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Abstract

Energy is an essential and critical commodity and our reliance on it has fuelled much
of the debate and interest in society and academia alike. Environmental concerns,
depleted energy resources and higher energy prices are the main factors that drive this
interest. Energy efficiency is one of the main avenues to preserve and better utilize
this valuable commodity. The energy exchange by employment of heat exchangers is
extensive and tube-fin heat exchangers are widely used in industrial and commercial
applications. Smarter designs could not only improve energy efficiency but may also
save on material costs. Although mass production and improved manufacturing
techniques have reduced manufacturing costs, tube fin heat exchangers have not
evolved greatly to take advantage of these improvements. There has been a large
range of fin surface enhancements proposed, such as waffled fins or louvres and while
limited improvements in capacity have been achieved, this is generally accomplished
at a much larger pressure drop penalty. Numerous studies have been performed in
order to examine the potential of various surface enhancement geometries on an ad
hoc basis. These presumably operate on the basis of enhanced convection due to
increased turbulence levels. However very few of these studies examine the actual

nature of turbulence that is responsible for convection enhancement.

A series of experiments and numerical studies have been conducted to quantify the
effect of the turbulence vortex characteristics on the air side heat convection of a
tube-fin heat exchanger. Homogeneous, transverse and streamwise vortical structures
were investigated. The thermal transfer performance resulting from these flows was
compared to that of standard louver fin geometries by considering sensible heat
transfer only, applicable to radiator applications. Several novel coils designed to
achieve these vortex structures, were developed and their heat transfer characteristics
were quantified. These coil designs can be described as the Tube Mesh, Tube Strut
and a Delta-Winglet fin surface.
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The Tube Mesh heat exchanger consisted entirely of horizontal and vertical tubes
arranged in an approximate homogeneous turbulence generating grid. While they had
a lower heat transfer of between 53% to 63% of that of the louvre fin surface, they
had an extremely low pressure drop of 25% to 33%. This has the potential to make
them suitable for certain low pressure drop applications, especially if energy saving is

a prerequisite.

The range of Tube Strut coils consisted of a tube bundle with interconnecting heat
conducting struts to form a parallel plate array were also investigated. Three different
strut thicknesses and strut spacing were trialled. In general these had similar
performance to the tube mesh at 45% to 65% the heat transfer capacity of the louver
fin surface. The resulting pressure drop was 38% to 42% of that of the louver fin

surface.

A delta-winglet design which positioned the deltas in a flow up configuration just in
front of the tubes was examined. It was found that this configuration had an almost
comparable capacity of 87% to a louver surface having the same fin pitch. On the
other hand it had approximately half the pressure drop of 54% of the similar louver
fin surface. This particularly low pressure drop makes this design preferable from an
energy utilisation perspective. While a slight increase in coil area is required, this is
offset by an almost 50% reduction in operating costs by reducing the parasitic energy

requirements of the convection fans.

The experimental data gathered for this Delta-Winglet design served to validate a
succession of numerical simulations which were performed to estimate the performance
of other configurations of multiple vortex generators. In addition the performance of
combining a delta-wing with a louvred surface was investigated. It was found that
increasing the number of delta-winglets or combining deltas with a louvred surface

provided little improvement in heat transfer but increased pressure drop substantially.

The louvre design itself was examined, and simulations were undertaken to estimate
the effect of louvre angle, as well as louvre pitch. A hitherto unexamined concept was

to investigate the effect of having louvres with serrated edges. It was found that an
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increase in louver angle by 5 degrees had negligible effect on heat transfer but
increased the pressure drop by 17%. A variation in louver pitch showed a minimal
variation in both heat transfer and pressure drop. Surprisingly a serrated louver
showed a slight reduction in both heat transfer and pressure drop but this was

miniscule.

It was established throughout the course of the investigations that the bulk of the coil
heat transfer is performed by the first tube row. Therefore the potential for increasing
heat transfer by shifting some heat exchange to the down stream rows was examined.
This was attempted by having progressively increasing louvre angles from the front of
the coil to the rear. While a slight increase in heat transfer performance was achieved,

this accomplished at the expense of a 13%-14% increase in pressure drop.

The outcomes have shown that substantial net improvement of heat exchanger energy
efficiency can be achieved through optimization of the turbulence generation along the

fins of a tube fin heat exchanger.
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Abbreviations

UPPER CASE

AP Array Parameter

AFV Air Face Velocity

AHU Air Handling Unit

CFD Computational Fluid Dynamics
CL Chord Length

DDC Direct Digital Control

DWVG Delta Wing Vortex Generator
DX Direct Expansion

FUDW Flow Up Delta Winglet

FDDW Flow Down delta Winglet

HE Heat Exchanger

LES Large Eddy Simulation

LMTD Log Mean Temperature Difference
NTU Number of transfer units

Sp Strut Pitch

™ Tube Mesh

TS Tube Strut

Lower case

fpi

fins per inch
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AT

area

minimum flow area

total surface area

external tube surface area

heat capacity rate

Cunin/ Cunax

specific heat at constant pressure

fin collar outside diameter

equivalent fin diameter

hydraulic diameter

inside tube diameter

fanning friction factor

fin pitch

mass velocity of air based on minimum flow area
heat transfer coefficient

air side heat transfer coefficient

Intensity of inlet turbulence

Colburn j factor

fluid thermal conductivity

abrupt contraction pressure-loss coefficient
abrupt expansion pressure-loss coefficient
Louvre length

Louvre pitch

mass flow rate
number of longitudinal tube rows
pressure drop

temperature difference
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W/K

J/(kg.K)



Notation
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Greek

o e

ped

™

N

<

S © a

longitudinal tube pitch
Prandtl number

transverse tube pitch

heat transfer rate

Reynolds number based on internal tube diameter

Reynolds number based on tube collar diameter

radius of tube including collar thickness
equivalent radius for circular fin
Transverse tube pitch

temperature

Overall heat transfer coefficient
velocity

velocity through minimum flow area

coil face velocity

(P 12)? + P? for staggered tube layout

P/2

Delta angle of incidence

Delta angle

fin thickness

thickness of tube wall

thermal exchanger effectiveness
fin efficiency

surface efficiency

dynamic viscosity of fluid

kinematic viscosity of fluid

density

contraction ratio of x-sectional area
Louvre angle

Delta-Winglet off vertical angle

%

degrees
degrees

mm

mm

kg/m s
m’ /s
kg/m’
degrees

degrees
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