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Abstract

This thesis covers three main issues in content delivery with a focus on placement algo-

rithms of replica servers and replica contents. In a content delivery system, the location

of replicas is very important as perceived by a quotation: Closer is better. However,

considering the costs incurred by replication, it is a challenge to deploy replicas in a

cost-effective manner. The objective of our work is to optimally select the location of

replicas which includes sites for replica server deployment, servers for replica contents

hosting, and en-route caches for object caching. Our solutions for corresponding appli-

cations are presented in three parts of the work, which makes significant contributions

for designing scalable, reliable, and efficient systems for Internet content delivery.

In the first part, we define the Fault-Tolerant Facility Allocation (FTFA) problem for

the placement of replica servers, which relaxes the well known Fault-Tolerant Facility

Location (FTFL) problem by allowing an integer (instead of binary) number of facili-

ties per site. We show that the problem is NP-hard even for the metric version, where

connection costs satisfy the triangle inequality. We propose two efficient algorithms

for the metric FTFA problem with approximation factors 1.81 and 1.61 respectively,

where the second algorithm is also shown to be (1.11,1.78)- and (1,2)-approximation

through the proposed inverse dual fitting technique. The first bi-factor approximation

result is further used to achieve a 1.52-approximation algorithm and the second one a

4-approximation algorithm for the metric Fault-Tolerant k-Facility Allocation problem,

where an upper bound of facility number (i. e. k) applies.

In the second part, we formulate the problem of QoS-aware content replication for

parallel access in terms of combined download speed maximization, where each client

has a given degree of parallel connections determined by its QoS requirement. The

vi



Abstract vii

problem is further converted into the metric FTFL problem and we propose an approx-

imation algorithm which is implemented in a distributed and asynchronous manner of

communication. We show theoretically that the cost of our solution is no more than

2F ∗ + RC∗, where F ∗ and C∗ are two components of any optimal solution while R

is the maximum number of parallel connections. Numerical experiments show that the

cost of our solutions is comparable (within 4% error) to the optimal solutions.

In the third part, we establish mathematical formulation for the en-route web caching

problem in a multi-server network that takes into account all requests (to any server)

passing through the intermediate nodes on a request/response path. The problem is to

cache the requested object optimally on the path so that the total system gain is maxi-

mized. We consider the unconstrained case and two QoS-constrained cases respectively,

using efficient dynamic programming based methods. Simulation experiments show that

our methods either yield a steady performance improvement (in the unconstrained case)

or provide required QoS guarantees.
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Chapter 1

Introduction

Hormann and Beaumont described delivery systems in real world as the following [82]:

“Squirrels gather nuts throughout a large territory to store them near their nest

for easy winter access. Dairy farmers collect milk from crows every day. The milk is

trucked to various processing plants and distribution points before it arrives the shelf at

the neighborhood supermarket. A few times a week, the family shopper travels a mile

or so to the market to buy milk and bring it home. The milk is stored in the kitchen

refrigerator, only a few feet away from the kitchen table. Each morning, a container of

milk is moved from the refrigerator and placed on the kitchen table, only a few inches

from the family’s breakfast cereal bowls where it is actually used.”

Content delivery systems on the Internet are similar (metaphorically) to their coun-

terpart in the real world: Comparable to nuts gathering, a simple content delivery system

transfers the content, say a web page, from the server to the client directly, while an ad-

vanced system has a complex structure to facilitate the process of delivery and a group

of nodes are involved in serving a request. It is obvious that the network performance

is maximized when the requested content is stored throughout the network because it

is faster and easier to use information stored locally than to retrieve it repeatedly from

a remote source. However, this requires enormous cache memory which is unpractical

in reality and therefore it becomes indispensable to find a balanced solution between

network performance and storage cost.

In this thesis, we have developed novel methods to optimize the location of replicas,

1



Chapter 1. Introduction 2

including replica servers and replica objects, regarding their respective models. The

purpose of this work is to improve the efficiency of content delivery and enhance the

experience of network access utilizing the existing investment in network facility. Our

approaches are independent of specific facilities used in a network, conforming to a

general principle proclaimed by Maupertuis: If there occurs some change in nature, the

amount of action necessary for this change must be as small as possible.

1.1 Content Delivery in the Internet

As the Internet gradually becomes a critical infrastructure, a growing number of busi-

nesses, organizations and institutions rely on its operation. Efficient content delivery, as

one of the uppermost functions of the Internet, is becoming increasingly important. As

such, in this chapter we first investigate related techniques for improving the efficiency

of Internet content delivery.

1.1.1 Content Delivery Systems

Just like the difference of milk delivering and nuts gathering, the process of content

delivery varies depending on the specific systems chosen by users. Here, we discuss

three dominant content delivery systems, i. e. traditional (simple) client/server networks,

Content Distribution Networks, and Peer-to-Peer networks.

3 The most prominent instance of traditional client/server networks is World Wide

Web (WWW). WWW enabled the spread of small size information through an

easy-to-use and flexible format by providing a standard protocol — Hypertext

Transfer Protocol (HTTP) to transfer information over a computer network sup-

porting Internet Protocol (i. e. Internet). Internet was designed according to the

end-to-end principle [113] by keeping the core network relatively simple and mov-

ing the intelligence as much as possible to the network end-points. For example,

a web server is responsible for accepting HTTP requests from clients and serving

them HTTP responses along with data contents. Excluding this, a web server also
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caches the result of some script files like ASP/PHP files (called dynamic/active

pages) as a static page to service future requests in order to speed the process. As

such, a web server is much more complex than any node in a core network which

is usually tailored to the tasks of routing and forwarding messages.

3 Content Distribution Networks (CDNs) [51, 93, 101] could be regarded as ad-

vanced client/server networks which further apply the end-to-end principle by

adding more intelligence to the edge-servers. A CDN replicates contents from the

origin server to the surrogates — some edge-servers that act on behalf of the origin

server. CDNs essentially enhance client/server networks by comprising a system

of computers across the Internet that cooperate transparently and forward content

to positions closer to end users for performance improvement. Popular examples

of CDNs include Akamai [39], Radar [99], SPREAD [110] and Globule [93].

3 Peer-to-Peer (P2P) networking [82] is an approach for delivering network ser-

vices where participants share a portion of their own resources, such as processing

power, disk storage, network bandwidth and printing facilities. Different from the

above networks, resources in P2P networks are provided directly to other partici-

pants without intermediary network hosts or servers [116] and this implies that a

P2P network participant is a provider and also a consumer of the network services.

Instances of P2P Networks include file sharing systems like BitTorrent [97, 74].

We notice that P2P systems, though could also be regarded as caching systems, are

quite different from others. Due to the fact that a P2P system does not distinguish the

providers and consumers of contents, regarding techniques are not used extensively in

commercial environment due to potential security risks. As such, we mainly focus on

the first two systems which are used more extensively. Considering that P2P networks

are very popular due to their prominent characteristics in applications like file sharing,

we will analyze the opportunity of leveraging related techniques, e.g. parallel access,

to enhance the existing systems. We also investigate related research topics such as

decentralized architecture using DHT (Distributed Hash Table) as part of the future work

in the last chapter of this thesis.
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Despite the diversity of application technologies, the above systems share a common

principle — replicating and distributing contents across the network in order to ease

access for end-users. As perceived by the common knowledge: Closer is better, these

techniques involve caching web contents in a proxy server, cooperative web caching

in a group of federated caches and content replication among surrogate servers. We

introduce these techniques including proxy caching [31, 118], cooperative web caching

[67, 43] and content distribution networks [149] in the next subsection.

1.1.2 Evolution of Techniques

1.1.2.1 Single proxy caching

The idea of using proxy servers [79] to cache web objects arose when they were first

used for Internet access by clients within a firewall. For security reasons, companies run

a special type of HTTP servers called “proxy” on their firewall machines. A proxy server

typically processes requests by forwarding them to the remote servers, intercepting the

responses and sending the replies back to the clients [135]. Since the same proxy servers

are typically shared by all clients inside the firewall, eventually this leads to a question

of the effectiveness of using these proxies to cache documents.

Proxy caching [36] has been proved to be effective to improve the web performance

and reduce the network traffic by caching frequently accessed copies of contents at a

local proxy to service future requests. Due to the limit of cache memory, single proxy

caching focuses on local replacement algorithms to accommodate the new requested

objects [30, 64, 95]. Caching of web contents (e. g. HTML pages, images) can re-

duce bandwidth usage, server load and user’s perceived latency since these contents can

be fetched from proxy caches, which are located more closely than servers to users.

In order to make full use of caching, significant research has been made in this area

which extends the regarding techniques to a more advanced version, i. e. cooperative

Web caching.
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1.1.2.2 Cooperative web caching

Cooperative web caching [35, 100], where caches cooperating with each other to serve

requests, is a powerful paradigm to improve cache effectiveness [35, 64, 63]. In re-

lated work [69, 131], emphasis has been put on maximizing the benefits of cooperative

caching for distributed systems and large-scale systems. In [147], wide-area cache co-

operation was studied under a simple model, in which distances among all nodes in

the network are assumed to be the same. In [63], the authors examined three practi-

cal cooperative placement algorithms for large-scale distributed caches and showed that

cooperative object management could significantly improve performance compared to

single proxy caching. In order to make caches cooperate on a large scale and effec-

tively increase caching population, several caching architectures were proposed [108],

including hierarchical architecture [20], distributed architecture [131, 96] and hybrid

architecture [131, 77].

Cooperative web caching has been recognized as one of the effective solutions to al-

leviate web service bottlenecks, reduce bandwidth consumption, access latency, as well

as server load. There are two important issues in cooperative caching: cache location

[66] and content management [127, 72, 117]. The first issue studies the problem of

where to place network caches while the second focuses on the object placement and

replacement, which attempts to make optimized storage decisions for given size cache

memory to achieve maximized performance improvement through cache collaboration.

Recent advances in caching technology [38, 66] have presented a new form of caching

architecture, namely en-route web caching [11, 110]. In en-route (web) caching, copies

of web contents are selectively placed in transparent en-route caches [66] along each

response path and requests passing through later are satisfied by an en-route cache if

the requested object is stored or forwarded to the server otherwise. Different from tradi-

tional en-route caching that does not take into account the loss resulted by object replace-

ment when making a placement decision, coordinated en-route caching [127] integrates

both object placement and replacement policies into a caching scheme that produces

the maximum net gain after loss deduction. Since coordinated en-route caching makes
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caching decisions in a coordinated fashion between object placement and replacement,

it outperforms traditional caching schemes.

1.1.2.3 Content Distribution Networks

With the development of web caching, researchers progressively put their effort on the

global effect of deploying multiple sources, including contents in origin servers and sur-

rogate servers across the network, using content replication techniques. Content repli-

cation [33, 61, 73, 101], usually in the form of CDN, optimizes content delivery in the

way of moving servers and their contents closer to end users to ease access. Typically

serving content from a local replica server has better performance than from the origin

server and the cost of deploying required number of servers is less than the communi-

cation cost over long distance. These evidences suggest people to deploy CDNs in the

Internet to achieve performance improvement and CDN gradually becomes indispens-

able especially for objects/services which are not cacheable but replicable such as some

dynamical pages or personalized objects like “cookies”.

In business, CDNs render appreciable benefits to both content providers and content

consumers. In technology, CDNs have also been proved to be an effective approach to

alleviate congestion on the Internet and make the Internet more responsive. However,

though CDNs are very desirable, design an efficient CDN is a non-trivial task and in

the next section we will discuss some issues and challenges in the design of Content

Distribution Networks.

1.2 Issues and Challenges

As stated in [105], all issues in content delivery can be roughly categorized into content

distribution, cache management and request routing. Content distribution includes the

placement of surrogate servers strategically, content selection and distribution based

on user remands and content outsourcing methodologies. Cache management includes

cache organization and maintenance as well as cache content management. Request

routing is a technique that redirects a request optimally to a server hosting the required
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object.

1.2.1 Research Issues in Content Delivery

The following research issues are vital in a CDN for efficient content delivery and overall

performance.

1. Surrogate Server Placement: A CDN involves creating and deploying server

replicas (surrogates) to provide optimized performance to access contents in these

servers. Server replicas are used usually deployed selectively among candidate

sites and the objective of the problem is to achieve minimized cost, maximized

performance improvement or other desired properties such as fault tolerant capa-

bility as studied in Chapter 3.

2. Content Selection and Outsourcing Mechanisms: This issue is to decide which

objects should be replicated and how to distribute them to surrogate servers. Con-

sidering the huge amount of data in the Internet, the performance of a delivery

system is highly dependent on the selection of contents to be replicated. Previ-

ous studies on Web workloads [5, 88, 26] and characterizing web objects [40, 15]

suggested that most web objects are small (5-10KB), but the distribution of object

sizes is heavy-tailed. This observation suggests replication of small objects with

high hit rates. Content outsourcing involves the mechanism to trigger the process

of content distribution and traditional content outsourcing mechanisms include

cooperative push-based approaches, non-cooperative pull-based approaches and

cooperative pull-based approaches.

3. Content Distribution: For given contents and surrogates (through the first two

steps), it is natural to ask which surrogate(s) should be chosen to store the se-

lected contents and this comprises an optimization problem with respect to differ-

ent objective functions such as minimized storage cost or maximized throughput

as studied in Chapter 4.

4. Cache Organization and Management: Between a surrogate server and a client,
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there are some intermediary nodes — caches/proxy servers, how to organize these

cache servers and how to manage contents in these caches is very important for

the performance of the cache system. Web caching can be regarded as a special

replication technique applied in a local proxy server or a group of proxy servers

on the route that a request/response travels. That is, web caching studies how

to replicate an object requested by the client among local proxy servers while

content replication involves all surrogate servers in the network. Note that, we

use term object replica and copy interchangeably in this thesis, whose concrete

examples include but not limited to web pages, audio files, images, videos and

server side scripts like PHP/ASP pages. In Chapter 5, we will study how to cache

objects smartly in the intermediary nodes on a delivery path in order to serve

future requests.

5. Consistency Enforcement: A CDN involves creating copies of web documents

and placing these copies at well-chosen locations. It ensures (possibly different

levels of) consistency when a replicated document is updated, and redirects a re-

quest to a server hosting updated document. Content replica consistency can be

managed with a validation based scheme or an invalidation based scheme [110].

Among the existing consistency mechanisms, the TTL based consistency scheme

is most widely used. Tang et al. [129] investigated the problem of placing object

replicas under the TTL-based consistency scheme in a tree network and proposed

a polynomial time algorithm to compute the optimal placement of object.

6. Request Routing: A request routing scheme redirects a client to a server hosting

a document copy so that requests issued from the client are optimally served.

When a document is placed at multiple sites, for a request, choosing the best site

to access and routing the request is not easy — the resulting performance can

dramatically vary depending on the selected site and the route of the request. The

hardness of optimal server selection and request routing is mainly due to system’s

dynamics and different content delivery models. Intelligent content replication

and traffic routing use proper technologies to intelligently place content replicas
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(among proxies) and route network traffic to optimize network performance.

Among all these issues, we mainly consider issues 1, 3 and 4 which share a common

objective — to place replicas optimally which includes replica server placement and

replica content placement while the latter can further be classified as static replica object

placement among surrogate servers and dynamic replica object placement among proxy

server (or caches). Note that we perceive web caching as a special technique of content

replication which takes place at proxy servers during the process of serving a request

while the term content replication being used in the literature refers to the replication

of content among surrogate servers which is initiated by the server. The server replica

placement problem must be addressed during the initial infrastructure installation or

hosting infrastructure upgrading. Content replication is triggered from time to time

using system probing techniques to ensure that content placement is cost effective while

web caching is carried out during the process of severing a request. These three issues

share similar mathematical models but differ in application backgrounds.

1.2.2 Challenges

Sine Internet is shared by a huge number of users, its resources, particularly bandwidth

over communication links, are extremely valuable and should be used in a most effective

way. Therefore achieving efficient content delivery is one of the uppermost objectives.

However, the over-evolving nature of the Internet brings challenges in managing and

delivering content to users. As an example, a sudden spike in Web content requests

may cause heavy workload on particular web servers, and as a result a hotspot [90] can

be generated. Here, we discuss desired properties of a content delivery system which

include high availability of service, Quality of Service (QoS), adaptivity and scalability.

3 High Availability of Service: Availability of services is the heart of service ex-

cellence. What makes this characteristic particularly important is that no other

element of service, including quality or timeliness, matters if services are not

accessible. A desirable content delivery system guarantees provided function-

ality in unexpected circumstances of component faults. Thus, replication tech-
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niques with the character supporting high availability of service are essential to

achieve this. Regarding techniques include server replication and content repli-

cation where replicas act as backups to provide service when one of them fails,

which is likely caused by devastating implications of a virus outbreak or security

breach.

3 Quality of Service (QoS): QoS [140] is a set of technologies for managing network

traffic in a cost effective manner to enhance user experiences. QoS technologies

involve bandwidth measurement, detection of changing network conditions (such

as congestion or availability of bandwidth), and traffic prioritization. QoS guaran-

tees are especially important for latency-sensitive applications. QoS technologies

can be applied to prioritize traffic for latency-sensitive applications (such as voice

or video) and to control the impact of latency-insensitive traffic (such as bulk data

transfers). In this thesis, we present QoS-aware caching schemes to meet user

requirements according to their priorities using differentiated service.

3 Adaptability: Today’s Internet periodically suffers from hot spots, also known

as flash crowds [111]. A hot spot is very common in a system providing on-

demand media streaming which is typically triggered by an unanticipated news

event. An adaptive system has the capability to handle flash crowds which can

cause enormous network bandwidth, temporarily overwhelming a site’s delivery

capabilities. Due to the large majority of users attempting to get a small group

of resources, how to utilize the contents already downloaded became a critical

problem and P2P networking is helpful to achieve the adaptability of the system

in this circumstance.

3 Scalability: Scalability is a desirable property of a system, a network, or a pro-

cess, which indicates its ability to handle growing amounts of work in a graceful

manner [13]. In a content delivery system, scalability refers to the capability of a

system to increase total throughput under an increased load when resources (typi-

cally number of servers) are added. In this thesis, we consider content replication

techniques suitable for parallel access and multi-server environment which pro-
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vide a capacity to serve any desired number of users and ensure QoS.

These desired properties pose great technical challenges in content delivery system de-

sign. Addressing all these issues and challenges is clearly out of the scope of this thesis

and we hence choose some issues to study in the thesis.

1.3 Our Work

1.3.1 Issues Addressed in This Thesis

In this thesis, we address several key research issues to satisfy the aforementioned re-

quirements which are desirable in designing a content delivery system. All the issues

addressed involves location problem of replicas which specifically include site selec-

tion for placing replica servers, replica server selection for hosting replica contents and

en-route caches selection on a delivery path for caching objects. These issues are sum-

marized as the following:

3 Replica Server Placement: This issue involves placing surrogate servers across

the networks strategically before content distribution. Replica server placement

usually incurs the cost of deploying these servers as well as the costs of clients

for accessing services from these servers and typically the objective of this kind

of problem is to minimize the sum of the above costs under certain condition. In a

content delivery system, various faults, resulted from adversarial and inconsistent

behaviors, occur at any time. A reliable system should perform and maintain

functions not only in the ordinary situation but also in unexpected circumstances,

including server crash and connection interception. In Chapter 3, we focus on

reliability model for server replication to provide fault tolerance capability in case

of server or connection failures. We achieve fault-tolerance capability by meeting

fault-tolerant requirement for each client — if a connection from a client to a

facility fails, the other facilities assigned could be used to serve the client. We

proposed Fault-Tolerant Facility Allocation in [141, 142, 143] which minimizes
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the sum of facility cost and connection cost subject to the fault tolerance capability

of each client.

3 Content Distribution: This issue is to distribute content replicas among replica

servers in a cost-effective manner to achieve best performing improvement. Tra-

ditional content replication scheme is optimized for single-access model, which

suffers from the low service availability as well as quality of service. The chal-

lenge of this problem is to determine the best strategy so that the perceived perfor-

mance is improved while the resource used won’t increase too much. Parallel ac-

cess provides a means to tradeoff between the system overhead and user perceived

performance, so it’s a more flexible way to deliver content efficiently. On the other

hand, as most existing solutions are centralized in operation which requires a cen-

tral server periodically update all nodes with global access information, a great

challenge explored in this thesis is to investigate distributed solutions that do not

require nodes to have global access information. We proposed QoS-aware content

replication for parallel access in [144, 145, 117]. Our focus, as shown in Chapter

4, is on developing an efficient distributed algorithm with predictable performance

guarantee, which is fully validated through comparison to optimal strategies.

3 En-Route Caching: This issue is to optimize the caching of content along the

path of a request/response travels to achieve maximized benefit in serving future

requests. System scalability and efficiency are the major problems in existing en-

route caching techniques due to the assumption of single server [127, 129, 73].

In a prospect system, there are multiple servers in operation that work collabo-

ratively to provide scalability, efficiency and QoS. Web caching in multi-server

systems is much more complex than that in the traditional single-server systems,

because multiple traffic flows (requests/responses) for the same content, overlap

on links. As a result, replication shall take into account all flows and result in a

maximum benefit to all servers. Clearly it is more difficult to compute the optimal

location of replicas in a multi-server system. A trivial approach is to decompose a

multi-server network into several single-server networks and obtain a multi-server
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solution by combining individual single-server solutions together. This will been

shown, unfortunately, incorrect due to the contradiction of different placement

strategies in different single-server networks. We present corresponding solutions

to the problem in Chapter 5 which first appeared in [144, 145, 117].

1.3.2 Overview of Our Work

This thesis covers solutions to the aforementioned three issues. These solutions bring

significant contributions to applications, theories and methods for replica placement

(and replacement) in devising a scalable, reliable and efficient system for Internet con-

tent delivery. In this subsection, we give an overview of our work as follows.

3 Fault-Tolerant Facility Allocation (FTFA) [141, 142, 143]: Given nf sites, each

equipped with one facility, and nc clients, the well-known Fault-Tolerant Facil-

ity Location (FTFL) problem [55] requires a minimum-cost connection scheme

such that each client connects to a specified number of facilities. The FTFL

problem is NP-hard and the best solution has an approximation ratio 2.076 ob-

tained by applying the LP rounding technique [125]. In Chapter 3, we extend

the FTFL problem to the Fault-Tolerant Facility Allocation (FTFA) problem by

allowing each site to contain multiple replicas of the same facility and show that

we can obtain better solutions for this problem. We give two algorithms with 1.81

and 1.61 approximation ratios within O(mR logm) and O(Rn3) running time re-

spectively, where R is the maximum number of facilities required by any client,

m = nfnc and n = max{nf , nc}. Instead of applying the dual fitting technique

that reduces dual problem’s solution to fit the original problem as used in the lit-

erature [52, 53, 84], we propose a method called inverse dual fitting that alters

the original problem to fit the dual solution and show that this method is more ef-

fective for obtaining solutions of multi-factor approximation. We show that using

factor-revealing technique our second algorithm is also (1.11,1.78)- and (1,2)-

approximation simultaneously, these results can be further used to achieve solu-

tions of 1.52-approximation to FTFA and 4-approximation to the Fault-Tolerant
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k-Facility Allocation problem in which an upper bound (k) of total number of

replicas applies. We believe the inverse dual fitting technique has the potential to

be applied in approximation analysis of similar problems in the future.

3 QoS-Aware Content Replication for Parallel Access [144, 145, 117]: Parallel ac-

cess to replicated contents enables simultaneous download of different portions of

an object from multiple sources, and hence has been applied extensively to offload

origin servers and improve end-user experience. In Chapter 4, we study the QoS-

aware object replication problem for parallel access in which each client has a

given degree of parallel access determined by its QoS requirement or priority. We

formulate the problem as a maximization problem of combined download speed

of all parallel connections at all clients, and then convert it into the metric Fault

Tolerant Facility Location (FTFL) problem to minimize the total cost assuming

shortest-path routing is deployed. We propose an approximation algorithm us-

ing primal-dual schema for the problem which is implemented in a distributed

and asynchronous manner within O(n) rounds of communication, where n is the

number of surrogate servers in the network. As far as we know, the approxima-

tion factor of existing centralized algorithms using primal-dual schema remains

unknown except a special case where all clients have a uniform degree of paral-

lelism (i .e., |R| = 1, whereR is the set of parallel connection degrees). We prove

that the cost of our solution is no more than |R| ·F ∗+2 ·C∗ in the general case for

both the distributed and centralized algorithms, where F ∗ and C∗ are respectively

the two components of cost in an optimal solution. Extensive numerical experi-

ments showed that the quality of our solutions is comparable (within 4% error) to

optimal solutions in all evaluated cases.

3 Coordinated En-Route Web Caching in Multi-Server Networks [144, 145, 117]:

With the emergence of various advanced networks that comprise a group of ge-

ographically distributed servers, such as Content Delivery Networks (CDNs) and

Peer-to-Peer (P2P) systems, coordinated en-route web caching in multi-server net-

works becomes increasingly attractive but remains of great challenge as solutions
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for single-server networks become invalid here. In Chapter 5, we first establish

mathematical formulation for this problem that takes into account all requests

(to any server) that pass through the intermediate nodes on a response path and

caches the requested object optimally among these nodes so that system gain is

maximized. Then we derive efficient dynamic programming based methods for

finding optimal solutions to the problem for the unconstrained case and two QoS-

constrained cases respectively. For each case, we present a caching scheme to

illustrate application of the corresponding method. Finally we evaluate the pro-

posed schemes on different performance metrics through extensive simulation ex-

periments. The experiment results show that our proposed schemes can yield a

steady performance improvement and achieve desired QoS in a multi-server net-

work. To the best of our knowledge, these are the first results for solving the

problem of coordinated en-route web caching in multi-server networks.

1.3.3 Summary of Contributions

In summary, our work brings conceptual advances in problem modeling, theories and

methods for replica placement (and replacement) in designing a scalable, reliable, and

efficient system for content delivery in the Internet. The main contributions of our work

are summarized as follows:

3 We propose the Fault-Tolerant Facility Allocation problem for the placement of

replica servers, which is shown to be NP-hard and we present three polynomial-

time algorithms respectively with approximation factors 1.861, 1.61 and 1.52.

3 We study an extension of the aforementioned problem called k-Facility Allocation

problem and provide with a 4-approximation algorithm.

3 We propose QoS-aware content replication for parallel access to satisfy QoS re-

quirements of clients and convert the problem into the well-studied metric Fault

Tolerant Facility Location problem.
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3 We present a distributed (R, 2)-approximation algorithm for the metric Fault-

Tolerant Facility Location problem which produces solutions comparable (within

4% error) to the optimal solutions within O(n) rounds of communication.

3 We extended the Coordinated En-Route Web Caching to the case of multi-server

network and present a dynamic programming algorithm to compute the optimal

caching strategies in polynomial time.

3 We also consider the QoS constraints in the above problem, respectively on indi-

vidual latency and average latency. We also provide optimal methods to computer

the adapted problem.

On the methodology of our work, we contribute an inverse dual fitting technique which

is used to design and analyse algorithms for the Fault-Tolerant Facility Allocation prob-

lem. Instead of shrinking the dual solution by a factor as in the dual fitting technique, the

main step of dual fitting is to compose an extra instance of FTFA and a feasible solution

to its dual problem. This technique could be regarded as an inverse process of dual fit-

ting technique. Actually, the two techniques are the same in single-factor approximation

analysis but our technique has the advantage to provide multi-factor approximation anal-

ysis as well. We believe this technique has the potential to be applied in approximation

analysis of similar problems in the future.

1.4 Thesis Outline

This thesis comprises 6 chapters. In this chapter we introduce the status of Internet con-

tent delivery including research issues and challenges, followed by a brief introduction

of our work. The remainder of this thesis is organized as follows.

In Chapter 2, we give an overview on replication techniques, including a literature

review on content distribution networks and web caching as well as an introduction of

fundamental methods and approaches used in related work.

Chapter 3, Fault-Tolerant Facility Allocation, presents a facility allocation model

which differs from the classical fault-tolerant facility location problem by allowing mul-
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tiple instances of facility to be opened at each location (site). We also consider an exten-

sion called Fault-Tolerant k-Facility Allocation that limits the total number of facilities

by placing an upper bound k. Both problems are NP hard and a couple of algorithms are

given to compute approximation solutions in polynomial time.

In Chapter 4, we propose QoS-aware content replication for parallel access in which

each client has a given degree of parallel connections determined by its QoS require-

ment or priority. We formulate the problem as an optimization problem and present an

approximation algorithm which is implemented deliberately in a distributed and asyn-

chronous manner of communication.

Chapter 5, Coordinated En-Route Web Caching in Multi-Server Networks, presents

optimal methods for coordinated en-route web caching in multi-server networks. Con-

straints regarding to QoS requirements are also considered to enhance the caching

schemes for delay-sensitive applications.

The above three chapters constitute the main body of our work and Chapter 6 con-

cludes the thesis which is complemented by the discussion of future work.



Chapter 2

Replication for Content Delivery — An

Overview

Replication is one of the oldest and most important techniques in the area of distributed

systems. Replication usually involves providing redundant resources to improve relia-

bility, efficiency, and accessibility of a system or service. Data replication in distributed

database systems [50, 1, 137] is the most notable example of the replication techniques.

In this thesis we focus on replication techniques for performance improvement in Inter-

net content delivery. Replication for content delivery involves replica servers deploy-

ment, replica content distribution and cache management. This thesis focuses on replica

placement algorithms including the placement of replica server, placement of replica

content in static global model and dynamic en-route model. In this chapter, we inves-

tigate existing methods and techniques in related models and give a critical review on

related work.

2.1 Content Distribution Networks

A content distribution network comprises two core components: facility (servers) place-

ment and content management. The problem of facility placement is to select a number

of sites among candidates to deploy facility so that the objective function is optimized

for the given network topology, client population and access patterns [120]. Replica

18
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content distribution further involves replication creation mechanisms and replica content

placement. The problem of replica content placement is to select a number of servers to

deploy contents so that certain objective function is optimized. Both replica (server and

content) placement problems focus on the optimal locations of replicas in a network.

Applications of these techniques can be found in some CDN projects including Akamai

[39], Radar [99], SPREAD [110] and Globule [93].

2.1.1 Replica Server Placement

Li et al. [70] assumed that the underlying network topologies are trees and approached

the proxy placement problem by solving a dynamic programming problem. They ob-

tained anO(M2N3) algorithm for placingM proxies optimally amongN potential sites

in terms of a given performance measure subject to system resource and traffic pattern.

Jamin et al. [57] examined the placement problem for Internet instrumentation. They

investigated both graph theoretic methods and heuristics for instrumenting the Internet

to obtain distance maps. They showed that an Internet distance map service based on

their placement techniques can offer useful hints for server selection by clients. Qiu et

al. [98] explored the problem of Web server replica placement and develop placement

algorithms that use workload information to make informed placement decisions. Their

evaluation using both synthetic and real network topologies, as well as Web server traces

show that these placement decisions are crucial to CDN performance. Radoslavov et al.

[104] proposed two replica server placement algorithms which require no knowledge

of client location but decide on replica location based on the network topology alone.

Though the performance studies show that their algorithms performs only 1.1 to 1.2

times worse than that of the greedy algorithm proposed in Qiu et al. [98], it must be

noted that these algorithms assumed that the clients are uniformly spread throughout

the network, which may not be true. Lin and Yang [75] studied the placement of proxy

servers to support server-based reliable multicast and presented the k-maximum shortest

path count (KMPC) heuristic which places proxies on the nodes through which the most

number of shortest paths pass through. Li and Shen [71] studied optimal methods for
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proxy placement in coordinated en-route web caching which outperforms the KMPC

model with respect to performance metrics considered.

Similar but distinct from server placement, Danzig et al. [36] studied the placement

problem of caches. They showed that the overall reduction in network FTP traffic is

higher with caches inside the backbone (core nodes) rather than on the backbone edges

(external nodes). Krishinan et al. [66] formulated the cache location problem by mod-

eling the flow of data as flows on a graph and presented optimal methods for both linear

topology and single-source tree topology.

Most of the above works assumed there is at most one standard server (or any fa-

cility) at each potential site which is a little obsolete due to the development of infras-

tructure techniques such as server farms and virtualization technology. In those envi-

ronments, the capacity of a facility is customizable according to the demand of needs.

As such, we define in the thesis a problem called Fault Tolerant Facility Allocation

(FTFA) for the placement of replica servers among a set of candidate sites. The FTFA

problem extends the well-studied Fault Tolerant Facility Location (FTFL) problem by

allowing multiple replicas of the same facility at each site. The FTFA problem is less

constrained and hence incurs a smaller total cost than FTFL. Corresponding algorithms

and extensions are proposed in Chapter 3.

2.1.2 Content Replication

Considerable research has been conducted on developing novel protocols and mecha-

nisms [149] for fast data delivery. Content replication [25, 45] as an approach for effi-

cient content distribution has the advantages of broad flexibility and extendibility [78].

Web content replication [33] involves creating copies of a site’s documents and placing

these document copies at well-chosen locations. Different from the cache replacement

algorithms which only consider objects in one cache, replica placement algorithms need

to consider all possible locations (nodes) in the network and decide the optimal or near-

optimal locations to host the object. Through replication in the Internet, content is closer

to end-users and as a result the performance, especially the access latency perceived by



Chapter 2. Replication for Content Delivery — An Overview 21

a client, is significantly improved. On the server side, replication shifts the load from

congested servers (or links) to less loaded servers so that all the servers are able to re-

spond to requests quickly. At the same time, the service becomes more reliable and the

system obtains improved fault-tolerant capability by deploying multiple replicas across

the network.

Object placement [41] is one of the main problems in content replication which

is usually formulated as a maximization problem regarding to the caching gain

[127, 72, 117] or a minimization problem with respect to the total cost [129, 126]. Kan-

gasharju et al. [61] modeled the content placement problem as an optimization problem.

The problem is to place k objects in some of N servers, in an effort to minimize the av-

erage number of inter-AS hops a request must traverse to be serviced, meeting the stor-

age constraints of each server. The problem was showed to be NP-complete and three

heuristics ware proposed to address this problem. Tang and Chanson proposed coordi-

nated en-route caching for object placement (and replacement) in a linear array [127],

[128] to maximize the gain of communication cost reduction. Li et al. [72] presented a

dynamic programming-based solution to the placement of content replica in a tree net-

work. Their method can find the optimal solution in low time complexity. However, the

same problem for general network topologies was showed to be NP-complete. Qiu et al.

[98] experimentally compared several heuristic solutions and found that a simple greedy

algorithm performs well. Baev et al. [8] developed a polynomial time constant-factor

approximation algorithm for the replica placement problem in general networks.

Most of the existing works on content replication assumed single access of each

client. However, with some popular content replicated across the Internet, parallel ac-

cess to the replicated content enables simultaneous download of different portions of an

object from multiple sources and hence improved end-user experience. In this thesis,

we study the QoS-aware object replication problem for parallel access in which each

client has a given degree of parallel access determined by its QoS requirement or pri-

ority. We formulate the problem as a maximization problem of combined download

speed of all parallel connections at all clients, and provide a corresponding algorithm

which is implemented in a distributed and asynchronous manner to work in a distributed
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environment.

2.1.3 Other Topics

Other topics in content distribution include content consistency enforcement, request

routing and adaptive algorithms. For the first topic, content distribution mechanisms,

which define how replica servers exchange updates, are very important. These mecha-

nisms include cooperative push-based, non-cooperative pull-based and cooperative pull-

based approaches [89]. Request routing redirects a client to the best replica server for

dealing with its request. Most existing systems use the Domain Name System (DNS)

for this purpose, but in different ways. Sivasubramanian [121] investigated the usage of

adaptive replication algorithms for both static and dynamic Web sites, respectively us-

ing dynamic selection of replication strategies and automatic replication of application

data. Wujuan and Veeravalli [139] proposed an adaptive object replication algorithm

for distributed network systems and analyzed its performance from both theoretical and

experimental standpoints. Content replication and distribution techniques can also be

extended to be applicable in the wireless network environments [10, 60].

2.2 Web Caching

2.2.1 Caching Architecture

To make caches cooperate on a large scale and effectively increase caching population,

a group of caches are usually organized in a federated architecture. There are three

commonly used caching architectures [131, 108]: hierarchical architecture [20], dis-

tributed architecture [131, 96] and hybrid architecture [131, 77]. Hierarchical caching

architecture organizes caches by placing them in multiple levels of a network. While in

distributed caching architecture, caches are all placed at the bottom level and there are

no intermediate caches. Hybrid caching architecture is a mixed architecture in which

the above two architectures are mixed and matched to form a complementary and co-

ordinated architecture. For these three architectures, each one has its advantages and
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disadvantages. Generally speaking, hierarchical architecture has shorter connection

times than distributed architecture because additional copies at intermediate levels re-

duce retrieval latency for small documents. On the other hand, Distributed architecture

has shorter transmission times and higher bandwidth usage. A well configured hybrid

architecture can reduce both connection time and transmission time.

Currently, the popular locations for caches are at the edge of networks as part of

cache hierarchies. Danzig et al. [36] observed the advantage of placing caches inside

the backbone rather than at its edges. They showed that the overall reduction in network

FTP traffic is higher with caches inside the backbone (core nodes) than with caches on

the backbone edges (external nodes). A method to optimize the cache location inside the

backbone was proposed by Krishinan et al. [66]. They formulated the cache location

problem by regarding the network as a graph and modeling the flow of data from servers

to clients as flows on this graph. They presented optimal solutions in linear topologies

and single-source networks.

Example: En-Route Caching

Transparent En-Route Cache (TERC [66]) is a special type of caches placed transpar-

ently between servers and clients. The optimization problem of cache location for

TERCs was addressed by Krishinan et al. [66] in a single-source network. A TERC

intercepts a request that passes through itself, and either satisfies the request or forwards

the request toward the server along the regular routing path: If the requested object is in

the cache, the object is sent to the client and the request will not be propagated further

upstream. Otherwise, the routing node forwards the request along the regular routing

path toward the content server. If no en-route cache is found to contain the target object,

the request will be eventually serviced by the content server. Since TERCs are trans-

parent, only the caches along the route from a client to a server can benefit the request.

Therefore, TERCs are easier to implement [32, 37] and manage than the replicated web

servers since they are oblivious both to the end-user and the server. The effectiveness

of TERCs depends on the Internet routing stability during the connection lifetime of an

HTTP session. Measurement results [91, 68, 66] show that for the short duration of an
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HTTP connection, routing is mostly stable. Using TERCs, en-route web caching can

be implemented by a number of light-weight techniques such as extending the standard

TCP or HTTP protocol in existing IP networks [107, 102] or using an active network

where the routers can manipulate the messages flowing through and perform customized

computations [130]. En-route web caching has a number of advantages as pointed out

by [127]: First, it is transparent to both content servers and clients. Second, since no

request is detoured off the regular routing path, the additional bandwidth consumption

and network delay for cache miss are minimized. Moreover, it eliminates the extra over-

head of locating the objects such as sending broadcast queries [136] and maintaining

directories [43, 100].

2.2.2 Object Replacement Algorithms

Due to the limitation of cache resources, many object replacement algorithms [11, 114]

have been proposed in the past in order to utilize caches effectively. Cache replacement

algorithms [11, 114] usually maximize the cache hit ratio by attempting to cache the

data items which are most likely to be referenced in the future. Since the future data

reference pattern is typically difficult to predict, a common approach is to extrapolate

from the past by caching the data items which were referenced most frequently. This

approach is exemplified by the LRU (Least Recently Used) algorithm which evicts the

object being requested the least recently and LFU (Least Frequently Used) which evicts

the object being accessed least frequently. Excluding these traditional replacement al-

gorithms, advanced algorithms were also proposed, which attempt to minimize various

cost metrics, such as hit rate, byte hit rate, average latency and total cost. These replace-

ment algorithms can be classified into key-based algorithms and cost-based algorithms

as suggested in [4].

Key-based replacement algorithms [11] sort objects based upon a primary key, break

ties based on a secondary key, break remaining ties based on a tertiary key and so on.

These replacement algorithms include Size [2] which evicts the largest object and LRU-

MIN [3] which evicts the small object that was least recently used from the cache. Sim-
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ilar algorithms include LRU-Threshold [3] and Hyper-G [2] and Lowest Latency First

[138].

Cost-based replacement algorithms employ a potential cost function derived from

different factors such as the time since last access, entry time of the object in the cache,

transfer time cost, object expiration time and so on. For example, GreedyDual-Size

(GD-Size) associates a cost with each object and evicts object with the lowest cost/size.

Least Normalized Cost Replacement (LNC-R) [115] employs a rational function of the

access frequency, the transfer time cost and the size. Similar examples include Hybrid

[138], Bolot/Hoschka [12], Size-Adjusted LRU (SLRU) [4], Server-assisted scheme

[30] and Hierarchical GreedyDual (Hierarchical GD) [64].

2.2.3 Coordinated En-Route Web Caching

In traditional caching schemes, object replacement in each cache is carried out inde-

pendently. Tang et al. [127] integrated object replacement into a scheme of object

placement and proposed coordinated en-route Web caching. Coordinated en-route Web

caching regards the removal of objects at intermediate nodes as the loss of a caching

decision (because it disables future access to these objects) and then optimizes the de-

cision on a response path by maximizing the caching gain with the loss deducted. Co-

ordinated en-route caching outperforms other schemes significantly in the experiments

[127], though it only optimizes the caching decision in a linear array. Li et al. [72] ex-

tended coordinated en-route caching from a linear array to a tree and presented optimal

methods for both constrained and unconstrained coordinated en-route caching in a tree

network.

Aforementioned work all assumed that there is only one server in the system. This

assumption became obsolete with the emergence of various state-of-art networks that

contain a group of servers distributed geographically, such as CDNs [39] and P2P file

sharing systems [123] which allow file transfer to be performed bi-directionally. How-

ever, we observed that the existing caching schemes cannot be applied directly to these

systems. A naive idea is to decompose a multi-server system into multiple sub-systems
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each with one server and solve the problem in these single-server systems individually.

Unfortunately, this approach does not work because solutions to sub-systems may con-

tradict each other and simply combining them cannot yield an optimal solution to the

original system. Thus, it remains a challenging task to find a way to enable coordinated

en-route caching in multi-server networks that considers all servers in an integrated

fashion and utilizes the advantage of multiple servers to provide QoS guarantees to the

customers. In Chapter 5, we address the problem by presenting dynamic programming

based solutions for the unconstrained case and two QoS-constrained cases.

2.3 Approaches and Methods

In this section, we give a brief introduction of related approaches and methods used in

this thesis including linear programming, approximation algorithms and dynamic pro-

gramming. These methods have seen extensive applications in the literature.

2.3.1 Linear Programming and Duality Theory

In mathematics, linear programming (LP) is a technique for optimization of a linear

objective function subject to linear equality or inequality constraints. Formally, given a

function

f(x1, x2, ..., xn) = c1x1 + c2x2 + ...+ cnxn + d

defined on a polytope (for example, a polygon or a polyhedron), a linear programming

method will find a point in the polytope where this function has the smallest (or largest)

value. Such points may not exist, but if they do, searching through the polytope vertices

is guaranteed to find at least one of them. Let c be the vectors of coefficients and x the

vector of variables (real numbers). The function to be maximized or minimized is called

the objective function which can be expressed simply by cTx. A linear program is a

problem that can be expressed in canonical form:
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minimize cTx

subject to Ax ≥ b,

where b is a vector and A is a matrix of parameters. The equation Ax ≤ b denotes the

set of constraints which specify a convex polyhedron over which the objective function

is to be optimized. Linear programming is used in this thesis to find a lower bound of

the optimal solution in order to obtain the performance ratio of proposed algorithm.

There is a type of linear programming called integer programming, a.k.a. integer

linear programming, which requires that all variables, i.e. x are constrained to take on

integer values. A notable case of integer programming is 0-1 integer programming or

binary integer programming (BIP) which requires all variables to take on binary integer

values, i. e. 0 or 1. In Chapter 3 and Chapter 4, integer programming based formulation

(or integer program) is used to define related problems.

Example 1: Uncapacitated facility location problem

Given a set of geographically distributed facilities, operating (opening) a facility i ∈ F
incurs a cost of fi. For a given set of clients C, each client j ∈ C must be assigned to

one facility, incurring a cost of cij which is associated with the distance between i and

j. The objective of the facility location problem is to open a subset of facilities such that

the combined cost including facility operating cost and connection cost is minimized.

Facility location problem can be formulated as the following 0-1 integer program:

minimize
∑

i∈F fiyi +
∑

i∈F
∑

j∈C cijxij

subject to ∀j ∈ C :
∑

i∈F xij ≥ 1

∀i ∈ F , j ∈ C : yi ≥ xij

∀i ∈ F , j ∈ C : xij, yi ∈ {0, 1}

The first constraint ensures that each client j ∈ C is assigned to a facility, and the second

constraint ensures that only open facilities are able to serve a client.

Example 2: k-median problem
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Given a set of geographically distributed centers F , we must select k (k ≤ |F|) centers

to open so that each client, say j, in a given set C can be assigned to the open center

which is most close to the client. Suppose the connection cost between facility i and

client j is cij , the problem is to select the k open centers such that the sum of the con-

nection costs is minimized. The k-median problem can be formulated as the following

0-1 integer program:

minimize
∑

i∈F
∑

j∈C cijxij

subject to ∀j ∈ C :
∑

i∈F xij ≥ 1

∀i ∈ F , j ∈ C : yi ≥ xij
∑

i∈F yi ≤ k

∀i ∈ F , j ∈ C : xij, yi ∈ {0, 1}

The first two constraints are the same to those in the facility location problem. The

third constraint ensures that there are totally no more than k open centers. Note that

the cost for opening centers is not considered in the k-median problem; instead it uses

an upper bound of total center number k, which is supplied as part of the input. The

center property of the open facilities is implied by the objective function as the facilities

collectively should have the minimum access cost to its clients.

One of the most important theories in linear programming is duality theory. Every

linear programming problem, referred to as a primal problem, can be converted into a

dual problem, which provides an upper bound to the optimal value of the primal prob-

lem. In matrix form, we can express the primal (problem) and its dual (problem) as:

Primal :

minimize cTx

subject to Ax ≥ b
x ≥ 0

and

Dual :

maximize bTα

subject to ATα ≤ c
α ≥ 0

In the dual problem, α is used instead of x as variable vector. As we can see, the dual

of a minimization problem is a maximization problem, and the variable vector in the

primal is transformed into the right side of the constraints in the dual. This implies that
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the number of variables in the primal is equal to the number of constraints in the dual

. Correspondingly, the right side of the constraints in the primal is transformed into

the variable vector in the dual. An interesting observation is that the dual of the dual

problem is the original primal problem.

Duality theory states that every feasible solution for a linear program gives a bound

on the optimal value of the objective function of its dual. For the simplicity, we assume

the primal problem is a minimization problem. The theorem states that the objective

function value of the dual at any feasible solution is always greater than or equal to

the objective function value of the primal at any feasible solution. The strong duality

theorem states that if the primal has an optimal solution, x∗, then the dual also has an

optimal solution α∗ such that cTx∗ = bTα∗.

Example: Primal and dual problem of uncapacitated facility location

LP relaxation of the facility location problem is obtained by allowing xij and yi to be

non-negative real numbers, i.e.

minimize
∑

i∈F fiyi +
∑

i∈F
∑

j∈C cijxij

subject to ∀j ∈ C :
∑

i∈F xij ≥ 1

∀i ∈ F , j ∈ C : yi − xij ≥ 0

∀i ∈ F , j ∈ C : xij, yi ≥ 0.

And the dual problem of the LP relaxation is:

maximize
∑

j∈C αj

subject to ∀i ∈ F :
∑

j∈C βij ≤ fi

∀i ∈ F , j ∈ C : αj − βij ≤ cij

∀i ∈ F , j ∈ C : αj, βij ≥ 0,

where the dual variables will be explained in Chapter 3.

Linear programming and duality theory is the foundation of many approximation

algorithms. In Chapter 3 and Chapter 4, we apply the linear programming based for-

mulation to express our problems and also used LP technique to solve the LP relaxed
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problems to get a lower bound of optimal solution. We also use duality theory in Chapter

3 to design and analyze the proposed algorithms.

2.3.2 Approximation Algorithms

A large number of optimization problems required to solve in practice are NP-hard.

Complexity theory tells us that it is impossible to find efficient algorithms for such prob-

lems unless NP=P which is unlikely to be true [86]. In computer science, approximation

algorithms are algorithms used to find the approximate solutions to NP-hard problems.

Since it is unlikely that there can ever be efficient algorithms solving NP-hard problems,

researchers settle for suboptimal solutions, and require them to be found in polynomial

time. Different from heuristic algorithms, which usually only find practically good and

fast solutions, provable solution quality and provable run time bounds are necessary in

approximation algorithms. The approximation is ideally optimal up to a small constant

factor, e. g. ρ. Throughout this thesis, a ρ-approximation algorithm is a polynomial-time

algorithm that always finds a feasible solution with objective function value within a

factor of ρ times of the optimal solution. It should be noted that approximation algo-

rithms are increasingly being used for problems when polynomial algorithms are known

but are too expensive due to the sizes of the data sets.

Both facility location problem and k-median problem are NP-hard, but there have

been a number of constant-approximation algorithms developed for the metric ver-

sion of problems in which the costs satisfy the triangle inequality. The best approx-

imation algorithm known today for facility location problem was due to Jaroslow

[18]. They improved the Chudak and Shmoys’s algorithm [28] and obtained a 1.5-

approximation factor in the new algorithm. Guha and Khuller [112] showed that

there is no 1.462-approximation algorithm for the facility location problem, unless

NP ⊆ DTIME[nO(log logn)]. The best known approximation algorithm for the k-median

problem, due to Arya et al. [6], achieves a factor of 3 + ε. It is also straightfor-

ward to adapt the proof of hardness of the facility location problem [112] to show

that there is no (1 + 2
e
− ε)- approximation algorithm for k-median problem, unless
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NP ⊆ DTIME[nO(log logn)]. Mainly, there are two types of techniques in approxima-

tion algorithm design, i. e. LP rounding and primal-dual schema. The drawback of LP

rounding algorithms is that they need to solve large linear programs and so usually have

prohibitive running times for most applications [56]. Therefore in this thesis, we use

primal-dual schema to devise approximation algorithms that can be easily adopted in

applications.

A primal-dual algorithm is an algorithm that is iteratively making primal and dual

updates using the linear programming relaxation of the problem and its dual. Assume

the primal and dual solutions have the same value for object function in the process

of evolution. As pointed out in the literature, the dual solution produced under this

condition is, in general, infeasible to the dual problem (otherwise, we would be able

to find an optimal solution for the primal problem). The dual fitting technique shrink

the dual solution by a factor to make it fit the problem and this factor is exactly the

approximation ratio of the algorithm. In order to find such constants which is reasonable

good, factor-revealing LPs are used in the literature [53, 52, 84].

2.3.3 Dynamic Programming

For a problem which can be solved optimally in a polynomial time, the quality of cor-

responding algorithms mainly depends on the time complexity of the algorithms. Here

we introduce an important optimization method — dynamic programming, which is

used in Chapter 5. A method using dynamic programming usually takes much less time

than naive methods and therefore dynamic programming has been used extensively in

optimization of location problems [127, 72] when applicable.

Dynamic programming is a technique to simplify a complicated problem by break-

ing it down into simpler subproblems in a recursive manner. For a decision problem,

dynamic programming simplifies a decision by breaking it down into a sequence of de-

cision steps over time. A dynamic programming based method usually has the following

characteristics as outlined by Trick [132]:

3 The problem can be divided into stages with a decision required at each stage.
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3 Each stage has a number of states associated with it.

3 The decision at one stage transforms one state into a state in the next stage.

3 Given the current state, the optimal decision for each of the remaining states does

not depend on the previous states or decisions.

3 There exists a recursive relationship that identifies the optimal decision for stage

j, given that stage j + 1 has already been solved. The final stage must be solvable

by itself and the optimal values of the decision variables are recovered one by one,

by tracking back the calculations already performed.

The last two properties are tied up in the recursive relationships given above. The skills

in dynamic programming are to determine stages and states so that all of the above hold.



Chapter 3

Fault Tolerant Facility Allocation

In this chapter, we define a problem called Fault Tolerant Facility Allocation (FTFA) for

the placement of replica servers among a set of candidate sites in a content distribution

network. The FTFA problem extends the well-studied Fault Tolerant Facility Location

(FTFL) problem by allowing multiple replicas of the same facility at each site. Because

a site may hold as many replicas of a facility as necessary, the FTFA problem is less

constrained and hence incurs a smaller total cost than FTFL. FTFA is, however, harder

than the Uncapacitated Facility Location (UFL) problem which is NP hard, and in this

chapter we show how to obtain smaller approximation ratios for FTFA than the best-

known approximation ratio (2.076) for FTFL. We also consider the Fault-Tolerant k-

Facility Allocation problem which has an upper bound k for the total number of replicas

that can be deployed.

3.1 Introduction

The classical facility location problem [94] has been widely studied in the field of opera-

tions research. In this problem, we are given a set F of nf sites where each site i ∈ F is

associated with a non-negative cost fi for operating (opening) a facility at this site, and

a set C of nc clients where each client requires to access one facility and a connection

between client j ∈ C and facility i ∈ F incurs connection cost cij . The objective of

facility location problem is to find a subset of F and deploy one facility at each site in

33
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the subset so that the total combined cost for operating and accessing these facilities is

minimized.

In this chapter, we study a generalization of the facility location problem called

Fault-Tolerant Facility Allocation (FTFA). In this problem, a site holds an unlimited

number of identical facilities (replicas) and a client requires a prespecified number of

connections to facilities for the fault tolerance purpose. Specifically, each client j ∈ C
requires rj connections so that it can tolerate up to rj−1 connection (or facility) failures.

The FTFA problem requires allocating each site a proper number of replicas and further

each client the required number of replicas so that the total combined cost for operating

and accessing these facilities is minimized. The FTFA problem can be formulated by

the following integer linear program.

minimize
∑

i∈F fiyi +
∑

i∈F
∑

j∈C cijxij

subject to ∀j ∈ C :
∑

i∈F xij ≥ rj

∀i ∈ F , j ∈ C : yi ≥ xij

∀i ∈ F , j ∈ C : xij, yi ∈ Z+

(3.1)

In this formulation, non-negative integer yi indicates how many replicas are deployed at

site i and xij indicates how many connections between site i and client j are established.

The cost for operating facilities is calculated by
∑

i∈F fiyi and the cost for accessing fa-

cilities by
∑

i∈F
∑

j∈C cijxij . The objective is to find y = {yi} and x = {xij} so that

the combined cost (the sum of the above two items) is minimized. Note that the first

constraint ensures fault tolerance of connectivity — there should be at least rj connec-

tions for any client j ∈ C. The second constraint secures enough replicas at each site for

the requirement of connections from any client.

FTFA is similar to the well studied Fault-Tolerant Facility Location (FTFL) prob-

lem [55, 47, 48, 125] which has the same objective function and constraints as FTFA

except the variants: for any i ∈ F , j ∈ C, xij and yi are non-negative integers (i. e.

Z+) in FTFA but binary (i. e. 0 or 1) in FTFL. Without the restriction on the maximum

number of replicas that can be opened at each site, FTFA is less constrained and hence

incurs a smaller total cost than FTFL. Note that the FTFA problem is also applicable in
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a scenario where the capacity of a facility is customizable according to the demand of

needs which has been realistic due to the development of infrastructure techniques such

as server farms and virtualization technology. As an example, we use the FTFA problem

deploy surrogate server in a content distribution network. In such an application, multi-

ple replicas (surrogate servers) can be deployed at one site if necessary, which share the

duty to serve clients together. We notice that the FTFA problem becomes the classical

Uncapacitated Facility Location (UFL) problem when connectivity requirement rj = 1

for all j ∈ C. It is not hard to see that the hardnesses of UFL, FTFA and FTFL comply

with the following relation:

UFL ⊆ FTFA ⊆ FTFL.

Here, the second inclusion is implied by a special FTFL problem which has a set of

facilities distributed by groups. Let F ′ = F × {1, 2, ..., R}, where R = maxj∈C rj is

the number of identical replicas in each group. Using this setting, the FTFA problem

can be solved by FTFL algorithms because the number of replicas at any site is no

more than R in any optimal solution of the FTFA problem. However, we notice that

the existing algorithms for FTFL are not as efficient as the algorithms for UFL , in both

approximation ratio and time complexity: most FTFL algorithms employ an LP routine

which is rather time consuming and the best known approximation ratio for FTFL is

2.09 which is considerably worse than the best known 1.5 approximation ratio for UFL.

Therefore, in order to achieve a better result than that from applying FTFL algorithms

directly, we must take the full advantage of existing methods for UFL in solving the

FTFA problem. For a given FTFA, consider a UFL problem with the aforementioned F ′

and client set C ′ = {(j, p), j ∈ C, 1 ≤ p ≤ rj}, where (j, p) is the p-th port of client j,

we are able to regard the FTFA problem as a UFL problem with an additional constraint:

no parallel connections are made between any replica-client pair, i. e., different ports of

a client must be connected with different replicas. However, this constraint is nontrivial

and as a result, FTFA becomes harder to solve than UFL, yielding the first inclusion. In

the subsequent sections, we will show how to deal with this constraint and obtain better
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single-factor and bi-factor approximation solutions to FTFA than that for FTFL.

3.1.1 Related Work

The facility location problem and its variants occupy a central place in operations re-

search [94]. For the simplest problem — the maximization variant of Uncapacitated

Facility Location, Cornuejols et al. [34] obtained a (1− e−1)-approximation algorithm.

The first approximation algorithm for the minimization variant is a greedy algorithm

due to [49], which is O(log n)-approximation in the general (nonmetric) case. The UFL

problem has found extensive applications since these works and one of the most widely

studied variants of the problem is metric UFL. In this variant, the function of connection

cost forms a metric, i. e., the connection costs between facilities and clients satisfy tri-

angle inequality. Existing algorithms for the metric UFL problem mainly use two types

of techniques, i. e. LP rounding and primal-dual algorithms.

The first constant-factor approximation algorithm for the metric UFL problem was

due to Shmoys et al. [119]. They gave a 3.16-approximation algorithm using the fil-

tering technique of Lin and Vitter [76] to round the optimal solution of a linear pro-

gramming relaxation. Chudak, Williamson and Sviridenko improved the approximation

ratio to 1.736 [29] and 1.582 [124] by rounding an optimal fractional solution to a linear

program.

Charikar and Guha obtained 1.853-approximation and 1.728-approximation algo-

rithms [22] by using primal-dual theory and greedy augmentation; Jain et al. presented

greedy algorithms based on dual fitting and factor-revealing LP technique, achieving

approximation guarantee 1.861 [52, 84] and 1.61 [53, 52]; Different from traditional

primal-dual schema [54, 133], dual fitting relax the feasibility of the dual solution. Sup-

pose the dual solution become feasible after shrunk by a factor and then this factor is the

approximation factor of the algorithm. They also studied the tradeoff [52] between facil-

ity cost and connection cost and present a series of bi-factor approximation guarantees.

Mahdian et al. further improved the approximation ratio to 1.52 [80] by adding a scal-

ing and greedy augmentation procedure to the JMS algorithm. Byrka [18] modified the
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Chudak and Shmoys’s algorithm [28] and obtained a new algorithm which is the first one

that touches the approximability limit. Their new approach gives a 1.5-approximation

algorithm, which are currently the best known solution for the problem.

Fault Tolerant Facility Location [55] is a generalization of UFL, where connectivity

at a client (e. g. the number of distinct replicas that serve a client) is prespecified to meet

fault-tolerant requirements. Guha et al. obtained a 3.16-approximation algorithm by

rounding the optimal fractional solution to the problem and further improve the result to

2.41 by employing a greedy local improvement step [48]. Recently, Swamy and Shmoys

presented a 2.076-approximation by using LP rounding [125]. All these results hold

for both uniform connectivity case and nonuniform connectivity case (general case).

Guha and Khuller proved that the best approximation ratio (lower bound) to UFL is

1.463 [112], assuming NP * DTIME[nO(log logn)], this result also holds for fault-tolerant

version of the problem.

The k-Median problem [76] has also been studied extensively [6, 21, 23] and the best

known approximation ratio for this problem is 3+ε [6]. Jain et al. studies a new problem

called k-Facility which is a combination of the k-Median and UFL problems and achieve

a 6-approximation algorithm [56] and further a 4-approximation [52] based on the JMS

algorithm [53, 52]. The Fault Tolerant k-Facility problem was also studied by Swamy

and Shmoys [125] and they achieved a 4-approximation algorithm for a special case of

the problem where all clients have an identical connectivity requirement. Performance

of their algorithm is unknown for the general case.

3.1.2 Our Technique

Consider an integer linear program containing k ≥ 1 items in the objective function. For

the facility location problem, k = 2 — the facility cost and connection cost. Suppose

an optimal solution OPT1 =
∑k

p=1 I
∗
p , i.e., I∗p is the cost for the p-th item in the optimal

solution. We say a solution SOL is (λ1, ...λk)-approximation if SOL ≤∑k
p=1 λpI

∗
p for

any optimal solution. When k = 1 or λ1 = λ2 =, ... = λk, we say it is a single-factor

approximation solution, otherwise multi-factor approximation solution.
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Consider a minimization problem and a primal-dual algorithm — an algorithm that

is iteratively making primal and dual updates using the linear programming relaxation

of the problem and its dual. Let the primal solution and dual solution have the same

value for object function in the process of evolution. As pointed out in the literature, the

dual solution produced under this condition is, in general, infeasible to the dual problem

(otherwise, we would be able to find an optimal solution for the primal problem). Instead

of shrinking the dual solution by a factor in order to make it fit the original problem as

used in the dual fitting technique [53, 52, 84], we propose a method called inverse dual

fitting that constructs an additional instance of the original problem to make the problem

fit its dual solution. Inverse dual fitting has the same effect as dual fitting for single-

factor approximation, but is more powerful in multi-factor approximation analysis as

shown below.

Formally, for a primal problem of minimization, we scale the coefficients in the

objective function (i.e. the right side of the constraints in the dual problem) with constant

λp for the p-th item and obtainOPT2 ≤
∑k

p=1 λpI
∗
p , whereOPT2 is the optimal solution

to the scaled instance of the primal problem. Actually, we can regard the original optimal

solution (now with total cost
∑k

p=1 λpI
∗
p ) as a feasible solution to the scaled instance.

Due to the duality theory which states that the maximum of the dual problem is no more

than the minimum of the primal problem, we have SOLD ≤ OPT2. As such, we only

need to ensure that SOLP = SOLD and SOLD is a feasible dual solution to the scaled

instance to achieve the result of (λ1, ...λk)-approximation, i.e. SOLP ≤
∑k

p=1 λpI
∗
p .

The first condition is usually ensured by the algorithm — for our algorithms, the total

cost is equal to the total credit paid by all clients. In order to ensure the feasibility

of SOLD (to the scaled instance), we need proper constants λp, 1 ≤ p ≤ k. Factor-

Revealing LPs are usually used to derive such constants.

3.1.3 Our Results

We use inverse dual fitting technique to design and analyze two algorithms for the met-

ric FTFA problem. Both algorithms run through R phases and in each phase employ a
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subroutine to pick the most cost-effective star iteratively. The concept of cost efficiency

is used by the MMS algorithm [84] which is a one phase algorithm for UFL. The differ-

ence here is that our algorithms comprise multiple phases and in each phase deal with a

distinct constraint to ensure the feasibility of the solution. To satisfy the constraint, our

algorithms need to process three types of events: One for replicas opened in a previous

phase, one for replicas opened in the current phase and another for opening a new replica

in the current phase. Combined with Factor-Revealing LPs in the literature, our algo-

rithms achieve 1.81 and 1.61 approximation factors within running time O(mR logm)

and O(Rn3) respectively, where m = nfnc and n = max{nf , nc}.
The second algorithm aforementioned is also shown to be (1.11,1.78)- and (1,2)-

approximation simultaneously by applying the techniques of inverse dual fitting and

Factor-Revealing LPs cooperatively. The first result is further used to obtain a 1.52-

approximation algorithm to FTFA and the second one a 4-approximation algorithm for

the Fault-Tolerant k-Facility Allocation problem, which has an upper bound on the total

number of replicas, i. e. k, on the base of FTFA.

The remainder of the chapter is organized as follows. In Section 3.2 and Section

3.3, we present the single-factor and bi-factor approximation algorithms for solving the

FTFA problem. In Section 3.4, we show how to extend the bi-factor approximation so-

lution for FTFA to solve the problem of Fault-Tolerant k-Facility Allocation (FTKFA) in

which the number of replicas has an upper bound k. Section 3.5 discusses a generaliza-

tion of FTFA by allowing prespecified demand for each client and other applications.

3.2 Single-Factor Approximation

3.2.1 The Algorithm

Without loss of generality, assume the set of connectivity requirements R =

{1, 2, 3, ..., R}, otherwise we may add dummy clients for the missing connectivity re-

quirements. Further we assume there are rj ports at each client and R replicas at each

site. All ports of a client must be connected in the order from 1 to rj and all replicas at
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a site can be opened, if necessary, in the order from 1 to R. We use vector yp to denote

whether the p-th replica is opened for any site in F and xp whether the p-th port of a

client is connected with a replica at any site. It is clear that y =
∑R

p=1 y
p, x =

∑R
p=1 x

p

and xpij = 0 if p > rj . Program 3.1 can be rewritten as

minimize
∑

i∈F
∑

p∈R(fiy
p
i +

∑
j∈C cijx

p
ij)

subject to ∀j ∈ C, 1 ≤ p ≤ rj :
∑

i∈F x
p
ij ≥ 1

∀j ∈ C, i ∈ F :
∑R

p=1 y
p
i −

∑R
p=1 x

p
ij ≥ 0

∀j ∈ C, i ∈ F , p ∈ R : xpij, y
p
i ∈ {0, 1}.

(3.2)

The LP-relaxation of this program can be obtained by allowing xij and yi to be non-

negative real numbers. The dual problem of the LP relaxation is

maximize
∑

j∈C
∑rj

p=1 α
p
j

subject to ∀i ∈ F , p ∈ R :
∑

j∈C β
p
ij ≤ fi

∀i ∈ F , j ∈ C, p ∈ R : αpj − βpij ≤ cij

∀i ∈ F , j ∈ C, p ∈ R : αpj , β
p
ij ≥ 0.

(3.3)

We use the same interpretation for dual variables, i. e. αpj and βpij as in [84, 52] which

will be explained in detail later. An interesting observation is that we can extract p ∈ R
in the constraints and the objective function of the dual problem if we have αpj = 0 when

p > rj . We utilize this observation to design a greedy algorithm which decomposes the

problem into R subproblems and solves them in order. For the sake of simplicity, let

vector Xb =
∑b

p=1 x
p and Y b =

∑b
p=1 y

p, 1 ≤ b ≤ R, our algorithm evolves the

solution from the initial stage (supposeX0 and Y 0), through R phases, toXR and Y R.

In each phase p ∈ R, the algorithm establishes one connection for each client if it is

not-fully-connected, i. e. clients in Cp = {j ∈ C : rj ≥ p}. A replica opened in one

phase at site i can be used for free by any client j in the next phase, suppose p, if this

usage does not violate the constraint Xp
ij ≤ Y p

i .

The process of our algorithm is presented in Algorithm 3.1: In the p-th phase, the

solution inherited from the last phase, i. e. (Xp−1,Y p−1), as well as F and Cp are used

as the input of the subroutine. Note that clients with rj < p is already fully-connected
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and therefore not included in Cp. Suppose the new opened replicas and new established

connections are denoted by (xp,yp), then in the next phase, we haveXp = Xp−1 + xp

and Y p = Y p−1 + yp as part of the input. The algorithm ends when all R phases are

finished.

Algorithm 3.1 1.861-Approximation Algorithm
Input: fi, rj, cij for any i ∈ F , j ∈ C.

Output: xij, yi for any i ∈ F , j ∈ C.

(1) Initially set vectorX0 ← 0,Y 0 ← 0 and the number of current phase p← 1.

(2) While p ≤ R:

(a) Invoke the algorithm for the p-th phase with input (Xp−1,Y p−1,F , Cp), sup-

pose the output is (Xp,Y p).
(b) Set p← p+ 1.

(3) Set x = XR and y = Y R

In the algorithm for the p-th phase, we use a notation of star and a definition of cost

efficiency. A star is composed of a replica and a group of clients that are connected with

the replica. Considering the time before the new star is selected, the cost efficiency of a

star is defined to be

eff(i, p, C ′) =
fpi +

∑
j∈C′ ci,j

|C ′| , (3.4)

where fpi is the cost paid to open a replica at site i in phase p and C ′ the set of client

members in the star. The two items in the numerator represent the total cost of the star

and therefore the cost efficiency of a star is actually the average payment of all client

members to establish the star. Let U ⊆ Cp be the set of not-fully-connected clients in

phase p, C ′ ⊆ U is a set of clients chosen by the algorithm to be connected with the

replica. As an open replica can be accessed for free under certain condition, the cost

paid to the site is equal to zero if no new replica have to be opened. Formally,

fpi =




fi if a new replia of i must be opened at phase p;

0 otherwise.
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Algorithm 3.2 Algorithm for the p-th Phase
(1) Let U ⊆ Cp be the set of not-fully-connected clients, initially set U ← Cp.
(2) While U 6= φ:

(a) Find the most cost efficient star (i, p, C ′) according to Formula (3.4).

(b) Open a replica at site i, if it is not already open, and establish a connection to

the replica for all clients in C ′.
(c) Set fi ← 0, U ← U \ C ′.

Now the dual variables i. e. αpj and βpij can be used to find the most cost efficient

star. We use the same interpretation as in [84, 52]: αpj is the total cost (including the

connection cost and the contribution to open replicas), increasing simultaneously with

time, paid by the p-th port of client j and βpij is the contribution received by site i from

client j at the p-th phase. As such, the most cost efficient star in each iteration of the

subroutine can be found in this way: if the dual variables of all unconnected clients are

raised simultaneously, the most cost efficient star will be the first star (i, p, C ′) formed

at time t such that
∑

j∈C′
max(t− cij, 0) = fpi .

The algorithm for p-th phase opens the most cost efficient star repeatedly until all

the clients in Cp are connected with a replica. Once a client is connected, it is removed

from U ; in contrast, a replica is never removed, instead it can be reused for free under

certain condition. In fact, the subroutine is very close to the MMS algorithm proposed

in [52, 84] for the UFL problem. The difference is, here we need to ensure the feasibility

of the solution by maintaining a distinct constraint. For the sake of simplicity, we set

ypi ← 1 to mean a new replica at site i is opened and xpij ← 1 a new connection between

client j and site i is established. In order to maintain the feasibility of a solution, i. e.

Xp
ij ≤ Y p

i , we consider three cases for any client j ∈ Cp:

1. Xp−1
ij < Y p−1

i : Set xpij ← 1 as site i is eligible to be connected by client j. There

is no need to open a new replica at site i and there fpi = 0.

2. Xp−1
ij = Y p−1

i and ypi = 0: In this case, we must open a new replica at site i, i. e.
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set ypi ← 1 in order to establish a new connection for client j and therefore fpi =

fi. The operating cost is shared between clients in C ′ and any client contributed

to opening the replica can be connected.

3. Xp−1
ij = Y p−1

i and ypi = 1: This case is the result of the second case. The

feasibility of the solution is maintained if we set xpij ← 1. We do not have to open

a new replica, i. e. fpi = 0.

In all three cases, only the second one involves more than one client. Suppose each

site has a list of clients sorted according to their connection costs to the site. As shown

by Figure 3.1, the most cost efficient star will consist of a replica and a set, containing

the first k clients in this order, for some k. Therefore the algorithm can be finished

efficiently in polynomial time.

fi =
∑
j∈C ′ max(t− cij, 0)

αpj = t

j1 j2 j3 j4 ... jk jk+1 jk+2

ci,jk+2t

ci,jk−1

ci,j1
ci,j2

Figure 3.1: Credit Offers for Opening a Facility

Here, we use three types of events to process these cases respectively. Note that

fpi = 0 implies any client j ∈ U forms a star with the site once the client has enough

credit to pay the connection cost, i. e. cij = t. We restate the algorithm for the p-th phase

based on this observation.

Remark 3.1. Algorithm 3.1 is independent of the order of the clients processed, e. g., we

can also process clients in order CR, CR−1..., C1.



Chapter 3. Fault Tolerant Facility Allocation 44

Algorithm 3.3 Restatement of the p-th Phase Algorithm
(1) At the beginning, all clients are unconnected, i. e., t ← 0, U ← Cp. Assume client

j ∈ U has rj ports each with some credit which increases from zero simultaneously
with time before the port is connected.

(2) While U 6= φ, increase time t until an instance of Event-1 or Event-2 or Event-3
occurs. If two events occur at the same time, process them in an arbitrary order.
(a) Event-1: A client j ∈ U has enough credit to be connected with an eligible site,

suppose i, i. e. t = cij and Xp−1
ij < Y p−1

i . Set Xp
ij ← Xp−1

ij + 1 in this case.
(b) Event-2: A site i ∈ F receives enough payment from clients in U to open its

p-th replica, i. e.
∑

j∈U max(t − cij, 0) = fi. In this case, let C ′ = {j ∈ U :

cij ≤ t}, set Y p
i ← Y p−1

i + 1 and Xp
ij ← Xp−1

ij + 1 for any j ∈ C ′.
(c) Event-3: A client j ∈ U has enough credit to be connected with a new opened

replica, i. e. t = cij . Set Xp
ij ← Xp−1

ij + 1 in this case.
(d) For any client j ∈ U , set αpj ← t and remove client j from U if it is connected

with a replica in phase p.

3.2.2 Inverse Dual Fitting Based Analysis

3.2.2.1 High level analysis

In order to show the performance of Algorithm 3.1, we claim that the maximum cost

ratio in each phase is bounded by a constant for any instance of the problem. Formally,

let I(F , C,f , c, r) be an instance of the FTFA problem and p ∈ R a phase when solving

the problem, we define the maximum cost ratio with respect to any possible star (i, p, C ′)

as

λI = max
i∈F ,p∈RC′⊆Cp

∑
j∈C′ α

p
j

fi +
∑

j∈C′ cij
.

Claim 3.1. The cost of the solution in each phase is equal to
∑

j∈Cp α
p
j and the maximum

cost ratio λI is bounded by a constant λ for any instance I of the problem.

We use the inverse dual fitting technique here to analyze the approximation factor

of the algorithm. We do this by composing an extra instance of the problem which has

the same size as the original problem but different values of facility cost and connection

cost. We achieve this by scaling the facility cost and connection cost by constant λ:

f ′i ← λfi and c′ij ← λcij . Instead of shrinking the dual variable as in the dual fitting [84,

53, 52] technique to achieve a feasible solution to the unscaled dual problem, we use the

unshrunk dual solution which is feasible to the composed instance of the dual problem
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and achieve a λ-approximation factor based on Claim 3.1. It is not hard to see that the

same result can be achieved by using the dual fitting technique. However, we argue

that our inverse dual fitting technique is more powerful in multi-factor approximation

analysis as shown in the next section.

Theorem 3.1. If the algorithm for the p-th phase satisfies Claim 3.1, Algorithm 3.1 is a

λ-approximation algorithm to the FTFA problem.

Proof. First we check the feasibility of the solution. According to the subroutine (the

algorithm for the p-th phase) in each phase, we have ∀i ∈ F , j ∈ Cp : Xp
ij ≤ Y p

i . In

fact, this is required by the subproblem (3.2) in each phase. It is not hard to see that Xp
ij

stops increasing when p > rj because a client j is included in Cp only when p ≤ rj and

not yet processed when p > rj . Therefore, we have ∀i ∈ F , j ∈ C : XR
ij ≤ Y R

i because

Y p
i is increasing monotonously (we never close a replica). The feasibility of the solution

is proved.

In order to show the cost ratio, we compose an extra instance of the problem and

its feasible dual solution. Let βpij = max(αpj − λcij, 0) for any i ∈ F , j ∈ C, p ∈ R
and C ′ = {j ∈ C : αpj ≥ λcij}, we have

∑
j∈C β

p
ij =

∑
j∈C′ β

p
ij =

∑
j∈C′(α

p
j − λcij).

According to Claim 3.1, we have

∑

j∈C′
(αpj − λcij) ≤ λfi

for any i ∈ F , p ∈ R. That is, there exist dual variables βpij ≥ 0 such that

∀i ∈ F , p ∈ R :
∑

j∈C β
p
ij ≤ λfi (3.5)

and ∀i ∈ F , j ∈ C, p ∈ R : αpj − βpij ≤ λcij. (3.6)

We note that the above inequalities are exactly the constraints of the dual problem

(3.3). Therefore, we can compose an instance of the FTFA, suppose I ′, with facility

cost f ′i = λfi and connection cost c′ij = λcij . Let OPT2 be the optimal solution to the

primal problem of I ′, and OPT1 the optimal solution to the primal problem of I. It is



Chapter 3. Fault Tolerant Facility Allocation 46

clear that

OPT2 = λOPT1. (3.7)

From Inequality (3.5) and (3.6), we know (α, β) is a feasible solution to the dual problem

of I ′. Due to the weak duality theorem, which states that the optimum of the dual

problem (in a form of maximization problem) is no more than the optimum of the primal

problem (in a form of minimization problem), we have

∑

j∈C

rj∑

p=1

αpj ≤ OPT2. (3.8)

On the other hand, let SOL be the solution derived by the algorithm, we have

SOL =
R∑

p=1

∑

j∈Cp

αpj (3.9)

according to the first part of the claim. Combining (3.7), (3.8) and (3.9), we have

SOL ≤ λOPT1

because
∑R

p=1

∑
j∈Cp α

p
j =

∑
j∈C

∑rj
p=1 α

p
j . The theorem is established.

Remark 3.2. The same result can be achieved by using dual fitting, i. e. shrinking the

dual solution λ times to make it ’fit’ the original problem. Another interesting observa-

tion is that the greedy algorithm for the UFL problem, like the MMS algorithm [84, 52]

or JMS algorithm [53, 52], can also be analyzed through decomposing the optimal solu-

tion into a group of stars. This is true because any solution to UFL can be decomposed

into stars without overlap or interference. However in the FTFA problem, a client is

involved in multiple stars and how to assign their costs to achieve the balance between

regarding stars is a nontrivial task. Fortunately, by using the (inverse) dual fitting tech-

nique, it provides an alternative approach to reveal the approximation factor.

From Algorithm 3.1, we can see that all payments are either for connection cost or

facility operating cost. Therefore the first part of the claim is complied by the algorithm.
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Now, we only need to find a proper value of λ ≥ 1 such that for any instance I of the

FTFA problem

max
i∈F ,p∈R,C′⊆Cp

∑
j∈C′ α

p
j

fi +
∑

j∈C′ cij
≤ λ.

It is clear that we only need to consider clients with αpj ≥ λcij . Without loss of

generality, suppose there are k clients in Cp and further αp1 ≤ αp2 ≤ ... ≤ αpk. We

consider some important properties of the algorithm for the p-th phase before finding a

proper value of λ.

3.2.2.2 The p-th phase

First, we have the following lemma on the contribution received by a site according to

event-2 and event-3.

Lemma 3.1. For any instance I and phase p ∈ R,
∑k

j=h max(αph − cij, 0) ≤ fi for any

site i ∈ F and any client h, 1 ≤ h ≤ k.

Proof. Assume
∑k

j=h max(αph− cij, 0) > fi, then a new replica at site i must be opened

at time t = αph − ε according to event-2 because any j with αpj ≥ αph is still contributing

to open replicas at time t. According to the assumption, there is at least one client,

suppose j′, such that

αpj′ ≥ αph and αph > cij′ .

That is, αpj′ > cij′ . Actually, j′ can be connected with site i at least at time t according

to event-3 of the algorithm which implies αpj′ ≤ cij′ . The contradiction establishes the

lemma.

It is natural to follow the approach proposed by Mahdian et al. [52, 84] to obtain

a property regarding the triangle inequality. However in the fault-tolerant context, this

becomes more complex. In fact, we are not able to conclude that a contribution is less

than the connection cost to any open replica. As shown by the first graph of Figure

3.2(a), neither α3
j ≤ ci1j or α3

j ≤ ci2j can be achieved even if i1 and i2 are opened.

This is because h is already connected with replica i1 and i2 before making its third
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contribution. Fortunately, in our algorithm, only ports of the same rank are processed

in a phase and this makes an important difference. In fact, if there are p open replicas,

the p-th contribution of a client is no more than the maximum connection cost from

the client to these replicas. As shown by the second graph of Figure 3.2(b), α3
j ≤ ci3j .

Formally, we have the following lemma.

i3 i2

j

i1

h

i∗

p = 1

p = 2
p = 3

p = 1p = 2

i4 i2

j

i1

h

i∗

p = 1

p = 2
p = 3

p = 1

p = 2 p = 3

i3

(a) p = 3, rh = 2 (b) p = 2, rh = 2

Figure 3.2: Ranking of Contributions

Lemma 3.2. For any instance I and phase p ∈ R, αpj ≤ αph + cij + cih for any site

i ∈ F , clients h and j, 1 ≤ h, j ≤ k.

Proof. Assume αpj > αph, otherwise the lemma is obvious. Let H be the set of replicas

that are connected with client h at time t = αpj − ε, so we have |H| = p because h

is already connected in the p-th phase. Hence, there must exists a replica among H

which is not connected with j at the moment in phase p. Suppose this is a replica at

site i′, we have Xp−1
i′j < Y p

i′ . Therefore j can be connected with i′ without paying

operating cost. Considering two cases, i. e., the replica is respectively opened in an

early phase or opened in phase p, we have αpj ≤ ci′j for both cases due to event-1 and

event-3. Further we have αpj ≤ cij if i = i′; otherwise combining the triangle inequality

ci′j ≤ ci′h+cij +cih, we have αpj ≤ αph+cij +cih because αph ≥ ci′h for any i′ connected

with client h. The lemma follows.
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3.2.2.3 Performance ratio

The above lemmas present some important properties of the algorithm for the p-th phase

and the following result turns out that they are enough to bound the ratio of the total cost

of a derived solution to that of an optimal solution. Let λk be the maximum of the

following LP

maximize
∑k

j=1 αj

f+
∑k

j=1 cj

subject to ∀1 ≤ j < h ≤ k : αh ≤ αj + cj + ch

∀1 ≤ h ≤ k :
∑k

j=h max(αh − cj, 0) ≤ f

∀1 ≤ j ≤ k : αj, cj, f ≥ 0.

(3.10)

If λk has an upper bound with respect to any integer k, we are able to choose this upper

bound as the value of λ with respect to the claim. LPs like program 3.10 are also called

factor revealing LPs in the literature [83, 84, 53, 52].

Corollary 3.1. Algorithm 3.1 is a 1.861-approximation algorithm for the metric FTFA

problem.

Proof. Let αpj be denoted by αj , cij by cj , and fi by f , it is clear that Lemma 3.1 and

Lemma 3.2 imply the two constraints of program 3.10. As a result, we have

λ ≤ sup
k≥1
{λk}.

In fact, Mahdian et al. [84, 52] showed that program 3.10 has an upper bound 1.861

in their analysis for the MMS algorithm. Combined with Theorem 3.1, the corollary

follows.

In each phase, there are at most nf · |Cp| events for which the algorithm needs nf ·
|Cp| log(nf · |Cp|) time to sort these events. Considering that the algorithm runsR phases

and in each phase |Cp| ≤ |C|, we have the following lemma.

Lemma 3.3. Time complexity of Algorithm 3.1 is O(mR logm), where m = ncnf .
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3.3 Bi-Factor Approximation and Extension

Interesting enough, the dual fitting technique is not used except the single-factor ap-

proximation analysis (i. e. 1.861- and 1.61- approximation) as presented in [84, 52, 53].

In fact, the JMS algorithm is (1.11,1.78)-approximation [80] and (1,2)-approximation

[53, 52] at the same time for the UFL problem. However, these results were achieved

through proving an upper bound of total cost paid by all clients in any possible star s,

i. e. λffi + λc
∑

j∈s∩C cij , rather than by applying the dual fitting technique. This ap-

proach is straightforward to the UFL problem because a solution can be decomposed

into a group of stars without overlap which is not true in the fault tolerant variants of the

problem. In this section, we demonstrate an alternative approach — inverse dual fitting

based bi-factor approximation, to achieve similar results for the FTFA problem.

3.3.1 The Algorithm

We note that once a client in Algorithm 3.1 is fully-connected, it is not processed any

more even there is a facility (replica) opened with a smaller connection cost. It is obvious

that, we are able to improve the algorithm by establishing connections, for each client,

to replicas with smallest connection costs. We do this by switching two connections of

a client, an old one with higher connection cost and a new one with smaller connection

cost. Considering the reduction in total cost by connection switching, we redefine the

cost efficiency of a star at the time before the new star is selected by

eff(i, p, C ′) =
fpi +

∑
j∈C′ cij −

∑
j∈Cp\U max(ci′j − cij, 0)

|C ′| , (3.11)

where Cp \ U is the set of clients which are already connected in phase p and ci′j the

maximum connection cost of client j. The first two items in the numerator represent

the total cost of the star which is the same as in Algorithm 3.1. The third item is the

contribution made by connected clients via connection exchange.

The new algorithm has the same structure as Algorithm 3.1, with a new cost effi-

ciency used in the subroutine as redefined by (3.11). We also use the same interpretation
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of dual variables as in Algorithm 3.1. So, the most cost efficient star in each iteration

of the algorithm can be found in a similar way: if the dual variables of all unconnected

clients are raised simultaneously, the most cost efficient star will be the first star (i, p, C ′)

for which
∑

j∈C′
max(t− cij, 0) +

∑

j∈Cp\U

max(ci′j − cij) = fpi .

When fpi = 0, the improved algorithm for the p-th phase is the same as the original.

When fpi = fi it receives payment from unconnected clients as well as payment from

connected clients through connection switch and once its amount is equal to the facility

cost, it opens a new replica at site i. Same as Algorithm 3.1, the new algorithm is also

stated through three types of events given in Algorithm 3.4.

Algorithm 3.4 Multi-Factor Approximation Algorithm
(1) Initially set vectorX0 ← 0,Y 0 ← 0 and the number of current phase p← 1.
(2) While p ≤ R:

(a) Invoke the improved algorithm for the p-th phase with input
(Xp−1,Y p−1,F , Cp), suppose the output is (Xp,Y p).

(b) Set p← p+ 1.
(3) Set x←XR and y ← Y R

Algorithm 3.5 Improved Algorithm for the p-th Phase
(1) At the beginning, all clients are unconnected: t← 0, U ← Cp.
(2) While U 6= φ, increase time t until an instance of Event-1 or Event-2 or Event-3

occurs. If two events occur at the same time, process them in an arbitrary order.
(a) Event-1: A client j ∈ U has enough credit to be connected with an eligible site,

suppose i, i. e. t = cij and Xp−1
ij < Y p−1

i . Set Xp
ij ← Xp−1

ij + 1 in this case.
(b) Event-2: A site i ∈ F receives enough credit from clients in U to open its

p-th replica, i. e.
∑

j∈U max(t − cij, 0) +
∑

j∈Cp\U max(ci′j − cij) = fi. In
this case, let C ′1 = {j ∈ U : cij ≤ t} and C ′2 = {j ∈ Cp \ U : cij ≤ ci′j},
set Y p

i ← Y p−1
i + 1 and Xp

ij ← Xp−1
ij + 1 for any j ∈ C ′1 or j ∈ C ′2, set

Xp
ij ← Xp−1

ij − 1 for any j ∈ C ′2.
(c) Event-3: A client j ∈ U has enough credit to be connected with the new opened

replica, i. e. t = cij . Set Xp
ij ← Xp−1

ij + 1.
(d) For any client j ∈ U , set αpj ← t and remove client j from U if it is connected

with a replica in phase p.

According to the subroutine in each phase, we have ∀i ∈ F , j ∈ Cp : Xp
ij ≤ Y p

i as

required by the subproblem in each phase. It is not hard to see that Xp
ij stops increasing
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when p > rj because a client j is included in Cp only when p ≤ rj and not been

processed when p > rj . Therefore, we have ∀i ∈ F , j ∈ C : XR
ij ≤ Y R

i because

Y p
i is increasing monotonously (we never close a replica). Feasibility of the solution is

ensured.

In Algorithm 3.4, the amount of credit paid for a connection can be divided further —

part for a connection with a smaller cost, remaining for opening other replicas. Despite

of the difference to Algorithm 3.1, it is still true that all payments of a client are either

used to open replicas or to establish connections, therefore the total cost of the solution

is still
∑

j∈C
∑rj

p=1 α
p
j . This results in the following lemma.

Lemma 3.4. A solution produced by Algorithm 3.4 is feasible to the FTFA problem and

its total cost is equal to
∑

j∈C
∑rj

p=1 α
p
j .

3.3.2 Inverse Dual Fitting Based Analysis

Let λf ≥ 1 be a constant (to be fixed later), and define the maximum connection cost

ratio with respect to any possible star (i, p, C ′) as

λ′I = max
i∈F ,p∈R,C′⊆Cp

∑
j∈C′ α

p
j − λf · fi∑

j∈C′ cij
.

Claim 3.2. The maximum cost ratio λ′I is bounded by a constant λc for any instance I
of the FTFA problem.

Theorem 3.2. If the improved algorithm for the p-th phase satisfies Claim 3.2, Algo-

rithm 3.4 produces a solution within cost λfF ∗ + λcC
∗, where F ∗ and C∗ are respec-

tively the facility cost and connection cost of an optimal solution to the FTFA problem.

Proof. Let βpij = max(αpj − λccij, 0) for any i ∈ F , j ∈ C, p ∈ R and C ′ = {j ∈ C :

αpj ≥ λccij}, we have
∑

j∈C β
p
ij =

∑
j∈C′ β

p
ij =

∑
j∈C′(α

p
j − λccij). According to the

Claim 3.2, we have
∑

j∈C′
(αpj − λccij) ≤ λffi

for any i ∈ F , p ∈ R. That is, there exist dual variables βpij ≥ 0 such that
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∀i ∈ F , p ∈ R :
∑

j∈C β
p
ij ≤ λffi (3.12)

and ∀i ∈ F , j ∈ C, p ∈ R : αpj − βpij ≤ λccij. (3.13)

We note that the above inequalities share the same form as the constraints of the dual

problem (3.3). Therefore, we can compose an instance of the FTFA, suppose I ′, with

facility cost f ′i = λffi and connection cost c′ij = λccij . Let OPT2 be the optimal solu-

tion to the primal problem of I ′, and OPT1 the optimal solution to the primal problem

of I. It is clear that

OPT2 ≤ λfF
∗ + λcC

∗ (3.14)

because the optimal solution to I is also a feasible solution to I ′ (its cost is equal to the

left side of the above inequality). From Inequality (3.12) and (3.13), we know (α, β) is

a feasible solution to the dual problem of I ′. Due to the weak duality theorem, which

states that the maximum of the dual problem is no more than the minimum of the primal

problem, we have
∑

j∈C

rj∑

p=1

αpj ≤ OPT2. (3.15)

On the other hand, let SOL be the solution produced by the algorithm, we have

SOL =
∑

j∈C

rj∑

p=1

αpj (3.16)

according to Lemma 3.4. Combine Inequality (3.14), (3.15) and (3.16), we have

SOL ≤ λfF
∗ + λcC

∗.

And the theorem follows.

Remark 3.3. As far as we know, dual fitting technique is not effective for deriving similar

results in multi-factor approximation even for the UFL problem. Instead, related results

[53, 52] are achieved through a combinatorial approach by decomposing a solution into
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a group of stars and proving an upper bound of the total cost paid by all clients in each

star. This approach also works here for the FTFA problem with an extra step to assign

the multiple costs paid by a client deliberately to stars. However, our inverse dual fitting

technique can simplify algorithm design and explain the dual variables intuitively.

For a FTFA problem, we say a solution is (λf , λc)-approximation to FTFA if its cost

is no more than λfF ∗ + λcC
∗ , where F ∗ and C∗ are respectively the facility cost and

connection cost of any optimal solution. Now, we only need to find a proper value of

λc ≥ 1 such that for any instance I of the FTFA problem

max
i∈F ,p∈R,C′⊆Cp

∑
j∈C′ α

p
j − λffi∑

j∈C′ cij
≤ λc.

Again, we only need to consider clients with αpj ≥ λccij . Without loss of generality,

suppose there are k clients in Cp and further αp1 ≤ αp2 ≤ ... ≤ αpk. We consider some

important properties of the improved algorithm for the p-th phase before finding a proper

value of λc.

Consider time t = αph − ε (ε→ 0) and define

ujh =




t αpj = αph

ci∗j αpj < αph

for any 1 ≤ j ≤ h ≤ k, where ci∗j is the maximum connection cost of client j at time t.

We have the following properties for Algorithm 3.4.

Lemma 3.5. For a given instance I and any phase p ∈ R, αph ≤ ujh + cij + cih for any

1 ≤ j < h ≤ k.

Proof. If αpj = αph, ujh → αph according to the definition, the inequality is obvious;

otherwise αpj < αph. Let H be the set of replicas connected with client j at the moment

t, we have |H| = p. Hence, there must exists a replica in H which is not connected with

h. Suppose it is a replica at site i′, we have Xp−1
i′h < Y p

i′ . Therefore h can be connected

with i′, without paying the operating cost. Considering two cases when the replica is

opened in a previous phase and in phase p respectively, we have αph ≤ ci′h for both cases
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due to event-1 and event-3. Further we have αph ≤ cih if i = i′; otherwise combining

the triangle inequality ci′h ≤ ci′j + cij + cih, immediately yields αph ≤ ujh + cij + cih

because ujh is the maximum connection cost of client j at time t when αpj < αph. The

lemma follows.

At time t = αph, the amount of contribution that client j offers to open a replica at

site i is equal to

max(ujh − cij, 0) if j < h, and

max(αph − cij, 0) if j ≥ h.

Notice that by the definition of ujh this holds even if αpj = αph. It is clear that the total

offer of clients to a site can never become larger than the operating cost at this site.

Therefore, we have
∑h−1

j=1 max(ujh− cij, 0) +
∑k

j=h max(αph− cij, 0) ≤ fi. This results

in the following lemma.

Lemma 3.6. For a given instance I and any phase p ∈ R,
∑h−1

j=1 max(ujh − cij, 0) +
∑k

j=h max(αph − cij, 0) ≤ fi for any 1 ≤ h ≤ k.

The above lemmas presents some properties of Algorithm 3.4 and the following

theorem shows that they are enough to prove Claim 3.2. Let λkc be the maximum of the

following Factor Revealing LP

maximize
∑k

j=1 αj−λf ·f∑k
j=1 cj

subject to ∀1 ≤ j ≤ h ≤ k : αh ≤ ujh + cj + ch

∀1 ≤ h ≤ k :
∑h−1

j=1 max(ujh − cj, 0)+
∑k

j=h max(αh − cj, 0) ≤ f

∀1 ≤ j ≤ h ≤ k : αj, cj, ujh, f ≥ 0.

(3.17)

It is clear that Lemma 3.5 and Lemma 3.6 imply the two constraints of program 3.17.

As a result, we have

λc ≤ sup
k≥1
{λkc}
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regarding to Claim 3.2. Actually, for different λf ≥ 1, there is a unique upper bound

supk≥1{λkc} as shown on the approximation curve in [52]. Furthermore, we have the

following theorem according to existing results on the Factor Revealing LP.

Theorem 3.3. For λc defined in Claim 3.2, we have:

1) if λf = 1.61, then λc ≤ 1.61 (see [53]);

2) if λf = 1.11, then λc ≤ 1.78 (see [80]);

3) if λf = 1, then λc ≤ 2 (see [52]).

Proof. Proofs of these results can be obtained directly from the cited references. Here,

for the third result we give an alternative proof which is simpler than that given in [52].

We first relax the second constraint as

∀1 ≤ h ≤ k :
h−1∑

j=1

(ujh − cj) +
k∑

j=h

(αh − cj) ≤ f.

According to the first constraint, we are able to use αh − cj − ch to replace ujh in the

above inequality. After moving some items to the right side, we have

∀1 ≤ h ≤ k :
k∑

j=1

(αh − cj) ≤ f +
h−1∑

j=1

(cj + ch).

For the above inequality combining all cases for 1 ≤ h ≤ k, we have

k∑

h=1

(kαh − kch) ≤ k · f +
k∑

h=1

h−1∑

j=1

(cj + ch).

Noting
∑k

h=1

∑h−1
j=1 (cj + ch) = (k − 1)

∑k
h=1 ch, we have

k

k∑

h=1

αh ≤ kf + (2k − 1)
k∑

h=1

ch,

that is ∑k
j=1 αj − f∑k

j=1 cj
≤ 2k − 1

k
< 2.

This yields the third result.

From Theorem 3.3 the following corollary is immediate:
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Corollary 3.2. Algorithm 3.4 is a 1.61-, (1.11,1,78)- and (1,2)-approximation algorithm

for the metric FTFA problem.

Different from Algorithm 3.1, Algorithm 3.4 has to traverse all fully-connected

clients for each site, i. e. Cp \ U , to know their maximum connection costs. There-

fore it needs O(|Cp| · nf ) time to know the time that the next event occurs. So, totally

Algorithm 3.4 needs at most O(|Cp| · n2
f ) steps to complete each phase because event-2

occurs at most nf times.

Lemma 3.7. The time complexity of Algorithm 3.4 is O(Rn3), where n is the maximum

of nf and nc.

3.3.3 Scaling and Greedy Augmentation

Guha et al. [112, 21] showed that it is possible to improve the performance of JMS algo-

rithm by using scaling and greedy augmentation. Similarly, we use the same technique

to improve Algorithm 3.4. The combined algorithm is as follows.

Algorithm 3.6 1.52-Approximation Algorithm
(1) Scale the facility costs by δ: fi ← δfi .
(2) Run Algorithm 3.4 on the scaled instance of fault-tolerant facility allocation prob-

lem.
(3) Scale back the facility costs and perform greedy augmentation. Define the gain of

replica i, gain(i), to be the reduction in total cost obtained by adding replica i to the
current solution (gain(i) = 0 if the total cost does not decrease). While there exist
replicas with positive gains, choose the replica i for which gain(i)

fi
is maximized and

add it to the current solution.

The next lemma was first proved in [112, 21] for the UFL problem and then in [48]

for the FTFL problem. Noting that the FTFA problem is a special case of the FTFL

problem, we have

Lemma 3.8. [125, 48] Let F ∗ and C∗ be the facility cost and connection cost, respec-

tively, of an optimal solution to the FTFA problem. Greedy augmentation, when applied

to a solution with initial facility cost F and connection cost C, produces a solution of

cost at most F + max{0, ln(C−C
∗

F ∗
)} · F ∗ + F ∗ + C∗.
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The above lemma implies the following result:

Lemma 3.9. [22, 81, 125] If Algorithm 3.4 is a (λf , λc)-approximation algorithm, Al-

gorithm 3.6 with parameter δ ≥ 1, gives a (λf + ln δ, 1 + λc−1
δ

)-approximation solution

for any instance of the FTFA problem.

As shown by Mahdian et al. [80], we get λf + ln δ = 1 + λc−1
δ

= 1.52 taking

(λf , λc) = (1.11, .178) and δ = 1.504, which implies that Algorithm 3.6 is a 1.52-

approximation algorithm.

Theorem 3.4. Algorithm 3.6 is a 1.52-approximation algorithm with running time

O(Rn3) for FTFA .

3.4 Fault-Tolerant k-Facility Allocation

In this section ,we consider the Fault-Tolerant k-Facility Allocation (FTKFA) problem

which can be seen as a combination of the k-Median problem and the FTFA problem

The k-Median problem [76] has also been studied extensively [6, 21, 23]. This prob-

lem requires to open no more than k medians in a set of geographically distributed

candidate sites and connect each client with the closest open median so that the total

connection cost of all clients is minimized. The k-Facility problem differs from the

k-Median problem by considering the specified operating cost for each facility and min-

imize the combined cost for both facility operating and connection establishing. The

FTKFA problem is a further generalization of k-Facility problem, where the connectiv-

ity at each client is not necessarily equal to one. FTKFA is also an extension of FTFA by

applying an extra upper bound on total open facility numbers, i. e. k.

Jain and Vazirani [54] reduced the k-Facility problem to the UFL in the following

way: Suppose A is an approximation algorithm for the facility location problem. Con-

sider an instance I of the problem with optimum cost OPT , and let F and C be the

facility and connection costs of the solution found by A. Algorithm A is called a La-

grangian Multiplier Preserving λ-approximation (or LMP λ-approximation for short) if
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for every instance I, C/λ+F ≤ OPT . Jain and Vazirani [54] proposed that an LMP λ-

approximation algorithm for the metric UFL problem gives rise to a 2λ-approximation

algorithm for the metric k-Facility problem. In this chapter, we consider the fault-

tolerant version of the problem. Instead of using the concept of LMP λ-approximation,

we use bi-factor approximation. We use a (1,λ)-approximation algorithm to FTFA as a

subroutine to obtain a (λ+ 1
nf

)(2− 1
nf

) approximation algorithm for the metric FTKFA

problem. This result is better than 2λ when λ ≥ 2 but worse than 2λ otherwise. Apply-

ing the result on bi-factor approximation given in the last section, we know Algorithm

3.4 is (1,2)-approximation to FTFA and therefore the result we have has a 4− 1/n2
f ap-

proximation factor for the FTKFA problem. The algorithm has the virtue of simplicity

and can be completed efficiently in strong polynomial time.

We also assume each client contains rj ports, let P denote the set of all ports of all

clients. Let s be a star composed of a replica and a group of ports connected with the

replica. Let S be all possible stars and Si all possible stars centered at site i. The FTKFA

problem can be formulated by

minimize
∑

s∈S csxs

subject to
∑

s∈S xs ≤ k

∀l ∈ P :
∑

s:l∈s xs ≥ 1

∀i ∈ F , j ∈ C :
∑

l∈Pj

∑
s:l∈s xs ≤

∑
s∈Si

xs

∀s ∈ S : xs ∈ {0, 1}.

(3.18)

In the above ILP, Pj is the set of all ports of client j. The first constraint ensures at most

k-replicas are opened in total; the second one at least one connection for each port and

the third constraint ensures enough open replicas at each location so that connections

between any site-client pair can be assigned to distinct replicas.

Suppose the number of the replicas opened by an algorithm for FTFA is k′. It is clear

that the solution can be used directly if k′ ≤ k; in the rest of the chapter, we assume

k′ > k. In this case, in order to minimize the total cost, we can always open k replicas,

i. e.
∑

s∈S xs = k. Let x̃s be the optimal solution of the original problem (with facility

cost fi). We set the cost of operating a facility at site i to fi + z, and let c−s =
∑

l∈s∩P cil
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and cs = c−s + fi(s). Suppose an algorithm A is a (1, λ)-approximation algorithm and it

happens to open k replicas, we have

∑

s∈S

(cs + z)xs ≤
∑

s∈S

(fi(s) + z)x̃s + λ
∑

s∈S

c−s x̃s,

and
∑

s∈S

xs = k ≥
∑

s∈S

x̃s.

That is,

∑

s∈S

csxs ≤
∑

s∈S

(cs + z)xs −
∑

s∈S

zx̃s ≤
∑

s∈S

fi(s)x̃s + λ
∑

s∈S

c−s x̃s ≤ λ
∑

s∈S

csx̃s. (3.19)

We can conclude that the solution is a λ-approximation. However, this result relies on

the assumption that the algorithm for FTKFA opens exactly k replicas. In the rest of

the thesis, we assume such an algorithm does not exist, and instead we combine two

solutions with k1 and k2 replicas respectively, k1 < k < k2, to achieve a solution with k

replicas.

3.4.1 Bisection Search and Combination

Jain et al. proposed an approach to get a 2λ-approximation algorithm for the metric k-

Facility problem by using an LMP λ-approximation algorithm for the metric UFL prob-

lem [54]. They achieved a 6-approximation algorithm using a LMP 3-approximation

algorithm [56, 54] and further a 4-approximation algorithm for UFL in [53]. Their ap-

proaches are based on the concept of LMP λ-approximation and as a result need an extra

step described in [53] to transform the JMS algorithm which is (1, λ)-approximation to

UFL into an LMP λ-approximation algorithm. Our approach simplifies this process by

eliminating the middle step and using a (1, λ)-approximation algorithms directly. Note

that our approach is for the fault-tolerant extension of their problem. We first prove that

two (1, λ)-approximation solutions to FTFA can be combined to achieve a (λ + 1
nf

)-
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approximation fractional solution to FTKFA. In the next subsection, we will round the

fractional solution, losing a small factor.

Consider an algorithm using a bisection search to approximate the value of z , i. e.

facility cost fi + z. Let cmax be the maximum of all connection costs, it is clear that
∑

s∈S xs = maxj∈C rj ≤ k when z = nccmax and
∑

s∈S xs ≥ k when z = 0. Instead

of using nccmax and 0 directly, we find two values of z which are very close and then

combine corresponding solutions together. Assume the solutions are x1, x2 respectively

for z1 and z2, and
∑

s∈S x
1
s = k1 and

∑
s∈S x

2
s = k2. The combined solution x =

ax1 + bx2, where a = (k−k1)/(k2−k1) and b = (k2−k)/(k2−k1). Now the problem

is how efficient we can find the values of z1 and z2 such that they are close enough to

ensure the quality of the combined solution and how we can get an integer solution from

the combined fractional solution. We have the following lemma for the first problem.

Lemma 3.10. The cost of the combined solution is within (λ + 1
nf

) times of that for an

optimal fractional solution to FTKFA if z1 − z2 ≤ Rfmin+nccmin

knf
.

Proof. Suppose the primal solution and the dual solution derived by Algorithm 3.4 are

(x1,α1) and (x2,α2) respectively. Let x̃s be the optimal solution of the original prob-

lem (with facility cost fi). We have

∑

s∈S

(cs + z1)x1
s ≤

∑

s∈S

(fi + z1)x̃s + λ
∑

s∈S

c−s x̃s

according to the definition of (1, λ)-approximation. Considering
∑

s∈S x̃s ≤ k, we have

∑

s∈S

csx
1
s ≤ z1(k − k1) + λ

∑

s∈S

csx̃s. (3.20)

Similarly we have
∑

s∈S

csx
2
s ≤ z2(k − k2) + λ

∑

s∈S

csx̃s. (3.21)

Now replace z1 with z2 in the first item of Inequality (3.20) using the fact that z1− z2 ≤
Rfmin+nccmin

knf
≤

∑
s∈S csx̃s

knf
, we have
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∑

s∈S

csx
1
s ≤ z2(k − k1) + (λ+

1

nf
) ·

∑

s∈S

csx̃s, (3.22)

Multiplying Inequality (3.21) with constant a = (k−k1)/(k2−k1) and Inequality (3.22)

with constant b = (k2 − k)/(k2 − k1), we have z2 eliminated, i. e.,

∑

s∈S

csxs ≤ [aλ+ b(λ+
1

nf
)]

∑

s∈S

csx̃s ≤ (λ+
1

nf
)
∑

s∈S

csx̃s.

The lemma follows.

Since the total range of z is nccmax and the interval between z1 and z2 is re-

quired to be less than (Rfmin + nccmin)/knf , so the total number of probing steps is

log
knfnccmax

Rfmin+nccmin
. Letting L = cmax/(Rfmin +nccmin) and n = max(nc, nf ), we have the

following lemma.

Lemma 3.11. After O(log(nL)) probe of z using a bisection search, z1 and z2 are so

close that z1 − z2 ≤ (Rfmin + ncmin)/kn and k1 ≤ k ≤ k2.

We notice that Smamy and Shmoys [125] achieved a similar result. Our solution

applies a similar approach to that in [125] but differs in three aspects:

1. Their result only applies the uniform connectivity case for the Fault Tolerant k-

Facility Location problem where each site allows at most one facility while ours applies

for both the uniform case and general case and each site allows unlimited number of

replicas.

2. Their bisection search needs O(poly(n)
L′

) steps, where L′ = log(cmax), while ours

only needs O(log n+ logL), where L = cmax/(Rfmin + ncmin). This is because, we do

not require the corresponding dual solutions are identical for the two primal solutions,

as a result the length of search interval is substantially greater.

3. Their approach depends on how to break ties between events in the primal-dual

algorithm, while ours does not.
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A, |A| = k1

B′

B, |B| = k2

B \B′

k − k1A ∩BA \B |B′| = k1

k1 ≤ k ≤ k2

Figure 3.3: Randomized Procedure

3.4.2 Randomized Procedure for Rounding

3.4.2.1 Facility opening

We use the same randomized procedure as in [56] to open replicas. We show that similar

result can also be achieved in the fault tolerance context.

LetA andB be the sets of open replicas in the two solutions, |A| = k1 and |B| = k2.

For each facility in A, find the closest facility in B, which are not required to be distinct

to each other. Let B′ ⊂ B be these replicas. If |B′| ≤ k1, arbitrarily include additional

replicas from B \ B′ into B′ until |B′| = k1. Now we open all replicas in A with

probability a and open all replicas in B′ with probability b = 1 − a. In addition, a

set of cardinality k − k1 is picked randomly from B \ B′ and replicas in this set are

opened. Furthermore, each facility in B is opened with probability b. The procedure is

demonstrated in Figure 3.3. For convenience, we use ŷi and x̂ij, i ∈ F , j ∈ C to denote

the integer solution in which there are totally k open replicas, we have the following

lemma.

Lemma 3.12. The expected facility cost E[
∑

i∈F fiŷi] is no more than a
∑

i∈A fixi +

b
∑

i∈B fixi.

3.4.2.2 Connection establishment

Instead of connecting a client with the rj nearest open replicas, we consider a suboptimal

approach for the sake of approximation factor revealing. The approach is first proposed
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in [125]. Our analysis follows the same idea but leads to a more strict result because

we can only lose a factor (2 − 1
nf

) instead of 2 to achieve a less than 4 approximation

factor. This is because the factor we lost in the last step is (2 + 1
nf

) for the sake of time

complexity. We introduce the procedure briefly as follows. Note that this approach is

used only in the analysis and not in the algorithm because the optimal approach, i. e.

connecting a client with the rj nearest open replicas, is always preferred.

Let Aj be the set of replicas in A to which client j ∈ C is connected, namely,

Aj = {i ∈ A : xij = 1}. Similarly, let Bj be the set of replicas in B that serve j.

Clearly |Aj| = |Bj| = rj . For each port l of client j, , we define a set of replicas Tl, and

l will only be connected to a facility in Tl. First, we arbitrarily assign each facility i ∈ Aj
, and the facility inBj to which it is matched (which could be the same as i), to a distinct

set Tl. Observe the important fact that the sets Tl are disjoint, since distinct replicas inAj

are matched to distinct replicas in B. Let m(Aj) ⊆ B denote the set of replicas that are

matched to replicas inAj . Then |m(Aj)| = |Aj| = |Bj| ⇒ |m(Aj)\Bj| = |Bj\m(Aj)|,
so the number of sets Tl not containing a facility from Bj after the first step is equal to

the number of unmatched replicas in Bj . We assign a distinct unmatched facility of Bj

to each set Tl which does not already contain a facility from Bj . Note that the sets Tl

remain disjoint; so if we connect each port l to a facility in Tl, we will get a feasible

solution.

Lemma 3.13. After the above randomized procedure, a client j is connected with rj

distinct replicas.

Furthermore, we have the following lemma on the connection cost.

Lemma 3.14. The expected connection cost for a client j, i. e. E[cost(j)] is no more

than (1 + max(a, b))
∑

i∈F cijxij .

Proof. For convenience, if facility i ∈ Aj is matched with i′, we will consider i and i′

as two different replicas even if i = i′ . Let the service cost of client j ∈ C be cost(j)

and the service cost of port l be cost(l). The set Tl contains at least one small facility

i1 ∈ Aj and one large facility i2 such that i1 is matched to i2.
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If these are the only two replicas then it must be that i2 ∈ Bj . Either i1 or i2 is open,

and we assign l to that open facility. So E[cost(l)] = aci1j + bci2j .

Otherwise, Tl contains a third facility i3 ∈ Bj such that i3 is unmatched and i2 ∈
Bj .We assign l to i3 if it is open, and to i1 or i2, whichever is open, otherwise. So

E[cost(l)] = a(aci1j + bci2j) + bci3j . Since i1 is matched with i2 and i3 is unmatched, it

must be that i2 is closer to i1 than i3. So,

ci2j ≤ ci1j + ci1i2 ≤ ci1j + ci1i3 ≤ 2ci1j + ci3j.

Therefore

E[cost(l)] ≤ bci3j + a(aci1j + 2bci1j + bci3j)

= a(1 + b)ci1j + b(1 + a)ci3j.

Thus for every port l, if i, i′ ∈ Tl, where i ∈ Aj and i′ ∈ Bj , we have

E[cost(l)] ≤ a(1 + b)cij + b(1 + a)ci′j).

For both cases, we have E[cost(l)] ≤ (1 + max(a, b))(acijx
1
ij + bci′jx

2
i′j), since

x1
ij = x2

i′j = 1. So, summing up the costs for all ports l, since the set of all replicas i

for the first component of the last item is precisely Aj and the set of all replicas i for the

second component is the set Bj , we get

E[cost(j)] ≤ (1 + max(a, b))(
∑

i∈Aj

acijx
1
ij +

∑

i∈Bj

bcijx
2
ij)

= (1 + max(a, b))
∑

i∈F

cij(ax
1
ij + bx2

ij),

where the last equality holds since x1
ij = 0 if i /∈ Aj and x2

ij = 0 if i /∈ Bj . The lemma

follows because xij = (ax1
ij + bx2

ij).
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3.4.2.3 Approximation factor

We have the following theorem.

Theorem 3.5. A (1, λ)-approximation algorithm for FTFA can result in a (λ+ 1
nf

)(2−
1
nf

)-approximation stochastic algorithm for FTKFA.

Proof. According to Lemma 3.14, we have

E[
∑

i∈F

∑

j∈C

cijx̂ij] ≤ (1 + max(a, b))
∑

i∈F

∑

j∈C

cijxij.

According to Lemma 3.12, we have

E[
∑

i∈F

fiŷi] ≤ (a+ b)
∑

i∈A∪B

fiyi ≤ (1 + max(a, b))
∑

i∈F

fiyi.

Combining them together, we have

E[
∑

s∈S

csx̂s] ≤ (1 + max(a, b))
∑

s∈S

csxs.

On the other hand, its easy to see that a ≤ 1 − 1/nf (this happens for k1 = k − 1

and k2 = nf ) and b ≤ 1 − 1/k (this happens for k1 = 1 and k2 = k + 1). Therefore,

1 + max(a, b) ≤ 2− 1/nf . Combined with Lemma 3.10, the theorem follows.

3.4.3 Derandomization

Due to the fact that, the randomization procedure is only used to open replicas (we

always connect a client to the nearest open replicas), the derandomization technique

proposed by Jain et al. [56] can be applied here directly. We have the following result.

Lemma 3.15. The bisection search based deterministic algorithm which employs Algo-

rithm 3.4 as a subroutines is a (4− 1
n2

f
)-approximation algorithm for FTKFA and its time

complexity isO(Rn3 log(nL)), where L = cmax/(Rfmin +ncmin) and n = max(nc, nf ).
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3.5 Discussion

3.5.1 Dealing with Demand

As mentioned before, the FTFA problem with nonuniform demands (access frequencies)

is equivalent to the FTFA problem with independent demands. Suppose the demand of

client j is dj , the problem becomes

minimize
∑

i∈F fiyi +
∑

i∈F
∑

j∈C cijdjxij

subject to ∀j ∈ C :
∑

i∈F xij ≥ rj

∀i ∈ F , j ∈ C : xij ≤ yi

∀i ∈ F , j ∈ C : xij, yi ∈ Z+

When dj is an integer, cost dj · ci,j implies that there are dj copies of client j at the same

location. It is clear that the new problem can be transformed into the FTFA problem

with each client being replicated dj copies. When dj is not an integer, we scale dj and

fi together so that dj becomes an integer. It is not hard to show that the new problem

has the same solution as the original problem. By applying the approach as above, the

problem can be transformed into an FTFA problem.

3.5.2 Fault-Tolerant Network Design

The FTFA problem is useful in the fault-tolerant network design. Suppose the downtime

ratio is uniformly σ for each facility and the usability required by client j is µj (percent

of time that a client is serviced). If the downtime of replicas (or links) is predicable

(deterministic), for example, in a system where each facility needs a fraction of time

to ’rest’, the corresponding network design problem can be modeled as a FTFA prob-

lem with rj set to dµj/(1 − σ)e. If the downtime is unpredictable (stochastic), then

rj should be set to dlogσ(1 − µj)e. In both cases, the proposed algorithms are able to

solve the problem. However, if replicas or links have nonuniform downtimes, the con-

straint on connectivity becomes
∑

i∈F(1−σij)xij ≥ µj for the deterministic model and
∏

i∈F :xij=1 σij ≤ 1 − µj for the stochastic model, where σij is the downtime ratio of
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connection (i, j). For these cases our FTFA algorithms cannot be directly applied to

solve the problem. We shall leave them as open problems for future study.



Chapter 4

QoS-Aware Content Replication for

Parallel Access

After deploying replica servers, it comes to the problem of content management in these

servers. Due to the reason that a content distribution network is shared by a number

of content providers (as the clients of a CDN owner), it is impractical to store all the

contents in each surrogate server. Therefore, in this chapter we study how to replicate

contents in these servers in a cost-effective manner. We propose QoS-aware content

replication technique for parallel access in which each client has a given degree of par-

allel connections determined by its QoS requirement (i. e. delay and priority). We study

the optimization problem to maximize the combined download speed of all parallel con-

nections at all clients and provide a distributed (|R|, 2)-approximation algorithm which

produces solutions comparable (within 4% error) to the optimal solutions in practice.

4.1 Introduction

As the Internet gradually becomes an essential infrastructure, a growing number of busi-

ness and organizations rely on its operations and performance. Among all the functions

of the Internet, efficient content delivery is most fundamental for the infrastructure.

However, it is unlikely that the approach of ever increasing the number and capacity

of facilities would improve the performance of network without a cost-effective solu-

69
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tion for content management. Consequently, the replication and distribution of popular

contents become critical for further performance improvement, especially in the practice

to offload Web servers, improve end-user experience and increase system’s reliability.

Content replication [62, 122, 103] involves object replicas creation, deletion, and mi-

gration among hosts in response to changing usage patterns. Through replication in the

Internet, contents draw closer to clients (end-users) and as a result the performance, es-

pecially the access latency perceived by a client, is much more improved. On the server

side, replication shifts the load from congested servers (or links) to less loaded servers

so that all servers are able to respond to requests quickly. At the same time, the ser-

vice becomes more reliable and the system obtains improved fault-tolerant capability

due to those replicas across the network. As a result, content replication has been used

extensively with much success in the area of distributed computing [78].

With the popular contents replicated in multiple places over the network, parallel ac-

cess to replicated contents [106, 92] which enables clients to fetch different portions of

an object from multiple sources simultaneously and reassemble them locally, becomes

a natural choice to improve access efficiency. By opening multiple connections to a

chosen set of sources, it speeds up data transfer and reduces latency. At the same time,

it also improves the resilience of the system inherently to route/link failures and traffic

fluctuation. Parallel access to multiple servers usually involves mirror sites [109, 106] of

a web site, surrogate servers in a Content Distribution Network, or peers in a P2P appli-

cation [16, 58]. Byers et al. [17] proposed to access multiple servers in parallel using an

open-loop multi-cast distribution where different servers generate different sets of par-

ity blocks and cyclically transmit parities and originals. Rodriguez and Biersack [109]

proposed dynamic parallel access to replicated contents using a parallel-access scheme

which automatically shifts the load from congested locations to less loaded parts. In

our earlier work [146], we studied QoS-oriented content delivery in e-learning systems

through parallel access.

In this chapter, we study the object replication problem for QoS-aware object repli-

cation for parallel access in which each client has a given degree of parallel access

determined by its QoS requirement or priority. The problem is formulated as a maxi-
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mization problem of combined download speed of all parallel connections at all clients.

Combined with a cost function which forms a metric when shortest-path routing is de-

ployed, the problem is further converted into the metric Fault Tolerant Facility Location

(FTFL) problem [55, 125] to minimize the total cost. Though there exist different algo-

rithms for the FTFL problem including LP rounding algorithms [55, 125, 48, 47] and

primal-dual algorithms [55, 125], these algorithms are all implemented in a centralized

manner and not suitable to work in a distributed environment lacking global knowledge

— because collecting global state information of a large network is impractical and the

collected information may be outdated when it is ready for use. As such, a distributed

FTFL algorithm is essential for content replication and it is also helpful in offloading

the central server and reducing the traffic amount in the network.

Due to the NP-hardness of the FTFL problem, it is unlikely to find optimal solutions

in polynomial time. Instead, researchers have developed approximation algorithms to

solve the problem suboptimally. Mainly, there are two types of techniques used in ap-

proximation algorithm for FTFL, i. e. LP rounding and primal-dual schema. The draw-

back of LP rounding algorithms is that they need to solve large linear programs and so

have prohibitive running times for most applications [56]. Therefore in this chapter, we

propose an approximation algorithm for the FTFL problem using primal-dual schema.

The algorithm is implemented in a distributed and asynchronous manner within O(n)

rounds of communication, where n is the number of surrogate servers in the network.

As far as we know, the approximation factor of similar centralized algorithms (using

primal-dual schema) remains unknown except a special case where all clients have a

uniform degree of parallelism (i .e., |R| = 1, where R is the set of parallel connection

degrees). We prove that the cost of our solution is no more than |R| · F ∗ + 2 · C∗ in

the general case, where F ∗ and C∗ are respectively the two components of cost regard-

ing any optimal solution. Though this theoretical result is worse than the best-known

2.076-approximation algorithm which is obtained by a centralized LP rounding algo-

rithm [125], extensive numerical experiments showed that the quality of our solutions is

comparable (within 4% error) to optimal solutions in all cases we evaluated.
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4.2 Problem Formulation

In a content delivery network composed of an origin server, a number of surrogate

servers and clients (end-users or proxy servers), the origin server holds all objects that

can be requested by clients and a surrogate server have the functionality of hosting part

of these objects and serving a request if it holds the desired object. The origin server

also maintains a table of replica locations in the network and redirects all the requests

to the surrogate servers holding the required content which are most close to the client.

Since only servers holding the desired object are capable of serving a request, we are

interested in finding the locations (surrogate servers) to host the object so that certain

objective is satisfied.

4.2.1 Object Placement for Parallel Access

In a parallel-access enabled network, the download speed of a client for an object is de-

fined as the sum of the download speeds on all connections to multiple sources holding

the object, and the throughput of a content delivery network is defined as the combined

download speeds for all clients. Content replication and parallel access are two primary

approaches to improve the throughput for a given network. Through object replication,

an object is duplicated across the network to facilitate access at the cost of some addi-

tional cost, e. g. the expense to provide the storage space. It is clear that the throughput

is maximized when the object is replicated at all surrogate servers but this obviously

results in an impractically large storage cost. Therefore a well-chosen set of locations to

hold the object is desired. We start this by calculating the gain for hosting an object in a

given set of locations.

Consider graph (V , E), where V is the set of all nodes and E is the set of links

between these nodes. Assume V comprises three disjoint sets {s}, C and F , where s is

the origin server, C is the set of clients and F is the set of surrogate servers. We want

to find a subset P ⊆ F (called placement) to hold replicas so that certain property is

obtained. Let bij, i ∈ F ∪ {s}, j ∈ C be the download speed of client j obtained from

server i, and Pj ⊆ P ∪ {s} be the set of rj distinct servers which are most close to j
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among all servers holding the object. Then the download speed of j is
∑

i∈Pj
bij and

the throughput of the network is
∑

j∈C
∑

i∈Pj
bij . We denote the normalized storage

cost at server i ∈ F by fi and there are different ways to calculate the storage cost.

For example, in a memory-sensitive system, storage cost could be the loss of download

speed for necessary object removal or the cost to deploy additional memory if possible.

While in an update-frequent system, storage cost could be the cost used to maintain the

freshness of replicas.

The objective of our problem is to maximize the gain by holding replicas of the

object in set P , which is calculated by

∑

j∈C

∑

i∈Pj

bij −
∑

i∈P

fi.

Due to the redirection of origin server, a request is served by the nearest sources from

the client, i. e. Pj ⊆ P ∪ {s} to maximize the download speed of the client, i. e.

maxPj⊆P∪{s}
∑

i∈Pj
bij . Let R represent all available degrees of parallel access and

rj ∈ R (i. e. the size of set Pj) reflects the degree of parallelism (or connectivity) for

client j. Since the objective is to maximize the throughput of the network, the problem

of object placement for parallel access can be modeled as the following GMax problem.

Definition 4.1. Gain Maximization (GMax) problem: In a graph G(V , E),V = {s} ∪
C ∪ F , s is the origin server, C is the set of clients, and F is the set of surrogate servers.

For any j ∈ C , rj ∈ R is the degree of parallel access for client j, fi, i ∈ F is the

cost of hosting the object at server i; bij, i ∈ F ∪ {s} is the download speed between i

and j. The GMax problem is to find a set of nodes, i. e. placement P ⊆ F , to cache the

object so that the gain of the placement is maximized. Mathematically, the problem can

be formulated as

max
P⊆F

{
∑

j∈C

max
Pj⊆P∪{s}

∑

i∈Pj

bij −
∑

i∈P

fi}

s.t. ∀j ∈ C : |Pj| = rj.

Note the constraint reflects the degrees of parallel access, i. e. the number of connections

required by each client.
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4.2.2 An Alternative Integer Programming Formulation

Now, we provide an alternative formulation for the problem using integer programming.

Let M be a large constant and define a cost function cij = M − bij for any connection

between i ∈ F ∪ {s} and j ∈ C. First, we define a Cost Minimization problem as

follows.

Definition 4.2. The Cost Minimization (CMin) problem shares the same model as the

Gmax problem except that the objective of the CMin problem is to minimize the total

cost including connection cost and storage cost, i.e.,

min
P⊆F

{
∑

j∈C

min
Pj⊆P∪{s}

∑

i∈Pj

cij +
∑

i∈P

fi}

s.t. ∀j ∈ C : |Pj| = rj,

Clearly the GMax problem is equivalent to the CMin problem because

∑

j∈C

max
Pj

∑

i∈Pj

bij −
∑

i∈P

fi

=
∑

j∈C

rj ·M − {
∑

j∈C

min
Pj

∑

i∈Pj

cij +
∑

i∈P

fi},

where the first item is a constant. It is not hard to see that the Cmin problem can be

further converted into the Fault Tolerant Facility Location problem.

Facility location problem [94] has been studied extensively in operations research.

In the Uncapacitated Facility Location (UFL) problem, we are given a set of facilities

(servers) F and a set of clients C. For every facility i ∈ F , a non-negative number fi is

given as the opening cost of facility i; and for every facility-client pair (i, j) a connection

cost cij between facility i and client j ∈ C. The objective of the problem is to open a

subset of the facilities in F , and connect each client to an open facility so that the total

cost is minimized. In UFL, only one connection is required for each client which is

not the case in many application scenarios and therefore a more general problem called

Fault-Tolerant Facility Location (FTFL) was proposed [55]. In FTFL, each client j ∈ C
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has a prespecified connectivity rj and has to be assigned to rj distinct facilities instead

of just one to achieve fault-tolerance capability in case of connection or facility fails.

Definition 4.3. [55] The FTFL problem can be formulated by the following ILP (integer

linear program).

minimize
∑

i∈F fiyi +
∑

i∈F
∑

j∈C cijxij

subject to ∀j ∈ C :
∑

i∈F xij ≥ rj

∀i ∈ F , j ∈ C : yi ≥ xij

∀i ∈ F , j ∈ C : xij, yi ∈ {0, 1}

(4.1)

In the above formulation, binary yi indicates whether facility i is opened, and xij

whether i and j are connected. The objective of the problem is to open proper number

facilities among F and assign each client j to rj distinct facilities so as to minimize the

total cost for facility opening and connections establishing. Note that the first constraint

ensures the number of connections required by each client and the second constraint

reflects that a client can only be assigned to an open facility. LetR be all possible values

of rj for all j ∈ C, the problem becomes the classical UFL problem whenR = {1}. The

FTFL problem can further be combined with demands by replacing cij with djcij , where

dj is the demand of client j. Note that the requirement of multiple distinct connections

for a client violates with the cost minimization objective and therefore need to be treated

carefully, since a minimized cost for multiple connections requires to establish all the

connections to the same facility closest to the client. We have the following lemma.

Lemma 4.1. The CMin problem is equivalent to the FTFL problem.

Considering the NP-hardness of the facility location problem, the following theorem

is immediate.

Theorem 4.1. Both the GMax and CMin problems are NP-hard.
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4.2.3 Issues in the FTFL Problem

4.2.3.1 Triangle inequality

For the facility location problems (UFL and FTFL), there exist several constant-

approximation algorithms [124, 56, 52, 55, 125, 48, 47] when connection cost forms

a metric (i.e. follows the triangle inequality). However, if the connection costs are unre-

stricted, the hardness of the problem is the same as the set cover problem and therefore

it cannot be solved better than O(log n)-approximation in polynomial time. Fortunately,

the cost function in the problem of object placement has certain property due to the

deployment of shortest-path routing. We have the following lemma.

Lemma 4.2. Cost function c forms a metric when the shortest-path routing is deployed.

Proof. Let ∆t be the delay in the LAN centered at a representative client and assume

∆t is a constant. Let tij be the time used to transmit the whole object (with certain size)

between i and j. We can calculate the download speed between i and j , i.e. bij by

size/(∆t+ tij). Let M = size/∆t, then

cij =
size

∆t
− size

∆t+ tij
=

size · tij
∆t · (∆t+ tij)

=
M · tij

∆t+ tij
.

Clearly, when the shortest-path routing is deployed, t forms a metric and in this case the

cost function c also forms a metric because M and ∆t are both constants.

4.2.3.2 Access frequency

When access frequencies are considered, it is not hard to see that the CMin problem is

equivalent to the FTFL problem with demands. Both enhanced problems are able to be

solved using the approaches for the original problems. Suppose the access frequency (or

demand) of j ∈ C is dj . When dj is an integer, cost dj ·cij implies that there are dj copies

of client j at the same location. It is clear that the new problem can be transformed into

the FTFL problem with each client being replicated dj copies. When dj is not an integer,

we scale dj and fi together until dj becomes an integer. It is clear that the new problem
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has the same solution as the original problem. By applying the approach as above, the

problem can be transformed into an FTFL problem.

4.3 A Distributed (|R|,2)-Approximation Algorithm

Similar to the algorithms in [52], our algorithm also uses a notation of star which is

composed of a facility and a group of clients that connected with the facility. Given two

sets F and C as well as fi, rj and cij for any i ∈ F and j ∈ C, the algorithm selects the

most cost-efficient star repeatedly and updates related variants until all the clients are

fully-connected (i. e., there are rj connections for each j ∈ C). Specifically, let U be the

set of not-fully-connected clients and C \ U the set of fully-connected clients, and the

cost efficiency eff(i, C) of a star (i, C), C ⊆ U is defined to be

fi +
∑

j∈C cij −
∑

j∈C\U max(ci′j − cij, 0)

|C| , (4.2)

where ci′j is the maximum connection cost of client j ∈ C \ U at the moment be-

fore the star (i, C) is selected. The first two items in the numerator represent the

total cost of the star and the last item is the contribution made by fully-connected

clients via connection exchange. Each facility finds the most cost efficient star, that

is eff(i, C ′) = minC⊆U eff(i, C) in each iteration.

4.3.1 Facility/Client Side Pseudocodes

In the distributed settings, each facility has a list of clients which is not yet fully-

connected and each client has a list of facilities which have the potential to be connected

with. Different from centralized settings, a facility i ∈ F only knows the value of fi

and cij, j ∈ C without the knowledge of ci′j, i′ 6= i. Assume cij is a distance function

for facility-client pair (i, j) that forms a metric. Actually, this assumption is reasonable

as in most cases that shortest-path routing is deployed. In our algorithm, a client does

not have to know the information on connection cost. Our facility-side and client-side

algorithms are given in Algorithm 4.1 and Algorithm 4.2 respectively. Actually, these
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algorithms can be seen as a fault-tolerant extension to Frank and Romer’s algorithms for

UFL [44]. Compared with Frank and Romer’s algorithms for UFL [44], our algorithms

have the feature of asynchronous communication which is implemented using a round

number to ensure the coordination between clients and facilities. This is very impor-

tant in an environment composed of heterogeneous networks to achieve performance

acceleration.

Algorithm 4.1 Facility-Side Pseudocode
01: set U ← C and round number q ← 1.
02: while U 6= φ do
03: find the most cost-efficiency star (i, C ′), C ′ ⊆ U .
04: send message (q, i, eff) to all j ∈ C ′ .
05: receive requests from all clients in C ′, suppose the total number is req.
06: if req = |C ′| then
07: open the facility i, if it is not already open, set fi ← 0 and yi ← 1.
08: send signal “open” to all j ∈ C ′, set xij ← 1 for all j ∈ C ′.
09: else
10: send signal “not-open” to all j ∈ C ′.
11: endif
12: receive signal “fully-connected” from all clients in U , let C” be the set of those

clients.
13: set U ← U \ C” and q ← q + 1.
14: enddo

Algorithm 4.2 Client-Side Pseudocode
01: set connection number p← 1 and round number q ← 1.
02: while p ≤ rj do
03: receive message (q, i, eff) from all i ∈ F .
04: set i∗ ← argmini∈Feffq,i and q ← q+ 1, if two stars have the same cost efficiency,

break ties according to facility IDs.
05: send request to i∗ to be connected and signal “not-selected” to others.
06: receive signal from i∗.
07: if the signal is “open” then
08: set p← p+ 1.
09: if p = rj then
10: send signal “fully-connected ” to all facilities.
11: endif
12: endif
13: enddo

In the algorithm, each facility maintains a list of clients which are not fully-connected

and the facility starts a conversation by sending the cost efficiency value of a regarding



Chapter 4. QoS-Aware Content Replication for Parallel Access 79

star centered at itself to all the members clients. Each client compares the values of

efficiency sent from all facilities and requires to be connected with the facility with

the minimum cost efficiency. If a facility receives connection request from all of its

members, the facility is opened with a corresponding signal sent to the member clients,

otherwise the facility sends signal “not-open” to its member clients. Once a client re-

ceives a signal “open” from a facility which is requested to be connected by itself, they

are connected and, if this happens to be the rj-th connection, the client also sends signal

“fully-connected” to all facilities. When a facility receives a “fully-connected” signal

from a client, it excludes the client from its list. A facility quits when its list is empty

and the algorithms ends when all facilities have quitted.

Consider the same worst case as in [44] in which a chain of facilities interconnected

by at least one client. In this case, only the facility at one end can be opened in one round

if the cost efficiencies are monotonously increasing along the chain. It is clear that the

number of rounds required is at most n, where n is the number of surrogate servers, i e.

|F|. So we have the following lemma whose proof is similar to [44].

Lemma 4.3. The proposed distributed algorithm can be completed in O(n) rounds of

communication with each message no more than O(log n) bits, where n is the number

of surrogate servers.

4.3.2 An alternative centralized algorithm

In order to reveal the approximation factor of the distributed algorithm, we extend a

centralized algorithm which was first proposed by Jain et al. [52] and further studied

by Swamy and Shmoys [125]. We will show later that the distributed algorithm and the

centralized algorithm share the same approximation factor.

In the above algorithm, all clients have certain credits to offer which are equal to

zero at the beginning and increase simultaneously in time until their respective clients

get fully-connected. Once a client is fully-connected it is removed from set U and we

suppose the maximum connection cost of client j is ci′j . All clients offer their contribu-

tions to open facilities, a client in U with amount max(t−cij, 0) and a client in C\U with
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Algorithm 4.3 Extended JMS Algorithm [47, 52]
Given: F , C and fi, cij, rj for any i ∈ F , j ∈ C
Output: xij, yi, αpj for any i ∈ F , j ∈ C, 1 ≤ p ≤ rj
(1) At the beginning (t ← 0), all facilities are unopened (yi ← 0), all clients are

unconnected (U ← C, xij ← 0) and their credit is equal to zero but will increase
simultaneously with time. At every moment, each client (j ∈ U ) offers some money
from its credit to unopened facilities, a not-fully-connected with amount max(t −
cij, 0); and a fully-connected client (j ∈ C \ U ) with amount max(ci′j − cij, 0),
where ci′j is the maximum connection cost of j at the moment.

(2) While U 6= φ, increase the credit of each client j ∈ U at the same rate until Event
(a) or Event (b) occurs. If two events occur at the same time, we break ties according
to facility IDs.
(a) Event (a): Some unopened facility i receive enough money to open itself, that

is
∑

j∈U max(t − cij, 0) +
∑

j∈C\U max(ci′j − cij, 0) = fi. In this case, set
yi ← 1, li ← 0, and let C ′1 = {j ∈ U : t ≥ cij}, set xij ← 1 for all j ∈ C ′1; and
C ′2 = {j ∈ C \ U : ci′j > cij0}, set xi′j ← 0, xij ← 1 for all j ∈ C ′2.

(b) Event (b): For some client j ∈ U , its credit is enough to connect an open facility
i which is not connected before, i. e. t = cij . In this case, set xij ← 1.

(c) For any new established connection of client j, set αpj

j ← t and pj ← pj + 1.
If a client is fully connected, i. e. pj = rj , delete client j from U .

amount max(ci′j − cij, 0). The algorithm opens the most cost-efficient star repeatedly

and updates connections correspondingly. In this process, the maximum connection cost

of a fully connected client is to be exchanged with a cheaper connection. Note that the

amount of credit that client j owns is equal to t before the client is fully-connected. Us-

ing the definition on cost-efficiency, i. e. Formula (4.2), the most cost-efficient star is the

first star that achieves
∑

j∈U max(t− cij, 0) +
∑

j∈C\U max(ci′j − cij, 0) = fi if facility

i is not opened. If a facility i is already open, the facility cost fi is set to zero and thus

the above cost-efficiency formula suggests that i can be connected with any client which

is not fully-connected only if t = cij.

It is not hard to see that if we order the stars opened in the distributed algorithm

according to their cost efficiencies, it would be exactly the same to those opened in the

centralized algorithm. As such we have the following lemma and its proof is similar to

that in [44].

Lemma 4.4. As far as the derived solutions are concerned, the distributed algorithm is

equivalent to the centralized algorithm.
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As far as we know, approximation factor of Algorithm 4.3 remains unknown for the

general case. We prove in the next subsection that the solution of Algorithm 3 is no more

than |R| ·F ∗+ 2 ·C∗, where F ∗ and C∗ are respectively the facility cost and connection

cost in any optimal solution. For example, the algorithm is at least 2-approximation

when |R| = 2, and (1, 2)-approximation when |R| = 1, i. e. the special case of uniform

connectivity. All these are competitive to the existing results.

4.3.3 An upper bound of performance ratio

In Algorithm 4.3, the amount of credit paid for a connection can be divided further —

part for a connection with a smaller cost, remaining for opening other replicas. Despite

this, it is true that all payments of a client are either used to open replicas or to establish

connections, therefore the total cost of the solution is still
∑

j∈C
∑rj

p=1 α
p
j . This results

in the following lemma.

Lemma 4.5. A solution produced by Algorithm 4.3 is feasible to the FTFL problem and

its total cost is equal to
∑

j∈C
∑rj

p=1 α
p
j .

We need to capture other properties of the algorithm to provide an upper bound of

the cost. We denote the optimal solution by a set of stars, i. e. S∗, and for any star s ∈ S∗

centered at facility i and any client j in the star, we define αsj = α
p(i,j)
j and

p(i, j) =




pj if xij = 1,

rj otherwise,

where pj is the rank of the contribution made to facility i among all contributions made

by the client (or the port number via which connection (i, j) is set up). We can see that

α
p(i,j)+1
j ≥ α

p(i,j)
j if p(i, j) + 1 ≤ rj because time t is increasing, therefore the sum of

αsj is an upper bound on the total cost.

Lemma 4.6. The cost of a solution derived by Algorithm 4.3 is no more than
∑

s∈S∗
∑

j∈s∩C α
s
j .
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Consider a star s which is centered at facility i, we omit s and i for the sake of

simplicity if no confusion is caused. Assume without loss of generality that the star is

composed of k clients numbered from 1 through k and α1 ≤ α2 ≤ ... ≤ αk. For any

clients j and h, 1 ≤ j < h ≤ k, we define ujh as

ujh =




αj if αj = αh,

ci′j otherwise,
(4.3)

where ci′j is the maximum connection cost of j before time t. Now consider time t =

αh− ε, ε→ 0. At this time, the amount of money that client j offers to open a facility is

equal to

max(ujh − cij, 0) if j < h, and

max(αh − cij, 0) otherwise.

Note that by the definition of ujh this holds even if αj = αh. It is clear that the total

offer of clients to a facility can never become larger than the opening cost of the facility.

Therefore, we have the following lemma.

Lemma 4.7. In an optimal star s,
∑h−1

j=1 max(ujh−cij, 0)+
∑k

j=h max(αh−cij, 0) ≤ fi

for any client h in the star.

Similar to the lemmas regarding triangle inequality in the last chapter, we have the

following lemma.

Lemma 4.8. In an optimal star s, αh ≤ ujh + cij + cih for any two clients h and j, if

p(i, j) ≤ p(i, h) and j < h.

Proof. If αh = αj , the lemma holds obviously according to the definition; otherwise

αh > αj . Let F1 be the set of open facilities connected with client j before time t = αh,

then |F1| ≥ p(i, j) because αh > αj and the number of facilities connected with a client

is monotonically increasing. Now, consider two cases:

1) i /∈ F1. In this case, contribution αh could be made to at least one facility in

F1, suppose i′. That is, there exists i′ ∈ F1, (i
′ 6= i) such that αh ≤ ci′h. Further
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combine the triangle inequality ci′h ≤ ci′j + cij + cih and ujh = maxi′∈F1 ci′j , we have

αh ≤ ujh + cij + cih.

2) i ∈ F1, i. e. i is opened before time t. It is clear that h could be connected with i

at least at the time when it made contribution αh, we have αh ≤ cih.

Let F ∗ and C∗ be the total facility cost and connection cost respectively in the op-

timal solution and SOL the total cost of the derived solution, we have F ∗ =
∑

s∈S∗ fi,

C∗ =
∑

s∈S∗
∑

j∈s∩C cij , and SOL ≤ ∑
s∈S∗

∑
j∈s∩C α

s
j . Now if there is constant λf

and λc (to be fixed later) such that

max
s∈S∗

∑
j∈s∩C α

s
j − λf · fi∑

j∈s∩C cij
≤ λc,

then it is clear that SOL ≤ λf · F ∗ + λc · C∗.
According to Lemma 4.8, we know that all contributions with the same rank i. e.

p(i, j), follow triangle inequality, so we decompose each optimal star into a set of sub-

stars {sp, 1 ≤ p ≤ |R|} and each substar has a number of clients with same value of

p(i, j). We duplicate the facility cost into each substar and set λf = |R|. For each

substar, define k = |sp| and λ = supk∈Z+ λk, where λk is the maximum of the following

LP.

maximize
∑k

j=1 αj−f∑k
j=1 cj

subject to ∀1 ≤ j < h ≤ k : αh ≤ ujh + cj + ch

∀1 ≤ h ≤ k :
∑h−1

j=1 max(ujh − cj, 0)+
∑k

j=h max(αh − cj, 0) ≤ f

∀1 ≤ j < h ≤ k : αj, cj, ujh, f ≥ 0.

(4.4)

Lemma 4.9. For any integer k, λk ≤ 2 and therefore the solution of Algorithm 4.3 is

no more than |R| · F ∗ + 2 · C∗, where F ∗ and C∗ are respectively the facility cost and

connection cost in an optimal solution.
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Proof. Adding up the two constraints of program (4.4), we get

k · αh ≤ f +
k∑

j=1

cj +
h−1∑

j=1

(cj + ch)

Adding up both sides of the above inequalities for all 1 ≤ h ≤ k, we have

k ·
k∑

h=1

αh = k · (f +
k∑

j=1

cj) + (k − 1) ·
k∑

j=1

cj,

that is ∑k
h=1 αh − f∑k

j=1 cj
≤ 2k − 1

k
≤ 2

for all possible values of αj, cj and f and sizes of sub-star sp, 1 ≤ p ≤ |R|. It is clear

that λk ≤ 2 for any integer k.

Now set cj = cij, f = fi and αj = αsj and k = |sp|. Since all clients in a sub-star

have the same value of p(i, j), Lemma 4.7 and Lemma 4.8 respectively imply the two

constraints of program (4.4). Because the facility cost is duplicated at most |R| times

(each in a sub-star), we have

max
s∈S∗

∑
j∈s∩C α

s
j − |R| · fi∑

j∈s∩C cij
≤ 2. (4.5)

The theorem follows after adding up the above inequalities in all stars in the optimal

solution.

We say a solution SOL ≤ |R| · F ∗ + 2 · C∗, where F ∗ and C∗ are respectively

the facility cost and connection cost in an optimal solution, is a (|R|, 2)-approximation

solution to the FTFL problem. As a result, Algorithm 4.3 is (|R|, 2)-approximation at

most and we do not know the exact approximation factor of the algorithm. Combine

Lemma 4.3, Lemma 4.4and Theorem 4.9, we have the following theorem.

Theorem 4.2. The distributed algorithm is at most (|R|, 2)-approximation to the GMax

problem and the algorithm can be finished within O(n) rounds of communication with

each message no more than O(log n) bits.
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4.4 Numerical Results

Though our algorithm has a larger approximation factor than the best-known 2.076-

approximation [125] which was obtained in a centralized manner using LP rounding

technique, the proposed algorithm performs very well in the average. In fact, our nu-

merical experiments show that the derived solutions are comparable to optimal solutions

in all cases we evaluated.

We have implemented the proposed distributed algorithm and run the algorithm in

three groups of experiments. In all cases, the solution of the proposed algorithm is

compared with optimal solution of the LP-relaxation of the problem which is computed

using the commercial software package CPLEX in order to get the performance ratios.

4.4.1 Results on Grids

Due to the fact that our algorithm could be regarded as a distributed version of the ex-

tended JMS algorithm which was originally proposed to solve the UFL problem, we

would like to compare our results (for the FTFL problem) with the results of JMS algo-

rithm for the UFL problem. (The performance ratios for the UFL problem are cited from

[52] directly which are close to the results using our implementation of the JMS algo-

rithm). In this group of experiments, facilities numbers and client numbers are chosen

to be the same as those in [52].

4.4.1.1 Impact of connectivity

First we set the facility cost fi, i ∈ F to be a random integer between 0 and 30000, that

is fi = rand(0, 30000). The connectivity is set to be a random integer between 1 and

rmax, that is rj = rand(1, rmax), where rmax ranges from one fourth of the total facility

number to 100% of the total facility number. The performance ratios are listed in Table

4.1 together with the performance ratios for the UFL problem as cited from [52].
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Table 4.1: Performance Ratios Using Random Points on a Grid
(with various maximum connectivity)

UFL FTFL
|C| |F| see [52] rmax = 25% · |F| 50% · |F| 75% · |F| 100% · |F|
50 20 1.0041 1.0074 1.0241 1.0142 1.0044

100 20 1.0019 1.0082 1.0079 1.0032 1.0013
100 50 1.0002 1.0326 1.0238 1.0057 1.0029
200 50 1.0035 1.0161 1.0059 1.0018 1.0008
200 100 1.0060 1.0373 1.0061 1.0017 1.0009
300 50 1.0054 1.0138 1.0018 1.0009 1.0003
300 80 1.0053 1.0212 1.0034 1.0010 1.0004
300 100 1.0042 1.0163 1.0023 1.0010 1.0005
300 150 1.0019 1.0222 1.0035 1.0013 1.0005
400 50 1.0035 1.0063 1.0009 1.0004 1.0001
400 100 1.0026 1.0106 1.0014 1.0005 1.0003
400 150 1.0013 1.0142 1.0017 1.0007 1.0003

Table 4.2: Performance Ratios Using Random Points on a Grid
(with various maximum facility cost)

UFL FTFL
|C| |F| see [52] fmax = 10000 30000 50000 70000 90000

50 20 1.0041 1.0058 1.0150 1.0175 1.0132 1.0116
100 20 1.0019 1.0035 1.0132 1.0142 1.0178 1.0126
100 50 1.0002 1.0095 1.0106 1.0161 1.0069 1.0122
200 50 1.0035 1.0084 1.0111 1.0098 1.0144 1.0154
200 100 1.0060 1.0101 1.0109 1.0121 1.0119 1.0158
300 50 1.0054 1.0057 1.0128 1.0103 1.0128 1.0137
300 80 1.0053 1.0086 1.0096 1.0141 1.0128 1.0121
300 100 1.0042 1.0096 1.0104 1.0095 1.0126 1.0117
300 150 1.0019 1.0108 1.0122 1.0116 1.0104 1.0112
400 50 1.0035 1.0039 1.0094 1.0136 1.0114 1.0111
400 100 1.0026 1.0084 1.0123 1.0120 1.0107 1.0140
400 150 1.0013 1.0108 1.0101 1.0125 1.0113 1.0114

4.4.1.2 Impact of facility costs

In the consequent experiments, we set rj = rand(1, 10) and fi = rand(0, fmax), where

fmax ranges from 10000 to 90000. Note that the facility cost for the UFL problem in

[52] is set to be a random integer between 0 and 9999. The performance ratios are listed

in Table 4.2.
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We notice that our solution should be optimal (i. e., approximation ratio should be

1) when |R| = |F| in which case all facilities should be opened. The reason that our

result is greater than 1 when rmax = 100% · |F| is that not all integers from 1 to rmax

are enumerated by the random number generator in some runs, due to the small size of

example set (i. e. set C).

As shown in both tables, the proposed algorithm behaves extremely well and its

performance ratios to the FTFL problem are in the same order of magnitude as the per-

formance ratios of JMS algorithm to the UFL problem. In all the cases we evaluated, the

maximum performance ratio is 1.0373 which happens in the 5-th group of experiments

as shown in Table 4.1. Therefore we are able to conclude that the quality of our solutions

is comparable (within 4% error) to that of optimal solutions in all evaluated cases.

4.4.2 Results on Network Models

In this group of experiments, we generate instances of the problem based on network

models. We first use the most simple model — random graph and then GT-ITM model

to simulate a network. The instance sizes, in terms of client number and facility number,

vary from 100 to 416 and 20 to 100 respectively which are the same to those instances

in [52].

4.4.2.1 Random graph

We have generated random graphs according to the distribution G(n, p) and assigned

uniform random weights on the edges. Clients and facilities correspond to the nodes in

this graph, and the connection cost between a client and a facility is defined to be the

shortest path between the corresponding nodes. The facility opening costs are generated

at random. For each size, 15 instances are generated and the average error of the algo-

rithm (compared to the lower bound obtained from the LP relaxation of the problem) is

computed. The results of these experiments are shown in Table 4.3.
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4.4.2.2 GT-ITM model

GT-ITM [148, 19] is a software package to generate network topologies. In this model,

we consider transit node as potential facilities and stub nodes as clients. The connection

cost is set to be the shortest distance and facility opening cost a random number. Con-

nectivity of a client is set to be a random number between 1 and 10. This model is also

used in the applications of facility location problems such as placing web server repli-

cas [98]. Again, 15 instances are generated for each size and the average error of the

algorithm compared to the lower bound obtained from the LP relaxation of the problem

is computed. The results are also shown in Table 4.3.

Table 4.3: Performance Ratios on Network Models

|C| |F| Random
Graph

GT-ITM
Model

100 20 1.009 1.0032
160 20 1.0072 1.0012
160 40 1.0091 1.0029
208 52 1.009 1.0049
240 60 1.0082 1.003
300 75 1.007 1.003
312 52 1.0091 1.002
320 32 1.0072 1.002
400 100 1.0085 1.003
416 52 1.0091 1.003

4.4.3 Factors of Performance Ratio

The third group of experiments is to reveal the factors of performance ratio, where all

instances are generated randomly on a 1000*1000 grid: In each instance, clients and

facilities are points selected randomly from the grid and the connection cost is set to be

the Euclidean distance of the corresponding points. There are totally 100 facilities and

200 clients in this group of experiments.

First we want to show the relation between performance ratio and size of |R|. For

the sake of simplicity, we set facility cost a random between 1 to 30000 and the con-

nectivity for a client, as a random integer between 1 to rmax. The result is pictured in
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Figure 4.1(a), where the horizontal axis presents the value of rmax ranging from 1 to

100. The figure shows that the performance ratio increase together with the maximum

connectivity before it reaches 20, and then decrease all the way until it reaches 100.

In order to show the impact of facility costs, we set the maximum connectivity

rmax = 5 and run the same experiments a number of times with facility costs set as

a random between 1
2
fmax and fmax. Figure 4.1(b) shows the performance ratios with

the maximum facility cost fmax ranges from 100 to 52428800. The result reflects that

the performance ratio reaches its maximum when the maximum facility cost is around

200000 and approaches one either when the facility cost becomes larger or becomes

smaller.

4.5 Related Work

The facility location problem and its variants occupy a central place in operations re-

search [94]. For the simplest UFL problem, the first approximation algorithm was built

by Cornuejols et al. [34]. They obtained (1 − e−1)-approximation algorithm for the

maximization variant of UFL. The first approximation algorithm for the minimization

variant, is a greedy algorithm achieving a guarantee of O(log n) in the general (non-

metric) case due to [49]. Since these works dated back to almost 20 years ago, UFL has

found extensive application and has been studied widely. Existing algorithms for UFL

mainly use LP rounding technique or primal-dual schema.

Fault Tolerant Facility Location [55] is a generalization of UFL, where connectivity

at different clients (i. e. the number of distinct facilities that serve a client) are specified

to meet fault-tolerant requirements. The FTFL problem has been studied extensively in

the recent years [55, 47, 48, 125]. Guha et al. obtained a 3.16-approximation algorithm

by rounding the optimal fractional solution to the problem and further improved the

result to 2.41 by employing a greedy local improvement step [48]. Recently, Swamy and

Shmoys presented a 2.076-approximation by using LP rounding [125]. All these results

hold for both uniform connectivity case and non-uniform connectivity case (general
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case). Guha and Khuller proved that the best approximation factor (lower bound) to

UFL is 1.463 [112], assuming NP * DTIME[nO(log logn)]. This result also holds for

fault-tolerant version of the problem.

Researchers have attempted to devise distributed algorithms for the UFL problem:

Moscibroda and Wattenhofer [85] presented a distributed algorithm for the standard non-

metric facility location problem in the CONGEST model that, for every k, achieves an

O(
√
k(nρ)1/

√
k log(n))-approximation in O(k) communication rounds, where n is the

total number of facilities and clients, and ρ is a coefficient that depends on the opening

costs and connection costs as part of the input. Frank and Römer [44] considered the
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metric facility location on multi-hop networks, using the 1.61-approximation due to

Jain et al. [52], they showed how to implement the algorithm in a distributed setting

without any degradation in the approximation factor. Gehweiler et al. [46] presented a

constant-approximation, constant-round distributed algorithm using only O(log n)-bits

per message, for the uniform facility location problem, where all the opening costs are

identical and the underlying network is a clique. As to the fault-tolerant version of the

facility location problem (i. e. the FTFL problem) in the general case of non-uniform

connectivity, the approximation factor of existing centralized algorithms using primal-

dual schema is unknown and no distributed algorithm is known either as far as we know.

However, we are able to show in this chapter how to applying the primal-dual schema to

tackle the FTFL problem. Particularly, we extend the JMS algorithm [44] by charging

each connection of a client so that the total cost is paid collaboratively by all connections

at all clients. We provide approximation analysis for the new algorithm in the general

case wherein all clients have non-uniform connectivity and further present a distributed

implementation of the algorithm.

4.6 Conclusion and Discussion

The essential of fault-tolerant facility location problem is to set up multiple connec-

tions for each client in an optimized manner and possible purpose of doing this includes

providing fault tolerant ability in the case of facility or connection errors, improving

performance via parallel access when the capability of one connection is limited, or pro-

viding the ability to configure system dynamically without stopping service etc. In this

chapter, we studied the QoS-aware object replication for parallel access in the Internet

which is formulated as a problem of maximizing the combined download speed for all

parallel connections at all clients. Combined with a cost function, the problem is further

converted into the metric Fault Tolerant Facility Location (FTFL) problem to minimize

the total cost assuming shortest-path routing is adopted. Due to the NP-hardness of

the problem, we proposed an approximation algorithm which is implemented in a dis-

tributed and asynchronous manner within O(n) rounds of communication, where n is
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the number of surrogate servers in the network. The cost of our solution is no more than

|R| · F ∗ + 2 · C∗ through theoretical analysis, where F ∗ and C∗ are respectively the fa-

cility cost and connection cost in an optimal solution. Extensive numerical experiments

show that the quality of our solutions is comparable to optimal solutions in all cases we

evaluated.



Chapter 5

Coordinated En-Route Web Caching in

Multi-Server Networks

In the last chapter, we considered the content replication problem for parallel access in a

content distribution network. Different from content replication, web caching is to store

web objects dynamically at locations that see the object even if the caching scheme is

not deployed. In this chapter, we consider the en-route web caching problem in a multi-

server network that takes into account all requests (to any server) that pass through the

intermediate nodes (caches) on a response path. The objective is to cache the requested

object optimally among those caches so that system’s total gain is maximized. We

derive efficient dynamic programming based methods for finding optimal solutions to

the problem for the unconstrained case and two QoS-constrained cases respectively.

5.1 Introduction

Web caching [36] is an important technology to enhance the scalability of Web services.

Caching of Web contents (e.g., HTML pages, images) can reduce bandwidth usage,

server load and user’s perceived latency since these contents can be fetched from proxy

caches, which are located more closely than servers to users.

In order to make full use of Web caching, significant research has been con-

ducted in the past decade. These studies include performance optimization in a sin-

93
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gle cache [31, 118], cooperation among multiple caches [67, 43] and caching architec-

tures [131, 108]. Recent advances in caching technology [38, 66] have presented a new

form of caching architecture, namely en-route web caching [11, 110]. In en-route (web)

caching, copies of Web contents are selectively placed in transparent en-route caches

[66] along each response path, requests passing through later are satisfied by an en-route

cache if the requested object is stored, and forwarded to the server otherwise. Different

from traditional en-route caching that does not take into account the loss resulted by

object replacement when making a placement decision, coordinated en-route caching

[127] integrates both object placement and replacement policies into a caching scheme

that produces the maximum net gain after loss deduction. Since coordinated en-route

caching makes caching decisions in a coordinated fashion between object placement and

replacement, it outperforms traditional caching schemes.

Similar to Web caching, deploying multiple servers in a system is an alternative

solution to improve the performance of services. Since deploying multiple servers in

a network (e.g., CDNs [134]) can alleviate both the server load and network latency, it

improves the performance of a network significantly. In addition to this, a multi-server

network has the merit of providing fault tolerance and high reliability. However, the

complex topology of multi-server networks makes Web caching in this context more

challenging.

As far as we know, little work has been done on en-route caching in multi-server

networks. Our previous work in [144] studied coordinated en-route caching in dual-

server networks, where all requests received by nodes on a response path are destined

to two servers at the ends of the path. This chapter extends our previous work by taking

into account all requests (to any server, including those not on the path) that pass through

the intermediate nodes on a response path.

The main contributions of this chapter are: (1) Establish mathematical formulation

for the p-server coordinated en-route caching problem, where p is an arbitrary num-

ber of servers. The problem requires to place the requested object optimally among

intermediate nodes on a response path so that the maximum benefit to the whole sys-

tem is achieved wrt all requests (to any server) that pass through these nodes. (2) Derive
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efficient dynamic programming based methods for finding optimal solutions to the prob-

lem for the unconstrained case and two QoS-constrained cases respectively. (3) Present

caching schemes to show the application of our methods, which are evaluated on dif-

ferent performance metrics through extensive simulation experiments. The experiment

results show that applying our proposed schemes yields a steady performance improve-

ment and achieves desired QoS in a multi-server network.

The rest of the chapter is organized as follows. In Section 5.2, related work on Web

caching is discussed. In Section 5.3, system model and formulation of the problem are

given. A dynamic programming based method for finding the optimal solution to the

unconstrained p-server coordinated en-route caching problem is presented in Section

5.4 and the methods for finding the optimal solution to QoS-constrained p-server coor-

dinated en-route caching problem are presented in Section 5.5. Section 5.6 describes the

experimental results and Section 5.7 is the summary of our work.

5.2 Related Work

En-route Web caching is a prospective technology, which is easy to implement and

costs little additional bandwidth [37]. Despite its simplicity, en-route caching effectively

improves the performance of services by utilizing cache collaboration [7] and selectively

placing copies of Web contents in en-route caches.

On cache collaboration that enables requests unsatisfied in one cache to be satis-

fied in other caches, research was focused on the benefits of cooperative caching for

distributed systems and large-scale systems [69, 131]. In [147], wide-area cache co-

operation was studied under a simple model, in which distances among all nodes in

the network are assumed to be the same. In [63], the authors examined three practi-

cal cooperative placement algorithms for large-scale distributed caches and showed that

cooperative object placement could significantly improve performance compared to lo-

cal replacement algorithms, particularly when the sizes of individual caches were small

compared to the total size of all cacheable objects. In order to make caches cooperate on

a large scale and effectively increase caching population, several caching architectures
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has been proposed [108], including hierarchical architecture [20], distributed architec-

ture [131, 96] and hybrid architecture [131, 77]. En-route Web caching is based on the

hierarchical architecture in a backbone network.

Web caching in a specific architecture comprises two core components: cache place-

ment and content management. Cache placement focuses on the optimal locations of

caches in a network. Danzig et al. [36] observed the advantage of placing caches inside

the backbone rather than at its edges. They showed that the overall reduction in network

FTP traffic is higher with caches inside the backbone (core nodes) rather than on the

backbone edges (external nodes). The optimal method for cache location inside a back-

bone was proposed by Krishinan et al [66]. They formulated the cache location problem

by modeling the flow of data as flows on a graph and presented optimal methods for

both the linear topology and single-source topology.

Content management is the other core component in Web caching. Since the size of

cache memory is limited, some contents should be removed to accommodate new con-

tents when a cache gets full. Many replacement policies [11, 114] have been proposed

in the past, including LRU (Least Recently Used), LFU (Least Frequently Used) and

key-based policies [11]. Cost-based policies were studied recently, which optimizes the

replacement by comparing the loss of gain for different decisions. LNC-R [114] is a

cost-based policy, which uses the normalized loss of gain to select replacement candi-

dates. LNC-R has been shown to be effective in the context of a single proxy server.

In traditional caching schemes, object replacement in each cache is carried out inde-

pendently. Tang et al [127] integrated object replacement with placement and proposed

coordinated en-route Web caching. Coordinated en-route Web caching regards the re-

moval of objects at intermediate nodes as the loss of a caching decision (because it

disables future access to these objects) and then optimizes the decision on a response

path by maximizing the net caching gain. It was shown [127] that coordinated en-route

caching outperforms other schemes significantly in a linear array. Li et al [72] extended

coordinated en-route caching from linear arrays to trees and presented optimal methods

for both unconstrained and constrained cases.

Aforementioned work all assumed that there is only one server in the system. This
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assumption became obsolete with the emergence of various state-of-art networks that

contain a group of servers distributed geographically, such as content distribution net-

works (CDNs) [39] and peer-to-peer (P2P) file sharing systems [123] which allow file

transfer to be performed bi-directionally. A CDN involves creating copies of Web doc-

uments and placing these copies at well-chosen servers, with an assurance of different

levels of consistency when a replica is updated, and redirecting a client to a server such

that the client is optimally served. Qiu et al [98] developed replica placement algorithms

that use workload information to make placement decisions which is crucial to a CDN’s

performance. Mundur and Arankalle [87] addressed the server selection problem for

streaming applications by minimizing the cost of serving a video request as measured

by network distance. Tang et al [129] investigated the problem of placing replicas under

a TTL-based consistency scheme in a tree network and proposed an O(n2)-time algo-

rithm to compute the optimal placement of content replicas. Several research efforts on

CDN design are compared, and features of major CDN projects, including Akamai [39],

Radar [99], SPREAD [110] and Globule [93], are summarized by Sivasubramanian et

al. [120].

However, we observed that the existing caching schemes cannot be applied directly

to these systems. A naive idea is to decompose a multi-server system into multiple sub-

systems each with one server and solve the problem in these single-server systems indi-

vidually. Unfortunately, this approach does not work because solutions to sub-systems

may contradict each other and simply combining them cannot yield an optimal solution

to the original system (see the example in Section 5.3).

Thus, it remains a challenging task to find a way to enable coordinated en-route

caching in multi-server networks that considers all servers in an integrated fashion and

utilizes the advantage of multiple servers to provide QoS guarantees to customers. This

chapter addresses the problem by presenting dynamic programming based solutions for

both the unconstrained case and two QoS-constrained cases. In the next section, we

describe the system model and formulate the problem as that to maximize system’s total

gain.
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5.3 System Model

In a network comprising servers (denoted by set S) and routers (each equipped with a

cache), denote the set of all nodes by V and the set of links by E . When a request that

travels along a path is being served by a server/cache s∗, suppose that the intermediate

nodes passed by the request are denoted by their indicesA = {1, 2, . . . , n} in increasing

order. Note that A is a path determined dynamically by the deployed request routing

scheme according to network status, and may be different in different times. Let fs(x),

x ∈ A, s ∈ S, be the access frequency to server s observed at node x, that equals the

sum of access frequencies of all incoming request flows including those forwarded from

x’s neighbors and that issued at x.

Figure 5.1 illustrates such a snapshot in a network containing three servers. Assume

that before (en-route) placement of cached copies no node except three servers holds

the object, and after placement the object is placed at nodes 2, 4 and 5. Request-flows

toward a server form a tree rooted at the server. That is, toward a server each node has a

unique upstream path and possibly multiple downstream paths. As the result, a node has

a unique nearest upstream node holding a copy of the object, but may have several such

nearest downstream nodes, each on one downstream path. For example, toward server

w node 4 has nearest downstream nodes 2 and 5 holding an object copy after placement.

For notational simplicity, we assume in the snapshot that each node issues no request

(access frequency 0).

Node holds no copy

1 u(s*)

fw(4)

v

Requests to u

fw(5)fw(2)

fu(4)fu(2)

w1               wk-1

fw(3)

fu(3)2 3 4 5 n

a

wNode to place a copy

Server

Requests to v

Requests to w

fu(a)
fw(a)

Figure 5.1: System Model in a 3-Server Network

Our objective is to cache an object in a set of nodes in A along a response path so

that, with respect to (wrt) all requests (to all servers) for the object that pass through the
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nodes on the response path, the total gain of all cached copies is maximized.

As our focus is on en-route caching, we use existing schemes for server selection

and request routing. We also assume routing symmetry as did by many others, including

recently published work [127, 72, 14, 59], i.e., object delivery follows the same path

as its request (in opposite direction). Because of the relative stability of network topol-

ogy and traffic pattern during the short duration of an object delivery session in wired

networks, this assumption is reasonable in most cases.

Though the system model of p-server coordinated en-route caching is similar to its

single-server version [127], the problem becomes more complex when the data flows

from each node are multi-directional. We start formulation of this problem from calcu-

lation of caching gain in the next subsection.

5.3.1 Calculation of Caching Gain

For requests towards server s ∈ S, the miss penalty of object O at node x, denoted by

ms(O, x), is defined as the additional cost (e.g. delay) of accessing the object if it is not

cached at the local node x. Clearly, this additional cost equals the cost of traveling from

x to x’s nearest upstream node that holds a copy of object O before placement. Denote

by UEs(x) ⊆ E the set of links from x to the nearest upstream node holding a copy

of O toward s, and by C(O, e) the cost on link e wrt O. We can compute ms(O, x) by

accumulating the cost on each link before the request is satisfied, i.e.

ms(O, x) =
∑

e∈UEs(x)

C(O, e). (5.1)

Since only the placement of one object is considered, we omit argument O in all

parameters throughout the chapter for notational tidiness if no confusion arises.

E.g., in Figure 5.1. UEu(4) = {〈4, 5〉, 〈5, 6〉, . . . , 〈n, u〉}, UEv(4) =

{〈4, 5〉, 〈5, 6〉, . . . , 〈n, v〉} and UEw(4) = {〈4, w1〉, 〈w1, w2〉, . . . , 〈wk−1, w〉}. Assum-

ing that object delivery requires unit cost for each link, we havemu(4) = mv(4) = n−3

and mw(4) = k.

Let DVs(x) ⊂ V be the set of nodes between x and its nearest downstream node
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x′ holding a copy of O on every path toward s after placement, where x′ is included

if x′ ∈ P and excluded otherwise. For the special case when no such x′ exists on a

path, x′ is set to be the first node on that path and included in DVs(x). E.g., in Figure

5.1, since all nodes issue no request, fu(4) = fu(3) + fu(a), fv(4) = 0, fw(4) =

fw(3) + fw(5) + fw(a); DVu(4) = DVv(4) = {2, 3, w1, . . . , wk−1, a}, as there are three

paths [2, 4), (w, 4) and [a, 4) via 4 toward servers u, v respectively, DVw(4) = {2, 3, 5}.
Suppose P ⊆ A is a set of nodes to place object O (at each node) and for node

x ∈ A, xl ∈ P ∪ {0} and xr ∈ P ∪ {n + 1} are the nearest nodes on the left and right

sides of x. (Suppose 1l = 0 — dummy node and nr = n + 1 — s∗.) Clearly for any x

and s, at least one of xl and xr is contained in DVs(x). We denote by f ′s(xl, x, xr) the

part of fs(x) that is forwarded by xl and xr, and satisfied by the cached copies at xl and

xr. That is,

f ′s(xl, x, xr) =
∑

y∈{xl,xr}∩DVs(x)

fs(y)

=





fs(xl) if xl ∈ DVs(x), xr 6∈ DVs(x),

fs(xr) if xl 6∈ DVs(x), xr ∈ DVs(x),

fs(xl) + fs(xr) if xl, xr ∈ DVs(x).

(5.2)

E.g., in Figure 5.1 we have f ′u(2, 4, 5) = fu(2), f ′v(2, 4, 5) = fv(2) = 0 and

f ′w(2, 4, 5) = fw(2) + fw(5).

Define the caching benefit at node x for a given object to be the cost reduction

for all requests for the object to all servers. Because all requests at xl and from its

downstream nodes are satisfied by xl, and those at xr and from its downstream nodes

are satisfied by xr, caching the object at x will benefit only those requests forwarded

from nodes in the segments (xl, x] (xl → x) and [x, xr) (xr → x) respectively. More

precisely, it will benefit each of these requests by a cost of ms(x) given by equation

5.1, since otherwise the request must go to x’s nearest upstream node holding a copy.

Since there are fs(x)−f ′s(xl, x, xr) requests within these segments in unit time, we have

immediately the following equation to compute caching benefit at node x wrt all servers
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in S:

b(xl, x, xr, S) =
∑

s∈S

{ms(x) · [fs(x)− f ′s(xl, x, xr)]}. (5.3)

E.g., in Figure 5.1 under the unit link-cost assumption we have

b(2, 4, 5, {u, v, w}) = (n− 3) · (fu(4)− f ′u(2, 4, 5)) + 0 + k · (fw(4)− f ′w(2, 4, 5))

= (n− 3)(fu(4)− fu(2)) + k(fw(4)− fw(2)− fw(5))

= (n− 3)fu(a) + kfw(a).

Because of the limit of cache memory, some objects should be removed from the

cache to accommodate a new object and this leads to miss penalties when these re-

moved objects are requested later. We denote the removed objects at x by set Q and the

corresponding caching loss at x wrt server s by ls(x) and wrt all servers in S by l(x, S),

then the net gain of caching the object in P can be computed by formula

G(P, S) =
∑

x∈P

[b(xl, x, xr, S)− l(x, S)]

where

l(x, S) =
∑

s∈S

ls(x) =
∑

s∈S

∑

O′∈Q

ms(O
′, x) · fs(O′, x). (5.4)

In Figure 5.1, consider the situation of placing object O at node 4. Assume Q =

{O′}, and node 4’s nearest upstream nodes holding the removed object O′ are n towards

servers u and v (happen to be the same) and w1 toward server w. By equation 5.4 we

have

l(4, {u, v, w}) =
∑

i=u,v,w

fi(O
′, 4)mi(O

′, 4) = (n−3)(fu(O
′, 4)+fv(O

′, 4))+fw(O′, 4).

To determine set Q, we simply use LNC-R replacement policy [114] for the uncon-

strained p-server caching scheme and the scheme with individual latency constraint. For

object O′ to be replaced, we denote its size by size(O′), the access frequency and miss

penalty wrt server s by fs(O′) and ms(O
′), then LNC-R replacement policy applies the
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function ∑
s∈S fs(O

′) ·ms(O
′)

size(O′)
(5.5)

to select replacement candidates, i.e., remove object O′ with smallest value of
∑

s∈S fs(O
′)ms(O

′)/size(O′) from the cache and repeat this until enough space is avail-

able to accommodate the new object. We also give a priority based method in Subsection

5.5.3 for the average latency constraint.

5.3.2 Problem Formulation

Given network (V , E), a set of p servers S ⊂ V , let A ⊆ V \ S be a set of nodes passed

by a request for object O to server s∗. For any node x ∈ A, the access frequency and

miss penalty for server s, observed at x, are given by fs(x) and ms(x) respectively; the

caching benefit and caching loss wrt all servers, b(xl, x, xr, S) and l(x, S), are computed

by equations 5.3 and 5.4 respectively.

Definition 5.1. The p-Server Coordinated En-Route Caching (p-Server CERC) problem

is to find set P ∗ such that





G(P ∗, S) = max
P⊆A
{G(P, S)} = max

P⊆A
{
∑

x∈P

[b(xl, x, xr, S)− l(x, S)]},

subject to ξ.

(5.6)

where ξ is a set of constraints, |S| = p, and P ∗ is called an optimal solution to formula

5.6.

The setting of ξ will be discussed in Section 5.5 after we address the unconstrained

p-Server CERC problem (ξ = φ) in Section 5.4.

We note that when p = 1, this problem equals the single-server problem solved

by [127] and [72]. However, their methods cannot be used directly to address p-server

problem (p ≥ 2) since the solutions wrt all servers may contradict each other and simply

combining these solutions cannot get the optimal solution to the original network. For

example, we consider a simple linear array with two servers at ends as illustrated in

Figure 5.2. Suppose f0(1) = 4, f0(2) = 1, f0(3) = 0, f3(0) = 0, f3(1) = 1, f3(2) =



Chapter 5. Coordinated En-Route Web Caching in Multi-Server Networks 103

2 and l(1, {0, 3}) = 3, l(2, {0, 3}) = 5. If we decompose the access frequency and

caching loss into two directions and then solve the two subproblems each with single

server as illustrated in subfigures (b) and (c), we get solution {1, 2} after combining

solutions {1} and {2} to the subproblems, which differs from the optimal solution P ∗ =

{1}.

0                       1, l(1)=3              2, l(2)=5                3

1

3 1

1

(a) P ∗ = {1}

0                           l0(1)=1                l0(2)=4

13

l3(1)=2               l3(2)=1                  3

11

(b) P ∗ = {1} (c) P ∗ = {2}
Figure 5.2: An Example of Hardness for Problem Decomposition

5.4 Unconstrained p-Server CERC

In this section, we first derive two algorithms to address the unconstrained p-Server

CERC in Subsection 5.4.1 and 5.4.2, then we present a caching scheme in Subsection

5.4.3 to show the application of our method in practical applications.

Let Ax = (1, 2, . . . , x), x ≤ n be the first x elements in A and Px(xr) the part of

optimal solution which falls in Ax when x ∈ P ∗, i.e., Px(xr) = {. . . , x} = P ∗ ∩ Ax,

where xr indicates the next node to expand the solution. According to formula 5.6,

the total gain of copies in Px(xr) can be denoted by G(Px(xr), S). For simplicity of

notations, we use Gx(xr) instead of G(Px(xr), S), use l(x) and b(xl, x, xr) instead of

l(x, S) and b(xl, x, xr, S) respectively.
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5.4.1 Exhaustive Algorithm

We observe Px(xr) = Pxl
(x) ∪ {x}, i.e., if {. . . , xl, x} is an optimal solution to the

problem in Ax, then {. . . , xl} must be an optimal solution to the problem in Axl
. Con-

sidering all possible value of xl, we have

Gx(xr) = max
1≤xl<x

{Gxl
(x) + b(xl, x, xr)− l(x)}. (5.7)

Note that l(x) will not be affected by removing objects in other location. Thus, we

are able to design a simple exhaustive algorithm which builds a solution Px(xr) from

a smaller solution Pxl
(x) recursively and enumerates all combinations of xl, x and xr

to compute the optimal solution P ∗. Although the exhaustive algorithm produces an

optimal solution, it does not have an optimal runtime and therefore, we devise a dynamic

programming algorithm in the following subsection for better performance.

5.4.2 Dynamic Programming Solution

For any node, there are only two possible caching decisions — placing a copy or not.

Therefore we use Px(xr) = P ∗ ∩ Ax to denote the part of optimal solution which falls

in Ax when x /∈ P ∗ and use Gx(xr) to denote the total gain of copies in Px(xr). Using

the above definition, we have the following proposition.

Proposition 5.1. Given node x in path A = (1, 2, . . . , n) and its nearest node xr on the

right side that holds a copy (2 ≤ xr ≤ n + 1), the part of optimal solution to formula

5.6, i.e. P ∗x (xr), can be obtained by equation

P ∗x (xr) =





Px(xr) if Gx(xr) ≥ Gx(xr),

Px(xr) otherwise.
(5.8)

That is, node x is included in the optimal solution only if placing a copy at x will

give more gain. We now need to show how to compute Gx(xr) and Gx(xr) efficiently

using dynamic programming techniques.

Let last(Px(xr)) be the right-most node in Px(xr), we observe that when x holds a
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copy, the nearest node in P on the left side of x can either be x− 1 or be last(Px−1(x));

when x holds no copy, it can either be x−1 or be last(Px−1(xr)). We have the following

two lemmas to compute Gx̄(xr) and Gx(xr).

Lemma 5.1. Given node x in path A = (1, 2, . . . , n) and its nearest node xr on the

right side that holds a copy (2 ≤ xr ≤ n+ 1), gain Gx̄(xr) equals to G∗x−1(xr), i.e.

Gx(xr) = max{Gx−1(xr), Gx−1(xr)}. (5.9)

Lemma 5.1 shows that the gain of placing the object optimally inAx, without a copy

placed at x, equals the maximum of that inAx−1 without and with a copy placed at x−1.

Proof. When node x holds no copy, we have (x − 1)r = xr and Px(xr) = P ∗x−1(xr).

According to Proposition 5.1, we have the lemma.

Lemma 5.2. Given node x in pathA = (1, 2, . . . , n) and its nearest node xr on the right

side that holds a copy (2 ≤ xr ≤ n+ 1), gain Gx(xr) can be computed by equation

Gx(xr) = max{Gx−1(x) + b(last(Px−1(x)), x, xr)− l(x),

Gx−1(x) + b(x− 1, x, xr))− l(x)}.
(5.10)

Lemma 5.2 states that, when a copy is placed at x, the gain of placing the object

optimally in Ax equals the maximum between the gain in Ax−1 with a copy at x − 1

plus the net gain brought by x and that without a copy at x− 1 plus the net gain brought

by x.

Proof. When node x holds a copy, the nearest copy in P on the right side of x− 1 must

be x, i.e. (x − 1)r = x. Considering the two possibilities of node x − 1, as illustrated

in Figure 5.3, we have xl = last(Px−1(x)) when x does not hold a copy or xl = x − 1

otherwise. So Gx(xr) equals the maximum gain of these two cases.

Since last(Px−1(xr)) and last(Px−1(x)) can be obtained from Px−1(xr) and

Px−1(x) respectively, we now can build an optimal solution to the sub-array Ax from

a shorter sub-array Ax−1. A dynamic programming algorithm eliminates the need of
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Figure 5.3: Decomposition of Caching Gain

enumerating xl, which is required in the exhaustive algorithm, by storing the values of

Px(xr) and Px(xr) for all combination of x and xr. For notational simplicity, let β(x)

denote the difference of the two possible values of Gx(xr) as shown in equation 5.10.

β(x) = Gx−1(x) + b(last(Px−1(x)), x, xr)−Gx−1(x)− b(x− 1, x, xr). (5.11)

Using the above results, we can now show how to compute the optimal solution by

left-ward recursion (right-ward iterative expansion) in the following theorem:

Theorem 5.1. In pathA = (1, 2, . . . , n), the optimal solution to formula 5.6 is Pn(n+1)

if Gn(n + 1) ≥ Gn(n + 1), and Pn(n + 1) otherwise, where Pn̄(n + 1) and Pn(n + 1)

can be computed recursively by the following two equations:

Px(xr) =





Px−1(xr) if Gx−1(xr) ≥ Gx−1(xr),

Px−1(xr) otherwise.
(5.12)

Px(xr) =





Px−1(x) ∪ {x} if β(x) ≥ 0,

Px−1(x) ∪ {x} otherwise.
(5.13)

Proof. Equation 5.2 can be obtained from Proposition 5.1 and Lemma 5.1, equation

5.13 can be obtained from Proposition 5.1 and Lemma 5.2.
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Equation 5.2 shows that the optimal solution in Ax, without a copy at x, equals

that in Ax−1, without or with a copy at x− 1, which has the maximum gain. Similarly,

equation 5.13 gives the optimal solution inAx with a copy at x, i.e., the optimal solution

in Ax−1 with the addition of node x. Note that in this case the gain calculation follows

equation 5.10.

Algorithm 5.1 Unconstrained p-Server CERC

01: Step 1. Initialization
02: G0(xr) = G0(xr) = 0 for any xr, 1 ≤ xr ≤ n+ 1;
03: P0(xr) = P0(xr) = φ for any xr, 1 ≤ xr ≤ n+ 1;

04: Step 2. Iterative procedure
05: for x = 1 upto n
06: for xr = x+ 1 upto n+ 1
07: // According to equation 5.12 in Theorem 5.1
08: if Gx−1(xr) ≥ Gx−1(xr) then
09: Px(xr) = Px−1(xr); (Gx(xr) = Gx−1(xr))
10: else
11: Px(xr) = Px−1(xr); (Gx(xr) = Gx−1(xr))
12: endif
13: // According to equation 5.13 in Theorem 5.1
14: if β(x) ≥ 0 then
15: Px(xr) = Px−1(x)∪{x}; (Gx(xr) = Gx−1(x)+b(last(Px−1(x)), x, xr))
16: else
17: Px(xr) = Px−1(x) ∪ {x}; (Gx(xr) = Gx−1(x) + b(x− 1, x, xr))
18: endif
19: endfor
20: endfor

21: Step 3. Get the optimal solution according to Theorem 5.1
22: if Gn(n+ 1) ≥ Gn(n+ 1) then
23: P ∗ = Pn(n+ 1);
24: else
25: P ∗ = Pn(n+ 1);
26: endif

By Theorem 5.1, the algorithm has a simple form as depicted by Algorithm 5.1:

(1) For the base case x = 0, we can suppose G0(xr) = G0(xr) = 0 and P0(xr) =

P0(xr) = φ for any xr, 1 ≤ xr ≤ n+ 1.

(2) For x ≥ 1, we can apply Theorem 5.1 to obtain the solution from a smaller

problem.
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Figure 5.4: Reuse of Intermediate Results

Table 5.1: Process of Algorithm (in terms of Gx(xr) and Px(xr))

x xr = 1 2 3
0 0, φ 0, φ 0, φ
1̄ 0, φ 0, φ
1 1, {1} 3, {1}
2̄ 3, {1}
2 0, {1, 2}

Algorithm 5.1 saves the results of function calls (G and P ) for later reuse, rather than

recompute them at each invocation. Generally, when Algorithm 5.1 computes Gx(xr),

the result of Gx−1(xr) and Gx−1(xr) can be reused, while it computes Gx(xr), the result

of Gx−1(x) and Gx−1(x) can be reused. The reuse of intermediate results is shown

in Figure 5.4. In this figure, horizontal axis delegates xr, vertical axis delegates x.

Intermediate results Gx(xr) and Gx(xr) are computed level by level as the value of x

increases, from left to right at each level as xr increases. This shows that Gn(n + 1)

and Gn(n + 1) can be computed in O(n2) steps by a traversal of the tree in Figure 5.4

starting from G0(1) and G0(1). So the time complexity of Algorithm 5.1 is dominated

by the computation of β(x) according to equation 5.11. Since Gx−1(x) and Gx−1(x)

have already been computed before computing β(x), b(last(Px−1(x)), x, xr) and b(x−
1, x, xr) can be computed in p steps according to formula 5.3, computing β(x) within

each iteration thus requires O(p) time. This yields a total time complexity of O(pn2)

for Algorithm 5.1.
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We take the example in Figure 5.2 to show the process of Algorithm 5.1. Results of

each step of the process are described in Table 5.1. Since the maximum caching gain

G(P, S) = max{G2(3), G2(3)} = 3, the optimal solution P ∗ = P2(3) = {1}.

5.4.3 Caching Scheme

In this subsection, we describe how to implement our above solution in a caching scheme

that is ready to work in practical applications.

In p-Server CERC, each cache maintains some information on an object (called ob-

ject descriptor), including the values of fs(x),ms(x), s ∈ S and l(x). Among them,

fs(x) is estimated locally by a "sliding window" technique [118] based on request his-

tory and ms(x) is recorded by the last response message from server s. Caching loss

l(x) is estimated according to the LNC-R replacement policy [114]. Since it is techni-

cally infeasible to record all downstream nodes of any node, we record only the last node

in A toward each server, denoted by xs, and compute f ′s(xl, x, xr) simply by checking

whether xl ≤ xs and xr ≥ xs because xl ∈ DVs(x) if xl ≤ xs and xr ∈ DVs(x) if

xr ≥ xs.

Our caching scheme works as follows: When a request passes through a node, the

node checks the requested object in its cache. If the object is found, the node makes

a caching decision and sends a response message to the client; otherwise, the node

attaches the information of fs(x),ms(x), s ∈ S and l(x) to the request message and

forwards it to the next node until a server (or a cache that holds the requested object) is

reached. At a node holding the requested object, a caching decision is made by executing

Algorithm 5.1 with the object information at all intermediate nodes being given. Then,

the node packs the caching decision together with the required object into a response

message and sends it back to the client. When the response message passes through an

intermediate node, the node adjusts the contents in its cache according to the caching

decision. In this process, miss penalties of both the requested object and the removed

objects should be updated. The miss penalty of the requested object at each node is

updated by accumulating the cost on each link that the response has traveled since the
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last node which was instructed to hold a copy. To avoid unnecessary communication

overhead, miss penalties of the removed objects in the neighboring servers are updated

when subsequent requests (responses) passing through the current node reaches these

servers, by accumulating the cost of the links the request (response) has traversed.

5.4.4 Discussion

5.4.4.1 Optimization

The method in Subsection 5.4.2 looks for optimal solutions in a candidate set comprising

all intermediate nodes that the request message has passed through. Here we optimize

the method by reducing the size of the candidate set.

First, we give a proposition to show the property of nodes which are instructed to

hold a copy in a caching decision.

Proposition 5.2. If x is a node in the optimal solution to formula 5.6, then we have
∑

s∈Sms(x)fs(x)− l(x) ≥ 0.

Proof. Suppose there is a node c ∈ P such that
∑

s∈Sms(c)fs(c)− l(c) < 0. Let node b

be the nearest node in P ∪{0} on the left side and node d the nearest node in P ∪{n+1}
on the right side. We define b(0l, 0, 0r) = l(0) = b(n+1l, n+1, n+1r) = l(n+1) = 0.

Then we have b(b, c, d)− l(c) =
∑

s∈Sms(c)(fs(c)−f ′s(b, c, d))− l(c) < 0, b(bl, b, c) <

b(bl, b, d) and b(c, d, dr) < b(b, d, dr). So, we have

G(P ) =
∑

x<b∨x>d

(b(xl, x, xr)− l(x)) + b(bl, b, c)− l(b)

+b(b, c, d)− l(c) + b(c, d, dr)− l(d)

<
∑

x<b∨x>d

(b(xl, x, xr)− l(x)) + b(bl, b, d)− l(b)

+b(b, d, dr)− l(d)

= G(P \ {c}).

From the inequality, we know that P \ {c} is a better solution than P , which contradicts

the fact that P is an optimal solution. The proposition is proven.
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We say that nodes satisfying this proposition are locally beneficial. The proposition

implies that we should only consider placing copies among theses locally beneficial

nodes.

5.4.4.2 Impact of Routing asymmetry

Routing asymmetry, i.e. response may not follow the same path as the request, arises

when a network has a frequently changing topology and traffic pattern, e,g, a wireless

network containing a large number of mobile nodes. Our scheme can still be used

when the routing is asymmetrical, however the solution deployed practically in this

case is not optimal and optimal caching scheme in this case is still an open problem.

Specifically, for a request path A from a client to a server/cache holding the desired

object, let B denote the response path from that server/cache to the client. Clearly

P ⊆ (A \ B) ∪ (A ∩ B). For each node x ∈ P , caching remains the same as in

the routing symmetry case if x ∈ A ∩ B, and is made at a node in B that is of the best

interest (e.g. closest) to x instead at x in order to avoid additional transfer and as well

as retain a maximal amount of the original benefit of caching at x otherwise.

5.4.4.3 Server selection and cache consistency

Our scheme can be combined with a simple strategy of best server selection: select

the server that has the minimum access cost (to the request issuer) among all servers.

This cost can be accumulated distance, delay, miss penalty or a combination of them

as desired by applications. The best server is chosen by each request dynamically at

the time prior to request routing. Cache consistency can be maintained by deploying a

server invalidation scheme [65] that requires each server to keep track of a list of caches

and send an update message to them upon detecting any change.

5.5 QoS-Aware p-Server CERC

In unconstrained p-Server CERC, only the access frequency of an object is considered.

This is appropriate in a best-effort network because Web contents having the same ac-
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cess frequency are treated equally. However, it is not the case when the priorities of

different Web contents are concerned in a capacity-limited network. In this situation,

quality of service should be introduced.

Quality of Service (QoS) [140] refers to control mechanisms that can provide dif-

ferent priorities to different users and guarantee a certain level of performance to a data

flow in accordance with requests from applications. QoS guarantees are very important

in delay-sensitive applications and capacity-limited networks. As far as an ISP (Internet

Service Provider) is concerned, there are two types of QoS provided, which are respec-

tively designed for satisfying the requirements of content providers and the requirements

of content consumers. Generally speaking, QoS requirements of these two types of cus-

tomers are different. Content consumers are concerned with the perceived latency on

individual customers, while content providers are concerned with the average latency

perceived by all customers. In this section, we propose two constraint-based approaches

to solve p-Server CERC wrt these QoS requirements.

5.5.1 QoS Constraints

We consider the following settings of ξ, i.e. set of constraints (see Section 5.3), for QoS

requirements of individual latency and average latency:

3 ∀x ∈ A \ P , α(x, xr) = d(x, xr)− q(x) ≤ 0.

In this constraint, d(x, xr) is the cost (e.g., delay) of all links between x and

xr, q(x) is the QoS requirement at node x. This constraint states that each cost

perceived by an individual node should be smaller than the QoS requirement at

that node.

3 d(x, xr) = m∗

|P |+1
≤ q(O), x ∈ {0} ∪ P .

In this constraint, node 0 is a dummy node, m∗ ≈ ms∗(1) is the total miss penalty

on the whole path, |P | is the number of placed copies in solution P and q(O)

is the QoS requirement of object O. This constraint states that the average cost

perceived by all nodes should be smaller than the QoS requirement of object O.
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5.5.1.1 Individual Latency Constrained p-Server CERC

When the QoS constraint on individual latency is concerned, the problem can be formu-

lated as 



G(P ∗, S) = max
P⊆A
{
∑

x∈P

[b(xl, x, xr)− l(x)]}.

subject to ∀x ∈ A \ P ∗, α(x, xr) ≤ 0.

(5.14)

We use Px(xr) = P ∗ ∩ Ax to denote the part of optimal solution which falls in Ax
when x ∈ P ∗ and Px̄(xr) the part of optimal solution when x /∈ P ∗. The gains of copies

in Px(xr) and Px̄(xr) are denoted respectively by Gx(xr) and Gx̄(xr), then we have the

following proposition.

Proposition 5.3. Given node x in path A = (1, 2, . . . , n) and its nearest node xr on the

right side that holds a copy (2 ≤ xr ≤ n + 1), the part of optimal solution to formula

5.14, i.e. P ∗x (xr), can be obtained from equation

P ∗x (xr) =





Px(xr) if Gx(xr) ≥ Gx(xr) and α(x, xr) ≤ 0,

Px(xr) otherwise.
(5.15)

Using the same definition of β(x) as in equation 5.11, we have the following two

lemmas to compute Gx̄(xr) and Gx(xr).

Lemma 5.3. Given node x in pathA = (1, 2, . . . , n) and its nearest node xr on the right

side that holds a copy (2 ≤ xr ≤ n+ 1), gain Gx(xr) can be computed by equation

Gx(xr) =





Gx−1(xr) if Gx−1(xr) ≥ Gx−1(xr) and α(x− 1, xr) ≤ 0,

Gx−1(xr) otherwise.
(5.16)

Proof. When node x holds no copy, we have Px(xr) = P ∗x−1(xr) because (x−1)r = xr.

According to Proposition 5.3, we have the lemma:

Lemma 5.4. Given node x in path A = (1, 2, . . . , n) and its nearest node xr on the

right side that holds a copy (2 ≤ xr ≤ n + 1), gain Gx(xr) can be computed by

Gx−1(x) + b(last(Px−1(x)), x, xr) − l(x) if β(x) ≥ 0 and α(x − 1, x) ≤ 0, otherwise

Gx−1(x) + b(x− 1, x, xr)− l(x).
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Proof. When node x holds a copy, x must be the nearest node at the right side of x −
1 in P , i.e. (x − 1)r = x. Consider the two possibilities of node x − 1, we have

xl = last(Px−1(x)) if no copy at x − 1 or xl = x − 1 otherwise. The lemma follows

immediately by Proposition 5.3.

Now, we can build an optimal solution to the sub-array Ax from a shorter sub-array

Ax−1. We have thus the following theorem:

Algorithm 5.2 Individual Latency Constrained p-Server CERC

01: Step 1. Initialization
02: G0(xr) = G0(xr) = 0 for any xr, 1 ≤ xr ≤ n+ 1;
03: P0(xr) = P0(xr) = φ for any xr, 1 ≤ xr ≤ n+ 1;

04: Step 2. Iterative procedure
05: for x = 1 upto n
06: for xr = x+ 1 upto n+ 1
07: // According to equation 5.17 in Theorem 5.2
08: if Gx−1(xr) ≥ Gx−1(xr) and α(x− 1, xr) ≤ 0 then
09: Px(xr) = Px−1(xr);
10: else
11: Px(xr) = Px−1(xr);
12: endif
13: // According to equation 5.18 in Theorem 5.2
14: if β(x) ≥ 0 and α(x− 1, x) ≤ 0 then
15: Px(xr) = Px−1(x) ∪ {x};
16: else
17: Px(xr) = Px−1(x) ∪ {x};
18: endif
19: endfor
20: endfor

21: Step 3. Get the optimal solution according to Theorem 5.2
22: if Gn(n+ 1) ≥ Gn(n+ 1) and α(n, n+ 1) ≤ 0 then
23: P ∗ = Pn(n+ 1);
24: else
25: P ∗ = Pn(n+ 1);
26: endif

Theorem 5.2. In path A = (1, 2, . . . , n), the optimal solution of formula 5.14 is

Pn(n + 1) if Gn(n + 1) ≥ Gn(n + 1) and α(n, n + 1) ≤ 0, and Pn(n + 1) other-

wise, where Pn̄(k, n+1) and Pn(k, n+1) can be computed recursively by the following
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two equations:

Px(xr) =





Px−1(xr) if Gx−1(xr) ≥ Gx−1(xr) and α(x− 1, xr) ≤ 0,

Px−1(xr) otherwise.
(5.17)

Px(xr) =





Px−1(x) ∪ {x} if β(x) ≥ 0 and α(x− 1, x) ≤ 0,

Px−1(x) ∪ {x} otherwise.
(5.18)

Proof. Equation 5.17 can be obtained from Proposition 5.3 and Lemma 5.3, equation

5.18 can be obtained from Proposition 5.3 and Lemma 5.4.

Our algorithm for the individual-latency-constrained p-Server CERC is depicted by

Algorithm 5.2. The structure of Algorithm 5.2 is same as Algorithm 5.1 except that

constraint α is added in all conditions. So the time complexity of Algorithm 5.2 is also

O(pn2).

5.5.1.2 Average Latency Constrained p-Server CERC

QoS constraint on average latency d(x, xr) = m∗

|P |+1
≤ q(O) can be transferred to a

constraint on the number of copies, i.e. |P | ≥ m∗/q(O)− 1. We first consider exactly-

k-copies constraint and formulate the problem as





G(P ∗, S) = max
P⊆A
{
∑

x∈P

[b(xl, x, xr)− l(x)]},

subject to |P | = k(m∗, q(O)),

(5.19)

where the required number of copies, i. e. k, is no more than the total number of nodes

on the path (otherwise there is no solution to the problem). The specific value of k is

usually given by a table according to the value of m∗ and q(O). Further, we define

Px(j, xr), j ≤ min{x, k} as the part of optimal solution comprising j copies that falls

in Ax when x ∈ P ∗ and Px(j, xr), j ≤ min{x − 1, k} as the part of optimal solution

when x /∈ P ∗. Gx(j, xr) and Gx(j, xr) are the total gains respectively to Px(j, xr) and

Px(j, xr). Then, we have the following proposition.
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Proposition 5.4. Given node x in path A = (1, 2, . . . , n) and its nearest node xr on the

right side that holds a copy (2 ≤ xr ≤ n + 1), the part of optimal solution to formula

5.19, i.e. P ∗x (j, xr), can be obtained from equation

P ∗x (j, xr) =





Px(j, xr) if Gx(j, xr) ≥ Gx(j, xr),

Px(j, xr) otherwise.
(5.20)

We have the following two lemmas to compute Gx̄(xr) and Gx(xr).

Lemma 5.5. Given node x in path A = (1, 2, . . . , n) and its nearest node xr on the

right side that holds a copy (2 ≤ xr ≤ n+ 1), gain Gx(j, xr) equals to G∗x−1(j, xr), i.e.

Gx(j, xr) = max{Gx−1(j, xr), Gx−1(j, xr)}. (5.21)

Proof. When node x holds no copy, since (x − 1)r = xr, we have Px(j, xr) =

P ∗x−1(j, xr). The lemma follows directly by Proposition 5.4.

Lemma 5.6. Given node x in pathA = (1, 2, . . . , n) and its nearest node xr on the right

side that holds a copy (2 ≤ xr ≤ n+ 1), gain Gx(xr) can be computed by equation

Gx−1(j, xr) = max{Gx−1(j − 1, x) + b(last(Px−1(x)), x, xr)− l(x),

Gx−1(j − 1, x) + b(x− 1, x, xr)− l(x)}. (5.22)

Proof. When node x holds a copy, x must be the nearest node on the right side of x− 1

in P , i.e. (x − 1)r = x. Considering the two possibilities of node x − 1, we have

xl = last(Px−1(j, x)) or xl = x − 1. So the lemma holds according to Proposition

5.4.

Now, we can build an optimal solution to the sub-array Ax from a shorter sub-array

Ax−1. Suppose β(j, x) = Gx−1(j−1, xr)+b(last(Px−1(xr)), x, xr)−Gx−1(j−1, xr)−
b(x− 1, x, xr), we have the following theorem.

Theorem 5.3. In path A = (1, 2, . . . , n), the optimal solution of formula 5.19 is

Pn(k, n+ 1) if Gn(k, n+ 1) ≥ Gn(k, s∗), and Pn(k, s∗) otherwise, where Pn̄(k, n+ 1)
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and Pn(k, n+ 1) can be computed recursively by the following two equations:

Px(j, xr) =





Px−1(j, xr) if Gx−1(j, xr) ≥ Gx−1(j, xr),

Px−1(j, xr) otherwise.
(5.23)

Px(j, xr) =





Px−1(j − 1, x) ∪ {x} if β(j, x) ≥ 0,

Px−1(j − 1, x) ∪ {x} otherwise.
(5.24)

Proof. Equation 5.23 can be obtained from Proposition 5.4 and Lemma 5.5, equation

5.24 can be obtained from Proposition 5.4 and Lemma 5.6.

Algorithm 5.3 Average Latency Constrained p-Server CERC

01: Step 1. Initialization
02: G0(0, xr) = G0(0, xr) = 0 for any xr, 1 ≤ xr ≤ n+ 1;
03: P0(0, xr) = P0(0, xr) = φ for any xr, 1 ≤ xr ≤ n+ 1;

04: Step 2. Iterative procedure
05: for x = 1 upto n
06: for xr = x+ 1 upto n+ 1
07: for j = 0 upto min{x, p} do
08: // According to equation 5.23 in Theorem 5.3
09: if Gx−1(j, xr) ≥ Gx−1(j, xr) then
10: Px(j, xr) = Px−1(j, xr);
11: else
12: Px(j, xr) = Px−1(j, xr);
13: endif
14: // According to equation 5.24 in Theorem 5.3
15: if β(j, x) ≥ 0 then
16: Px(j, xr) = Px−1(j − 1, x) ∪ {x};
17: else
18: Px(j, xr) = Px−1(j − 1, x) ∪ {x};
19: endif
20: endfor
21: endfor
22: enddo

23: Step 3. Get the optimal solution according to Theorem 5.3
24: if Gn(k, n+ 1) ≥ Gn(k, n+ 1) then
24: P ∗ = Pn(k, n+ 1);
26: else
27: P ∗ = Pn(k, n+ 1);
28: endif
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Now, the algorithm becomes straightforward:

(1) For the base case x = 0, we can suppose G0(0, xr) = G0(0, xr) = 0 and

P0(0, xr) = P0(0, xr) = φ for any xr, 1 ≤ xr ≤ n+ 1;

(2) For x ≥ 1, we can apply Theorem 5.3 to obtain the solution from a smaller

sub-problem.

Our algorithm for the average-latency-constrained p-Server CERC (exactly-k-

copies) is depicted by Algorithm 5.3.

The structure of Algorithm 5.3 is similar to Algorithm 5.1, except that it has one

more nested loop on j. So the time complexity of Algorithm 5.3 is at most k times

of that of Algorithm 5.1, i.e., O(pkn2). We also note that, in Algorithm 5.3, not only

the solution corresponding to constraint exactly-k-copies is computed, but also for any

exactly-i-copies constraint (i ≤ k), the solution is computed.

5.5.2 Extended Constraints on Copy Number

The previous policy controls the quality of service by specifying the number of copies

needed on a response path. However, sometimes we may need more flexible policies to

control a system. This can be achieved by adapting previous algorithm. For example,

our algorithm can be easily adapted to the following QoS constraints.

5.5.2.1 At most k copies

To limit the resources occupied by an object so that other objects have sufficient re-

sources as well, we propose constraint at-most-k-copies. From the previous subsection,

we know that wrt a constraint exactly-k-copies, the solutions satisfying exactly-i-copies

(i ≤ k) are all obtained by Algorithm 5.3, so the only task left is to find the maximum

gain of these solutions. The total time complexity of the algorithm under constraint

at-most-k-copies follows Algorithm 5.3, i.e., O(pkn2). We also note that this constraint

has the same effect as the unconstrained case when k ≥ k∗, where k∗ is the number of

copies in the optimal solution to the unconstrained case. However, It’s a little surprising

when we learn from the experiments that this constraint does not always have the same
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effect as exactly-k-copies when k < k∗, although most of the time it is true.

5.5.2.2 At least k copies

As illustrated in the previous subsection, the QoS requirement on average latency can be

transformed to at-least-k-copies. In this case, we set k = n, then the solutions satisfying

exactly-i-copies (i ≤ n) are all obtained by Algorithm 5.3 and the only task left is to

find the maximum gain among these solutions which can be done in time O(n). So the

total time complexity of the algorithm under constraint at-least-k-copies equals that of

Algorithm 5.3 when k = n, i.e., O(pn3). We also note that this constraint has the same

effect as the unconstrained case when k ≤ k∗, where k∗ is the number of copies in the

optimal solution in the unconstrained case. However, the experiments show again that

this constraint does not always have the same effect as exactly-k-copies when k > k∗.

5.5.3 QoS-Aware Caching Schemes

A QoS-aware caching scheme also needs to maintain object descriptors in each cache,

including access frequency, miss penalty and caching loss. When the constraint on

individual latency is concerned, in addition to fs(x),ms(x) and l(x), q(x) should also be

maintained at each node and attached to a request message when it passes through. For

the constraint on average latency, a performance table should be estimated in advance to

show the number of copies needed as a function of the total miss penalty and the QoS

requirement of the object, denoted by k(m∗, q(O)). In this case, our QoS-aware caching

scheme works as follows:

When a request is being forwarded to a server, each node on the path piggybacks the

required information (including fs(x),ms(x) and l(x)) on the request message. When

the request arrives at a server (or a cache holding the requested object), the server first

computes the value of k according to function k(m∗, q(O)) and then executes Algorithm

5.3 to obtain a caching decision based on the piggybacked information. Finally, the

server sends the decision, together with the requested object, back to the client node.

Along the way, intermediate nodes on the path adjust their cache contents according to
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the caching decision. If a node is instructed to cache the object, then the content of its

cache is updated according to the replacement policy deployed.

We note that traditional replacement policy does not take QoS requirement (or prior-

ity) into account. For example, LNC-R replacement policy [114] applies the formula 5.5

to select replacement candidates. In such a policy, an object O′ of higher priority will

be replaced before those of lower priorities since its miss penalty (m(O′)) is smaller for

the same access frequency (f(O′)) and size (s(O′)). Here, we normalize formula 5.5 by

the priority (i.e. QoS requirement) of the object and use function LNP (loss normalized

by priority) ∑
s∈S(fs(O

′)ms(O
′))

size(O′)q(O′)
(5.25)

to select replacement candidates. According to this policy, those objects with small-

est value of expression (5.25) will be removed from the cache until enough space is

available to accommodate a new object.

5.6 Simulation Experiments

5.6.1 Simulation Model

5.6.1.1 Parameter settings

We implemented our schemes using simulation experiments as did in the literature by

others [126, 129, 14, 59] on networks comprising multiple servers and a large number

of routers. As there is no real trace data available in the open literature which we can

use to simulate our caching schemes, we generate the topologies of the network from

empirical results by the Tier program [19], request rate at each router randomly under

uniform distribution, and access pattern (frequency to a specific object) following Zipf

parameters. The network is composed of a Wide Area Network (WAN) and a number

of Metropolitan Area Networks (MANs, a term used in Tiers). The WAN is used as a

core network and each MAN acts as an edge network (or access network). Table 5.2

shows the parameters and their values used in our experiments. These values are chosen

similar to those in [134].
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Table 5.2: Parameter Settings

Parameters Value
Total number of nodes 320

WAN nodes / MAN nodes 1:1
Number of network links 506

Number of sites 32
Average delay of WAN links 0.5 second
Average delay of MAN links 0.06 second
Number of objects per site 2000

Relative cache size 4%
Request rate U(1,9)/sec
Object size average size: 30KB

hybrid distribution [9]
Access frequency server: Zipf, 1/iα, α = 0.8

object: Zipf, 1/jβ , β = 0.8

Among these parameters, cache size is described as the total relative size of all ob-

jects available in the content server and the object sizes follow the distribution described

in [9] with the average size 30KB. To simulate the requests made by the clients, a contin-

uous request stream is randomly generated at each node and the average request rate of

each node follows the distribution of U(1, 9), where U(x, y) denotes the uniform distri-

bution between x and y. User access pattern [27] is the character of user behavior when

requesting documents. Some early studies [15] gave evidence that the relative frequency

of web pages follows Zipf’s law, which states that the relative frequency of a request for

the ith most popular web page is proportional to 1/i.

In the experiments, routing paths from all nodes to a given server are set to be the

shortest-path tree rooted at the server. The server to respond is selected dynamically

according to a minimum cost as described in Section IV-D. The cached copies are as-

sumed to be consistent with those on the servers to facilitate performance comparison

among different caching schemes.

5.6.1.2 Caching schemes evaluated

The objective of simulation experiments is to evaluate the feasibility, effectiveness and

scalability of our proposed schemes. We design four groups of experiments to evaluate
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Table 5.3: Groups of Experiments

Group Parameters Constraints # of Servers
1 Cache size Unconstrained 4
2 Access pattern Unconstrained 4

# of Copies Exactly-k-copies 2
At-most-k-copies 2
At-least-k-copies 2

4 # of Servers Unconstrained 2,4,8,16

the performance of our schemes in different aspects. The effectiveness of our schemes

are shown in the first two groups of experiments through comparisons with applying

single-server en-route caching in a 4-server network and its decomposed 1-server sub-

networks. First, we evaluate the performance improvement with the increase of cache

size to show the feasibility of deploying our schemes in a 4-server network. Then we

perform similar comparisons for different access patterns measured by Zpif parameters.

The impacts of the number of cache copies and number of deployed servers on our

schemes are also evaluated in the last two groups of experiments. In the third group,

we evaluate the QoS performance on specific number of (cache) copies for deployment

of our schemes with different constraints. Finally, the performance on a wide range of

server numbers is evaluated to show the scalability of proposed schemes. Our compar-

isons are made on the metrics of average access latency, cache hit ratio, highest server

load and average bandwidth consumption because they are the major performance pa-

rameters in the caching literature.

As all our caching schemes exhibit similar properties in performance, for illustration

simplicity and as well as coverage of all schemes, we use the unconstrained scheme in

group 1, 2 and 4 experiments, and three constrained schemes in group 3 experiments.

The detailed information of the four groups is listed in Table 5.3.

5.6.2 Result of Experiments

5.6.2.1 Impact of cache size



Chapter 5. Coordinated En-Route Web Caching in Multi-Server Networks 123

4

3.5

3se
c)

2.5
y 

(
La

te
nc

2es
s 

c

1.5

ra
ge

 A
c

0

0.5

1

0 0.04 0.12 0.4 1.2 4 12

Av
e

Relative Cache Size (% of all contents per node)

CERC (1-Server SubNetworks)
CERC (4-Server Network)
4-Server CERC
Without caching scheme 

(a)
0.9

0.8 CERC (1-Server SubNetworks)
CERC (4-Server Network)

0.7 4-Server CERC

0.6

0.5

H
it 

R
at

io

0.4

0.3

0

0.1

0.2

0.04 0.12 0.4 1.2 4 12

Relative Cache Size (% of all contents per node)

(b)

Figure 5.5: Impact of Cache Size

In this experiment, we compare the performances of three different schemes. We

implement the currently known best single-server coordinated en-route caching scheme

[127] in a 4-server network and its decomposed 1-server subnetworks, as two direct

applications of existing single-server caching techniques in a multi-server environment,

and our multi-server caching scheme in the same network. The performances of these

schemes on average access latency and hit ratio vs relative cache size are evaluated and
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compared in Figure 5.5.

First, the experiments were made across a wide range of cache sizes, from 0.04

percent to 12 percent. Metrics of the average access latency and hit ratio are chosen

to evaluate the performance of our unconstrained scheme, where access latency is the

latency perceived by users and hit ratio is the ratio of the number of requests served

by caches to the number of total requests. For the purpose of comparison, average ac-

cess latency is also evaluated when no caching scheme is employed as shown by square

points in Figure 5.5. Figure 5.5(a) shows that deployment of caching scheme is benefi-

cial when the relative cache size reaches around 0.04% and performance improvement

increases with the increase of cache size. Figure 5.5(b) shows that hit ratio increases

with the increase of relative cache size. Hit ratio becomes zero when no caching scheme

is deployed. But considering the expensive cost of cache memory, an optimal method

will involve an appropriate trade-off between cache cost and cache performance.

5.6.2.2 Impact of access pattern

Here, we do the same comparison in a variety of access frequency distributions

measured by Zipf parameters to show the impact of access pattern. The Zipf parameters

for servers and objects (i.e., α and β) are assigned equal values between 0.2 and 1.2.

Figure 5.6(a) shows that our scheme has significantly lower average access latency than

that of two direct applications of single-server caching. Similarly, Figure 5.6(b) shows

that the hit ratio for our scheme is consistently higher than that of other two schemes.

In this two figures, we find that the relative performance difference among the caching

schemes is not very large when Zipf parameter is very small or very large. This is

because all objects have similar access frequencies when the parameter is very small

and only a few objects are accessed very frequently when the parameter is very large.

From the above figures, we can conclude that our scheme provides a steady perfor-

mance improvement over direct applications of single-server caching for different cache

sizes.
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Figure 5.6: Impact of Access Pattern

5.6.2.3 Impact of the number of cached copies

In this group of experiments, we evaluate the QoS performance of our constrained

schemes wrt different numbers of cached copies of object(s). To facilitate measurement,

we assume all copies are distributed uniformly in the network. Figure 5.7 shows the

relation between the average access latency and the number of copies, where three types
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Figure 5.7: Impact of the Number of Copies

of constraints are compared. The experiments in this group are made with two servers

and 0.4% relative cache size.

Figure 5.7(a) shows individual scheme’s latency for different numbers of copies

within 10 hops from which it is easy to see that the performances of all schemes in-

crease steadily with the increase of the number of copies. However, if the number of

copies of all objects increases continually, system performance fluctuates at some degree
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as shown in Figure 5.7(b). The reason of this phenomenon is that system performance

is also affected by the speed of content exchange in caches when the average number of

copies of all objects increases continually. In this case, we find that the constraint at-

most-k-copies is very useful to avoid system unsteadiness. As we can see from Figure

5.7, the matrices corresponding to exactly-k-copies reaches an extreme value when the

average number of copies is set around 200. This observation indicates that the optimal

number of copies in the unconstrained case may be a value in this region. Therefore, the

system can work in a good condition when fewer than 250 copies are deployed on aver-

age. We also note that the performance of the constrained schemes are always inferior

to the unconstrained scheme in the same environment, this is due to the computational

overhead brought in to the scheme by each constraint.

5.6.2.4 Impact of the number of servers

Our last group of experiments is designed to show the scalability of our schemes and

their applicability in networks deploying different numbers of servers. We evaluate the

performance of our unconstrained scheme, in the metrics of bandwidth consumption in

Figure 5.8(a) and server load in Figure 5.8(b) respectively, wrt deployment of different

numbers of servers. The experiments are done for three different settings of cache size:

0.4%, 1.2% and 4%. The results in 5.8 show clearly that in both bandwidth consumption

and server load the performance of our scheme improves consistently with the increase

of servers deployed. This improvement becomes weaker as the number of deployed

servers is greater. This is because a system deploying more servers has the capability

of storing an object in more locations and thus receives less benefit from caching the

object by our scheme. Another interesting observation we can get from Figure 5.8 is

that the increase of servers brings more benefit when the cache size is small than that

when the cache size is large. This is due to the functional similarity of caches and servers

in providing service to clients. When cache size is large, caches as proxies of servers

are more powerful and capable of providing some services which otherwise have to

be supplied by servers, making performance improvement by adding more servers less
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Figure 5.8: Impact of the Number of Servers

significant.

5.7 Concluding Remarks

Deploying multiple servers and caching an object at selective sites are important tech-

nologies to improve the efficiency of content delivery and the scalability of network
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services. Existing single-server caching schemes in general do not work in multi-server

systems. In this chapter, we formulated the coordinated en-route caching problem in

a multi-server network, which takes into account all requests that pass through the

intermediate nodes of a response path, as a system gain maximization problem. Ap-

plying dynamic programming techniques, we developed efficient methods for finding

optimal solutions to this problem for the unconstrained case and two QoS-constrained

cases respectively. For each case, we presented a caching scheme as application of the

corresponding method. We evaluated the proposed schemes on different performance

metrics through extensive simulation experiments. The experiment results show that

these schemes all yield a steady performance improvement and achieve desired QoS in

a multi-server network.

Our caching schemes can be directly applied in CDNs and P2P systems to improve

system performance and service scalability. Similar to the pioneering work of Tang et

al. in single-server networks [127], our proposed methods for multi-server networks

can also be extended for solving the coordinated en-route web caching problem in dif-

ferent system settings, such as specific network topologies (e.g. tree) and networks with

transcoding-enabled proxies.

If caching is performed in non en-route fashion, i.e., the response path may not fol-

low the request path, our proposed caching schemes still work correctly provided all

nodes on the response path together with their request frequencies for the object are

known at the time of object delivery. This is because the performance of our schemes

depends only on the knowledge of request frequency recorded at every node on the re-

sponse path which can be completely different from the request path. If the response

path is not known, which may occur in many practical situations, it is desirable to per-

form caching in an ad hoc manner that makes decision based on the knowledge of only

those nodes already passed as delivery goes. Applying appropriate techniques in ap-

proximation and online algorithms, we can make the caching achieve local optimum

with a good approximation ratio. Our proposed caching schemes will provide useful

knowledge and experience for further developing effective caching methods in this kind

of new environments.
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Conclusion and Future Work

6.1 Conclusion

With the proliferation of the Internet, popular Web services often suffer from congestion

due to large demands for access. Replicating these services across the network strate-

gically is an effective method to improve performance and achieve scalability. Content

replication techniques are critical for the content delivery infrastructure, especially to

bandwidth-hungry applications like online video casting, high resolution photo sharing,

query based interactions, and multimedia content downloading. Significant work has

been done in this area to improve the effectiveness of relevant techniques in content

delivery.

This thesis covers three issues in content delivery: replica server (facility) place-

ment, content replication and en-route caching. Traditionally, these problems are studied

in operations research, Content Distribution Network and web caching. In this thesis,

we combine related work in these fields into a single research theme on efficient con-

tent delivery and put focus on algorithms for replica placement of servers and contents.

In essence, these issues share a basic objective — to optimize the location of replicas

and improve the efficiency of content delivery, which includes selection of sites to de-

ploy replica servers, selection of replica servers to host replica contents, and selection

of en-route caches on the delivery path to store contents dynamically. Considering the

requirement of stakeholders including high availability of services, scalability of infras-

130
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tructure and efficiency in content management, conventional techniques face serious

challenges to be widely used in the future.

In order to meet aforementioned requirements, we specifically studied three topics in

this thesis: replica server placement for fault tolerance, content replication for parallel

access and en-route caching in multi-server networks. On the first topic, we focused

on the placement of replica servers to achieve fault tolerance capability by defining an

optimization problem called Fault Tolerant Facility Allocation (FTFA). The problem is

distinct from the well-know Fault-Tolerant Facility Location (FTFL) by relaxing the

number of facilities that can be deployed at each site. Using this model usually results

to cheaper cost in network design than the FTFL model because of the relaxation. Due

to the NP-hardness of the problem, we propose three polynomial-time algorithms which

achieve approximation factor 1.861, 1.61 and 1.52 respectively. These results are based

on the existing factor-revealing LPs in the literature, which are better than the best-know

approximation factor for FTFL (2.076). We also studied a variant of the problem, Fault

Tolerant k-Facility Allocation, by specifying an upper bound of the total facility numbers

that can be deployed and we present a 4-approximation algorithm for the problem.

On the second topic, we studied QoS-aware replication technique for parallel access

to the replicated content in the Internet and show that this problem can be modeled as

the Fault-Tolerant Facility Location (FTFL) problem where facilities to be deployed

are digital contents. We propose a distributed algorithm to find potential locations to

deploy contents in order to suit the environment where the global knowledge of network

status is impractical to obtain. As far as we know, performance guarantee of similar

algorithms based on primal-dual schema (including centralized algorithms) for FTFL

remains unknown except a special case in which all cities have a uniform connectivity

requirement. We provide an upper bound of our solution which is between 2 and R

times of the optimal solution in the nonuniform case, where R is the maximum number

of parallel connections. Extensive numerical experiments show that the cost of our

solutions is comparable (within 4% error) to the optimal solutions.

On the third topic, we studied the problem of en-route web caching problem in a

multi-server network. The problem differs from the single-server version as it needs
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to consider all requests (to any server for an object) which pass through the intermedi-

ate nodes on a request/response path. We derive efficient dynamic programming based

methods for finding optimal locations which maximize the system’s total gain by de-

ploying objects among these locations. Different from the first two problems, here the

objects are deployed dynamically when a response is forwarded to the client, and co-

ordinately by integrating both object placement and replacement policies together. The

problem is considered in the unconstrained case and two QoS-constrained cases respec-

tively.

In conclusion, this thesis established new models for replica placement concerning

scalability, reliability and efficiency. These models are effective to enhance reliability

of existing information communication infrastructures and availability of content deliv-

ery service through server replication, as well as scalability and efficiency via content

replication for parallel access and caching in multi-server networks. Both experiments

and theoretical analysis show that the proposed methods for these models are crucial for

designing an efficient content delivery system.

6.2 Future Work – Towards Smart Content Delivery

As stated in the first chapter, this thesis focuses on the replica placement algorithms

which bring significant solutions to part of those issues in content delivery. Other im-

portant issues in content delivery include content consistency enforcement, data security,

and system architecture etc. Future work may involve proposing novel techniques for

these issues, and improving the techniques for addressing the issues mentioned in this

thesis as well. One possible direction in the future work is to integrate existing tech-

niques in such as architectures, security and data mining and design a state-of-the-art

application framework for smart content delivery.

6.2.1 Novel Architectures

Due to the development of P2P networks, the concept of decentralized architecture is

deeply rooted in practice for the benefit of high scalability. However, the drawbacks of
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existing P2P systems impede the application in commercial environment, which notably

include the potential piracy of intellectual property. Essentially, this issue is due to the

lack of characterization of roles for participants such as content providers and content

consumers. Fortunately, these drawbacks are avoidable using a deliberate combination

of existing techniques which aimed at a state-of-the-art integrated framework for con-

tent delivery. Architecture is the first consideration in designing such a framework in

the future. A desired architecture maintains the excellence of existing systems and at the

same time exploits the capability and benefits of other techniques, like P2P networking

for fault-tolerance and inherent reliability. As an example, a server-side overlay net-

work using DHT (Distributed Hash Table), which is capable of dealing with system’s

dynamics and also coping with client-side access, is a point for further advance in the

study.

6.2.2 Security Considerations

Existing mechanisms for content outsourcing include: cooperative push-based ap-

proach, uncooperative pull-based approach, and cooperative pull-based approaches

[105, 89]. These approaches mainly focus on the efficiency of content delivery while

consider little on data security. However, security mechanisms are indispensable for a

content delivery system to protect participants including both content consumers and

providers.

On the other hand, digital rights management (DRM) technologies have spawned

widespread controversy [42]. The collection of information about access and use of

creative works raises obvious privacy concerns. As such, appropriate approaches for

protecting content providers under specific privacy policy are one of the major concerns

of current research in content delivery.

6.2.3 Employment of Data Mining Techniques

Content delivery involves many issues and difficulties in large-scale data management

[24] and data mining provide an effective way of dealing with these difficulties. Re-
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searchers have exploited data mining in solutions for service pricing and content out-

sourcing. In fact, various data mining techniques such as clustering based on similar-

ities of contents, links and models may be used to facilitate content outsourcing. As

pointed out by Pallis and Vakali [89], clustering of pages is essential in the optimization

of content outsourcing which aims to address the content selection problem by cluster-

ing content for outsourcing. Clustering of users is another possible practice in sketching

pricing strategies which involves defining clusters of users in order to facilitate content

personalization and differentiated services. Theoretical models like Bayesian networks

or Markov models can be utilized here for classifying users over clusters.
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Appendix A: List of Symbols

Symbol Meaning

F set of sites (Chapter 3) or surrogate servers (chapter 4), |F| = nf .

C set of clients, |C| = nc.

fi i ∈ F , facility operating cost (Chapter 3) at site i or storage cost of an

object at server i (Chapter 4).

cij i ∈ F , j ∈ C, the connection cost between facility i and client j. The

cost function forms a metric (satisfy triangle inequality) if the sum of

connection costs for two edges of a triangle is not less than the

connection cost for the third edge.

rj j ∈ C, connectivity requirement (Chapter 3) or parallel access degree

(Chapter 4) of j.

R set of connectivity requirements of all cities (Chapter 3) or set of

parallel access degrees (Chapter 4).

R, size ofR.

dj j ∈ C, demand of city j or access frequency of client j.

xij i ∈ F , j ∈ C, number of connections between i and j . There could be

multiple connections for a site-client pair in the FTFA problem

(Chapter 3) but at most one in the FTFL problem (Chapter 4).

yi i ∈ F , number of facilities (replicas) at site i. There could be multiple

facilities at a site in the FTFA problem (Chapter 3) but at most one in

the FTFL problem (Chapter 4).
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Symbol Meaning

xpij p ∈ R, number of connections between i and j that is set up in phase p.

ypi p ∈ R, number of replicas at site i that is opened in phase p.

αpj p ∈ R, total credit paid by client j in phase p.

αpj p ∈ R, total credit paid by client j in phase p.

βpij p ∈ R, contribution from client j in phase p to opening a replica at site

i.

U set of not-fully-connected cities.

λI maximum cost ratio (single-factor approximation) with respect to any

possible star in the instance I of the problem.

λf factor of approximation ratio regarding facility cost in FTFA or FTFL

(the first item in terms of bi-factor approximation).

λc factor of approximation ratio regarding connection cost in FTFA or

FTFL (the second item in terms of bi-factor approximation).

λp factor of approximation ratio regarding the p-th item in an optimization

problem with totally k items in the objective function, 1 ≤ p ≤ k.

SOLP primal solution to the FTFA or FTFL problem.

SOLD dual solution to the FTFA or FTFL problem.

OPT1 optimal solution to the original FTFA or FTFL problem.

F ∗ facility cost in OPT1.

C∗ connection cost in OPT1.

OPT2 optimal solution to the new composed problem with the coefficients of

the p-th item scaled λp times.

s a star composed of a facility and a group of cities connected with the

facility.

S set of all possible stars.

S∗ set of stars in an optimal solution.

c−s connection cost of star s

cs cost of star s, cs = c−s + fi, where i is the regarding facility in star s.
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Symbol Meaning

xs binary variable indicating whether star s is selected.

z offset of facility cost, i. e., cost for operating facility i is set to be fi + z.

k input of the problem, which is an upper bound of the number of all

open replicas.

x1 {x1
s, s ∈ S}, solution of FTFA when a facility cost is set to be fi + z1.

A set of replicas opened in solution x1, |A| = k1, k1 < k.

x2 {x2
s, s ∈ S}, solution of FTFA when a facility cost is set to be fi + z2.

B set of replicas opened in solution x2, |B| = k2, k < k2.

a coefficient of x1 in a combined solution, i. e. x = ax1 + bx2,

a = (k2 − k)/(k2 − k1).

b coefficient of x2 in a combined solution, i. e. x = ax1 + bx2,

b = (k − k1)/(k2 − k1).

∆t constant denoting the delay in the LAN centered at a representative

client.

size size of an object.

tij time required to transmit the whole object between i and j.

bij download speed of client j obtained from server i.

P subset of surrogate servers to hold replicas, P ⊆ F .

Pj set of rj distinct servers which are nearest from j among all servers

holding the object.

A indices denoting the set of nodes passed by a request, i. e. {1, 2, 3...n}.
ms(O, x) miss penalty of object O at node x ∈ A, with respect to server s.

UEs(x) set of links from x to the nearest upstream node holding a copy of

object O toward server s.

DVs(x) set of links from x to the nearest downstream node holding a copy of

object O toward server s.

C(O, e) additional cost of delivering object O over link e.
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Symbol Meaning

fs(x) access frequency to server s observed at node x.

f ′s(xl, x, xr) a fraction of the observed frequency at node x which will be satisfied

by node xl or xr.

b(xl, x, xr, S) caching benefit at node x with respect to all servers in S.

l(x, S) caching loss at node x with respect to all servers in S.

G(P, S) net gain of caching the object in set P with respect to all servers in S.

Ax the first x elements in A, i. e. (1, 2, . . . , x).

Px(xr) part of optimal solution which falls in Ax when x ∈ P ∗ with xr as the

next node in the solution.

Gx(xr) total gain of copies in Px(xr).

Px(xr) part of optimal solution which falls in Ax when x /∈ P ∗

Gx(xr) total gain of copies in Px(xr).
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