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Abstract 
 

Amphibians secrete potent host defence compounds from dorsal glands onto the skin when 

stressed, sick or under attack by predators and microbials. Many of these defence 

compounds, such as biologically active peptides, provide potential targets for new 

biotechnological and therapeutic investigation. The research presented in this study focuses 

on the isolation and investigation of peptides from Australian frogs of the genera Litoria 

and Crinia and endeavours to determine the biological activity and important structural and 

mechanistic features of these biological compounds. 

 

Isolation and identification of the skin peptide profile of the Eastern Dwarf Tree Frog 

Litoria fallax has revealed a number of novel peptides named fallaxidins. This frog species 

is quite unique in that it does not secrete a peptide that displays potent broad spectrum 

antimicrobial activity nor a peptide that inhibits nitric oxide formation through the enzyme 

neuronal nitric oxide synthase. Instead it secretes several narrow spectrum antimicrobial 

peptides, including fallaxidin 3.1. In addition, there are numerous small peptides 

displaying unique primary structures with unknown biological function. Interestingly, L. 

fallax produces a skin peptide profile that is quite distinct from the skin peptide profiles of 

other related Litoria species. 

 

The majority of anurans from the Litoria genus contain at least one peptide in their skin 

secretion that inhibits the enzyme neuronal nitric oxide synthase. These peptides exert this 

action by preventing the association of the regulatory cofactor Ca2+ calmodulin to the 

enzyme binding site. The non-covalent binding of the potent neuronal nitric oxide synthase 

inhibitor dahlein 5.6 (L. dahlii) to calmodulin in the presence of Ca2+ is confirmed by 

electrospray ionisation mass spectrometry. A peptide-protein complex was observed in the 

gas-phase with a 1:1:4 calmodulin/dahlein 5.6/Ca2+ stoichiometry. In addition, the 

structure and binding interactions have been investigated by means of nuclear magnetic 

resonance spectroscopy. These experiments illustrated that upon binding dahlein 5.6, Ca2+ 

calmodulin undergoes a substantial conformational transition towards a globular complex 

with the helical dahlein 5.6 engulfed in a hydrophobic channel. 

 

Typically, the granular secretion of amphibians contains numerous peptides that exert 

activities in the central nervous system, termed neuropeptides. The biological activities, in 

 vi



 

particular smooth muscle action, proliferation of lymphocytes and opioid action are 

investigated to provide insight into the role of these peptides in the host defence. The 

structure activity relationships of disulfide peptides, caerulein peptides, tryptophyllins, 

rothein 1 and its related synthetically modified peptides has identified several important 

structural features essential for their corresponding biological function. 

 

Peptides from the granular secretion of anurans are synthesized within and released from 

larger precursors molecules. The genes that encode for the skin peptides of Crinia riparia 

and several Litoria species were isolated and identified. The cDNA sequence of the 

precursors provides a mechanism by which the evolution of amphibian species can be 

traced and information about the relationships existing among closely or distantly related 

species be obtained. All prepropeptides isolated from the Litoria species illustrated 

sequence homology to those isolated from numerous ranid and hylid frogs and demonstrate 

that the skin prepropeptides originated from a common ancestral gene. The precursors of 

peptides from C. riparia are significantly diverse and suggest that these prepropeptides 

either originated from the same common ancestral gene but have undergone substantial 

divergent evolution relative to the ranid and hylid frogs or that they have originated from 

distinct ancestral genes. 
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