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.a. n.d. n.d. n.d. n.d.	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.a. n.d. n.d. n.d. n.d.	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.a. n.d. n.d. n.d. n.d.	apa15 n.d. n.d. 40.79 51.22 n.d. 0.31 n.d. n.a. n.d. n.d. n.d. n.d.	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.a. n.d. n.d. n.d. n.d.	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.a. n.d. n.d. n.d. n.d.	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.a. n.d. n.d. n.d. n.d.	apa19 n.d. n.d. 40.95 51.43 n.d. 0.48 n.d. n.a. n.d. n.d. n.d. n.d.	apa20 n.d. 41.43 51.85 n.d. 0.27 n.d. n.a. n.d. n.d. n.d. n.d.	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.a. n.d. n.d. n.d. n.d.	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.a. n.d. n.d. n.d. n.d.	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.a. n.d. n.d. n.d. n.d.	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. n.d.	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.a. n.d. n.d. n.d. n.d.	apa26 n.d. n.d. 40.98 51.17 n.d. 0.2 n.d. n.a. n.d. n.d. n.d. n.d.	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. 0.12 n.d. n.d. n.d. n.d.	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. 0.21	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.15	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.a. n.d. n.d. n.d. n.d.	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.a. n.d. n.d. n.d. 0.09
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.a. n.d. n.d. n.d. n.d. n.d.	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. n.d.	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.a. n.d. n.d. n.d. n.d. n.d.	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.a. n.d. n.d. n.d. n.d. n.d.	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.a. n.d. n.d. n.d. n.d. n.d.	apa19 n.d. 10.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	apa20 n.d. 1.43 51.85 n.d. 0.27 n.d. n.a. n.d. n.d. n.d. n.d. n.d.	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.d. n.d. n.d. n.d. n.d.	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.a. n.d. n.d. n.d. n.d. n.d.	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. 0.40 n.d. 0.21 0.10	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.34 n.d. 0.15 0.10	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26 0.08	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.a. n.d. n.d. n.d. n.d. n.d.	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.d. n.d. n.d. 0.09 n.d.
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. n.d. 92.93	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. 92.64	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.d. n.d. n.d. n.d. n.d. 90.73	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. n.d. 92.32	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.d. n.d. n.d. n.d. n.d. 92.36	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 90.93	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.d. n.d. n.d. n.d. n.d. 92.66	apa19 n.d. 40.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. n.d. n.d. 92.86	apa20 n.d. 1.43 51.85 n.d. 0.27 n.d. n.d. n.d. n.d. n.d. 93.55	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.d. n.d. n.d. n.d. n.d. 89.59	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. 91.39	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.d. n.d. n.d. n.d. 91.54	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. n.d. 91.32	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 92.29	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.d. n.d. n.d. n.d. n.d. 92.35	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. n.d. 0.21 0.10 88.11	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.15 0.10 88.43	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26 0.08 90.69	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.d. n.d. n.d. n.d. n.d. 85.11	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.d. n.d. n.d. 0.09 n.d. 83.61
$\begin{tabular}{ c c c c } \hline Label \\ \hline Al_2O_3 \\ SiO_2 \\ P_2O_5 \\ CaO \\ FeO \\ Y_2O_3 \\ ZrO_2 \\ Yb_2O_3 \\ HfO_2 \\ PbO \\ ThO_2 \\ UO_2 \\ Total \\ Normalis \end{tabular}$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. 92.93 ed to [P+\$	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. 92.64 Si] equals t	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. n.d. 92.32	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.d. n.d. n.d. n.d. n.d. 92.36	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 90.93	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.a. n.d. n.d. n.d. n.d. 92.66	apa19 n.d. 40.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. n.d. n.d. 92.86	apa20 n.d. 41.43 51.85 n.d. 0.27 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 93.55	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.d. n.d. n.d. n.d. 89.59	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. 91.39	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.d. n.d. n.d. n.d. n.d. 91.54	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. n.d. 91.32	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 92.29	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.d. n.d. n.d. n.d. n.d. 92.35	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. 0.12 n.d. n.d. n.d. n.d. 95.48	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. 0.21 0.10 88.11	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.15 0.10 88.43	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26 0.08 90.69	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.d. n.d. n.d. n.d. n.d. 85.11	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.d. n.d. n.d. 0.09 n.d. 83.61
$\begin{tabular}{ c c c c } \hline Label \\ \hline Al_2O_3 \\ SiO_2 \\ P_2O_5 \\ CaO \\ FeO \\ Y_2O_3 \\ ZrO_2 \\ Yb_2O_3 \\ HfO_2 \\ PbO \\ ThO_2 \\ UO_2 \\ Total \\ Normalis \\ Si \end{tabular}$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. n.d. 92.93 ed to [P+\$ 0.050	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. 92.64 Si] equals t 0.058	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 90.73 hree apfu 0.115	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. 92.32	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.d. n.d. n.d. n.d. 92.36 0.000	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.d. n.d. n.d. n.d. n.d. 90.93 0.100	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.d. n.d. n.d. 92.66 0.034	apa19 n.d. 40.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. n.d. 92.86 0.000	apa20 n.d. 41.43 51.85 n.d. 0.27 n.d. n.d. n.d. n.d. n.d. n.d. 93.55 0.000	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.d. n.d. n.d. n.d. 89.59 0.131	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. 91.39 0.068	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.d. n.d. n.d. n.d. 91.54	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. 91.32	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.d. n.d. n.d. n.d. 92.29 0.072	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.d. n.d. n.d. 92.35 0.000	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 95.48 0.042	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 93.04 0.124	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. n.d. 0.21 0.10 88.11	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.15 0.10 88.43 0.255	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.26 0.08 90.69 0.349	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.d. n.d. n.d. n.d. 85.11 0.283	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.d. n.d. 0.09 n.d. 83.61 0.356
$\begin{tabular}{ c c c c } \hline Label \\ \hline Al_2O_3 \\ SiO_2 \\ P_2O_5 \\ CaO \\ FeO \\ Y_2O_3 \\ ZrO_2 \\ Yb_2O_3 \\ HfO_2 \\ Yb_2O_3 \\ HfO_2 \\ DbO \\ ThO_2 \\ UO_2 \\ Total \\ Normalis \\ Si \\ P \end{tabular}$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. 92.93 ed to [P+5 0.050 2.950	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. 92.64 Si] equals t 0.058 2.942	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 90.73 hree apfu 0.115 2.885	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. 92.32 J 0.000 3.000	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.d. n.d. n.d. 92.36 0.000 3.000	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.d. n.d. n.d. n.d. 90.93 0.100 2.900	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.d. n.d. n.d. 92.66 0.034 2.966	apa19 n.d. 40.95 51.43 n.d. 0.48 n.d. n.a. n.d. n.d. 92.86 0.000 3.000	apa20 n.d. 41.43 51.85 n.d. 0.27 n.d. n.d. n.d. n.d. n.d. n.d. 93.55 0.000 3.000	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.a. n.d. n.d. n.d. 89.59 0.131 2.869	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. 91.39 0.068 2.932	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.a. n.d. n.d. n.d. n.d. 91.54 0.075 2.925	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. 91.32 0.067 2.933	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.d. n.d. n.d. n.d. 92.29 0.072 2.928	apa26 n.d. 40.98 51.17 n.d. 0.22 n.d. n.d. n.d. n.d. 92.35 0.000 3.000	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. 95.48 0.042 2.958	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. 93.04 0.124 2.876	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. 0.40 n.d. 0.40 88.11 0.267 2.733	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.15 0.10 88.43 0.255 2.745	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.26 0.08 90.69 0.349 2.651	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.d. n.d. n.d. n.d. 85.11 0.283 2.717	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.d. n.d. n.d. 0.09 n.d. 83.61 0.356 2.644
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. 92.93 ed to [P+5 0.050 2.950 4.672	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. 92.64 Si] equals t 0.058 2.942 4.672	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.a. n.d. n.d. n.d. n.d. 90.73 90.73 91.75 2.885 4.597	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.d. n.d. n.d. 92.32 0.000 3.000 4.768	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.a. n.d. n.d. n.d. n.d. n.d. 0.37 0.000 3.000 4.730	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.a. n.d. n.d. n.d. 90.93 0.100 2.900 4.684	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.a. n.d. n.d. 92.66 0.034 2.966 4.778	apa19 n.d. 40.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. 92.86 0.000 3.000 4.768	apa20 n.d. 41.43 51.85 n.d. 0.27 n.d. n.a. n.d. n.d. n.d. n.d. 93.55 0.000 3.000 4.752	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.a. n.d. n.d. n.d. 89.59 0.131 2.869 4.839	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. 91.39 0.068 2.932 4.727	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.a. n.d. n.d. n.d. n.d. 91.54 0.075 2.925 4.829	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. 91.32 0.067 2.933 4.819	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.d. n.d. n.d. n.d. 92.29 0.072 2.928 4.729	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.a. n.d. n.d. 92.35 0.000 3.000 4.741	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. 95.48 0.042 2.958 4.573	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. 93.04 0.124 2.876 4.536	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. 0.21 0.10 88.11 0.267 2.733 4.279	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.34 n.d. 0.15 0.10 88.43 0.255 2.745 3.625	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26 0.08 90.69 0.349 2.651 5.261	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.a. n.d. n.d. n.d. 85.11 0.283 2.717 4.336	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.a. n.d. n.d. 0.09 n.d. 83.61 0.356 2.644 4.320
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. n.d. n.d. 92.93 ed to [P+\$ 0.050 4.672 0.000	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. n.d. Si] equals t 0.058 2.942 4.672 0.000	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.d.	apa15 n.d. 40.79 51.22 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. 92.32 J 0.000 3.000 4.768 0.000	apa16 n.d. 40.96 51.03 n.d. 0.37 n.d. n.d. n.d. n.d. n.d. n.d. 92.36 0.000 3.000 4.730 0.000	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.d. n.d. n.d. n.d. n.d. 90.93 0.100 2.900 4.684 0.000	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.d. n.d. n.d. n.d. 92.66 0.034 2.966 4.778 0.000	apa19 n.d. 1.40.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. n.d. 92.86 0.000 3.000 4.768 0.000	apa20 n.d. 41.43 51.85 n.d. 0.27 n.d. n.a. n.d. n.d. n.d. n.d. 93.55 0.000 3.000 4.752 0.000	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.a. n.d. n.d. n.d. 89.59 0.131 2.869 4.839 0.000	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. 91.39 0.068 2.932 4.727 0.000	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.a. n.d. n.d. n.d. n.d. 91.54 0.075 2.925 4.829 0.000	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. 91.32 0.067 2.933 4.819 0.000	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.a. n.d. n.d. n.d. 92.29 0.072 2.928 4.729 0.000	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.a. n.d. n.d. 92.35 0.000 3.000 4.741 0.000	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 95.48 0.042 2.958 4.573 0.000	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 93.04 0.124 2.876 4.536 0.000	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. 0.21 0.10 88.11 0.267 2.733 4.279 0.004	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.15 0.10 88.43 0.255 2.745 3.625 0.003	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26 0.08 90.69 0.349 2.651 5.261 0.006	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.d. n.d. n.d. n.d. 85.11 0.283 2.717 4.336 0.000	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. 1.7 n.d. 0.09 n.d. 83.61 0.356 2.644 4.320 0.000
Label Al_2O_3 SiO_2 P_2O_5 CaO FeO Y_2O_3 ZrO_2 Yb_2O_3 HfO_2 PbO ThO_2 UO_2 Total Normalis Si P Ca Fe Y	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. n.d. n.d. 92.93 ed to [P+\$ 0.050 2.950 4.672 0.000 0.026	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. n.d. 92.64 Si] equals t 0.058 2.942 4.672 0.000 0.050	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.55 4.597 0.000 0.078	apa15 n.d. 1.02 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.32 0.000 3.000 4.768 0.000 0.014	apa16 n.d. 40.96 51.03 n.d. 0.377 n.d. n.d. n.d. n.d. n.d. n.d. 92.36 0.000 3.000 4.730 0.0017	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 90.93 0.100 2.900 4.684 0.000 0.080	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.d. n.d. n.d. n.d. n.d. 92.66 0.034 2.966 4.778 0.000 0.013	apa19 n.d. 1.40.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. n.d. 92.86 0.000 3.000 4.768 0.000 0.022	apa20 n.d. n.d. 41.43 51.85 n.d. 0.27 n.d. n.d. n.d. n.d. n.d. n.d. 93.55 0.000 3.000 4.752 0.000 0.012	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 89.59 0.131 2.869 4.839 0.000 0.104	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 91.39 0.068 2.932 4.727 0.000 0.048	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.d. n.d. n.d. n.d. n.d. 91.54 0.075 2.925 4.829 0.000 0.057	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. 91.32 0.067 2.933 4.819 0.000 0.049	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.a. n.d. n.d. n.d. n.d. 92.29 0.072 2.928 4.729 0.000 0.051	apa26 n.d. 40.98 51.17 n.d. 0.2 n.d. n.a. n.d. n.d. n.d. 92.35 0.000 3.000 4.741 0.000 0.009	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 0.40 0.21 0.10 88.11 0.267 2.733 4.279 0.004 0.142	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.15 0.10 88.43 0.255 2.745 3.625 0.003 0.054	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26 0.08 90.69 0.349 2.651 5.261 0.006 0.175	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.d. n.d. n.d. n.d. n.d. 85.11 0.283 2.717 4.336 0.000 0.079	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.d. n.d. n.d. 0.09 n.d. 83.61 0.356 2.644 4.320 0.000 0.107
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 92.93 ed to [P+5 0.050 2.950 4.672 0.000 0.026 0.000	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. n.d. 92.64 Si] equals t 0.058 2.942 4.672 0.000 0.050 0.000	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.58 4.597 0.000 0.078 0.000	apa15 n.d. 1.02 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.32 0.000 3.000 4.768 0.000 0.014 0.001	apa16 n.d. 10.3 n.d. 0.37 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.000 3.000 4.730 0.000 0.017 0.000	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.d. n.d. n.d. n.d. 92.66 0.034 2.966 4.778 0.000 0.013 0.000	apa19 n.d. 1.40.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. n.d. n.d. 92.86 0.000 3.000 4.768 0.000 0.022 0.000	apa20 n.d. n.d. 41.43 51.85 n.d. 0.27 n.d. n.d. n.d. n.d. n.d. n.d. 93.55 0.000 3.000 4.752 0.000 0.012 0.000	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 89.59 0.131 2.869 4.839 0.000 0.104 0.000	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. 91.39 0.068 2.932 4.727 0.000 0.048 0.000	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.d. n.d. n.d. n.d. n.d. 91.54 0.075 2.925 4.829 0.000 0.057 0.000	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. 91.32 0.067 2.933 4.819 0.000 0.049 0.000	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.d. n.d. n.d. n.d. n.d. 92.29 0.072 2.928 4.729 0.000 0.051 0.000	apa26 n.d. n.d. 40.98 51.17 n.d. 0.2 n.d. n.d. n.d. n.d. n.d. n.d. 92.35 0.000 3.000 4.741 0.009 0.000 0.009 0.000	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. 0.21 0.10 88.11 0.267 2.733 4.279 0.004 0.142 0.004	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. 0.15 0.10 88.43 0.255 2.745 3.625 0.003 0.054 0.003	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26 0.08 90.69 0.349 2.651 5.261 0.006 0.175 0.006	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.d. n.d. n.d. n.d. n.d. 85.11 0.283 2.717 4.336 0.000 0.079 0.000	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.d. n.d. 0.09 n.d. 83.61 0.356 2.644 4.320 0.000 0.107 0.002
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	apa11 n.d. 0.59 40.76 51.01 n.d. 0.57 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 92.93 ed to [P+8 0.050 2.950 4.672 0.000 0.026 0.000 0.000	apa12 n.d. 0.67 40.3 50.57 n.d. 1.1 n.d. n.d. n.d. n.d. n.d. n.d. 92.64 Si] equals t 0.058 2.942 4.672 0.000 0.050 0.000 0.000	apa13 n.d. 1.31 38.84 48.9 n.d. 1.68 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.58 4.597 0.000 0.078 0.000 0.000	apa15 n.d. 1.02 n.d. 1.22 n.d. 0.31 n.d. n.d. n.d. n.d. n.d. n.d. 1.22 0.000 3.000 4.768 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.000	apa16 n.d. 10.3 n.d. 10.37 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.000 3.000 4.730 0.000 0.017 0.000 0.000	apa17 n.d. 1.13 38.71 49.4 n.d. 1.69 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 90.93 0.100 2.900 4.684 0.000 0.080 0.000	apa18 n.d. 0.39 40.47 51.51 n.d. 0.29 n.d. n.d. n.d. n.d. n.d. 92.66 0.034 2.966 4.778 0.000 0.013 0.000 0.000	apa19 n.d. 1.40.95 51.43 n.d. 0.48 n.d. n.d. n.d. n.d. n.d. n.d. 92.86 0.000 3.000 4.768 0.000 0.022 0.000 0.000	apa20 n.d. 1.43 51.85 n.d. 0.27 n.d. n.d. n.d. n.d. n.d. n.d. 0.3000 4.752 0.000 0.012 0.000 0.000	apa21 n.d. 1.43 36.88 49.16 n.d. 2.12 n.d. n.d. n.d. n.d. n.d. n.d. 89.59 0.131 2.869 4.839 0.000 0.104 0.000 0.000	apa22 n.d. 0.77 39.4 50.19 n.d. 1.03 n.d. n.d. n.d. n.d. n.d. n.d. 91.39 0.068 2.932 4.727 0.000 0.048 0.000 0.000	apa23 n.d. 0.84 38.84 50.66 n.d. 1.2 n.d. n.d. n.d. n.d. n.d. n.d. 91.54 0.075 2.925 4.829 0.000 0.057 0.000 0.000	apa24 n.d. 0.75 38.96 50.57 n.d. 1.04 n.d. n.d. n.d. n.d. n.d. 91.32 0.067 2.933 4.819 0.000 0.049 0.000 0.000	apa25 n.d. 0.83 39.7 50.67 n.d. 1.09 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 92.29 0.072 2.928 4.729 0.000 0.051 0.000 0.000	apa26 n.d. n.d. 40.98 51.17 n.d. 0.2 n.d. n.d. n.d. n.d. n.d. n.d. 92.35 0.000 3.000 4.741 0.000 0.009 0.000 0.000	apax2 n.d. 0.51 42.69 52.15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 95.48 0.042 2.958 4.573 0.000 0.000 0.000 0.000	zr45_1 n.d. 1.49 40.70 50.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	zr60_3 n.d. 3.01 36.36 44.98 0.05 3.00 n.d. 0.40 n.d. 0.21 0.10 88.11 0.267 2.733 4.279 0.004 0.142 0.004 0.002	zr60_4 n.d. 3.21 40.77 42.54 0.05 1.27 n.d. 0.34 n.d. n.d. 0.15 0.10 88.43 0.255 2.745 3.625 0.003 0.054 0.003 0.002	ur13_1 n.d. 3.60 32.27 50.60 0.07 3.39 n.d. 0.42 n.d. 0.42 n.d. 0.26 0.08 90.69 0.349 2.651 5.261 5.261 0.006 0.175 0.006 0.175	zr45_4 n.d. 3.13 35.53 44.8 n.d. 1.65 n.d. n.a. n.d. n.d. n.d. n.d. 85.11 0.283 2.717 4.336 0.000 0.079 0.000 0.000	zr46_1 n.d. 3.86 33.82 43.67 n.d. 2.17 n.d. n.d. 0.09 n.d. 83.61 0.356 2.644 4.320 0.000 0.107 0.002 0.000

EMPA analyses from the Yerila gneiss (YER-03)

Label	X_test	tit_test	tit80_2	tit80_3	tit79_1	tit79_2	tit78_1	tit78_2	tit78_3	tit77_1	tit77_2	tit76	tit75_1	tit75_2	tit74_1	tit74_3	tit73_1	tit73_2
F	1.94	1.44	2.25	2.25	2.33	2.10	1.99	2.16	2.31	1.93	2.32	1.93	2.01	2.08	2.66	2.35	2.46	2.66
Al ₂ O ₃	4.71	5.43	6.09	6.07	5.89	5.97	5.71	5.66	5.74	5.60	5.99	5.94	6.07	5.41	5.69	5.66	5.68	5.71
SiO ₂	31.34	30.45	31.60	31.53	30.81	30.98	31.55	31.61	31.73	31.27	31.04	30.65	31.13	30.70	31.21	30.87	30.63	31.16
CaO	26.90	25.18	27.60	27.40	25.23	26.20	27.15	27.22	28.00	27.41	26.03	25.29	25.76	25.65	26.16	26.14	25.97	26.05
TiO ₂	30.27	28.11	29.20	29.87	27.50	29.09	30.01	30.30	29.88	29.37	28.34	27.81	28.54	27.87	28.25	28.00	27.93	29.21
Fe ₂ O ₃	1.53	2.24	1.36	1.17	2.10	1.53	1.38	1.41	1.24	1.26	2.03	2.00	2.05	2.12	1.97	2.12	1.77	1.96
Y_2O_3	0.92	2.38	0.48	1.51	2.54	2.02	0.92	0.89	0.79	1.08	1.96	2.47	2.06	1.98	1.97	1.92	2.14	1.99
Ce ₂ O ₃	n.d.	0.78	n.d.	n.d.	0.58	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.59	n.d.	0.51	n.d.	0.53
Yb ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	97.61	96.01	98.57	99.79	96.97	97.89	98.72	99.26	99.70	97.93	97.70	96.09	97.62	96.40	97.91	97.57	96.59	99.27
Normalised to three cations																		
F	0.204	0.155	0.233	0.232	0.249	0.220	0.207	0.223	0.237	0.202	0.244	0.206	0.211	0.223	0.281	0.249	0.263	0.278
Al	0.184	0.217	0.235	0.233	0.234	0.234	0.220	0.218	0.220	0.218	0.235	0.237	0.238	0.216	0.224	0.223	0.226	0.222
Si	1.042	1.034	1.034	1.025	1.041	1.029	1.033	1.032	1.030	1.032	1.034	1.037	1.036	1.040	1.042	1.034	1.035	1.031
Ca	0.958	0.916	0.968	0.954	0.913	0.932	0.953	0.952	0.974	0.968	0.929	0.917	0.918	0.931	0.936	0.938	0.940	0.924
Ti	0.757	0.717	0.718	0.730	0.699	0.726	0.739	0.744	0.729	0.729	0.710	0.708	0.714	0.710	0.709	0.705	0.710	0.727
Fe	0.043	0.064	0.037	0.032	0.059	0.043	0.038	0.038	0.034	0.035	0.057	0.057	0.057	0.060	0.055	0.059	0.050	0.054
Y	0.016	0.043	0.008	0.026	0.046	0.036	0.016	0.015	0.014	0.019	0.035	0.045	0.036	0.036	0.035	0.034	0.039	0.035
Ce	0.000	0.010	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.000	0.006	0.000	0.006
Yb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
[Ca+Y+REE]	0.974	0.968	0.976	0.980	0.966	0.968	0.969	0.968	0.987	0.987	0.964	0.961	0.955	0.974	0.970	0.978	0.979	0.965
Fe ³⁺	0.043	0.064	0.037	0.032	0.059	0.043	0.038	0.038	0.034	0.035	0.057	0.057	0.057	0.060	0.055	0.059	0.050	0.054
[Ti+Al+Fe ³⁺]	0.941	0.934	0.953	0.963	0.933	0.960	0.960	0.962	0.949	0.946	0.945	0.945	0.952	0.926	0.933	0.929	0.936	0.949

1/3
Label	tit72_1	tit72_2	tit72_vei	tit72_in	tit72_3	tit71_1	tit71_2	tit70_1	tit70_2	tit69_1	tit69_2	tit68_1	tit68_2	tit51	tit51_2	tit51_3	tit53	tit54
F	2.51	3.04	2.42	2.83	2.33	2.30	2.35	1.96	2.10	2.33	2.23	1.96	1.90	2.40	2.62	2.41	2.57	2.52
Al ₂ O ₃	5.61	5.65	5.69	5.79	5.64	5.44	5.65	5.90	5.94	5.76	5.74	5.93	5.97	5.78	5.74	5.97	5.57	5.87
SiO ₂	31.02	31.13	31.05	31.17	30.73	31.39	30.70	31.10	31.17	31.64	31.12	31.47	31.39	31.17	31.17	31.48	30.70	31.28
CaO	25.69	26.18	26.39	26.17	25.73	25.91	25.73	25.94	26.27	25.98	26.47	25.92	26.60	26.56	26.42	26.42	26.37	26.30
TiO ₂	28.34	28.88	28.17	29.03	28.52	27.62	28.27	27.82	29.23	28.56	28.78	28.29	28.36	28.77	28.87	29.43	29.50	28.98
Fe ₂ O ₃	2.08	2.01	1.94	1.85	2.24	2.07	2.10	1.87	1.69	1.97	1.94	2.05	1.92	1.78	1.93	1.70	1.91	1.83
Y_2O_3	2.28	2.11	2.26	2.30	2.12	1.88	2.01	2.27	2.23	2.09	2.00	1.99	1.99	2.12	2.15	2.03	2.20	2.17
Ce ₂ O ₃	0.66	0.46	0.66	0.60	0.52	0.54	0.60	n.d.	n.d.	n.d.	0.47	n.d.	0.60	n.d.	n.d.	n.d.	0.45	n.d.
Yb ₂ O ₃	n.d.	n.d.	0.55	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	98.18	99.47	99.13	99.74	97.82	97.14	97.41	96.86	98.65	98.32	98.74	97.63	98.72	98.58	98.89	99.44	99.27	98.94
Normalised to	three cation	าร																
F	0.265	0.319	0.254	0.296	0.246	0.244	0.250	0.208	0.220	0.244	0.233	0.206	0.198	0.251	0.274	0.250	0.269	0.263
Al	0.221	0.221	0.223	0.225	0.223	0.215	0.224	0.233	0.231	0.225	0.224	0.232	0.232	0.225	0.224	0.231	0.217	0.228
Si	1.038	1.031	1.030	1.029	1.029	1.055	1.032	1.042	1.029	1.049	1.029	1.046	1.033	1.031	1.031	1.033	1.016	1.033
Ca	0.921	0.930	0.938	0.926	0.923	0.933	0.927	0.931	0.929	0.923	0.938	0.923	0.938	0.941	0.936	0.929	0.935	0.931
Ti	0.713	0.720	0.703	0.721	0.718	0.698	0.715	0.701	0.725	0.712	0.715	0.707	0.702	0.716	0.718	0.726	0.734	0.720
Fe	0.058	0.056	0.054	0.051	0.063	0.058	0.059	0.052	0.047	0.054	0.054	0.057	0.053	0.049	0.053	0.047	0.053	0.050
Υ	0.041	0.037	0.040	0.040	0.038	0.034	0.036	0.040	0.039	0.037	0.035	0.035	0.035	0.037	0.038	0.035	0.039	0.038
Ce	0.008	0.006	0.008	0.007	0.006	0.007	0.007	0.000	0.000	0.000	0.006	0.000	0.007	0.000	0.000	0.000	0.005	0.000
Yb	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
[Ca+Y+BEE]	0 970	0 973	0 991	0 973	0 967	0 973	0 970	0 972	0 968	0.960	0 978	0 958	0 980	0 979	0 974	0 964	0 979	0 969
Fe ³⁺	0.058	0.056	0.054	0.051	0.063	0.058	0.059	0.052	0.047	0.054	0.054	0.057	0.053	0.049	0.053	0.047	0.053	0.050
Ti+Al+Fe ³⁺	0.934	0.940	0.925	0.946	0.941	0.913	0.939	0.934	0.956	0.937	0.939	0.939	0.933	0.941	0.942	0.957	0.951	0.948
1	,	,	,	,	,	,	,		,	,			,				,	

Y-rich titanite

Label	tit55	tit56	tit57	tit57_2	tit58	tit61	tit62	tit64	tit65	tit67	tit37	tit38	tit40	tit43	tit45	tit48	tit49	tit50
F	2.45	1.80	2.61	2.31	2.92	2.63	2.33	2.47	1.85	1.95	2.78	3.00	3.09	2.47	2.30	2.43	2.73	3.20
Al ₂ O ₃	6.35	5.79	5.85	5.48	5.93	5.61	6.21	5.76	5.95	5.93	6.01	6.21	5.94	6.15	5.79	5.99	5.78	6.16
SiO ₂	31.50	31.43	31.21	31.38	31.46	31.07	31.46	31.32	31.75	31.74	31.71	31.95	31.45	31.47	31.50	31.78	31.72	31.43
CaO	26.66	26.28	26.52	26.64	26.90	25.85	26.29	26.69	27.26	27.67	27.77	27.86	26.49	26.62	26.22	27.06	26.30	26.05
TiO ₂	28.50	30.50	29.81	28.47	29.35	29.27	28.20	28.62	29.46	30.10	30.13	29.88	28.28	29.49	28.13	28.31	28.84	29.18
Fe ₂ O ₃	1.68	1.83	1.92	1.85	1.64	2.16	2.02	1.89	1.51	1.46	1.40	1.27	2.21	1.63	2.07	2.02	2.03	1.92
Y_2O_3	2.07	1.87	2.17	1.89	1.97	2.56	2.14	2.03	1.80	1.59	1.47	1.49	2.11	2.15	2.11	2.11	2.34	2.47
Ce ₂ O ₃	n.d.	0.48	0.47	n.d.	n.d.	0.53	n.d.	0.51	n.d.	n.d.	n.d.	n.d.	0.63	n.d.	n.d.	n.d.	0.57	n.d.
Yb ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.47	n.d.
Total	99.20	99.96	100.55	98.02	100.17	99.68	98.66	99.28	99.58	100.45	101.28	101.66	100.21	99.98	98.11	99.70	100.78	100.41
Normalised to	o three cation	ns																
F	0.254	0.186	0.270	0.243	0.302	0.275	0.243	0.258	0.190	0.199	0.284	0.305	0.321	0.255	0.242	0.251	0.283	0.332
Al	0.245	0.222	0.225	0.214	0.229	0.219	0.241	0.224	0.228	0.225	0.228	0.235	0.230	0.236	0.226	0.230	0.223	0.238
Si	1.033	1.024	1.019	1.042	1.029	1.027	1.037	1.032	1.031	1.023	1.021	1.026	1.033	1.027	1.045	1.037	1.038	1.031
Ca	0.937	0.918	0.928	0.948	0.942	0.915	0.929	0.942	0.949	0.955	0.958	0.958	0.933	0.931	0.932	0.946	0.922	0.915
Ti	0.703	0.748	0.732	0.711	0.722	0.728	0.699	0.709	0.720	0.730	0.730	0.721	0.699	0.724	0.702	0.695	0.710	0.720
Fe	0.046	0.050	0.052	0.051	0.045	0.060	0.056	0.052	0.041	0.039	0.038	0.034	0.061	0.044	0.057	0.055	0.055	0.053
Y	0.036	0.032	0.038	0.033	0.034	0.045	0.037	0.036	0.031	0.027	0.025	0.025	0.037	0.037	0.037	0.037	0.041	0.043
Ce	0.000	0.006	0.006	0.000	0.000	0.006	0.000	0.006	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.007	0.000
Yb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.000
[Ca+Y+REE]	0.973	0.956	0.971	0.981	0.976	0.967	0.966	0.984	0.980	0.983	0.983	0.984	0.977	0.968	0.969	0.983	0.974	0.959
Fe ³⁺	0.046	0.050	0.052	0.051	0.045	0.060	0.056	0.052	0.041	0.039	0.038	0.034	0.061	0.044	0.057	0.055	0.055	0.053
[Ti+Al+Fe ³⁺]	0.948	0.970	0.957	0.925	0.950	0.946	0.941	0.933	0.948	0.955	0.958	0.956	0.929	0.960	0.928	0.925	0.932	0.958

3/3

APPENDIX IV

EMPA (XRF) analyses from the Yerila gneiss (YER-03)Alkaline amphibole1/1

Label	XRF	Hs25	Hs17_2	Hs1_4	Hs18	Hs1_5	ap_test	Hs16_3	Hs23	Hs20	Hs24	Hs1_1	Hs1_3	Hs21	Hs17	Hs22	Hs27	Hs19	Hs16_4	Hs16_5	Hs26	Hs1_6
F	n.d.	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	<0.60	0.722	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	0.831	<0.60
Na ₂ O	1.12	1.20	1.24	1.1/	1.19	1.30	1.25	1.12	1.19	1.30	1.27	1.28	0.93	1.24	1.28	1.16	1.25	1.20	1.24	1.19	1.25	1.14
MgO	2.36	2.31	2.15	2.26	2.25	2.21	2.57	2.21	2.24	1.97	2.27	2.29	2.40	2.15	2.09	1.99	2.17	2.34	2.29	2.28	2.52	2.44
Al ₂ O ₃	12.64	12.13	12.50	12.55	12.60	12.57	12.82	12.24	12.30	13.28	12.59	12.19	12.50	12.30	12.95	12.58	12.57	12.61	12.23	12.42	12.72	12.36
	38.34	39.31	38.76	38.86	39.45	39.20	39.47	39.00	39.51	37.95	39.12	38.82	39.33	39.04	38.70	38.84	39.24	39.47	39.05	39.13	39.30	38.96
K ₂ O	2.28	2.09	2.19	2.25	2.15	2.31	2.20	2.22	2.10	2.39	2.18	2.27	2.06	2.15	2.37	2.25	2.20	2.14	2.19	2.07	2.24	2.11
CaO	10.55	11.27	11.10	11.14	10.98	11.16	10.98	10.85	11.20	11.16	10.98	10.90	10.98	10.83	11.02	10.78	11.02	10.97	10.91	10.81	10.97	10.79
	1.25	0.81	0.81	0.75	0.73	0.69	0.73	0.66	0.65	0.65	0.64	0.64	0.58	0.57	0.57	0.57	0.56	0.56	0.55	0.55	0.53	0.51
MnO	0.43	0.50	0.39	0.42	0.48	0.37	0.52	0.67	0.43	0.57	0.48	0.49	0.50	0.50	0.36	0.67	0.54	0.48	0.45	0.52	0.49	0.52
FeO	*18.00	27.54	28.27	27.69	27.98	27.94	28.09	27.66	27.73	28.34	28.69	28.12	27.63	27.65	27.96	28.29	27.82	28.13	27.56	27.86	27.26	27.86
Fe ₂ O ₃	*10.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LOI (H ₂ O)	1.97	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
lotal	99.08	97.16	97.41	97.09	97.81	97.75	98.63	96.63	97.35	97.61	98.22	97.00	96.91	96.43	97.96	97.13	97.37	97.90	96.47	96.83	98.04	96.69
N			N		- 3+	-+ 0.00		* • • • • • • • • • •														
Normalised	1 10 23 0XYG	lens	Normaliz		-e ralio	al 2.00		weasu	ed FeO	by specir	opnotome	etry										
п Е	2.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0 411	-
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.359	0.000	0.000	0.000	0.000	0.000	0.411	0.000
Na	0.344	0.365	0.378	0.357	0.359	0.394	0.375	0.343	0.301	0.397	0.384	0.392	0.283	0.380	0.390	0.354	0.380	0.362	0.380	0.303	0.379	0.349
NIG	0.000	0.540	0.503	0.550	0.523	0.515	0.092	0.520	0.522	0.462	0.527	0.539	0.010	0.507	0.409	0.407	0.507	0.043	0.559	0.555	0.000	0.574
AI	2.302	2.243	2.314	2.320	2.314	2.315	2.330	2.279	2.208	2.403	2.312	2.207	2.312	2.292	2.398	2.335	2.321	2.314	2.2/8	2.304	2.345	2.298
51 V	0.000	0.100	0.007	0.110	0.140	0.124	0.103	0.100	0.102	0.490	0.095	0.120	0.172	0.173	0.079	0.110	0.140	0.140	0.172	0.109	0.147	0.140
K Ca	1 702	1 905	1 969	1 077	1 022	1 060	1 010	1 926	1 070	1 000	1 022	1 0/0	1 9/6	1 025	1 955	1 010	1 950	1 020	1 0/0	1 000	1 0 2 0	1 004
Ua Ti	0.140	0.006	0.006	0.000	0.000	0.001	0.095	0.079	0.076	0.077	0.075	0.076	0.069	0.069	0.067	0.069	0.066	0.066	0.065	0.065	0.062	0.060
Mn	0.149	0.090	0.090	0.009	0.000	0.001	0.000	0.070	0.070	0.077	0.075	0.070	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.002	0.000
Fo	2 500	2 614	2 712	2 6 / 1	2.646	2 650	2 622	0.030	2 620	2 720	0.000	2 710	2.626	2 656	2 672	0.003	2.645	2 662	2 642	0.003	2 566	2.675
Γe Σ options	15 204	15 405	15 //0	15 /26	15 207	15 456	15 442	15 409	15 202	15 527	15 460	15 472	15 247	15 411	15 475	15 /20	15 400	15 414	15 407	15 402	15 427	15 / 10
2 Calions	15.594	15.405	15.449	15.450	15.597	15.450	15.445	15.400	10.090	15.557	15.400	15.472	15.547	15.411	15.475	15.429	13.420	15.414	15.427	15.402	15.457	15.419
[⊤] Si	6.080	6,168	6.087	6.110	6.146	6.124	6.103	6.160	6.182	5.972	6.095	6.125	6.172	6,173	6.079	6.118	6.148	6.146	6.172	6.159	6.147	6.146
TAI	1.920	1.832	1.913	1.890	1.854	1.876	1.897	1.840	1.818	2.028	1.905	1.875	1.828	1.827	1.921	1.882	1.852	1.854	1.828	1.841	1.853	1.854
^C AI	0.443	0.411	0.401	0.436	0.460	0.439	0.439	0.439	0.450	0.434	0.407	0.391	0.484	0.465	0.477	0.453	0.469	0.461	0.450	0.463	0.492	0.443
°Ti	0.149	0.096	0.096	0.089	0.086	0.081	0.085	0.078	0.076	0.077	0.075	0.076	0.068	0.068	0.067	0.068	0.066	0.066	0.065	0.065	0.062	0.060
^C Fe ³⁺	1,196	1.204	1.238	1.214	1.215	1.217	1.211	1.218	1.209	1.243	1.246	1.237	1.209	1.219	1.224	1.242	1.215	1.221	1.214	1.222	1.188	1.225
^C Ma	0.558	0.540	0.503	0.530	0.523	0.515	0.592	0.520	0.522	0.462	0.527	0.539	0.561	0.507	0.489	0.467	0.507	0.543	0.539	0.535	0.588	0.574
^C Fe ²⁺	2,393	2,409	2.475	2.427	2,430	2,434	2.421	2,436	2,419	2,486	2,492	2,473	2.417	2,437	2,449	2.484	2,430	2.442	2,429	2,445	2.377	2,450
Total C	4.738	4.660	4,713	4.695	4.714	4.685	4.748	4.692	4.678	4.703	4.747	4.716	4.739	4.695	4.707	4.714	4.687	4.733	4.698	4.731	4.707	4.753
^B Ca	1,793	1.895	1.868	1.877	1.833	1.868	1.819	1.836	1.878	1.882	1.833	1.842	1.846	1.835	1.855	1.819	1.850	1.830	1.848	1.823	1.838	1.824
^B Na	0.207	0.105	0.132	0.123	0.167	0.132	0.181	0.164	0.122	0.118	0.167	0.158	0.154	0.165	0.145	0.181	0.150	0.170	0.152	0.177	0.162	0.176
^A Na	0.137	0.260	0.245	0.233	0.192	0.262	0.194	0.179	0.239	0.278	0.216	0.234	0.129	0.215	0.245	0.173	0.230	0.193	0.228	0.186	0.217	0.172
^A K	0.461	0.418	0.439	0.451	0.427	0.460	0.434	0.447	0.419	0.480	0.433	0.457	0.412	0.434	0.475	0.452	0.440	0.425	0.442	0.416	0.447	0.425
Total A	0.598	0.678	0.684	0.685	0.620	0.722	0.628	0.627	0.658	0.758	0.650	0.691	0.541	0.648	0.720	0.626	0.669	0.618	0.669	0.602	0.664	0.597

APPENDIX IV

EMPA analyses from the Yerila gneiss (YER-03)

1/1 Biotite & ilmenite

Biotite											Ilmenit	е										
Label	bio_t2	tit75_4	bio_1	bio_2	bio_3	bio_4	xx18_4	xx18_5	bio11	bio12	Label	al4 2	al4 2	al4 8	al9 5	ala1 co	tit80 1	xx11 3	xx11 4	xx12 2	xx14 2	xx19
F	0.69	0.74	0.79	0.60	0.62	0.66	<0.55	<0.55	0.98	0.90	FeO _{TOT}	49.70	53.02	49.07	49.90	50.21	51.99	50.60	51.13	50.11	49.97	50.3
AI_2O_3	14.49	14.86	14.11	14.25	14.54	14.37	14.72	15.47	13.92	13.81	MnO	1.52	1.58	5.19	2.71	6.39	4.81	3.93	4.01	4.48	3.50	3.9
SiO ₂	35.24	35.62	35.56	36.03	35.25	35.21	34.80	32.15	35.21	35.52	TiO ₂	45.87	45.64	42.81	45.08	41.55	42.69	43.70	44.27	44.44	44.79	44.4
K ₂ O	9.15	9.10	9.16	9.48	9.24	9.23	9.17	5.05	9.34	9.27	Total	97.09	100.24	97.07	97.69	98.15	99.49	98.23	99.41	99.03	98.26	98.7
CaO	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.24	<0.20	<0.20												
TiO ₂	1.68	1.77	1.99	2.01	2.23	2.10	2.09	1.72	2.08	2.07												
MgO	3.91	4.57	4.14	4.08	3.97	4.14	3.80	5.95	4.10	4.01	Normaliz	ed at two	cations									
MnO	<0.25	<0.25	0.38	0.36	0.37	0.29	0.29	0.63	<0.25	0.33	Mn	0.033	0.034	0.115	0.060	0.141	0.100	0.088	0.089	0.099	0.079	0.08
FeO	30.05	28.17	29.71	29.91	29.62	30.20	30.68	29.80	29.78	29.38	Fe ²⁺	0.937	0.965	0.837	0.894	0.812	0.900	0.856	0.850	0.831	0.846	0.84
Total	95.22	94.82	95.84	96.72	95.84	96.20	95.55	91.01	95.40	95.28	Ti	0.970	0.998	0.952	0.954	0.953	1.000	0.944	0.939	0.930	0.925	0.93
											Fe ³⁺	0.060	0.003	0.097	0.092	0.094	0.000	0.112	0.122	0.141	0.150	0.13
Normalized a	t eight ca	tions																				
F	0.182	0.194	0.207	0.156	0.162	0.171	0.000	0.000	0.258	0.236												
Mg	0.485	0.564	0.510	0.497	0.489	0.508	0.467	0.765	0.508	0.498	Relative	% of end-	members									
AI	1.419	1.453	1.375	1.373	1.415	1.393	1.431	1.573	1.365	1.356	MnTiO₃	3.22	3.37	10.82	5.68	13.34	9.91	8.25	8.30	9.14	7.24	8.2
Si	2.931	2.956	2.943	2.948	2.913	2.900	2.871	2.776	2.932	2.962	FeTiO ₃	90.66	96.30	79.48	85.08	77.19	90.09	80.58	79.65	77.07	78.14	78.2
К	0.971	0.963	0.966	0.989	0.973	0.970	0.965	0.555	0.992	0.985	Fe ₂ O ₃	6.13	0.34	9.70	9.24	9.47	0.00	11.17	12.05	13.79	14.62	13.5
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.000	0.000												
Ti	0.105	0.110	0.124	0.124	0.138	0.130	0.130	0.112	0.130	0.129												
Mn	0.000	0.000	0.027	0.025	0.026	0.020	0.020	0.046	0.000	0.023												
Fe	2.089	1.954	2.055	2.044	2.046	2.079	2.116	2.151	2.073	2.047												
[Mg+Fe+Mn]	2.57	2.52	2.59	2.57	2.56	2.61	2.60	2.96	2.58	2.57												
[Al+Si]	4.35	4.41	4.32	4.32	4.33	4.29	4.30	4.35	4.30	4.32												
Al/Si	0.48	0.49	0.47	0.47	0.49	0.48	0.50	0.57	0.47	0.46												

	tit52	tit59	tit60	tit63	tit66	tit36	tit39	tit41	tit42	tit44	tit46	tit47	bas1	xx4_2	xx6_2	xx7_5	xx15_2	xx18_1	xx18_2	xx18_3
F	6.85	7.19	8.31	6.87	7.34	7.64	6.36	7.74	7.16	8.22	7.60	6.95	6.75	7.20	8.76	7.24	7.37	7.27	7.20	7.27
Al ₂ O ₃	0.60	<0.18	0.60	0.72	<0.18	<0.18	0.54	<0.18	0.33	0.96	<0.18	0.20	0.90	0.68	0.65	0.87	1.30	1.34	1.46	2.63
SiO ₂	1.91	0.91	1.89	2.44	1.34	1.27	1.86	0.91	1.48	4.92	0.99	1.06	2.75	2.41	2.30	3.19	3.19	3.34	3.43	5.80
P_2O_5	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18
CaO	5.17	4.10	4.47	5.93	3.64	4.61	4.97	5.74	4.89	2.74	5.69	2.52	5.61	5.74	4.52	6.08	5.90	5.14	5.21	4.97
TiO ₂	0.40	<0.31	<0.31	0.44	<0.31	<0.31	0.52	0.46	<0.31	0.71	0.49	<0.31	0.60	<0.31	0.98	1.08	0.54	0.56	0.55	1.23
FeO	<0.30	1.79	<0.30	<0.30	<0.30	<0.30	0.47	<0.30	<0.30	1.37	<0.30	<0.30	<0.30	<0.30	0.71	0.88	1.37	0.52	0.57	1.57
Y_2O_3	0.70	0.55	0.77	1.03	1.11	1.04	0.68	0.95	0.64	0.65	0.81	0.47	0.64	0.61	0.90	0.85	0.82	0.70	0.70	0.63
ZrO ₂																				
La_2O_3	14.94	18.28	19.16	13.62	12.21	14.18	18.39	15.82	21.18	13.87	19.28	20.55	20.08	20.20	18.64	16.01	17.66	20.13	20.26	19.54
Ce ₂ O ₃	37.80	37.51	35.91	36.92	38.83	39.90	35.75	36.65	37.01	36.77	36.18	37.79	39.13	39.46	40.29	36.65	36.87	39.55	39.64	35.97
ThO ₂	2.29	1.47	1.36	2.45	1.73	1.26	1.66	1.44	1.43	4.72	2.26	1.44	1.92	1.71	0.50	5.48	3.45	1.57	1.52	1.26
UO ₂	0.24	<0.19	0.30	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	0.27	<0.19	0.26	0.25	<0.19
Total	70.91	71.79	72.78	70.42	66.20	69.90	71.21	69.72	74.12	74.92	73.30	70.99	78.38	77.99	78.24	78.60	78.46	80.37	80.78	80.87
Normalized to	five cation	ns pfu.																		
F	3.767	4.076	4.631	3.670	4.657	4.494	3.443	4.454	3.887	4.237	4.177	4.229	3.257	3.562	4.407	3.434	3.445	3.382	3.310	3.068
AI	0.124	0.000	0.125	0.143	0.000	0.000	0.109	0.000	0.067	0.184	0.000	0.046	0.161	0.126	0.122	0.153	0.226	0.233	0.251	0.414
Si	0.332	0.163	0.333	0.412	0.268	0.237	0.319	0.166	0.253	0.803	0.172	0.203	0.420	0.376	0.365	0.478	0.472	0.491	0.498	0.774
Ca	0.964	0.788	0.844	1.073	0.781	0.918	0.912	1.119	0.899	0.479	1.060	0.520	0.917	0.961	0.770	0.977	0.934	0.811	0.812	0.711
Ti	0.053	0.000	0.000	0.056	0.000	0.000	0.067	0.063	0.000	0.087	0.064	0.000	0.069	0.000	0.117	0.122	0.060	0.062	0.060	0.123
Fe	0.000	0.268	0.000	0.000	0.000	0.000	0.067	0.000	0.000	0.187	0.000	0.000	0.000	0.000	0.094	0.111	0.170	0.064	0.070	0.175
Υ	0.065	0.052	0.072	0.093	0.119	0.103	0.062	0.092	0.059	0.056	0.075	0.048	0.052	0.050	0.076	0.067	0.064	0.055	0.054	0.045
La	0.958	1.208	1.244	0.848	0.903	0.973	1.161	1.061	1.341	0.834	1.237	1.458	1.130	1.165	1.093	0.885	0.963	1.093	1.087	0.962
Ce	2.405	2.462	2.315	2.282	2.850	2.716	2.239	2.440	2.326	2.195	2.303	2.662	2.185	2.260	2.345	2.011	1.995	2.131	2.110	1.758
Th	0.091	0.060	0.054	0.094	0.079	0.053	0.065	0.060	0.056	0.175	0.089	0.063	0.067	0.061	0.018	0.187	0.116	0.053	0.050	0.038
U	0.009	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.008	0.008	0.000
Cations	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
La/Ce	0.398	0.491	0.537	0.372	0.317	0.358	0.518	0.435	0.576	0.380	0.537	0.548	0.517	0.516	0.466	0.440	0.482	0.513	0.515	0.547
(Al+Si)	0.456	0.163	0.459	0.555	0.268	0.237	0.428	0.166	0.320	0.987	0.172	0.249	0.581	0.502	0.488	0.631	0.698	0.724	0.749	1.188
(Ca+Fe)	0.964	1.056	0.844	1.073	0.781	0.918	0.979	1.119	0.899	0.665	1.060	0.520	0.917	0.961	0.864	1.088	1.104	0.874	0.882	0.886
(REE+Y+Th)	3.519	3.781	3.686	3.316	3.950	3.845	3.526	3.652	3.781	3.261	3.704	4.231	3.433	3.537	3.532	3.151	3.138	3.332	3.301	2.803
REE / F	0.934	0.928	0.796	0.904	0.848	0.856	1.024	0.820	0.973	0.770	0.887	1.000	1.054	0.993	0.801	0.918	0.911	0.985	0.997	0.914

APPENDIX IV EMPA analyses from the Yerila gneiss (YER-03)

Thorite

Serie A	: included	in zircon																			
Label	zr008_5	zr011_4	zr026_3	zr025_3	zr065_2	zr072_1	zr079_4	zr085_3	zr088_2	zr097_5	zr100_3	zr114_2	zr115_4	zr116_1	zr137_3	zr143_4	zr159_4	zr161_2	zr162_4	zr169_2	zr175_4
F	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
AI_2O_3	2.19	n.d.	1.53	1.08	1.48	0.87	1.15	1.43	1.36	1.14	1.28	1.18	0.97	0.98	1.02	1.02	1.08	1.09	1.32	0.98	1.26
SiO ₂	23.65	20.67	23.07	20.71	21.68	22.18	19.5	21.1	22.67	22.69	21.82	20.38	20.23	18.86	22.73	17.01	22.4	21.79	22.66	18.18	23.13
P_2O_5	n.d.	n.d.	0.23	n.d.	0.46	0.42	n.d.	0.27	0.24	0.24	0.25	n.d.	0.26	0.52	0.17	0.2	0.2	0.35	0.57	0.29	0.27
CaO	0.71	n.d.	0.43	0.77	1.25	0.58	0.87	0.67	0.73	0.57	0.91	0.79	0.59	0.42	1.08	1.36	0.63	0.72	1.15	1.19	0.72
TiO ₂	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
FeO	1.13	n.d.	0.62	4.15	0.86	1.27	1.43	0.58	0.55	0.6	0.37	1.28	1.4	1.58	0.76	1.09	0.68	1.01	0.88	0.37	0.48
Y_2O_3	4.97	0.34	3.78	4.32	3.03	6.94	3.54	5.87	5.44	5.1	6.47	5.01	6.33	5.6	0.99	6.9	5.12	5.64	5.64	5.7	5.45
ZrO_2	5.51	4.82	5.3	4.96	15.31	0.82	2.12	2.8	3.58	2.99	5.54	3.3	n.d.	0.54	4.5	4.2	3.86	2.76	5.34	2.63	3.82
La_2O_3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
La ₂ O ₃ Ce ₂ O ₃	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.
La ₂ O ₃ Ce ₂ O ₃ PbO	n.a. n.a. n.d.	n.a. n.a. 2.52	n.a. n.a. n.d.	n.a. n.a. 1.02	n.a. n.a. 0.32	n.a. n.a. 0.2	n.a. n.a. 0.17	n.a. n.a. 0.28	n.a. n.a. 0.39	n.a. n.a. n.d.	n.a. n.a. 0.41	n.a. n.a. 0.25	n.a. n.a. n.d.	n.a. n.a. n.d.	n.a. n.a. n.d.	n.a. n.a. 0.18	n.a. n.a. 0.17	n.a. n.a. 0.19	n.a. n.a. 0.23	n.a. n.a. 0.14	n.a. n.a. n.d.
La ₂ O ₃ Ce ₂ O ₃ PbO ThO ₂	n.a. n.a. n.d. 44.99	n.a. n.a. 2.52 46.82	n.a. n.a. n.d. 46.69	n.a. n.a. 1.02 31.93	n.a. n.a. 0.32 33.82	n.a. n.a. 0.2 33.14	n.a. n.a. 0.17 44.69	n.a. n.a. 0.28 46.49	n.a. n.a. 0.39 46.39	n.a. n.a. n.d. 45.06	n.a. n.a. 0.41 47.75	n.a. n.a. 0.25 38.85	n.a. n.a. n.d. 50.32	n.a. n.a. n.d. 49.73	n.a. n.a. n.d. 32.93	n.a. n.a. 0.18 41.91	n.a. n.a. 0.17 44.23	n.a. n.a. 0.19 32.32	n.a. n.a. 0.23 48.43	n.a. n.a. 0.14 46.29	n.a. n.a. n.d. 47.26
$\begin{array}{c} La_2O_3\\ Ce_2O_3\\ PbO\\ ThO_2\\ UO_2 \end{array}$	n.a. n.a. n.d. 44.99 4.74	n.a. n.a. 2.52 46.82 13.6	n.a. n.a. n.d. 46.69 2.7	n.a. n.a. 1.02 31.93 9.33	n.a. n.a. 0.32 33.82 3.36	n.a. n.a. 0.2 33.14 15.38	n.a. n.a. 0.17 44.69 17.3	n.a. n.a. 0.28 46.49 4.7	n.a. n.a. 0.39 46.39 4.66	n.a. n.a. n.d. 45.06 2.67	n.a. n.a. 0.41 47.75 3.92	n.a. n.a. 0.25 38.85 7.34	n.a. n.a. n.d. 50.32 3.41	n.a. n.a. n.d. 49.73 2.96	n.a. n.a. n.d. 32.93 12.18	n.a. n.a. 0.18 41.91 7.91	n.a. n.a. 0.17 44.23 8.02	n.a. n.a. 0.19 32.32 21.62	n.a. n.a. 0.23 48.43 2.97	n.a. n.a. 0.14 46.29 8.91	n.a. n.a. n.d. 47.26 7.34
$\begin{array}{c} La_2O_3\\ Ce_2O_3\\ PbO\\ ThO_2\\ UO_2\\ Total \end{array}$	n.a. n.a. n.d. 44.99 4.74 87.89	n.a. n.a. 2.52 46.82 13.6 88.77	n.a. n.a. n.d. 46.69 2.7 84.35	n.a. n.a. 31.93 9.33 78.27	n.a. n.a. 33.82 3.36 81.57	n.a. n.a. 33.14 15.38 81.80	n.a. n.a. 0.17 44.69 17.3 90.77	n.a. n.a. 0.28 46.49 4.7 84.19	n.a. n.a. 0.39 46.39 4.66 86.01	n.a. n.a. n.d. 45.06 2.67 81.06	n.a. n.a. 0.41 47.75 3.92 88.72	n.a. n.a. 0.25 38.85 7.34 78.38	n.a. n.a. n.d. 50.32 3.41 83.51	n.a. n.a. n.d. 49.73 2.96 81.19	n.a. n.a. n.d. 32.93 12.18 76.36	n.a. n.a. 0.18 41.91 7.91 81.78	n.a. n.a. 0.17 44.23 8.02 86.39	n.a. n.a. 0.19 32.32 21.62 87.49	n.a. n.a. 0.23 48.43 2.97 89.19	n.a. n.a. 0.14 46.29 8.91 84.68	n.a. n.a. n.d. 47.26 7.34 89.73
La ₂ O ₃ Ce ₂ O ₃ PbO ThO ₂ UO ₂ Total Serie E	n.a. n.a. n.d. 44.99 4.74 87.89	n.a. n.a. 2.52 46.82 13.6 88.77 ssociated v	n.a. n.a. n.d. 46.69 2.7 84.35 with allanite	n.a. n.a. 1.02 31.93 9.33 78.27 e, titanite c	n.a. n.a. 0.32 33.82 3.36 81.57	n.a. n.a. 33.14 15.38 81.80	n.a. n.a. 0.17 44.69 17.3 90.77	n.a. n.a. 0.28 46.49 4.7 84.19	n.a. n.a. 0.39 46.39 4.66 86.01	n.a. n.a. 45.06 2.67 81.06	n.a. n.a. 0.41 47.75 3.92 88.72	n.a. n.a. 0.25 38.85 7.34 78.38	n.a. n.a. n.d. 50.32 3.41 83.51	n.a. n.a. n.d. 49.73 2.96 81.19	n.a. n.a. n.d. 32.93 12.18 76.36	n.a. n.a. 41.91 7.91 81.78	n.a. n.a. 0.17 44.23 8.02 86.39	n.a. n.a. 0.19 32.32 21.62 87.49	n.a. n.a. 0.23 48.43 2.97 89.19	n.a. n.a. 0.14 46.29 8.91 84.68	n.a. n.a. n.d. 47.26 7.34 89.73
La ₂ O ₃ Ce ₂ O ₃ PbO ThO ₂ UO ₂ Total Serie E Label	n.a. n.a. n.d. 44.99 4.74 87.89 : thorite as al3_3	n.a. n.a. 2.52 46.82 13.6 88.77 ssociated v al4_6	n.a. n.a. 46.69 2.7 84.35 with allanity al4_7	n.a. n.a. 1.02 31.93 9.33 78.27 e, titanite c al17_4	n.a. n.a. 0.32 33.82 3.36 81.57 or free al16_4	n.a. n.a. 33.14 15.38 81.80 al14_7	n.a. n.a. 0.17 44.69 17.3 90.77 al13_4	n.a. n.a. 0.28 46.49 4.7 84.19 al13_6	n.a. n.a. 0.39 46.39 4.66 86.01 al13_7	n.a. n.a. n.d. 45.06 2.67 81.06 al11_3	n.a. n.a. 0.41 47.75 3.92 88.72 al10_8	n.a. n.a. 0.25 38.85 7.34 78.38 xx_1_3	n.a. n.a. n.d. 50.32 3.41 83.51 xx_2_1	n.a. n.a. 1. 49.73 2.96 81.19 xx5_1	n.a. n.a. n.d. 32.93 12.18 76.36 xx6_1	n.a. n.a. 0.18 41.91 7.91 81.78 xx6_3	n.a. n.a. 0.17 44.23 8.02 86.39 xx7_3	n.a. n.a. 0.19 32.32 21.62 87.49 xx9_2	n.a. n.a. 0.23 48.43 2.97 89.19 xx17_3	n.a. n.a. 0.14 46.29 8.91 84.68 x_1_5	n.a. n.a. n.d. 47.26 7.34 89.73
La ₂ O ₃ Ce ₂ O ₃ PbO ThO ₂ UO ₂ Total Serie E Label F	n.a. n.a. n.d. 44.99 4.74 87.89 : thorite a: al3_3 n.d.	n.a. n.a. 2.52 46.82 13.6 88.77 ssociated v al4_6 n.d.	n.a. n.a. n.d. 46.69 2.7 84.35 with allanitu <u>al4_7</u> 0.55	n.a. n.a. 1.02 31.93 9.33 78.27 e, titanite c al17_4 n.d.	n.a. n.a. 0.32 33.82 3.36 81.57 or free <u>al16_4</u> n.d.	n.a. n.a. 0.2 33.14 15.38 81.80 <u>al14_7</u> n.d.	n.a. n.a. 0.17 44.69 17.3 90.77 al13_4 n.d.	n.a. n.a. 0.28 46.49 4.7 84.19 al13_6 n.d.	n.a. n.a. 0.39 46.39 4.66 86.01 <u>al13_7</u> 1.49	n.a. n.a. n.d. 45.06 2.67 81.06 al11_3 n.d.	n.a. n.a. 0.41 47.75 3.92 88.72 al10_8 n.d.	n.a. n.a. 0.25 38.85 7.34 78.38 xx_1_3 n.d.	n.a. n.a. n.d. 50.32 3.41 83.51 xx_2_1 n.d.	n.a. n.d. 49.73 2.96 81.19 xx5_1 0.93	n.a. n.a. n.d. 32.93 12.18 76.36 <u>xx6_1</u> 0.92	n.a. n.a. 0.18 41.91 7.91 81.78 xx6_3 0.93	n.a. n.a. 0.17 44.23 8.02 86.39 xx7_3 0.7	n.a. n.a. 0.19 32.32 21.62 87.49 xx9_2 n.d.	n.a. n.a. 0.23 48.43 2.97 89.19 xx17_3 2.86	n.a. n.a. 0.14 46.29 8.91 84.68 <u>x_1_5</u> n.d.	n.a. n.a. n.d. 47.26 7.34 89.73
$\begin{array}{c} La_2O_3\\ Ce_2O_3\\ PbO\\ ThO_2\\ UO_2\\ Total\\ \hline \\ Serie \\ \hline \\ Label\\ \hline \\ \\ F\\ Al_2O_3\\ \end{array}$	n.a. n.a. n.d. 44.99 4.74 87.89 : thorite a: al3_3 n.d. 1.43	n.a. n.a. 2.52 46.82 13.6 88.77 ssociated v al4_6 n.d. 0.34	n.a. n.a. n.d. 46.69 2.7 84.35 with allanitu al4_7 0.55 n.d.	n.a. n.a. 1.02 31.93 9.33 78.27 e, titanite c <u>al17_4</u> n.d. 2.32	n.a. n.a. 0.32 33.82 3.36 81.57 or free <u>al16_4</u> n.d. 2.11	n.a. n.a. 0.2 33.14 15.38 81.80 al14_7 n.d. 1.37	n.a. n.a. 0.17 44.69 17.3 90.77 al13_4 n.d. 1.27	n.a. n.a. 0.28 46.49 4.7 84.19 al13_6 n.d. 2.02	n.a. n.a. 0.39 46.39 4.66 86.01 <u>al13_7</u> 1.49 n.d.	n.a. n.a. n.d. 45.06 2.67 81.06 al11_3 n.d. 1.85	n.a. n.a. 0.41 47.75 3.92 88.72 al10_8 n.d. 1.38	n.a. n.a. 0.25 38.85 7.34 78.38 xx_1_3 n.d. 1.14	n.a. n.a. n.d. 50.32 3.41 83.51 xx_2_1 n.d. 1.20	n.a. n.a. 1.d. 49.73 2.96 81.19 xx5_1 0.93 1.11	n.a. n.a. n.d. 32.93 12.18 76.36 <u>xx6_1</u> 0.92 n.d.	n.a. n.a. 0.18 41.91 7.91 81.78 xx6_3 0.93 n.d.	n.a. n.a. 0.17 44.23 8.02 86.39 xx7_3 0.7 1.12	n.a. n.a. 0.19 32.32 21.62 87.49 xx9_2 n.d. 2.15	n.a. n.a. 0.23 48.43 2.97 89.19 xx17_3 2.86 0.63	n.a. n.a. 0.14 46.29 8.91 84.68 <u>x_1_5</u> n.d. 1.13	n.a. n.a. n.d. 47.26 7.34 89.73

$\pi_2 \cup 3$	1.40	0.04	n.u.	2.02	2.11	1.07	1.27	2.02	n.u.	1.00	1.00	1.14	1.20	1.1.1	n.u.	n.u.	1.14	2.15	0.00	1.10
SiO ₂	25.65	23.43	22.17	22.62	23.92	22.09	23.07	23.13	23.22	23.32	22.56	24.15	24.69	21.40	20.84	22.02	21.66	23.74	6.38	24.86
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CaO	1.34	4.21	3.86	2.70	1.82	4.19	4.24	3.87	3.35	5.16	3.56	3.87	4.12	1.06	1.20	1.20	1.14	1.52	5.62	4.16
TiO ₂	n.d.	n.d.	0.70	n.d.	n.d.	n.d.	n.d.	n.d.	1.52	n.d.	n.d.	n.d.	n.d.	n.d.	2.97	2.62	n.d.	n.d.	n.d.	n.d.
FeO	2.61	3.17	1.47	2.95	8.07	1.72	1.65	2.50	1.51	1.42	1.36	0.32	0.27	n.d.	n.d.	0.50	0.43	0.70	0.53	0.95
Y_2O_3	0.41	0.28	0.32	0.51	0.40	0.78	0.57	0.40	0.42	0.78	0.35	0.28	0.28	5.56	6.81	6.11	5.04	2.31	0.36	0.51
ZrO_2	n.d.	n.d.	n.d.	n.d.	0.83	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
La_2O_3	4.62	n.d.	n.d.	1.84	2.31	0.61	n.d.	1.60	3.21	n.d.	1.41	0.62	0.79	n.d.	n.d.	n.d.	0.57	1.68	4.10	n.d.
Ce_2O_3	9.83	n.d.	n.d.	3.56	4.98	1.06	n.d.	1.97	1.86	0.64	1.44	n.d.	0.61	4.53	5.07	4.49	3.33	5.32	7.29	0.94
PbO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ThO ₂	50.36	63.31	61.91	55.58	52.07	64.16	70.25	60.38	60.13	44.26	53.50	50.80	52.27	52.72	44.99	49.34	60.27	57.75	56.69	51.65
UO ₂	4.21	4.12	8.03	6.93	3.38	6.28	3.36	2.81	3.95	22.62	11.61	19.19	18.73	12.67	14.48	11.55	8.33	9.30	10.05	17.12
Total	100.46	98.86	98.46	99.01	99.89	102.26	104.41	98.68	99.17	100.05	97.17	100.37	102.96	99.05	96.36	97.83	101.89	104.47	91.65	101.32

APPENDIX IV

EMPA analyses from the Yerila gneiss (YER-03)

Rare Th, U, REE minerals

Chevkinite group			Euxenite-(Y)		Uraninite	
Label	xx7_1	xx7_2	Label	xx22_2	xx22_3	Label	zr002_uran
F	0.00	0.90	F	n.a.	n.a.	F	n.a
MgO	0.00	0.23	MgO	n.a.	n.a.	MgO	n.a
Al ₂ O ₃	1.57	1.43	Al ₂ O ₃	< 0.13	< 0.13	Al ₂ O ₃	< 0.13
SiO ₂	15.75	14.38	SiO ₂	<0.24	<0.24	SiO ₂	6.008
P_2O_5	0.74	0.86	P_2O_5	< 0.06	< 0.06	P ₂ O ₅	< 0.06
CaO	1.82	2.09	CaO	1.11	1.02	CaO	0.411
FeO	1.46	1.85	FeO	3.28	1.75	FeO	< 0.05
TiO ₂	10.05	13.46	TiO ₂	4.38	2.15	TiO ₂	<0.08
MnO	0.00	0.00	MnO	n.a.	n.a.	MnŌ	n.a
Y ₂ O ₃	0.00	0.00	Y ₂ O ₃	31.34	33.32	Y ₂ O ₃	4.051
ZrO ₂	0.52	0.35	ZrO ₂	<0.42	<0.42	ZrO	3.509
La ₂ O ₃	1.20	1.08	La ₂ O ₃	n.a.	n.a.	La ₂ O ₃	n.a
CeoOo	58.69	58.11	CeoOo	n.a.	n.a.	CeoOo	n.a
YhoOo	na	na	YhoOo	4 50	4 42	YhoOo	1 437
HfO ₂	na	na	HfO ₂	< 0.18	< 0.18	HfO ₂	< 0.18
PhO	n a	n.a.	PhO	<0.10	<0.12	PhO	4 930
ThO	2.88	3 22	ThO	1.63	0.91	ThO	4 276
1102	3.03	2.28	1102	3.46	4.15	1102	60 10/
Total	97 71	00 11	Total	/0 70	4.13	Total	03.134
lotai	57.71	33.11	Total	43.70	47.72	Iotai	50.02
Normalized at (Si,F	P) = 2.00		Normalize	d to A-site = 1.0	00	Age (U-Th-P	b)
F	0.000	0.375	Ca	0.025	0.023	PbO	4.93 ± 0.09
Mg	0.000	0.045	Ti	0.097	0.048	ThO ₂	4.28 ± 0.06
AI	0.226	0.224	Fe	0.073	0.039	UO2	69.19 ± 0.21
Si	1.923	1.904	Y	0.696	0.740		
Р	0.077	0.096	Yb	0.100	0.098	Age	491 ± 20 Ma
Ca	0.238	0.297	Th	0.036	0.020		
Ti	0.923	1.340	U	0.077	0.092		
Mn	0.000	0.000	Total	1.103	1.059		
Fe	0.149	0.205					
Y	0.000	0.000					
Zr	0.031	0.022					
La	0.054	0.053					
Ce	2.624	2.816					
Th	0.080	0.097					
U	0.082	0.067					
Σ cations	6 407	7 166					
0	12.200	13.475					
(Si P)	2 000	2 000					
$(\Box + \Gamma)$	1 220	1 701					
$(\Box + \Box C + A + \Delta L)$	1.329	1./31					
(0a+nee+11+0)	3.078	3.330					
(Ce4+,Ca, Th)3 (Ti,F	e ³⁺ ,Al) ₂ (SiC	O ₄) ₂ O ₄ (OH,F) ₂	(Y _{0.74} Fe _{0.04}	Ca _{0.02} Yb _{0.10} U _{0.0}	₀₉) _{Σ=1} (Nb _{1.95} Ti _{0.05}) _{Σ=2} O ₆		

APPENDIX IV EMPA analyses from the Yerila gneiss (YER-03)

SERIE A : Bulk zircon fraction

Zircon

Al-OB nd. <th< th=""><th>Label</th><th>zr001</th><th>zr002</th><th>zr003</th><th>zr004</th><th>zr005</th><th>zr006</th><th>zr007</th><th>zr008</th><th>zr009</th><th>zr010</th><th>zr011</th><th>zr012</th><th>zr013</th><th>zr014</th><th>zr015</th><th>zr016</th><th>zr017</th><th>zr018</th><th>zr019</th><th>zr020</th><th>zr021</th><th>zr022</th><th>zr023</th></th<>	Label	zr001	zr002	zr003	zr004	zr005	zr006	zr007	zr008	zr009	zr010	zr011	zr012	zr013	zr014	zr015	zr016	zr017	zr018	zr019	zr020	zr021	zr022	zr023
SiQ, 31.68 31.52 31.69 31.38 31.22 30.88 30.70 31.17 31.31 31.17 31.38 31.40 31.37 31.36 31.42 31.27 31.02 31.27 31.02 31.32 31.41 31.75 31.69 31.60 31.52 SiQ, 0.61 0.81 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Al ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
P ₂ O ₅ 0.06 0.81 n.d.	SiO ₂	31.68	31.52	31.69	31.38	31.32	30.88	30.70	31.17	31.31	31.17	31.38	31.40	31.37	31.36	31.42	31.27	31.02	31.32	31.41	31.75	31.69	31.60	31.52
CaO n.d.	P_2O_5	0.06	0.81	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.84	n.d.									
FeO 0.13 n.d.	CaO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.16	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.19	n.d.						
YaO3 0.15 0.18 0.13 0.27 0.12 0.23 0.19 0.13 0.39 0.15 0.14 0.21 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.21 0.14 0.21 0.14 0.21 0.14 0.21 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.14 <th< td=""><td>FeO</td><td>0.13</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>0.14</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>0.30</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td></th<>	FeO	0.13	n.d.	n.d.	n.d.	n.d.	n.d.	0.14	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.30	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ZiOs 65.12 65.25 64.88 65.07 65.74 65.97 65.77 65.76 65.76 65.51 64.68 66.13 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.97 65.74 65.74 65.77 65.76 65.77 65.51 64.68 65.11 64.48 66.13 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.13 64.61 65.37 65.74 65.97 65.77 65.61 64.68 65.11 64.68 65.11 64.61 65.11 64.61 65.11 64.61 65.11 64.61 65.11 64.61 65.11 64.61 65.11 64.61 65.11 64.61 65.11 64.61 65.11 64.61	Y_2O_3	0.15	0.18	0.13	0.27	0.12	0.12	0.23	0.19	0.13	0.39	0.15	0.14	0.24	0.31	0.10	0.31	0.14	0.31	0.14	n.d.	0.13	n.d.	0.33
HC0 1.63 1.63 1.64 1.62 1.54 1.49 1.82 1.57 1.36 1.66 1.64 1.73 1.48 1.43 1.65 1.54 1.63 1.73 1.63 1.73 1.63 1.73 1.63 1.63 1.73 1.63 1.64 1.64 1.73 1.44 1.43 1.65 1.54 1.64 1.63 1.73 1.63 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.64 1.63 1.64	ZrO ₂	65.12	65.32	64.88	65.07	65.74	65.99	64.65	64.68	65.57	65.57	65.77	65.68	65.51	64.68	65.61	64.48	66.13	65.13	64.61	65.97	65.94	65.93	65.29
PbO nd. nd. <td>HfO₂</td> <td>1.87</td> <td>1.63</td> <td>1.65</td> <td>1.64</td> <td>1.62</td> <td>1.54</td> <td>1.49</td> <td>1.82</td> <td>1.57</td> <td>1.36</td> <td>1.56</td> <td>1.85</td> <td>1.46</td> <td>1.73</td> <td>1.48</td> <td>1.43</td> <td>1.65</td> <td>1.54</td> <td>1.63</td> <td>1.73</td> <td>1.63</td> <td>1.69</td> <td>1.41</td>	HfO ₂	1.87	1.63	1.65	1.64	1.62	1.54	1.49	1.82	1.57	1.36	1.56	1.85	1.46	1.73	1.48	1.43	1.65	1.54	1.63	1.73	1.63	1.69	1.41
ThO2 0.11 0.27 n.d.	PbO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
UO2 0.37 0.26 0.20 0.37 0.30 0.23 0.27 0.38 0.19 0.38 0.25 0.22 0.35 0.78 0.24 0.30 0.18 0.44 viota viota<	ThO ₂	0.11	0.27	n.d.	n.d.	n.d.	n.d.	0.10	n.d.	n.d.	0.14	n.d.	n.d.	0.11	n.d.	n.d.	n.d.	n.d.	0.08	n.d.	n.d.	n.d.	n.d.	0.10
Total 99.49 99.99 98.55 98.73 99.10 98.76 97.74 98.24 98.77 99.01 99.11 99.29 98.88 98.86 98.85 97.98 99.42 98.86 98.17 27044 zr044 zr042 zr044 zr042 zr044 zr044 zr045 zr046 zr047 AlgO3 n.d.		0.37	0.26	0.20	0.37	0.30	0.23	0.27	0.38	0.19	0.38	0.25	0.22	0.35	0.78	0.24	0.30	0.18	0.48	0.38	0.22	0.24	0.24	0.46
Label zr024 zr025 zr026 zr027 zr028 zr039 zr033 zr034 zr035 zr036 zr037 zr038 zr039 zr040 zr041 zr042 zr043 zr044 zr045 zr044 zr037 zr038 zr039 zr040 zr041 zr042 zr043 zr044 zr045 zr046 zr047 zr046 zr044 zr044 zr047 zr048 zr044 zr041 zr042 zr044 zr044 zr047 zr046 zr047 zr048 zr044 zr04 n.d.	Total	99.49	99.99	98.55	98.73	99.10	98.76	97.74	98.24	98.77	99.01	99.11	99.29	99.88	98.86	98.85	97.98	99.42	98.86	98.17	99.67	99.63	99.46	99.11
Label zr024 zr025 zr026 zr027 zr028 zr039 zr034 zr035 zr036 zr039 zr030 zr040 zr041 zr042 zr042 zr044 zr044 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																								
Label zr024 zr025 zr026 zr027 zr028 zr029 zr030 zr032 zr033 zr034 zr035 zr036 zr037 zr038 zr039 zr040 zr041 zr042 zr043 zr044 zr045 zr046 zr047 Al ₂ O ₈ n.d.																								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Label	zr024	zr025	zr026	zr027	zr028	zr029	zr030	zr032	zr033	zr034	zr035	zr036	zr037	zr038	zr039	zr040	zr041	zr042	zr043	zr044	zr045	zr046	zr047
SiO2 31.85 31.80 31.71 31.95 31.81 31.84 31.79 31.56 32.38 31.93 31.79 32.44 31.81 31.77 31.47 31.65 31.72 31.71 31.75 30.75 31.47 P205 n.d.	Al ₂ O ₂	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
P205 n.d.	SiO	31.85	31.80	31.71	31.95	31.18	31.83	31.86	31.79	31.56	32.38	31.93	31.79	32.44	31.81	31.74	31.47	31.47	31.65	31.72	31.71	31.75	30.75	31.45
CaOn.d.n.	P₂O₅	n.d.	n.d.	n.d.	n.d.	n.d.	0.81	0.85	n.d.	0.83	0.81	n.d.	0.84	n.d.	n.d.	0.82	n.d.	0.62	n.d.	0.83	0.83	0.83	0.82	n.d.
FeO n.d.	CaO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.14	n.d.	n.d.	n.d.	n.d.	0.15	n.d.
Y2O3 n.d.	FeO	nd	nd	n d	nd	nd	nd	n d	nd	nd	n d	0.06	nd	n d	n d	n d	nd	nd						
ZrO2 65.60 65.59 65.56 65.56 65.55 65.56 65.56 65.56 65.56 65.56 65.57 65.60 65.60 65.60 66.76 65.76 65.10 65.69 66.16 65.24 65.71 66.17 65.75 65.10 65.60 66.16 65.24 65.71 61.77 1.85 1.83 1.81 1.93 1.82 1.70 2.08 1.79 1.93 1.80 1.65 1.76 1.81 1.79 1.55 1.59 1.85 1.63 1.66 PbO n.d. <td>Y₂O₂</td> <td>n d</td> <td>n d</td> <td>0.12</td> <td>n d</td> <td>n d</td> <td>0 44</td> <td>n d</td> <td>0.19</td> <td>n d</td> <td>n d</td> <td>nd</td> <td>0.69</td> <td>n d</td> <td>n d</td> <td>0.61</td> <td>0.17</td> <td>n d</td> <td>0.17</td> <td>0.23</td> <td>0.19</td> <td>0.11</td> <td>0.46</td> <td>n d</td>	Y ₂ O ₂	n d	n d	0.12	n d	n d	0 44	n d	0.19	n d	n d	nd	0.69	n d	n d	0.61	0.17	n d	0.17	0.23	0.19	0.11	0.46	n d
Ling cond	7rO ₂	65 60	65 59	65.56	65 35	67 15	65 65	66.06	65 49	65.99	64 97	65 50	65.08	65.07	65 55	65.07	65 10	65 69	66 16	65.24	65.91	65.85	65 75	66 17
Index <th< td=""><td>HfO₂</td><td>1 66</td><td>1 60</td><td>1 77</td><td>1 85</td><td>1.83</td><td>1 81</td><td>1.93</td><td>1 82</td><td>1 70</td><td>2.08</td><td>1 79</td><td>1.93</td><td>1 80</td><td>1 65</td><td>1 76</td><td>1 81</td><td>1 76</td><td>1 79</td><td>1.55</td><td>1 59</td><td>1 85</td><td>1 63</td><td>1 60</td></th<>	HfO ₂	1 66	1 60	1 77	1 85	1.83	1 81	1.93	1 82	1 70	2.08	1 79	1.93	1 80	1 65	1 76	1 81	1 76	1 79	1.55	1 59	1 85	1 63	1 60
Label zr049 zr050 zr051 zr052 zr053 zr054 zr055 zr056 zr057 zr058 zr059 zr060 zr061 zr062 zr064 zr065 zr066 zr067 zr068 zr069 zr070 AlgO3 n.d.	PhO	nd	nd	n d	nd	nd	nd	nd	n d	nd	n d	nd	nd	nd	nd	nd	nd	nd	nd	n d	nd	n d	nd	nd
Label zr048 zr049 zr050 zr051 zr052 zr053 zr054 zr055 zr056 zr057 zr058 zr059 zr060 zr061 zr062 zr064 zr065 zr066 zr067 zr068 zr069 zr070 AlgO3 n.d.	ThO	0.11	n d	n d	0.38	n d	n d	n d	n d	n d	n d	n d	n d	n d	n d	n d	n d	0.12	n d	n d	n d	n d	n d	n d
Total 99.44 99.36 99.37 99.90 100.29 100.81 100.95 99.51 100.33 100.47 99.62 100.63 99.55 99.32 100.23 98.83 100.14 100.03 100.60 100.62 100.63 100.63 99.55 99.32 100.23 98.83 100.14 100.03 100.60 100.63 100.63 99.55 99.32 100.23 98.83 100.14 100.03 100.60 100.63 100.63 100.63 99.55 99.32 100.23 98.83 100.14 100.03 100.60 100.63 100.63 100.63 99.55 99.32 100.23 98.83 100.14 100.03 100.63 100.62 100.63 100.63 100.23 100.63 100.63 100.63 99.55 99.32 100.23 100.14 100.03 100.60 100.63 100.63 100.63 100.23 100.63 100.63 100.23 100.63 100.63 100.63 100.23 100.63 100.63 100.63 100.63 100.63 100.23 100.63 100.63 100.23 100.23		0.22	0.37	0.21	0.37	0.13	0.27	0.25	0.22	0.25	0.23	0.34	0.30	0.24	0.31	0.23	0.28	0.34	0.26	0.43	0.30	0.23	0.53	0.17
Label zr048 zr049 zr050 zr051 zr052 zr053 zr054 zr055 zr056 zr057 zr058 zr059 zr060 zr061 zr062 zr063 zr064 zr065 zr066 zr067 zr068 zr069 zr070 Al ₂ O ₃ n.d. <td>Total</td> <td>99.44</td> <td>99.36</td> <td>99.37</td> <td>99.90</td> <td>100.29</td> <td>100.81</td> <td>100.95</td> <td>99.51</td> <td>100.33</td> <td>100 47</td> <td>99.62</td> <td>100.63</td> <td>99.55</td> <td>99.32</td> <td>100.23</td> <td>98.83</td> <td>100 14</td> <td>100.03</td> <td>100.00</td> <td>100 53</td> <td>100.62</td> <td>100.09</td> <td>99 39</td>	Total	99.44	99.36	99.37	99.90	100.29	100.81	100.95	99.51	100.33	100 47	99.62	100.63	99.55	99.32	100.23	98.83	100 14	100.03	100.00	100 53	100.62	100.09	99 39
Label zr048 zr049 zr050 zr051 zr052 zr053 zr054 zr055 zr056 zr057 zr058 zr059 zr060 zr061 zr062 zr063 zr064 zr065 zr066 zr066 zr063 zr064 zr065 zr066 zr066 zr064 zr065 zr066 zr066 zr064 zr064 zr065 zr066 zr066 zr064 zr063 zr064 zr065 zr066 zr067 zr068 zr069 zr067 zr068 zr067 zr068 zr067 zr066 zr067 zr064 zr067 zr066 zr067 zr067 zr068 zr069 zr067 zr068 zr067 zr068 zr067 zr068 zr067 zr068 zr067 <th< td=""><td>rotai</td><td>00.11</td><td>00.00</td><td>00.07</td><td>00.00</td><td>100.20</td><td>100.01</td><td>100.00</td><td>00.01</td><td>100.00</td><td>100.17</td><td>00.02</td><td>100.00</td><td>00.00</td><td>00.02</td><td>100.20</td><td>00.00</td><td>100.11</td><td>100.00</td><td>100.00</td><td>100.00</td><td>100.02</td><td>100.00</td><td>00.00</td></th<>	rotai	00.11	00.00	00.07	00.00	100.20	100.01	100.00	00.01	100.00	100.17	00.02	100.00	00.00	00.02	100.20	00.00	100.11	100.00	100.00	100.00	100.02	100.00	00.00
Label zr048 zr049 zr050 zr051 zr052 zr053 zr054 zr055 zr056 zr057 zr058 zr059 zr060 zr061 zr062 zr063 zr064 zr065 zr066 zr066 zr064 zr065 zr066 zr066 zr066 zr067 zr068 zr069 zr070 Al ₂ O ₃ n.d. n																								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Label	zr048	zr049	zr050	zr051	zr052	zr053	zr054	zr055	zr056	zr057	zr058	zr059	zr060	zr061	zr062	zr063	zr064	zr065	zr066	zr067	zr068	zr069	zr070
SiO_2 31.09 31.45 32.10 31.76 31.69 31.29 31.83 32.54 31.79 31.94 31.82 31.93 31.59 31.70 31.90 32.01 32.21 31.81 31.95 32.07 30.70 31.53 31.88 P_2O_5 0.81 0.84 0.87 0.89 0.82 0.80 n.d. 0.87 0.85 0.85 0.95 n.d. 0.63 n.d. n.d. n.d. 0.85 0.84 0.85 0.84 0.86 0.81 0.85 0.82 CaO n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	AlaOa	nd	nd	nd	nd	nd	0.07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$P_2 O_5$ 0.81 0.84 0.87 0.89 0.82 0.80 n.d. 0.87 0.85 0.85 0.95 n.d. 0.63 n.d. n.d. 0.85 0.84 0.85 0.84 0.86 0.81 0.85 0.82 CaO n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	SiO	31.09	31 45	32 10	31 76	31 69	31 29	31.83	32 54	31 79	31.94	31.82	31.93	31 59	31 70	31.90	32 01	32 21	31.81	31.95	32 07	30 70	31 53	31.88
CaO n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d	P₂O _F	0.81	0.84	0.87	0.89	0.82	0.80	nd	0.87	0.85	0.85	0.95	nd	0.63	nd	nd	0.85	0.84	0.85	0.84	0.86	0.81	0.85	0.82
	CaO	n d	n d	n d	n d	n d	n d	n d	n d	n d	n d	n d	n d	0.00	n d	n d	n d	n d	n d	n d	n d	n d	n d	n d
rev use up no	FeO	0.38	0.11	n d	n d	n d	0.08	n d	n d	n d	n d	n d	n d	nd	n d	0.04	n d	n d	n d	0.24	n d	n d	n d	n d
700 0.00 0.11 mai, no.	V.O.	0.00	0.11	n d	0.10	n d	0.00 n d	n d	n.d.	0.11	n d	n d	n.d.	n.d.	0.28	0.04	n d	n d	n.d.	n d	n d	n d	n d	n.d.
	72O3	65.20	65 59	64 72	66 16	65.89	66.03	65 62	64 50	65 53	65 30	65 25	65.47	65.67	66 16	65.80	65 18	65 42	65.40	65.28	65.26	65 65	65 74	65 61
E_{102} 0.60 0.72 0.00 0.72 0.00 0.00 0.00 0.00 0.0	HfO ₂	1 66	1 72	1 75	1.81	1 66	1.81	1.6/	1.89	1.87	1 80	1 70	1 79	1.86	1 9/	1 69	1.80	1 60	1 66	1 90	1.87	1 62	1 5/	1 72
		n.00	n./2	n./5	n.01	n.00	n.01	n.04	n.00	n.07	n d	n./0	n./0	n.00	n.04	n.09	n.00	n.09	n.00	n.30	n.07	n.03	n.04	n./2
The net net net net net net net net net ne	ThOr	n d	n d	n.d.	n d	n.d.	n.d.	n.d.	n.d.	n.d.	n d	n d	n.d.	n d	n.d.	n d								
		0.66	0.20	0.33	0.20	0.25	0.28	0.30	0.27	0.23	0.23	0.26	0.34	0.20	0.47	0.26	0.18	0.24	0.24	0.34	0.33	0.38	0.32	0.24
Total 99 95 100 38 99 77 101 100 31 100 36 99 39 100 06 100 38 100 12 99 89 95 2 100 9 10 55 99 81 100 2 100 40 96 100 55 10 39 99 17 99 98 100 27	Total	99.95	100.38	99.77	101 01	100.31	100.36	99,39	100.06	100.38	100 12	99 98	99.52	100.09	100 55	99.81	100.02	100 40	99 96	100 55	100.39	99.17	99 98	100 27

APPENDIX IV

n.d.

n.d.

0.21

65.15

2.23

n.d.

n.d.

0.29

n.d.

n.d.

n.d.

65.21

1.91

n.d.

n.d.

0.30

n.d.

n.d.

n.d.

64.93

1.76

n.d.

n.d.

0.29

n.d.

n.d.

0.12

65.52

1.79

n.d.

n.d.

0.23

n.d.

n.d.

n.d.

65.51

1.61

n.d.

n.d.

0.27

CaO

FeO

 Y_2O_3

ZrO₂

HfO₂

PbO

ThO₂

UO₂

EMPA analyses from the Yerila gneiss (YER-03)

0.10

n.d.

0.14

65.77

1.45

n.d.

n.d.

0.44

n.d.

n.d.

0.24

1.75

0.12

n.d.

0.44

65.29

n.d.

n.d.

n.d.

64.64

1.93

n.d.

n.d.

0.30

Zircon

2/3

0.08

n.d.

0.20

65.64

1.62

n.d.

n.d.

0.26

n.d.

n.d.

0.26

66.60

1.82

n.d.

0.13

0.24

n.d.

n.d.

0.13

66.19

1.62

n.d.

n.d.

0.21

Label	zr071	zr072	zr073	zr074	zr075	zr076	zr077	zr078	zr079	zr080	zr081	zr082	zr083	zr084	zr085	zr086	zr087	zr088	zr089	zr090	zr091	zr092	zr093
AI_2O_3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.07	n.d.	n.d.	n.d.	n.d.	n.d.							
SiO ₂	31.96	31.85	31.79	31.79	32.15	32.04	32.07	31.87	32.11	31.79	31.70	31.90	31.93	31.91	32.10	32.12	32.44	31.89	31.27	30.98	31.98	31.87	31.95
P_2O_5	0.85	n.d.	n.d.	0.85	0.87	0.86	0.83	n.d.	0.81	n.d.	0.82	0.83	0.90	0.91	0.83	0.83	0.84	n.d.	0.82	0.81	0.83	0.85	0.84
CaO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
FeO	0.05	n.d.	n.d.	n.d.	n.d.	0.15	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.04	n.d.	0.04	n.d.
Y_2O_3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.11	0.37	n.d.	n.d.	0.49	0.08	0.52	n.d.	0.10	0.12	n.d.	0.12	n.d.	n.d.	n.d.	n.d.	n.d.
ZrO ₂	65.28	65.47	65.66	65.32	65.15	65.34	65.30	65.81	65.31	65.46	65.66	65.41	65.06	65.36	65.67	65.42	64.80	66.49	66.04	65.78	65.24	64.75	65.04
HfO ₂	1.82	1.73	1.45	1.71	1.59	1.65	1.87	1.70	1.76	1.72	1.92	1.72	1.79	1.84	1.78	1.73	1.81	1.61	1.70	1.81	1.68	1.85	1.97
PbO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ThO ₂	0.11	n.d.	n.d.	n.d.	n.d.	0.12	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
UO ₂	0.37	0.28	0.30	0.34	0.42	0.35	0.22	0.31	0.26	0.33	0.26	0.21	0.29	0.31	0.23	0.20	0.26	0.28	0.35	0.32	0.29	0.45	0.30
Total	100.44	99.33	99.20	100.01	100.18	100.51	100.40	100.06	100.25	99.30	100.92	100.15	100.49	100.33	100.71	100.42	100.15	100.39	100.18	99.74	100.02	99.81	100.10
Label	zr094	zr095	zr096	zr097	zr098	zr099	zr100	zr101	zr102	zr103	zr104	zr105	zr106	zr107	zr109	zr110	zr111	zr112	zr113	zr114	zr115	zr116	zr117
Al ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.14	n.d.
SiO ₂	32.15	32.08	31.96	31.87	31.91	32.10	32.18	32.59	32.37	32.50	32.54	32.75	32.25	32.30	32.38	32.35	32.30	32.21	32.61	32.63	32.21	31.80	32.68
P_2O_5	0.83	0.83	0.84	n.d.	0.83	0.85	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

n.d.

n.d.

0.11

65.76

1.66

n.d.

n.d.

0.22

n.d.

n.d.

0.18

65.28

1.61

n.d.

n.d.

0.37

n.d.

n.d.

0.15

64.90

1.73

n.d.

n.d.

0.26

n.d.

n.d.

0.20

65.50

1.83

n.d.

n.d.

0.11

n.d.

n.d.

0.18

66.81

1.93

n.d.

n.d.

0.24

n.d.

n.d.

0.63

65.05

1.94

n.d.

0.28

0.63

n.d.

n.d.

0.25

64.86

2.23

n.d.

n.d.

0.39

n.d.

n.d.

0.10

67.08

1.55

n.d.

n.d.

0.23

n.d.

n.d.

n.d.

66.32

1.61

n.d.

n.d.

0.09

n.d.

n.d.

0.14 65.73

1.78

n.d.

n.d.

0.29

0.12

n.d.

0.11

65.28

1.61

n.d.

n.d.

0.23

n.d.

n.d.

0.21

65.91

1.68

n.d.

n.d.

0.38

100.55 99.85 100.29 100.19 100.88 100.03 101.17 Total 100.86 100.33 99.78 99.53 100.13 99.82 100.08 100.43 99.29 99.94 101.54 100.63 100.57 100.36 99.74 101.73 Label zr118 zr119 zr120 zr121 zr122 zr123 zr124 zr125 zr126 zr127 zr128 zr129 zr130 zr131 zr132 zr133 zr134 zr135 zr136 zr137 zr138 zr139 zr140 Al₂O₃ 0.36 1.34 n.d. n.d. 0.18 n.d. SiO₂ 32.76 32.83 32.16 31.50 33.04 32.36 32.03 32.08 31.80 32.81 32.60 32.12 32.62 31.99 32.76 32.67 32.55 32.45 32.56 32.60 32.15 31.77 31.87 P_2O_5 n.d. CaO n.d. n.d. 0.30 0.41 n.d. 0.11 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. FeO n.d. n.d. n.d. 0.19 0.50 n.d. n.d. n.d. n.d. 0.12 n.d. n.d. n.d. 0.13 n.d. 0.16 n.d. n.d. n.d. n.d. n.d. n.d. n.d. Y_2O_3 0.17 0.13 0.08 0.30 0.27 0.15 0.45 0.10 0.33 0.28 0.17 0.14 0.34 0.14 0.10 0.61 0.58 0.12 0.16 0.11 0.08 0.52 0.08 ZrO₂ 66.25 66.82 66.06 62.32 60.22 66.59 66.20 66.18 66.70 66.11 66.63 67.39 66.44 66.65 66.66 66.42 65.85 67.21 66.88 67.17 66.78 67.60 67.16 HfO₂ 1.64 1.70 2.00 1.54 1.54 1.53 1.62 1.84 1.57 1.49 1.68 1.57 1.46 1.55 1.47 1.44 1.58 1.59 1.59 1.59 1.48 1.65 1.54 PbO 0.13 0.19 0.12 0.14 n.d. ThO₂ n.d. n.d. n.d. n.d. n.d. n.d. 0.10 n.d. n.d. 0.08 n.d. n.d. 0.08 n.d. n.d. n.d. 0.16 n.d. 0.09 n.d. n.d. 0.11 n.d. UO₂ 0.28 0.21 0.53 0.18 0.35 0.86 0.23 0.51 0.45 0.33 0.24 0.65 0.28 0.21 0.62 0.44 0.24 0.31 0.24 0.21 0.64 0.20 0.18 Total 101.10 101.69 100.48 97.17 97.50 100.98 101.19 100.38 101.19 100.45 100.68 102.15 101.71 100.87 101.06 101.53 101.37 101.83 101.58 101.56 101.11 102.68 101.57

APPENDIX IV EMPA analyses from the Yerila gneiss (YER-03)

Zircon

Label	zr141	zr142	zr143	zr144	zr145	zr146	zr147	zr148	zr149	zr150	zr151	zr152	zr153	zr154	zr155	zr156	zr157	zr158	zr159	zr160	zr161	zr162	zr163
Al ₂ O ₃	n.d.	0.25	n.d.																				
SiO ₂	32.89	32.59	32.23	32.53	32.54	32.60	32.65	32.00	32.42	32.60	31.96	32.53	32.56	32.24	32.30	32.46	31.96	32.40	32.60	33.02	32.62	32.78	32.67
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.									
CaO	n.d.	0.20	n.d.	n.d.	n.d.	0.15	n.d.																
FeO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.									
Y_2O_3	0.08	0.11	0.17	0.10	0.19	0.09	0.12	0.38	0.34	0.13	0.11	0.13	0.13	0.13	0.13	0.12	0.17	0.21	0.14	0.10	0.10	0.16	0.12
ZrO ₂	67.39	67.43	67.09	66.68	66.66	67.20	66.96	66.12	66.03	67.06	64.32	66.86	66.88	67.48	66.81	66.31	67.72	67.24	67.46	65.88	66.81	67.44	68.16
HfO ₂	1.97	1.77	1.88	1.75	1.80	1.59	1.55	1.35	1.65	1.57	2.03	2.08	1.73	1.73	1.69	1.53	1.72	1.71	1.54	1.93	1.66	1.80	1.89
PbO	n.d.	0.13	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.						
ThO ₂	n.d.	0.11	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.08	0.08	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.						
UO ₂	0.16	0.20	0.33	0.19	0.36	0.19	0.20	0.73	0.36	0.37	0.18	0.29	0.26	0.21	0.26	0.24	0.20	0.37	0.21	0.21	0.23	0.32	0.24
Total	102.49	102.10	101.70	101.25	101.55	101.67	101.48	100.82	100.80	101.73	99.05	101.89	101.56	101.79	101.34	100.74	101.85	101.93	101.95	101.14	101.42	102.50	103.08

Label	zr164	zr165	zr166	zr167	zr169	zr170	zr171	zr172	zr173	zr174	zr175	zr176	zr177	zr178	zr179	zr180	zr181	zr182	zr183	zr184
AI_2O_3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.25	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
SiO ₂	33.18	32.28	32.97	32.66	33.27	30.23	30.56	31.59	31.88	31.51	32.01	31.95	31.95	32.49	30.46	31.90	31.18	32.28	31.18	31.18
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CaO	n.d.	n.d.	n.d.	n.d.	n.d.	0.11	0.33	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.08	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
FeO	n.d.	n.d.	n.d.	n.d.	n.d.	0.27	0.19	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.07	n.d.	n.d.	n.d.	n.d.
Y_2O_3	0.22	0.11	0.13	0.10	0.17	0.14	0.38	0.22	0.08	0.09	0.15	0.11	0.13	0.24	0.17	0.31	0.13	0.12	0.13	0.13
ZrO ₂	68.45	66.93	67.37	67.30	67.54	66.52	65.42	65.44	67.40	67.40	66.87	67.34	66.88	67.68	66.04	66.24	66.73	66.57	66.73	66.73
HfO ₂	1.77	1.70	1.84	1.92	1.56	2.05	1.65	1.59	1.58	2.04	1.77	1.67	1.79	1.59	1.66	1.53	1.72	1.72	1.72	1.72
PbO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ThO ₂	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.09	0.11	n.d.	n.d.	n.d.	n.d.	n.d.	0.08	0.29	0.09	n.d.	n.d.	n.d.	0.17
UO ₂	0.25	0.18	0.28	0.16	0.23	0.18	0.48	0.33	0.22	0.11	0.22	0.22	0.27	0.40	0.29	0.48	0.23	0.21	0.23	0.23
Total	103.87	101.20	102.59	102.14	102.77	99.50	99.35	99.28	101.16	101.15	101.02	101.29	101.02	102.56	98.91	100.62	99.99	100.90	99.99	100.16

SERIE B :	zircon inc	lusions in	n allanite																				
Label	al7_4	al7_5	al8_4	al8_6	al8_7	al7_4	al7_5	al7_6	al8_4	al8_6	al8_7	al17_7	al16_3	al15_5	al15_8	al15_11	al11_1	al10_9	pla8_i	xx_1_2	x_1_2	x_1_3	x_1_6
Al ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
SiO ₂	31.42	32.34	31.59	31.46	31.78	33.29	33.84	32.92	33.65	33.76	33.49	32.77	33.41	33.10	33.55	33.41	32.55	32.41	32.65	32.93	32.43	32.43	32.06
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CaO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
FeO	0.26	0.31	0.45	0.27	0.30	0.22	0.31	0.33	0.54	0.00	0.29	0.38	0.41	0.00	0.45	0.35	0.00	0.35	0.00	0.00	0.32	0.00	0.42
Y_2O_3	0.40	0.19	0.21	0.25	0.22	0.47	0.06	0.06	0.06	0.06	0.28	0.72	0.40	0.34	0.06	0.34	0.59	0.39	0.06	0.06	0.30	0.06	0.06
ZrO ₂	64.09	64.39	65.62	64.56	65.02	64.10	64.03	64.82	65.14	65.20	65.09	62.44	63.32	64.55	64.20	65.68	63.06	62.80	67.45	67.42	66.02	66.16	65.83
HfO ₂	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
PbO	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
ThO ₂	0.41	0.00	0.00	0.00	0.00	0.35	0.00	0.00	0.00	0.00	0.00	0.39	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00	0.00	0.00
UO ₂	1.26	0.58	0.31	0.64	0.70	1.43	0.61	0.41	0.36	0.55	0.73	1.19	1.23	0.44	0.33	0.86	1.62	1.06	0.58	0.47	0.41	0.54	0.77
Total	97.84	97.81	98.18	97.18	98.02	99.86	98.85	98.54	99.75	99.57	99.88	97.89	98.77	98.43	98.59	100.64	98.44	97.01	100.74	100.88	99.48	99.19	99.14

BR07

BR08

224806

173754

1032675

1161802

0.22

0.15

1.0062

1.0045 0.25

0.25

0.0537

0.0537

0.0419

0.0388

0.3098

0.2872

0.0153

0.0166

0.0005

0.0005

0.0005

0.0005

0.0037

0.0035

0.0002

0.0002

357

360

±22 (2)

±23 (2)

264 ±3 (0)

245 ±3 (0)

274

256

±3 (0)

±3 (0)

307

332

±3 (1)

±4 (1)

Corrected isotopic ratios 1 sigma error Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction Yield ratio 207Pb/206Pb Pb model age (Ga) U (pp<u>m)</u> ²⁰⁷Ph/²⁰⁶Ph 206Ph/238U 207Ph/235U ²⁰⁸Ph/²³²Th Th (ppm) Th/U Xenotime-(Y) - AMPH9 487 401 (0) xen01b 9018 8488 1.06 1.0180 0.50 0.0571 0.0784 0.6177 0.0200 0 0006 0.0010 0.0075 0 0002 496 +22 (0) +6 (0) 488 ±5 (0)±4 8274 0 0797 496 494 ±6 494 ±5 424 xen01c 8364 0 99 1 0179 0 50 0.0571 0.6274 0.0212 0.0006 0.0010 0.0076 0.0002 +22 (0) (0)(0) ±4 (0) xen01d 7987 9161 0.87 1.0180 0.50 0.0570 0.0788 0.6191 0.0223 0.0006 0.0010 0.0076 0.0002 492 ±22 (0) 489 ±6 (0) 489 ±5 (0)445 ±5 (0) 0.0802 498 497 498 ±5 443 ±5 xen01e 7157 9036 0.79 1.0178 0.50 0.0572 0.6323 0.0222 0.0006 0.0010 0.0077 0.0002 +22 (0) ±6 (0) (0) (0) xen01f 2696 2438 1.11 1.0178 0.50 0.0570 0.0806 0.6332 0.0233 0.0006 0.0010 0.0081 0.0003 492 ±24 (0) 499 ±6 (0) 498 ±5 (0) 466 ±5 (0) 502 ±5 457 xen01a 8649 9287 0.93 1.0177 0.50 0.0571 0.0813 0.6391 0.0229 0.0006 0.0010 0.0078 0.0002 493 +22 (0) 504 ±6 (0) (0) ±5 (0) xen01h 6624 8460 0.78 1.0177 0.50 0.0571 0.0797 0.6273 0.0224 0.0006 0.0010 0.0078 0.0002 495 ±22 (0) 494 ±6 (0) 494 ±5 (0) 448 ±5 (0) xen02a 9241 9401 0.98 1.0177 0.50 0.0570 0.0795 0.6242 0.0216 0.0006 0.0010 0.0077 0.0002 491 +22 (0) 493 +6 (0)492 ±5 (0) 433 ±4 (0) 486 ±6 486 ±5 432 xen02b 24878 8469 2 94 1.0176 0.50 0.0569 0.0782 0.6133 0.0216 0.0006 0.0010 0.0075 0.0002 486 +22 (0) (0) (0) ±4 (0) 7930 497 ±6 496 ±5 441 xen02c 23850 3.01 1.0177 0.50 0.0569 0.0802 0.6297 0.0221 0.0006 0.0010 0.0078 0.0002 489 ±22 (0) (0)(0) ±4 (0) Xenotime-(Y) - JB06-01 HVXE01 132521 10463 12.67 1.0233 0.50 0.0569 0.0698 0.5467 0.0191 0.0006 0.0009 0.0068 0.0002 487 +22 (0 435 ±5 (0)443 ±4 (0) 382 ±4 (0) HVXE02a 155330 4499 34.53 1.0227 0.50 0.0553 0.0705 0.5366 0.0175 0.0006 0.0009 0.0067 0.0002 423 ±23 (0) 439 ±5 (0) 436 ±4 (0) 350 ±4 (0) HVXE03 440 430 432 ±4 374 130634 4961 26.33 1.0224 0.50 0.0557 0.0691 0.5298 0.0187 0.0006 0.0009 0.0066 0.0002 +23 (0) ±5 (0) (0) ±4 (0) HVXE04 10716 22795 0.47 1.0220 0.50 0.0553 0.0710 0.5403 0.0198 0.0006 0.0009 0.0066 0.0002 424 ±22 (0) 442 ±5 (0) 439 ±4 (0) 396 ±4 (0)HVXE05 10260 1.0216 0.0071 436 446 ±5 188 ±2 7963 1.29 0.50 0.0573 0.0699 0.5511 0.0094 0.0006 0.0009 0.0001 501 +23 (0) ±5 (0)(0) (0)HVXE06 1.0213 0.0009 463 471 ±5 408 4783 6896 0.69 0.50 0.0576 0.0745 0.5907 0.0204 0.0006 0.0073 0.0002 514 +22 (0) ±6 (0) (0) ±5 (0)HVXE07 8270 11880 0.70 1.0210 0.50 0.0562 0.0673 0.5211 0.0181 0.0006 0.0008 0.0065 0.0002 462 ±23 (60)420 ±5 (1) 426 ±4 (10) 362 ±4 (9) HVXE08 125580 4749 26.44 1.0207 0.50 0.0558 0.0694 0.5333 0.0186 0.0006 0.0009 0.0066 0.0002 445 ±23 (0) 433 ±5 434 ±4 (0) 372 ±4 (0)(0)HVXE09 7568 14401 0.53 0.50 0.0556 0.0728 0.5577 0.0207 0.0009 438 453 450 ±4 414 ±5 1.0206 0.0006 0.0068 0.0002 +22 (0) +5 (0)(0) (0) 401 450 413 HVXE10 20855 39413 0.53 1.0205 0.50 0.0630 0.0643 0.5577 0.0206 0.0006 0.0008 0.0068 0.0002 709 ±21 (0) ±5 (0) ±4 (0) ±4 (0) HVXE11 5612 5652 0.99 1.0202 0.50 0.0560 0.0730 0.5631 0.0173 0.0006 0.0009 0.0002 453 ±23 454 ±5 (0) 454 ±5 (0) 347 ±4 0.0070 (0) (0)HVXE12 15459 31201 0.50 1.0200 0.50 0.0586 0.0685 0.5529 0.0202 0.0006 0.0009 0.0068 0.0002 552 ±22 (0) 427 ±5 (0)447 ±4 (0) 405 ±5 (0) 446 377 HVXE13 13021 21116 0.62 1.0200 0.50 0.0561 0.0717 0.5544 0.0188 0.0006 0.0009 0.0068 0.0002 458 ±22 (31) ±5 (0)448 ±4 (5) ±4 (6) 432 438 HVXE14 9553 11817 0.81 1.0199 0.50 0.0565 0.0693 0.5395 0.0140 0.0006 0.0009 0.0066 0.0002 474 ±22 (58) ±5 (1) ±4 (10)281 ±3 (8) HVXE15 5249 5963 0.88 1.0199 0.50 0.0578 0.0738 0.5873 0.0160 0.0006 0.0009 0.0074 0.0002 523 +23 (104) 459 ±6 (1) 469 ±5 (19) 321 +4 (15)HVXE15a 5501 6661 0.83 1.0200 0.50 0.0559 0.0736 0.5667 0.0199 0.0006 0.0009 0.0070 0.0002 448 ±22 (0) 458 ±6 (0) 456 ±5 (0) 397 ±5 (0) HVXE16 6249 7461 0.84 1.0202 0.50 0.0570 0.0728 0.5721 0.0207 0.0006 0.0009 0.0072 0.0002 493 ±23 (86) 453 ±5 (1) 459 ±5 (15) 414 ±5 (12)455 ±5 413 HVXE17 5086 10491 0.48 1.0203 0.50 0.0562 0.0730 0.5650 0.0206 0.0006 0.0009 0.0070 0.0003 460 +22 (0) 454 ±6 (0) (0) ±5 (0) 457 ±5 HVXE18 4227 1.0205 0.0009 0.0002 497 ±23 (99) 450 ±5 (18) 327 (18) 6549 0.65 0.50 0.0571 0.0723 0.5689 0.0163 0.0006 0.0073 (1) ±4 HVXE19 5864 7635 0.77 1.0207 0.50 0.0559 0.0688 0.5293 0.0204 0.0006 0.0009 0.0066 0.0003 448 ±23 (0) 429 ±5 (0) 431 ±4 (0) 407 ±5 (0) Brannerite - Jacob / Hidden Valley BR01 186380 870487 0.21 1.0062 0.25 0.0539 0.0455 0.3383 0.0167 0.0005 0.0005 0.0038 0.0002 367 ±22 (2) 287 ±3 (0) 296 ±3 (0) 335 ±3 (1) 0.24 0.25 0.0538 0.3227 0.0149 0.0005 0.0005 364 ±23 274 ±3 284 ±3 300 ±3 **BR02** 213728 876832 1 0097 0.0435 0.0036 0 0002 (2) (0)(0) (1) 0.24 0.0005 346 269 277 ±3 284 BR03 198470 842776 1.0117 0.25 0.0534 0.0426 0.3140 0.0141 0.0005 0.0034 0.0001 ±22 (2) ±3 (0) (0) ±3 (1) BR04 237303 866181 0.27 1.0089 0.25 0.0538 0.0442 0.3274 0.0130 0.0005 0.0005 0.0036 0.0001 361 ±23 (2) 279 ±3 (0) 288 ±3 (0) 262 ±3 (1) BR05 234579 1025692 0.23 0.0538 0.0387 0.2868 0.0005 0.0005 0.0001 362 245 ±3 256 ±3 278 ±3 1.0046 0.25 0.0139 0.0034 +22 (2) (0)(0) (1) 0.31 366 357 358 ±3 331 ±3 **BR06** 213849 693925 1.0117 0.25 0.0539 0.0569 0 4228 0.0165 0.0005 0 0006 0.0045 0.0002 ±22 (2) ±4 (0) (0) (1)

diverse minerals

Corrected isotopic ratios 1 sigma error Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction Yield ratio ²⁰⁷Pb/²⁰⁶Pb Pb model age (Ga) Th U (ppm) Th/U ²⁰⁷Pb/²⁰⁶Pb 206Pb/238U 207Pb/235U 208Pb/232Th (ppm) # Polycrase-(Y) - FMC polv01 73137 213960 0.34 1.0294 0.50 0.0540 0.0886 0.6664 0.0222 0.0005 0.0011 0.0080 0.0002 372 ±22 (0) 547 +6 (0)519 +5 (0)443 ±3 (0) 70532 237012 0.30 1 0292 0 50 0.0528 0.0745 0.0005 0 0009 ±22 poly02 0.5470 0 0194 0.0066 0 0002 320 (0) 463 ±6 (0) 443 ±4 (0)388 +3 (0) ±22 453 ±5 439 71612 234915 0.30 1.0289 0.50 0.0535 0.0728 0.5416 0.0189 0.0005 0.0009 0.0066 0.0001 349 (0) (0) ±4 378 +3 (0) poly03 (0) poly10 67419 237379 0.28 1.0288 0.50 0.0551 0.0909 0.6970 0.0248 0.0005 0.0011 0.0085 0.0002 418 ±22 (0) 561 ±7 (0) 537 ±5 496 ±4 (0) (0)poly11 61870 231690 0.27 1.0286 0.50 0.0554 0.0936 0.7209 0.0273 0.0005 0.0012 0.0088 0.0002 426 ±22 (0) 577 ±7 (0) 551 ±5 (0) 545 ±4 (0) poly12 70236 203563 0.35 1.0284 0.50 0.0552 0.1022 0.7845 0.0257 0.0005 0.0013 0.0096 0.0002 421 ±22 (0) 627 ±7 (0) 588 ±5 (0) 512 ±4 (0) poly20 62687 202132 0.31 1.0284 0.50 0.0547 0.0963 0.7328 0.0246 0.0005 0.0012 0.0089 0.0002 400 ±22 (0) 593 ±7 (0) 558 ±5 (0) 491 ±4 (0) Titanite - Hidden Valley calcite-diopside-microcline vein tita01 305 226 1.35 1.0159 0.50 0.0628 0.1143 0.0008 0.0014 0 0005 700 (0) ±7 802 (0) 0.9895 0.0405 0 0141 +27 698 +8 (0)698 (0)+9 tita02 446 419 1.06 1.0154 0.50 0.0625 0.0937 0.8070 0.0314 0.0007 0.0012 0.0106 0.0003 691 ±24 (0)577 ±7 (0) 601 ±6 (0)626 ±7 (0)tita03 314 158 1.99 1.0146 0.50 0.0612 0.1058 0.8932 0.0342 0.0010 0.0014 0.0154 0.0004 648 ±35 (0) 648 ±8 (0) 648 ±8 (0) 679 ±8 (0) tita04 297 190 1.57 1.0148 0.50 0.0617 0.0792 0.6735 0.0302 0.0012 0.0011 0.0131 0.0004 663 ±41 (0) 491 ±6 (0) 523 ±8 601 ±8 (0) (0)301 1.0145 0.50 0.0946 0.0327 0.0007 0.0012 0.0004 659 ±25 583 ±7 (0) 598 649 ±7 (0) tita10 375 1.25 0.0616 0.8028 0.0107 (0) ±6 (0) tita11 320 145 2.21 1.0134 0.50 0.0598 0.0933 0.7690 0.0307 0.0009 0.0012 0.0127 0.0004 596 ±34 (0) 575 ±7 (0) 579 ±7 (0) 611 ±7 (0) Davidite-(La) from Mt Gee (No.10 Workings) Dav02 4106 44872 0.09 1.0164 0.25 0.0519 0.0842 0.6034 0.0261 0.0005 0.0010 0.0073 0.0002 282 ±23 (19) 521 ±6 (0) 479 ±5 (3) 522 (27) +4 Dav03 4052 48412 0.08 1.0165 0.25 0.0521 0.0869 0.6251 0.0251 0.0005 0.0011 0.0076 0.0002 291 +22 (17) 537 ±6 (0) 493 ±5 (3) 501 (27) ±4 Davidite-(La) from Mount Pleasant - South Mount Lofty Ranges DAV3201 4652 69022 0.07 1.0153 0.50 0.0497 0.1145 (20) 0.7851 0.0322 0.0005 0.0013 0.0085 0.0003 182 +23 (8) 699 +7 (0)588 +5 (2)641 +5 DAV3202 5003 77493 0.06 1.0111 0.50 0.0500 0.1112 0.7674 0.0329 0.0005 0.0013 0.0087 0.0003 197 ±23 (7) 680 ±7 (0) 578 ±5 (1) 654 ±6 (19) 144434 0.05 463 DAV3203 7424 1.0165 0.50 0.0497 0.0725 0.4967 0.0232 0.0005 0.0007 0.0049 0.0002 179 ±23 (5) 451 +4 (0) 409 ±3 (1) ±4 (12) Rutile from Skarn JB05-37 SKfX (rutile) 0.0 135 0.0000 1.0229 1.50 0.0562 0.0740 0.5729 0.0009 0.0009 0.0095 459 ±35 (0) 460 ±6 460 ±6 (0) (0) rut01 0.0 135 0 0000 1 0197 1 50 0.0575 0.0806 0.6393 24.8618 0.0010 0.0010 0.0116 511 ±39 (0) 500 ±6 (0) 502 ±7 (0) 65746 rut02 0.1 143 0.0008 1.0192 1.50 0.0594 0.0751 0.6150 1.0557 0.0010 0.0009 0.0105 0.0934 582 ±36 (0) 467 ±6 (0) 487 ±7 (0) 14565 +919(0) rut03 0.1 71 0.0014 1.0200 1.50 0.2036 0.1204 3.3808 38.0662 0.0027 0.0015 0.0467 2.4512 2855 ±22 (0) 733 ±9 (0) 1500 ±11 (0)74083 ±1270 (0) 0.0002 0.5649 0.0014 0.2398 408 ±59 464 ±6 455 ±9 rut04 0.0 135 1.0181 1.50 0.0549 0.0746 0.0983 0.0011 0.0146 (0) (0) (0) 1895 ±4486 (0)834 ±51 486 ±7 (0) 552 21685 ±1335 rut05 0.1 88 0.0014 1.0182 1.50 0.0669 0.0784 0.7224 1.9238 0.0016 0.0011 0.0174 0.1928 (0) ±10 (0) (0) rut06 0.0 133 0.0000 1.0183 1.50 0.0565 0.0746 0.5811 0.0008 0.0009 0.0086 472 ±31 (0) 464 ±5 (0) 465 ±6 (0) rut07 0.0 130 0.0002 1.0192 1.50 0.0590 0.0809 0.6581 0.4118 0.0009 0.0010 0.0104 0.1425 569 ±32 (0) 501 ±6 (0) 513 ±6 (0) 6970 ±2047 (0)

Uranium minerals,

						Correcte	d isotopic ra	atios		1 sigma	error			Ages a	and err	ors (Ma) (1	sigma)	- indica	ative erro	r related t	to comm	on lead	correction		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²	⁰⁶ Pb		²⁰⁶ Pb/	²³⁸ U		²⁰⁷ Pb/ ²³	⁸⁵ U		²⁰⁸ Pb/ ²³²	Th	
Coffinite -	Beverle	ev WC2																							
cof01	46	995448	0.0000	1.0130	0.00	0.1248	0.00013	0.00222	0.00379	0.0013	0.00001	0.00003	0.00004	2025	±18	(141)	±0.8	±0.1	(0.0)	2.3	±0.0	(0.2)	76	±1	(2078)
cof02	145	1026430	0.0001	1.0156	0.00	0.0782	0.00022	0.00237	0.00364	0.0008	0.00001	0.00003	0.00003	1151	±20	(156)	±1.4	±0.1	(0.0)	2.4	±0.0	(0.2)	73	±1	(676)
cof03	18	923608	0.0000	1.0174	0.00	0.0601	0.00034	0.00286	0.00463	0.0006	0.00001	0.00003	0.00005	609	±22	(160)	±2.2	±0.1	(0.0)	2.9	±0.0	(0.2)	93	±1	(5637)
cof04	175	1538763	0.0001	1.0120	0.00	0.0963	0.00014	0.00191	0.00372	0.0010	0.00001	0.00002	0.00003	1554	±19	(120)	±0.9	±0.1	(0.0)	1.9	±0.0	(0.1)	75	±1	(568)
cof05	23	1716439	0.0000	1.0201	0.00	0.0692	0.00021	0.00197	0.00461	0.0007	0.00001	0.00002	0.00004	904	±20	(119)	±1.3	±0.1	(0.0)	2.0	±0.0	(0.1)	93	±1	(4052)
cof06	1057	1347209	0.0008	1.0154	0.00	0.0726	0.00064	0.00640	0.00259	0.0007	0.00001	0.00008	0.00002	1004	±20	(44)	±4.1	±0.0	(0.0)	6.5	±0.1	(0.2)	52	±0	(98)
cof07	145	586259	0.0002	1.0177	0.00	0.0971	0.00017	0.00228	0.00304	0.0010	0.00001	0.00002	0.00003	1568	±19	(243)	±1.1	±0.1	(0.0)	2.3	±0.0	(0.3)	61	±1	(656)
cof08	76	1025206	0.0001	1.0159	0.00	0.1418	0.00006	0.00102	0.00331	0.0016	0.00001	0.00001	0.00004	2250	±19	(330)	±0.4	±0.1	(0.0)	1.0	±0.0	(0.2)	67	±1	(1401)
cof08b	314	960749	0.0003	1.0131	0.00	0.1575	0.00003	0.00069	0.00350	0.0018	0.00001	0.00001	0.00003	2429	±19	(445)	±0.2	±0.0	(0.0)	0.7	±0.0	(0.2)	71	±1	(308)
cof08c	41	607466	0.0001	1.0093	0.00	0.0672	0.00022	0.00199	0.00312	0.0007	0.00001	0.00002	0.00004	843	±22	(327)	±1.4	±0.0	(0.0)	2.0	±0.0	(0.3)	63	±1	(2316)
cof09	249	1334404	0.0002	1.0137	0.00	0.0583	0.00013	0.00104	0.00380	0.0006	0.00001	0.00001	0.00003	540	±22	(363)	±0.8	±0.0	(0.0)	1.1	±0.0	(0.2)	77	±1	(446)
cof10	319	1194741	0.0003	1.0174	0.00	0.0771	0.00004	0.00050	0.00311	0.0009	0.00001	0.00001	0.00003	1123	±22	(680)	±0.3	±0.0	(0.0)	0.5	±0.0	(0.2)	63	±1	(320)
cof10b	879	464343	0.0019	1.0150	0.00	0.0468	0.00105	0.00674	0.1186	0.0005	0.00001	0.00007	0.0009	37	±24	(152)	±6.8	±0.1	(0.0)	6.8	±0.1	(0.5)	2266	±17	(105)
Carnotite –	Beverl	ey WC2																							
carn01	31	399695	0.0001	1.0076	0.00	0.0464	0.00085	0.00542	0.5446	0.0005	0.00001	0.00006	0.0053	21	±24	(232)	±5.5	±0.1	(0.0)	5.5	±0.1	(0.6)	8788	±70	(2280)
carn02	90	1414164	0.0001	1.0168	0.00	0.0463	0.00066	0.00425	0.8618	0.0005	0.00001	0.00005	0.0079	13	±24	(96)	±4.3	±0.1	(0.0)	4.3	±0.1	(0.2)	12563	±86	(711)
carn03	37	339625	0.0001	0.9952	0.00	0.0462	0.00072	0.00457	0.2970	0.0005	0.00001	0.00006	0.0035	11	±25	(337)	±4.6	±0.1	(0.0)	4.6	±0.1	(0.7)	5256	±55	(2282)
carn04	67	661112	0.0001	1.0116	0.00	0.0464	0.00065	0.00418	0.5720	0.0005	0.00001	0.00005	0.0056	17	±24	(186)	±4.2	±0.1	(0.0)	4.2	±0.0	(0.3)	9143	±72	(1036)
carn05	25	1209663	0.0000	1.0069	0.00	0.0465	0.00055	0.00352	1.7686	0.0005	0.00001	0.00004	0.0221	22	±24	(130)	±3.5	±0.1	(0.0)	3.6	±0.0	(0.2)	20583	±161	(1720)
carn06	228	1166612	0.0002	1.0204	0.00	0.0462	0.00053	0.00336	0.0468	0.0005	0.00001	0.00004	0.0005	9	±24	(154)	±3.4	±0.1	(0.0)	3.4	±0.0	(0.2)	925	±9	(549)
carn07	25	740907	0.0000	0.9933	0.00	0.0463	0.00063	0.00402	1.3572	0.0005	0.00001	0.00005	0.0165	11	±25	(179)	±4.1	±0.1	(0.0)	4.1	±0.0	(0.3)	17331	±142	(2035)
carn08	283	1530451	0.0002	1.0066	0.00	0.0467	0.00079	0.00508	0.1377	0.0005	0.00001	0.00007	0.0014	35	±24	(79)	±5.1	±0.1	(0.0)	5.1	±0.1	(0.2)	2608	±25	(377)
carn09	242	1130958	0.0002	1.0200	0.00	0.0466	0.00069	0.00442	0.1237	0.0005	0.00001	0.00006	0.0012	29	±24	(125)	±4.4	±0.1	(0.0)	4.5	±0.1	(0.2)	2358	±21	(492)

```
Allanite, zircon...
```

Corrected isotopic ratios 1 sigma error Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction Yield ratio ²⁰⁷Pb/²⁰⁶Pb Pb model age (Ga) Th U (ppm) Th/U ²⁰⁷Pb/²⁰⁶Pb 206Pb/238U 207 Pb/235U 208Pb/232Th (ppm) Skarn JB05-37 - Allanite-(Ce), zircon, apatite, thorite SKz01 282 1929 0.15 1.0268 1.50 0.0952 0.2349 3.0829 0.0525 0.0010 0.0028 0.0365 0.0006 1532 ±19 (0) 1360 ±15 (0) 1428 +9 (0)1035 ±11 (0) SKz02 5075 12210 0.42 1.0262 1.50 0.0013 795 ±6 (18) 0.0817 0.1055 1.1883 0.0163 0.0008 0.0140 0.0002 1238 ±19 (27) 647 ±7 (1) (8) 327 ±3 426 1.0255 1.50 416 432 ±5 (0) SKz03 1016 0 42 0.0577 0.0667 0.5310 0.0201 0.0008 0.0008 0.0079 0.0003 519 ±30 (0) ±5 (0) (0) 402 ±6 SKz04 6 79 0.07 1.0245 1.50 0.1489 0.1490 3.0586 1.1676 0.0023 0.0020 0.0490 0.0204 2333 ±27 (0) 896 ±11 (0) 1422 ±12 (0) 15636 ±191 (0) SKz05 241 2193 0.11 1.0243 1.50 0.0948 0.2654 3.4683 0.0871 0.0009 0.0032 0.0413 0.0009 1524 ±19 (0) 1517 ±16 (0) 1520 ±9 (0) 1688 ±17 (0) all01 6563 138 47.73 1.0189 1.50 0.0820 0.2811 3.1775 0.0704 0.0011 0.0036 0.0447 0.0007 1246 ±26 (831) 1597 ±18 (51) 1452 ±11 (334) 1375 ±13 (11) all01b 193 764 0.25 1.0187 1.50 0.0797 0.1618 1.7768 0.0756 0.0008 0.0020 0.0216 0.0008 1189 ±21 (246) 967 ±11 (10) 1037 ±8 (88) 1474 ±15 (376) 1.50 0.0838 0.0628 0.0008 1289 1327 1312 all02 3794 615 6 17 1.0185 0.2286 2.6419 0.0027 0.0314 0 0006 ±20 (200) ±14 (12) ±9 (83) 1231 ±12 (19)all03 764 786 0.97 1.0183 1.50 0.0790 0.1518 1.6527 0.0592 0.0008 0.0018 0.0197 0.0006 1171 ±20 (257) 911 ±10 (10) 991 ±8 (89) 1163 ±11 (97) all04 381 992 0.38 1.0182 1.50 0.0775 0.1506 1.6088 0.0815 0.0008 0.0018 0.0193 0.0008 1133 ±20 (210) 905 ±10 (8) 974 ±7 (72) 1584 ±15 (190)897 260 3.45 1.0171 1.50 0.0822 0.0723 0.0228 0.0012 0.0009 0.0125 0.0003 1250 ±28 450 608 ±7 456 apa02 0.8195 (0) ±6 (0) (0) ±5 (0) thsi01 1595624 440697 3.62 1.0175 1.50 0.0520 0.0265 0.1897 0.0078 0.0005 0.0003 0.0022 0.0001 285 ±23 (5) 168 ±2 (0) 176 ±2 (0) 157 ±2 (0) fluo01 26 110 0.24 1.0172 1.50 0.0826 0.3417 3.8915 1.6958 0.0009 0.0044 0.0505 0.0209 1260 ±22 (849) 1895 ±21 (61) 1612 ±10 (358) 20045 ±157 (1130)zr01 9297 18901 0.49 1.0171 1.50 0.0811 0.1126 1.2593 0.0224 0.0008 0.0014 0.0151 0.0002 1224 ±20 (14) 688 ±8 (0) 828 ±7 (4) 447 +4 (8) Yerila SS (YER-03) allanite-(Ce) Yerall1 6844 60 113.55 1.0135 1.50 0.0896 0.6492 8.0213 0.0742 0.0009 0.0080 0.0990 0.0006 1417 ±20 (579)3225 +31 (75) 2233 ±11 (293)1447 ±12 (11) 8735 137 1.0136 1471 2253 (60) 1872 ±11 ±13 (11) Yerall1b 63.77 1.50 0.0922 0.4184 5.3167 0.0818 0.0009 0.0052 0.0654 0.0007 ±19 (596) ±24 (287) 1590 Yerall2 8450 150 56.27 1.0137 1.50 0.1250 0.2907 5.0091 0.0802 0.0013 0.0036 0.0631 0.0007 2029 ±19 (0) 1645 ±18 (0) 1821 ±11 (0) 1560 ±13 (0) 161 1.50 3.4468 0.0010 1462 1553 ±17 1515 ±10 1593 Yerall2b 9146 56.71 1.0137 0.0917 0.2725 0.0820 0.0034 0.0430 0.0007 ±20 (585) (43) (258) ±13 (9) Yerall2c 8935 156 57.37 1.0140 1.50 0.1285 0.2905 5.1481 0.0804 0.0014 0.0036 0.0648 0.0007 2078 ±19 (0) 1644 ±18 (0) 1844 ±11 (0) 1564 ±13 (0) 221 1.50 0.0763 0.0014 2187 1685 ±18 1922 ±11 1487 Yerall3a 12244 55.35 1.0139 0.1368 0.2988 5.6362 0.0037 0.0707 0.0007 ±18 (0) (0) (0) ±12 (0) 8074 131 0.0765 0.0010 1495 1718 Yerall3b 61.77 1.0141 1.50 0.0934 0.3440 4.4281 0.0043 0.0549 0.0006 ±20 (586) 1906 ±20 (52) ±10 (275) 1489 ±12 (10)Yerall3c 8158 105 77.60 1.0147 1.50 0.0935 0.4049 5.2195 0.0738 0.0010 0.0051 0.0661 0.0006 1498 ±20 (833) 2191 ±23 (79) 1856 ±11 (390) 1439 ±12 (12) Yerall4a 10125 86 117.65 1.0141 1.50 0.0796 0.4543 4.9885 0.0705 0.0009 0.0057 0.0633 0.0006 1188 ±21 (4173) 2414 ±25 (145) 1817 ±11 (919) 1377 ±11 (11) Yerall4b 8291 85 97.45 1.0144 1.50 0.0804 0.4911 5.4472 0.0743 0.0008 0.0061 0.0676 0.0006 1207 ±20 (1037) 2575 ±26 (88) 1892 ±11 (449) 1448 ±12 (11)

Zircons - mafic intrusives,

Corrected isotopic ratios 1 sigma error Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction Yield ratio 207Pb/206Pb Pb model age (Ga) Th U (ppm) Th/U ²⁰⁷Pb/²⁰⁶Pb 206Pb/238U 207 Pb/235U ²⁰⁸Pb/²³²Th # (ppm) Zircons from amphibolite dike AMPH10-11 Amp11 1092 1002 1.09 1.0149 1.00 0.0637 0.0327 0.2870 0.0169 0.0007 0.0004 0.0036 0.0002 730 ±22 (1047)207 +3 (7) 256 ±3 (105) 339 ±3 (79) 1382 1256 0.0346 602 ±7 (0) 664 ±6 ±6 Amp11 1.10 1.0148 1 00 0.0684 0.0978 0.9226 0.0007 0.0012 0.0117 0.0003 880 ±22 (0)(0)688 (0) 566 538 848 ±23 783 ±9 (0) 801 ±7 792 ±7 (0) 1.05 0.0673 0.1292 1.2001 0.0400 0.0007 0.0016 0.0156 0.0004 (0)Amp11 1.0150 1.00 (0) Amp11 1333 957 1.39 1.0151 1.00 0.0961 0.1125 1.4909 0.0352 0.0010 0.0014 0.0190 0.0003 1550 ±20 (0) 687 ±8 (0) 927 ±8 (0) 700 ±6 (0) Amp11 499 1611 0.31 1.0153 1.00 0.1099 0.1031 1.5635 0.0280 0.0011 0.0013 0.0194 0.0003 1798 ±19 (0)633 ±7 (0) 956 ±8 (0)558 ±5 (0) Amp11 234 238 0.98 1.0150 1.00 0.0748 0.1201 1.2395 0.0419 0.0009 0.0015 0.0168 0 0004 1064 ±24 (0) 731 ±9 (0) 819 ±8 (0) 829 ±9 (0) Amp11 7 20 0.34 1.0138 1.00 0.1530 0.0942 1.9886 0.0680 0.0036 0.0015 0.0446 0.0015 2380 ±40 (0) 580 ±9 (0) 1112 ±15 (0) 1329 ±28 (0) 41 1.6769 0.0027 0.0013 0.0320 2244 ±33 532 1000 1255 Amp11 26 0.64 1.0156 1.00 0.1413 0.0860 0.0641 0.0011 (0) ±8 (0) ±12 (0) ±21 (0) Amp10 143 342 0.42 1.0160 1.00 0.0962 0.2733 3.6281 0.0763 0.0010 0.0034 0.0458 0 0008 1552 ±20 (0) 1557 ±17 (0) 1556 ±10 (0) 1487 ±15 (0) 520 673 Amp10 66 178 0.37 1.0151 1.00 0.0768 0.0840 0.8906 0.0338 0.0010 0.0011 0.0133 0.0005 1117 ±27 (0) ±6 (0) 647 ±7 (0) ±9 (0) Zircons from microgabbro - Hidden Valley grey01 508 1132 0.45 1.0191 1.00 0.1908 2.2375 0.0547 0.0009 0.0022 0.0258 0.0006 1317 ±20 1126 ±12 1193 ±8 1077 ±11 (0) 0.0851 (0) (0) (0) 963 1545 1321 ±9 1176 ±12 grey02 0.62 1.0191 1.00 0.0908 0.2136 2.6743 0.0599 0.0009 0.0025 0.0310 0.0006 1443 ±20 (0) 1248 ±13 (0) (0) (0) 1406 1968 0.71 1.0191 1.00 0.0971 0.2658 3.5551 0.0766 0.0010 0.0031 0.0411 0.0008 1568 ±19 1519 ±16 (0) 1540 ±9 (0) 1491 ±15 (0) grey03 (0) grey04 641 1620 0.40 1.0191 1.00 0.0976 0.2642 3.5522 0.0746 0.0010 0.0031 0.0407 0.0008 1578 ±19 (0) 1511 ±16 (0) 1539 ±9 (0) 1454 ±14 (0) 618 1367 3.6522 0.0753 1561 ±9 (0) 1468 ±14 (0) grey05 0.45 1.0190 1.00 0.0976 0.2715 0.0010 0.0031 0.0418 0.0008 1579 ±19 (0) 1548 ±16 (0) 1854 1952 0.0755 0.0419 1550 1563 ±9 (0) 1472 ±14 grey06 0.95 1.0190 1.00 0.0977 0.2719 3.6619 0.0010 0.0032 0.0008 1581 ±19 (0) ±16 (0) (0) grey07 798 2551 0.31 1.0189 1.00 0.0947 0.2475 3.2306 0.0714 0.0010 0.0029 0.0375 0.0008 1522 ±19 (0) 1426 ±15 (0) 1465 ±9 (0) 1394 ±15 (0) 1474 1.00 0.0974 0.2696 3.6198 0.0756 0.0010 0.0417 1539 1554 ±9 (0) 1473 ±15 grey08 510 0.35 1.0189 0.0031 0.0008 1575 ±19 (0) ±16 (0) (0) grey09 583 1919 0.30 1.0189 1.00 0.0940 0.2316 3.0015 0.0649 0.0010 0.0027 0.0348 0.0007 1508 ±19 (0) 1343 ±14 (0) 1408 ±9 (0) 1270 ±13 (0) 1489 1974 0.2532 3.3793 0.0714 0.0010 0.0389 0.0007 1455 ±15 1500 ±9 1394 ±13 grey10 0.75 1.0188 1.00 0.0968 0.0030 1564 ±19 (0) (0) (0) (0) 2992 3555 3.6142 0.0743 0.0418 0.0007 1527 1553 ±9 1449 ±14 0.84 1.0187 1.00 0.0981 0.2673 0.0010 0.0031 1588 ±18 ±16 (0) (0) (0) grey11 (0)grey12 496 1303 0.38 1.0186 1.00 0.0957 0.2392 3.1565 0.0686 0.0010 0.0028 0.0371 0.0007 1543 ±19 (0) 1382 ±15 (0) 1447 ±9 (0) 1340 ±14 (0) grey13 567 2154 0.26 1.0186 1.00 0.0887 0.2057 2.5161 0.0617 0.0009 0.0024 0.0294 0.0006 1399 ±19 (0)1206 ±13 (0) 1277 ±9 (0) 1209 ±12 (0) grey14 1021 1747 0.58 1.0185 1.00 0.0933 0.2322 2.9860 0.0640 0.0009 0.0028 0.0352 0.0007 1494 ±19 (0) 1346 ±14 (0) 1404 ±9 (0) 1253 ±13 (0) 1510 grey15 799 2000 0.40 1.0184 1.00 0.0965 0.2575 3.4253 0.0736 0.0010 0.0031 0.0406 0.0008 1557 ±19 (0) 1477 ±16 (0) ±9 (0) 1436 ±15 (0) 1022 1928 0.53 1.0185 0.0977 0.2648 3.5646 0.0752 0.0010 0.0032 0.0419 0.0008 1580 ±19 1514 (0) 1542 ±9 (0) 1466 ±14 (0) grey16 1.00 (0) +16 586 1842 0 32 0.1865 2.1665 0.0520 0.0009 0.0022 0.0259 0 0006 1299 ±20 1102 ±12 (0) 1170 ±8 (0) 1024 ±11 (0) 1.0184 1.00 0.0843 (0)grey17 1363 grey18 784 1697 0.46 1.0184 1.00 0.0926 0.2217 2.8289 0.0611 0.0010 0.0027 0.0348 0.0007 1479 ±20 (0) 1291 ±14 (0) ±9 (0) 1199 ±14 (0) grey19 1291 1826 0.71 1.0182 1.00 0.0826 0.1696 1.9318 0.0458 0.0009 0.0021 0.0239 0.0005 1260 ±21 (0) 1010 ±11 (0) 1092 ±8 (0) 906 ±10 (0) grey21 639 1444 0.44 1.0183 1.00 0.0971 0.2557 3.4245 0.0686 0.0010 0.0031 0.0409 0.0007 1570 ±19 (0) 1468 ±16 (0) 1510 ±9 (0) 1341 ±14 (0)

Corrected isotopic ratios

Zircon – YER-03

Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction

#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/	²⁰⁶ Pb		²⁰⁶ Pb/ ⁴	²³⁸ U		²⁰⁷ Pb/ ²³	³⁵ U		²⁰⁸ Pb/ ²³²	²Th	
YERILA ((YER-03)) zircons -	- T=85	0℃/2h	treatr	nent. Y	TL=ider	n + leac	hina HF	/ From	YET1:	2005 c	lata												
YT02b	613	589	1.04	1.0127	1.50	0.0993	0.2868	3.9278	0.0697	0.0010	0.0031	0.0430	0.0006	1612	±19	(0)	1625	±15	(0)	1619	±9	(0)	1362	±12	(0)
YT03	279	854	0.33	1.0135	1.50	0.0991	0.2845	3.8861	0.1027	0.0011	0.0033	0.0479	0.0011	1607	±21	(0)	1614	±16	(0)	1611	±10	(0)	1975	±20	(0)
YT04	478	790	0.60	1.0155	1.50	0.0990	0.3324	4.5351	0.0769	0.0011	0.0037	0.0551	0.0008	1605	±21	(0)	1850	±18	(0)	1737	±10	(0)	1497	±15	(0)
YT05	1365	1284	1.06	1.0142	1.50	0.0971	0.2620	3.5089	0.0738	0.0010	0.0030	0.0409	0.0007	1570	±20	(0)	1500	±15	(0)	1529	±9	(0)	1439	±13	(0)
YT06	744	2101	0.35	1.0143	1.50	0.0971	0.2784	3.7251	0.0535	0.0010	0.0032	0.0429	0.0005	1568	±19	(0)	1583	±16	(0)	1577	±9	(0)	1054	±10	(0)
YT07	638	713	0.90	1.0124	1.50	0.0971	0.2733	3.6594	0.0746	0.0010	0.0029	0.0395	0.0007	1569	±19	(0)	1558	±15	(0)	1563	±9	(0)	1454	±12	(0)
YT08	2269	1595	1.42	1.0093	1.50	0.0899	0.3149	3.8989	0.0289	0.0011	0.0037	0.0511	0.0003	1423	±23	(59)	1765	±18	(5)	1613	±11	(28)	576	±7	(41)
YT09	223	1019	0.22	1.0144	1.50	0.0974	0.2815	3.7788	0.0637	0.0011	0.0033	0.0469	0.0008	1575	±20	(0)	1599	±17	(0)	1588	±10	(0)	1249	±14	(0)
YT10	516	1876	0.27	1.0145	1.50	0.0992	0.2779	3.7977	0.0942	0.0011	0.0033	0.0459	0.0010	1608	±20	(0)	1581	±16	(0)	1592	±10	(0)	1820	±19	(0)
YT11	337	1129	0.30	1.0099	1.50	0.1017	0.2937	4.1140	0.1024	0.0014	0.0041	0.0669	0.0016	1655	±26	(0)	1660	±20	(0)	1657	±13	(0)	1971	±30	(0)
YT12	606	1417	0.43	1.0135	1.50	0.0977	0.2750	3.7013	0.0802	0.0011	0.0032	0.0466	0.0009	1580	±21	(0)	1566	±16	(0)	1572	±10	(0)	1559	±17	(0)
YTL201	495	1011	0.49	1.0145	1.50	0.0961	0.2706	3.5865	0.0422	0.0011	0.0033	0.0460	0.0005	1550	±21	(0)	1544	±17	(0)	1547	±10	(0)	836	±9	(0)
YTL202	113	485	0.23	1.0140	1.50	0.0977	0.3554	4.7856	0.0896	0.0012	0.0042	0.0649	0.0013	1580	±23	(0)	1960	±20	(0)	1782	±11	(0)	1735	±24	(0)
YTL203	515	716	0.72	1.0150	1.50	0.0976	0.2742	3.6866	0.0757	0.0012	0.0035	0.0524	0.0009	1578	±23	(0)	1562	±18	(0)	1568	±11	(0)	1474	±17	(0)
YTL204	288	2200	0.13	1.0131	1.50	0.0970	0.2681	3.5837	0.0866	0.0010	0.0031	0.0424	0.0010	1566	±20	(0)	1531	±16	(0)	1546	±9	(0)	1679	±18	(0)
YTL205	782	1452	0.54	1.0154	1.50	0.0975	0.2604	3.4988	0.0599	0.0010	0.0029	0.0403	0.0006	1576	±20	(0)	1492	±15	(0)	1527	±9	(0)	1175	±11	(0)
YTL206	18	42	0.43	1.0155	1.50	0.1540	0.2239	4.7532	0.1774	0.0040	0.0033	0.1192	0.0037	2391	±44	(0)	1303	±17	(0)	1777	±21	(0)	3302	±64	(0)
YTL207	315	1595	0.20	1.0156	1.50	0.0964	0.2736	3.6348	0.0591	0.0010	0.0031	0.0428	0.0007	1555	±20	(0)	1559	±16	(0)	1557	±9	(0)	1160	±13	(0)
YTL208	887	533	1.66	1.0142	1.50	0.0916	0.3538	4.4705	0.0252	0.0011	0.0041	0.0590	0.0003	1460	±23	(159)	1953	±20	(15)	1726	±11	(77)	502	±6	(110)
YTL209	178	285	0.62	1.0153	1.50	0.1012	0.3112	4.3435	0.0524	0.0014	0.0036	0.0609	0.0007	1647	±25	(0)	1746	±18	(0)	1702	±12	(0)	1033	±14	(0)
YET1	264	467	0.57	0.9912	1.50	0.1028	0.2688	3.7955	0.0437	0.0020	0.0035	0.0758	0.0010	1675	±36	(0)	1535	±18	(0)	1592	±16	(0)	865	±19	(0)
YET1b	782	631	1.24	0.9893	1.50	0.0985	0.2676	3.6224	0.0689	0.0012	0.0031	0.0470	0.0007	1596	±22	(0)	1529	±16	(0)	1554	±10	(0)	1346	±14	(0)
YET2b	835	680	1.23	0.9874	1.50	0.1000	0.2646	3.6360	0.0677	0.0011	0.0030	0.0441	0.0007	1624	±20	(0)	1513	±15	(0)	1557	±10	(0)	1325	±13	(0)
YE3b	316	460	0.69	0.9854	1.50	0.1003	0.2681	3.6950	0.0461	0.0013	0.0031	0.0505	0.0006	1629	±24	(0)	1531	±16	(0)	1570	±11	(0)	910	±11	(0)
YE4	245	32714	0.01	0.9836	1.50	0.0977	0.0153	0.2049	0.0698	0.0011	0.0002	0.0024	0.0008	1581	±20	(0)	98	±1	(0)	189	±2	(0)	1364	±16	(0)
YET5	309	401	0.77	0.9760	1.50	0.0979	0.2703	3.6400	0.0765	0.0011	0.0030	0.0432	0.0008	1585	±21	(0)	1542	±15	(0)	1558	±9	(0)	1490	±15	(0)
YET5bcore	444	612	0.73	0.9742	1.50	0.1002	0.2711	3.7369	0.0737	0.0017	0.0032	0.0636	0.0011	1627	±31	(0)	1546	±16	(0)	1579	±14	(0)	1436	±20	(0)
YET5b	440	654	0.67	0.9722	1.50	0.1007	0.2681	3.7152	0.0743	0.0015	0.0030	0.0550	0.0010	1637	±27	(0)	1531	±15	(0)	1575	±12	(0)	1448	±18	(0)
YET7	641	15139	0.04	0.9686	1.50	0.0960	0.0255	0.3362	0.0702	0.0020	0.0003	0.0068	0.0014	1548	±39	(0)	162	±2	(0)	294	±5	(0)	1372	±27	(0)
YET8	221	29738	0.01	0.9666	1.50	0.0984	0.0146	0.1975	0.0639	0.0017	0.0002	0.0033	0.0017	1594	±31	(0)	93	±1	(0)	183	±3	(0)	1251	±32	(0)
YET9	16	11	1.40	0.9601	1.50	0.2395	0.4926	16.2280	0.1882	0.0084	0.0100	0.5438	0.0049	3117	±56	(0)	2582	±43	(0)	2890	±32	(0)	3486	±84	(0)
YET9b	196	169	1.16	0.9590	1.50	0.1211	0.3864	6.4336	0.0657	0.0015	0.0041	0.0821	0.0008	1972	±23	(0)	2106	±19	(0)	2037	±11	(0)	1285	±15	(0)
YET9c	263	1082	0.24	0.9571	1.50	0.0957	0.2736	3.6005	0.0493	0.0011	0.0028	0.0415	0.0006	1542	±21	(0)	1559	±14	(0)	1550	±9	(0)	972	±12	(0)
YET11rim	963	19511	0.05	0.9553	1.50	0.0945	0.0255	0.3313	0.0892	0.0013	0.0003	0.0045	0.0011	1519	±26	(0)	162	±2	(0)	291	±3	(0)	1727	±21	(0)
YET11	904	1452	0.62	0.9534	1.50	0.0974	0.3344	4.4741	0.1034	0.0011	0.0034	0.0507	0.0011	1574	±21	(0)	1859	±16	(0)	1726	±9	(0)	1990	±20	(0)
YET13	940	1191	0.79	0.9477	1.50	0.0983	0.3126	4.2211	0.0635	0.0012	0.0032	0.0516	0.0007	1593	±23	(0)	1753	±16	(0)	1678	±10	(0)	1244	±14	(0)
YET13b	462	1169	0.40	0.9458	1.50	0.0989	0.2262	3.0707	0.0714	0.0012	0.0023	0.0355	0.0008	1603	±22	(0)	1315	±12	(0)	1425	±9	(0)	1393	±15	(0)
YET14	149	481	0.31	0.9439	1.50	0.0985	0.2859	3.8655	0.0881	0.0012	0.0028	0.0442	0.0010	1596	±22	(0)	1621	±14	(0)	1607	±9	(0)	1707	±19	(0)
YET14b	155	461	0.34	0.9419	1.50	0.0971	0.2936	3.9115	0.0818	0.0011	0.0029	0.0444	0.0010	1569	±22	(0)	1659	±14	(0)	1616	±9	(0)	1588	±18	(0)
YET15	197	120	1.64	0.9373	1.50	0.0741	0.1023	1.0399	0.0341	0.0014	0.0011	0.0190	0.0004	1044	±38	(0)	628	±6	(0)	724	±9	(0)	677	±8	(0)

1 sigma error

						Correcte	d isotopic	ratios		1 sigma	error			Ages	and er	rors (Ma) (1 sigma)	- indic	ative erro	r related t	o comm	on lead	correction		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/	²⁰⁶ Pb		²⁰⁶ Pb/ ²	²³⁸ U		²⁰⁷ Pb/ ²	³⁵ U		²⁰⁸ Pb/ ²³	² Th	
YERILA	- YER-03	zircons	untreate	ed																					
YEB1	136	1128	0.12	0 9345	1.50	0 0957	0 2673	3 5025	0 0795	0.0015	0 0027	0.0521	0.0018	1541	+29	(0)	1527	+14	(0)	1528	+12	(0)	1546	+34	(0)
YEB2	666	525	1.27	0.9326	1.50	0.0976	0.1986	2.6526	0.0612	0.0014	0.0020	0.0358	0.0007	1578	+27	(0)	1168	+11	(0)	1315	+10	(0)	1200	+13	(0)
YER3	296	536	0.55	0.9306	1.50	0.1003	0.3058	4.1995	0.1186	0.0013	0.0030	0.0531	0.0014	1630	±25	(0)	1720	±15	(0)	1674	±10	(0)	2266	±26	(0)
YER4	1116	71786	0.02	0.9288	1.50	0.0678	0.0192	0.1784	0.1702	0.0008	0.0002	0.0019	0.0018	862	±23	(0)	123	±1	(0)	167	±2	(0)	3178	±31	(0)
YER5	132	435	0.30	0.9269	1.50	0.0986	0.3002	4.0467	0.1349	0.0012	0.0028	0.0460	0.0016	1598	±23	(0)	1692	±14	(0)	1644	±9	(0)	2558	±28	(0)
YER6	448	517	0.87	0.9248	1.50	0.0858	0.1933	2.2670	0.0438	0.0012	0.0019	0.0289	0.0005	1334	±26	(0)	1139	±10	(0)	1202	±9	(0)	867	±10	(0)
YEB5 - 7	ircons (84	50°C / 2ŀ	n)																						
VerV01	449	1656	·/ 0.27	1 0163	1 50	0.0957	0 2202	2 9045	0.0466	0.0010	0 0027	0.0357	0.0005	1542	+19	(0)	1283	+14	(0)	1383	+9	(0)	921	+10	(0)
YerV02	979	1592	0.62	1.0163	1.50	0.0957	0.2103	2 7735	0.0263	0.0010	0.0026	0.0346	0.0003	1541	+20	(0)	1231	+14	(0)	1348	+9	(0)	524	+6	(0)
YerV03	723	1625	0.45	1.0164	1.50	0.0960	0.2424	3.2073	0.0698	0.0010	0.0030	0.0395	0.0007	1548	+19	(0)	1399	+16	(0)	1459	+10	(0)	1363	+14	(0)
YerV04	2638	1773	1.49	1.0163	1.50	0.0795	0.0868	0.9510	0.0225	0.0008	0.0011	0.0119	0.0002	1184	±21	(0)	537	±6	(0)	679	±6	(0)	449	±5	(0)
Zircons 1	Terraninn:	a (TERA	P2) - 85	50℃/2h																					
torop02	27	00	0.46	1 0150	1 50	0.0050	0.2151	0 0170	0.0662	0.0010	0.0026	0.0250	0 0009	1520	+20	(121)	1056	+14	(9)	1260	+0	(52)	1205	+15	(250)
peg102	103	02 330	0.46	1.0159	1.50	0.0950	0.2151	2.01/3	0.0002	0.0010	0.0020	0.0350	0.0006	1529	±20 +20	(121)	1230	±14 +16	(o) (0)	1/01	±9 +10	(0)	1/88	±13 +18	(350)
peg102	235	427	0.55	1.0158	1.50	0.0000	0.2636	3 5395	0.07.04	0.0010	0.0001	0.0410	0.0010	1575	+19	(0)	1508	+16	(0)	1536	+10	(0)	1557	+16	(0)
peg100	103	372	0.00	1.0157	1.50	0.0975	0.2572	3 4558	0.0798	0.0010	0.0031	0.0426	0.0010	1576	+19	(0)	1475	+16	(0)	1517	+10	(0)	1553	+18	(0)
terap01	141	315	0.45	1.0159	1.50	0.0979	0.2480	3.3454	0.0714	0.0011	0.0031	0.0427	0.0009	1584	+20	(0)	1428	+16	(0)	1492	+10	(0)	1394	+17	(0)
terap02	147	522	0.28	1.0159	1.50	0.0998	0.2783	3.8297	0.0964	0.0011	0.0034	0.0485	0.0013	1621	±20	(0)	1583	±17	(0)	1599	±10	(0)	1860	±23	(0)
Titanito 1	Ferraninn		P2) 850	1°C / 2h	`																				
	40		0.75	1 01 40	1 50	0.0070	0.0700	0.0540	0.0010	0.0011	0.0000	0.0100	0.0005	000	.00	(0)			(0)		. 7	(0)	010	. 10	(0)
peg 101 torX01	40	63 50	0.75	1.0140	1.50	0.0070	0.0700	0.6540	0.0310	0.0011	0.0009	0.0100	0.0005	009	±33 ±24	(0)	441	±0	(0)	511	±7	(0)	616	±0	(0)
terX02	103	39 811	0.30	1.0123	1.50	0.0719	0.0712	1 8696	0.0304	0.0012	0.0009	0.0122	0.0005	1182	+26	(0)	1016	±0 +12	(0)	1070	±/ +10	(0)	1181	19 +17	(0)
terX02	45	0/1	0.47	1.0150	1.50	0.0732	0.0664	0.6703	0.0002	0.0013	0.0022	0.0270	0.0003	1010	+37	(0)	/15	+5	(0)	521	+8	(0)	603	±17 +11	(0)
terX04	43	62	0.70	1.0135	1.50	0.0750	0.0697	0.7209	0.0304	0.0018	0.0010	0.0120	0.0007	1068	±47	(0)	435	±6	(0)	551	±10	(0)	606	±13	(0)
SED-BAI	D - Alluvia	al zircons	s on YE	RILA																					
sb01	91	70	1.30	1.0162	1.50	0.1685	0.0275	0.6385	0.0165	0.0049	0.0005	0.0169	0.0004	2542	±48	(0)	175	±3	(0)	501	±10	(0)	330	±8	(0)
sb02	1808	2782	0.65	1.0165	1.50	0.0830	0.1412	1.6157	0.0469	0.0008	0.0017	0.0199	0.0005	1270	±20	(71)	851	±10	(3)	976	±8	(25)	926	±9	(42)
sb03	5799	3712	1.56	1.0165	1.50	0.0774	0.0539	0.5742	0.0056	0.0008	0.0007	0.0072	0.0001	1130	±21	(161)	338	±4	(2)	461	±5	(32)	114	±1	(14)
sb03bis	143	406	0.35	1.0165	1.50	0.0969	0.2740	3.6583	0.0757	0.0010	0.0034	0.0459	0.0009	1564	±20	(0)	1561	±17	(0)	1562	±10	(0)	1475	±17	(0)
sb04	32319	2270	14.24	1.0166	1.50	0.0709	0.2459	2.4043	0.0100	0.0007	0.0030	0.0295	0.0001	956	±21	(71)	1417	±16	(4)	1244	±9	(27)	201	±2	(3)
sb06	224	313	0.71	1.0166	1.50	0.0972	0.2757	3.6922	0.0805	0.0010	0.0034	0.0462	0.0009	1570	±19	(0)	1570	±17	(0)	1570	±10	(0)	1564	±16	(0)
sb07	139	547	0.25	1.0165	1.50	0.0969	0.2679	3.5777	0.0778	0.0010	0.0033	0.0445	0.0009	1565	±19	(0)	1530	±17	(0)	1545	±10	(0)	1514	±17	(0)

52

56

lco6

2526 ±23 (0)

2028 ±23 (0)

2286 ±13 (0)

3206

±43

(0)

						Correcte	d isotopic i	atios		1 sigma	error			Ages a	and err	ors (Ma)	(1 sigma)	- Indica	ative erro	r related to	o comm	on lead	correction		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	qd ₉₀₂ /qd _{20:}	0%E9/qG	0 ²⁵⁵ U	^{.08} Pb/ ²³² Th	⁰⁷ Pb/ ²⁰⁶ Pb	0.66Pb/ ²³⁸ U	⁰⁷ Pb/ ²³⁵ U	^{.08} Pb/ ²³² Th	²⁰⁷ Pb/ ²	⁰⁶ Pb		²⁰⁶ Pb/ ²	^{:38} U		²⁰⁷ Pb/ ²³	⁵ U		²⁰⁸ Pb/ ²³²	² Th	
Zircons from	n SED1 -	Mawson	Plateau			N	0	N	0	Ci.	0	N	N	,			,				-				
	105	112	1 12	1 0209	0.50	0 1046	0 2009	4 9419	0.0620	0.0012	0.0026	0.0541	0.0006	1707	+20	(0)	1646	±10	(0)	1692	+10	(0)	1025	+10	(0)
be02	120	229	0.82	1.0308	0.50	0.1040	0.2908	4.2412	0.0030	0.0012	0.0036	0.0541	0.0000	1639	+19	(0)	1696	+18	(0)	1679	+10	(0)	1251	±10 +9	(0)
be03	139	73	1.90	1.0302	0.50	0.1000	0.2920	4 2188	0.0632	0.0010	0.0036	0.0533	0.0005	1690	+20	(0)	1651	+18	(0)	1678	+10	(0)	1238	+10	(0)
be04	60	113	0.53	1.0305	0.50	0.0983	0.2708	3.7095	0.0584	0.0011	0.0033	0.0465	0.0006	1592	+20	(0)	1545	+17	(0)	1573	+10	(0)	1147	+11	(0)
be06	180	148	1.21	1.0300	0.50	0.1042	0.2853	4.1401	0.0625	0.0011	0.0035	0.0524	0.0005	1700	±20	(0)	1618	±18	(0)	1662	±10	(0)	1224	±10	(0)
be07	230	337	0.68	1.0299	0.50	0.1084	0.2454	3.7059	0.0354	0.0012	0.0030	0.0477	0.0004	1773	±20	(0)	1414	±16	(0)	1573	±10	(0)	703	±8	(0)
be08	421	1709	0.25	1.0299	0.50	0.0951	0.2277	3.0160	0.0504	0.0010	0.0028	0.0367	0.0005	1530	±19	(0)	1322	±15	(0)	1412	±9	(0)	993	±9	(0)
Metasomati	ite - Radiu	um Ridge	- zircoi	ns																					
RR01	234	354	0.66	1.0122	0.50	0.0980	0.2278	3.0763	0.0558	0.0011	0.0024	0.0348	0.0005	1586	±21	(0)	1323	±13	(0)	1427	±9	(0)	1098	±10	(0)
RR02	17	740	0.02	1.0111	0.50	0.0611	0.1015	0.8542	0.0121	0.0008	0.0010	0.0112	0.0007	642	±29	(0)	623	±6	(0)	627	±6	(0)	243	±13	(0)
RR03	131	825	0.16	1.0119	0.50	0.0929	0.2108	2.7002	0.0355	0.0010	0.0021	0.0298	0.0005	1486	±21	(0)	1233	±11	(0)	1329	±8	(0)	706	±10	(0)
RR04	1516	2492	0.61	1.0125	0.50	0.0966	0.2359	3.1414	0.0648	0.0010	0.0025	0.0332	0.0006	1559	±19	(0)	1365	±13	(0)	1443	±8	(0)	1268	±11	(0)
RR05	215	679	0.32	1.0159	0.50	0.0963	0.2679	3.5559	0.0718	0.0013	0.0033	0.0529	0.0011	1553	±26	(0)	1530	±17	(0)	1540	±12	(0)	1402	±21	(0)
RR06	243	1008	0.24	1.0113	0.50	0.0982	0.2274	3.0780	0.0667	0.0011	0.0023	0.0349	0.0008	1590	±22	(0)	1321	±12	(0)	1427	±9	(0)	1305	±15	(0)
RR07	246	406	0.61	1.0140	0.50	0.0968	0.2721	3.6318	0.0771	0.0011	0.0030	0.0437	0.0008	1564	±21	(0)	1551	±15	(0)	1557	±10	(0)	1500	±14	(0)
RR08	189	466	0.41	1.0151	0.50	0.0974	0.2723	3.6558	0.0823	0.0011	0.0032	0.0454	0.0009	1575	±21	(0)	1552	±16	(0)	1562	±10	(0)	1598	±16	(0)
RR09	238	705	0.34	1.0121	0.50	0.0975	0.2679	3.6000	0.0514	0.0011	0.0027	0.0387	0.0005	1576	±20	(0)	1530	±14	(0)	1550	±9	(0)	1013	±10	(0)
RR10	59	715	0.08	1.0114	0.50	0.0633	0.0928	0.8093	0.0214	0.0009	0.0009	0.0114	0.0005	717	±31	(0)	572	±6	(0)	602	±6	(0)	427	±10	(0)
RR11	284	6/6	0.42	1.0137	0.50	0.0973	0.2393	3.2080	0.0605	0.0013	0.0030	0.0487	0.0009	15/2	±26	(0)	1383	±16	(0)	1459	±12	(0)	1187	±16	(0)
		2000	0.49	1.0138	0.50	0.0968	0.0686	0.9154	0.0217	0.0010	0.0008	0.0102	0.0002	1563	±19	(0)	428	±ο	(0)	660	±ο	(0)	433	±4	(0)
Zircons - PE	EG1 - Hid	iden Valle	эy																						
alk01	441	1846	0.24	1.0154	0.50	0.0959	0.1897	2.5068	0.0536	0.0010	0.0023	0.0299	0.0006	1545	±19	(0)	1120	±12	(0)	1274	±9	(0)	1055	±11	(0)
alk02	409	811	0.50	1.0154	0.50	0.0984	0.2805	3.8043	0.0863	0.0010	0.0034	0.0461	0.0009	1594	±19	(0)	1594	±17	(0)	1594	±10	(0)	1672	±17	(0)
alk03	/11	1414	0.50	1.0154	0.50	0.0983	0.2466	3.3425	0.0779	0.0010	0.0030	0.0401	0.0008	1593	±19	(0)	1421	±15	(0)	1491	±9	(0)	1517	±15	(0)
alk04	342	225	1.52	1.0154	0.50	0.0992	0.2601	3.55/1	0.0803	0.0010	0.0032	0.0439	0.0008	1609	±20	(0)	1490	±16	(0)	1540	±10	(0)	1562	±16	(0)
alk05	JOI /18	955	0.44	1.0155	0.50	0.0991	0.2245	3.0070	0.0200	0.0011	0.0020	0.0400	0.0003	1576	±21 +10	(0)	1446	±15 +16	(0)	1420	±10 +10	(0)	1376	±0 +15	(0)
alk07	212	325	0.44	1.0155	0.50	0.0373	0.2486	3 3705	0.0704	0.0010	0.0031	0.0412	0.0000	1503	+21	(0)	1/31	+16	(0)	1/08	±10 +10	(0)	1321	+16	(0)
alk08	212	456	0.05	1.0155	0.50	0.0975	0.2568	3 4522	0.0070	0.0010	0.0031	0.0425	0.0000	1577	+20	(0)	1473	+16	(0)	1516	+10	(0)	1480	+16	(0)
alk09	215	441	0.49	1.0156	0.50	0.0988	0.2545	3.4667	0.0753	0.0011	0.0031	0.0433	0.0009	1602	±20	(0)	1461	±16	(0)	1520	±10	(0)	1467	±17	(0)
alk11	104	163	0.64	1.0155	0.50	0.0966	0.2583	3.4406	0.0297	0.0012	0.0032	0.0470	0.0005	1560	±23	(0)	1481	±16	(0)	1514	±11	(0)	591	±11	(0)
Zircons from	n polycra	se-bearin	g pebbl	le - FM	C - 85	50°C/2h	1																		
FMC01	334	3800	0.09	1.0159	0.50	0.0945	0.1688	2.1988	0.0689	0.0009	0.0021	0.0265	0.0007	1518	±19	(0)	1005	±11	(0)	1181	±8	(0)	1346	±14	(0)
FMC02	405	1297	0.31	1.0158	0.50	0.0958	0.2320	3.0634	0.0845	0.0010	0.0028	0.0371	0.0009	1544	±19	(0)	1345	±15	(0)	1424	±9	(0)	1640	±16	(0)
Leucogranit	te - Hidde	en Valley	North, z	zircons	(roun	ded)																			
lco1	7	49	0.14	1.0143	1.50	0.1153	0.0770	1.2239	0.1749	0.0047	0.0016	0.0461	0.0079	1885	±73	(0)	478	±10	(0)	812	±21	(0)	3257	±137	(0)
lco2	50	27	1.84	1.0155	1.50	0.2085	0.2563	7.3672	0.1225	0.0050	0.0045	0.1643	0.0026	2894	±39	(0)	1471	±23	(0)	2157	±20	(0)	2336	±46	(0)
lco3	17	9	1.89	1.0140	1.50	0.1127	0.3010	4.6744	0.1051	0.0036	0.0055	0.1399	0.0026	1843	±57	(0)	1696	±27	(0)	1763	±25	(0)	2019	±48	(0)
lco4d	81	70	1.17	1.0157	1.50	0.1369	0.1743	3.2885	0.0835	0.0021	0.0023	0.0520	0.0012	2188	±26	(0)	1036	±13	(0)	1478	±12	(0)	1620	±22	(0)
lco5	78	78	1.00	1.0154	1.50	0.0839	0.1565	1.8106	0.0509	0.0013	0.0021	0.0301	0.0008	1290	±31	(0)	937	±11	(0)	1049	±11	(0)	1004	±15	(0)
lco5b	113	94	1.20	1.0163	1.50	0.0953	0.1658	2.1784	0.0588	0.0015	0.0022	0.0355	0.0008	1534	±29	(0)	989	±12	(0)	1174	±11	(0)	1155	±16	(0)

0.91 1.0161 1.50 0.1669 0.3698 8.5052 0.1719 0.0023 0.0049 0.1241 0.0025

						Correcte	d isotopic	ratios		1 sigma	error			Ages	and erro	ors (Ma) (1	sigma) -	indica	tive error	related to	commo	n lead corr	ection		
				ratio ²⁰⁶ PI	odel 3a)	名	⊃	⊃	Ę	R	⊃	⊃	Ę												
	-			Pb/d	e (C	902/0	²³⁸	0/235	0/232	0/206	238	0/235	0/232												
#	Th (mag)	(maa) U	Th/U	20 <u>7</u>	a B	Id 203	1d ₉₀₂	PI J	1d ₈₀₂	PI	1d ₉₀₂	PI	IL 80	²⁰⁷ Pb/	^{/206} Pb		²⁰⁶ Pb/	²³⁸ U		²⁰⁷ Pb/ ²³	⁵U		²⁰⁸ Pb/2	²³² Th	
	F CBF	FK ZIRC	ONS			0	O.	N	O.	N	O.	0	N					-			-				
EMU501	164	284	0.58	1 0118	1 50	0 0977	0 2563	3 4523	0 0789	0.0012	0 0029	0.0437	0 0008	1580	+23	(0)	1471	+15	(0)	1516	+10	(0)	1534	+16	(0)
FMJ501b	132	275	0.30	1 0118	1.50	0.0377	0.2303	3 7612	0.0763	0.0012	0.0023	0.0441	0.0000	1584	+21	(0)	1585	+15	(0)	1585	+9	(0)	1676	±10 +16	(0)
FMJ502b	46	41	1.13	1.0118	1.50	0.1162	0.2644	4.2370	0.1021	0.0029	0.0036	0.1035	0.0017	1899	+45	(0)	1513	+18	(0)	1681	+20	(0)	1965	+30	(0)
FMJ502a	154	122	1.26	1.0118	1.50	0.1054	0.2686	3.9011	0.0863	0.0016	0.0031	0.0605	0.0010	1721	±28	(0)	1533	±16	(0)	1614	±13	(0)	1673	±18	(0)
FML501	142	204	0.70	1.0119	1.50	0.0958	0.1687	2.2271	0.0653	0.0012	0.0019	0.0283	0.0007	1543	±23	(0)	1005	±10	(0)	1190	±9	(0)	1279	±12	(0)
FML501b	1088	2180	0.50	1.0119	1.50	0.0788	0.0543	0.5897	0.0265	0.0009	0.0006	0.0070	0.0002	1167	±22	(258)	341	±4	(4)	471	±4	(53)	529	±5	(74)
FMF01	321	2678	0.12	1.0120	1.50	0.0934	0.1971	2.5384	0.0443	0.0010	0.0022	0.0284	0.0005	1496	±20	(0)	1160	±12	(0)	1283	±8	(0)	875	±9	(0)
FMF01b	92	1344	0.07	1.0120	1.50	0.0946	0.2609	3.4041	0.0870	0.0010	0.0029	0.0389	0.0011	1521	±20	(0)	1495	±15	(0)	1505	±9	(0)	1687	±21	(0)
FM6101	454	2045	0.22	1.0120	1.50	0.0953	0.1751	2.3005	0.0320	0.0011	0.0019	0.0273	0.0004	1534	±21	(66)	1040	±11	(4)	1212	±8	(28)	637	±7	(180)
FM6101b	128	1884	0.07	1.0120	1.50	0.0503	0.0655	0.4542	0.0254	0.0006	0.0007	0.0059	0.0003	208	±29	(487)	409	±4	(4)	380	±4	(68)	507	±6	(645)
FM6102	31042	3695	8.40	1.0119	1.50	0.0584	0.0285	0.2299	0.0002	0.0008	0.0003	0.0031	0.0000	546	±28	(460)	181	±2	(2)	210	±3	(41)	5	±0	(3)
FM6103	74	1199	0.06	1.0120	1.50	0.0942	0.2501	3.2485	0.0913	0.0011	0.0028	0.0387	0.0014	1513	±21	(0)	1439	±14	(0)	1469	±9	(0)	1765	±26	(0)
FM6103b	127	2172	0.06	1.0120	1.50	0.0870	0.1558	1.8698	0.0676	0.0009	0.0017	0.0209	0.0008	1361	±20	(0)	934	±9	(0)	1070	±7	(0)	1321	±14	(0)
FMG104	673	807	0.83	1.0120	1.50	0.1059	0.2614	3.8172	0.0810	0.0013	0.0029	0.0488	0.0008	1730	±23	(0)	1497	±15	(0)	1596	±10	(0)	1575	±16	(0)
FMS501	793	542	1.46	1.0120	1.50	0.0981	0.2055	2.7786	0.0232	0.0018	0.0025	0.0509	0.0004	1588	±34	(0)	1205	±13	(0)	1350	±14	(0)	463	±7	(0)
FMS501b	5305	2240	2.37	1.0121	1.50	0.0879	0.0879	1.0653	0.0018	0.0010	0.0010	0.0133	0.0000	1381	±23	(137)	543	±6	(4)	736	±7	(41)	36	±0	(16)
FMS502	658	719	0.91	1.0121	1.50	0.1050	0.2766	4.0053	0.0804	0.0011	0.0030	0.0448	0.0007	1714	±19	(0)	1574	±15	(0)	1635	±9	(0)	1563	±14	(0)
FMS503	4876	2135	2.28	1.0120	1.50	0.0935	0.1265	1.6305	0.0074	0.0011	0.0014	0.0201	0.0001	1498	±22	(0)	768	±8	(0)	982	±8	(0)	149	±2	(0)
FMS401	179	3236	0.06	1.0121	1.50	0.0976	0.0875	1.1775	0.0620	0.0011	0.0010	0.0135	0.0007	1579	±20	(0)	541	±6	(0)	790	±6	(0)	1216	±14	(0)
FMS401b	131	1566	0.08	1.0120	1.50	0.0907	0.0980	1.2264	0.0429	0.0010	0.0011	0.0146	0.0006	1441	±22	(0)	603	±6	(0)	813	±/	(0)	849	±11	(0)
FMS301	678	4/35	0.14	1.0121	1.50	0.0969	0.2591	3.4619	0.0794	0.0010	0.0028	0.0374	0.0007	1566	±19	(0)	1485	±14	(0)	1519	±9	(0)	1545	±14	(0)
FINIS201	80	1002	0.05	1.0120	1.50	0.0530	0.0266	0.1942	0.0543	0.0007	0.0003	0.0027	0.0006	331	±31	(1030)	169	±2	(5)	180	±2	(96)	1069	±12	(1052)
FMS201D	904	4511	0.20	1.0120	1.50	0.0856	0.0495	0.5844	0.0147	0.0009	0.0005	0.0067	0.0001	1329	±21	(125)	312	±3	(2)	467	±4	(27)	294	±3	(97)
FINISOUT	230	2204	0.11	1.0121	1.50	0.0599	0.0746	0.6179	0.0244	0.0008	0.0006	0.0003	0.0004	399	±20	(0)	400	±5	(0)	469	±5	(0)	400	10 10	(0)
FMS901	137	782	0.05	1.0119	1.50	0.0004	0.0734	3 0589	0.0239	0.0007	0.0008	0.0071	0.0004	409	+23	(0)	1320	±5 +13	(0)	1/22	+10	(0)	1/09	±0 +10	(0)
FMS901b	242	2007	0.12	1 0120	1.50	0.0303	0.2230	0.5810	0.0722	0.0012	0.0023	0.0000	0.0010	601	+25	(0)	438	+5	(0)	465	±10 +5	(0)	531	±13 +6	(0)
FMS1101	1	6	0.09	1 0020	1.50	0.1554	0.0843	1 8062	0.3933	0.0206	0.0042	0.2254	0.0416	2406	+225	(0)	522	+25	(0)	1048	+82	(0)	6704	+604	(0)
FMS1204	264	285	0.93	1.0113	1.50	0.0669	0.0831	0.7668	0.0292	0.0011	0.0009	0.0123	0.0003	836	+33	(0)	515	+6	(0)	578	+7	(0)	582	+6	(0)
FMS1204b	374	461	0.81	1.0122	1.50	0.0637	0.0784	0.6887	0.0254	0.0010	0.0009	0.0109	0.0003	731	+33	(0)	487	+5	(0)	532	+7	(0)	507	+6	(0)
FMS1203	2722	1412	1.93	1.0120	1.50	0.0915	0.0475	0.5985	0.0052	0.0010	0.0005	0.0071	0.0001	1457	±22	(0)	299	±3	(0)	476	±5	(0)	104	±1	(0)
FMS1202	137	1765	0.08	1.0120	1.50	0.0622	0.0743	0.6362	0.0244	0.0009	0.0008	0.0091	0.0005	679	±30	(0)	462	±5	(0)	500	±6	(0)	487	±9	(0)
FMS1201	799	5137	0.16	1.0122	1.50	0.0956	0.1621	2.1368	0.0349	0.0010	0.0018	0.0240	0.0004	1540	±20	(0)	968	±10	(0)	1161	±8	(0)	694	±8	(0)
FMS1200c	264	367	0.72	1.0121	1.50	0.1062	0.2892	4.2318	0.0853	0.0012	0.0032	0.0495	0.0008	1734	±20	(0)	1637	±16	(0)	1680	±10	(0)	1654	±15	(0)
FMS1200b	42	142	0.30	1.0121	1.50	0.1060	0.1661	2.4282	0.0955	0.0022	0.0020	0.0489	0.0018	1732	±37	(0)	991	±11	(0)	1251	±14	(0)	1844	±33	(0)
FMS1200e	141	399	0.35	1.0121	1.50	0.0999	0.1920	2.6431	0.0818	0.0012	0.0021	0.0340	0.0009	1621	±23	(0)	1132	±11	(0)	1313	±9	(0)	1589	±17	(0)
FMS1401	775	386	2.01	1.0122	1.50	0.1045	0.2310	3.3262	0.0649	0.0015	0.0026	0.0479	0.0007	1705	±26	(0)	1340	±14	(0)	1487	±11	(0)	1272	±12	(0)
FMS1402	2281	931	2.45	1.0122	1.50	0.0977	0.1469	1.9790	0.0106	0.0012	0.0016	0.0242	0.0001	1581	±22	(0)	884	±9	(0)	1108	±8	(0)	214	±2	(0)
FMS1403	4650	1169	3.98	1.0213	1.50	0.0964	0.0473	0.6275	0.0023	0.0019	0.0006	0.0126	0.0000	1555	±38	(0)	298	±4	(0)	495	±8	(0)	46	±1	(0)
FMS1403b	22403	3767	5.95	1.0160	1.50	0.0729	0.0335	0.3367	0.0010	0.0008	0.0004	0.0044	0.0000	1010	±24	(311)	213	±3	(3)	295	±3	(42)	21	±0	(4)
FMS1404	66	58	1.13	1.0178	1.50	0.1637	0.4584	10.3472	0.1221	0.0024	0.0056	0.1554	0.0015	2494	±24	(0)	2433	±25	(0)	2466	±14	(0)	2328	±27	(0)
FMS1301	579	2367	0.24	1.0161	1.50	0.0972	0.2529	3.3865	0.0813	0.0010	0.0030	0.0407	0.0008	1571	±19	(0)	1453	±16	(0)	1501	±9	(0)	1579	±14	(0)
FMS1302	800	2021	0.40	1.0126	1.50	0.0947	0.2157	2.8193	0.0803	0.0011	0.0028	0.0385	0.0009	1523	±21	(0)	1259	±15	(0)	1361	±10	(0)	1562	±16	(0)

Corrected isotopic ratios

Zircon – FMC - alluvium

Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction

	T I ()		T 1 41	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	⁷ Pb/ ²⁰⁶ Pb	0 ²³⁸ U	⁷ Pb/ ²³⁵ U	⁸ Pb/ ²³² Th	⁷ Pb/ ²⁰⁶ Pb	⁶ Pb/ ²³⁸ U	⁷ Pb/ ²³⁵ U	⁸ Pb/ ²³² Th	207	206 D		206-01	238		207 - 2	35		208 - 232	· - .	
# 	In (ppm)					20.	50	20.	200	20.	50	20	50	P	0/***PD		Pb/	0		Pb/-	0		Pb/	In	
FOUR MILE	CREEK Z		5													(=)			(*)			(*)			(*)
FMS1303	349	327	1.07	1.0096	1.50	0.1067	0.3059	4.5006	0.0833	0.0017	0.0041	0.0777	0.0010	1/4	3 ±29	(0)	1720	±20	(0)	1/31	±14	(0)	1617	±19	(0)
FMS1303b	170	125	1.36	1.0143	1.50	0.1066	0.3058	4.4923	0.0825	0.0017	0.0039	0.0757	0.0010	1/4	2 ±29	(0)	1/20	±19	(0)	1/30	±14	(0)	1602	±18	(0)
FINIS 1304	222	192	1.15	1.0145	1.50	0.1013	0.2864	4.0006	0.0809	0.0013	0.0034	0.0551	0.0008	164	9 ±23	(0)	1624	±17	(0)	1634	±11	(0)	15/3	±15	(0)
FINS1305	000	401	0.15	1.0145	1.50	0.0975	0.2712	3.6443	0.0717	0.0010	0.0030	0.0426	0.0008	15/	/ ±20	(0)	1547	±15	(0)	1559	±9	(0)	1400	±15	(0)
FINIS 1301	292	1040	0.20	1.0140	1.50	0.0965	0.2002	1.0054	0.0741	0.0010	0.0029	0.0365	0.0007	100	2 ±00	(0)	1470	±10	(0)	1507	±9	(0)	1445	±13	(0)
EMS1701	0403	2970	2.10	1.0115	1.50	0.1018	0.0915	2 6770	0.0040	0.0011	0.0010	0.0134	0.0000	161	5 120	(03)	1522	±0 ±15	(0)	1567	±/ ±11	(29)	1552	⊥16 ⊥16	(14)
FMS1702	90	58	1.11	1 0143	1.50	0.0995	0.2002	3 7726	0.0798	0.0014	0.0029	0.0522	0.0009	158	7 +29	(0)	1587	+17	(0)	1587	±11 +13	(0)	1532	+16	(0)
FMS1704	224	7/1	0.30	1 0106	1.50	0.0000	0.1518	1 9708	0.0810	0.0015	0.0000	0.0000	0.0000	151) +20	(0)	011	+11	(0)	1106	+11	(0)	1574	+21	(0)
FMS1901	116	113	1.03	1.0171	1.50	0.0341	0.1310	3 7034	0.0010	0.0017	0.0020	0.0000	0.0010	161	1 +32	(0)	1544	÷11 +17	(0)	1572	±11 +14	(0)	1496	±21 +19	(0)
FMS1902	46	145	0.31	1.0199	1.50	0.3025	0.0946	3.9423	0.2726	0.0059	0.0015	0.0720	0.0042	348	3 +30	(391)	582	+9	(61)	1622	+15	(287)	4872	+66	(1634)
FMS1903	252	2288	0.11	1 0165	1.50	0.0952	0.2699	3 5406	0.0735	0.0010	0.0031	0.0411	0.0008	153	1 +19	(0)	1540	+16	(0)	1536	+9	(0)	1434	+14	(0)
FMS1903b	802	2547	0.32	1 0112	1.50	0.0970	0.2658	3 5567	0.0762	0.0011	0.0034	0.0469	0.0008	156	3 +20	(0)	1519	+17	(0)	1540	+10	(0)	1483	+16	(0)
FMS1801	838	433	1.94	1.0299	1.50	0.0987	0.2502	3.3994	0.0540	0.0019	0.0038	0.0721	0.0009	159	9 +36	(0)	1439	+20	(0)	1504	+17	(0)	1064	+17	(0)
FMS1801b	213	92	2.31	1.0116	1.50	0.0985	0.2741	3.7231	0.0766	0.0015	0.0031	0.0567	0.0008	159	5 ±28	(0)	1562	±16	(0)	1576	±12	(0)	1492	±14	(0)
FMS1802	49	42	1.19	1.0136	1.50	0.1073	0.2929	4.3309	0.0848	0.0019	0.0036	0.0759	0.0011	175	4 ±32	(0)	1656	±18	(0)	1699	±14	(0)	1645	±20	(0)
FMS1803	551	502	1.10	1.0136	1.50	0.0983	0.2770	3.7510	0.0783	0.0011	0.0032	0.0443	0.0007	159	1 ±20	(0)	1576	±16	(0)	1582	±9	(0)	1524	±13	(0)
FMS1804	6	7	0.88	1.0132	1.50	0.1096	0.2989	4.5154	0.0821	0.0041	0.0051	0.1640	0.0024	179	3 ±68	(0)	1686	±25	(0)	1734	±30	(0)	1594	±45	(0)
FMS1805	226	2019	0.11	1.0142	1.50	0.0959	0.2599	3.4370	0.0830	0.0011	0.0034	0.0468	0.0011	154	5 ±21	(0)	1489	±17	(0)	1513	±11	(0)	1611	±21	(0)
FMS1806	547	350	1.56	1.0132	1.50	0.1553	0.4315	9.2348	0.1233	0.0016	0.0047	0.1023	0.0011	240	5 ±17	(0)	2312	±21	(0)	2362	±10	(0)	2349	±19	(0)
FMS2301	2056	1743	1.18	1.0090	1.50	0.0611	0.0491	0.4137	0.0038	0.0008	0.0005	0.0053	0.0000	643	±27	(511)	309	±3	(5)	352	±4	(73)	77	±1	(41)
FMS2301b	1083	1844	0.59	1.0133	1.50	0.0574	0.0482	0.3808	0.0058	0.0008	0.0005	0.0054	0.0001	508	±32	(548)	303	±3	(5)	328	±4	(71)	117	±1	(80)
FMS2302	431	1461	0.30	1.0078	1.50	0.0980	0.0808	1.0909	0.0333	0.0012	0.0009	0.0138	0.0004	158	6 ±23	(0)	501	±5	(0)	749	±7	(0)	662	±8	(0)
FMS2302b	524	1670	0.31	1.0097	1.50	0.0992	0.1197	1.6366	0.0250	0.0014	0.0013	0.0230	0.0005	160	9 ±27	(0)	729	±7	(0)	984	±9	(0)	500	±9	(0)
FMS2303	188	1711	0.11	1.0151	1.50	0.0732	0.0750	0.7573	0.0272	0.0010	0.0009	0.0107	0.0004	101	9 ±27	(0)	466	±5	(0)	572	±6	(0)	541	±9	(0)
FMS2304	1529	2099	0.73	1.0142	1.50	0.0961	0.2438	3.2286	0.0158	0.0011	0.0030	0.0420	0.0002	154	9 ±21	(0)	1407	±15	(0)	1464	±10	(0)	316	±4	(0)
FMS2001	347	3224	0.11	1.0203	1.50	0.0954	0.2515	3.3068	0.0817	0.0010	0.0030	0.0414	0.0011	153	6 ±20	(0)	1446	±16	(0)	1483	±10	(0)	1588	±20	(0)
FMS2002	457	692	0.66	1.0125	1.50	0.0971	0.2644	3.5377	0.0773	0.0010	0.0029	0.0398	0.0007	156	9 ±19	(0)	1512	±15	(0)	1536	±9	(0)	1505	±13	(0)
FMS2003	132	752	0.18	1.0123	1.50	0.0573	0.0731	0.5770	0.0237	0.0012	0.0009	0.0119	0.0005	503	±45	(0)	455	±5	(0)	463	±8	(0)	473	±10	(0)
FMS2003b	357	847	0.42	1.0113	1.50	0.0635	0.0722	0.6321	0.0227	0.0009	0.0008	0.0093	0.0003	725	±30	(0)	450	±5	(0)	497	±6	(0)	453	±5	(0)
FMS2004	242	2481	0.10	1.0149	1.50	0.0958	0.2572	3.3975	0.0495	0.0010	0.0030	0.0402	0.0006	154	4 ±19	(0)	1476	±15	(0)	1504	±9	(0)	976	±11	(0)
FMS2005	227	367	0.62	1.0119	1.50	0.1038	0.2887	4.1311	0.0918	0.0011	0.0032	0.0487	0.0009	169	3 ±20	(0)	1635	±16	(0)	1660	±10	(0)	1776	±16	(0)
FMS2501	862	2311	0.37	1.0163	1.50	0.0954	0.2799	3.6797	0.0223	0.0012	0.0034	0.0510	0.0005	153	6 ±24	(0)	1591	±17	(0)	1567	±11	(0)	446	±9	(0)
FMS2502	420	2869	0.15	1.0009	1.50	0.0974	0.1723	2.3136	0.0861	0.0011	0.0017	0.0252	0.0010	157	5 ±21	(0)	1025	±9	(0)	1216	±8	(0)	1669	±19	(0)
FMS2503	666	1694	0.39	1.0182	1.50	0.0860	0.1353	1.6037	0.0365	0.0010	0.0016	0.0214	0.0004	133	3 ±23	(146)	818	±9	(6)	972	±8	(52)	724	±8	(149)
FMS2504	260	637	0.41	1.0142	1.50	0.0975	0.2737	3.6780	0.0783	0.0011	0.0032	0.0460	0.0008	157	6 ±21	(0)	1559	±16	(0)	1567	±10	(0)	1523	±16	(0)
FMS2505	599	1304	0.46	1.0130	1.50	0.0792	0.1032	1.1256	0.0139	0.0010	0.0012	0.0158	0.0002	117	5 ±26	(0)	633	±7	(0)	766	±8	(0)	279	±4	(0)
FMS2506	259	748	0.35	1.0214	1.50	0.0976	0.2739	3.6844	0.0766	0.0012	0.0033	0.0506	0.0010	157	3 ±23	(0)	1561	±17	(0)	1568	±11	(0)	1491	±19	(0)
FMS2507	10057	3534	2.85	1.0135	1.50	0.0794	0.2116	2.3145	0.0076	0.0008	0.0022	0.0245	0.0001	118	2 ±20	(41)	1238	±12	(2)	1217	±8	(16)	154	±1	(9)
FMS2508	476	3163	0.15	1.0144	1.50	0.0891	0.1404	1.7253	0.1662	0.0009	0.0017	0.0204	0.0016	140	7 ±20	(0)	847	±9	(0)	1018	±8	(0)	3107	±27	(0)
FMS2509	165	208	0.79	1.0091	1.50	0.0965	0.2101	2.7946	0.0787	0.0012	0.0023	0.0352	0.0008	155	3 ±23	(0)	1229	±12	(0)	1354	±9	(0)	1530	±14	(0)
FMP101	291	13563	0.02	1.0139	1.50	0.0725	0.0067	0.0667	0.1203	0.0008	0.0001	0.0007	0.0011	100	1 ±22	(377)	43	±0	(1)	66	±1	(12)	2296	±19	(254)
FMP102	402	4540	0.09	1.0117	1.50	0.0563	0.0736	0.5710	0.0225	0.0006	0.0008	0.0069	0.0003	464	±24	(0)	458	±5	(0)	459	±4	(0)	449	±5	(0)
FMP102b	1728	4295	0.40	1.0164	1.50	0.0957	0.2571	3.3909	0.0782	0.0010	0.0031	0.0412	0.0008	154	1 ±19	(0)	1475	±16	(0)	1502	±10	(0)	1521	±15	(0)

1 sigma error

Corrected isotopic ratios

Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction

	T ()		71.41	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	⁷ Pb/ ²⁰⁶ Pb	°Pb/ ²³⁸ U	⁷ Pb/ ²³⁵ U	⁸ Pb/ ²³² Th	⁷ Pb/ ²⁰⁶ Pb	°Pb/ ²³⁸ U	⁷ Pb/ ²³⁵ U	⁸ Pb/ ²³² Th	207 р. (2060		206-01	238		207	35		208 - 232	·	
			Ih/U			50	50	50	50	50	50	50	50	Pb/	Pb		Pb/	U		Pb/	~0		200Pb/202	lh	
EMP201		2220	0.06	1 0074	1 50	0.0509	0.0604	0 5717	0.0244	0.0010	0 0007	0 0002	0 0009	506	126	(0)	422	⊥ ۸	(0)	450	+e	(0)	694	+16	(0)
EMP201b	662	25580	0.00	1.0074	1.50	0.0050	0.0054	2 0586	0.0344	0.0010	0.0007	0.0092	0.0008	1535	+20	(0)	432	⊥4 +0	(0)	409	±0 +8	(0)	702	+8	(0)
FMP202	1147	5030	0.23	1.0123	1.50	0.0576	0.0708	0.5622	0.0089	0.0006	0.0008	0.0064	0.0004	516	+23	(0)	441	+5	(0)	453	+4	(0)	178	+2	(0)
FMP203	663	5355	0.12	1.0122	1.50	0.0604	0.0686	0.5705	0.0364	0.0008	0.0008	0.0080	0.0005	617	±28	(0)	428	±5	(0)	458	±5	(0)	722	 ±9	(0)
FMP204	455	1647	0.28	1.0115	1.50	0.0916	0.1237	1.5625	0.0352	0.0011	0.0014	0.0206	0.0005	1460	±24	(0)	752	±8	(0)	955	±8	(0)	698	±9	(0)
FMP205	254	2124	0.12	1.0133	1.50	0.0952	0.2570	3.3722	0.0548	0.0010	0.0030	0.0404	0.0007	1532	±20	(0)	1474	±15	(0)	1498	±9	(0)	1078	±14	(0)
FMP207	37243	8589	4.34	1.0131	1.50	0.0760	0.0143	0.1498	0.0013	0.0012	0.0002	0.0025	0.0000	1094	±31	(296)	92	±1	(1)	142	±2	(21)	26	±0	(3)
FMP208	1079	4598	0.23	1.0125	1.50	0.0963	0.2517	3.3399	0.0711	0.0010	0.0029	0.0395	0.0007	1554	±19	(0)	1447	±15	(0)	1490	±9	(0)	1388	±14	(0)
FMP208b	411	2177	0.19	1.0122	1.50	0.0975	0.2353	3.1573	0.0422	0.0011	0.0023	0.0345	0.0006	1576	±21	(0)	1362	±12	(0)	1447	±8	(0)	835	±11	(0)
FMP210	694	4100	0.17	1.0149	1.50	0.0860	0.1776	2.1059	0.0272	0.0009	0.0022	0.0265	0.0004	1338	±20	(0)	1054	±12	(0)	1151	±9	(0)	543	±7	(0)
FMP301	374	1341	0.28	1.0109	1.50	0.0975	0.2469	3.3150	0.0263	0.0014	0.0029	0.0486	0.0006	1577	±26	(0)	1422	±15	(0)	1485	±11	(0)	525	±12	(0)
FMP302	957	6196	0.15	1.0125	1.50	0.0649	0.0124	0.1112	0.0165	0.0009	0.0001	0.0016	0.0002	772	±28	(582)	80	±1	(2)	107	±1	(29)	331	±4	(96)
FMP303	1787	4352	0.41	1.0134	1.50	0.0906	0.0940	1.1734	0.0144	0.0011	0.0011	0.0156	0.0002	1438	±22	(72)	579	±7	(2)	788	±7	(23)	290	±4	(54)
FMP305	1059	8891	0.12	1.0138	1.50	0.0836	0.2085	2.4021	0.0659	0.0009	0.0021	0.0244	0.0006	1284	±20	(0)	1221	±11	(0)	1243	±7	(0)	1290	±11	(0)
FMP305b	400	907	0.44	1.0133	1.50	0.1100	0.2796	4.2386	0.0954	0.0012	0.0031	0.0492	0.0009	1799	±19	(0)	1589	±16	(0)	1682	±10	(0)	1842	±17	(0)
FMP307	285	2073	0.14	1.0113	1.50	0.0965	0.2528	3.3631	0.0819	0.0010	0.0027	0.0373	0.0009	1558	±20	(0)	1453	±14	(0)	1496	±9	(0)	1591	±17	(0)
FMP307b	728	2997	0.24	1.0139	1.50	0.0908	0.1672	2.0924	0.0478	0.0010	0.0019	0.0259	0.0005	1442	±21	(58)	997	±11	(3)	1146	±9	(23)	944	±10	(127)
FMP310	299	4000	0.07	1.0103	1.50	0.0962	0.1924	2.5515	0.1127	0.0010	0.0020	0.0281	0.0013	1552	±20	(0)	1134	±11	(0)	1287	±8	(0)	2159	±23	(0)
FMP401	1631	8493	0.19	1.0120	1.50	0.0875	0.0228	0.2753	0.0241	0.0011	0.0003	0.0035	0.0002	1373	±24	(149)	145	±2	(1)	247	±3	(19)	482	±5	(55)
FMP402	1287	12361	0.10	1.0120	1.50	0.0941	0.0543	0.7043	0.0224	0.0010	0.0006	0.0087	0.0003	1509	±20	(43)	341	±4	(1)	541	±5	(11)	448	±5	(77)
FMP404	762	2285	0.33	1.0132	1.50	0.0970	0.2020	2.6999	0.0744	0.0011	0.0022	0.0309	0.0007	1567	±20	(0)	1186	±12	(0)	1328	±8	(0)	1451	±14	(0)
FMP406	4166	5768	0.72	1.0131	1.50	0.0754	0.0465	0.4834	0.0149	0.0009	0.0005	0.0056	0.0001	1078	±23	(128)	293	±3	(2)	400	±4	(23)	299	±3	(21)
FMS2401	222	105	2.12	1.0127	1.50	0.0986	0.2635	3.5812	0.0795	0.0014	0.0029	0.0521	8000.0	1598	±27	(0)	1508	±15	(0)	1545	±12	(0)	1547	±14	(0)
FMS2401b	216	143	1.52	1.0118	1.50	0.1000	0.2692	3.7102	0.0824	0.0020	0.0035	0.0768	0.0011	1624	±38	(0)	1537	±18	(0)	15/4	±17	(0)	1601	±21	(0)
FINS2402	598	610	0.09	1.0131	1.50	0.0962	0.0407	0.5399	0.0346	0.0010	0.0004	0.0059	0.0003	1001	±19	(0)	257	±3	(0)	438	±4	(0)	1011	±0	(0)
FIVIS2403	299	16110	6.05	1.0142	1.50	0.1000	0.2910	4.0219	0.0936	0.0012	0.0034	0.0527	0.0010	1024	±22	(0)	70	±1/	(0)	110	±11	(0)	1011	τ0 Ξ19	(0)
EMDR03	178	400	0.95	1.0127	1.50	0.0000	0.0121	3 6451	0.0008	0.0008	0.0001	0.0014	0.0000	1570	+24	(220)	1546	±1 +16	(1)	1559	⊥ı +11	(12)	1513	+18	(1)
EMDR04	132	327	0.40	1 0124	1.50	0.0370	0.2710	3 5386	0.0743	0.0013	0.0032	0.0300	0.0010	1581	+21	(0)	1504	+14	(0)	1536	±11 +9	(0)	1448	+14	(0)
EMDB06	196	328	0.40	1 0132	1.50	0.0077	0.2027	3 6947	0.0740	0.0014	0.0020	0.0400	0.0010	1597	+27	(0)	1551	+16	(0)	1570	+12	(0)	1587	+19	(0)
EMDB07	171	421	0.00	1.0122	1.50	0.0977	0.2713	3 6538	0.0813	0.0014	0.0028	0.00405	0.0008	1580	+21	(0)	1548	+14	(0)	1561	+9	(0)	1579	+15	(0)
FMDB02	496	2808	0.18	1.0133	1.50	0.0964	0.2317	3.0790	0.0420	0.0010	0.0027	0.0358	0.0005	1556	+19	(0)	1343	+14	(0)	1427	+9	(0)	832	+9	(0)
FMDB08	276	1601	0.17	1.0072	1.50	0.0929	0.1917	2.4554	0.0573	0.0011	0.0019	0.0286	0.0008	1486	+23	(0)	1131	+10	(0)	1259	+8	(0)	1126	+15	(0)
FMAR01	20126	4909	4.10	1.0130	1.50	0.0718	0.0381	0.3767	0.0013	0.0008	0.0004	0.0044	0.0000	980	±22	(207)	241	±3	(2)	325	±3	(30)	27	±0	(5)
FMAR03	22	19	1.17	1.0108	1.50	0.1062	0.2786	4.0791	0.0882	0.0023	0.0035	0.0867	0.0013	1735	±40	(0)	1585	±18	(0)	1650	±17	(0)	1708	±24	(0)
FMAR07	123	101	1.21	1.0109	1.50	0.0592	0.0905	0.7387	0.0302	0.0012	0.0011	0.0154	0.0004	575	±46	(0)	558	±6	(0)	562	±9	(0)	602	±7	(0)
FMP201	148	2339	0.06	1.0074	1.50	0.0598	0.0694	0.5717	0.0344	0.0010	0.0007	0.0092	0.0008	596	±36	(0)	432	±4	(0)	459	±6	(0)	684	±16	(0)
FMP501	144	1438	0.10	1.0117	1.50	0.0875	0.1625	1.9590	0.0529	0.0009	0.0017	0.0211	0.0006	1370	±21	(0)	971	±9	(0)	1102	±7	(0)	1041	±12	(0)

1 sigma error

						Correcte	d isotopic r	atios		1 sigma	error			Ages a	and erro	rs (Ma)	(1 sigma) -	indica	tive error	related to	o commo	n lead d	correction		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²	¹⁰⁶ Pb		²⁰⁶ Pb/ ⁴	²³⁸ U		²⁰⁷ Pb/ ²³	³⁵ U		²⁰⁸ Pb/ ²³³	²Th	
Beverley W	C2																								
BE01z01	197	182	1.08	1.0122	0.50	0.0543	0.0596	0.4461	0.0194	0.0014	0.0008	0.0112	0.0003	383	±56	(0)	373	±5	(0)	375	±8	(0)	387	±5	(0)
BE01z02	39	60	0.65	1.0127	0.50	0.0515	0.0407	0.2893	0.0134	0.0027	0.0007	0.0148	0.0004	263	±119	(0)	257	±4	(0)	258	±12	(0)	270	±8	(0)
BE01z03	60	58	1.04	0.9952	0.50	0.0542	0.0207	0.1545	0.0077	0.0039	0.0004	0.0108	0.0002	379	±161	(0)	132	±3	(0)	146	±9	(0)	155	±5	(0)
BE01z04	478	490	0.98	1.0079	0.50	0.0546	0.0496	0.3727	0.0169	0.0015	0.0007	0.0105	0.0003	394	±63	(0)	312	±4	(0)	322	±8	(0)	338	±5	(0)
BE01z05	51	79	0.65	1.0133	0.50	0.0519	0.0451	0.3228	0.0151	0.0043	0.0010	0.0262	0.0007	282	±189	(0)	284	±6	(0)	284	±20	(0)	303	±14	(0)
BE01z06	155	145	1.07	1.0114	0.50	0.0528	0.0512	0.3727	0.0166	0.0016	0.0007	0.0112	0.0003	318	±69	(0)	322	±4	(0)	322	±8	(0)	333	±5	(0)
BE01z07	87	104	0.84	1.0114	0.50	0.0537	0.0311	0.2298	0.0103	0.0024	0.0005	0.0102	0.0002	357	±101	(0)	197	±3	(0)	210	±8	(0)	207	±5	(0)
BE01z08	255	346	0.74	1.0114	0.50	0.0525	0.0464	0.3353	0.0152	0.0012	0.0006	0.0076	0.0002	306	±51	(0)	292	±4	(0)	294	±6	(0)	305	±4	(0)
BE01z09	215	200	1.08	1.0119	0.50	0.0538	0.0473	0.3506	0.0150	0.0017	0.0006	0.0113	0.0003	361	±73	(0)	298	±4	(0)	305	±8	(0)	300	±5	(0)
BE01z10	469	380	1.24	1.0158	0.50	0.0624	0.0543	0.4673	0.0185	0.0016	0.0008	0.0121	0.0003	689	±54	(0)	341	±5	(0)	389	±8	(0)	370	±5	(0)
BE01z11	237	264	0.90	1.0073	0.50	0.0672	0.0506	0.4682	0.0197	0.0032	0.0008	0.0220	0.0005	843	±100	(0)	318	±5	(0)	390	±15	(0)	395	±10	(0)
BE01z12	174	164	1.06	1.0114	0.50	0.0568	0.0679	0.5318	0.0212	0.0014	0.0009	0.0135	0.0003	485	±56	(0)	423	±5	(0)	433	±9	(0)	424	±6	(0)
BE01z13	169	192	0.88	1.0144	0.50	0.1162	0.0196	0.3144	0.0118	0.0059	0.0004	0.0153	0.0003	1898	±91	(0)	125	±3	(0)	278	±12	(0)	236	±6	(0)
BE01z14	120	111	1.08	1.0037	0.50	0.0500	0.0211	0.1454	0.0067	0.0027	0.0003	0.0077	0.0002	195	±125	(0)	134	±2	(0)	138	±7	(0)	135	±3	(0)
BE01z15	208	239	0.87	1.0138	0.50	0.0533	0.0501	0.3681	0.0155	0.0014	0.0006	0.0100	0.0002	343	±61	(0)	315	±4	(0)	318	±7	(0)	311	±5	(0)
BE01z16	135	111	1.22	1.0085	0.50	0.0584	0.0687	0.5527	0.0195	0.0014	0.0009	0.0131	0.0003	543	±51	(0)	428	±5	(0)	447	±9	(0)	390	±5	(0)
BE01z17	68	51	1.34	1.0027	0.50	0.0517	0.0454	0.3233	0.0138	0.0041	0.0009	0.0250	0.0004	273	±181	(0)	286	±6	(0)	284	±19	(0)	278	±9	(0)
BE01z18	145	185	0.78	1.0086	0.50	0.0524	0.0453	0.3267	0.0132	0.0014	0.0006	0.0087	0.0002	302	±61	(0)	285	±4	(0)	287	±7	(0)	264	±4	(0)
BE01z19	249	181	1.38	1.0081	0.50	0.0572	0.0443	0.3491	0.0132	0.0024	0.0007	0.0142	0.0003	498	±91	(0)	279	±4	(0)	304	±11	(0)	266	±5	(0)
BE01z20	185	141	1.31	1.0071	0.50	0.0546	0.0466	0.3502	0.0144	0.0015	0.0006	0.0096	0.0002	395	±62	(0)	293	±4	(0)	305	±7	(0)	289	±4	(0)
BE02z01	178	598	0.30	1.0098	0.50	0.0567	0.0699	0.5465	0.0091	0.0010	0.0008	0.0101	0.0002	480	±40	(0)	436	±5	(0)	443	±7	(0)	184	±4	(0)
BE02z02	104	128	0.81	1.0088	0.50	0.0564	0.0733	0.5699	0.0237	0.0017	0.0010	0.0170	0.0004	469	±66	(0)	456	±6	(0)	458	±11	(0)	473	±8	(0)
BE02z03	219	161	1.37	1.0098	0.50	0.0528	0.0492	0.3575	0.0152	0.0012	0.0006	0.0084	0.0002	319	±53	(0)	309	±4	(0)	310	±6	(0)	306	±4	(0)
BE02z04	217	289	0.75	1.0097	0.50	0.0522	0.0410	0.2947	0.0130	0.0009	0.0005	0.0054	0.0002	292	±41	(0)	259	±3	(0)	262	±4	(0)	260	±3	(0)
BE02z05	70	87	0.81	1.0098	0.50	0.0575	0.0513	0.4063	0.0161	0.0037	0.0010	0.0256	0.0006	510	±142	(0)	323	±6	(0)	346	±18	(0)	322	±11	(0)
BE02z06	188	182	1.03	1.0055	0.50	0.0497	0.0210	0.1439	0.0069	0.0024	0.0003	0.0068	0.0002	179	±111	(0)	134	±2	(0)	137	±6	(0)	139	±3	(0)

						Correcte	d isotopic i	ratios		1 sigma	error			Ages	and erro	rs (Ma) (1 sigma) -	indica	tive error	related to	commo	n lead c	orrection		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	2 ⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/	²⁰⁶ Pb		²⁰⁶ Pb/	²³⁸ U		²⁰⁷ Pb/ ²³	⁵U		²⁰⁸ Pb/ ²³²	ŕTh	
Beverley W	C2																								
BE02z07	303	280	1.08	1.0088	0.50	0.0496	0.0191	0.1306	0.0064	0.0026	0.0003	0.0067	0.0002	176	±122	(0)	122	±2	(0)	125	±6	(0)	130	±3	(0)
BE02z08	279	290	0.96	1.0091	0.50	0.0569	0.0618	0.4840	0.0196	0.0013	0.0008	0.0115	0.0003	487	±52	(0)	386	±5	(0)	401	±8	(0)	393	±5	(0)
BE02z09	139	153	0.91	1.0100	0.50	0.0563	0.0711	0.5516	0.0212	0.0011	0.0009	0.0107	0.0003	465	±42	(0)	443	±5	(0)	446	±7	(0)	425	±5	(0)
BE02z10	145	122	1.18	1.0075	0.50	0.0539	0.0455	0.3379	0.0146	0.0028	0.0008	0.0172	0.0003	366	±116	(0)	287	±5	(0)	296	±13	(0)	293	±7	(0)
BE02z11	76	126	0.60	1.0100	0.50	0.1949	0.5314	14.2681	0.1409	0.0028	0.0067	0.2139	0.0022	2784	±23	(0)	2747	±28	(0)	2768	±14	(0)	2664	±38	(0)
BE02z12	272	245	1.11	1.0115	0.50	0.0674	0.0698	0.6488	0.0215	0.0013	0.0008	0.0123	0.0003	851	±39	(0)	435	±5	(0)	508	±8	(0)	430	±5	(0)
BE02z13	71	76	0.94	1.0101	0.50	0.0579	0.0472	0.3765	0.0151	0.0021	0.0007	0.0133	0.0003	524	±78	(0)	297	±4	(0)	324	±10	(0)	302	±6	(0)
BE02z14	182	173	1.05	1.0109	0.50	0.0527	0.0443	0.3218	0.0143	0.0014	0.0005	0.0084	0.0002	314	±59	(0)	280	±3	(0)	283	±6	(0)	287	±4	(0)
BE02z15	254	312	0.81	1.0114	0.50	0.0604	0.0735	0.6125	0.0241	0.0009	0.0008	0.0093	0.0003	619	±32	(0)	457	±5	(0)	485	±6	(0)	481	±5	(0)
BE02z16	388	358	1.08	1.0115	0.50	0.0578	0.0661	0.5263	0.0208	0.0009	0.0008	0.0085	0.0002	521	±35	(0)	413	±5	(0)	429	±6	(0)	416	±4	(0)
BE02z17	65	81	0.80	1.0102	0.50	0.0634	0.0644	0.5623	0.0229	0.0020	0.0009	0.0174	0.0004	720	±67	(0)	402	±5	(0)	453	±11	(0)	457	±8	(0)
BE02z18	196	128	1.52	1.0087	0.50	0.0575	0.0408	0.3237	0.0133	0.0021	0.0006	0.0118	0.0002	510	±82	(0)	258	±4	(0)	285	±9	(0)	267	±4	(0)
BE02z19	305	302	1.01	1.0115	0.50	0.0531	0.0528	0.3864	0.0164	0.0010	0.0006	0.0075	0.0002	334	±44	(0)	331	±4	(0)	332	±5	(0)	328	±4	(0)
BE02z20	658	397	1.66	1.0116	0.50	0.0975	0.1797	2.4147	0.0541	0.0016	0.0021	0.0396	0.0006	1576	±30	(0)	1065	±12	(0)	1247	±12	(0)	1065	±11	(0)
BE02z21	327	659	0.50	1.0118	0.50	0.0635	0.0524	0.4587	0.0099	0.0016	0.0007	0.0111	0.0002	724	±52	(0)	329	±4	(0)	383	±8	(0)	199	±4	(0)
BE02z22	239	196	1.22	1.0109	0.50	0.0570	0.0725	0.5697	0.0223	0.0012	0.0009	0.0121	0.0003	490	±47	(0)	451	±5	(0)	458	±8	(0)	446	±5	(0)
BE02z23	250	231	1.08	1.0098	0.50	0.0538	0.0489	0.3622	0.0155	0.0011	0.0006	0.0076	0.0002	361	±47	(0)	308	±4	(0)	314	±6	(0)	310	±4	(0)
BE02z24	101	81	1.25	1.0043	0.50	0.0511	0.0211	0.1482	0.0068	0.0023	0.0003	0.0067	0.0001	244	±106	(0)	134	±2	(0)	140	±6	(0)	138	±3	(0)
BE02z25	667	359	1.86	1.0087	0.50	0.0611	0.0168	0.1418	0.0058	0.0021	0.0002	0.0048	0.0001	643	±/4	(0)	108	±1	(0)	135	±4	(0)	11/	±2	(0)
BE02z26	317	277	1.14	1.0114	0.50	0.0500	0.0211	0.1453	0.0067	0.0014	0.0003	0.0040	0.0001	194	±64	(0)	135	±2	(0)	138	±4	(0)	136	±2	(0)
BE02227	244	306	0.80	1.0110	0.50	0.0533	0.0449	0.3296	0.0143	0.0012	0.0005	0.0073	0.0002	342	±50	(0)	283	±3	(0)	289	±6	(0)	286	±4	(0)
BEU2Z28	146	217	0.67	1.0118	0.50	0.0895	0.1414	1.7451	0.0437	0.0021	0.0018	0.0398	0.0008	1415	±44	(0)	853	±10	(0)	1025	±15	(U) (O)	105	±15	(0)
	115	39	1.10	1.0008	0.50	0.0516	0.0190	0.1348	0.0067	0.0031	0.0003	0.0079	0.0002	207	±13/	(0)	121	±2	(0)	128	±/	(U) (O)	135	±3	(0)
DE03202	230	100	1.37	1.0106	0.50	0.0532	0.0462	0.3387	0.0152	0.0014	0.0006	0.0086	0.0002	335	±38	(0)	291	ΞJ	(0)	290	Ξ/	(0)	303	I4	(0)

Zircons Mt Gee DC1

				Corrected isotopic ratios 1 sigma error										Ages	and er	ors (Ma) (1 sigma)	- indica	ative erro	r related t	o comm	on lead	correction		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio 207Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	206Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/	²⁰⁶ Pb		²⁰⁶ Pb/	²³⁸ U		²⁰⁷ Pb/ ²³	³⁵ U		²⁰⁸ Pb/ ^{23:}	²Th	
DC1 Mt (Gee cong	lomerate	9																						
DC1-S1-1	128	304	0.42	1.0114	0.50	0.0563	0.0672	0.5212	0.0185	0.0011	0.0007	0.0092	0.0004	463	±41	(0)	419	±4	(0)	426	±6	(0)	371	±9	(0)
DC1-S1-2	66	95	0.69	1.0127	0.50	0.0525	0.0507	0.3670	0.0163	0.0016	0.0007	0.0109	0.0005	308	±71	(0)	319	±4	(0)	317	±8	(0)	327	±9	(0)
DC1-S3-2	172	687	0.25	1.0144	0.50	0.0800	0.1360	1.4990	0.0454	0.0009	0.0015	0.0175	0.0006	1196	±21	(0)	822	±9	(0)	930	±7	(0)	897	±11	(0)
DC1-S1-4	80	151	0.53	1.0112	0.50	0.1144	0.3396	5.3562	0.1006	0.0012	0.0036	0.0578	0.0010	1870	±19	(0)	1885	±17	(0)	1878	±9	(0)	1937	±19	(0)
DC1-S1-5	123	621	0.20	1.0103	0.50	0.0762	0.1683	1.7691	0.0409	0.0009	0.0016	0.0189	0.0006	1101	±22	(0)	1003	±9	(0)	1034	±7	(0)	811	±12	(0)
DC1-S1-6	78	176	0.44	1.0139	0.50	0.0558	0.0701	0.5388	0.0248	0.0012	0.0009	0.0113	0.0006	443	±47	(0)	437	±5	(0)	438	±7	(0)	496	±11	(0)
DC1-S1-7	0	1	0.55	1.0170	0.50	0.3239	0.1095	4.8926	0.2124	0.0182	0.0037	0.2354	0.0107	3588	±86	(0)	670	±21	(0)	1801	±41	(0)	3893	±179	(0)
DC1-S1-8	566	1174	0.48	1.0109	0.50	0.0719	0.0756	0.7499	0.0248	0.0008	0.0008	0.0081	0.0003	983	±22	(0)	470	±5	(0)	568	±5	(0)	496	±5	(0)
DC1-S1-9	52	374	0.14	1.0141	0.50	0.1435	0.3950	7.8092	0.1090	0.0017	0.0040	0.0855	0.0026	2270	±20	(0)	2146	±19	(0)	2209	±10	(0)	2091	±47	(0)
DC1-S110	386	911	0.42	1.0159	0.50	0.0742	0.1179	1.2052	0.0393	0.0008	0.0014	0.0147	0.0004	1046	±22	(0)	718	±8	(0)	803	±7	(0)	780	±9	(0)
DC1-S111	72	47	1.53	1.0127	0.50	0.0964	0.2475	3.2887	0.0794	0.0014	0.0028	0.0462	0.0010	1555	±27	(0)	1426	±14	(0)	1478	±11	(0)	1545	±18	(0)
DC1-S112	2413	2286	1.06	1.0133	0.50	0.0653	0.0210	0.1892	0.0058	0.0007	0.0002	0.0023	0.0001	785	±24	(0)	134	±2	(0)	176	±2	(0)	116	±1	(0)
DC1S112b	712	732	0.97	1.0141	0.50	0.0758	0.0417	0.4360	0.0107	0.0011	0.0005	0.0064	0.0002	1088	±28	(0)	264	±3	(0)	367	±5	(0)	215	±3	(0)
DC1-S113	369	378	0.98	1.0119	0.50	0.1016	0.2837	3.9729	0.0866	0.0011	0.0029	0.0411	0.0008	1653	±19	(0)	1610	±15	(0)	1629	±8	(0)	1679	±14	(0)
DC1-S114	104	144	0.72	1.0135	0.50	0.0592	0.0833	0.6799	0.0265	0.0012	0.0011	0.0137	0.0005	574	±44	(0)	516	±6	(0)	527	±8	(0)	529	±10	(0)
DC1-S115	657	358	1.83	1.0130	0.50	0.1033	0.3018	4.2979	0.0874	0.0011	0.0031	0.0452	0.0008	1684	±19	(0)	1700	±15	(0)	1693	±9	(0)	1694	±14	(0)
DC1-S116	137	213	0.64	1.0131	0.50	0.1038	0.2630	3.7658	0.0823	0.0011	0.0028	0.0415	0.0009	1694	±20	(0)	1505	±14	(0)	1585	±9	(0)	1598	±16	(0)
DC1-S117	154	1403	0.11	1.0084	0.50	0.0965	0.2525	3.3589	0.0595	0.0010	0.0025	0.0343	0.0008	1558	±19	(0)	1451	±13	(0)	1495	±8	(0)	1168	±15	(0)
DC1S117b	321	1849	0.17	1.0140	0.50	0.0974	0.2341	3.1446	0.0453	0.0010	0.0025	0.0338	0.0005	1575	±19	(0)	1356	±13	(0)	1444	±8	(0)	896	±9	(0)
DC1-S118	264	217	1.22	1.0113	0.50	0.0616	0.0999	0.8474	0.0303	0.0007	0.0011	0.0104	0.0003	659	±25	(0)	614	±6	(0)	623	±6	(0)	604	±6	(0)
DC1-S119	261	447	0.58	1.0130	0.50	0.0575	0.0827	0.6558	0.0256	0.0006	0.0009	0.0078	0.0003	511	±24	(0)	512	±6	(0)	512	±5	(0)	510	±5	(0)
DC1-S120	1175	884	1.33	1.0139	0.50	0.0639	0.0567	0.4994	0.0178	0.0007	0.0007	0.0060	0.0002	738	±23	(0)	356	±4	(0)	411	±4	(0)	356	±3	(0)
DC1-S121	34	56	0.62	1.0075	0.50	0.0565	0.0739	0.5749	0.0255	0.0018	0.0011	0.0179	0.0008	471	±71	(0)	459	±7	(0)	461	±12	(0)	510	±16	(0)
DC1S121b	64	52	1.22	1.0130	0.50	0.1015	0.0667	0.9339	0.0238	0.0016	0.0008	0.0149	0.0003	1652	±30	(0)	416	±5	(0)	670	±8	(0)	475	±7	(0)
DC-1S122	4940	3880	1.27	1.0135	0.50	0.0522	0.0259	0.1866	0.0004	0.0005	0.0003	0.0022	0.0000	295	±24	(463)	165	±2	(2)	174	±2	(33)	9	±0	(15)
DC1S122b	5011	4929	1.02	1.0103	0.50	0.0571	0.0235	0.1850	0.0012	0.0006	0.0003	0.0022	0.0000	495	±24	(347)	150	±2	(2)	172	±2	(26)	23	±0	(15)
DC1-S123	74	111	0.67	1.0113	0.50	0.0809	0.1746	1.9454	0.0545	0.0011	0.0022	0.0284	0.0008	1218	±27	(0)	1037	±12	(0)	1097	±10	(0)	1072	±15	(0)
DC1-S124	163	120	1.36	1.0095	0.50	0.1063	0.2847	4.1693	0.0937	0.0013	0.0034	0.0552	0.0011	1737	±23	(0)	1615	±17	(0)	1668	±11	(0)	1811	±20	(0)
DC1-S125	120	130	0.93	1.0138	0.50	0.0861	0.0586	0.6945	0.0252	0.0015	0.0007	0.0118	0.0004	1340	±33	(0)	367	±5	(0)	536	±7	(0)	502	±7	(0)
DC1S126	2345	669	3.51	1.0080	0.50	0.0648	0.0759	0.6779	0.0276	0.0009	0.0009	0.0097	0.0003	769	±28	(0)	472	±6	(0)	526	±6	(0)	551	±6	(0)
DC1S126b	514	679	0.76	1.0092	0.50	0.0667	0.0743	0.6822	0.0205	0.0009	0.0009	0.0096	0.0003	827	±27	(0)	462	±5	(0)	528	±6	(0)	411	±5	(0)
DC1S127	253	126	2.01	1.0155	0.50	0.0561	0.0695	0.5374	0.0215	0.0009	0.0008	0.0090	0.0003	456	±37	(0)	433	±5	(0)	437	±6	(0)	429	±5	(0)
DC1S127b	140	98	1.44	1.0175	0.50	0.0564	0.0733	0.5697	0.0227	0.0011	0.0009	0.0111	0.0003	469	±44	(0)	456	±5	(0)	458	±7	(0)	454	±7	(0)
DC1S128	441	604	0.73	1.0233	0.50	0.1632	0.4769	10.7302	0.1149	0.0016	0.0060	0.1329	0.0011	2489	±17	(0)	2514	±26	(0)	2500	±12	(0)	2199	±21	(0)
DC1S129	187	313	0.60	1.0112	0.50	0.0984	0.2735	3.7079	0.0716	0.0010	0.0032	0.0439	0.0007	1594	±19	(0)	1558	±16	(0)	1573	±9	(0)	1398	±13	(0)
DC1S130	263	213	1.24	0.9870	0.50	0.1162	0.2473	3.9544	0.0717	0.0021	0.0034	0.0714	0.0018	1898	±32	(0)	1424	±18	(0)	1625	±15	(0)	1400	±34	(0)
DC1S130b	252	170	1.48	1.0116	0.50	0.1241	0.3040	5.2005	0.0679	0.0017	0.0040	0.0759	0.0010	2017	±24	(0)	1711	±20	(0)	1853	±12	(0)	1327	±19	(0)
DC1S201	325	862	0.38	0.9996	0.50	0.0604	0.0990	0.8253	0.0320	0.0009	0.0013	0.0135	0.0006	619	±33	(0)	608	±8	(0)	611	±8	(0)	637	±12	(0)
DC1S202	219	120	1.82	1.0062	0.50	0.0647	0.0877	0.7824	0.0271	0.0013	0.0011	0.0149	0.0004	765	±41	(0)	542	±6	(0)	587	±9	(0)	540	±8	(0)
DC1S204	241	372	0.65	1.0097	0.50	0.0588	0.0919	0.7449	0.0293	0.0008	0.0011	0.0112	0.0003	560	±31	(0)	567	±6	(0)	565	±7	(0)	583	±6	(0)

Zircons Mt Gee DC1

						Correcte	d isotopic i	ratios		1 sigma	error			Ages	and err	ors (Ma)	(1 sigma)	- indica	ative erro	or related t	o comm	on lead	correction	r.	
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	0%Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	0.852/qd	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb	^{/206} Pb		²⁰⁶ Pb/ ²	²³⁸ U		²⁰⁷ Pb/ ²³	¹⁵ U		²⁰⁸ Pb/ ²³	¹² Th	
DC1 Mt	Gee conc	Iomerate																							
DC1S205	70	72	1 11	1 0088	0.50	0.0584	0.0875	0 7052	0 0200	0.0015	0.0011	0.0181	0 0004	546	+56	(0)	541	+6	(0)	542	+11	(0)	577	+8	(0)
DC1S205	139	200	0.69	1.0000	0.50	0.0304	0.3345	5 3677	0.0230	0.0013	0.0011	0.0101	0.0004	1902	+27	(0)	1860	±0 +21	(0)	1880	+14	(0)	1975	±0 +26	(0)
DC1S207	23	81	0.00	1 0135	0.50	0 1448	0.4265	8 5095	0.1249	0.0017	0.0049	0.1061	0.0014	2285	+20	(0)	2290	+22	(0)	2287	+11	(0)	2379	+28	(0)
DC1S208	110	65	1.68	1.0118	0.50	0.0593	0.0946	0.7730	0.0301	0.0017	0.0012	0.0216	0.0004	576	+62	(0)	583	+7	(0)	581	+12	(0)	598	+8	(0)
DC1S208b	114	75	1.53	1.0187	0.50	0.0594	0.0880	0.7205	0.0298	0.0019	0.0012	0.0228	0.0004	581	+70	(0)	544	+7	(0)	551	+13	(0)	593	+9	(0)
DC1S209	21	6	3.42	1.0186	0.50	0.4821	0.6103	40.5501	0.3211	0.0092	0.0099	0.7578	0.0041	4187	±28	(0)	3071	±40	(0)	3784	±19	(0)	5628	±63	(0)
DC1S210	33	68	0.48	1.0152	0.50	0.0625	0.1013	0.8723	0.0332	0.0017	0.0013	0.0238	0.0007	690	±59	(0)	622	±7	(0)	637	±13	(0)	660	±13	(0)
DC1S210b	26	49	0.52	1.0194	0.50	0.0624	0.1006	0.8647	0.0339	0.0018	0.0013	0.0249	0.0007	686	±62	(0)	618	±8	(0)	633	±14	(0)	673	±13	(0)
DC1S211	154	323	0.48	1.0166	0.50	0.0760	0.1862	1.9513	0.0542	0.0009	0.0021	0.0246	0.0006	1096	±24	(0)	1101	±11	(0)	1099	±8	(0)	1066	±11	(0)
DC1S201b	231	647	0.36	1.0116	0.50	0.0601	0.0970	0.8033	0.0322	0.0006	0.0011	0.0093	0.0003	606	±23	(0)	597	±6	(0)	599	±5	(0)	641	±6	(0)
DC1S202b	487	269	1.81	1.0116	0.50	0.0605	0.0967	0.8062	0.0319	0.0007	0.0011	0.0103	0.0003	620	±26	(0)	595	±6	(0)	600	±6	(0)	635	±6	(0)
DC1S203	534	919	0.58	1.0119	0.50	0.0578	0.0857	0.6820	0.0278	0.0006	0.0010	0.0078	0.0003	520	±23	(0)	530	±6	(0)	528	±5	(0)	555	±5	(0)
DC1S209b	56	40	1.40	1.0089	0.50	0.3819	0.2223	11.6952	0.2429	0.0069	0.0035	0.1924	0.0039	3839	±27	(0)	1294	±18	(0)	2580	±15	(0)	4394	±63	(0)
DC1S212	696	904	0.77	1.0090	0.50	0.0795	0.1350	1.4789	0.0484	0.0009	0.0015	0.0176	0.0005	1184	±22	(0)	816	±8	(0)	922	±7	(0)	956	±10	(0)
DC1S214	295	200	1.47	1.0117	0.50	0.0593	0.0929	0.7590	0.0292	0.0007	0.0011	0.0097	0.0003	577	±26	(0)	572	±6	(0)	573	±6	(0)	581	±6	(0)
DC1S215	106	77	1.37	1.0101	0.50	0.0730	0.1630	1.6404	0.0505	0.0010	0.0019	0.0232	0.0006	1014	±27	(0)	973	±11	(0)	986	±9	(0)	995	±11	(0)
DC1S216	209	143	1.46	1.0102	0.50	0.1143	0.3333	5.2494	0.0969	0.0012	0.0038	0.0604	0.0009	1868	±19	(0)	1854	±18	(0)	1861	±10	(0)	1870	±17	(0)
DC1S217	155	256	0.61	1.0119	0.50	0.0778	0.1767	1.8943	0.0533	0.0008	0.0020	0.0225	0.0006	1141	±21	(0)	1049	±11	(0)	1079	±8	(0)	1049	±11	(0)
DC1S218	145	209	0.70	1.0116	0.50	0.0601	0.0968	0.8014	0.0304	0.0007	0.0011	0.0101	0.0003	606	±25	(0)	596	±7	(0)	598	±6	(0)	606	±6	(0)
DC1S219	183	100	1.84	1.0111	0.50	0.1015	0.2843	3.9784	0.0846	0.0012	0.0034	0.0514	0.0009	1652	±22	(0)	1613	±17	(0)	1630	±10	(0)	1642	±16	(0)
DC1S220	358	328	1.09	1.0128	0.50	0.0600	0.0915	0.7564	0.0285	0.0007	0.0011	0.0096	0.0003	603	±25	(0)	564	±6	(0)	572	±6	(0)	567	±6	(0)
DC1S220b	252	239	1.05	1.0118	0.50	0.0609	0.0919	0.7716	0.0279	0.0008	0.0010	0.0105	0.0003	635	±29	(0)	567	±6	(0)	581	±6	(0)	556	±6	(0)
DC1S221	125	229	0.54	1.0106	0.50	0.0702	0.1438	1.3912	0.0435	0.0008	0.0017	0.0178	0.0005	934	±24	(0)	866	±10	(0)	885	±8	(0)	860	±10	(0)
DC1S221b	158	340	0.46	1.0127	0.50	0.0709	0.1519	1.4858	0.0436	0.0008	0.0018	0.0192	0.0005	956	±23	(0)	912	±10	(0)	925	±8	(0)	862	±10	(0)
DC1S222	96	106	0.90	1.0095	0.50	0.0730	0.1508	1.5169	0.0460	0.0011	0.0019	0.0244	0.0007	1013	±31	(0)	906	±11	(0)	937	±10	(0)	909	±13	(0)
DC1S223	49	171	0.29	1.0106	0.50	0.0598	0.0987	0.8131	0.0303	0.0008	0.0011	0.0108	0.0005	596	±27	(0)	606	±7	(0)	604	±6	(0)	603	±9	(0)
DC1S223b	37	141	0.27	1.0117	0.50	0.0600	0.0953	0.7875	0.0298	0.0009	0.0012	0.0127	0.0006	602	±33	(0)	587	±7	(0)	590	±7	(0)	594	±12	(0)
DC1S224	760	445	1.71	1.0140	0.50	0.0604	0.0934	0.7774	0.0286	0.0008	0.0012	0.0109	0.0003	616	±27	(0)	576	±7	(0)	584	±6	(0)	570	±6	(0)
DC1S225	487	269	1.81	1.0110	0.50	0.0600	0.0967	0.7996	0.0302	0.0007	0.0011	0.0100	0.0003	603	±25	(0)	595	±6	(0)	597	±6	(0)	602	±6	(0)
DC1S226	58	110	0.53	1.0112	0.50	0.0597	0.0904	0.7434	0.0281	0.0009	0.0011	0.0110	0.0004	592	±31	(0)	558	±6	(0)	564	±6	(0)	560	±8	(0)
DC1S226b	111	177	0.63	1.0109	0.50	0.0596	0.0887	0.7291	0.0285	0.0008	0.0011	0.0105	0.0004	589	±30	(0)	548	±6	(0)	556	±6	(0)	568	±8	(0)
DC1S227	118	125	0.94	1.0112	0.50	0.1102	0.3162	4.8020	0.0887	0.0012	0.0036	0.0559	0.0009	1802	±19	(0)	1771	±18	(0)	1785	±10	(0)	1718	±17	(0)
DC1S228	86	116	0.74	1.0119	0.50	0.1877	0.5021	12.9895	0.1457	0.0020	0.0056	0.1460	0.0016	2722	±17	(0)	2623	±24	(0)	2679	±11	(0)	2749	±27	(0)
DC1S229	152	196	0.77	1.0123	0.50	0.0811	0.1975	2.2090	0.0603	0.0009	0.0023	0.0260	0.0006	1225	±21	(0)	1162	±12	(0)	1184	±8	(0)	1183	±12	(0)
DC1S230	88	134	0.66	1.0137	0.50	0.3051	0.6497	27.3252	0.1775	0.0031	0.0080	0.3327	0.0021	3496	±16	(0)	3227	±31	(0)	3395	±12	(0)	3303	±35	(0)
DC1S231	65	50	1.29	1.0127	0.50	0.0788	0.1951	2.1211	0.0611	0.0011	0.0023	0.0299	0.0007	1168	±26	(0)	1149	±13	(0)	1156	±10	(0)	1199	±14	(0)
DC1S232	94	127	0.73	1.0128	0.50	0.0856	0.2338	2.7597	0.0761	0.0010	0.0028	0.0362	0.0009	1330	±23	(0)	1354	±15	(0)	1345	±10	(0)	1481	±17	(0)
DC1S233	586	1164	0.50	1.0153	0.50	0.0944	0.1926	2.5067	0.0598	0.0010	0.0024	0.0313	0.0007	1517	±20	(0)	1135	±13	(0)	1274	±9	(0)	1174	±13	(0)

DC1

DC1S409

DC1S410

DC1S411

DC1S412

DC1S413

DC1S413b

DC1S414

DC1S415

63

66

113

31

100

52

83

77

126

166

248

82

174

115

153

155

0.50

0.40

0.46

0.39

0.57

0.45

0.55

0.50

1.0126 0.50

1.0134 0.50

1.0126 0.50

1.0128 0.50

1.0134 0.50

1.0137 0.50

1.0127 0.50

1.0124 0.50

0.0987 0.2831 3.8534

0.2828

0.2959

0.2838

0.2775

0.2819

0.2863

0.2767

0.0980

0.0983

0.0989

0.0985

0.0983

0.0982

0.0982

0.0897

0.0907

0.0983

0.0957

0.0874

0.0922

0.0913

0.0872

3.8207

4.0079

3.8666

3.7661

3.8182

3.8770

3.7471

						Correcte	d isotopic r	ratios		1 sigma	error			Ages	and er	rors (Ma) (1 sigma)	- indica	ative erro	r related to	o comme	on lead	correction		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	0.852/94	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/	²⁰⁶ Pb		²⁰⁶ Pb/ ²	²³⁸ U		²⁰⁷ Pb/ ²³	⁵U		²⁰⁸ Pb/ ^{23;}	² Th	
DC1 Mt 0	Gee cond	lomerate																							
DC1S234b	105	636	0.17	1.0125	0.50	0.1874	0.4432	11.4519	0.1290	0.0019	0.0050	0.1272	0.0013	2720	±16	(0)	2365	±22	(0)	2561	±10	(0)	2453	±23	(0)
DC1S301	223	275	0.81	1.0098	0.50	0.1730	0.4746	11.3193	0.1340	0.0020	0.0054	0.1351	0.0018	2587	±19	(0)	2504	±24	(0)	2550	±11	(0)	2541	±31	(0)
DC1S302	58	62	0.94	1.0117	0.50	0.0934	0.2498	3.2162	0.0730	0.0012	0.0030	0.0435	0.0009	1496	±24	(0)	1437	±15	(0)	1461	±10	(0)	1424	±18	(0)
DC1S302b	65	54	1.19	1.0118	0.50	0.0929	0.2449	3.1364	0.0749	0.0011	0.0028	0.0396	0.0008	1486	±22	(0)	1412	±15	(0)	1442	±10	(0)	1459	±16	(0)
DC1S303	91	75	1.22	1.0124	0.50	0.1328	0.3911	7.1598	0.1145	0.0014	0.0044	0.0824	0.0012	2135	±19	(0)	2128	±20	(0)	2132	±10	(0)	2191	±21	(0)
DC1S303b	241	162	1.49	1.0123	0.50	0.1309	0.3476	6.2722	0.0958	0.0014	0.0040	0.0720	0.0009	2110	±18	(0)	1923	±19	(0)	2015	±10	(0)	1848	±17	(0)
DC1S304	249	189	1.32	1.0124	0.50	0.0936	0.2663	3.4365	0.0797	0.0010	0.0031	0.0405	0.0008	1500	±20	(0)	1522	±16	(0)	1513	±9	(0)	1551	±15	(0)
DC1S305	1801	4028	0.45	1.0088	0.50	0.0714	0.0398	0.3915	0.0173	0.0008	0.0005	0.0050	0.0002	969	±23	(198)	251	±3	(2)	335	±4	(30)	348	±4	(43)
DC1S306	205	364	0.56	1.0125	0.50	0.0584	0.0943	0.7588	0.0308	0.0007	0.0011	0.0094	0.0003	544	±24	(0)	581	±6	(0)	573	±5	(0)	612	±6	(0)
DC1S307	401	318	1.26	1.0124	0.50	0.0622	0.1052	0.9020	0.0339	0.0007	0.0012	0.0111	0.0003	681	±24	(0)	645	±7	(0)	653	±6	(0)	673	±7	(0)
DC1S308	92	118	0.78	1.0127	0.50	0.2643	0.6521	23.7568	0.1848	0.0027	0.0076	0.2733	0.0019	3272	±16	(0)	3237	±29	(0)	3258	±11	(0)	3427	±32	(0)
DC1S308b	75	91	0.82	1.0105	0.50	0.2621	0.5693	20.5557	0.1684	0.0030	0.0063	0.2345	0.0023	3259	±18	(0)	2905	±26	(0)	3118	±11	(0)	3145	±40	(0)
DC1S309	106	230	0.46	1.0115	0.50	0.0975	0.2896	3.8905	0.0871	0.0011	0.0036	0.0505	0.0011	1576	±21	(0)	1640	±18	(0)	1612	±10	(0)	1688	±21	(0)
DC1S310	58	51	1.14	1.0099	0.50	0.1602	0.3929	8.6740	0.1141	0.0023	0.0047	0.1229	0.0019	2458	±25	(0)	2136	±22	(0)	2304	±13	(0)	2184	±34	(0)
DC1S401	192	321	0.60	1.0134	0.50	0.0974	0.2712	3.6393	0.0796	0.0011	0.0029	0.0399	0.0009	1575	±20	(0)	1547	±14	(0)	1558	±9	(0)	1547	±16	(0)
DC1S402	160	286	0.56	1.0127	0.50	0.0978	0.2822	3.8040	0.0801	0.0011	0.0033	0.0462	0.0009	1582	±20	(0)	1603	±17	(0)	1594	±10	(0)	1557	±17	(0)
DC1S403	48	100	0.48	1.0127	0.50	0.0981	0.2805	3.7923	0.0842	0.0011	0.0032	0.0454	0.0010	1588	±21	(0)	1594	±16	(0)	1591	±10	(0)	1633	±19	(0)
DC1S404	99	242	0.41	1.0143	0.50	0.0972	0.2759	3.6976	0.0799	0.0011	0.0034	0.0486	0.0011	1571	±21	(0)	1571	±17	(0)	1571	±10	(0)	1554	±20	(0)
DC1S405	182	430	0.42	1.0133	0.50	0.0984	0.2723	3.6938	0.0806	0.0010	0.0031	0.0425	0.0008	1594	±19	(0)	1552	±16	(0)	1570	±9	(0)	1567	±15	(0)
DC1S406	95	222	0.43	1.0126	0.50	0.0981	0.2882	3.8981	0.0870	0.0010	0.0033	0.0462	0.0010	1589	±20	(0)	1632	±17	(0)	1613	±10	(0)	1687	±18	(0)
DC1S407	148	276	0.54	1.0135	0.50	0.1017	0.2791	3.9129	0.0862	0.0011	0.0033	0.0473	0.0009	1655	±19	(0)	1587	±17	(0)	1616	±10	(0)	1671	±17	(0)
DC1S408	146	381	0.38	1.0125	0.50	0.0984	0.2839	3.8490	0.0860	0.0010	0.0033	0.0444	0.0009	1593	±19	(0)	1611	±16	(0)	1603	±9	(0)	1668	±16	(0)
DC1S408b	98	242	0.40	1.0124	0.50	0.0980	0.2806	3.7896	0.0848	0.0010	0.0034	0.0464	0.0010	1585	±20	(0)	1595	±17	(0)	1591	±10	(0)	1644	±18	(0)

0.0012 0.0035 0.0512 0.0012

0.0474

0.0535

0.0433

0.0455

0.0459

0.0443

0.0010

0.0011

0.0018

0.0009

0.0011

0.0010

0.0009

0.0010 0.0032 0.0445

0.0031

0.0032

0.0033

0.0010 0.0034

0.0014 0.0033

0.0010 0.0032

0.0010

0.0011

0.0010

1600 ±22 (0)

1586 ±20 (0)

1591 ±20 (0)

1603 ±26 (0)

1591 ±20 (0)

±20 (0)

±20 (0)

±20 (0)

1595

1591

1591

1607 ±18 (0)

1575 ±16 (0)

(0)

(0)

(0)

(0)

1606 ±16

1671 ±17

1610 ±16

1579 ±16

1601 ±16 (0)

1623 ±17 (0) 1604 ±11 (0)

1597

1636

1607 ±11 (0)

1586 ±9 (0)

1597

1609 ±10 (0)

1581 ±9 (0)

±9 (0)

±10

±10 (0)

(0)

1736

1754

1895

1847

1694

1782

1765

1689

±22

±19

±20

±33

±17

±20

±18

±17

(0)

(0)

(0)

(0)

(0)

(0)

(0)

(0)

						Correcte	d isotopic	ratios		1 sigma	error			Ages	and err	ors (Ma) (1	sigma)	- indica	ative erroi	related to	o comme	on lead	correction		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	0.828/qd	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	0.852/94J	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/	²⁰⁶ Pb		²⁰⁶ Pb/	²³⁸ U		²⁰⁷ Pb/ ²³	³⁵ U		²⁰⁸ Pb/ ²³²	²Th	
DC6 Mt	Gee cong	lomerate	•																						
DC6L1Z01	80	80	1.00	1.0111	0.50	0.0734	0.1509	1.5273	0.0574	0.0014	0.0018	0.0298	0.0007	1026	±39	(0)	906	±10	(0)	941	±12	(0)	1128	±13	(0)
DC6L102	215	96	2.25	1.0098	0.50	0.0595	0.0945	0.7758	0.0295	0.0012	0.0011	0.0156	0.0003	587	±43	(0)	582	±7	(0)	583	±9	(0)	588	±6	(0)
DC6L103	66	153	0.43	1.0113	0.50	0.1053	0.2639	3.8322	0.0959	0.0015	0.0031	0.0569	0.0013	1720	±26	(0)	1510	±16	(0)	1600	±12	(0)	1851	±23	(0)
DC6L104	206	278	0.74	1.0115	0.50	0.2264	0.5035	15.7179	0.1496	0.0027	0.0059	0.1999	0.0018	3027	±19	(0)	2629	±25	(0)	2860	±12	(0)	2818	±31	(0)
DC6L104b	298	334	0.89	1.0115	0.50	0.2336	0.5623	18.1123	0.1535	0.0024	0.0063	0.2016	0.0014	3077	±16	(0)	2876	±26	(0)	2996	±11	(0)	2887	±25	(0)
DC6L105	226	116	1.94	1.0111	0.50	0.0842	0.2042	2.3713	0.0614	0.0011	0.0023	0.0334	0.0006	1298	±26	(0)	1198	±12	(0)	1234	±10	(0)	1204	±11	(0)
DC6L106	232	287	0.81	1.0113	0.50	0.0605	0.0970	0.8095	0.0300	0.0009	0.0011	0.0118	0.0003	623	±30	(0)	597	±6	(0)	602	±7	(0)	598	±6	(0)
DC6L106b	275	273	1.01	1.0109	0.50	0.0611	0.0972	0.8185	0.0295	0.0009	0.0011	0.0121	0.0003	642	±31	(0)	598	±6	(0)	607	±7	(0)	588	±6	(0)
DC6L107	66	46	1.45	1.0116	0.50	0.1077	0.3088	4.5840	0.0900	0.0016	0.0036	0.0692	0.0010	1760	±27	(0)	1735	±18	(0)	1746	±13	(0)	1742	±18	(0)
DC6L107b	91	64	1.41	1.0115	0.50	0.1024	0.2917	4.1161	0.0874	0.0020	0.0036	0.0788	0.0011	1667	±35	(0)	1650	±18	(0)	1658	±16	(0)	1694	±21	(0)
DC6L108	116	108	1.07	1.0079	0.50	0.0553	0.0580	0.4425	0.0184	0.0018	0.0008	0.0139	0.0003	424	±71	(0)	364	±5	(0)	372	±10	(0)	368	±6	(0)
DC6L109	137	302	0.45	1.0115	0.50	0.0985	0.2717	3.6872	0.0781	0.0011	0.0030	0.0436	0.0008	1595	±20	(0)	1549	±15	(0)	1569	±9	(0)	1520	±15	(0)
DC6L110	108	295	0.37	1.0110	0.50	0.0587	0.0859	0.6953	0.0276	0.0009	0.0010	0.0105	0.0003	557	±32	(0)	531	±6	(0)	536	±6	(0)	550	±7	(0)
DC6L111	74	142	0.52	1.0117	0.50	0.0983	0.2718	3.6846	0.0849	0.0012	0.0031	0.0472	0.0009	1593	±23	(0)	1550	±16	(0)	1568	±10	(0)	1647	±17	(0)
DC6L112	115	225	0.51	1.0115	0.50	0.0977	0.2764	3.7232	0.0865	0.0011	0.0031	0.0450	0.0009	1581	±21	(0)	1573	±16	(0)	1576	±10	(0)	1676	±16	(0)
DC6L113	44	185	0.24	1.0116	0.50	0.1025	0.2937	4.1518	0.1804	0.0018	0.0035	0.0/21	0.0030	16/1	±32	(0)	1660	±18	(0)	1665	±14	(0)	3353	±51	(0)
DC6L114	145	412	0.35	1.0115	0.50	0.0975	0.2777	3.7328	0.0886	0.0010	0.0031	0.0432	0.0009	15//	±20	(0)	1580	±16	(0)	15/8	±9	(0)	1/16	±16	(0)
DC6L114b	88	190	0.46	1.0114	0.50	0.1005	0.2779	3.8516	0.0927	0.0013	0.0032	0.0526	0.0011	1634	±24	(0)	1581	±16	(0)	1604	±11	(0)	1793	±21	(0)
DC6L201	161	847	0.19	1.0117	0.50	0.0900	0.2395	2.9703	0.0379	0.0010	0.0027	0.0345	0.0004	1424	±20	(123)	1384	±14	(9)	1400	±9	(55)	/53	±8	(506)
DC6L203	42	0177	0.47	1.0113	0.50	0.0988	0.2870	3.9101	0.0898	0.0013	0.0033	0.0531	0.0011	1602	±24	(U) (4E)	1627	±16	(0)	1010	±11	(0)	1738	±20	(0)
	00	21//	0.52	1.0117	0.50	0.1389	0.1409	2.0980	0.0765	0.0014	0.0016	0.0305	0.0002	1500	10 10	(45)	1500	19 16	(4)	1505	±0 ±10	(23) (0)	3∠9 1401	±3 ±10	(74)
DC6L205	33	200	0.48	1.0115	0.50	0.0983	0.2812	3.0113	0.0765	0.0014	0.0032	0.0002	0.0010	1000	±20	(0)	1010	±10	(0)	1014	11Z	(U) (O)	1491	±19	(0)
DC0L206	100	415	0.37	1.0116	0.50	0.0733	0.1697	1./140	0.0009	0.0008	0.0019	0.0210	0.0005	1022	±23	(0)	1010	±10	(0)	1014	ΞŐ	(0)	1003	ΞIŪ	(0)

Corrected isotopic ratios

Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction

#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/	²⁰⁶ Pb		²⁰⁶ Pb/	²³⁸ U		²⁰⁷ Pb/ ²³	³⁵ U		²⁰⁸ Pb/ ²³²	Th	
MtG001	173	157	1.10	1.0128	0.50	0.0600	0.0970	0.8022	0.0273	0.0009	0.0013	0.0128	0.0003	605	±31	(0)	597	±8	(0)	598	±7	(0)	545	±7	(0)
MtG002	174	154	1.13	1.0132	0.50	0.0548	0.0518	0.3913	0.0147	0.0012	0.0007	0.0090	0.0003	405	±51	(0)	326	±5	(0)	335	±7	(0)	296	±5	(0)
MtG002a	175	147	1.20	1.0141	0.50	0.0547	0.0506	0.3818	0.0150	0.0012	0.0007	0.0087	0.0003	402	±50	(0)	318	±4	(0)	328	±6	(0)	301	±5	(0)
MtG003	193	225	0.86	1.0148	0.50	0.1003	0.2684	3.7086	0.0808	0.0011	0.0034	0.0481	0.0008	1629	±19	(0)	1533	±17	(0)	1573	±10	(0)	1570	±15	(0)
MtG004	75	57	1.30	1.0138	0.50	0.0573	0.0527	0.4159	0.0161	0.0017	0.0008	0.0122	0.0003	502	±65	(0)	331	±5	(0)	353	±9	(0)	322	±7	(0)
MtG004a	92	78	1.19	1.0158	0.50	0.0545	0.0528	0.3969	0.0163	0.0014	0.0008	0.0103	0.0003	393	±58	(0)	332	±5	(0)	339	±7	(0)	327	±6	(0)
MtG005	103	252	0.41	1.0160	0.50	0.0566	0.0686	0.5352	0.0210	0.0008	0.0009	0.0081	0.0003	476	±29	(0)	428	±5	(0)	435	±5	(0)	420	±6	(0)
MtG005a	84	156	0.54	1.0161	0.50	0.0583	0.0707	0.5682	0.0217	0.0009	0.0010	0.0099	0.0004	540	±35	(0)	441	±6	(0)	457	±6	(0)	433	±7	(0)
MtG006	161	255	0.63	1.0164	0.50	0.0556	0.0665	0.5098	0.0204	0.0008	0.0009	0.0078	0.0003	436	±30	(0)	415	±5	(0)	418	±5	(0)	407	±5	(0)
MtG006a	220	274	0.80	1.0175	0.50	0.0584	0.0654	0.5266	0.0205	0.0010	0.0009	0.0095	0.0003	546	±36	(0)	408	±5	(0)	430	±6	(0)	410	±6	(0)
MtG007	131	338	0.39	1.0182	0.50	0.0962	0.2775	3.6800	0.0798	0.0010	0.0036	0.0479	0.0009	1551	±20	(0)	1579	±18	(0)	1567	±10	(0)	1552	±16	(0)
MtG008	156	132	1.18	1.0182	0.50	0.0552	0.0523	0.3982	0.0163	0.0011	0.0007	0.0081	0.0003	422	±44	(0)	329	±4	(0)	340	±6	(0)	327	±5	(0)
MtG008a	148	130	1.14	1.0202	0.50	0.0575	0.0501	0.3972	0.0160	0.0011	0.0007	0.0078	0.0002	512	±40	(0)	315	±4	(0)	340	±6	(0)	321	±5	(0)
MtG009	265	270	0.98	1.0202	0.50	0.0591	0.0800	0.6518	0.0261	0.0007	0.0011	0.0096	0.0003	572	±27	(0)	496	±6	(0)	510	±6	(0)	520	±6	(0)
MtG009a	428	288	1.49	1.0211	0.50	0.0598	0.0818	0.6741	0.0259	0.0007	0.0011	0.0097	0.0003	596	±26	(0)	507	±6	(0)	523	±6	(0)	517	±6	(0)
MtG010	214	117	1.83	1.0210	0.50	0.0609	0.0534	0.4480	0.0166	0.0026	0.0010	0.0186	0.0004	635	±92	(0)	335	±6	(0)	376	±13	(0)	333	±9	(0)
MtG010a	538	299	1.80	1.0214	0.50	0.0578	0.0510	0.4065	0.0161	0.0011	0.0007	0.0080	0.0002	523	±41	(0)	320	±4	(0)	346	±6	(0)	322	±4	(0)
MtG011	224	74	3.04	1.0222	0.50	0.0656	0.0921	0.8339	0.0288	0.0014	0.0014	0.0183	0.0004	795	±45	(0)	568	±8	(0)	616	±10	(0)	573	±8	(0)
MtG011a	179	52	3.41	1.0224	0.50	0.0614	0.0939	0.7948	0.0285	0.0029	0.0019	0.0367	0.0007	652	±103	(0)	579	±11	(0)	594	±21	(0)	567	±13	(0)
MtG011b	214	63	3.41	1.0211	0.50	0.0644	0.0945	0.8388	0.0293	0.0016	0.0014	0.0207	0.0004	753	±52	(0)	582	±8	(0)	618	±11	(0)	584	±8	(0)
MtG012	74	97	0.76	1.0220	0.50	0.0536	0.0516	0.3816	0.0164	0.0019	0.0009	0.0131	0.0005	356	±79	(0)	324	±5	(0)	328	±10	(0)	330	±10	(0)
MtG012a	76	90	0.84	1.0223	0.50	0.0584	0.0520	0.4182	0.0171	0.0016	0.0008	0.0114	0.0004	543	±60	(0)	327	±5	(0)	355	±8	(0)	342	±8	(0)
MtG013	123	255	0.48	1.0250	0.50	0.0986	0.2761	3.7551	0.0861	0.0010	0.0037	0.0500	0.0010	1598	±20	(0)	1572	±18	(0)	1583	±11	(0)	1669	±19	(0)
MtG014	148	153	0.97	1.0249	0.50	0.0560	0.0664	0.5129	0.0216	0.0010	0.0009	0.0098	0.0003	454	±40	(0)	414	±6	(0)	420	±7	(0)	432	±7	(0)
MtG014a	219	262	0.84	1.0249	0.50	0.0544	0.0668	0.5017	0.0210	0.0009	0.0009	0.0087	0.0003	389	±35	(0)	417	±6	(0)	413	±6	(0)	421	±6	(0)
MtG015	101	143	0.70	1.0257	0.50	0.0605	0.0538	0.4489	0.0189	0.0012	0.0008	0.0092	0.0003	622	±42	(0)	338	±5	(0)	376	±6	(0)	377	±7	(0)
MtG016	80	391	0.21	1.0256	0.50	0.0554	0.0702	0.5367	0.0240	0.0008	0.0010	0.0087	0.0005	429	±32	(0)	437	±6	(0)	436	±6	(0)	480	±9	(0)
MtG016a	86	398	0.22	1.0264	0.50	0.0578	0.0728	0.5800	0.0264	0.0008	0.0010	0.0092	0.0005	521	±30	(0)	453	±6	(0)	464	±6	(0)	526	±10	(0)
MtG017	476	290	1.64	1.0259	0.50	0.0551	0.0657	0.4990	0.0209	0.0009	0.0009	0.0088	0.0003	414	±36	(0)	410	±6	(0)	411	±6	(0)	418	±5	(0)
MtG018	67	167	0.40	1.0269	0.50	0.0969	0.2888	3.8605	0.0843	0.0011	0.0039	0.0550	0.0013	1565	±22	(0)	1635	±20	(0)	1605	±11	(0)	1636	±24	(0)
MtG019	357	332	1.08	1.0264	0.50	0.0557	0.0506	0.3892	0.0168	0.0008	0.0007	0.0065	0.0002	441	±33	(0)	318	±4	(0)	334	±5	(0)	337	±4	(0)
MtG019a	1051	784	1.34	1.0272	0.50	0.0687	0.0386	0.3661	0.0142	0.0008	0.0005	0.0052	0.0002	890	±24	(0)	244	±3	(0)	317	±4	(0)	285	±3	(0)
MtG019b	281	335	0.84	1.0271	0.50	0.0603	0.0516	0.4292	0.0180	0.0011	0.0007	0.0085	0.0003	614	±40	(0)	324	±5	(0)	363	±6	(0)	361	±6	(0)
MtG020	176	160	1.10	1.0261	0.50	0.0548	0.0530	0.4010	0.0172	0.0012	0.0008	0.0090	0.0003	406	±49	(0)	333	±5	(0)	342	±7	(0)	344	±6	(0)
MtG020a	279	190	1.47	1.0276	0.50	0.0543	0.0531	0.3977	0.0170	0.0012	0.0008	0.0091	0.0003	383	±50	(0)	334	±5	(0)	340	±7	(0)	340	±6	(0)
MtG021	179	214	0.83	1.0281	0.50	0.0565	0.0648	0.5045	0.0211	0.0010	0.0009	0.0092	0.0003	470	±37	(0)	405	±6	(0)	415	±6	(0)	421	±7	(0)
MtG022	230	369	0.62	1.0282	0.50	0.0539	0.0520	0.3869	0.0177	0.0008	0.0007	0.0065	0.0003	369	±33	(0)	327	±4	(0)	332	±5	(0)	355	±5	(0)
MtG022a	223	370	0.60	1.0288	0.50	0.0528	0.0522	0.3802	0.0177	0.0009	0.0007	0.0069	0.0003	320	±37	(0)	328	±4	(0)	327	±5	(0)	355	±6	(0)
MtG023	329	457	0.72	1.0292	0.50	0.0588	0.0487	0.3946	0.0157	0.0009	0.0007	0.0068	0.0002	560	±34	(0)	306	±4	(0)	338	±5	(0)	314	±5	(0)
MtG023a	355	363	0.98	1.0293	0.50	0.0541	0.0537	0.4002	0.0177	0.0008	0.0007	0.0066	0.0002	375	±32	(0)	337	±5	(0)	342	±5	(0)	355	±5	(0)

Corrected isotopic ratios

Zircons Mt Gee DC6

Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction

				Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	Pb/²06Pb	²³⁸ U	'Pb/ ²³⁵ U	Pb/ ²³² Th	Pb/²06Pb	²³⁸ U	'Pb/ ²³⁵ U	^{spb/232} Th	207	206		206	229		207 22	·		200 222		
#	Th (ppm)	U (ppm)	Th/U			507	506	201	506	201	506	201	50	207 Pb/	Pb		200Pb/			207 Pb/25	~U		200Pb/202	Th	
MtG024	202	268	0.75	1.0292	0.50	0.0590	0.0881	0.7165	0.0294	0.0009	0.0012	0.0123	0.0004	566	±34	(0)	544	±7	(0)	549	±7	(0)	585	±9	(0)
MtG025	1//	119	1.49	1.0276	0.50	0.0557	0.0648	0.4973	0.0218	0.0011	0.0009	0.0104	0.0003	440	±44	(0)	405	±b	(0)	410	±/	(0)	435	±/	(0)
MtG026	1	30	0.02	1.0264	0.50	0.0604	0.1040	0.8661	0.1296	0.0022	0.0018	0.0304	0.0152	619	±//	(0)	638	±11	(0)	633	±17	(0)	2463	±273	(0)
MIG026a	2	52	0.03	1.0272	0.50	0.0646	0.0971	0.8652	0.0813	0.0013	0.0014	0.0184	0.0046	762	±43	(0)	597	±8	(0)	633	±10	(0)	15/9	±86	(0)
MtG027	1/1	199	0.86	1.0297	0.50	0.0587	0.0811	0.6559	0.0277	0.0011	0.0012	0.0127	0.0005	556	±39	(0)	1574	±/	(0)	1572	±8	(0)	1750	±9	(0)
MtG026	100	214	0.49	1.0300	0.50	0.0973	0.2700	3.7069	0.0908	0.0012	0.0036	0.0554	0.0013	10/0	107	(0)	13/4	±15	(0)	1100	±12	(0)	1070	124 +15	(0)
MtG029	100	070	2.40	1.0302	0.50	0.0603	0.2021	2.2303	0.0049	0.0011	0.0020	0.0356	0.0008	1205	12/	(0)	100	±10	(0)	1500	±10	(0)	12/2	110	(0)
MIG030	393	0/0 20E	0.45	1.0304	0.50	0.0900	0.2040	3.7093	0.0095	0.0010	0.0036	0.0494	0.0010	1009	10	(0)	500	±19	(0)	1590	±10	(0)	1733 E14	10	(0)
MIGUST	200	305	1.00	1.0299	0.50	0.0573	0.0620	0.0472	0.0256	0.0006	0.0011	0.0105	0.0004	304	±40	(0)	200	I/	(0)	207	10 10	(0)	014	±/	(0)
MtG032	302 400	210	1.02	1.0292	0.50	0.0530	0.0523	0.3070	0.0166	0.0011	0.0008	0.0000	0.0003	363	±40 ±50	(0)	329	±5	(0)	221	±0 ±7	(0)	337	±0 ±5	(0)
MtG032a	450	400	2.20	1.0303	0.50	0.00053	0.0020	2 9740	0.0100	0.0012	0.0008	0.0009	0.0002	1552	±10	(0)	1652	±10	(0)	1609	⊥/ ⊥11	(0)	1722	±10	(0)
MtG033	150	432	0.49	1.0303	0.50	0.0503	0.2921	0.4767	0.0095	0.0010	0.0039	0.0012	0.0010	202	+44	(0)	200	±6	(0)	206	±11 ±7	(0)	1733	T12	(0)
MtG035	69	150	0.00	1.0305	0.50	0.0040	0.0000	3 8024	0.0201	0.0011	0.0003	0.0033	0.0004	1575	+20	(0)	1608	±0 +10	(0)	1593	⊥/ +11	(0)	17/3	±0 +21	(0)
MtG036	104	357	0.40	1.0303	0.50	0.0585	0.2004	0.7330	0.0301	0.0010	0.0030	0.0311	0.0011	548	+27	(0)	562	+7	(0)	558	+6	(0)	589	+0	(0)
MtG037	94	1/0	0.23	1.0305	0.50	0.0505	0.0310	0.7845	0.0230	0.0007	0.0012	0.0103	0.0005	588	+21	(0)	589	±/ +8	(0)	588	±0 +7	(0)	641	+9	(0)
MtG038	153	197	0.03	1.0303	0.50	0.0580	0.0330	0.7040	0.0322	0.0000	0.0013	0.0127	0.0003	528	+30	(0)	521	±0 +7	(0)	522	±/ +6	(0)	537	±3 +7	(0)
MtGee039	51	82	0.63	1.0285	0.50	0.0628	0.0042	0.8202	0.0200	0.0019	0.0016	0.0241	0.0009	701	+63	(0)	585	+9	(0)	608	+13	(0)	616	+18	(0)
MtGee040	141	295	0.00	1.0200	0.50	0 1088	0.3092	4 6308	0.0769	0.0017	0.0045	0.0241	0.0020	1780	+29	(0)	1737	+22	(0)	1755	+15	(0)	1497	+38	(0)
MtGee041	223	208	1.07	1 0300	0.50	0 1018	0.2890	4 0461	0.0872	0.0012	0.0039	0.0569	0.0011	1656	+21	(0)	1636	+20	(0)	1644	+11	(0)	1690	+20	(0)
MtGee042	284	1346	0.21	1.0299	0.50	0.0649	0.0765	0.6834	0.0109	0.0009	0.0011	0.0110	0.0003	772	+30	(0)	475	+6	(0)	529	+7	(0)	220	+7	(0)
MtGee043	83	114	0.73	1.0277	0.50	0.0597	0.0507	0.4167	0.0176	0.0020	0.0009	0.0139	0.0006	594	+74	(0)	319	+5	(0)	354	+10	(0)	352	+11	(0)
MtGee043a	111	163	0.68	1.0290	0.50	0.0595	0.0496	0.4059	0.0174	0.0011	0.0007	0.0077	0.0003	585	+38	(0)	312	+4	(0)	346	+6	(0)	348	+6	(0)
MtGee044a	204	576	0.35	1.0296	0.50	0.1565	0.4554	9.8008	0.1310	0.0016	0.0061	0.1292	0.0017	2418	+17	(0)	2419	+27	(0)	2416	+12	(0)	2488	+31	(0)
MtGee045	117	63	1.86	1.0273	0.50	0.0688	0.0966	0.9140	0.0312	0.0025	0.0018	0.0326	0.0008	892	±76	(0)	594	±10	(0)	659	±17	(0)	622	±15	(0)
MtGee046	168	244	0.69	1.0291	0.50	0.0596	0.0801	0.6571	0.0258	0.0010	0.0011	0.0116	0.0004	591	±35	(0)	497	±7	(0)	513	±7	(0)	515	±8	(0)
MtGee047	223	861	0.26	1.0291	0.50	0.0859	0.1144	1.3502	0.0233	0.0009	0.0015	0.0184	0.0004	1335	±21	(0)	698	±9	(0)	868	±8	(0)	466	±7	(0)
MtGee048	112	140	0.80	1.0275	0.50	0.0562	0.0651	0.5034	0.0200	0.0012	0.0009	0.0107	0.0004	461	±45	(0)	407	±6	(0)	414	±7	(0)	400	±8	(0)
MtGee049	47	45	1.05	1.0262	0.50	0.0565	0.0837	0.6504	0.0248	0.0023	0.0015	0.0254	0.0008	474	±88	(0)	518	±9	(0)	509	±16	(0)	495	±16	(0)
MtGee050	131	151	0.86	1.0455	0.50	0.0596	0.0623	0.5110	0.0192	0.0014	0.0010	0.0119	0.0004	589	±49	(0)	390	±6	(0)	419	±8	(0)	383	±8	(0)
MtGee050a	326	258	1.26	1.0465	0.50	0.0601	0.0607	0.5018	0.0188	0.0008	0.0008	0.0078	0.0002	606	±29	(0)	380	±5	(0)	413	±5	(0)	376	±4	(0)
MtGee051	82	316	0.26	1.0475	0.50	0.0586	0.0803	0.6468	0.0250	0.0007	0.0011	0.0096	0.0004	551	±27	(0)	498	±7	(0)	507	±6	(0)	499	±8	(0)
MtGee052	153	306	0.50	1.0479	0.50	0.0577	0.0862	0.6841	0.0254	0.0008	0.0012	0.0109	0.0004	517	±30	(0)	533	±7	(0)	529	±7	(0)	507	±7	(0)
MtGee053	276	723	0.38	1.0486	0.50	0.0600	0.0983	0.8109	0.0289	0.0007	0.0014	0.0115	0.0004	602	±25	(0)	604	±8	(0)	603	±6	(0)	576	±7	(0)
MtGee054	59	76	0.77	1.0490	0.50	0.0556	0.0513	0.3919	0.0162	0.0013	0.0008	0.0095	0.0003	435	±53	(0)	322	±5	(0)	336	±7	(0)	325	±7	(0)
MtGee054a	55	78	0.70	1.0462	0.50	0.0552	0.0505	0.3835	0.0160	0.0017	0.0008	0.0119	0.0005	421	±70	(0)	318	±5	(0)	330	±9	(0)	320	±9	(0)
MtGee055	147	79	1.87	1.0482	0.50	0.0643	0.0991	0.8764	0.0298	0.0018	0.0016	0.0239	0.0006	751	±58	(0)	609	±9	(0)	639	±13	(0)	593	±11	(0)
MtGee056	126	118	1.07	1.0493	0.50	0.0585	0.0759	0.6104	0.0230	0.0012	0.0011	0.0132	0.0004	548	±45	(0)	471	±7	(0)	484	±8	(0)	459	±8	(0)
MtGee057	216	276	0.78	1.0506	0.50	0.0543	0.0622	0.4640	0.0185	0.0010	0.0009	0.0094	0.0003	382	±43	(0)	389	±5	(0)	387	±6	(0)	370	±6	(0)
MtGee058	153	282	0.54	1.0504	0.50	0.0721	0.0600	0.5951	0.0162	0.0015	0.0009	0.0131	0.0005	988	±43	(0)	376	±6	(0)	474	±8	(0)	325	±10	(0)

1 sigma error

Corrected isotopic ratios

Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction

#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	⁰⁷ Pb/ ²⁰⁶ Pb	06Pb/ ²³⁸ U	⁰⁷ Pb/ ²³⁵ U	⁰⁸ Pb/ ²³² Th	⁰⁷ Pb/ ²⁰⁶ Pb	06Pb/ ²³⁸ U	⁰⁷ Pb/ ²³⁵ U	⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²	206Pb		²⁰⁶ Pb/	²³⁸ U		²⁰⁷ Pb/ ²³	¹⁵ U		²⁰⁸ Pb/ ²³²	²Th	
MtGee059	178	395	0.45	1.0524	0.50	0.1002	0.2741	3.7790	0.0758	0.0010	0.0037	0.0494	0.0008	1628	+19	(0)	1562	+19	(0)	1588	+11	(0)	1476	+16	(0)
MtGee60	118	208	0.57	1.0524	0.50	0.0952	0.2826	3.6990	0.0768	0.0010	0.0038	0.0489	0.0009	1531	±19	(0)	1604	±19	(0)	1571	±11	(0)	1495	±16	(0)
MtGee061	101	221	0.45	1.0525	0.50	0.1010	0.2788	3.8733	0.0792	0.0011	0.0038	0.0531	0.0010	1643	±20	(0)	1585	±19	(0)	1608	±11	(0)	1540	±19	(0)
MtGee062	282	560	0.50	1.0527	0.50	0.0977	0.2838	3.8145	0.0794	0.0010	0.0038	0.0497	0.0009	1580	±19	(0)	1611	±19	(0)	1596	±10	(0)	1543	±16	(0)
MtGee063	1425	1699	0.84	1.0527	0.50	0.1171	0.3420	5.5113	0.1042	0.0011	0.0046	0.0704	0.0010	1913	±17	(0)	1896	±22	(0)	1902	±11	(0)	2003	±19	(0)
MtGee064	290	269	1.08	1.0522	0.50	0.0549	0.0536	0.4048	0.0165	0.0010	0.0008	0.0079	0.0003	407	±40	(0)	337	±5	(0)	345	±6	(0)	331	±5	(0)
MtGee064a	640	638	1.00	1.0526	0.50	0.0584	0.0479	0.3851	0.0158	0.0008	0.0007	0.0062	0.0002	546	±31	(0)	302	±4	(0)	331	±5	(0)	317	±4	(0)
MtGee065	240	175	1.37	1.0525	0.50	0.0664	0.0910	0.8307	0.0291	0.0011	0.0013	0.0145	0.0004	818	±33	(0)	561	±8	(0)	614	±8	(0)	580	±8	(0)
MtGee066	77	138	0.55	1.0524	0.50	0.1044	0.2732	3.9230	0.0822	0.0013	0.0038	0.0568	0.0012	1703	±22	(0)	1557	±19	(0)	1618	±12	(0)	1597	±22	(0)
MtGee067	527	486	1.08	1.0520	0.50	0.0559	0.0507	0.3897	0.0160	0.0008	0.0007	0.0061	0.0002	447	±30	(0)	319	±4	(0)	334	±4	(0)	322	±4	(0)
MtGee067a	374	359	1.04	1.0514	0.50	0.0556	0.0509	0.3896	0.0156	0.0007	0.0007	0.0061	0.0002	437	±30	(0)	320	±4	(0)	334	±4	(0)	312	±4	(0)
MtGee068	164	282	0.58	1.0511	0.50	0.0947	0.2857	3.7226	0.0762	0.0010	0.0039	0.0496	0.0009	1522	±20	(0)	1620	±19	(0)	1576	±11	(0)	1484	±17	(0)
MtGee069	81	154	0.53	1.0508	0.50	0.1220	0.2995	5.0282	0.1399	0.0014	0.0041	0.0705	0.0019	1985	±21	(0)	1689	±20	(0)	1824	±12	(0)	2646	±33	(0)
MtGee070	78	163	0.48	1.0504	0.50	0.0956	0.2719	3.5784	0.0773	0.0010	0.0037	0.0482	0.0010	1540	±20	(0)	1550	±19	(0)	1545	±11	(0)	1506	±18	(0)
MtGee071	128	284	0.45	1.0501	0.50	0.0945	0.2758	3.5866	0.0765	0.0011	0.0038	0.0496	0.0011	1517	±21	(0)	1570	±19	(0)	1547	±11	(0)	1490	±20	(0)
MtGee072	149	251	0.59	1.0497	0.50	0.0949	0.2742	3.5842	0.0764	0.0010	0.0037	0.0479	0.0009	1527	±20	(0)	1562	±19	(0)	1546	±11	(0)	1488	±17	(0)
MtGee073	118	328	0.36	1.0493	0.50	0.0951	0.2768	3.6229	0.0782	0.0010	0.0037	0.0474	0.0009	1530	±19	(0)	1575	±19	(0)	1555	±10	(0)	1522	±18	(0)
MtGee074	185	473	0.39	1.0489	0.50	0.0952	0.2735	3.5844	0.0789	0.0010	0.0037	0.0470	0.0009	1532	±19	(0)	1559	±19	(0)	1546	±10	(0)	1534	±18	(0)
MtGee075	111	288	0.39	1.0485	0.50	0.0956	0.2739	3.6047	0.0801	0.0010	0.0037	0.0484	0.0011	1540	±20	(0)	1560	±19	(0)	1551	±11	(0)	1557	±20	(0)
MtGee076	1582	1600	0.99	1.0480	0.50	0.1159	0.1962	3.1292	0.0472	0.0012	0.0026	0.0404	0.0005	1893	±18	(0)	1155	±14	(0)	1440	±10	(0)	931	±10	(0)
MtGee077	157	295	0.53	1.0475	0.50	0.0959	0.2846	3.7608	0.0859	0.0010	0.0038	0.0493	0.0010	1547	±19	(0)	1615	±19	(0)	1584	±11	(0)	1665	±19	(0)
MtG078	44	62	0.71	1.0179	0.50	0.0871	0.1333	1.6002	0.0583	0.0023	0.0019	0.0423	0.0010	1362	±51	(0)	807	±11	(0)	970	±17	(0)	1146	±19	(0)
MtG079	130	173	0.75	1.0186	0.50	0.1059	0.3016	4.4038	0.0883	0.0013	0.0038	0.0604	0.0009	1730	±22	(0)	1699	±19	(0)	1713	±11	(0)	1711	±17	(0)
MtG080	155	352	0.44	1.0185	0.50	0.0572	0.0765	0.6033	0.0232	0.0009	0.0010	0.0098	0.0003	500	±33	(0)	475	±6	(0)	479	±6	(0)	464	±6	(0)
MtG081	97	238	0.41	1.0190	0.50	0.0957	0.2501	3.3011	0.0785	0.0011	0.0031	0.0451	0.0009	1542	±22	(0)	1439	±16	(0)	1481	±11	(0)	1528	±17	(0)
MtG082	86	163	0.53	1.0192	0.50	0.1095	0.3195	4.8255	0.0903	0.0014	0.0040	0.0682	0.0011	1792	±23	(0)	1787	±20	(0)	1789	±12	(0)	1746	±20	(0)
MtG083	67	79	0.86	1.0190	0.50	0.0809	0.1984	2.2136	0.0617	0.0018	0.0027	0.0507	0.0010	1220	±44	(0)	1167	±15	(0)	1185	±16	(0)	1211	±18	(0)
MtG083a	92	81	1.13	1.0196	0.50	0.0817	0.1941	2.1876	0.0590	0.0024	0.0029	0.0630	0.0010	1239	±56	(0)	1144	±15	(0)	1177	±20	(0)	1158	±19	(0)
MtG084	98	133	0.74	1.0199	0.50	0.0708	0.1492	1.4566	0.0468	0.0011	0.0019	0.0239	0.0005	951	±31	(0)	897	±11	(0)	913	±10	(0)	924	±10	(0)
MtG085	255	93	2.75	1.0200	0.50	0.1094	0.3151	4.7532	0.0932	0.0030	0.0048	0.1309	0.0013	1789	±50	(0)	1766	±24	(0)	1777	±23	(0)	1802	±24	(0)
MtG086	159	188	0.85	1.0200	0.50	0.0556	0.0498	0.3815	0.0157	0.0014	0.0007	0.0096	0.0002	437	±55	(0)	313	±4	(0)	328	±7	(0)	314	±5	(0)
MtG086a	111	144	0.77	1.0194	0.50	0.0648	0.0520	0.4646	0.0187	0.0016	0.0007	0.0114	0.0003	769	±51	(0)	327	±4	(0)	387	±8	(0)	373	±6	(0)
MtG087	230	310	0.74	1.0209	0.50	0.0548	0.0501	0.3786	0.0159	0.0010	0.0007	0.0076	0.0002	406	±42	(0)	315	±4	(0)	326	±6	(0)	320	±4	(0)
MtG087a	148	180	0.82	1.0208	0.50	0.0540	0.0500	0.3724	0.0158	0.0016	0.0007	0.0110	0.0003	371	±66	(0)	315	±4	(0)	321	±8	(0)	317	±5	(0)
MtG087b	97	78	1.24	1.0199	0.50	0.0553	0.0539	0.4110	0.0170	0.0026	0.0009	0.0188	0.0004	426	±103	(0)	338	±5	(0)	350	±14	(0)	340	±7	(0)
MtG088	133	419	0.32	1.0213	0.50	0.0558	0.0621	0.4779	0.0200	0.0009	0.0008	0.0084	0.0003	446	±36	(0)	388	±5	(0)	397	±6	(0)	400	±6	(0)
MtG088a	147	306	0.48	1.0214	0.50	0.0546	0.0630	0.4748	0.0204	0.0012	0.0009	0.0110	0.0003	397	±50	(0)	394	±5	(0)	394	±8	(0)	409	±7	(0)
MtG089	406	465	0.87	1.0216	0.50	0.0584	0.0794	0.6385	0.0209	0.0011	0.0011	0.0129	0.0003	543	±42	(0)	492	±6	(0)	501	±8	(0)	418	±6	(0)
MtG090	306	81	3.80	1.0211	0.50	0.0616	0.0975	0.8272	0.0303	0.0015	0.0013	0.0205	0.0003	659	±52	(0)	600	±8	(0)	612	±11	(0)	603	±6	(0)
MtG091	55	118	0.46	1.0219	0.50	0.0984	0.2728	3.6998	0.0840	0.0013	0.0036	0.0561	0.0011	1593	±25	(0)	1555	±18	(0)	1571	±12	(0)	1630	±20	(0)

1 sigma error

Corrected isotopic ratios

Ages and errors (Ma) (1 sigma) - indicative error related to common lead correction

21/22

Yield ratio ²⁰⁷Pb/²⁰⁶Pb Pb model age (Ga) U (<u>ppm)</u> ²⁰⁷Pb/²⁰⁶Pb 206 Pb/238 U 207 Pb/235 ²⁰⁸Pb/²³²Th Th/U # Th (ppm) MtG092 92 349 0.26 1.0219 0.50 0.0628 0.1090 0.9439 0.0357 0.0010 0.0014 0.0157 0.0005 701 ±32 (0)667 ±8 (0) 675 ±8 (0) 708 ±10 (0) MtG093 76 106 0.71 1.0221 0.50 0.0600 0.1008 0.8336 0.0325 0.0017 0.0014 0.0232 0.0006 602 ±60 (0) 619 ±8 (0) 616 ±13 646 ±11 (0) (0) MtG094 665 121 0.55 1.0224 0.50 0 0992 0 2738 3 7440 0.0736 0.0010 0.0035 0 0474 0 0007 1609 ±19 (0)1560 ±18 (0) 1581 ±10 (0)1436 +14 (0) MtGEE095 107 96 1.11 1.0227 0.50 0.1614 0.4305 9.5781 0.1229 0.0023 0.0058 0.1501 0.0015 2470 ±24 (0) 2308 ±26 (0) 2395 ±14 (0) 2343 ±28 (0) MtGEE096 234 291 0.80 1 0224 0.50 0.0539 0 0514 0 3817 0.0166 0.0011 0 0007 0 0084 0 0002 368 ±47 (0)323 ±4 (0)328 ±6 (0)333 (0)±4 1.0217 0.0015 275 MtGEE096a 173 185 0.93 0.50 0.0518 0 0504 0.3599 0.0163 0 0007 0.0103 0.0003 ±65 (0)317 +4 (0) 312 ±8 (0)326 +5 (0)1.0230 0.0010 1250 1338 MtGEE097 651 755 0.86 0.50 0.0927 0.2141 2.7343 0.0597 0.0028 0.0372 0 0006 1481 ±21 (0) ±15 (0) ±10 (0) 1172 ±12 (0)MtGEE098 1242 1473 0.84 1.0231 0.50 0.4857 0.0764 5.1130 0.1354 0.0052 0.0010 0.0668 0.0014 4198 ±16 (0) 474 ±6 (0) 1838 ±11 (0) 2567 ±24 (0)42 59 0.71 1.0232 0.50 0.2656 0.5629 20.6092 0.1677 0.0036 0.0078 0.3175 0.0025 3280 ±21 2879 ±32 3120 3134 ±44 MtGEE099 (0) (0) ±15 (0) (0) MtGEE099a 51 105 0 49 1.0233 0.50 0.2596 0.5404 19.3412 0.1740 0.0030 0.0072 0.2658 0.0022 3244 ±18 (0) 2785 ±30 (0) 3059 ±13 (0) 3243 +38(0) MtGEE100 81 153 0.53 1.0231 0.50 0.0605 0.0926 0.7725 0.0300 0.0011 0.0012 0.0148 0.0004 623 ±38 (0) 571 ±7 (0)581 ±8 (0) 597 ±8 (0) 0.40 1.0233 0.0999 0.2908 0.0803 0.0038 1622 ±21 1635 ±11 (0) 1561 MtGEE101 142 352 0.50 4 0041 0.0011 0 0554 0 0009 (0)1646 +19 (0)+17 (0) MtGEE102 105 121 0.87 1.0233 0.50 0 0794 0 1844 2 0173 0.0587 0.0013 0.0025 0.0350 0 0007 1181 ±31 (0)1091 ±13 (0) 1121 ±12 (0) 1152 (0) ±14 0.09 0.0059 2454 ±17 2407 2432 ±12 (0) 2018 MtGee103 80 852 1 0237 0.50 0.1598 0.4527 9.9731 0.1050 0.0016 0.1284 0.0013 (0) ±26 (0) +23(0) MtGee103a 108 426 0.25 1.0238 0.50 0.1632 0.4492 10.1060 0.1247 0.0017 0.0059 0.1306 0.0013 2489 ±17 (0) 2392 ±26 (0) 2445 ±12 (0) 2375 ±24 (0)MtGee104 104 215 0.48 1.0237 0.50 0.1006 0.2737 3.7947 0.0887 0.0011 0.0036 0.0525 0.0010 1635 ±21 (0) 1560 ±18 (0) 1592 ±11 (0) 1718 ±18 (0) MtGee105 62 1.23 1.0239 0.50 0.1436 0.4620 9.1446 0.1206 0.0019 0.0063 0.1413 0.0014 2271 ±23 2448 ±28 (0) 2353 ±14 (0) 2302 ±26 (0) 50 (0) MtGee106 146 198 0.73 1.0236 0.50 0.0562 0.0519 0.4024 0.0171 0.0016 0.0008 0 0114 0 0003 461 ±62 (0)326 +5 (0)343 +8 (0) 344 (0) +6 MtGee106a 145 163 0.89 1.0221 0.50 0.0550 0.0519 0.3936 0.0157 0.0016 0 0008 0.0117 0 0003 412 ±65 (0) 326 337 ±9 314 (0) ±5 (0) (0) ±5 MtGee107 261 252 1.04 1.0238 0.50 0.0745 0.1478 1.5178 0.0484 0.0011 0.0020 0.0257 0.0006 1055 ±31 (0)889 +11 (0) 938 ±10 (0) 955 +11 (0)MtGee108 88 154 0.57 1.0239 0.50 0.0548 0.0630 0.4757 0.0195 0.0014 0.0009 0.0125 0.0003 405 ±57 394 ±5 395 ±9 391 ±7 (0) (0) (0) (0) 132 162 0.82 1.0230 0.50 0.0577 0.0822 0.6539 0.0255 0.0012 0.0011 520 509 511 ±9 508 MtGee109 0 0140 0.0003 +44(0)+7 (0)(0) +7 (0) MtGee110 255 210 1.21 1.0233 0.50 0.0547 0.0538 0.4062 0.0174 0.0014 0.0008 0.0103 0.0002 401 ±55 (0) 338 ±5 (0) 346 ±7 (0) 349 ±5 (0) 158 245 0.65 1 0232 0.0619 0 0721 0 0254 0.0023 0.0012 669 ±80 449 486 508 (0) MtGee111 0.50 0 6144 0 0229 0 0006 $(\mathbf{0})$ +7 (0)+14 (0)+11 597 605 MtGee112 381 332 1 15 1 0238 0.50 0.0598 0.0988 0 8149 0.0292 0.0010 0.0013 0 0145 0.0003 ±34 (0) 608 +8 (0) ±8 (0) 582 +6 (0) 2020 0.64 1.0240 0.0935 1.0320 0.0010 0.0011 1497 ±20 497 720 ±7 281 MtGee113 3135 0.50 0.0801 0.0140 0.0138 0.0002 (0) ±6 (0) (0) ±3 (0)MtGee113a 178 366 0.49 1.0240 0.50 0.0974 0.2736 3.6734 0.0701 0.0011 0.0036 0.0506 0.0008 1575 ±21 (0) 1559 ±18 (0) 1566 ±11 (0) 1369 ±15 (0)MtGee114 96 369 0.26 1.0240 0.50 0.2442 0.5450 18.3430 0.4354 0.0024 0.0072 0.2381 0.0044 3147 ±16 (0) 2804 ±30 (0) 3008 ±12 (0) 7306 ±63 (0) MtGee115 32 290 0.11 1.0240 0.50 0.2488 0.2203 7.5558 1.5316 0.0028 0.0030 0.1034 0.0167 3177 ±18 (0) 1284 ±16 (0) 2180 ±12 (0) 18774 ±134 (0) MtGee116 44 46 0.95 1.0231 0.50 0.0601 0.0932 0.7727 0.0284 0.0020 0.0014 0 0264 0 0005 608 +73(0)575 +8 (0)581 +15(0)566 +11 (0) 616 MtGee117 197 1114 0.18 1.0239 0.50 0.0603 0.0785 0.6530 0.0172 0.0007 0.0010 0.0094 0.0002 ±26 (0)487 ±6 (0) 510 ±6 (0) 344 ±5 (0)MtGee118 200 173 1.16 1.0235 0.50 0.0583 0.0783 0.6293 0.0247 0.0011 0.0011 0.0130 0.0003 542 ±42 (0) 486 ±6 (0) 496 ±8 (0) 493 ±6 (0)MtGee119 72 157 0.46 1.0236 0.50 0.0572 0.0525 0.4140 0.0167 0.0018 0.0008 0.0131 0.0004 499 ±69 (0) 330 ±5 (0) 352 ±9 (0) 335 ±8 (0) 151 243 0.62 1.0230 0.50 0.0565 0.0516 0.4016 0.0165 0.0012 0.0007 0.0089 0.0002 471 ±46 324 343 ±6 330 ±5 (0) MtGee119a (0) ±4 (0) (0) MtGee120 272 595 0.46 1.0233 0.50 0.0593 0.0964 0.7885 0.0285 0.0008 0.0013 0.0129 0.0004 579 ±31 (0) 593 ±8 (0) 590 ±7 (0) 569 ±7 (0) 102 466 0.22 0.0554 0.0712 0.0009 0.0010 427 ±34 441 ±6 (0) 450 MtGee121 1.0234 0.50 0.5433 0.0225 0.0094 0.0003 (0)443 +6 (0) +7 (0) MtGee122 35 22 1 60 1.0232 0.50 0.0934 0.2548 3.2786 0.0746 0.0029 0.0041 0 1017 0.0013 1495 ±58 (0)1463 +21 (0)1476 ±24 (0)1454 +24 (0) 1.62 900 392 ±17 341 ±7 MtGee123 80 49 1 0215 0.50 0.0690 0 0495 0.4712 0.0170 0.0036 0.0009 0 0241 0 0004 ±107 (0)311 ±6 (0) (0) (0) MtGee123a 92 60 1.53 1.0215 0.50 0.0593 0.0511 0.4175 0.0157 0.0040 0.0011 0.0275 0.0004 579 ±146 (0) 321 ±7 (0) 354 ±20 (0) 314 +9 (0) MtGee124 117 279 0.42 1.0233 0.50 0.0974 0.2739 3.6784 0.0782 0.0011 0.0037 0.0521 0.0009 1575 ±22 (0) 1561 ±19 (0) 1567 ±11 (0) 1521 ±17 (0)

1 sigma error

						Correcte	d isotopic	ratios		1 sigma	error			Ages	and er	rors (Ma)	(1 sigma)	- indica	ative erro	or related t	o comm	on lead	correction		
#	Th (ppm)	U (ppm)	Th/U	Yield ratio ²⁰⁷ Pb/ ²⁰⁶ Pb	Pb model age (Ga)	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/	²⁰⁶ Pb		²⁰⁶ Pb/ ²	²³⁸ U		²⁰⁷ Pb/ ²³	³⁵ U		²⁰⁸ Pb/ ²³	²Th	
MtGee125	117	83	1.41	1.0231	0.50	0.0995	0.2782	3.8151	0.0740	0.0016	0.0039	0.0684	0.0009	1614	±30	(0)	1582	±19	(0)	1596	±14	(0)	1442	±17	(0)
MtGee126	100	409	0.24	1.0230	0.50	0.1043	0.2848	4.0963	0.0864	0.0012	0.0038	0.0576	0.0011	1703	±21	(0)	1615	±19	(0)	1654	±11	(0)	1675	±20	(0)
MtGee127	148	140	1.06	1.0228	0.50	0.0553	0.0583	0.4444	0.0172	0.0014	0.0008	0.0117	0.0003	425	±57	(0)	365	±5	(0)	373	±8	(0)	345	±5	(0)
MtGee128	104	157	0.67	1.0227	0.50	0.0589	0.0516	0.4195	0.0166	0.0026	0.0009	0.0183	0.0004	564	±95	(0)	325	±5	(0)	356	±13	(0)	334	±9	(0)
MtGee128a	133	144	0.92	1.0213	0.50	0.0545	0.0520	0.3905	0.0155	0.0015	0.0008	0.0113	0.0003	390	±63	(0)	327	±5	(0)	335	±8	(0)	311	±5	(0)

							ech.	shed	tion	//s	УХ	lysis	۵ u
Nir	Comple	Nama	Northing	Easting	Pook ostorony	Formation	qN	Poli	Sec	Ĩ	а́ш	Ana	
	Sample	Name	(GDA)	(GDA)	HOCK Category	Formation							Description
1	NOO1	Nooldoonooldoona trondjhemite	6'651'274	340'405	Granitoid	Mt Neil Granite	1	1	1	Y		Y	Porphyritic pink granite, brown weathering, magnetite-rich.
2	PW08-001	Leucosome with brannerite	6'661'231	350'038	Vein	Hot Spring gneiss	1						Aplitic leucosome next to large pegmatite. Hosting large brannerite+ microlite ? (1600 cps) / in Paralana Creek bed. Local bkg = 500 cps
3	PEG7	Microcline xx	6'672'976	358'366	Mineral	Hidden Valley Complex	1						14 x 9 x 4 cm monocrystal of pink microcline with minor graphic quartz
4	RR-N2	Hematite-monazite-(Ce) breccia	6'655'606	339'325	Mineralisation	Radium Ridge Breccia	2			1		1	Hematite, monazite, quartz rock with uranium weathered minerals. Samarskite/Euxenite-(Y) and minor schoepite, spriggite, uranophane, françoisite-(Ce). Type locality
5	RR-N2X	Spriggite & schoepite	6'655'606	339'325	Mineral	Radium Ridge Breccia	2						Hematite breccia with secondary uranium minerals
6	PW-160A	Pegmatite intrusion	6'669'447	356'107	Vein	Hidden Valley Complex	2		2				Graphic texture, pegmatite with microcline & quartz only
7	PW-160B	Calc-silicate rock	6'669'447	356'107	Metasediment	Hidden Valley Complex	3		2				Skarn 1 meter from pegmatite intrusion
8	PW-160C	Magnetite skarn in limestone	6'669'447	356'107	Metasediment	Hidden Valley Complex	1		1				Coarse magneite (up to 5 cm) in impure limestone. 8m from pegmatite
9	PW-160D	Magnetite skarn in limestone	6'669'447	356'107	Metasediment	Hidden Valley Complex	1		2	1		?	Siliceous limestone with magnetite, 8 m from pegmatite. Contains, pyrite, aegyrine, tremolite, zircon, apatite, minor molybdenite, magnetite, rutile
10	JB05-35	Muscovite pegmatite	6'683'085	369'967	Vein	"Metasediments"	1						Garnet (1 cm) in muscovite, microcline, quartz pegmatite vein.
11	PW-161	Titanite pegmatite	6'669'837	353'789	Vein	Freeling Heights Unit	5	1			1		Coarse green titanite (3 cm) in a muscovite-quartz pegmatite rock. Not in place (scree)
12	PEG-13B	Pegmatite	6'669'964	355'852	Vein	Hidden Valley Complex	2			1	1		Graphic texture, pegmatite with microcline & quartz only
13	PHG	Prospect Hill Granite	6705' 772	359'568	Granite	Babbage Inlier NW	2	2	2			?	Porphyritic granite with fluorite, cassiterite, topaz, tourmaline and large ovoidail feldspars
14	SN-1	Rhyodacite Sn prospect	6703' 156	358'027	Granite	Petermorra Volcanics		1	2				Porphyritic subvolcanic intrusive, large feldspars, greisen
15	JB05-37	Calc-silicate à allanite (skarn)	6683' 063	369'945	Skarn	Yerila metasomatites	2	2	2	Y	Y	Y	Y Calcsilicate rock, metasomatized carbonate with zircon, allanite, fluorite and magnetite
16	JB05-36	Paragneiss à allanite	6683078	369896	Skarn	Yerila metasomatites	1	1				Υ	More felsic metasediment, allanite-bearing, amphibole
17	YER4	Pegmatite dike in Yerila	6692326	360327	Pegmatite	Yerila gneiss		1					Pegmatite vein (5 cm wide in the Yerila Gneiss. Quartz, feldspar, muscovite
18	YER5	Yerila gneiss "rhyolitique"	6692400	360955	Granite	Yerila gneiss		1		Y		Y	Silicified Yerila gneiss (originally porphyritic rock). Allanite, bastnäsite, thorite
19	BRX	Brannerite crystals (free)	6457500	386800	Minerals	Crockers Well New	35	1	1	Y	1		300g of loose crystals of brannerite (thorium-rich)
20	CW1	Crockers Well adamellite	6457500	386800	Granite	Crockers Well New	3	1		Υ		Y	White adamellite with minor veinlets of quartz, Nb-rutile & brannerite
21	CW2	Crockers Well leucogranite	6457500	386800	Granite	Crockers Well New	1	1				Y	Coarse granite with biotite
22	CW2	Crockers Well granite rose	6457500	386800	Granite	Crockers Well New	1	1				Y	Granite, more alkaline (biotite poor)
23	SED- RIVER	Mt Neill Granite (silicified)	6669039	355694	Granite	Hidden Valley Complex		1				Y	Pink silicified granite, disapearance of biotite, chlorite

							šch.	shed	tion	l's	xy	ysis	ing	
Nr	Sample	Name	Northing	Easting	Bock category	Formation	qN	Polis	Sec	Ŧ	Ēp	Anal	Dat	Description
24	NEIL03	Mt Neill Granite (hydrothermalized)	6675000	369700	Granite	Mt Neill-Adams Unit	1	1	4	Y	1	Y		Porphyritic, biotite, chlorite granite with pink alteration. Used for HM study
25	JB05-10	Microgabbro	6672786	358119	Mafic rock	Hidden Valley Complex		2	1	Y	1	Y	Y	Finely crystallized gabbro, with pyroxene
26	GX01	Leucogranite rose	6670116	356698	Granite	Hidden Valley Complex		1	2	Y		Y		Oligoclase alkaline granite with pyrite. Analysed Au (3 ppb)
27	PAR1	Paralana Quartzite	6648525	339700	Metasediment	Adelaidean	1	1						Silicified quartzite, 10 cm over the unconformity on crystalline basement at Arkaroola Waterhole
28	HSG-FMC	Hot Spring Gneiss (FMC)	6662273	354105	Granite	Alluvium		1	2	Y	Y	Y	Y	Pebble of migmatitic gneiss with polycrase-(Y) crystals
29	JB05-32	Gneiss mylonitique (Box Bore?)	6681580	371685	Granite	Box Bore Gneiss		1	2	Y		Y	Y	Red sheared orthogneiss with biotite, allanite, fluorite (Mt Neill style?)
30	JB05-19	British Empire granite	6669768	352526	Granite	British Empire Gr.	2	1		Y	Y	Y	Y	Coarse leucogranite with muscovite, biotite, qz and feldspars
31	YER03	Yerila Gneiss S.S.	6693159	360642	Granite	Yerila Gneiss	3	2	6	Y	Y	Y	Y	Coarse porphyritic biotite gneiss with allanite, fluorite, K-hastingsite, fluorapatite, titanite, etc.
32	MUD1	Mudnawatana tonalite	6693293	360791	Granite	Mudnawatana tonalite		2	2					Medium coarse leucogranite with biotite
33	PEPE	Pepegoona rhyolite	6670100	365400	Granite	Alluvium		2	2					Boulder of Pepeggona rhyolite, near Well, dark porphyritic subvolcanic intrusive
34	SED-TER	Metasediments in Terrapina	6695104	360969	Metasediment	Metasediment in Terrapina	1	1		Y	Y	Y		Sheared paragneiss in Terrapina granite batholith. E-W orientation
35	TERAP2	Rapakivi granite (Terrapina)	6693650	360726	Granite	Terrapina granite	1	1	1	Y	Y	Y	Y	rapakivi, porphyritic alkaline granite, xenotime, titanite, zircon, biotite, fluorite, apatite.
36	ILM07	Pegmatite à ilmenite, ilmenite	6669030	354863	Pegmatite	Freeling Heights Unit	5							Quartz, ilmenite, amphibole pegmatite (1 m long amphiboles) and coarse ilmentite xx (up to 4 cm). Microclinization
37	PW-161	Pegmatite à titanite	6669837	353789	Pegmatite	Freeling Heights Unit	2	1			1			Coarse muscovite, green titanite ? (diopside) pegmatite
38	HM-QZ	Heavy sand laminations	6670514	343117	Metasediment	Paralana Quartzite				Y				Heavy mineral bed (1cm) in quartzite. Visible zircon, ilmenite, hematite
39	BB1	Box Bore gneiss	6681458	371249	Granite	Box Bore Gneiss		1		Y		Y		Coarse sheared orthogneiss
40	EAP-Mo	Brêche uranifère à molybdenite	6654678	344452	Hydrothermal	East Painter breccia	2	3				Y		Coarse granitic hematite, magnetite breccia with pyrite, molybdenite and chlorite $0.5\%~\text{UO2}$
41	AMPH11	Amphibolite grenue	6691188	362418	Mafic rock	Amphibolite	1			Y		Y		Main amphibolite dike in Yerila gneiss / Babbage inlier
42	AMPH10	Amphibolite microgrenue	6691167	362320	Mafic rock	Amphibolite	0			Y	Y		Y	Main amphibolite dike in Yerila gneiss / Babbage inlier
43	STUB	Tillite (conglomeratic)	6646400	346200	Metasediment	Adelaidean				Y				Coarse glacial formation, Stubbs Waterhole
44	JB05-39	Yerila gneiss à allanite	6693515	360763	Métasomatite	Yerila gneiss				Y	Ν	Y		coarse biotite-rich, allanite gneiss
45	GEE-W	Conglomerat Mt Gee W	6655297	340121	Metasediment	Permo-carboniferous		2		Y			Y	Caorse conglomerate, mostly matrix-supported, cobbles of quartzite and porphiritic rhyolites or granites
46	GEE-E	Conglomerat Mt Gee E	6655250	340780	Metasediment	Permo-carboniferous	3	2	2	Y			Y	Trench in pebble conglomerate (dike-like structrure)
47	DC08	Green sediment (chlorite-rich)	6669632	355948	Metasediment	Adelaidean				Υ				Green carbonate metasomatised sediments

							ch.	hed	ion	<u>s</u>	x	ysis	bu	
N.,	01-	News	Northing	Easting	De als antennas	Formation	Nbe	Polis	Sect	Ν	Еро	Anal	Dati	Description
<u>1NF</u> 48	DC11	Quartzite poreuse	(GDA) 6669983	(GDA) 356022	Metasediment	Adelaidean	1			Y				Ouartzite with dark rutile
49	GEE-NW	Arkose Mt Gee NE	6655500	340050	Metasediment	Permo-carboniferous	3	2						Sandstone, arkose, hydrothermally altered by MtGee
50	DC1	Arkosic sandstone	6655119	344729	Metasediment	Permo-carboniferous	U	-		v				system
51	JB06-1	Peqmatite granite	6671275	357500	Peqmatite	Peqmatite	1	1	1					Peqmatite à muscovite, az microcline, plagioc
01	CONT-	r ognatio granico	00/12/0	007000	i ognatio	roginatio								
52	YER	Yerila Gneiss contact	6693610	360706	Metasediment	Yerila gneiss	1	1	2	Y		Y		gneiss à biotite et allanite
53	AMPH9	Amphibolite	6691196	361667	Mafic rock	Amphibolite	1		2	Y		Y		Main amphibolite dike in Yerila gneiss / Babbage inlier, crosscut the creek. Abundant xenotime in HM's
54	WC2-coff	Argile à coffinite	6658366	364916	Sediments	Beverley Sands	1			Y	Y	Y	Y	Mudstone with coffinite nodules and coal fragments, 1% UO2 ore
55	BRA-2005	Pegmatite à brannerite	6668685	354876	Pegmatite	Hidden Valley Complex	1	1			Y	Y	Y	"Jacob" prospect, Brannerite Hill, microcline, quartz, amphibole pegmatitic vein
56	Y-HEM	Hematite fault	6671708	344338	Hydrothermal	Hydrothermal	4					Y		Hematite-quartz vein on fault
57	DC15	Green sediment	6668298	354622	Metasediment		1			Y				Altered Hidden Valley sediment, metasomatized. Rutile
58	BLU-MC	Blue Mine conglomerate	6647575	349830	Metasediment	Adelaidean		1		Y				Conglomerate, clast supported.
59	SED1	Heavy minerals	6670213	351847	HM's	British Empire Gr.				Y	Y		Y	HM from main creek alluvium
60	Yerila Ck	Heavy minerals	6691885	360061	HM's	Yerila Gneiss				Y	Y			contains scheelite, tourmaline, 3mm black zircons, xenotime, cerite
61	Sed121	Heavy minerals	6698070	364059	HM's					Y				Mudnawutana Ck, near track
62	Sed-Badd	Heavy minerals	6691800	361271	HM's	Yerila Gneiss / pegm.				Y	Y		Y	riche en monazite, xenotime, columbite, scheelite, tornbömite, cerite, hollandite
63	DD06-sec	Mt Gee quartz-pyrite-hematite	6654800	341000	Hydrothermal	Mt Gee hematite breccia	3	1						Core fragment from Mt Gee East
64	CORUN	Corundum schist	6653700	339700	Metasediment	Radium R. metamorp.	1			Y				Phlogopite schist with corundum (meta mafic intrusive/ Mg-rich)
65	JB05-27	Mt Shanahan conglomerate	6670830	343044	Metasediment	Adelaidean	1	1		Y				Metaconglomeratic formation near granitic basement
66	DC13	Quartzite	6668863	355572	Metasediment	Hidden Valley Sed.	1			Y				Weathered porous quartzite from the HV complex
67	PEG13B	Pegmatite	6669964	355852	Pegmatite	Hidden Valley Complex	1	1		Y			Y	Pegmatite intrusion
68	Amph8	Amphibolite grenue	6691731	361279	Mafic rock	Amphibolite	2							Coarse amphibolite in a gully bed
69	PEG8	Pegmatite	6672818	358721	Pegmatite	Hidden Valley Complex	1							Pegmatite in HV
70	JB05-35	Pegmatite à grenat	6683085	369967	Pegmatite	British Empire Gr.	1							pegmatite with muscovite, garnet
71	JB05-17	Pegmatite à lepidolite	6670080	352035	Pegmatite	British Empire Gr.	1							Pegmatite with Li-mica / Mawson Plateau
72	PEG1	Heavy minerals	6669713	356129	HM's	Hidden Valley Complex				Y				zircons from pegmatite (inherited?)
73	PEG7	Microcline de 15 cm	6672976	358366	Pegmatite	Hidden Valley Complex	1							pink microcline xx
74	SED-ALL	Heavy minerals	6681619	371979	HM's	BoxBore Gneiss				Y				Creek alluvium (6 kg)

							sch.	shed	tion	l's	xv	ysis	ing	
Nr	Samplo	Namo	Northing	Easting	Pock esterony	Formation	qN	Poli	Sec	Ĭ	щ	Anal	Dat	Description
75	FMC	Heavy minerals	6662273	354105	HM's	Hot Spring Gneiss				Y			Y	Creek alluvium (25 kg)
76	AMPH1	Amphibolite in Box Bore Gneiss	6681770	371779	Mafic rock	Box Bore Gneiss	1	1				Y		Sheared amphibolite vein in the Box Bore orthogneisses
77	WI-GY	Grès argileux meuble à gypse	6665040	356558	Sediments	Willawortina F.	2							Cristaux de gypse isolés
78	JB05-5	Brêche tectonique	6669785	356753	Hydrothermal	Hidden Valley Sed.	1	2						Granitic, chlorite, hematite, breccia
79	N8A	Crest N8 sand	6654570	339590	HM's	Radium Creek Metamorphics	1			Y				Monazite-rich concentrate from N8 crest (biotite rich schist/gneisses
80	N8B	Crest N8 sand (B)	6655147	339687	HM's	Radium Creek Metamorphics	1			Y				Concentrate from crest next to a Augen Gneiss
81	N3S	Saprolithe N3 sand	6655434	339054	HM's	Radium Creek Metamorphics	1			Y				Metasomatic gneiss with magnetite, weathered
82	RD-GEE	Route Mt Gee sand	6655380	340360	HM's	Radium Creek Metamorphics	1			Y				HM's from regolith
83	PW-100	Coarse gabbro	6666083	353945	Mafic intrusive	Hidden Valley Complex	1							Coarse gabbro from Hidden Valley South
84	PW-99	Hematite-malachite pebble	6671478	357214	Mineralisation	Hidden Valley Complex	2							Hematite breccia pebble from ck. Blue and green copper minerals
85	PW-102	Quartz vein in paragneiss	6665520	354178	Mineralisation	Freeling Heights Unit	1							Epithermal veins of quartz through metasomatic paragneiss
86	PW-103	Metadolomite with tremolite	6664992	353358	Metasediment	Hidden Valley Complex	1							Metacarbonate rock from HV complex, probably Wywyanna Fm
87	PW-220	hydrothermalised quartzite on fault plane	6665500	354320	Metasediment	Freeling Heights Unit	1							hydrothermalised quartzite on fault plane
88	PW-271	quartzite with chlorite alteration "eyes"	6665551	354131	Metasediment	Freeling Heights Unit	1							quartzite with chlorite alteration "eyes"
89	PW-270	metasomatised sericitic paragneiss	6665570	354259	Metasediment	Freeling Heights Unit	1							metasomatised sericitic paragneiss
90	PW-279	metasomatic quartzite with veinlets	6665372	354443	Metasediment	Freeling Heights Unit	1							metasomatic quartzite with veinlets
91	PW-280	fault with chlorite and microcline	6666715	354673	Metasediment	Freeling Heights Unit	2							fault with chlorite and microcline
92	BRA3	metasomatic gneiss	6668610	354850	Gneiss	Hot Spring Gneiss Unit	2							metasomatic gneiss
93	BRA6	sheared gneiss	6667167	354117	Gneiss	Hot Spring Gneiss Unit	2							sheared paragneiss
94	BRA7	red sheared gneiss	6667020	354070	Gneiss	Hot Spring Gneiss Unit	2							red sheared gneiss
95	BRA8	red sheared gneiss	6666956	354105	Gneiss	Hot Spring Gneiss Unit	2							red sheared gneiss
96	BRA9	red biotite gneiss	6666493	353987	Gneiss	Hot Spring Gneiss Unit	2							red biotite gneiss
97	BRA10A	biotite gneiss (leucosome)	6666405	353929	Gneiss	Hot Spring Gneiss Unit	2							biotite gneiss (leucosome)
98	BRA10B	biotite gneiss (biotitite band)	6666405	353929	Gneiss	Hot Spring Gneiss Unit	2							biotite gneiss (biotitite band)
99	BRA13	metasomatic red gneiss	6665917	353662	Gneiss	Hot Spring Gneiss Unit	2							metasomatic red gneiss
100	PW-194	orthogneiss	6671470	357624	Gneiss	Hot Spring Gneiss Unit	2							orthogneiss
APPENDIX VI Sample location and description

Nr	Sample	Name	Northing (GDA)	Easting (GDA)	Rock category	Formation	Nb ec	Polish	Sectio	ШH	Epox	Analy	Description
101	BREC01	Granitic /gneiss breccia in metasediments	6665514	353994	Breccia	Breccia (recent)	2						Granitic /gneiss breccia in metasediments
102	PW-269	sheared red gneiss	6661525	349999		Hot Spring Gneiss Unit	2						sheared red gneiss
103	PW-273	metasomatised gneiss in tectonic breccia	6665928	353747	Breccia	Hidden Valley Complex	2						metasomatised gneiss in tectonic breccia
104	PW-272	red Mt Neill style chlorite alteration	6665900	353883	Granite	Hidden Valley Complex	2						red Mt Neill style chlorite alteration
105	PW-283	band of gneiss	6668950	355201	Gneiss	Hot Spring Gneiss Unit	2						band of gneiss
106	PW-196	red-pink gneiss	6671555	357588	Gneiss	Hot Spring Gneiss Unit	2						red-pink gneiss
107	PW-247	Biotite-rich schist	6668817	355119	Gneiss	Hot Spring Gneiss Unit	2						Biotite-rich schist
108	PW-284	Oligoclasite!!	6668988	355015	Mafic rock	Hidden Valley Complex	2						Oligoclasite. Adjacent to the main gabbro, high K plagioclasite
109	BRA14	Vein quartz-ilmenite-microcl & brannerite	6668286	354718	Mineralisation	Hidden Valley Complex	2						"Charlotte" mineralisation with brannerite
110	BRA01	pegmatitic vein with brannerite	6668736	354895	Mineralisation	Hidden Valley Complex	2						"Jacob" prospect, Brannerite Hill, microcline, quartz, amphibole pegmatitic vein
111	BRA02A	pegmatitic vein with brannerite	6668685	354876	Mineralisation	Hidden Valley Complex	2						"Jacob" prospect, Brannerite Hill, microcline, quartz, amphibole pegmatitic vein
112	BRA02B	pegmatitic vein with brannerite	6668685	354876	Mineralisation	Hidden Valley Complex	2						"Jacob" prospect, Brannerite Hill, microcline, quartz, amphibole pegmatitic vein
113	BRA02C	pegmatitic vein with brannerite	6668685	354876	Mineralisation	Hidden Valley Complex	2						"Jacob" prospect, Brannerite Hill, microcline, quartz, amphibole pegmatitic vein
114	PW-211	hematite-U-microcline-vein mineralised	6668532	354846	Mineralisation	Hidden Valley Complex	2						Breccia in the roots of Brannerite Hill. Hematite. Unknown U mineral in the matrix to be checked
115	BRA12	allanite-rich calc-silicate	6665968	353528	Calcsilicate	Hot Spring Gneiss	2						Allanite skarn
116	PW-285	hematite-Cu mineralisation	6668983	354813	Mineralisation		2						"Lysandre" Gossan mineralisation. Hematite, cuprite, biotite
117	BRA5	muscovite pegmatite	6668822	355024	Vein	Hidden Valley Complex	2						pegmatoid from the gneiss unit (leucogranitic melt)
118	LI-PEG	Li-pegmatite	6671251	357482	Vein	Hidden Valley Complex	2						coarse pegmatite from Hidden Valley North tectonic block. Lithium micas to be confirmed
119	BRA11	pink granite	6665604	352878	granite	Hidden Valley Complex	2						pink granite
120	PW08-001	Brannerite vein	6661232	350036	Metasomatite	Hot Springs gneiss Unit	8		1				Brannerite vein in syenitic matrix (Albite, K-feldspar only). Up to 3 cm xx of brannerite. Close to wide pegmatite dike (500m x 12m)
121	PW08-002	Allanite gneisses & calcsilicate	6661612	349698	Metasomatite	Hot Springs gneiss Unit	3						Boulder from narrow gully. Allanite-rich rocks / monazite. Draining the "Monazite Hill" from Marathon Lease.
122	PW08-005	Breccia with torbernite	6664954	353818	Mineralisation	Freeling Heights Quartzite breccia	1						torbernite mineralisation on a vertical fault. U only on spectrometer reading. No thorium
123	PW08-007	Gabbro	6666478	354136	Mafic Rock	Hidden Valley Complex	1						Coarse gabbro with minor gabbro pegmatite
124	PW08-008	Monazite shear zone	6666697	353645	Vein	Hot Springs gneiss Unit	3						Orange monaite mineralisation in a shear zone crosscutting a vein of quartz. Very dense
125	PW08-009	Granite Mt Neill altered	6664042	353207	Chlorite altered granite	Mt Neill-Adams Unit	1						Chlorite, K-feldspar altered granite (porphyritic)

b ech. Jlished ection HM's Epoxy nalysis ating

Electron microprobe analysis and dating of monazite

Label	Age Ma	Error Age Ma	<u>Ce</u> (La+Ce)	Huttonite-9	Monazite-9	Brabantite-9	AI_2O_3	SiO ₂	P_2O_5	CaO	Y_2O_3	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Gd_2O_3	Dy ₂ O ₃	Er ₂ O ₃	PbO	ThO ₂	UO ₂	Somme
sedbad 1	624	279	0.67	6	92	2	0.49	1.63	27.74	0.23	0.35	16.53	34.72	2.75	8.95	1.07	0.57	0.24	0.00	0.09	3.26	0.06	98.68
sedbad 1bis	523	129	0.65	6	90	4	0.00	1.48	27.16	0.40	1.05	14.99	29.34	2.61	8.94	1.36	0.94	0.38	0.00	0.17	7.12	0.17	96.09
sedbad 1rbis	1572	157	0.64	8	91	1	0.00	1.85	26.42	0.09	0.73	15.24	29.11	2.69	9.15	1.31	0.75	0.28	0.00	0.55	7.05	0.26	95.47
sedbad 2			0.65	2	97	1	0.00	0.41	29.41	0.12	0.43	17.76	35.46	3.00	10.38	1.72	1.04	0.31	0.00	0.00	1.62	0.00	101.67
sedbad_3	550	113	0.66	6	90	3	0.00	1.58	27.57	0.39	1.55	14.96	31.36	2.66	9.36	1.71	1.21	0.45	0.00	0.21	8.23	0.20	101.46
sedbad_3bis	365	163	0.64	5	88	7	0.18	1.19	26.39	0.73	1.36	14.20	27.18	2.59	8.99	1.54	1.25	0.37	0.00	0.09	5.16	0.19	91.44
sedbad_4	690	299	0.66	6	92	2	0.00	1.51	27.64	0.20	1.83	15.23	31.86	2.81	9.70	1.60	1.25	0.60	0.20	0.51	6.22	0.26	101.42
sedbad_4b	259	48	0.66	18	78	3	0.00	4.43	23.27	0.36	3.64	12.69	26.21	2.07	7.97	1.32	1.45	1.02	0.42	0.22	16.56	1.08	102.71
sedbad_4	1634	171	0.67	1	98	0	0.00	0.31	29.41	0.05	0.44	18.50	39.00	3.14	9.56	0.72	0.34	0.00	0.00	0.00	0.61	0.00	102.09
sedbad_4 bbis	1614	184	0.65	6	92	2	0.00	1.46	27.27	0.18	1.80	14.28	28.16	2.73	9.62	1.66	1.34	0.65	0.00	0.48	5.83	0.27	95.73
sedbad_1	597	186	0.66	5	91	4	0.00	1.32	27.81	0.41	1.08	15.27	31.50	2.70	9.27	1.30	0.93	0.27	0.00	0.18	7.35	0.20	99.56
sedbad_1_r	603	130	0.67	6	91	4	0.00	1.35	25.63	0.39	1.05	14.97	31.64	2.72	9.03	1.29	0.92	0.36	0.00	0.18	7.09	0.00	96.63
sedbad_2	1504	166	0.66	7	91	2	0.00	1.71	26.94	0.23	0.96	15.51	31.54	2.70	9.28	1.36	0.89	0.38	0.00	0.48	6.76	0.17	98.91
sedbad_3	683	227	0.66	4	91	5	0.00	0.99	26.38	0.58	1.06	14.93	30.61	2.67	9.11	1.56	1.11	0.41	0.00	0.12	4.03	0.00	93.57
sedbad_6	490	100	0.66	7	89	3	0.00	1.70	26.67	0.36	1.57	14.29	29.78	2.57	8.65	1.28	0.95	0.48	0.00	0.21	8.69	0.36	97.54
sedbad_9	891	361	0.66	2	97	1	0.00	0.59	28.91	0.09	0.44	16.53	33.70	2.81	9.77	1.36	0.78	0.23	0.00	0.11	2.53	0.09	97.91
sedbad_10	583	253	0.65	2	95	4	0.00	0.40	29.81	0.39	1.95	17.17	33.48	2.52	7.80	0.72	0.67	0.52	0.00	0.09	2.31	0.45	98.28
sedbad_12	945	347	0.66	2	96	2	0.00	0.57	28.66	0.19	0.60	15.77	32.43	2.80	10.18	1.59	1.20	0.35	0.00	0.12	2.72	0.05	97.22
sedbad_13	1465	272	0.65	4	92	4	0.00	1.03	27.36	0.44	1.53	15.52	30.71	2.63	9.72	1.51	1.07	0.39	0.20	0.26	3.77	0.10	96.23
sedbad_14	897	177	0.70	6	84	10	0.00	1.34	25.22	0.95	1.61	10.21	24.97	2.44	8.73	1.82	1.08	0.44	0.00	0.21	5.42	0.00	84.44
sedbad_15			0.66	2	98	1	0.00	0.38	28.96	0.09	0.41	16.05	33.15	2.92	10.41	1.70	1.11	0.25	0.00	0.00	1.50	0.00	96.94
sedbad_17	1375	633	0.67	3	96	1	0.00	0.76	25.62	0.06	0.35	14.74	31.24	2.72	10.22	1.70	1.11	0.25	0.00	0.08	1.42	0.00	90.27
sedbad_18	1090	266	0.66	3	94	3	0.00	0.80	28.53	0.29	0.59	16.02	32.34	2.79	9.55	1.30	0.89	0.25	0.00	0.19	3.59	0.11	97.23
sedbad_19	1123	187	0.66	6	90	4	0.00	1.42	26.97	0.40	1.49	14.99	30.18	2.58	9.05	1.33	1.09	0.49	0.00	0.28	5.57	0.06	95.92
sedbad_20			0.61	0	97	3	0.00	0.00	21.38	0.23	0.33	10.89	17.74	1.84	5.32	0.92	0.67	0.18	0.00	0.00	0.98	0.00	60.47
sedbad_21	501	85	0.67	9	86	5	0.00	1.98	26.40	0.52	1.73	12.82	27.87	2.65	9.30	1.56	1.14	0.50	0.00	0.25	10.33	0.45	97.51
sedbad_22	555	100	0.66	8	88	4	0.00	1.74	25.97	0.44	1.89	13.38	27.54	2.45	9.00	1.52	1.26	0.50	0.00	0.24	9.35	0.24	95.52
sedbad_23			0.69	3	96	1	0.00	0.69	27.46	0.12	0.29	14.84	35.63	3.01	10.22	1.25	0.68	0.00	0.00	0.00	1.19	0.00	95.38
sedbad_24	1208	340	0.66	4	91	5	0.00	0.86	28.28	0.55	1.40	14.80	30.28	2.90	9.79	1.27	0.99	0.39	0.00	0.14	2.77	0.00	94.41
sedbad_25	558	160	0.65	6	91	3	0.00	1.45	27.52	0.36	2.27	15.14	30.26	2.53	8.89	1.14	0.91	0.37	0.28	0.15	5.24	0.29	96.78
sedbad_26	390	91	0.67	7	72	21	0.00	1.63	25.73	2.43	1.51	11.55	24.83	2.41	8.44	1.32	0.96	0.38	0.00	0.17	9.60	0.27	91.24
sedbad_27	1714	159	0.66	7	91	2	0.00	1.55	27.27	0.23	2.24	13.65	28.26	2.58	9.15	1.54	1.39	0.60	0.27	0.60	6.92	0.31	96.56
sedbad_28	1026	135	0.66	9	87	3	0.00	2.11	26.40	0.34	2.05	13.76	27.75	2.45	8.76	1.36	1.13	0.52	0.22	0.37	7.63	0.23	95.09
sedbad_29	419	200	0.66	4	95	1	0.00	1.01	28.29	0.11	1.25	15.28	31.56	2.59	9.25	1.40	0.84	0.29	0.00	0.09	4.37	0.13	96.48
sedbad_30	583	129	0.67	6	91	2	0.00	1.42	26.95	0.25	1.30	13.85	29.63	2.63	9.84	1.39	0.96	0.38	0.00	0.19	7.14	0.19	96.13
sedbad_31	3080	1039	0.83	54	45	1	0.00	14.59	3.53	0.15	0.00	4.13	21.68	1.79	6.11	0.60	0.20	0.00	0.00	0.10	0.74	0.00	53.63
sedbad_32	//6	218	0.63	21	/1	8	0.00	5.61	25.37	1.00	0.77	14.13	25.77	2.43	8.52	1.35	0.93	0.25	0.00	0.14	4.16	0.00	90.43
sedbad_33	500	407	0.66	2	95	3	0.00	0.53	27.44	0.29	0.33	15.46	31.14	2.75	9.71	1.45	0.92	0.18	0.00	0.00	2.18	0.00	92.38
sedbad_34	590	187	0.66	3	92	5	0.00	0.60	28.84	0.57	1.46	14.65	30.10	2.64	9.02	1.33	1.05	0.41	0.00	0.13	4.69	0.18	95.68
sedbad_35	//4	191	0.66	3	90	/	0.00	0.60	29.39	0.76	1.48	14.53	29.38	2.59	8.88	1.35	0.99	0.45	0.00	0.18	5.08	80.0	95.74
sedbad_36	5/8	1/9	0.66	4	93	3	0.00	0.93	28.30	0.34	0.94	14.64	29.59	2.63	9.97	1.54	1.17	0.38	0.00	0.14	5.12	0.13	95.81
seubad_3/	520	94	0.66	9	90	1	0.00	2.05	26.30	0.12	2.59	13.44	28.12	2.47	8.71	1.27	1.09	0.56	0.00	0.24	8.43	0.67	96.06
seubad_38	586	153	0.66	5	91	4	0.00	1.26	27.70	0.40	1.45	14.02	29.39	2.63	9.61	1.46	1.22	0.42	0.00	0.16	5.99	0.16	95.88
seubau_39	610	120	00.0	1	00	5	0.00	1.0/	20.08	0.48	2.03	14.00	21.15	2.40	0.91	1.41	1.21	0.46	0.00	0.28	/.0/	0.15	94.00
seubau_40	601	120	0.00	4	94 02	2	0.00	1.90	20.12	0.19	1.30	14.90	30.49	2.71	10.09	1.07	1.10	0.29	0.00	0.12	4.10	0.13	90.23 96.1F
360Dau_41	001	100	0.00	0	32	4	0.00	1.02	21.00	0.22	1.04	14.00	30.09	6.16	3.23	1.40	0.50	0.00	0.00	0.10	0.40	0.21	30.13

Electron microprobe analysis and dating of monazite

sethed display line line line <	Label	AgeMa	ErrorAgeMa	Ce (La+Ce)	Huttonite-	Monazite-'	Brabantite-	Al ₂ O ₃	SiO ₂	P ₂ O ₅	CaO	Y ₂ O ₃	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Gd ₂ O ₃	Dy ₂ O ₃	Er ₂ O ₃	PbO	ThO₂	UO ₂	Somme
sethed 4 699 184 0.69 4.8 9.05 1.7 1.4 9.05 1.5 1.6 1.0 9.05 sethed 4.7 296 0.65 3 9.7 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 0.00 0.00 <th< td=""><td>sedbad_43</td><td></td><td></td><td>0.65</td><td>1</td><td>96</td><td>3</td><td>0.00</td><td>0.23</td><td>28.55</td><td>0.32</td><td>1.12</td><td>16.59</td><td>32.20</td><td>2.69</td><td>8.95</td><td>1.39</td><td>1.14</td><td>0.45</td><td>0.00</td><td>0.00</td><td>1.37</td><td>0.00</td><td>95.00</td></th<>	sedbad_43			0.65	1	96	3	0.00	0.23	28.55	0.32	1.12	16.59	32.20	2.69	8.95	1.39	1.14	0.45	0.00	0.00	1.37	0.00	95.00
sechad_4 561 770 0.66 5 8 2 0.00 1.3 27.8 0.27 1.58 2.80 9.39 1.53 1.13 0.43 0.00 0.14 5.80 0.65 0.21 0.00 0.85 2.78 0.27 1.21 1.48 0.25 0.13 0.00 0.85 0.00 0.84 0.00 0.85 2.2 0.00 0.85 2.2 0.00 0.84 2.78 0.21 1.48 2.81 0.85 1.11 0.44 0.00 0.00 0.84 2.78 0.21 0.11 1.47 1.47 1.48 0.00	sedbad_44	639	184	0.66	4	93	3	0.00	0.88	30.65	0.32	1.56	14.49	29.76	2.72	9.44	1.53	1.29	0.48	0.00	0.15	5.16	0.13	98.55
sechad_4 67 286 0.65 3 6 1 0.00 0.87 2.72 0.31 0.70 0.75 <td>sedbad_45</td> <td>561</td> <td>170</td> <td>0.66</td> <td>5</td> <td>93</td> <td>2</td> <td>0.00</td> <td>1.13</td> <td>27.26</td> <td>0.23</td> <td>1.25</td> <td>14.32</td> <td>29.79</td> <td>2.80</td> <td>9.39</td> <td>1.53</td> <td>1.13</td> <td>0.43</td> <td>0.00</td> <td>0.14</td> <td>5.23</td> <td>0.18</td> <td>94.81</td>	sedbad_45	561	170	0.66	5	93	2	0.00	1.13	27.26	0.23	1.25	14.32	29.79	2.80	9.39	1.53	1.13	0.43	0.00	0.14	5.23	0.18	94.81
sechal 4 47 27 28 2.59 2.59 2.59 2.59 2.50 0.50 2.50 0.50 2.50 0.50 2.50 0.50 2.50 0.50 2.50 0.50 2.50 0.50 2.50 0.50 2.50 0.50 2.50 0.50 2.50 0	sedbad_46	878	296	0.65	3	95	1	0.00	0.80	28.75	0.11	0.76	15.98	31.53	2.81	9.47	1.29	1.09	0.43	0.00	0.13	3.19	0.08	96.41
sector 4 9 1 9 1 1 0 0 0 1 4 0 0 1 4 0 0 0 1 4 0 0 0 1 4 0 <td>sedbad_47</td> <td>467</td> <td>204</td> <td>0.66</td> <td>4</td> <td>93</td> <td>3</td> <td>0.00</td> <td>0.85</td> <td>27.28</td> <td>0.31</td> <td>1.27</td> <td>14.34</td> <td>29.02</td> <td>2.59</td> <td>9.86</td> <td>1.66</td> <td>1.21</td> <td>0.39</td> <td>0.00</td> <td>0.09</td> <td>4.55</td> <td>0.00</td> <td>93.41</td>	sedbad_47	467	204	0.66	4	93	3	0.00	0.85	27.28	0.31	1.27	14.34	29.02	2.59	9.86	1.66	1.21	0.39	0.00	0.09	4.55	0.00	93.41
setbad-49 y 104 2 2 0 <th< td=""><td>sedbad_48</td><td>570</td><td>197</td><td>0.65</td><td>4</td><td>94</td><td>3</td><td>0.00</td><td>0.88</td><td>27.66</td><td>0.27</td><td>1.21</td><td>14.89</td><td>29.54</td><td>2.61</td><td>9.95</td><td>1.54</td><td>1.11</td><td>0.34</td><td>0.00</td><td>0.11</td><td>4.66</td><td>0.00</td><td>94.78</td></th<>	sedbad_48	570	197	0.65	4	94	3	0.00	0.88	27.66	0.27	1.21	14.89	29.54	2.61	9.95	1.54	1.11	0.34	0.00	0.11	4.66	0.00	94.78
sebbad 114 912 0.71 1 93 6 0.00 0.20 0.00 0.50 0.310 0.310 0.71 1.8 0.00 </td <td>sedbad_49</td> <td></td> <td></td> <td>0.65</td> <td>2</td> <td>95</td> <td>2</td> <td>0.00</td> <td>0.49</td> <td>22.41</td> <td>0.21</td> <td>0.49</td> <td>13.89</td> <td>27.76</td> <td>2.50</td> <td>9.11</td> <td>1.47</td> <td>1.02</td> <td>0.25</td> <td>0.00</td> <td>0.00</td> <td>2.24</td> <td>0.00</td> <td>81.83</td>	sedbad_49			0.65	2	95	2	0.00	0.49	22.41	0.21	0.49	13.89	27.76	2.50	9.11	1.47	1.02	0.25	0.00	0.00	2.24	0.00	81.83
secbad.5 i< i i< i< i< i< i< i< i<< i<< <th< td=""><td>sedbad_50</td><td>1194</td><td>392</td><td>0.71</td><td>1</td><td>93</td><td>6</td><td>0.00</td><td>0.20</td><td>30.00</td><td>0.68</td><td>1.02</td><td>13.09</td><td>33.10</td><td>3.13</td><td>10.74</td><td>1.48</td><td>0.91</td><td>0.33</td><td>0.00</td><td>0.14</td><td>2.06</td><td>0.19</td><td>97.08</td></th<>	sedbad_50	1194	392	0.71	1	93	6	0.00	0.20	30.00	0.68	1.02	13.09	33.10	3.13	10.74	1.48	0.91	0.33	0.00	0.14	2.06	0.19	97.08
secheds 1188 168 0.66 6 2 2 0.00 1.42 7.7 7.83 8.88 2.66 9.78 1.22 1.24 0.40 0.00 0.35 6.04 0.20 9.55 secbad<	sedbad_51			0.72	2	97	1	0.00	0.36	28.81	0.13	0.58	12.54	34.45	3.26	11.51	1.37	0.72	0.00	0.00	0.00	1.55	0.00	95.28
sechad_54 51 1818 317 0.65 4 92 4 0.00 0.83 2.80 9.27 1.51 1.42 0.45 0.00 0.13 4.73 0.19 9.71 sechad_55 915 308 0.87 3 96 1 0.00 0.72 2.84 0.10 1.81 1.11 0.42 0.00 0.13 3.77 0.08 9.73 sechad_56 915 308 0.66 5 93 2 0.00 1.22 2.84 1.00 1.25 2.85 1.00 1.25 2.85 1.00 1.26 2.85 1.00 1.01 0.40 0.00 0.15 3.81 0.00 0.45 0.40 0.40 0.25 0.26 <th< td=""><td>sedbad_52</td><td>1188</td><td>168</td><td>0.66</td><td>6</td><td>92</td><td>2</td><td>0.00</td><td>1.42</td><td>27.77</td><td>0.22</td><td>1.75</td><td>13.83</td><td>28.89</td><td>2.66</td><td>9.78</td><td>1.62</td><td>1.39</td><td>0.63</td><td>0.00</td><td>0.35</td><td>6.04</td><td>0.20</td><td>96.55</td></th<>	sedbad_52	1188	168	0.66	6	92	2	0.00	1.42	27.77	0.22	1.75	13.83	28.89	2.66	9.78	1.62	1.39	0.63	0.00	0.35	6.04	0.20	96.55
sechad_55 1818 317 0.66 3 93 4 0.00 7.7 28.5 0.80 0.77 28.5 1.80 0.77 28.5 1.80 0.77 28.5 1.80 0.75 1.75 1.71 0.75 1.71 0.77 2.75 1.71 0.75 1.71 0.77 2.75 1.71 0.75 1.71 0.75 1.71 0.75 1.71 0.75 1.71 0.75 1.71 0.75 0.75 1.71 0.75 0.75 1.71 0.75 0.75 0.71 0.75	sedbad_54	551	182	0.65	4	92	4	0.00	0.93	28.09	0.40	1.55	15.48	30.35	2.80	9.27	1.51	1.24	0.45	0.00	0.13	4.79	0.19	97.18
sedbad_56 915 308 667 3 96 1 0.00 1.74 2.85 0.10 1.47 1.44 2.86 1.01 1.51 1.12 0.34 0.00 0.13 5.97 0.08 95.26 sedbad_58 1072 316 0.66 5 93 2 0.00 1.22 27.48 0.10 1.44 2.80 1.00 1.42 0.00 0.12 2.811 0.86 1.80 <td>sedbad_55</td> <td>1818</td> <td>317</td> <td>0.66</td> <td>3</td> <td>93</td> <td>4</td> <td>0.00</td> <td>0.70</td> <td>28.54</td> <td>0.38</td> <td>0.90</td> <td>15.12</td> <td>30.88</td> <td>2.79</td> <td>9.56</td> <td>1.40</td> <td>1.01</td> <td>0.40</td> <td>0.00</td> <td>0.26</td> <td>3.23</td> <td>0.00</td> <td>95.17</td>	sedbad_55	1818	317	0.66	3	93	4	0.00	0.70	28.54	0.38	0.90	15.12	30.88	2.79	9.56	1.40	1.01	0.40	0.00	0.26	3.23	0.00	95.17
sedbad_57 420 161 0.67 5 92 3 0.00 1.44 2.76 0.32 1.82 0.02 1.68 1.11 0.42 0.00 0.15 5.61 0.09 93.65 sed1_1 0.64 1 95 4 0.00 0.22 2.95 0.40 1.70 1.80 0.41 0.84 0.00 0.22 2.95 0.48 0.77 0.81 0.70 0.29 0.00 0.00 0.00 93.65 sed1_4 0.66 1 97 2 0.00 0.18 2.83 0.77 1.83 1.64 2.40 0.30 0.00 0.00 0.00 9.36 sed1_7 0.66 1 97 3 0.00 0.14 2.87 0.28 1.64 1.30 0.30 0.30 0.00 0.00 0.01 9.41 sed1_1 0.67 1 97 2 0.00 0.11 2.87 1.28 1.28	sedbad_56	915	308	0.67	3	96	1	0.00	0.73	28.56	0.10	0.69	14.57	31.49	2.86	10.01	1.51	1.12	0.34	0.00	0.13	3.07	0.08	95.26
sebad_15 1072 316 0.66 5 93 2 0.00 1.22 27.48 0.10 0.71 1.10 0.42 0.00 1.55 3.01 0.09 98.65 sed1_2 0.64 1 95 4 0.00 0.02 2.52 1.64 1.03 2.52 1.01 0.04 0.28 0.00 0.00 0.93 93.63 sed1_2 0.66 1 97 2 0.00 0.01 2.82 1.64 1.64 2.52 2.79 0.01 0.00 0.00 93.63 sed1_5 673 164 0.67 1 97 2 0.00 1.12 2.84 1.61 1.16 3.04 2.85 0.80 0.71 0.85 0.00 0.00 93.63 1.52 1.50 3.02 3.12 1.80 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41	sedbad_57	420	161	0.67	5	92	3	0.00	1.04	27.65	0.32	1.00	13.41	29.09	2.69	10.27	1.58	1.11	0.42	0.00	0.11	5.58	0.13	94.40
sed1_1 0.64 1 95 4 0.00 0.22 29.51 0.40 1.48 1.70 0.64 0.28 0.00 0.00 0.66 94.29 sed1_3 0.66 1 97 2 0.00 0.10 2.88 0.77 1.63 3.04 2.77 9.81 1.70 1.00 0.00 0.00 9.63 9.867 sed1_5 673 164 0.70 2 84 1.4 0.00 0.14 2.828 0.81 1.616 1.64 2.69 4.00 0.00 9.73 2.82 1.61 1.616 1.62 2.69 1.64 1.00 0.00 0.00 9.84 1.616 1.64 2.62 2.74 1.03 1.00 0.00 0.00 9.82 9.84 1.64 1.64 2.82 2.41 1.64 1.40 0.00 0.01 9.86 1.64 1.49 1.40 0.00 0.01 2.828 1.61 1.68 1.49	sedbad_58	1072	316	0.66	5	93	2	0.00	1.22	27.48	0.19	0.97	14.86	30.51	2.68	9.46	1.50	1.10	0.42	0.00	0.15	3.01	0.09	93.65
sed1_2 0.64 1 92 7 0.00 0.14 28.88 0.27 1.81 1.30 1.93 1.70 1.99 0.29 0.00 0.00 0.08 93.67 sed1_4 0.67 1 97 2 0.00 0.18 28.84 1.62 1.44 1.64 3.42 0.90 0.74 0.30 0.01 2.92 0.00 0.21 2.92 1.10 1.69 0.00 1.12 2.80 0.81 1.02 1.00 0.00<	sed1_1			0.64	1	95	4	0.00	0.22	29.51	0.40	1.48	17.10	32.63	2.52	8.11	0.78	0.64	0.28	0.00	0.00	0.56	0.06	94.29
sed1_3 0.66 1 97 2 0.00 0.19 28.8 0.27 1.62 32.5 2.73 0.20 0.07 0.25 0.00 0.01 95.75 sed1_10 0.67 1 97 2 0.00 0.21 29.6 1.11 1.87 16.4 2.82 2.75 8.42 1.00 0.41 0.00 0.00 0.20 95.8 95.9 95.4 1.00 0.00 0.21 29.42 1.11 1.87 16.44 2.28 2.75 8.42 1.02 0.80 0.31 0.00 0.00 1.02 95.9 95.9 95.9	sed1_2			0.64	1	92	7	0.00	0.14	28.83	0.79	1.19	16.36	30.34	2.77	9.81	1.70	1.09	0.29	0.00	0.00	0.36	0.00	93.67
sed1_4 0.67 1 97 3 0.00 1.18 2.82 1.49 1.6.6 3.40 2.89 8.95 0.90 0.74 0.30 0.00 0.00 0.10 95.75 sed1_7 0.65 0.65 0 95 4 0.00 0.11 22.8 0.44 1.65 1.65 1.64 0.00 0.00 0.00 0.00 0.01 94.45 sed1_0 0.67 1 94 6 0.00 0.28 2.81 1.64 <t< td=""><td>sed1_3</td><td></td><td></td><td>0.66</td><td>1</td><td>97</td><td>2</td><td>0.00</td><td>0.19</td><td>28.88</td><td>0.27</td><td>1.62</td><td>16.42</td><td>33.25</td><td>2.79</td><td>9.01</td><td>0.93</td><td>0.67</td><td>0.25</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.08</td><td>94.36</td></t<>	sed1_3			0.66	1	97	2	0.00	0.19	28.88	0.27	1.62	16.42	33.25	2.79	9.01	0.93	0.67	0.25	0.00	0.00	0.00	0.08	94.36
sed1_5 673 164 0.70 2 84 14 0.00 0.43 244 1.62 1.15 11.06 27.62 2.77 10.33 2.55 1.64 0.41 0.00 0.01 0.18 5.53 0.19 94.53 sed1_9 0.67 1 94 6 0.00 0.11 22.82 0.48 1.64 1.64 2.66 2.69 1.01 0.47 0.00 0.00 0.00 0.00 0.01 95.49 sed1_11 0.66 1 94 6 0.00 0.17 28.26 1.11 1.87 16.74 32.98 2.75 8.42 1.02 0.78 0.41 0.00 0.01 32.86 3.14 1.28 31.04 2.72 9.33 1.18 0.80 0.00 0.01 1.30 0.20 93.73 33.3 1.18 0.80 0.00 0.00 0.01 32.94 93.3 1.40 30.95 2.47 1.04 1.41 0.70 0.53 2.00 93.73 35.01 1.30 0.20 0.00	sed1_4			0.67	1	97	3	0.00	0.18	29.73	0.28	1.49	16.16	34.04	2.89	8.95	0.90	0.74	0.30	0.00	0.00	0.00	0.10	95.75
sed1_7 0.65 0 95 4 0.00 0.11 29.28 0.48 1.46 16.41 32.66 2.83 9.40 1.39 0.70 0.36 0.00 <t< td=""><td>sed1_5</td><td>673</td><td>164</td><td>0.70</td><td>2</td><td>84</td><td>14</td><td>0.00</td><td>0.43</td><td>28.44</td><td>1.62</td><td>1.15</td><td>11.06</td><td>27.62</td><td>2.77</td><td>10.93</td><td>2.55</td><td>1.64</td><td>0.41</td><td>0.00</td><td>0.18</td><td>5.53</td><td>0.19</td><td>94.53</td></t<>	sed1_5	673	164	0.70	2	84	14	0.00	0.43	28.44	1.62	1.15	11.06	27.62	2.77	10.93	2.55	1.64	0.41	0.00	0.18	5.53	0.19	94.53
sed1_9 0.67 1 94 6 0.00 0.14 1.52 15.50 32.80 2.83 9.40 1.39 1.01 0.47 0.00 <td< td=""><td>sed1_7</td><td></td><td></td><td>0.65</td><td>0</td><td>95</td><td>4</td><td>0.00</td><td>0.11</td><td>29.28</td><td>0.48</td><td>1.46</td><td>16.41</td><td>32.66</td><td>2.69</td><td>9.04</td><td>1.03</td><td>0.70</td><td>0.36</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.19</td><td>94.41</td></td<>	sed1_7			0.65	0	95	4	0.00	0.11	29.28	0.48	1.46	16.41	32.66	2.69	9.04	1.03	0.70	0.36	0.00	0.00	0.00	0.19	94.41
sed1_10 0.71 1 97 2 0.00 0.28 29.61 0.18 1.69 1.19 30.02 3.12 12.28 2.74 1.79 0.56 0.00 0.00 0.55 0.20 95.38 sed1_12 0.66 1 94 6 0.00 0.17 29.62 0.62 1.64 15.28 3.12 1.28 0.45 0.44 0.00	sed1_9			0.67	1	94	6	0.00	0.14	29.57	0.63	1.52	15.50	32.80	2.83	9.40	1.39	1.01	0.47	0.00	0.00	0.00	0.13	95.40
sed1_11 0.66 1 90 9 0.00 0.2 29.26 1.11 1.87 16.74 32.88 2.75 8.42 1.02 0.78 0.41 0.00 0.00 0.98 0.20 967.3 sed1_13 0.66 1 95 4 0.00 0.17 29.22 0.62 1.68 1.64 52.8 0.51 1.64 1.58 0.51 2.72 9.33 1.18 0.66 0.49 0.00 0.01 1.32 0.00 9.37 sed1_16 0.64 2 93 50 0.00 0.43 28.43 0.55 0.44 6.83 0.40 0.33 1.42 30.55 2.55 8.01 0.43 0.84 0.68 2.55 8.01 0.63 0.41 0.40 0.20 0.00 9.33 9.40 9.55 8.01 0.64 0.40 0.51 0.20 9.00 9.14 9.33 9.25 7.64 0.96 0.78 0.38 0.00 0.00 0.41 7.5 9.61 1.57 1.58 2.55 8.01 </td <td>sed1_10</td> <td></td> <td></td> <td>0.71</td> <td>1</td> <td>97</td> <td>2</td> <td>0.00</td> <td>0.28</td> <td>29.61</td> <td>0.18</td> <td>1.69</td> <td>11.69</td> <td>30.02</td> <td>3.12</td> <td>12.95</td> <td>2.74</td> <td>1.79</td> <td>0.56</td> <td>0.00</td> <td>0.00</td> <td>0.55</td> <td>0.20</td> <td>95.38</td>	sed1_10			0.71	1	97	2	0.00	0.28	29.61	0.18	1.69	11.69	30.02	3.12	12.95	2.74	1.79	0.56	0.00	0.00	0.55	0.20	95.38
sed1_12 0.66 1 94 6 0.00 0.17 29.62 0.62 1.64 15.28 31.04 2.72 9.33 1.18 0.86 0.38 0.22 0.00 0.71 0.32 94.09 sed1_14 0.67 2 94 4 0.00 0.56 28.63 0.40 0.33 14.20 30.95 2.97 11.04 1.41 0.72 0.00 0.00 1.32 0.00 92.53 sed1_17 0.68 1 94 4 0.00 0.33 28.53 0.64 0.83 2.25 7.64 0.66 0.64 0.00 0.00 92.93 sed1_18 0.64 1 94 5 0.00 0.20 28.40 0.51 1.27 17.09 31.59 2.52 7.64 0.66 0.66 0.00 0.00 0.20 92.93 sed1_19 0.64 1 94 5 0.00 0.13 2.876 0.79 1.41 0.67 0.33 0.00 0.00 0.33 9.00 0.00 0.00 <td>sed1_11</td> <td></td> <td></td> <td>0.65</td> <td>1</td> <td>90</td> <td>9</td> <td>0.00</td> <td>0.21</td> <td>29.26</td> <td>1.11</td> <td>1.87</td> <td>16.74</td> <td>32.98</td> <td>2.75</td> <td>8.42</td> <td>1.02</td> <td>0.78</td> <td>0.41</td> <td>0.00</td> <td>0.00</td> <td>0.98</td> <td>0.20</td> <td>96.73</td>	sed1_11			0.65	1	90	9	0.00	0.21	29.26	1.11	1.87	16.74	32.98	2.75	8.42	1.02	0.78	0.41	0.00	0.00	0.98	0.20	96.73
sed1_13 0.66 1 95 4 0.00 0.9 29.38 0.40 1.68 14.99 30.81 2.78 9.52 1.25 0.91 0.49 0.00 0.00 1.13 0.20 93.73 sed1_16 0.64 2 93 5 0.00 0.43 28.63 0.64 1.420 30.95 2.97 1.04 1.41 0.72 0.00 9.167 sed1_19 0.64 1 94 5 0.00 0.43 2.84 0.51 1.709 31.50 2.56 6.54 0.78 0.33 0.00 0.0	sed1_12			0.66	1	94	6	0.00	0.17	29.62	0.62	1.64	15.28	31.04	2.72	9.33	1.18	0.86	0.38	0.22	0.00	0.71	0.32	94.09
sed1_14 0.67 2 94 4 0.00 0.56 28.53 0.40 0.33 14.20 30.95 2.97 11.04 1.41 0.72 0.00 0.00 1.02 0.00 1.32 0.00 92.53 sed1_16 0.68 1 94 4 0.00 0.33 28.34 0.55 0.48 16.83 0.33 0.60 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.32 0.00 92.93 sed1_16 0.64 1 94 5 0.00 0.22 28.40 0.51 1.27 17.09 31.59 2.52 7.64 0.66 0.67 0.33 0.00 0.00 0.24 0.89 94 14.38 30.80 2.22 6.54 0.76 0.93 0.00 0.00 2.24 9.94 1.44 16.38 3.93 0.00 0.00 0.00 2.24 9.99 1.44 1.43 3.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	sed1_13			0.66	1	95	4	0.00	0.19	29.38	0.40	1.68	14.99	30.81	2.78	9.52	1.25	0.91	0.49	0.00	0.00	1.13	0.20	93.73
sect_1-16 0.64 2 93 5 0.00 0.43 28.34 0.55 0.84 16.83 32.15 2.55 8.01 0.63 0.43 0.18 0.00 0.00 0.00 0.20 0.00 91.14 sect_1_17 0.68 1 94 4 0.00 0.20 28.04 0.51 1.27 17.09 31.59 2.52 7.64 0.60 0.68 0.00 0.00 0.21 0.08 92.93 sect_1_19 0.69 1 96 3 0.00 0.24 8.88 0.29 0.94 14.38 30.60 2.96 1.04 0.67 0.19 0.00 0.00 0.33 0.00 94.01 sect_20 0.64 17 80 3 0.00 4.41 25.42 0.41 14.38 30.60 2.96 1.04 0.67 0.30 0.00 0.00 0.64 0.00 0.00 0.61 29.54 1.51 3.55 2.51 1.61 1.41 0.47 0.22 0.66 0.40 93.97 3.73	sed1_14			0.67	2	94	4	0.00	0.56	28.63	0.40	0.33	14.20	30.95	2.97	11.04	1.41	0.72	0.00	0.00	0.00	1.32	0.00	92.53
sed1_17 0.68 1 94 4 0.00 0.33 28.53 0.46 0.85 14.78 32.95 2.87 9.83 0.90 0.60 0.26 0.00 0.00 0.51 0.06 92.49 sed1_19 0.69 1 94 5 0.00 0.34 28.58 0.29 0.94 1.438 33.60 2.52 7.64 0.66 0.78 0.00 0.00 0.04 93.3 0.00 94.01 sed1_20 0.61 1 92 7 0.00 0.13 29.56 7.81 0.94 0.77 0.30 0.00 0.00 0.04 93.73 sed1_21 0.64 17 80 3 0.00 0.16 25.47 0.71 1.77 2.52 5.53 7.91 0.94 0.77 0.30 0.00 0.00 0.01 93.73 sed1_25 0.67 1 94 5 0.00 0.16 25.47 0.51 13.24 2.77 7.924 0.99 0.87 0.39 0.00 0.00 0.01 <td>sed1_16</td> <td></td> <td></td> <td>0.64</td> <td>2</td> <td>93</td> <td>5</td> <td>0.00</td> <td>0.43</td> <td>28.34</td> <td>0.55</td> <td>0.84</td> <td>16.83</td> <td>32.15</td> <td>2.55</td> <td>8.01</td> <td>0.63</td> <td>0.43</td> <td>0.18</td> <td>0.00</td> <td>0.00</td> <td>0.20</td> <td>0.00</td> <td>91.14</td>	sed1_16			0.64	2	93	5	0.00	0.43	28.34	0.55	0.84	16.83	32.15	2.55	8.01	0.63	0.43	0.18	0.00	0.00	0.20	0.00	91.14
sect_18 0.64 1 94 5 0.00 0.20 28.40 0.51 1.27 17.09 31.59 2.52 7.64 0.96 0.78 0.38 0.00 0.00 0.24 0.08 91.67 sect1_19 0.69 1 96 3 0.00 0.34 28.76 0.29 0.94 14.38 33.60 2.96 1.04 0.67 0.19 0.00 0.00 2.33 0.00 94.01 sect1_20 0.64 17 80 3 0.00 4.41 25.42 0.41 1.08 15.91 30.50 2.58 7.91 0.94 0.77 0.30 0.00 0.00 0.24 0.08 93.97 sect1_24 590 98 0.68 8 86 7 0.00 1.65 2.77 0.71 2.12 17.7 9.24 0.99 0.87 0.39 0.00 0.00 0.00 0.01 3.93 5.5 sect1 2.57 9.36 0.96 0.64 0.34 0.00 0.00 0.01 9.39 3.67<	sed1_17			0.68	1	94	4	0.00	0.33	28.53	0.46	0.85	14.78	32.95	2.87	9.83	0.90	0.60	0.26	0.00	0.00	0.51	0.06	92.93
sect1_19 0.69 1 96 3 0.00 0.34 28.78 0.29 0.94 14.38 33.60 2.96 10.50 1.04 0.67 0.19 0.00 0.00 0.33 0.00 94.01 sect1_20 0.61 1 92 7 0.00 0.13 29.56 0.79 1.24 18.38 30.38 2.22 6.54 0.78 0.67 0.33 0.00 0.00 2.04 0.05 sect1_21 0.66 0.67 1 94 5 0.00 1.65 26.77 0.71 2.12 11.77 26.25 2.53 9.25 1.36 1.14 0.47 0.22 0.26 9.06 0.40 93.97 sect1_26 0.67 1 94 5 0.00 0.16 28.66 0.28 1.41 15.31 32.34 2.75 9.36 0.64 0.34 0.00 0.39 2.67 1.8 90.11 90.90 0.00 0.00 0.00 0.31 93.05 sect1_25 5.59 7.71 2.8 0.95 0.24	sed1_18			0.64	1	94	5	0.00	0.20	28.40	0.51	1.27	17.09	31.59	2.52	7.64	0.96	0.78	0.38	0.00	0.00	0.24	0.08	91.67
sed1_20 0.61 1 92 7 0.00 0.13 29.56 0.79 1.24 18.38 30.38 2.22 6.54 0.77 0.33 0.00 2.18 0.53 93.73 sed1_21 0.64 17 80 3 0.00 4.41 25.42 0.41 1.08 15.91 30.50 2.58 7.91 0.94 0.77 0.30 0.00 0.06 0.64 0.00 9.85 sed1_25 0.67 1 94 5 0.00 0.16 29.54 0.52 2.53 7.91 0.94 0.47 0.30 0.00 0.00 0.01 9.97 sed1_26 0.67 1 97 3 0.00 0.16 28.86 0.28 1.41 15.31 32.44 2.75 9.36 0.64 0.34 0.00 0.00 0.01 2.95 sed1 sed1 2.20 8.35 2.24 1.57 0.79 0.19 0.39 12.67 1.68 90.13 92.55 sed1 2.90 10.12 1.08 0.82 0.	sed1_19			0.69	1	96	3	0.00	0.34	28.78	0.29	0.94	14.38	33.60	2.96	10.50	1.04	0.67	0.19	0.00	0.00	0.33	0.00	94.01
sed1_21 0.64 17 80 3 0.00 4.41 25.42 0.41 1.08 15.91 30.50 2.58 7.91 0.94 0.77 0.30 0.00 0.00 0.64 0.00 90.85 sed1_24 590 98 0.68 8 86 7 0.00 1.65 26.77 0.71 2.12 11.77 26.25 2.53 9.25 1.36 1.44 0.47 0.29 0.00 0.00 0.01 93.97 sed1_25 0.67 1 97 3 0.00 0.16 28.86 0.28 1.41 15.31 32.34 2.75 9.36 0.96 0.64 0.34 0.00 0.00 0.13 92.55 sed1_26 0.67 1 95 3 0.00 0.32 28.58 0.37 0.93 15.55 3.244 2.87 9.42 0.85 0.63 0.00 0.00 0.00 92.88 sed1_28 0.67 1 94 5 0.00 0.17 29.47 0.56 1.48 14.62 <td>sed1_20</td> <td></td> <td></td> <td>0.61</td> <td>1</td> <td>92</td> <td>/</td> <td>0.00</td> <td>0.13</td> <td>29.56</td> <td>0.79</td> <td>1.24</td> <td>18.38</td> <td>30.38</td> <td>2.22</td> <td>0.54</td> <td>0.78</td> <td>0.67</td> <td>0.33</td> <td>0.00</td> <td>0.00</td> <td>2.18</td> <td>0.53</td> <td>93.73</td>	sed1_20			0.61	1	92	/	0.00	0.13	29.56	0.79	1.24	18.38	30.38	2.22	0.54	0.78	0.67	0.33	0.00	0.00	2.18	0.53	93.73
Sect1_24 590 98 0.68 8 86 7 0.00 1.65 26.7 0.71 21.2 11.77 26.25 2.53 9.25 1.36 1.14 0.47 0.22 0.26 9.06 0.40 93.97 sed1_25 0.67 1 94 5 0.00 0.16 29.54 0.52 2.23 14.84 31.21 2.77 9.26 0.99 0.87 0.39 0.00 0.00 0.01 92.55 sed1_26 0.67 1 97 3 0.00 0.16 28.86 0.28 1.41 15.31 32.42 2.75 9.36 0.66 0.64 0.34 0.00 0.00 0.01 92.55 sed1_28 0.67 1 95 3 0.00 0.32 28.58 0.37 0.93 15.55 32.44 2.87 9.42 0.85 0.63 0.00 0.00 0.00 92.38 sed1_29 0.67 1 94 5 0.00 0.17 29.47 0.56 1.48 14.62 31.59 <td>sed1_21</td> <td>500</td> <td>00</td> <td>0.64</td> <td>17</td> <td>80</td> <td>3</td> <td>0.00</td> <td>4.41</td> <td>25.42</td> <td>0.41</td> <td>1.08</td> <td>15.91</td> <td>30.50</td> <td>2.58</td> <td>7.91</td> <td>0.94</td> <td>0.77</td> <td>0.30</td> <td>0.00</td> <td>0.00</td> <td>0.64</td> <td>0.00</td> <td>90.85</td>	sed1_21	500	00	0.64	17	80	3	0.00	4.41	25.42	0.41	1.08	15.91	30.50	2.58	7.91	0.94	0.77	0.30	0.00	0.00	0.64	0.00	90.85
Sect1_25 0.67 1 94 5 0.00 0.16 29.54 0.52 2.23 14.64 31.21 2.77 9.44 0.99 0.87 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 99.087 0.39 0.00 92.38 93.44 2.87 9.42 0.85 0.63 0.00 0.00 0.00 92.38 93.44 2.87 9.42 0.85 0.63 0.00 0.00 0.00 93.44 2.84 2.87 9.42	sed1_24	590	98	0.68	8	86	/	0.00	1.65	26.77	0.71	2.12	11.//	26.25	2.53	9.25	1.36	1.14	0.47	0.22	0.26	9.06	0.40	93.97
sed1_26 0.67 1 97 3 0.00 0.16 28.86 0.28 1.41 15.31 32.34 2.75 9.36 0.84 0.34 0.00 0.00 0.00 0.103 92.35 sed1_27 509 57 0.71 2 68 30 0.00 0.55 26.80 3.07 2.70 7.50 19.42 2.20 8.35 0.63 0.00 0.00 0.00 90.09 92.38 sed1_28 0.67 1 94 5 0.00 0.17 29.47 0.56 1.48 14.62 31.59 2.90 10.12 1.08 0.82 0.29 0.00 0.61 0.00 92.38 sed1_30 1442 530 0.65 2 96 2 0.00 0.70 28.52 3.18 2.79 9.47 20.36 2.09 7.55 1.23 1.42 0.00 0.00 0.01 9.48 9.46 3.55 1.48 14.62 31.59 2.90 10.12 1.08 0.82 0.29 0.00 0.11 1.	sed1_25			0.67	1	94	5	0.00	0.10	29.54	0.52	2.23	14.84	31.21	2.77	9.24	0.99	0.87	0.39	0.00	0.00	0.00	0.31	93.06
Sed1_27 509 57 0.71 2 66 30 0.00 0.53 28.50 3.07 2.70 7.30 19.42 2.20 5.33 2.24 1.57 0.79 0.19 0.39 12.67 1.66 90.11 sed1_28 0.67 1 95 3 0.00 0.32 28.58 0.37 0.93 15.35 32.44 2.87 9.42 0.85 0.63 0.00 0.00 0.61 0.00 92.88 sed1_29 0.67 1 94 5 0.00 0.77 29.47 0.56 1.48 14.62 31.55 2.78 8.91 1.52 0.95 0.20 0.00 0.64 0.89 93.48 sed1_31 497 63 0.67 3 67 30 0.00 0.70 28.52 3.18 2.79 9.47 20.36 2.09 7.55 1.23 1.24 0.70 0.24 0.35 13.89 0.83 93.14 sed1_32 0.66 1 91 9 0.00 0.17 29.40	sed1_26	500	57	0.67	1	97	3	0.00	0.16	28.80	0.28	1.41	15.31	32.34	2.75	9.30	0.96	0.64	0.34	0.00	0.00	10.00	1.00	92.55
sed1_29 0.67 1 95 3 0.00 0.32 28.58 0.37 0.53 15.33 32.44 2.87 9.42 0.63 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 <	sed1_27	509	57	0.71	2	00	30	0.00	0.55	20.00	3.07	2.70	15.05	19.42	2.20	0.30	2.24	1.57	0.79	0.19	0.39	12.07	1.00	90.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sed1_28			0.67	1	95	3	0.00	0.32	28.38	0.37	0.93	10.00	32.44	2.87	9.42	1.00	0.63	0.00	0.00	0.00	0.61	0.00	92.38
Sect 30 1442 530 0.65 2 96 2 0.00 0.38 29.36 0.23 0.53 1.55 2.76 6.91 1.52 0.95 0.20 0.00 0.11 1.77 0.00 94.36 sed1_31 497 63 0.67 3 67 30 0.00 0.70 28.52 3.18 2.79 9.47 20.36 2.09 7.55 1.23 1.24 0.70 0.24 0.35 13.89 0.83 93.14 sect1_32 0.66 1 91 9 0.00 0.17 29.40 0.95 0.92 15.10 31.21 2.64 8.75 0.33 0.60 0.30 0.00 0.00 2.10 0.14 93.24 sed1_33 501 50 0.73 9 63 27 0.00 2.03 2.564 2.76 2.58 5.83 17.05 2.12 8.14 2.87 1.82 0.80 0.25 0.47 20.09 0.56 93.02 sed1_34 0.66 2 96 2	sed1_29	1440	500	0.67	1	94	5	0.00	0.17	29.47	0.56	1.48	14.02	31.59	2.90	10.12	1.08	0.82	0.29	0.00	0.00	0.64	0.08	93.84
sed1_31 497 63 0.66 1 91 9 0.00 0.70 28.52 3.16 2.79 9.47 20.36 2.09 7.55 1.24 0.70 0.24 0.53 13.69 0.63 93.14 sed1_32 0.66 1 91 9 0.00 0.77 29.40 0.95 0.92 15.10 31.21 2.64 8.75 0.83 0.60 0.30 0.00 0.00 2.10 0.14 93.22 sed1_33 501 50 0.73 9 63 27 0.00 2.564 2.76 2.58 5.83 17.75 2.12 8.14 2.87 1.82 0.80 0.25 0.47 20.09 0.56 93.22 sed1_34 0.66 2 96 2 0.00 0.46 27.59 0.24 1.47 14.97 30.83 2.88 9.79 1.21 0.72 0.30 0.00 0.00 0.00 90.93 sed1_35 0.66 1 95 5 0.00 0.14 28.64 0.51	sed1_30	1442	530	0.65	2	96	2	0.00	0.38	29.30	0.23	0.32	16.30	31.55	2.78	8.91 7.55	1.52	0.95	0.20	0.00	0.11	10.00	0.00	94.38
sed1_32 0.66 1 91 9 0.00 0.17 29.40 0.95 0.92 15.10 31.21 2.64 6.75 0.93 0.60 0.30 0.00 0.00 2.10 0.14 93.22 sed1_33 501 50 0.73 9 63 27 0.00 2.03 25.64 2.76 2.58 5.83 17.05 2.12 8.14 2.87 1.82 0.80 0.25 0.47 20.09 0.56 93.02 sed1_34 0.66 2 96 2 0.00 0.46 27.59 0.24 1.47 14.97 30.83 2.88 9.79 1.21 0.72 0.30 0.20 0.00 0.27 0.00 90.93 sed1_35 0.66 1 95 5 0.00 0.14 28.64 0.51 1.77 15.19 31.01 2.82 9.11 1.07 0.88 0.39 0.00 0.00 0.00 9.00 91.53 sed1_36 0.65 1 95 5 0.00 0.14 20.5	sed1_31	497	63	0.67	3	01	30	0.00	0.70	28.52	3.18	2.79	9.47	20.30	2.09	7.55	1.23	1.24	0.70	0.24	0.35	13.89	0.83	93.14
sed1_35 0.66 2 96 2 0.00 2.03 2.04 2.76 2.56 5.63 17.05 2.12 6.14 2.67 1.52 0.60 0.22 0.47 20.09 0.56 93.02 sed1_34 0.66 2 96 2 0.00 0.46 27.59 0.24 1.47 14.97 30.83 2.88 9.79 1.21 0.72 0.30 0.20 0.00 0.27 0.00 90.93 sed1_35 0.66 1 95 5 0.00 0.14 28.64 0.51 1.77 15.19 31.01 2.82 9.11 1.07 0.88 0.39 0.00 0.00 0.00 90.09 91.53 sed1_36 0.65 1 9.5 0.00 0.14 20.5 1.41 1.67 0.18 2.82 9.11 1.07 0.88 0.39 0.00 0.00 0.00 91.53 sed1_36 1.55 5 0.00 0.14 20.5 1.41 1.578 2.148 2.62 0.00 0.41	seul_32	501	50	0.00	1	91	9 27	0.00	0.17	29.40	0.95	0.92	10.10	31.21 17.05	2.04	0.75	0.93	1.00	0.30	0.00	0.00	2.10	0.14	93.22
Sect_set 0.66 1 95 5 0.00 0.14 28.64 0.51 1.77 15.19 31.01 2.82 9.11 1.07 0.88 0.39 0.00 0.00 0.00 91.53 sed1_35 0.66 1 95 5 0.00 0.14 28.64 0.51 1.77 15.19 31.01 2.82 9.11 1.07 0.88 0.39 0.00 0.00 0.00 91.53 sed1_36 0.65 1 95 5 0.00 0.14 20.5 9.14 1.07 0.88 0.39 0.00 0.00 91.53	seul_oo	501	50	0.73	9	00	21	0.00	2.03	20.04	2.70	2.08	1/07	20.00	2.12	0.14	2.0/	0.70	0.00	0.20	0.47	20.09	0.00	93.02
aced ac	seu1_34			0.00	ے 1	90	2	0.00	0.40	21.09	0.24	1.47	14.9/	30.03	2.00	9.79	1.21	0.72	0.30	0.20	0.00	0.27	0.00	90.93
Seurap	sed1_36			0.65	1	95	5	0.00	0.14	29.25	0.52	1.41	15.78	31.18	2.62	9.03	1.23	0.90	0.41	0.00	0.00	0.00	0.28	92.76

Electron microprobe analysis and dating of monazite

Label	Age Ma	Error Age Ma	<u>Ce</u> (La+Ce)	Huttonite-9	Monazite-9	Brabantite-9	Al ₂ O ₃	SiO ₂	P ₂ O ₅	CaO	Y ₂ O ₃	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Gd ₂ O ₃	Dy ₂ O ₃	Er ₂ O ₃	PbO	ThO ₂	UO ₂	Somme
sed1_37			0.67	1	94	5	0.00	0.18	28.38	0.53	1.45	14.30	30.74	2.91	10.25	1.44	1.05	0.46	0.00	0.00	0.00	0.09	91.80
sed1_38	727	232	0.67	3	91	6	0.00	0.69	28.29	0.66	1.89	12.96	28.21	2.61	9.95	1.74	1.08	0.52	0.00	0.14	4.00	0.11	92.82
sed1_39			0.62	1	97	3	0.00	0.14	29.40	0.30	1.01	17.91	30.56	2.51	8.16	1.02	0.81	0.34	0.00	0.00	0.00	0.16	92.30
sed1_41			0.62	0	92	7	0.00	0.10	29.23	0.76	1.32	17.45	29.78	2.41	7.35	0.90	0.80	0.38	0.00	0.00	0.63	0.84	91.94
sed1_42			0.66	1	95	4	0.00	0.16	29.02	0.48	1.62	14.75	30.84	2.93	9.57	1.11	0.88	0.38	0.00	0.00	0.34	0.20	92.28
sed1_43	499	68	0.68	1	72	27	0.00	0.22	29.24	2.84	2.39	9.47	21.27	2.25	8.25	2.00	1.41	0.66	0.26	0.33	10.28	1.59	92.46
sed1_44			0.63	1	92		0.00	0.16	28.43	0.75	1.47	17.42	31.72	2.58	7.64	0.68	0.54	0.29	0.00	0.00	0.10	0.00	91.78
sed1_45	400	45	0.65	1	95	4	0.00	0.15	29.52	0.43	2.18	15.99	31.41	2.78	8.87	0.97	0.79	0.42	0.00	0.00	0.00	0.18	93.68
sed 1_46	468	45	0.72	4	59	37	0.00	0.91	27.96	3.94	2.52	6.18	16.49	2.05	7.61	2.44	1.65	0.77	0.24	0.47	18.92	1.49	93.64
seul_47	600	101	0.67	1	94	5 11	0.00	0.15	20.31	0.53	1.18	10.00	30.78	2.83	9.39	1.69	1.20	0.18	0.00	0.00	7.71	0.19	90.89
sed1_40	506	07	0.65	4	60	11	0.00	1 40	27.90	1.12	0.11	12.32	25.03	2.00	9.97	1.02	1.29	0.47	0.00	0.25	0.04	0.24	92.04
sed1_49	500	57	0.05	1	95	1	0.00	0.15	20.37	0.41	1.52	15.23	20.04	2.33	9.15	1.10	0.89	0.37	0.00	0.22	0.33	0.40	91.40
sed1_51	584	140	0.05	1	88	11	0.00	0.15	29.17	1 18	1.52	13.23	27 1/	2.72	8.88	1.27	0.03	0.44	0.00	0.00	3 15	1 21	92.02
sed1_52	504	140	0.66	4	94	2	0.00	0.15	27.93	0.21	0.92	15.02	30.74	2.07	9.22	0.83	0.34	0.42	0.00	0.10	2.98	0.00	92.35
sed1_53	608	74	0.68	3	72	26	0.00	0.59	28.19	2.65	2 24	9.31	21 16	2 28	8 12	1.66	1 21	0.60	0.00	0.00	11.57	0.84	90.80
sed1 54	000		0.66	1	96	3	0.00	0.16	29.11	0.35	1.12	15.06	30.43	2.85	9.33	1.09	0.81	0.32	0.00	0.00	0.31	0.18	91.10
sed1 56			0.67	2	96	2	0.00	0.34	28.92	0.22	1.09	13.88	30.43	3.15	10.75	1.25	0.84	0.21	0.00	0.00	0.75	0.00	91.84
sed1 57			0.65	76	18	6	0.00	39.38	10.82	1.48	0.44	6.08	11.82	1.26	5.07	0.98	0.69	0.26	0.00	0.00	1.38	0.17	79.84
sed1 58			0.65	1	96	3	0.00	0.13	29.63	0.33	1.11	15.26	30.60	2.85	9.18	1.13	0.84	0.39	0.00	0.00	0.28	0.10	91.83
sed1_59line_1			0.64	1	96	3	0.00	0.12	29.01	0.33	1.29	16.20	30.40	2.64	8.28	0.91	0.66	0.29	0.00	0.00	0.12	0.00	90.25
sed1_59line_2			0.64	1	94	5	0.00	0.12	29.13	0.57	1.56	16.11	29.69	2.49	8.12	0.88	0.70	0.37	0.00	0.00	0.17	0.24	90.14
sed1_59line_3	1991	1017	0.63	1	95	5	0.00	0.17	28.39	0.48	1.23	16.60	29.33	2.50	7.68	0.78	0.74	0.30	0.00	0.08	0.92	0.00	89.19
sed1_59line_4			0.62	1	96	3	0.00	0.16	15.99	0.27	0.66	14.75	25.12	2.44	7.52	0.86	0.61	0.30	0.00	0.00	0.34	0.00	69.03
sed1_59line_5			0.63	1	95	5	0.00	0.16	28.48	0.48	1.28	16.32	29.36	2.49	8.10	0.88	0.60	0.30	0.00	0.00	1.01	0.06	89.51
sed1_59line_6			0.63	1	97	3	0.00	0.14	28.67	0.29	1.14	16.41	29.95	2.59	8.15	0.95	0.73	0.36	0.00	0.00	0.46	0.00	89.84
sed1_59line_7			0.66	1	96	4	0.00	0.15	29.05	0.39	1.50	15.03	30.19	2.77	9.22	1.04	0.78	0.29	0.00	0.00	0.11	0.09	90.61
sed1_59line_8			0.63	0	94	6	0.00	0.09	29.20	0.63	1.41	16.68	29.77	2.64	7.91	0.81	0.60	0.35	0.00	0.00	0.55	0.21	90.86
sed1_59line_9			0.62	1	97	3	0.00	0.13	29.09	0.28	1.20	18.79	32.71	2.60	7.90	0.92	0.67	0.32	0.00	0.00	0.37	0.00	94.98
sed1_59line_10			0.62	1	96	3	0.00	0.15	24.40	0.34	0.88	16.94	29.22	2.38	7.55	0.77	0.57	0.26	0.00	0.00	0.39	0.00	83.87
sed1_59line_1			0.63	1	97	3	0.00	0.14	26.85	0.30	1.25	17.53	31.95	2.78	8.43	0.87	0.69	0.30	0.00	0.00	0.13	0.00	91.23
sed1_59line_2			0.63	1	94	5	0.00	0.12	28.93	0.56	1.51	17.71	31.65	2.55	7.90	0.94	0.67	0.34	0.00	0.00	0.33	0.00	93.21
sed1_59line_3			0.62	1	95	4	0.00	0.16	29.33	0.46	1.25	18.32	31.58	2.49	8.03	0.87	0.73	0.33	0.00	0.00	0.98	0.09	94.62
sed1_59line_4			0.63	1	96	3	0.00	0.17	7.90	0.22	0.35	13.36	24.50	1.89	6.18	0.67	0.57	0.27	0.00	0.00	0.30	0.00	56.39
sed I_59line_5			0.62	1	95	4	0.00	0.17	28.17	0.43	1.32	17.99	31.40	2.55	8.16	1.00	0.72	0.30	0.00	0.00	0.59	0.00	92.79
sed1_59line_6			0.63	1	97	3	0.00	0.15	20.07	0.30	1.20	16.00	32.00	2.00	8.30	1.04	0.73	0.33	0.00	0.00	0.53	0.00	94.15
sed1_59line_7			0.64	1	96	4	0.00	0.17	29.24	0.41	1.45	17.77	32.12	2.75	8.99 7.06	1.04	0.76	0.40	0.00	0.00	0.00	0.15	94.33
sed1_59line_6			0.63	1	94	2	0.00	0.12	29.17	0.30	1.09	19.67	32.00	2.00	7.90	0.09	0.73	0.31	0.00	0.00	0.00	0.24	94.37
sed1_59line_9			0.02	1	96	3	0.00	0.17	26.64	0.31	1.21	18 35	31.02	2.00	7 39	0.50	0.09	0.20	0.00	0.00	0.30	0.00	94.04 89.76
sed1 59line 11			0.62	0	96	3	0.00	0.10	28.66	0.37	1.00	18 27	31 59	2.33	7.56	0.79	0.00	0.20	0.00	0.00	0.39	0.00	92 47
sed1 59line 12			0.02	1	96	3	0.00	0.09	28.98	0.37	1.09	18.33	32.00	2.44	8.05	0.00	0.72	0.30	0.00	0.00	0.42	0.00	92.47
sed1 59line 13			0.62	0	95	4	0.00	0.14	29.26	0.00	1 1 9	18.76	32.35	2.50	7 51	0.81	0.71	0.25	0.00	0.00	0.45	0.00	94.20
sed1_59line_14			0.62	0	96	3	0.00	0.10	29.29	0.33	1.10	18 47	32 45	2.68	7.55	0.80	0.64	0.33	0.00	0.00	0.25	0.00	94 24
sed1 59line 15			0.63	1	97	3	0.00	0.12	28.98	0.32	1.29	18.17	32.77	2.69	8.07	0.87	0.55	0.25	0.00	0.00	0.00	0.10	94.16
sed1_59line_16			0.63	1	96	4	0.00	0.15	28.96	0.41	1.47	17.62	32.12	2.68	8.12	0.83	0.58	0.31	0.00	0.00	0.16	0.00	93.42

Electron microprobe analysis and dating of monazite $\overset{\circ}{}_{\ast}$

Label	Age Ma	Error Age Ma	<u>Ce</u> (La+Ce)	Huttonite-	Monazite-9	Brabantite-9	Al ₂ O ₃ Si	O ₂ P	₂ O ₅ C	aO Y	₂ O ₃ La	a ₂ O ₃ C	e ₂ O ₃ Pi	r ₂ O ₃ N	d₂O₃ Sr	n₂O₃ Go	d₂O₃ Dy	∕₂O₃ Er	₂O₃ Pt	ю т	hO₂ U	O ₂ Sol	mme
sed1_59line_17			0.63	0	96	4	0.00	0.08	29.31	0.39	1.21	18.36	32.76	2.56	7.71	0.75	0.55	0.26	0.00	0.00	0.13	0.07	94.14
sed1_59line_18			0.62	0	96	3	0.00	0.11	29.17	0.38	1.28	18.74	32.69	2.58	7.54	0.76	0.53	0.25	0.00	0.00	0.00	0.08	94.10
fmc_1	442	107	0.67	6	86	8	0.00	1.35	26.88	0.89	2.33	11.90	25.72	2.74	9.75	1.92	1.36	0.59	0.26	0.17	7.82	0.42	94.10
fmc_2	459	107	0.68	6	85	9	0.00	1.35	26.13	0.89	2.33	11.68	26.02	2.64	9.66	1.89	1.38	0.59	0.25	0.18	7.85	0.40	93.24
fmc_3	863	382	0.68	4	95	2	0.00	0.92	27.93	0.17	0.68	13.62	29.91	3.25	12.03	2.10	1.04	0.37	0.00	0.09	2.41	0.00	94.52
fmc_4	392	79	0.66	14	82	4	0.00	3.08	23.85	0.43	1.79	12.66	25.50	2.40	8.83	1.36	0.97	0.44	0.00	0.21	11.35	0.44	93.33
fmc_5	675	135	0.65	9	88	3	0.00	2.10	25.28	0.32	2.03	13.78	27.54	2.56	8.80	1.12	0.87	0.33	0.00	0.20	7.10	0.00	92.03
fmc_6	568	122	0.63	7	86	6	0.00	1.61	26.44	0.68	2.38	14.00	25.52	2.55	8.99	1.44	1.17	0.56	0.24	0.19	7.86	0.00	93.65
fmc_8	491	82	0.65	13	83	4	0.00	2.83	24.14	0.42	1.46	13.23	25.84	2.43	8.62	1.24	0.94	0.40	0.00	0.26	11.08	0.44	93.32
fmc_9	573	136	0.66	4	84	12	0.00	0.90	26.50	1.31	1.68	13.27	27.53	2.61	8.79	1.11	0.81	0.44	0.00	0.17	6.98	0.00	92.10
fmc_10	508	68	0.66	18	78	4	0.00	4.06	22.43	0.36	2.92	11.58	23.51	2.36	7.99	1.24	0.99	0.64	0.25	0.33	13.75	0.50	92.91
fmc_11	478	175	0.66	4	90	7	0.00	0.86	27.43	0.71	2.10	14.16	28.79	2.73	9.28	1.26	0.99	0.46	0.00	0.11	5.18	0.10	94.17
fmc_12	1991	1179	0.63	1	97	2	0.00	0.26	28.41	0.18	0.92	16.79	30.47	2.87	9.46	1.90	1.12	0.36	0.00	0.08	0.73	0.06	93.59
fmc_13	668	148	0.66	4	89	7	0.00	0.87	27.36	0.76	2.48	13.65	27.54	2.66	8.51	1.32	1.06	0.65	0.26	0.19	5.60	0.37	93.27
fmc_14	623	135	0.66	5	88	7	0.00	1.14	27.05	0.70	2.22	13.54	27.56	2.72	8.75	1.32	1.13	0.67	0.00	0.20	6.49	0.29	93.78
fmc_15	670	74	0.67	16	76	8	0.00	3.59	21.87	0.88	1.36	11.39	23.93	2.71	9.09	1.19	0.77	0.31	0.00	0.42	13.07	0.44	91.03
fmc_16	1760	445	0.65	2	95	4	0.00	0.34	28.36	0.37	1.91	14.67	29.37	2.90	9.42	1.89	1.40	0.60	0.00	0.20	1.72	0.23	93.38
fmc_17	1389	535	0.65	1	96	2	0.00	0.31	28.57	0.26	1.27	15.41	30.75	2.89	9.56	1.95	1.29	0.39	0.00	0.12	1.48	0.15	94.41
fmc_18	583	122	0.66	10	84	6	0.00	2.20	25.28	0.69	2.69	12.79	25.76	2.54	9.06	1.45	1.23	0.64	0.21	0.20	7.18	0.32	92.25
fmc_19	453	72	0.64	12	80	8	0.00	2.72	24.45	0.78	2.47	12.46	23.88	2.31	7.95	1.23	1.00	0.60	0.26	0.27	12.61	0.47	93.47
fmc_20	463	72	0.65	13	80	6	0.00	2.87	24.02	0.65	2.73	11.84	23.04	2.25	8.24	1.26	1.12	0.67	0.00	0.28	12.68	0.49	92.15
fmc_21	500	106	0.65	7	86	7	0.00	1.51	26.55	0.68	2.54	12.54	25.10	2.50	9.04	1.55	1.22	0.61	0.21	0.20	7.94	0.46	92.65
fmc_22	895	228	0.68	4	93	3	0.00	0.86	27.36	0.33	1.76	12.39	27.75	3.11	11.33	2.05	1.56	0.56	0.24	0.17	3.93	0.18	93.58
fmc_23	528	116	0.65	5	87	8	0.00	1.15	27.12	0.84	2.48	13.05	25.32	2.54	9.17	1.52	1.30	0.64	0.00	0.19	7.10	0.46	92.89
fmc_24	528	107	0.66	8	86	6	0.00	1.69	26.02	0.67	1.52	12.72	25.62	2.60	9.67	1.77	1.29	0.46	0.00	0.21	8.42	0.26	92.92
fmc_25	467	75	0.68	2	76	22	0.00	0.47	28.37	2.28	2.78	9.90	22.64	2.53	9.56	1.65	1.51	0.77	0.35	0.27	9.23	1.27	93.58
fmc_27			0.69	2	97	1	0.00	0.52	28.47	0.12	0.74	13.26	30.66	3.22	12.48	1.97	1.12	0.34	0.00	0.00	1.43	0.00	94.33
fmc_29	459	75	0.67	17	79	4	0.00	3.86	22.50	0.40	1.57	12.15	25.98	2.59	8.34	1.14	0.67	0.31	0.00	0.27	12.10	0.48	92.35
fmc_31	539	175	0.65	1	86	13	0.00	0.27	28.10	1.38	2.34	13.18	25.46	2.61	9.58	1.59	1.35	0.64	0.00	0.13	4.31	0.35	91.28
fmc_32	746	172	0.67	6	92	2	0.00	1.25	26.58	0.25	1.13	12.69	27.80	3.07	10.82	2.07	1.23	0.38	0.00	0.19	5.38	0.17	93.00
fmc_33	1211	593	0.65	2	97	1	0.00	0.43	27.90	0.12	0.37	15.44	30.07	2.97	10.15	1.85	1.20	0.21	0.00	0.08	1.58	0.00	92.38
fmc_34	471	110	0.65	11	85	5	0.00	2.45	24.59	0.50	1.68	12.99	25.65	2.72	9.72	1.45	1.01	0.38	0.21	0.18	7.98	0.34	91.86
fmc_35line_1	423	124	0.65	9	88	3	0.00	1.92	25.43	0.30	1.68	13.39	26.67	2.68	9.17	1.57	1.24	0.42	0.00	0.14	7.18	0.22	92.02
fmc_35line_2	509	73	0.65	18	79	3	0.00	3.89	22.31	0.34	1.80	12.03	23.70	2.44	8.35	1.32	0.89	0.41	0.00	0.31	12.73	0.48	91.01
fmc_35line_3	443	69	0.66	18	79	3	0.00	3.88	18.46	0.33	1.50	12.06	24.33	2.10	7.43	1.14	0.79	0.38	0.00	0.27	13.65	0.16	86.48
fmc_35line_4	465	72	0.65	17	79	3	0.00	3.85	22.04	0.36	1.84	12.15	23.80	2.46	8.49	1.25	1.04	0.40	0.00	0.28	12.77	0.47	91.20
fmc_35line_5	508	79	0.65	19	77	4	0.00	4.42	21.75	0.40	1.60	12.24	24.25	2.24	7.95	1.28	0.85	0.39	0.00	0.28	12.62	0.13	90.40
fmc_35line_6	505	106	0.65	15	81	4	0.00	3.36	19.88	0.38	1.61	12.76	24.93	2.40	8.18	1.24	0.90	0.36	0.00	0.18	8.45	0.00	84.64
fmc_35line_7	532	98	0.65	29	68	3	0.00	7.30	20.45	0.36	1.15	11.45	22.76	2.39	8.19	1.32	0.97	0.30	0.00	0.23	9.86	0.13	86.86
tmc_35line_8	456	65	0.65	19	77	3	0.00	4.22	21.58	0.36	1.82	11.51	22.98	2.46	8.22	1.33	0.93	0.42	0.21	0.31	14.26	0.56	91.19
tmc_35line_9	402	115	0.65	10	89	0	0.00	2.30	24.56	0.03	0.88	13.52	26.85	2.72	9.34	1.41	0.92	0.32	0.00	0.14	8.00	0.13	91.13
tmc_35line_10	464	63	0.65	19	78	3	0.00	4.15	21.78	0.33	1.99	11.44	22.66	2.32	8.21	1.36	1.05	0.42	0.00	0.33	14.68	0.57	91.28
tmc_35line_11	511	83	0.65	15	80	4	0.00	3.35	24.06	0.44	2.01	12.43	23.98	2.47	8.29	1.26	1.02	0.39	0.00	0.27	11.46	0.33	91.78
tmc_35line_12	454	66	0.65	19	78	3	0.00	4.03	21.76	0.35	2.01	11.53	22.61	2.37	8.18	1.33	0.93	0.44	0.00	0.30	13.84	0.52	90.20
tmc_36			0.65	3	94	3	0.00	0.76	27.23	0.29	1.43	14.53	28.40	2.87	10.11	1.54	0.99	0.39	0.00	0.00	2.63	0.10	91.28
fmc_38	469	77	0.65	13	80	7	0.00	2.82	24.07	0.67	2.70	11.94	23.58	2.44	8.18	1.30	1.05	0.61	0.22	0.27	11.71	0.49	92.03

Common lead corection

GLITTER exported data

(Raw cps)-bkg	²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²³² Th	²³⁸ U
	R204	R206	R207	R208	R232	R238

Isotopic ratios	²⁰⁷ Pb/ ²⁰⁶ Pb	206Pb/238U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁸ Pb/ ²³² Th
Errors (1σ) on is	otopic ratios			

GLITTER calculations

(1)
$${}^{238}\text{U}/{}^{235}\text{U} = 137.88$$
 (2) ${}^{207}\text{Pb}/{}^{206}\text{Pb} = \frac{R207}{R206} \times \psi^{207/206}$

 Ψ = Yield ratio (fractionation correction)

(3)
$${}^{207}\text{Pb}/{}^{235}\text{U} = {}^{207}\text{Pb}/({}^{238}\text{U}/137.88) = \frac{R207 \times 137.88}{R238} \times \Psi^{207/238}$$

- (4) ${}^{206}\text{Pb}/{}^{238}\text{U} = \frac{R206}{R238} \times \Psi^{206/238}$ (5) ${}^{208}\text{Pb}/{}^{232}\text{Th} = \frac{R208}{R232} \times \Psi^{208/232}$
- (6) ${}^{207}\text{Pb}/{}^{206}\text{Pb} = \frac{R207}{R206} \times \psi^{207/206}$

Assumptions for calculations

- (7) $\Psi^{208/206} = (\Psi^{207/206})^2 = (\Psi^{206/204})^2$
- (8) Common lead is second stage Pb reservoir (Stacey & Kramers, 1975)
- (9) U and Th composition of GJ is constant: 11.2 ppm Th, 291.15 ppm U

90

150

120

180 s

LA-ICPMS Integrated signals

1.E+00

ò

30

60