THE REPRODUCTIVE ECOLOGY OF TWO TERRRESTRIAL ORCHIDS, CALADENIA RIGIDA AND CALADENIA TENTACULATA

RENATE FAAST

Submitted for the degree of Doctor of Philosophy

School of Earth and Environmental Sciences The University of Adelaide, South Australia
December, 2009
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Renate Faast and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines.

Faast R, Facelli JM, Austin AD (2010) Seed viability in small populations of Caladenia rigida (Orchidaceae): are small populations doomed? Plant Biology doi.10.1111.j.1365-3090.2010.01936.x

Renate Faast 26û
May, 2010

Cover photos: Caladenia rigida (left) and Caladenia tentaculata (right). Photos by author.
TABLE OF CONTENTS

DECLARATION ...ii

THESIS SUMMARY ...vi

ACKNOWLEDGEMENTS..viii

LIST OF FIGURES ...x

LIST OF TABLES ..xii

CHAPTER 1. Introduction ..1
 1.1 General introduction..1
 1.2 Research aims and thesis outline ...4

CHAPTER 2. Background to Caladenia ...7
 2.1 Introduction to Australian terrestrial orchids and the genus Caladenia7
 2.2 Orchid floral biology ...8
 2.3 Pollination strategies ...10
 2.4 Description of study species ..13

CHAPTER 3. Bees and white spiders: unravelling the pollination syndrome of Caladenia rigida (Orchidaceae) ...19
 Abstract ...19
 3.1 Introduction ...20
 3.2 Materials and methods ..21
 3.3 Results ..24
 3.4 Discussion ...31

CHAPTER 4. Grazing orchids: impact of florivory on two species of Caladenia (Orchidaceae) ..41
 Abstract ...41
 4.1 Introduction ...42
 4.2 Methods ..44
 4.3 Results ..51
 4.4 Discussion ...58
CHAPTER 5. Spatio-temporal variation in pollination and successful seed release in two terrestrial orchids with contrasting pollination strategies 71

Abstract ...71
5.1 Introduction ..72
5.2 Methods ...74
5.3 Results ..80
5.4 Discussion ..85

CHAPTER 6. To hide or not to hide: the influence of apparency on the pollination and herbivory of an endangered terrestrial orchid....................... 99

Abstract ...99
6.1 Introduction ..100
6.2 Methods ..103
6.3 Results ..108
6.4 Discussion ..115

CHAPTER 7. Seed viability in declining populations of Caladenia rigida (Orchidaceae): are small populations doomed?.. 123

Abstract ...123
7.1 Introduction ..124
7.2 Methods ..126
7.3 Results ..132
7.4 Discussion ..137

CHAPTER 8. General Discussion .. 143

8.1 Plant-pollinator interactions ...143
8.2 Antagonistic interactions ..146
8.3 Seed viability and recruitment potential ..147
8.4 Implications for the management of threatened plant populations148
8.5 Further research ..150
8.6 Conclusions ..151

APPENDIX A. Identification of pollinators of Caladenia carnea......................... 153

APPENDIX B. Assessment of the abundance of co-flowering species relative to orchid flowering phenology .. 155

B.1 Introduction ...155
B.2 Methods ...156
B.3 Results ...157
B.4 Discussion ...161
APPENDIX C. Influence of apparency on florivory of *Caladenia tentaculata*. 167

C.1 Introduction ...167
C.2 Methods ..168
C.3 Results ..169
C.4 Discussion ..170

APPENDIX D. Reprints of publications presented as chapters171

D.1 Permission to reproduce published manuscripts ..172

APPENDIX E. Reprints of additional publications ...173

REFERENCES ...175
THESIS SUMMARY

The reproductive outcome of plants is often determined by a multitude of interacting factors operating at both the plant level and the population level. For many plants, fruit production and the subsequent release of seeds are paramount for the persistence of the species. Understanding the processes that influence variation within and among populations is therefore crucial for the successful long-term management of threatened plants. While abiotic factors such as resource availability and environmental conditions can influence seed production directly through their effects on plant growth, biological interactions such as those between plants and pollinators or herbivores can be equally important. The relative intensity and direction of such interactions are often determined by the nature of the plants themselves, or by characteristics of the plant population or the habitat in which it occurs.

This thesis examines the processes that influence spatio-temporal variation in the reproductive success of two terrestrial orchids, *Caladenia rigida* and *Caladenia tentaculata*. The study was carried out over three years (2005 – 2007), in several populations located in the Mount Lofty region of South Australia. A detailed investigation of the pollination strategy employed by *C. rigida* revealed that this species is a generalist, being pollinated by a suite of food-seeking insects, possibly attracted by the presence of small amounts of nectar. Successful pollination and seed release for *C. rigida* was highly variable across space and time. Furthermore, both measures were consistently higher than for the sexually deceptive species, *C. tentaculata*, leading to the suggestion that the highly specialised pollination syndrome of the latter species may place it at a reproductive disadvantage. Pollination success of *C. rigida* was influenced by the height of flowers, but not by the local density of conspecifics. Small populations of *C. rigida* did not produce capsules when environmental conditions were stressful, suggesting that resource availability may indirectly restrict reproductive success by limiting the availability of pollinators. Poor seed quality in some populations may also be attributed to reduced population size.

Both orchid species were subject to intense levels of vertebrate florivory and capsule predation, leading to significant reductions in seed output. A herbivore exclusion experiment was carried out to help elucidate the size and type of herbivores, and video-surveillance identified birds as a predominant florivore in some populations. The intensity of florivory varied within and among populations, as well as among years, in response to several factors including flower height, the local density of conspecifics, concealment amongst neighbourhood vegetation and proximity to the habitat edge. Spatio-temporal variation in seed release was thus the net outcome of processes acting on both mutualistic and antagonistic interactions.
This work provides valuable baseline data of factors that influence the reproductive ecology and, hence, population dynamics of *Caladenia* species. Implications for the conservation and management of threatened populations are discussed, with respect to both short-term and long-term goals. The thesis is presented as a series of five manuscripts. Two of these have been published, and the remaining three have been prepared for submission as publications.
Primary thanks must go to my supervisor, José Facelli, for giving me the opportunity to take on this project and for helping me make the transition from molecular biologist to ecologist. His invaluable advice and logical solutions always left me inspired and gave me the confidence to explore my own ideas and directions. Thank you also to Andy Austin, my co-supervisor, for his ongoing support and encouragement, and his excellent and expedient editing skills.

This research was made possible by the financial support provided by a Faculty of Sciences Divisional Scholarship from The University of Adelaide, a Native Vegetation Council Grant and an Australian Research Council Linkage Project (LP0560578) with the Department for Environment and Heritage South Australia, South Australian Museum, Foundation for Australia’s Most Endangered Species, and Biocity Centre for Urban Habitats, University of Adelaide.

Information and advice provided by Joe Quarmby and Doug Bickerton were instrumental in getting this project started. I would also like to acknowledge the members of the Native Orchid Society of South Australia, in particular Bob Bates, Cathy Houston and Peter McCauley, for introducing me to the amazing world of orchids, and for helping locate populations. Thanks also to the many landholders and caretakers who provided access to sites: Bill Pole, Margaret Burton, staff at Forestry SA (especially Jackie Crompton), SA Water, Cleland Conservation Park and Adelaide Hills Council, and the Friends of Ferguson Conservation Park and Scott Creek Conservation Park.

A special thank you to Lachlan Farrington – I really appreciated having a fellow orchid researcher to exchange ideas with, and his sewing skills proved to be particularly useful. I would like to thank all past and present members of the Facelli and Conran labs for their friendship, and for broadening my ecological thinking by exposing me to such a diversity of research projects. I am indebted to Jane Prider for rescuing me from the depths of statistical despair, and thank both Emma Steggles and Jane for debriefing sessions on the bus. Thanks also to Lindy Scott for sharing the PhD highs and lows and reminding me that I was not alone.

The identity of the orchid florivore would remain a mystery were it not for the enthusiasm and creativity of Peter Moyle – he was generous with his time and video equipment, and those cups of tea were especially welcomed after a long day in the field. I am grateful to all of the wonderful people who volunteered their time and keen eye-sight to search for orchids and insects: Remko Leis, John Conran, Kristin Smith, Glenys and Graham Pearce, and David Pearce.
I was extremely fortunate to have had the opportunity to attend orchid conferences and workshops interstate and overseas, and being immersed amongst such brilliant scientists and dedicated conservationists has been a great source of learning and inspiration. I am particularly grateful for the scientific connections and friendships that have developed from these meetings.

A journey such as this would not be possible without the unwavering love and support of family and friends. Thank you to: my mum and dad, Verena and Len, and my brother, Daniel, for always being there for me, and for sharing the excitement of that first ever video footage; and to all of my friends who have stuck by me and provided an understanding ear, especially Cathy. Thanks also to my fiddling friends for helping me exercise the other side of my brain occasionally.

Every good story has a hero, and mine is my amazing husband, David. Words cannot express the immense mental and emotional support he has provided from the outset. This journey of intellectual and personal discovery would not have been completed without his unconditional love, encouragement and patience (not to mention his culinary delights). I look forward to catching up on all of those postponed camping trips to the bush and the coast.
LIST OF FIGURES

Fig. 2. 1 Floral structure of *Caladenia* sp. (eg, subgenus *Calonema*). ..8 Fig.

2. 2 Stages of pollination in *Caladenia* ..10 Fig. 2. 3
(a) *Caladenia rigida*. (b) *Caladenia tentaculata*..14 Fig. 2. 4

Caladenia carnea...15 Fig. 3. 1

Potential pollinators of *Caladenia rigida*. ...27 Fig. 3. 2

Neutral-red staining of pale morphs of *Caladenia rigida*. ..28 Fig. 3. 3

Thin-layer chromatography of nectar samples ...29 Fig. 4. 1 Map showing location of study sites. ..45 Fig. 4. 2 Florivory of *C. rigida* and *C. tentaculata*..52 Fig. 4. 3 Capsule predation of *C. rigida*...53 Fig. 4. 4 Degree of *C. rigida* and *C. tentaculata* stem herbivory. ..54 Fig. 4. 5 Excerpts of video footage showing a white-winged chough picking and eating

a *C. rigida* flower at site MC-1...55 Fig.

4. 6 Percentage of flowers of *C. rigida* and *C. tentaculata* browsed within four
cage types, 1 to 4, or as uncaged controls...56 Fig.

4. 7 Percentage of *C. rigida* flowers producing capsules within four cage types,
1 to 4, or as uncaged controls, C..57 Fig.

4S. 1 Design and construction of Type 3 cages, which exclude kangaroos, deer, rabbits, hares, possums and large birds (provided flowers remain at least 10 cm
from mesh). Type 3 and Type 4 cages *in situ*...66 Fig.

4S. 2 Phenology of florivory for *C. rigida* and *C. tentaculata* in 2007, at sites with
high levels of florivory..67 Fig.

5. 1 Map showing location of study sites and weather stations in the Mount Lofty
Ranges, South Australia..76 Fig.

5. 2 Percentage of available flowers pollinated and percentage of flowers releasing
seed at each site for *Caladenia rigida*, *C. tentaculata* and *C. carnea* in 2005, 2006
and 2007..82 Fig. S

5. 1 The percentage of available *Caladenia tentaculata* flowers in 2007, with
pollinia deposited, pollinia removed or visited..93
Fig. S 5. 2 Phenology of flowering and pollination for *Caladenia tentaculata* and *C. carnea* at the CCP site in 2007..95

Fig. 6.1 Percentage of flowers browsed within each category of concealment110

Fig. 6.2 Predation of *Caladenia rigida* open flowers and capsules in 2005 and 2007....113

Fig. 6.3 Effect of A) broad-scale slashing on pollination of available flowers, seed release and florivory of *Caladenia rigida* at site MCl and B) localised vegetation removal on pollination success of tagged plants and of all flowers within guards at site MBl...114

Fig. 7.1 Map showing locations of *Caladenia rigida* populations and weather stations within northern and southern regions ...127

Fig. 7.2 Viability tests of *Caladenia rigida* seeds ..129

Fig. 7.3 Plant traits and seed viability among northern populations and southern populations of *Caladenia rigida*..133

Fig. A.1 Insects captured in pantraps, carrying *C. carnea* pollinia153

Fig. B.1 2005 phenology of flowering (percent flowering plants) and pollination (percent pollinated plants) of *Caladenia rigida*, overlayed with the Average Abundance of Co-flowers..159

Fig. B.2 2007 phenology of flowering (percent flowering plants) and pollination (percent pollinated plants) of *Caladenia rigida*, overlayed with the Average Abundance of Co-flowers..160

Fig. B.3 2005 phenology of flowering (percent flowering plants) of *Caladenia tentaculata*, overlayed with the Average Abundance of Co-flowers.................................161
LIST OF TABLES

Table 3.1 Number of insects observed on *Caladenia rigida* or caught in pantraps........26

Table 3.2 Thin layer chromatography of nectar samples from *Caladenia rigida*........30

Table 4.1. Location of study sites ...47

Table 4.2. Percentage of *C. rigida* flowers browsed at each site within three distance classes from the habitat edge ...54

Table 5.1 Location and description of study sites containing populations of *Caladenia rigida*, *C. tentaculata* or *C. carnea* ..77

Table 5.2 Rainfall (mm) averaged from weather stations in northern and southern regions (mean ± s.e.m.) and at the FCP site...77

Table 5.3 Percentage of *Caladenia rigida* and *C. tentaculata* plants pollinated and releasing seed following natural and hand pollinations...80

Table 5.4 Comparison of *Caladenia rigida* and *C. tentaculata* pollination and successful seed release among sites and years...82

Table 5.5 Comparison of mean values (averaged across all sites) of pollination and successful seed release for *Caladenia rigida* and *C. tentaculata*84

Table 5.6 Temporal (ST) and spatial (SS) variability of pollination success of *Caladenia rigida* and *C. tentaculata*, relative to the average number of capsules produced ..84

Table S 5.1 *Caladenia tentaculata* pollinator baiting experiments carried out in 200794

Table 6.1 Pollination success, florivory, capsule abortion, capsule predation, capsule dehiscence and flower height of *Caladenia rigida*, averaged across populations (mean ± s.e.m.) for each year...109

Table 6.2 Effect of flower height, population and their interaction on the pollination of available flowers, florivory, capsule predation and capsule dehiscence of *Caladenia rigida* ..109

Table 6.3 Effect of concealment, population and their interaction on the pollination of available flowers, florivory, capsule predation and capsule dehiscence of *Caladenia rigida* ..111

Table 6.4 Number of flowering plants and the range of local density (number of conspecifics within 35 cm of target plant) recorded within populations of *Caladenia rigida* in each of the study years. ...112
Table 6. 5 Effect of local density, population and their interaction on pollination, florivory and capsule dehiscence of *Caladenia rigida* ..112 Table 7. 1 Comparison of seed viability and plant traits between northern and southern populations (mean ± s.e.m.)..134 Table 7. 2 Soil properties at each site..135 Table 7. 3 *Caladenia rigida* population attributes and habitat characteristics135 Table B. 1 List of species co-flowering during the orchid flowering season...............163 Table C. 1 Effect of flower height, concealment, density and population on the florivory of *Caladenia tentaculata* in 2005 and 2007. ...169 Table C. 2 Number of flowering plants and the range of local density (number of conspecifics within 35 cm of target plant) recorded within populations of *Caladenia tentaculata* in 2005 and 2007..170