Biologically Active Peptides from Australian Amphibians

A thesis submitted for the Degree of Doctor of Philosophy

by

Rebecca Jo Jackway B. Sc. (Biomed.) (Hons.)

from the Department of Chemistry, The University of Adelaide

August, 2008

In loving memory of John C.H. Williams.

Contents

Acknowledgements	
Statement of Originality	ii
Abbreviations	iii
Abstract	vi
Chapter 1: Amphibian Bioactive Peptides	1
1.1 Anuran Skin Secretions	1
1.2 Peptides from Australian Frogs	3
1.2.1 Antimicrobial Peptides	7
1.2.2 Amphibian Pheromones	10
1.3 Collecting Skin Secretions	12
Chapter 2: Methodology I - Mass Spectrometry	15
2.1 Introduction	15
2.2 Q-TOF 2 Mass Spectrometer	16
2.3 Electrospray Ionisation Mass Spectrometry	18
2.4 Peptide Sequencing	20
2.4.1 High Performance Liquid Chromatography	21
2.4.2 Peptide Sequence Specific Fragmentation	22
2.4.2.1 Fragmentation in Positive Ion Mass Spectrometry	22
2.4.2.2 Fragmentation in Negative Ion Mass Spectrometry	24
2.4.3 Post-Translational Modifications	27
2.4.4 Edman Sequencing	27
2.5 ESI-MS of Protein Complexes	29
Chapter 3: Methodology II - Nuclear Magnetic Resonance Spectroscopy	33
3.1 Secondary Structure Determination of Peptides by NMR	33
3.2 Nuclear Magnetic Resonance Spectroscopy	34
3.3 Two Dimensional NMR and Resonance Assignment	36
3.3.1 Correlated Spectroscopy	37
3.3.2 Total Correlation Spectroscopy	38
3.3.3 Heteronuclear Correlation Spectroscopy	39

3.3.4 Nuclear Overhauser Effect Spectroscopy	40
3.4 Sequential Assignment	41
3.5 NOE Connectivities	43
3.6 Secondary Shifts	44
3.7 Coupling Constants	46
3.8 Structure Calculations	47
3.8.1 Structure Restraints	48
3.8.2 Ambiguous NOEs	50
3.8.3 Stereo-Specific Assignment	51
3.8.4 Restrained Molecular Dynamics and Stimulated Annealing	52
3.9 Structure Quality	53
3.10 Solvent Selection	55
3.10.1 Trifluoroethanol	56
3.10.2 Micelles	57
Chapter 4: Peptides from the Skin Secretions of <i>Litoria fallax</i>	59
4.1 Introduction	59
4.2 Results	61
4.2.1 Isolation of Peptides	61
4.2.2 Peptide Sequence Determination by Mass Spectrometry	63
4.2.3 Secondary Structure Determination of Fallaxidin 3.1	72
4.2.3.1 NMR Assignment	72
4.2.3.2 Secondary Shifts	80
4.2.3.3 NOE Connectivities	82
4.2.3.4 Structure Calculations	84
4.2.4 Biological Activity	90
4.2.5 Isolation and Structural Characterisation of Preprofallaxidins	91
4.3 Discussion	93
4.3.1 Structure Analysis	93
4.3.2 Peptide Profile, Structure and Biological Activity	94
4.3.2.1 Fallaxidin 1 Peptides	95
4.3.2.2 Fallaxidin 2 Peptides	96
4.3.2.3 Fallaxidin 3 Peptides	97
4.4 Experimental	99

4.4.1 Collection of Skin Secretions	99
4.4.2 Peptide Secretion Separation by HLPC	99
4.4.3 Mass Spectrometry	100
4.4.4 Automated Edman Sequencing	100
4.4.5 Materials	100
4.4.5.1 Synthetic Peptides	100
4.4.5.2 NMR Materials	101
4.4.6 Sample Preparation	101
4.4.7 NMR Spectroscopy	101
4.4.8 Structure Calculations	102
4.4.9 Biological Activity	103
4.4.9.1 Smooth Muscle Contraction Assay	103
4.4.9.2 Lymphocytes Proliferation Studies	103
4.4.9.3 Opioid Activity Studies	103
4.4.9.4 Antibacterial Testing	104
4.4.9.5 cDNA Sequencing	104
Chapter 5: Peptides That Inhibit Neuronal Nitric Oxide Synthase	105
5.1 Introduction	105
5.1.1 Nitric Oxide	105
5.1.2 Nitric Oxide Synthesis	106
5.1.3 Calmodulin	109
5.1.4 Amphibian Peptides that Inhibit nNOS	111
5.1.4.1 Dahlein 5 Peptides	114
5.2 Results	115
5.2.1 Solution Structure of Dahlein 5.6	115
5.2.1.1 NMR Assignment	115
5.2.1.2 Secondary Shifts	122
5.2.1.3 NOE Connectivities	124
5.2.1.4 Structure Calculations	126
5.2.2 Calmodulin-Dahlein 5.6 Complexes	131
5.2.2.1 Mass Spectrometry Investigations	131
5.2.2.2 ¹⁵ N HSQC Investigation	135
5.2.3 NMR Spectroscopy of Unbound Dahlein 5.6	139

5.2.3.1 Secondary Structure of Unbound Dahlein 5.6	143
5.2.4 ¹⁵ N HSQC Titration	146
5.2.5 NMR Spectroscopy of Bound Dahlein 5.6	148
5.2.6 nNOS Activities of Dahlein 5.6 Synthetic Modifications	151
5.3 Discussion	152
5.3.1 Dahlein 5.6	152
5.3.2 Dahlein 5.6 Complexes with Calmodulin	152
5.3.2.1 Conclusions from Mass Spectrometry Investigations	154
5.3.2.2 Conclusions from NMR Investigations	155
5.4 Experimental	157
5.4.1 Materials	157
5.4.2 Structure Determination by NMR Spectroscopy	157
5.4.2.1 Sample Preparation	157
5.4.2.2 NMR Spectroscopy	158
5.4.2.3 Structure Calculations	159
5.4.3 Mass Spectrometry Investigations	160
5.4.3.1 Sample Preparation	160
5.4.3.2 Mass Spectrometry	160
5.4.4 NMR Titrations	161
5.4.4.1 Sample Preparation	161
5.4.4.2 NMR Spectroscopy	162
5.4.5 nNOS Bioactivity Testing	163
Chapter 6: Amphibian Neuropeptides	164
6.1 Introduction	164
6.1.1 Amphibian Neuropeptides	164
6.1.1.1 Tachykinins	166
6.1.1.2 Bradykinins	167
6.1.1.3 Caeruleins	168
6.1.1.4 Bombesins	169
6.1.1.5 Tryptophyllins	170
6.1.1.6 Amphibian Opioid Peptides	170
6.1.1.7 Miscellaneous Neuropeptides	171
6.1.2 Smooth Muscle Contraction Preparations	172

6.1.3 Immunomodulators	175
6.1.4 Opioid Activity Preparations	176
6.2 Results	179
6.2.1 Disulfide Peptides	179
6.2.1.1 Smooth Muscle Contraction Assays	179
6.2.1.2 Lymphocyte Proliferation Studies	182
6.2.2 Rothein 1 Peptides	183
6.2.2.1 Smooth Muscle Contraction Assays	184
6.2.2.2 Lymphocyte Proliferation Studies	186
6.2.3 Caerulein Peptides	187
6.2.3.1 Smooth Muscle Contraction Assays	188
6.2.3.2 Lymphocyte Proliferation Studies	191
6.2.3.3 Opioid Activity Studies	192
6.2.4 Tryptophyllin Peptides	193
6.2.4.1 Opioid Activity Studies	193
6.2.5 Miscellaneous Peptides	196
6.2.5.1 Smooth Muscle Contraction Assays	196
6.3 Discussion	198
6.3.1 Disulfide Peptides	198
6.3.2 Rothein 1 Peptides	200
6.3.3 Caerulein Peptides	201
6.3.4 Tryptophyllins	203
6.3.5 Peronein 1 Peptides	205
6.3.6 Secondary Smooth Muscle Contraction	205
6.4 Experimental	207
6.4.1 Smooth Muscle Contraction Assay	207
6.4.2 Lymphocyte Proliferation Studies	208
6.4.3 Opioid Activity Studies	209
Chapter 7: Cloning of Precursor cDNAs From Australian Amphibians	211
7.1 Introduction	211
7.1.1 Amphibian Precursors	211
7.1.2 Peptide Biosynthesis	215

7.1.3 Post-Translational Processing 217

7.1.3.1 Propeptide Cleavages	217
7.1.3.2 Post-Translational Modifications	218
7.1.3.2.1 C-Terminal Amidation	219
7.1.3.1.2 Disulfide Bridges	220
7.1.4 Evolutionary Insights	221
7.1.5 Australian Amphibians	222
7.1.5.1 Hybrid	223
7.1.5.2 Crinia riparia	224
7.2 Results	226
7.2.1 Precursor cDNA Cloning from the Hybrid Frog	226
7.2.2 Preproriparin cDNA Cloning from Crinia riparia	229
7.2.3 Preprofallaxidin cDNA Cloning from Litoria fallax	232
7.3 Discussion	240
7.3.1 Hybrid	240
7.3.2 Evolutionary Significance	241
7.3.2.1 Crinia riparia	241
7.3.2.2 Litoria fallax	242
7.4 Experimental	245
7.4.1 Secretion Harvesting	245
7.4.2 Cloning of Precursor cDNA from Lyophilised Skin Secretion	245
7.4.2.1 mRNA Extraction	246
7.4.2.2 cDNA synthesis	246
7.4.2.3 Polymerase Chain Reaction	246
7.4.2.4 Gel Electrophoresis	248
7.4.2.5 Purification of PCR Products	248
7.4.2.6 Cloning of PCR Fragments	248
7.4.3 Preparation of DH5 α Competent Cells	250
Chapter 8: Summary	251
8.1 Litoria fallax	251
8.2 Dahlein 5 Peptides and the Binding of Calmodulin	252
8.3 Amphibian Neuropeptides	253
8.4 Evolutionary Significance of Amphibian Prepropeptides	254

References

Appendix A: Twenty Common Amino Acids	294
Appendix B: Secondary Structure Determination of Fallaxidin 3.1	297
Appendix C: Nucleic Acids	306

Publications

309

256

Acknowledgements

Firstly, I would like to thank my supervisor Prof. John Bowie for giving me the opportunity to work on such an interesting and diverse project, and for his continued advice and guidance.

I would also like to recognise the help of a number of collaborators. I am very grateful to Dr. Ian Musgrave from the Department of Clinical and Experimental Pharmacology for his endless assistance with pharmacological activity testing and the helpful discussions concerning biological activities. Many thanks must go to Dr. Kathy Surinya-Johnson and Prof. John Wallace from the Department of Biochemisty for providing the resources and skills to undertake the cDNA cloning work. Thanks also to Carlie Delaine and the remaining members of the Wallace group for welcoming me into their group and helping me with all things biochemical. Appreciation must go to Dr. Jenny Beck from the University of Wollongong for her assistance with the calmodulin mass spectrometry.

Appreciation must go to the academic, research and technical staff from the University of Adelaide for all their advice and assistance, in particular to Phil Clements for his help with NMR and mass spectrometry, which without his assistance, much of this research would not have been possible. Thanks also to Prof. John Carver for his valuable NMR advice, Dr. Chris Cursaro for operating the Edman sequencer, Assoc. Prof. Michael Tyler for his assistance in collection of frog secretions and samples, and to Prof. Stephen Donnellan for his help with understanding the hybrid cDNA studies.

Special thanks must go to Dr. Tara Pukala for the endless help and friendship over the years. Thanks also to past and present members of the Bowie group, in particular Dr. Daniel Bilusich, Micheal Maclean, Hayley Andreazza and Dr. Mark Fitzgerald for their advice and making the last three years enjoyable and to Anton Calabrese for all the formatting help and proof reading.

I would especially like to thank my family for their amazing support, love and encouragement that has allowed me to achieve my goals and dreams. Finally, I must thank Richard Beumer for his extraordinary patience, love and friendship. I look forward to sharing life after study with you and realizing our dreams together.

Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, to be made available for loan and photocopying.

Rebecca Jo Jackway

15 August 2008

Abbreviations

1D	one-dimensional
2D	two-dimensional
3D	three-dimensional
Δδ	secondary shift
Δ0	backhone torsion angle
Ψ	side chain torsion angle
Ψ	side chain forsion angle
Å	angetrome
A	angsuons
ACI	acetyichonne
ACTH	adrenocorticotropic normone
apoCaM	calcium-free calmodulin
ANOVA	analysis of variance
AOP	angular order parameter
AP-1	activator protein-1
ARIA	Ambiguous Restraints for Iterative Assignment
BH_4	tetrahydrobiopterin
bp	base pairs
C_{2}^{2+} C - M	a la la completa de la completa de l'a
Ca CaM	calcium-bound calmodulin
CaM	calmodulin
cAMP	cyclic adenosine monophosphate
CCK	cholecystokinin
CCK-8	cholecystokinin fragment 26 - 33
CCK-8-NS	non-sulfated cholecystokinin fragment 26 - 33
cDNA	complementary deoxyribonucleic acid
cGMP	cyclic guanosine monophosphate
CID	collision induced dissociation
CMC	critical micelle concentration
CNS	central nervous system
CNS Solve	Crystallography and NMR Systems
COSY	correlation spectroscony
CODI	contention spectroscopy
Da	Daltons
DAG	diacylglycerol
DC	direct current
derazepide	N-[(3S)-2.3-dihydro-1-methyl-2-oxo-5-phenyl-1 <i>H</i> -1.4-benzodiazepin-3-yl]-
unacpine	1 <i>H</i> -indole-2-carboxamide
DNA	deoxyribonucleic acid
DPC	dodecylphosphocholine
DOF	double quantum filtered
DQI	addude-quantum intered
660	sourum 2,2-unneuryi-2-snapemane-3-surphonate
E. coli	Escherichia coli
EDTA	ethylenediamine tetraacetic acid
ESI	electrospray ionisation
ESI-MS	electrospray ionisation mass spectrometry
T01-1410	orectospiay tomsation mass spectromeny

eNOS	endothelial nitric oxide synthase
FAB	fast atom bombardment
FAD	flavin adenine dinucleotide
FID	free induction decay
FMN	flavin mononucleotide
	navin monondereorde
GI	gastrointestinal
GPI	guinea pig ileum
G protein	guanine nucleotide-binding regulatory protein
GRP	gastrin releasing peptide
heme	iron protoporphyrin IX prosthetic group
HPLC	high performance liquid chromatography
HSQC	heteronuclear single-quantum coherence
Hz	hertz
Ι	nuclear spin quantum number
IFN-γ	γ interferon
IL-2	interleukin
iNOS	inducible nitric oxide synthase
IP ₃	inositol triphosphate
LB media	Luria-Bertani media
L-NNA	N_{ω} -nitro-L-arginine
A 1 D	
mAchR	muscarinic receptor
MALDI	matrix-assisted laser desorption ionisation
MIC	minimal inhibitory concentration
MLCK	myosin light chain kinase
MOPS	4-morpholinepropanesultonic acid
M _r	relative molecular mass
MS	mass spectrometry
MS/MS	tandem mass spectrometry
mRNA	messenger ribonucleic acid
MW	molecular weight
m/z.	mass-to-charge
ΝΑΠΡΗ	nicotinamide adenine dinucleotide phosphate
NMR	neuromedin B
NMP	nuclear magnetic resonance
nNOS	nuclear magnetic resonance
NO	nitric oxide
NOS	nitric oxide synthese
NOF	nuclear Overbauser effect
NOESV	nuclear Overhauser effect spectroscopy
INOLO I	nuclear Overnauser effect specifoscopy
PCR	polymerase chain reaction
PDB	Protein Data Bank
pGlu	pyroglutamate
pI	isoelectric point
*	L

PIP ₂ PLC	phosphatidyl inositol biphosphate
npm	parts per million
ppm	polyadenylated
polyA	polyadenylated
rf	radiofrequency
ŘMD	restrained molecular dynamics
RMSD	root-mean-square derivation
RNA	ribonucleic acid
SA	stimulated annealing
SDS	sodium dodecylsulfate
SEM	standard error mean
Taq	Thermus aquaticus
TFA	trifluoroacetic acid
TFE	2,2,2-trifluoroethanol
TOCSY	total correlated spectroscopy
TOF	time of flight
TRH	thyrotropin-releasing hormone
tris base	tris(hydroxymethyl)aminomethane
UMP	universal primer mix
UV	ultraviolet
VIP	vasoactive intestinal peptide
10.000	
Y M022	(K)- $/V$ - $[2,3-dihyro-1-[2-(2-methylphenyl)-2-oxoethyl]-2-oxo-5-phenyl-1H-$
	1,4-benzodiazepin-3-ylj-N -(3-methylphenyl)-urea

Abstract

Amphibians secrete potent host defence compounds from dorsal glands onto the skin when stressed, sick or under attack by predators and microbials. Many of these defence compounds, such as biologically active peptides, provide potential targets for new biotechnological and therapeutic investigation. The research presented in this study focuses on the isolation and investigation of peptides from Australian frogs of the genera *Litoria* and *Crinia* and endeavours to determine the biological activity and important structural and mechanistic features of these biological compounds.

Isolation and identification of the skin peptide profile of the Eastern Dwarf Tree Frog *Litoria fallax* has revealed a number of novel peptides named fallaxidins. This frog species is quite unique in that it does not secrete a peptide that displays potent broad spectrum antimicrobial activity nor a peptide that inhibits nitric oxide formation through the enzyme neuronal nitric oxide synthase. Instead it secretes several narrow spectrum antimicrobial peptides, including fallaxidin 3.1. In addition, there are numerous small peptides displaying unique primary structures with unknown biological function. Interestingly, *L. fallax* produces a skin peptide profile that is quite distinct from the skin peptide profiles of other related *Litoria* species.

The majority of anurans from the *Litoria* genus contain at least one peptide in their skin secretion that inhibits the enzyme neuronal nitric oxide synthase. These peptides exert this action by preventing the association of the regulatory cofactor Ca^{2+} calmodulin to the enzyme binding site. The non-covalent binding of the potent neuronal nitric oxide synthase inhibitor dahlein 5.6 (*L. dahlii*) to calmodulin in the presence of Ca^{2+} is confirmed by electrospray ionisation mass spectrometry. A peptide-protein complex was observed in the gas-phase with a 1:1:4 calmodulin/dahlein 5.6/ Ca^{2+} stoichiometry. In addition, the structure and binding interactions have been investigated by means of nuclear magnetic resonance spectroscopy. These experiments illustrated that upon binding dahlein 5.6, Ca^{2+} calmodulin undergoes a substantial conformational transition towards a globular complex with the helical dahlein 5.6 engulfed in a hydrophobic channel.

Typically, the granular secretion of amphibians contains numerous peptides that exert activities in the central nervous system, termed neuropeptides. The biological activities, in

particular smooth muscle action, proliferation of lymphocytes and opioid action are investigated to provide insight into the role of these peptides in the host defence. The structure activity relationships of disulfide peptides, caerulein peptides, tryptophyllins, rothein 1 and its related synthetically modified peptides has identified several important structural features essential for their corresponding biological function.

Peptides from the granular secretion of anurans are synthesized within and released from larger precursors molecules. The genes that encode for the skin peptides of *Crinia riparia* and several *Litoria* species were isolated and identified. The cDNA sequence of the precursors provides a mechanism by which the evolution of amphibian species can be traced and information about the relationships existing among closely or distantly related species be obtained. All prepropeptides isolated from the *Litoria* species illustrated sequence homology to those isolated from numerous ranid and hylid frogs and demonstrate that the skin prepropeptides originated from a common ancestral gene. The precursors of peptides from *C. riparia* are significantly diverse and suggest that these prepropeptides either originated from the same common ancestral gene but have undergone substantial divergent evolution relative to the ranid and hylid frogs or that they have originated from distinct ancestral genes.