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Chapter 1

Introduction

In his seminal paper of 1974 [1] Wilson formulated a technique for quantising a contin-
uum gauge theory onto a hypercubic grid or lattice. This work eventually lead to the
formation of a new field of study in the area of high energy particle physics, Lattice
Quantum Chromodynamics (QCD). As is well known, the self interactions of gluons
render the empty vacuum unstable to the formation of nontrivial quark and gluon fields,
which alter significantly the long distance behaviour of quarks. This inhibits the tradi-
tional approach of perturbation theory for studying QCD in the low energy regime. In
Lattice QCD, the introduction of a regulator through the finite distance between nodes,
allows researchers to perform ab initio investigations into QCD. Since Wilson’s paper, a
dedicated effort from the Lattice QCD community has produced a wealth of information
on how to simulate QCD using modern computational techniques. Excellent starting
points for the new researcher include Refs. [2–4].

It is currently a very interesting and exciting time to be a researcher in the field of
Lattice QCD. The advanced algorithms and compute resources currently available are
enabling the first studies of full dynamical QCD towards the physical point of the quark
mass parameter space. This will enable predictions from QCD to be directly compared
with experiment, in the search for possible physics beyond the standard model.

In the author’s opinion, a primary attraction of Lattice QCD is not just its ability
to compare with experiment, but is also the way in which lattice simulations can be
used to provide researchers with information otherwise unattainable through standard
experimental methods. This allows researchers to gain a deeper understanding of the
quantum mechanical processes and indeed the physics that underlies the experimentally
observed results. It is for this reason that studies of the topological structure of the
QCD vacuum are so fascinating.

We begin in the next few sections by providing a short introduction to Quantum
Chromodynamics, the calculation of expectation values, and topology in QCD. Following
this, the lattice approach is briefly outlined in Sec. 1.4, after which a sample lattice
calculation of the strong coupling constant αs is presented in Sec. 1.5. This calculation
serves to highlight the effectiveness of Lattice QCD, whilst also emphasising the need
to carefully monitor and control the errors and methodologies of lattice simulations.
Finally, an outline of the remainder of the thesis is provided in Sec. 1.6.
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1.1 Quantum Chromodynamics

In the Standard Model of particle physics the strong interactions are described by the
theory of Quantum Chromodynamics. These are the interactions between quarks and
gluons, quarks being those particles which combine together to form all baryons and
mesons in the universe and carry a colour charge (red, green, or blue).

Due to the presence of these three colour charges, gauge fields in Lattice QCD are rep-
resented mathematically as elements of the SU(3) group. The SU(3) group is composed
of all complex 3× 3 matrices that are unitary, U † U = U U † = I, and have determinant
1. The non-Abelian1 nature of the SU(3) group gives rise to asymptotic freedom; at
short distances the effective quark-gluon and gluon-gluon coupling becomes small.

The QCD Lagrangian density, which governs the motion of strongly interacting par-
ticles, is given by

LQCD = ψ̄(x) (iγμDμ −m)ψ(x)− 1

2
tr(FμνF

μν)

= LF + LG , (1.1)

where γμ are the Dirac γ-matrices, Dμ is the covariant derivative

Dμ ≡ ∂μ + igAμ , (1.2)

and the field strength tensor Fμν is defined by

igFμν ≡ [Dμ, Dν ] . (1.3)

The gauge fields, and thus also the field strength tensor, are proportional to the gener-
ators of SU(3)

Aμ(x) =
8∑

a=1

λa

2
Aa

μ(x) , Fμν(x) =
8∑

a=1

λa

2
F a
μν(x) , (1.4)

where the λa are the generators of the SU(3) group. The generators are represented

as 3 × 3 traceless Hermitian matrices satisfying tr(λaλb) = δab and
[
λa

2
, λ

b

2

]
= ifabc λc

2
,

where the fabc are the totally antisymmetric structure constants [5].
The QCD action is the space-time integral of the Lagrangian density (1.1)

SQCD =

∫
d4xLQCD(ψ, ψ̄, Aμ)

=

∫
d4x ψ̄(x) (iγμDμ −m)ψ(x)− 1

2

∫
d4x tr(FμνF

μν)

SQCD = SF + SG , (1.5)

which is often separated into the fermionic and gluonic components respectively. The
Lagrangian density (1.1) and action (1.5) are necessarily invariant under both global
SU(3) transformations

ψ(x) → Gψ(x) ,

ψ̄(x) → ψ̄(x)G−1 , (1.6)

where G = eiω
aλa is x-independent, and local SU(3) transformations

1A non-Abelian group G is one for which A,B ∈ G⇒ AB �= BA in general.
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ψ(x) → G(x)ψ(x) ,

ψ̄(x) → ψ̄(x)G−1(x) ,

Aμ(x) → G(x)Aμ(x)G
−1(x)− i

g
G(x) ∂μ(G

−1(x)) , (1.7)

with G(x) = eiω
a(x)λa . It is these symmetries that give rise to colour charge conservation

in the theory.
For our lattice simulations it will be necessary to work in Euclidean space-time. To

shift from Minkowski to Euclidean space-time we make the substitutions x0 → −ix4

and2 A0 → +iA4. Upon making these substitutions the Euclidean action is given by [3]

iSMin → −SEucl , (1.8)

with

SEucl
QCD =

∫
d4xψ̄(x)(γμDμ +m)ψ(x) +

1

2

∫
d4x tr(FμνFμν)

≡ SEucl
F + SEucl

G , (1.9)

where we have selected to use a Euclidean metric gμν = δμν , and the γ-matrices are
defined in the Sakurai [6] representation (see App. B).

1.2 Expectation values

Observables in QCD can be calculated by computing the vacuum expectation values of
the relevant operators using the Feynmann path integral formalism. For some generic
fields φi, the vacuum expectation value is given by [7]

〈Ω|φ1(x1)φ2(x2) . . . |Ω〉 = 1

Z

∫
Dφ eiS(φ) φ1(x1)φ2(x2) . . . , (1.10)

where |Ω〉 denotes the vacuum state,

Z =

∫
Dφ eiS(φ) , (1.11)

and Dφ represents an integral over all possible field values at all possible points in space-
time. If we then switch to Euclidean space using Eq. (1.8), the weight factor becomes
e−SEucl

. Thus, when the integral is replaced by a sum on the lattice, the evaluation
of correlation functions becomes a statistical problem, that can be solved using Monte
Carlo techniques.

If we now apply this methodology to QCD using the action in Eq. (1.9), then for
some operator, or product of operators

O(ψ, ψ̄, Aσ) = O1(ψ, ψ̄, Aσ)O2(ψ, ψ̄, Aσ) . . . , (1.12)

2To see this, consider the case where Aμ is a pure gauge field, Aμ = ∂μω
a(x)λa. Then x0 → −ix4

implies ∂0 → +i∂4. [3]
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Figure 1.1: A single point test charge with a closed loop that encircles the charge.

we find

〈Ω|O(ψ, ψ̄, Aσ)|Ω〉 = 1

Z

∫
DψDψ̄DAσ O(ψ, ψ̄, Aσ) e

−SEucl
F −SEucl

G , (1.13)

with

Z =

∫
DψDψ̄DAσ e−SEucl

F −SEucl
G . (1.14)

The fermion fields ψ, ψ̄ anti-commute {ψμ, ψν} = 0 and are described mathematically
by Grassmann variables. The integrals over ψ, ψ̄ can therefore be evaluated analytically
using Grassmann algebra, giving [3],

〈Ω|O(ψ, ψ̄, Aσ)|Ω〉 = 1

Z

∫
DAσ O(M−1, Aσ) det( /D +m) e−

1

2

∫
d4x tr(FμνFμν) , (1.15)

where the operator O in the integrand depends on the inverse of the fermion matrix
M ≡ /D + m evaluated over the gauge fields Aσ. M−1 describes how the particles
associated with ψ, ψ̄ propagate through the vacuum. The determinant describes the
roles of quark loops in the vacuum and is renowned for being difficult to simulate due
to computational demands. From Eq. (1.15) it is clear that observables are calculated
as path integrals over all possible vacuum gauge field configurations Aσ.

1.3 Topology and instantons

The work of this thesis focuses primarily on the topological structure of the QCD vac-
uum. In order to introduce the concept of topology, consider the simple case of a single
point charge with electric field lines radiating outwards. Now suppose we are interested
in some closed loop that encircles this charge, such as that depicted in Fig. 1.1. Be-
ginning at some point on the loop, take the unit vector defined by the direction of the
electric field at that point, and integrate the vector around the loop. As the vector is
moved around the loop the vector will rotate, and we see that by the time the vector
has returned to its initial point it will have gone through a single 360◦ rotation. Such
a process is depicted in Fig. 1.2. It therefore seems reasonable to associate a winding
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Figure 1.2: As a unit vector pointing in the direction of the electric field moves around
the closed loop it will perform a full 360◦ rotation. Here the vector starts in the top
right and circles clockwise around the loop.

Figure 1.3: An example of a closed loop where the unit vector pointing in the direction
of the electric field will not perform a rotation as it moves around the path.
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number of 1 (corresponding to one rotation of the vector) to the closed path, and we
can refer to this winding number as the topological charge Q. Another example of a
closed loop is depicted in Fig. 1.3. In this case, we see that as the unit vector, pointing
in the direction of the electric field, is integrated around the loop it will never perform
an entire rotation. In this case we therefore have Q = 0.

In any gauge theory, it is also possible to associate a integer valued winding number,
or topological charge, with the gauge fields. For Quantum Chromodynamics one has,

Q ≡
∫

d4x q(x) =
g2

32 π2

∫
d4x εμνρσ tr (Fμν(x)Fρσ(x)) . (1.16)

To derive such a formula one typically works in an SU(2) subgroup of SU(3) and consid-
ers the mapping of a three-sphere in four-dimensional Euclidean space to SU(2) space.
The final chapter of Ref. [5] provides a nice discussion.

We would like to know what, if any, topological objects in the QCD vacuum con-
tribute to the topological charge. One such object is the “pseudo-particle” solution,
known as the instanton, which was discovered in 1975 by Belavin, et al. [8].

The instanton is a minimal action solution to the Yang-Mills SU(2) equation,

SYM =
1

2

∫
d4x tr(FμνFμν) . (1.17)

Using the relation,
1

4

∫
d4x tr(Fμν ± F̃μν)

2 ≥ 0 , (1.18)

along with,
(Fμν ± F̃μν)

2 = 2(Fμν Fμν ± Fμν F̃μν) , (1.19)

and the properties Fμν Fμν = F̃μν F̃μν , and Fμν F̃μν = F̃μν Fμν one can see that,

SYM ≥
∣∣∣∣∣12
∫

d4x tr(Fμν F̃μν)

∣∣∣∣∣ . (1.20)

The equality occurs when Fμν = ∓F̃μν and the field is self-dual. The instanton provides
a non-trivial solution and is given by [8],

Aμ(x) =
x2

x2 + ρ2

(
i

g

)
∂μ(S)S

−1 , (1.21)

with

S =
x4 ± i �x · �σ√

x2
, (1.22)

where the �σ are the usual Pauli matrices, ρ denotes the size of the instanton, and the +
corresponds to an instanton whilst the − corresponds to anti-instantons. Here, �σ resides
in the SU(2) colour space. The solution links the spatial and colour degrees of freedom.

Instantons have an integer topological charge Q = ±1, and allow tunnelling between
vacuum states which differ by a unit of topological charge. Isolated instantons also give
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rise to exact zero eigenmodes of the Dirac operator [9], with zeromodes from instantons
having positive chirality, and anti-instanton zeromodes having negative chirality.

In the present work we will focus on the presence (or absence) of instanton-like ob-
jects in gauge fields generated from Monte Carlo simulations. As such we are primarily
interested in topology in lattice simulations, rather than the phenomenological applica-
tions of instantons. For a discussion of instanton related phenomenology in QCD see
the review of Ref. [9].

Another reason why topology is interesting is that the topological charge density
appears in a resolution to the U(1) problem [10]. In the massless limit, the continuum
QCD Lagrangian observes the U(1)V × U(1)A × SU(3)L × SU(3)R symmetry. The
spontaneous breaking of the chiral SU(3)L × SU(3)R symmetry in nature gives rise to
a set of near-massless bosons, the three pions and octet of 0− mesons. The current
corresponding to the U(1)V symmetry is

jBμ (x) ≡ ψ̄(x) γμ ψ(x) , (1.23)

and manifests itself as baryon number conservation. The relevant current for the U(1)A
symmetry is

j5μ(x) ≡ ψ̄(x) γμγ5ψ(x) , (1.24)

but in this case, there is no corresponding physical symmetry observed in nature. There-
fore, one would expect this symmetry to be realised as a Goldstone mode, with a cor-
responding massless Goldstone boson, however no such particle exists. The possible
candidate, the η′ meson, is far heavier than the π, K and η mesons, and is therefore
excluded. This is the so-called U(1) problem.

A resolution to this problem is provided by the non-conservation of the flavour singlet
axial current,

∂μ j
5
μ(x) = 2Nf q(x) , (1.25)

where Nf is the number of flavours, which is proportional to the topological charge
density introduced previously.

The Adler-Bell-Jackiw axial anomaly of Eq. (1.25) means that the U(1)A symmetry
of the classical continuum Lagrangian is not present in the quantum theory, and therefore
the η′ does not become a Goldstone boson in the massless limit. Formally, the mass of
the η′ can be related to the topological susceptibility,

χ ≡ 〈Q
2〉

V
=

∫
d4x〈q(x)q(0)〉 , (1.26)

through the Witten-Veneziano formula,

χQue � f 2
π

4Nf

(m2
η′ +m2

η − 2m2
K) , (1.27)

where the topological susceptibility must be calculated in pure Yang-Mills theory, i.e.
quenched QCD. The topology of QCD vacuum can therefore be studied through the
non-perturbative calculation of q(x) using the techniques of the Lattice QCD.
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1.4 Lattice QCD

The lattice formalism provides the ability to perform non-perturbative, ab initio cal-
culations of QCD expectation values in Euclidean space. We will now present a brief
introduction to the various techniques of Lattice QCD. The material presented will be
developed further in later chapters as is necessary.

As we have already seen, the path integral formalism provides the following formula
for calculating the expectation value 〈O〉 ≡ 〈Ω|O(ψ, ψ̄, Aσ)|Ω〉 of some operator O,

〈O〉 = 1

Z

∫
DAσ O(Aσ) e

−
∫
d4xL(Aσ) , (1.28)

where L = 1
2

∫
d4x tr(FμνFμν) − ln det( /D + m) is the effective QCD Lagrangian. This

infinite dimensional integral is calculated by approximating continuous space-time with
a 4-dimensional grid, or lattice. Typically the spatial length of the lattice is denoted Ls,
and the lattice spacing a is the distance between nodes. Because of this discretisation,
derivatives are replaced with finite differences,

∂μf(x)→ 1

2a
[f(x+ aμ̂)− f(x− aμ̂)] , (1.29)

and integrals are replaced with finite sums,∫
d4x→ a4

∑
x

. (1.30)

On our lattice, the fermion fields ψ will reside on the nodes of the lattice while the gauge
fields Aμ exist as gauge links between the nodes. All variables on the lattice are also
replaced by their dimensionless counterparts3,

m → 1

a
m , (1.31)

ψ(x) → 1

a3/2
ψ(x) , (1.32)

ψ̄(x) → 1

a3/2
ψ̄(x) , (1.33)

∂μψ(x) → 1

a5/2
∂μψ(x) . (1.34)

Monte Carlo techniques are then used to generate a number, N , of typical vac-
uum gauge field configurations U(Aμ), with a fixed-point probability distribution of
1
Z
e−

∫
d4xL(Aμ). The path integral of Eq. (1.28) is then easily calculated as a sum over

these gauge fields,

〈O〉 = 1

N

∑
U

O(U) . (1.35)

Note that because the fermion fields are integrated out analytically, the effects of dy-
namical sea quarks are accounted for in the Monte Carlo generation of the gauge fields.

3The physical units are easily recovered by multiplying with the appropriate powers of the lattice
spacing a, which has units of fm, and �c � 0.197327 GeV fm.
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This means that the gauge fields are composed entirely of gauge links, and further, one
can study the effects of dynamical sea quarks by directly analysing these fields.

The effects of dynamical sea quarks can be neglected in lattice simulations by setting
det( /D+m) = constant. This is called the quenched approximation and is equivalent to
removing vacuum polarisation effects from the simulation.

1.4.1 Gauge fields in Lattice QCD

In the continuum, the colour gauge fields Aμ describe gluons and mediate the interactions
between quarks. In moving a quark from some position x to y the fermion picks up a
phase factor equal to the Schwinger line integral of Aμ between x and y,

ψ(y) = Pe
∫ y

x
igAμ(z) dzμψ(x) , (1.36)

where P denotes the path ordering operator. This motivates the definition of a gauge
link to be the line integral of Aμ between two adjacent nodes on the lattice. For a link
between x and x+ μ̂ one has,

Uμ(x) = e
∫ x+μ̂

x
igAμ(z) dzμ ≈ eigAμ(x+μ̂)δxμ . (1.37)

The reverse link going from x+ μ̂ to x is given by U †
μ(x).

Closed products of gauge links are called Wilson loops. The simplest Wilson loop is
the square, or plaquette,

Wμν(x) = Uμ(x)Uν(x+ μ̂)U †
μ(x+ ν̂)U †

ν(x) . (1.38)

Under a gauge transformation, we have from Eq. (1.7) that the links transform as,

Uμ(x)→ G(x)Uμ(x)G
−1(x+ μ̂) , (1.39)

U †
μ(x)→ G(x+ μ̂)U †

μ(x)G
−1(x) . (1.40)

For example,

Uμ(x) ≈ eigAμ(x+μ̂)δxμ

= 1 + ig Aμ(x) δxμ +O(δx2
μ)

→ 1 + ig

(
G(x)Aμ(x)G

−1(x)− i

g
G(x) ∂μ

(
G−1(x)

))
δxμ +O(δx2

μ)

= G(x) (1 + ig Aμ(x) δxμ)G
−1(x) +G(x) ∂μ

(
G−1(x)

)
δxμ +O(δx2

μ)

= G(x) (1 + ig Aμ(x) δxμ)
(
G−1(x) + ∂μ

(
G−1(x)

)
δxμ

)
+O(δx2

μ)

= G(x)Uμ(x)G
−1(x+ μ̂) ,

(1.41)

where we have used a Taylor expansion forG−1(x+μ̂). Thus, the plaquette will transform
as, Wμν(x) → G(x)Wμν(x)G

−1(x), and taking the colour trace gives a gauge invariant
quantity. Using the Baker-Campbell-Hausdorff formula to expand Eq. (1.38), one finds
that,

Wμν(x0) = eia
2g Fμν(x)+O(ga3) . (1.42)
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From this one can infer a lattice transcription of the pure gauge action,

SW ≡ β
∑
x

∑
μ<ν

[
1− 1

3
(Re trWμν)

]
= β

∑
x

∑
μ<ν

[
1− 1

3
tr(I) +

1

6
g2 a4 tr(F 2

μν) +O(a6)

]
SW =

1

2
a4
∑
x

∑
μ,ν

tr(F 2
μν) +O(a6) , (1.43)

where we have defined the lattice coupling β = 6/g2 to recover the continuum action.
SW is called the Wilson gauge action and has errors of O(a2). In order to remove the
discretisation errors, this standard action can be improved through a process known as
Symanzik improvement [11]. This improvement scheme will be discussed in Chapter 2.

1.4.2 Fermion fields on the lattice

In order to construct a lattice version of the fermion action,

SF =

∫
d4x ψ̄(x) ( /D +m)ψ(x) , (1.44)

the derivatives are replaced with finite differences, and gauge links are inserted to main-
tain gauge invariance. The naive fermion action is thus,

SN = m
∑
x

ψ̄(x)ψ(x) +

1

2a

∑
x,μ

ψ̄(x) γμ

[
Uμ(x)ψ(x+ μ̂)− U †

μ(x− μ̂) , ψ(x− μ̂)

]
≡
∑
x,y

ψ̄(x)MN
xy[U ]ψ(y) , (1.45)

where the interaction matrix MN is

MN
i,j[U ] = mδij +

1

2a

∑
μ

[γμ Ui,μ δi,j−μ − γμ U
†
i−μ,μ δi,j+μ] , (1.46)

where the sum over μ links the site i with its nearest neighbour in each dimension. The
naive action of Eq. (1.45) preserves chiral symmetry, and a Taylor expansion shows that
it has errors of O(a2). Unfortunately, in the continuum limit the action gives rise to
16 flavours of quarks. This is easily seen by considering the inverse of the free field
propagator, obtained by taking the Fourier transform of the action with all Uμ = 1,

S−1(p) = mq +
i

a

∑
μ

γμ sin pμa , (1.47)

which has 16 zeros within the Brillouin cell in the limit m→ 0,

pμ = (0, 0, 0, 0), (π/a, 0, 0, 0), (π/a, π/a, 0, 0) , etc. (1.48)
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This is the well known fermion doubling problem, and renders the naive fermion action
unacceptable.

The fermion doublers can be removed by adding irrelevant dimension-five operators
to the fermion action, such that the doublers are given an infinite mass in the continuum
limit.4 Because these extra operators are proportional to the lattice spacing a, they
vanish in the continuum limit. Wilson proposed just such a fermion action, the aptly
named Wilson action,

SW = ψ̄(x)

[∑
μ

(
γμ∇μ − 1

2
r aΔμ

)
+m

]
ψ(x) , (1.49)

where r is the “Wilson coefficient” (almost always r = 1),

∇μψ(x) =
1

2a
[Uμ(x)ψ(x+ μ̂)− U †

μ(x− μ̂)ψ(x− μ̂)] , (1.50)

and

Δμψ(x) =
1

a2
[Uμ(x)ψ(x+ μ̂) + U †

μ(x− μ̂)ψ(x− μ̂)− 2ψ(x)]. (1.51)

With these definitions the interaction matrix for the Wilson action is,

MW
xy [U ] a = δxy − κ

∑
μ

[
(r − γμ)Ux,μ δx,y−μ + (r + γμ)U

†
x−μ,μ δx,y+μ

]
, (1.52)

such that SW =
∑

x,y ψ̄
L
xM

W
xyψ

L
x , with a field renormalisation,

κ = 1/(2mq a+ 8 r) ,

ψL = ψ/
√
2κ . (1.53)

The Wilson action in Eq. (1.49) has no doublers for r > 0 as the Wilson term gives
the extra fifteen species at pμ = π/a a mass proportional to r/a. Unfortunately, the
introduction of the Wilson term leads to O(a) errors in the fermion action and explicitly
breaks chiral symmetry.

Clover improvement [15] describes the process of adding another dimension-five op-
erator,

− i g aCSW r

4
ψ̄ σμν Fμν ψ , (1.54)

to the fermion action in order to cancel off theseO(a) errors. This gives the Sheikholeslami-
Wohlert, or clover fermion action [15],

SSW = SW − i g aCSW r

4
ψ̄(x) σμν Fμν ψ(x) , (1.55)

The removal of the O(a) discretisation errors at tree-level can be observed by performing
a Taylor series expansion of the operators. For more details see Refs. [11, 15] or Ref. [16]

4An alternate approach that won’t be discussed here is the staggered, or Kogut-Susskind fermion
action [12]. Two more recent formalisms, the overlap and domain-wall, are more computationally
intensive than staggered and Wilson/clover actions, however they preserve chiral symmetry. The overlap
will be discussed later. See Refs. [13, 14] for details of the domain-wall approach.
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for a good discussion. By properly tuning the clover coefficient CSW , it is possible to
remove the O(a) errors from the fermion action.

At tree level in the non-interacting theory Csw = 1. Non-perturbative improve-
ment [17] tunes the clover coefficient to all powers in g2 by matching to some physical
observable. For example, in the Schrödinger functional method, CSW is tuned such that
the axial Ward-Takahashi identity is satisfied for a given volume [18]. Unfortunately this
approach is susceptible to the problem of exceptional configurations. For small quark
masses, the additive mass renormalisation caused by the chiral symmetry breaking of the
clover action can give rise to singularities. This can prevent the simulation of light quark
masses at finite volumes [19, 20]. Modern simulations [21] use large lattice volumes and
small lattice spacings to alleviate this problem, however this is very computationally
intensive.

Another approach uses fat, or smeared, links in the construction of the fermion action,
leading to the so-called “fat-link” fermion actions [22–26]. These types of actions can
overcome the exceptional configuration problem, and reduce the renormalisation of the
action improvement coefficients. However, smearing the gauge links will remove gluon
interactions at the scale of the cut-off. The effect this has on the quark propagator will
be addressed later in Chapter 7. To limit these effects one can consider an action in
which only the irrelevant terms of the fermion action are smeared. Giving rise to a fat-
link irrelevant clover (FLIC) action [27, 28]. Combined with mean-field improvement,
in which all gauge links are replaced by,

Uμ(x)→ Uμ(x)

u0

, UFL
μ (x)→ UFL

μ (x)

uFL
0

, (1.56)

where u0 (uFL
0 ) is the mean-link for the original (fat) link, this leads to greatly reduced

tadpole contributions and enables tree-level tuning of the clover coefficient, i.e. CSW = 1.
Regardless of the approach used, all clover actions still suffer from explicit chiral sym-

metry breaking. In order to derive a fermion matrix, or Dirac operator, that preserves
chiral symmetry and is free doublers on the lattice, it must satisfy the Ginsparg-Wilson
relation [29],

Mγ5 + γ5M = aMRγ5M , (1.57)

where R is a local operator. One solution to the GW relation is provided by the overlap
operator [30, 31]. The exact form of the overlap operator and a deeper discussion of
the GW relation is provided in later chapters. An alternate solution is the domain-wall
formalism [13, 14], which will not be discussed.

1.4.3 Lattice topological charge density

We have discussed how the gauge and fermion fields are transcribed onto the lattice.
Let us now consider how the topological charge density can be extracted from a lat-
tice simulation. Unfortunately, the straightforward transcription of Eq. (1.16) onto the
lattice suffers from large renormalisations [32, 33], and the geometric transcription of
Eq. (1.16) [34, 35] to the lattice is strongly affected by the presence of short distance
dislocations in the gauge field [36]. The calculation of the “gluonic” topological charge
density therefore requires the application of either a cooling or smearing algorithm.
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These algorithms systematically reduce the action of the gauge field by filtering out the
UV fluctuations at the scale of the lattice spacing, where discretisation effects are signif-
icant, and thereby suppress the large renormalisations that would otherwise be present.
A detailed discussion of these algorithms is given in Chapter 2. For now, we will denote
the topological charge density extracted in this manner as qsm(x),

qsm(x) ≡ g2

16 π2
tr
(
Fμν(x)F̃μν(x)

)
, (1.58)

where Fμν now refers to the lattice field strength tensor calculated after some amount
of smearing, and the total topological charge is given by,

Qsm =
∑
x

qsm(x) . (1.59)

The presence of short-distance fluctuations in the gauge field means that the total topo-
logical charge is typically non-integer valued for small levels of smearing.

An alternate definition of the topological charge density is provided by the massless
overlap Dirac operator D(0, x),

qov(x) = −tr
[
γ5

(
1− a

2
D(0, x)

)]
. (1.60)

As already mentioned, the overlap Dirac operator observes an exact chiral symmetry on
the lattice. The benefits of this “fermionic” topological charge density are that it can be
calculated on unfiltered gauge fields, and that it exactly satisfies the Atiyah-Singer index
theorem [37]. This theorem relates the topological charge to the number of positive, n+,
and negative chirality, n−, Dirac zeromodes,

Qov = n− − n+ . (1.61)

The overlap operator therefore gives exact integer values for the topological charge Qov.
One problem associated with the gluonic definition of the topological charge density

is that the level of applied filtering is arbitrary. There are also no obvious reasons as
to why the topological charge density extracted with either the gluonic or fermionic
methods should agree. These issues will be addressed in later chapters.

1.5 Example: Lattice determination of αs(MZ)

The content of this section is based on the publication: K. Maltman, D. Leinweber,
P. Moran and A. Sternbeck, Phys. Rev. D 78, 114504 (2008) [arXiv:0807.2020 [hep-
lat]].

We now present a sample lattice calculation, a determination of the strong coupling
constant αs using Wilson loops. The nf = 5 QCD coupling in the MS scheme at
the conventionally defined reference scale μ = MZ represents one of the fundamental
parameters of the Standard Model. Consequently this calculation is included to represent
the validity and utility of the lattice approach.

A high precision determination of αs(MZ) based on the perturbative analysis of
short-distance-sensitive lattice observables computed using the a ∼ 0.09, 0.12 and 0.18
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Table 1.1: Recent non-lattice determinations of αs(MZ)

Source αs(MZ)
Global EW fit [40, 41] 0.1191± 0.0027
H1+ZEUS NLO inclusive jets [42, 43] 0.1198± 0.0032
H1 high-Q2 NLO jets [44] 0.1182± 0.0045
NNLO LEP event shapes [45] 0.1240± 0.0033
NNNLL ALEPH+OPAL thrust distributions [46] 0.1172± 0.0022
σ[e+e− → hadrons] (2-10.6 GeV) [47] 0.1190+0.0090

−0.0110
Γ[Υ(1s)→γX]
Γ[Υ(1s)→X]

[48] 0.1190+0.0060
−0.0050

hadronic τ decay [49, 50] 0.1187± 0.0016

fm nf = 2+1 MILC5 data was presented in Ref. [38]. The result, αs(MZ) = 0.1170(12),
plays a dominant role in fixing the central value of the current Particle Data Group
(PDG) assessment [39], αs(MZ) = 0.1176(20).

Recently, a number of improved non-lattice determinations of αs(MZ) have appeared,
in a variety of independent processes, over a wide range of scales [40–50]. The results,
given in Table 1.1 (with all errors combined in quadrature), yield a weighted average,
αs(MZ) = 0.1190(10), ∼ 2σ higher than the lattice determination. This difference,
though not large, motivates revisiting the lattice analysis, especially in light of the
existence of new high-scale (a ∼ 0.06 fm) lattice data not available at the time of the
earlier study.

We begin by outlining the original analysis, specifying our own strategy for imple-
menting the underlying approach, and clarifying the difference between our implemen-
tation and that of the earlier study and recent HPQCD re-analysis. Following this, we
discuss the details of, and input to, our version of the analysis and finally we present
and discuss our results.

1.5.1 The original HPQCD/UKQCD analysis

In Ref. [38], αs(MZ) was extracted by studying perturbative expansions for a number of
UV-sensitive lattice observables, Ok. The generic form of this expansion is

Ok =
∑
N=1

c̄
(k)
N αV (Qk)

N ≡ DkαV (Qk)
∑
M=0

c
(k)
M αV (Qk)

M (1.62)

where Qk = dk/a are the Brodsky-Lepage-Mackenzie (BLM) scales [51] for the Ok, and

c
(k)
0 ≡ 1. The coefficients c̄

(k)
1,2,3 (equivalently, Dk, c

(k)
1 , and c

(k)
2 ) have been computed in

3-loop lattice perturbation theory [52], and, with the corresponding dk, tabulated for a
number of Ok in Refs. [38, 52, 53]. In Eq. (1.62), αV (μ) is a coupling with the same
expansion to O(α3

s) (with αs the MS coupling) as the heavy quark potential coupling,
αp
V , but differing from it, beginning at O(α4

s), in a way that will be specified below. The
expansion coefficients are known to O(α4

s), and hence the β function of αV , defined in our
conventions by μ2daV (μ)/dμ

2 = −∑n=0 β
V
n a

n+2
V (μ), with aV ≡ αV /π, is determined to

5MIMD Lattice Computation (MILC) Collaboration
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4 loops by the known coefficients, β0, · · · , β3, of the 4-loop MS β function [54, 55]. The

coefficients c̄
(k)
1 , c̄

(k)
2 , and c̄

(k)
3 tabulated in Refs. [38, 52, 53] are valid for expansions of

the Ok in terms of any variable, αT , sharing the same expansion as αV out to O(α3
s).

With only the known, third order terms in the expansions of the Ok, no value for
the reference scale coupling, αV (7.5 GeV) ≡ α0

V , was found to produce a simultaneous
fit to the data at all three lattice spacings employed [38]. Consequently, terms out to
tenth order in the expansion of Eq. (1.62) were incorporated, the unknown coefficients

c̄
(k)
4,··· ,10 being fitted using input Bayesian prior constraints. The 4-loop version of βV

was used to run α0
V to the scales Qk relevant to each of the given observables at each

of the three lattice spacings. Linear extrapolation in the quark masses was employed,
and possible residual mass-independent non-perturbative (NP) contributions estimated,
and subtracted, using the known leading-order gluon condensate contributions to the
relevant Wilson loops [56].

The scales r1/a and r1, which determine the lattice spacing, a, in physical units, as
well as the gluon condensate, 〈αsG

2/π〉, required for the mass-independent NP subtrac-
tion, were determined as part of the independent fit performed for each of the Ok. This
was accomplished using an augmented χ2 function in which the squared deviations of
the relevant parameters from their input central values were scaled by the squares of
the input prior widths. For r1/a and r1 the central values and widths were provided
by the measured values and their uncertainties. For 〈αsG

2/π〉, a central value 0 and
uncertainty ±0.010 GeV4 (∼ the conventional SVZ value 0.012 GeV4 [57]) were em-
ployed. While this procedure allows r1/a and r1 (which should be characteristic of the
lattice under consideration) to take on values which vary slightly with the Ok being
analysed, one should bear in mind that the measured uncertainties, which set the range
of these variations, are small compared to the variation of scales across the a ∼ 0.09, 0.12
and 0.18 fm lattices employed in the analysis. The impact of any potential unphysical
observable-dependence of the physical scales on the fitted α0

V and c̄
(k)
n should thus be

safely negligible. The situation with regard to the independent fitting of 〈αsG
2/π〉 for

each Ok is potentially more complicated, and will be discussed further below.

The resulting best fit value for α0
V , averaged over the various observables, was then

matched to the nf = 3 MS coupling, and the corresponding nf = 5 result, αs(MZ),
obtained via standard running and matching at the flavor thresholds [58]6, yielding the
result, αs(MZ) = 0.1170(12), already quoted above.

Regarding the conversion from αV to αs, one should bear in mind that, while the
expansion for αV in terms of αs is, in principle, defined to all orders (see below for more on
this point), the coefficients beyond O(α4

s) involve the currently unknown MS β function
coefficients β4, β5, · · · . The nf = 3 conversion step is thus subject to a (hopefully
small) higher order perturbative uncertainty. As will be explained in Sec. 1.5.3, with
the definition of αV employed in Ref. [38], the higher order perturbative uncertainties
are, in fact, entirely isolated in the V →MS conversion step of the analysis.

6To be explicit, a self-consistent combination of 2-loop matching and 3-loop running [58] was em-
ployed, with the nf = 3→ 4 and nf = 4→ 5 flavor thresholds taken to be at mc(mc) = 1.25 GeV and
mb(mb) = 4.25 GeV, respectively. The use of 2-loop matching and 3-loop running rather than 3-loop
matching and 4-loop running is inessential; the resulting value at scale MZ is lowered by only 0.0002 if
one uses the latter approach, a change which is small on the scale of the final quoted error.
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1.5.2 An alternate implementation of the HPQCD/UKQCD
approach

The higher order perturbative uncertainty encountered in matching αV to αs can be
removed entirely by working with any expansion parameter, αT , whose expansion in αs

is fully specified. We take αT to be defined by the third-order-truncated form of the
relation between αp

V (μ
2) and αs(μ

2) [59] which, for nf = 3, yields

αT (μ
2) = αs(μ

2)
[
1 + 0.5570αs(μ

2) + 1.702α2
s(μ

2)
]
. (1.63)

The β function for αT , βT , is then determined to 4-loops by the known values of
β0, · · · , β3. With all coefficients on the RHS positive, αT runs much faster than αs, a
fact reflected in the significantly larger values of the non-universal β function coefficients,
βT
2 = 33.969 and βT

3 = −324.393. This makes running αT using the 4-loop-truncated βT

function typically unreliable at the BLM scales corresponding to the coarsest (a ∼ 0.18
fm) lattices considered here. Since, however, the 4-loop-truncated MS running of αs

remains reliable down to these scales, and the relation, Eq. (1.63) is, by definition, exact,
the running of αT may be performed by converting from αT to αs at the initial scale,
running αs to the final scale, and then converting back to αT . This procedure will be
especially reliable for Ok like log(W11) and log(W12) with lowest BLM scales > 3 GeV.

Though the conversion from the fitted reference scale αT value to the equivalent
MS coupling αs can be accomplished without perturbative uncertainties, higher order
perturbative uncertainties do remain in the analysis. To see where, define α0 ≡ αT (Q0),
with Q0 = Qmax

k = dk/amin the maximum of the BLM scales (corresponding to the
finest of the lattice spacings, amin) for the observable in question. Expanding the cou-
plings at those BLM scales corresponding to coarser lattices, but the same observable,
in the standard manner as a power series in α0, αT (Qk) =

∑
N=1 pN(tk)α

N
0 (where

tk = log (Q2
k/Q

2
0), and the pN(t) are polynomials in t), one finds, on substitution into

Eq. (1.62),

Ok

Dk

= · · ·+ α4
0

(
c
(k)
3 + · · ·

)
+ α5

0

(
c
(k)
4 − 2.87c

(k)
3 tk + · · ·

)
+ α6

0

(
c
(k)
5 − 0.0033βT

4 tk

−3.58c(k)4 tk + [5.13t2k − 1.62tk]c
(k)
3 + · · ·

)
+ α7

0

(
c
(k)
6 − 0.0010βT

5 tk

+[0.0094t2k − 0.0065c
(k)
1 tk]β

T
4 − 4.30c

(k)
5 tk + [7.69t2k − 2.03tk]c

(k)
4

+[−7.35t3k + 6.39t2k − 4.38tk]c
(k)
3 + · · ·

)
+ · · · .

(1.64)

where the known numerical values of βT
0 , · · · , βT

3 have been employed, and we display

only terms involving one or more of the unknown quantities βT
4 , β

T
5 , · · · , c(k)3 , c

(k)
4 , · · · .

Running theMS coupling numerically using the 4-loop-truncated β function is equiv-
alent to keeping terms involving β0, · · · , β3 to all orders, and setting β4 = β5 = · · · = 0.
Neglecting β4, β5 · · · means that βT

4 , β
T
5 , · · · also do not take on their correct physical

values, leading to an alteration of the true tk-dependence, beginning at O(α6
0). Since it

is the scale-dependence of Ok which is used to fit the unknown coefficients c
(k)
3,4,···, as well

as α0, we see immediately that the 4-loop truncation necessarily forces compensating
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changes in at least the coefficients c
(k)
4,5,···. A shift in c

(k)
4 , however, also alters the O(α5

0)

coefficient, which will, in general, necessitate an approximate compensating shift in c
(k)
3

as well, and, in consequence, a further compensating shift in α0. From Eq. (1.64), the
size of such effects, associated with the truncation of the running, and unavoidable at
some level, can be minimised by taking Q0 as large as possible (achieved by working with
the observable with the highest intrinsic BLM scale) and keeping tk from becoming too
large (achieved by restricting one’s attention, if possible, to a subset of finer lattices)7.

1.5.3 More on the relation between the two implementations

For nf = 3, in our notation, the relation between αp
V and αs, to O(α3

s), is [59]

αp
V (q

2) = αs(μ
2)
[
1 + κ1(μ

2/q2)αs(μ
2) + κ2(μ

2/q2)αs(μ
2)
]

(1.65)

where κ2(x) =
[
a2 + 16β2

0 log
2(x) + (16β1 + 8β0a1) log(x)

]
/16π2, with a2 =

695
6
+36π2−

9
4
π4 + 14ζ(3), and κ1(x) = [7 + 4β0 log(x)] /4π. Our expansion parameter, αT (q

2) is de-
fined to be equal to the RHS of Eq. (1.65) with μ2 = q2, leading to the numerical result
given in Eq. (1.63). The conversion from αT to αs can be performed exactly but the
absence in βT

4,5,··· of terms ∝ β4,5,··· induces a perturbative uncertainty in the values of
our fitted parameters, one which can, however, be reduced by working with high scale
observables and fine lattices. It is also possible to test for its presence by expanding
the fits to include coarser lattices, where the effects of the omitted contributions will be
larger.

The construction of the expansion parameter αV is somewhat more complicated, but
turns out to be equivalent to the following. One first takes the RHS of Eq. (1.65), with
μ2 = e−5/3q2, to define an intermediate coupling, α′

V (q
2). The corresponding β function,

β′, is then determined to 4-loops by β0, · · · , β3. The higher order coefficients, β′
4,5,···,

however, depend on the presently unknown β4,5,···, are hence are themselves unknown.
The final HPQCD coupling, αV , is obtained from α′

V by adding terms of O(α5
s) and

higher with coefficients chosen to make βV
4 = βV

5 = · · · = 0. Since β4,5,··· are not
known, the values of the coefficients needed to implement these constraints are also
not known. The coupling is nonetheless, in principle, well-defined, with higher order
coefficients computable as soon as the corresponding higher order βk become available.
Since the 4-loop-truncated βV function is, by definition, exact, the distortions of the fit
parameters induced, in general, by the 4-loop truncation of the running are absent for
the αV coupling. The price to be paid for this advantage is the unknown perturbative

7The non-universal βT
n>1 receive contributions from all of the MS coefficients βm with m ≤ n.

Numerically, one has βT
2 = β2 + 23.9090 = 33.9689, βT

3 = β3 − 371.6215 = −324.3934, βT
4 = β4 −

758.1717, βT
5 = β5 − 7β4 + 30807.8757, · · · , where the additive numerical terms reflect the known

contributions of the lower order βk. Since terms involving β0, · · · , β3 are kept to all orders in our analysis,
only the parts of βT

4 , β
T
5 , · · · proportional to β4, β5, · · · are not properly included. The expressions for

βT
2,3, show that the lower order terms in fact dominate in those cases. The expressions for βT

4,5 will also
be dominated by the already-fully-included lower order contributions unless an extremely rapid growth
with order occurs for the MS β function coefficients. The distortion of the tk-dependence discussed in
the text should thus, in fact, be considerably weaker than it might appear from the original form of the
argument. It nonetheless remains sensible to treat with greater confidence analyses which are based on
high scale observables and employ the finest lattices.
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uncertainty in the relation between αV and αs, which affects the conversion and running
to αs(MZ). With this definition, αV differs from αT beginning at O(α4

s).
The other difference between the two re-analyses lies in the treatment of r1/a, r1,

and 〈αsG
2/π〉. In Ref. [38], these are allowed to vary independently, though within the

range of the input prior constraints, for each Ok, whereas in our analysis, they are treated
as fixed external input, and have the same central values for all Ok. As noted above,
the difference in the treatment of r1/a and r1 is expected to have a negligible impact.
The impact of the differing treatments of 〈αsG

2/π〉 should be similarly negligible for
observables with intrinsic scales high enough that the associated correction is small.

The two different implementations of the original HPQCD/UKQCD approach will
thus, when restricted to high-scale observables, correspond to isolating residual higher
order perturbative uncertainties in different sectors of the analysis. If these uncertainties
are, as desired, small in both cases, the two analyses should be in good agreement. Such
agreement (which is, in fact, observed, provided comparison is made to the very recent
HPQCD update) serves to increase confidence in the results of both analyses.

1.5.4 Details of our re-analysis

In our analysis, we have calculated the desired Wilson loops using the publicly available
a ∼ 0.09, 0.12, 0.15 and 0.18 fm MILC nf = 2 + 1 ensembles and incorporated infor-
mation on W11 and W12 for the three a ∼ 0.06 fm USQCD ensembles provided to us by
Doug Toussaint of the collaboration.

We follow the basic strategy of the earlier analysis, using the same 3-loop pertur-
bative input, but with the following differences in implementation. First, we employ
the expansion parameter αT throughout. All running of αT is carried out using exact
4-loop-truncated running of the intermediate variable, αs, whose relation to αT is given
by Eq. (1.63). Second, to minimise the effect of our incomplete knowledge of the running
of αT beyond 4-loop order, the impact of which will be larger for coarser lattices, we
perform “central” 3-fold versions of our fits using the three finest lattices, with a ∼ 0.12,
0.09 and 0.06 fm. Expanded 5-fold fits then serve as a way of studying the impact of the
truncated running, as well as of the truncation of the perturbative expansion for the Ok.
Since we do not currently have access to the actual a ∼ 0.06 fm configurations, we are
restricted to analysing the three observables indicated above. One of these, log(W12/u

6
0),

has a significantly lower BLM scale, and hence is particularly useful for studying the im-
pact of these truncations. As in Ref. [38], we extrapolate linearly in the quark masses8,
and estimate (and subtract) residual mass-independent NP effects using the known form
of the leading order gluon condensate contributions to the relevant Wilson loops.

Regarding the mass extrapolation, the sets of configurations for different mass combi-
nations am�/ams corresponding to approximately the same lattice spacing a in fact have

8We have performed a number of supplementary studies of the mass extrapolation, restricting our
attention to subsets of the data for different am�/ams but common a and allowing also a quadratic
component in the fit function. The zero-mass-extrapolated values are very stable to such variations.
Moreover, not only are the quadratic coefficients returned by the extended optimised fits very small,
but a χ2/dof significantly less than 1 is already produced by the linear fits alone. We conclude that
the quark masses of the ensembles employed are already sufficiently small that the mass-dependent NP
contributions can be reliably removed by a linear extrapolation.
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slightly different measured r1/a. Since the Ok we study are themselves scale-dependent,
full consistency requires converting the results corresponding to the different am�/ams

to a common scale before extrapolation. This could be done with high accuracy if
the parameters appearing in the perturbative expansion of the Ok were already known.
Since, however, some of these parameters are to be determined as part of the fit, the
extrapolation and fitting procedure must be iterated. With sensible starting points,
convergence is achieved in a few iterations. The dominant uncertainty in the converged
iterated extrapolated values is that associated with the uncertainties in r1/a. There is
also a 100%-correlated global scale uncertainty associated with that on r1. We employ
r1 = 0.318(7) fm, as given in the MILC Lattice 2007 pseudoscalar project update [60].

The mass-independent NP subtractions are estimated using the leading order (LO)
D = 4 gluon condensate contribution, δgWmn, to the m× n Wilson loop, Wmn [56]

δgWmn =
−π2

36
m2n2a4〈αsG

2/π〉 (1.66)

and the central value, 〈αsG
2/π〉 = (0.009 ± 0.007) GeV4, of the updated charmonium

sum rule analysis [61, 62]. Since the error here is already close to 100%, we take the dif-
ference between results obtained with and without the related subtraction as a measure
of the associated uncertainty. This should be sufficiently conservative if the correction
is small. If not, the measured Ok values may contain additional non-negligible mass-
independent contributions, of dimension D > 4, which we do not know how to estimate
and subtract. Ok for which this occurs will thus provide a less reliable determination of
αs.

Fortunately, for the observables we consider, the gluon condensate correction is, as
desired, small. For Ok = log(W11), the corrections required for the 3-fold (5-fold) fit do
not exceed ∼ 0.1% (∼ 0.5%). The corrections remain small (less than ∼ 0.4% (∼ 1.8%))
for Ok = log(W12). The effect is somewhat larger for log(W12/u

6
0), as a consequence of

cancellations encountered in combining the uncorrected log(W11) and log(W12) values,
but still reaches only ∼ 1.3% (∼ 5.6%) for the 3-fold (5-fold) fit9.

In line with what was seen in Ref. [38], we find that the known terms in the per-
turbative expansions of the Ok are insufficient to provide a description of the observed
scale-dependence, even when only the three finest lattices are considered. When c

(k)
3 is

added to the fit, however, we find very good fits, with χ2/dof < 1 (very significantly
so for the 3-fold fits). With current errors, it is thus not possible to sensibly fit addi-

tional coefficients c
(k)
m>3. This raises concerns about possible truncation uncertainties.

Comparison of the results of the 3-fold and 5-fold fits provides one handle on such an
uncertainty since the relative weight of higher order to lower order terms grows with
decreasing scale. If neglected higher order terms are in fact not negligible, the growth

9The relative size of the gluon condensate correction grows rapidly with loop dimension. For the
2 × 3 loop, for example, the correction to Ok = log(W23), would reach ∼ 8% for the 3-fold fit, and
∼ 31% for the coarsest of the lattices entering the 5-fold fit (where the “correction”, δgW23, has, in
fact, grown to a factor of ∼ 2 larger in size than the measured W23 itself). A further enhancement,
similar to that encountered for log(W12/u

6
0), occurs when Ok is the logarithm of one of the Creutz

ratios or tadpole-improved ratios. For example, the size of the “corrections” for Ok = log(W23/u
10
0 ),

log(W11W23/W12W13) and log(W14/W23), which represent the three extreme “outliers” of the original
HPQCD/UKQCD analysis, are 56%, 82% and 101%, respectively.
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Table 1.2: Central fit results for αs(MZ) and the c
(k)
3

Ok αs(MZ) c
(k)
3

log (W11) 0.1192± 0.0011 −3.8± 0.6
log (W12) 0.1193± 0.0011 −4.0± 0.9

log (W12/u
6
0) 0.1193± 0.0011 −1.7± 0.8

with decreasing scale of the resulting fractional error should show up as an instability
in the values of the parameters extracted using the different fits. We see no signs for
such an instability within the errors of our fits, but nonetheless include the difference
of central values obtained from the 3-fold and 5-fold fits as a component of our error
estimate.

1.5.5 Results

Central inputs for our fits are the measured lattice observables (whose errors are tiny on

the scale of the other uncertainties), the computed Dk, c
(k)
1 and c

(k)
2 [38, 52], r1/a, r1 and

〈αsG
2/π〉, and the choice of the 3-fold fitting procedure. In addition to the uncertainties

generated by the errors on r1/a, r1 and 〈αsG
2/π〉, are those due to uncertainties in

numerical evaluations of the Dk, c
(k)
1 and c

(k)
2 .

We construct an “overall scale uncertainty error” by adding linearly the fit uncertain-
ties generated by those on r1 and the r1/a. This combined error is added in quadrature

to (1) uncertainties produced by varying the c
(k)
2 (and, if relevant, c

(k)
1 ) within their er-

rors, (2) the difference between results obtained with and without the gluon condensate
correction, and (3) the difference between the results of the 3-fold and 5-fold fits. Be-
cause of the iterative nature of the fit procedure, the mass extrapolation uncertainty is
incorporated into what we have here identified as the overall scale uncertainty.

We run our nf = 3 results to MZ using the self-consistent combination of 4-loop
running and 3-loop matching at the flavor thresholds, taking the flavor thresholds to lie at
rmc(mc) and rmb(mb), withmc(mc) = 1.286(13) GeV andmb(mb) = 4.164(25) GeV [63],
and r allowed to vary between 1 and 3. These uncertainties in the matching thresholds,
together with standard estimates for the impact of the truncated running and matching,
produce an evolution contribution to the uncertainty on αs(MZ) of ±0.0003 [40].

Our central fit results for αs(MZ) and the c
(k)
3 are given in Table 1.2. For comparison,

the results for αs(MZ) obtained in Ref. [38] were 0.1171(12), 0.1170(12) and 0.1162(12),
for log(W11), log(W12) and log(W12/u

6
0), respectively. Our αs(MZ) are significantly

larger, and in closer mutual agreement. The recent HPQCD update [53] also finds
significantly larger values. The very good agreement between the αs(MZ) values obtained
in our fits using both low- and high-scale observables suggests that the effects of the
truncated running, present at some level in all such fits, are small in the cases we have
studied.

One-sided versions of the various components of the total errors on αs(MZ) are
displayed in Figure 1.4. The difference of the 3-fold and 5-fold determinations is ∼
0.0004, significantly smaller than the ∼ 0.0009 overall scale uncertainty. The results
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c2 − σ
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average (non-lattice)

log W11

log W12

log W12/u6

0

Figure 1.4: Contributions to the errors on αs(MZ). Shown are the αs(MZ) obtained using
(i) the 3-fold fit strategy, with all central input, (ii) the alternate 5-fold fit strategy, with
all central input, and (iii) the 3-fold fit strategy, with, one at a time, each input shifted
from its central value by 1σ, retaining central values for the remaining input parameters.
The error bars shown are those associated with the uncertainties in r1/a.
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our result
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Figure 1.5: Comparison of the results for αs(MZ) from our fits, the fits of Ref. [38] and
the updated fits of Ref. [53] with the average of recent non-lattice determinations.
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thus show no evidence for any instability associated with opening up the fit to lower
scales.

While the total error on αs(MZ) is the same for all three Ok considered, the general
arguments above lead us to believe that the most reliable determination is that obtained
using the highest-scale observable, log(W11), and highest-scale (3-fold fit) analysis win-
dow. Our final assessment,

αs(MZ) = 0.1192± 0.0011 , (1.67)

is in excellent agreement with the non-lattice average and the result, 0.1184 ± 0.0009,
of the independent HPQCD analysis. The various results are shown for comparison in
Figure 1.5.

1.6 Outline

The aim of the work presented in the following chapters is to perform multiple in depth
studies of QCD vacuum structure within the context of Lattice QCD. As such, a large
portion of the thesis is devoted to the analysis of the algorithms used to analyse the
topological structure of the vacuum. In arranging this thesis, the intention was that
each chapter be essentially independent of the remaining chapters. It should therefore
be possible to read any chapter with only minor references to the preceding chapters.
Perhaps the only exception to this rule is the following chapter on over-improved stout-
link smearing as this algorithm is used extensively throughout the remainder of the
thesis. The overall structure of the thesis is as follows:

We begin with an introduction to cooling and smearing algorithms on the lattice in
Chapter 2. Following this, we define our own algorithm, a topologically stable, over-
improved stout-link smearing algorithm. We perform an analysis of the new algorithm
against standard stout-link smearing. The results of this chapter demonstrate the im-
portance of using improved smearing algorithms for topological studies of the QCD
vacuum.

Chapter 3 performs a comparison of the topological charge density, extracted with
this new smearing algorithm, against the topological charge density from the overlap
operator. The results reveal a good correlation between the important structures in
the QCD vacuum, from both algorithms. This provides further support for the use of
over-improved smearing in vacuum studies.

In Chapter 4 a similar comparison is performed, however this time it is the overlap
operator that is examined. Specifically, we examine the extent to which the topological
charge density from the overlap operator depends on the input (negative) Wilson-mass
parameter. In this formulation, the Wilson-mass is used in the negative mass region
and acts as a regulator governing the scale at which the Dirac operator is sensitive to
topological aspects of the gauge field. A clear dependence is observed, and the results
are calibrated against over-improved stout-link smearing.

With the analysis of the smearing algorithm and overlap operator complete, in Chap-
ter 5 we proceed to analyse the structure of the QCD vacuum. Of interest, are the
contrasting pictures of the vacuum that are revealed at different energy scales. Perhaps
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more importantly, this chapter also presents a study of the impact of dynamical sea
quarks on the QCD vacuum.

The further usefulness of smearing algorithms is then demonstrated in Chapter 6.
Here we show how smearing can be used as a preconditioner for Maximal Centre Gauge
fixing algorithms. This is achieved through an analysis of centre vortices in the SU(3)
gauge theory, and the results demonstrate the effectiveness of smearing as a precondi-
tioner.

Chapter 7 assesses the impact of smearing on the overlap quark propagator. This
is important since the work of the preceding chapters has been primarily focused on
the QCD vacuum. Here we examine the connection between vacuum structure and the
manner in which quarks propagate in the vacuum. The overlap quark propagator is
chosen because of its excellent chiral properties. The results indicate that dynamical
mass generation in the quark propagator is compromised after smearing. This raises
concerns on the use of smearing in all links of a fermion action.

The analysis of the dynamical vacuum is continued in Chapter 8 with a calcula-
tion of the proton and Δ+ charge radii and magnetic moments using dynamical gauge
fields. This study of the electromagnetic properties of baryons allows us to investigate
the non-perturbative effects of the dynamical QCD vacuum on physical particles. We
demonstrate how the absence of dynamical sea-quark loops in previous quenched cal-
culations leads to a negative chiral curvature in the μΔ+/μp magnetic moment ratio.
We show how this negative chiral curvature is suppressed in full QCD and discuss the
reasons for this behaviour.

Finally, Chapter 9 presents a discussion and draws conclusions from the work con-
tained herein.



Chapter 2

Over-improved stout-link smearing
and the QCD vacuum

The content of this chapter is based on the publication: P. J. Moran and D. B. Leinweber,
Phys. Rev. D 77, 094501 (2008) [arXiv:0801.1165 [hep-lat]].

In this chapter we present an introduction to cooling and smearing algorithms on
the lattice. A new over-improved stout-link smearing algorithm, designed to stabilise
instanton-like objects, is then presented. A method for quantifying the selection of the
over-improvement parameter, ε, is demonstrated. The new smearing algorithm is com-
pared with the original stout-link smearing, and Symanzik improved smearing through
calculations of the topological charge and visualisations of the topological charge density.
We find the incorporation of improvement in stout-link smearing to be essential for the
accurate study of QCD vacuum structure.

2.1 Introduction

Studies of long distance physics in Lattice QCD simulations often require the suppression
of short-range UV fluctuations. This is normally achieved through the application of a
smoothing algorithm. The most common prescriptions are cooling [64–66], APE [67, 68],
and improved APE smearing [69], HYP smearing [70] and more recently, EXP or stout-
link smearing [71] and LOG smearing [72]. Filtering methods such as these are also
regularly used in calculations of physical observables to improve overlap with low energy
states.

All smoothing methods are based on an approximation to the continuum gluonic
action

Sg =
1

2

∫
d4x tr (FμνFμν) . (2.1)

Because space-time is approximated by a 4-D lattice, these approximations contain un-
avoidable discretisation errors. These errors can have a negative effect on the topological
objects present in the gauge field being studied and are detrimental to the smoothing
process.

There are two noteworthy approaches for dealing with these discretisation errors and
both have so far been restricted to cooling algorithms. One approach is to eliminate he

24
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discretisation errors through a strategic combination of larger Wilson loops [11, 69, 73,
74] leading to the so-called 3-, 4-, and 5-loop O(a4)-improved actions. These actions are
used in the cooling algorithm to identify the individual link that will maximally reduce
the local action. The difficulty with this approach is that relatively long link paths
are combined with the plaquette in improving the action. The preferred 3- and 5-loop
improved actions include the 3 × 3 Wilson loop which involves 8 links more than the
plaquette. Early in the application of cooling, it is essential to accommodate for the large
renormalisations of the improvement coefficients and the best practice [74] is to consider
tadpole-improvement via the mean link, u0. However, early in the cooling procedure, a
mean-field estimate of 1/u8

0 for the coefficient renormalisation is not accurate and the
utility of highly-improved actions on rough configurations is of concern.

Ideally one seeks a solution involving only the most local link paths, the plaquette
and the rectangle. Unfortunately, as shown by Perez, et al. [75] and briefly reiterated
below, the O(a4) errors remaining after the removal of the O(a2) errors act to spoil
instanton-like objects in the field. They proposed the second noteworthy approach of
over-improved cooling as a means of taming these errors via the introduction of a new
tunable parameter ε into their action [75]. They selected the combination of 1 × 1
and 2× 2 link paths, exacerbating problems associated with the renormalisation of the
coefficients.

Thus there is a need to investigate the utility of over-improvement in the maximally
local case of 1×1 and 1×2 link paths. Here the standard tactics of tadpole improvement
will be the most effective. To the best of our knowledge this is the first derivation of the
over-improved 1× 1 plus 1× 2 action and as such, the first investigation of its utility in
both classical instanton configurations and in preserving topological structure in lattice
Monte-Carlo generated configurations.

We also note that there has been remarkably little, if any, focus on the role of
improvement and over-improvement in the context of smearing algorithms. As such
the work presented here leads an important new area of study and presents the first
application of (over-)improvement in the popular stout-link smearing algorithm.

Smearing is preferred to cooling for several reasons. Unlike cooling, smearing provides
a well defined and differentiable lattice action suitable for use in dynamical-fermion
simulations. Moreover, the presence of a smearing parameter enables greater control
over the amount of smoothing performed in the important early stages of the smoothing
process.

In Sec. 2.2 we begin by presenting a brief summary of the most common smoothing
algorithms and illustrate the role of the lattice action in both cooling and smearing. We
then describe the creation of a new over-improved stout-link smearing algorithm based
on 1 × 1 plus 1 × 2 paths in Sec. 2.3. Here, the lattice discretisation errors of a single
classical instanton are considered. As emphasised above, this is the first exploration of
over-improvement utilising the maximally local 1× 1 and 1× 2 link paths.

In Sec. 2.4 we present the first quantitative method for tuning the over-improvement
parameter, ε. This is essential for ensuring topological objects larger than the dislocation
threshold are not distorted under continued smearing. Whereas the previous study [75]
simply selected the value of −1, we have discovered this choice is less than optimal.

Finally, in Sec. 2.5 we demonstrate the utility of the over-improved stout-link smear-
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ing algorithm on a variety of lattices, including large 283 × 96 light dynamical gauge
fields from the MILC collaboration [76, 77]. Of particular note is our illustration of the
destruction of topologically nontrivial objects in real gauge field configurations under
standard stout-link smearing and the preservation of these objects under over-improved
stout-link smearing. To the best of our knowledge, this is the first time such a comparison
has been illustrated using any (over-)improved smoothing algorithm.

2.2 Smoothing algorithms

Standard cooling proceeds via a systematic sequential update of all links Uμ(x) on the
lattice, where at each link update the local Wilson action [1] is minimised. The local
Wilson action corresponding to Uμ(x) is defined as

SW (x) = β
∑
ν

ν �=μ

1

3
Re tr (1− Uμ(x)Σμν(x)) , (2.2)

where

Σμν(x) = Uν(x+ μ̂)U †
μ(x+ ν̂)U †

ν(x) + U †
ν(x+ μ̂− ν̂)U †

μ(x− ν̂)Uν(x− ν̂) (2.3)

is the sum of the two staples touching Uμ(x) which reside in the μ-ν plane. From (2.2),
we can see that SW will be minimised when Re tr (1− Uμ(x)Σμν(x)) = 0. It naturally
follows that when cooling, the aim is to replace Uμ(x) with a new link that optimises

maxRe tr

⎛⎜⎝Uμ(x)
∑
ν

ν �=μ

Σμν(x)

⎞⎟⎠ . (2.4)

When performing this update in parallel, one must be careful not to replace any link
which is included in the local action of a neighbouring link. This requirement means
that cooling is a relatively slow operation computationally, but fast in regard to the
removal of action from the gauge field.

APE smearing differs from standard cooling in that all links can be simultaneously
updated in a single sweep through the lattice, resulting in a significant speed increase.
In APE smearing one first calculates a smeared link U ′

μ(x), which is the weighted sum
of its nearest neighbours,

U ′
μ(x) = (1− α)Uμ(x) +

α

6

∑
ν

ν �=μ

Σ†
μν(x) , (2.5)

where Σμν is defined as in (2.3), and α is a real parameter, usually set to ≈ 0.7. The new
link U ′

μ(x) is then projected back into the SU(3) group via some projection operator P ,

Ũμ(x) = P U ′
μ(x) . (2.6)
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The projection of (2.6) is necessary because we have performed an additive step in (2.5),
which is not an SU(3) group operation. The projection step is not uniquely defined, but
the preferred method is to select the new smeared link Uμ(x) such that it maximises

Re tr
(
Uμ(x)U

′†
μ (x)
)
. (2.7)

In the limit α→ 1 we see that (2.5) becomes

U ′
μ(x)→

1

6

∑
ν

ν �=μ

Σ†
μν(x) . (2.8)

Substituting this result into (2.7) shows how the projection method has become equiv-
alent to cooling (2.4), and that there exists a direct link between APE smearing and
cooling in the limit that links are updated sequentially. The simultaneous update of
APE smearing limits α < 0.75 [78].

The more recent smearing technique, stout-link smearing [71], makes use of the expo-
nential function to remain within the gauge group and remove the need for a projection
step. Beginning with the staples (2.3), define

Cμ(x) =
∑
ν

ν �=μ

ρμνΣ
†
μν(x) , (2.9)

where we will choose an isotropic four-dimensional constant ρμν = ρsm, but other selec-
tions are possible. The matrix Qμ(x) defined by

Qμ(x) =
i

2
(Ω†

μ(x)− Ωμ(x))− i

6
tr(Ω†

μ(x)− Ωμ(x)) , (2.10)

with
Ωμ(x) = Cμ(x)U

†
μ(x) , (2.11)

is by definition Hermitian and traceless, and hence eiQμ(x) ∈ SU(3). The new smeared
link is then defined by

Ũμ(x) = exp(iQμ(x))Uμ(x) . (2.12)

An expansion of the exponential in (2.12) results in the same sum of paths, to first order
in ρsm, as for APE smearing [71]. Given this, and the already established link between
APE smearing and cooling, it follows that there exists a connection between cooling and
stout-link smearing. Indeed, simulations of Lattice QCD show that for any given gauge
field, the structures revealed by the smoothing procedures are remarkably similar.

2.3 Discretisation errors and improvement

The corrosion of topological structures during the smoothing process is a well known
side-effect of both cooling and smearing [69, 73, 74]. It is the unavoidable discretisation
errors in the lattice action that are the cause of this observed behaviour. This obviously
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inhibits our ability to study topological excitations on the lattice with the most local
operators and it would be beneficial if it could be prevented.

When a gauge field is smoothed, the topological structures within are subjected to the
effects of lattice discretisation errors. One such topological excitation is the instanton.
To understand how the errors will alter instanton distributions, first consider the clover
Wilson action given by

SW = β
∑
x

∑
μ>ν

(1− Pμν(x)) , (2.13)

where Pμν(x) denotes 1/3 of the real trace of the clover average of the four plaquettes
touching the point x.

Following Ref. [75], SW can be expanded in powers of the lattice spacing, a, giving:

SW = a4
∑
x

∑
μ>ν

tr

(
1

2
F 2
μν(x)−

a2

24

(
(DμFμν(x))

2 + (DνFμν(x))
2
)

− a4

24

(
g2F 4

μν(x)−
1

30

(
(D2

μFμν(x))
2 + (D2

νFμν(x))
2
)

− 1

3
D2

μFμν(x)D2
νFμν(x) +

1

4
(DμDνFμν(x))

2

))
+O(a10, g4) ,

(2.14)

where igFμν = [Dμ, Dν ], Dμ = ∂μ + igAμ, and Dμφ = [Dμ, φ], for arbitrary φ.
The goal is to substitute the instanton solution [8] given by

Aμ(x) =
x2

x2 + ρ2inst

(
i

g

)
∂μ(S)S

−1 , (2.15)

where

S ≡ x4 ± i �x · �σ√
x2

, (2.16)

for instantons/anti-instantons with σ the Pauli matrices, into the expanded Wilson
action (2.14). This requires the use of the lattice approximation a4

∑
x ≈
∫
d4x. Substi-

tuting the instanton solution (2.15) into Eq. (2.14) and performing the integration then
yields,

Sinst
W =

8π2

g2

[
1− 1

5

(
a

ρinst

)2
− 1

70

(
a

ρinst

)4]
. (2.17)

Notice that the leading error term in (2.17) is negative and depends upon the instanton
size ρinst. When the Wilson action is used in a smoothing algorithm these errors cause
the action density to be under-estimated. Additionally, by decreasing ρinst the action
will be further reduced. The smoothing algorithms, which are trying to decrease the
action, will therefore shrink ρinst in order to reduce the action. Repeated application of
the smoothing procedures will eventually lead to overwhelming discretisation errors and
cause instantons to “fall through the lattice” and disappear.

Improved actions aim to fix the problem of discretisation errors by including different
sized Wilson loops in the calculation of the action. By choosing the coefficients of the
loop combinations carefully it is possible to eliminate the leading order error terms.
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The Symanzik improved action uses a linear combination of plaquette and rectangular
loops to eliminate the O(a2) errors.

SS = β
∑
x

∑
μ>ν

[
5

3
(1− Pμν(x))− 1

12

(
(1−Rμν(x)) + (1−Rνμ(x))

)]
. (2.18)

Analogous to Pμν , Rμν and Rνμ denote the different possible orientations of the rectan-
gular loops.

This can be expanded in terms of a, and the instanton solution substituted as above
to find, in agreement with [75], that

Sinst
S =

8π2

g2

[
1− 17

210

(
a

ρinst

)4]
. (2.19)

The O(a2) error term has been removed by design, but we see that the O(a4) term is
still negative. Therefore, this action will still not preserve instantons.

2.4 Over-Improvement

2.4.1 Formalism

In 1993, Perez, et al. [75] introduced the notion of over-improved cooling, also known as
ε-cooling. The essential idea was that instead of trying to use different loop combina-
tions to completely eliminate higher order error terms, they would instead choose their
coefficients such that the leading order error terms become positive.

Introducing the parameter ε, they defined the following action,

SP (ε) = β
∑
x

∑
μ>ν

[
4− ε

3
(1− Pμν(x)) +

ε− 1

48
(1−Wμν(x))

]
, (2.20)

where Wμν(x) denotes the clover average of the 2 × 2 squares (windows) touching the
point x. Note that in (2.20), ε has been introduced such that ε = 1 gives the standard
Wilson action and ε = 0 results in an O(a2) improved action. Expanding (2.20) in terms
of a and substituting the instanton solution in Eq. (2.15) gives

Sinst
P =

8π2

g2

[
1− ε

5

(
a

ρinst

)2
+

4− 5ε

70

(
a

ρinst

)4]
, (2.21)

where the O(a2) term is directly proportional to −ε. Thus, by making ε < 0 the leading
order discretisation errors become positive, and the modified action should preserve
instantons.

In the interests of preserving locality we choose to use the traditional combination
of plaquettes and rectangles as in the Symanzik improved action in preference to the
combination of the 1×1 and 2×2 loops used in [75]. As emphasised in the introduction,
this has the benefit of reducing the coefficient renormalisation that is applied to the
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link paths, because of the smaller difference in the number of links utilised. This then
enables precision tuning of ε.

We now introduce the parameter ε into the Symanzik improved action (2.18). By
requiring that ε = 0 gives the O(a2) improved Symanzik action, and that ε = 1 gives
the standard Wilson action. This implies the following form for the action,

S(ε) = β
∑
x

∑
μ>ν

[
5− 2ε

3
(1− Pμν(x))− 1− ε

12

(
(1−Rμν(x)) + (1−Rνμ(x))

)]
. (2.22)

Performing the expansion in a gives:

S(ε) = a4
∑
x

∑
μ>ν

tr

[
1

2
F 2
μν(x)−

ε a2

24

(
(DμFμν(x))

2 + (DνFμν(x))
2
)

+
a4

24

(
g2(1− 2ε)F 4

μν(x) +
5ε− 4

30

(
(D2

μFμν(x))
2 + (D2

νFμν(x))
2
)

+
2ε− 1

3
D2

μFμν(x)D2
νFμν(x) +

1− 2ε

4
(DμDνFμν(x))

2

)]
+O(a10, g4) ,

(2.23)

into which we substitute the instanton solution to find that

Sinst(ε) =
8π2

g2

[
1− ε

5

(
a

ρinst

)2
+

14ε− 17

210

(
a

ρinst

)4]
. (2.24)

As in (2.21), negative values of ε will result in a positive leading error term, and should
preserve instantons.

We introduce the over-improvement parameter into the stout-link smearing algorithm
by modifying the link combinations used in Eq. (2.9). Whereas the original Cμ(x) =
ρsm
∑{1× 1 paths touching Uμ(x)}, the modified stout-link Cμ(x) has the form

Cμ(x) = ρsm
∑{

5− 2ε

3
(1× 1 paths touching Uμ(x))

− 1− ε

12
(1× 2 + 2× 1 paths touching Uμ(x))

}
,

(2.25)

and the definition of the smearing parameter ρsm is unchanged. Note that both forward
and backward horizontally orientated rectangles are included in the 2 × 1 paths, such
that Ωμ(x) resembles the local action.

2.4.2 Tuning

Of course, this now begs the question: How negative should ε be in order to preserve
instantons? Perez et al. reported a value of ε = −1 to preserve instantons, and indeed
it does. However, just as positive values of ε can shrink instantons, so too can negative
values cause instantons to grow. Just as small instantons can fall through the lattice, big
instantons can grow so large that they are destroyed by the smoothing procedure [79].
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Figure 2.1: S(ε)/S0 versus the instanton size for the Wilson and Symanzik improved
actions. The ideal action would produce a flat line at S(ε)/S0 = 1. The positive slope
on both curves means that instantons will shrink if the Wilson or Symanzik actions are
used to smooth the gauge field.

Additionally, one does not want to unnecessarily distort the instanton-like objects in the
gauge field. Care must therefore be taken not to choose a value of ε that is too negative.

In order to quantify the selection of ε we propose that one considers the ratio S(ε)/S0,
where S0 = 8π2/g2 is the single instanton action. Ideally S(ε)/S0 should be equal to 1
for all values of the instanton size, ρinst, as it is in the continuum.

Plots of S(ε)/S0 versus ρinst for the Wilson and Symanzik actions are shown in
Fig. 2.1. Note that it is the slope of the curve that will govern whether an instanton
shrinks or grows. Although the Symanzik action is closer to the ideal action than the
standard Wilson action, the slope is still positive for all ρinst and using this action will
shrink instantons.

The goal is now to select a value of ε that results in the flattest line possible, thereby
ensuring the stability of instantons. A plot for three different values of ε is shown in
Fig. 2.2. With ε = −1 the curve for ρinst > 1 a is similar to the mirror image of the
Wilson action. For ρinst > 1.5 a, ε = −0.25 and −0.35 give curves closer to the ideal,
however as |ε| is decreased the maximum occurs at larger ρinst. Since it is the slope
that is responsible for how an instanton’s size changes, the maximum of S(ε) gives
the dislocation threshold of the smearing algorithm. Assuming that any topological
excitation of length ≥ 2 a is not an unphysical UV fluctuation or lattice artifact, one
should aim for a dislocation threshold of ∼ 2 a.

Given this, we propose that a value of ε = −0.25 will be sufficient. This choice gives
a dislocation threshold of ∼ 2.0 a, and a curve that is mostly flat down to values of
ρinst ∼1.7 a. The action S(ε)/S0 is also very close to the ideal.

In Fig. 2.3 we provide a comparison of the Perez et al. over-improved action, our over-
improved action S(−0.25), and the standard Wilson action. It is clear that S(−0.25)
will produce the best results, and presents an important advance beyond the work of
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Figure 2.2: S(ε) for three different values of ε. The larger −ε is made the further the
curve moves from the ideal behaviour and the sharper the maximum.

Figure 2.3: A comparison of S(ε)/S0 for the Perez over-improved action, our over-
improved action S(−0.25), and the standard Wilson action.
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Ref. [75].
Given a value for ε one can find a suitable value for the smearing parameter, ρsm.

Starting from an arbitrary value, systematically increase ρsm until u0 (the mean-plaquette
value) no longer increases when smearing. This value sets an upper threshold for ρsm
and one should then choose some ρsm suitably below this threshold. In what follows we
use a value of ρsm = 0.06. A typical value for standard stout-link smearing is ρsm ≈ 0.1.
The over-improved algorithm is more sensitive to the smearing parameter than standard
smearing because of the larger loops used in the smoothing procedure.

2.5 Algorithm comparisons

Given the selection of ε = −0.25 it is now important to make a comparison of over-
improved stout-link smearing with standard stout-link smearing. We are primarily con-
cerned with the stability of the topological charge under smearing, and the structure of
the gluon fields after smearing.

We use two sets of gauge fields for this study. Firstly, an ensemble of large 28 × 96
dynamical MILC lattices [76, 77], with light quark masses; amu,d = 0.0062, ams = 0.031.
We will also use a quenched MILC ensemble of the same size and lattice spacing a =
0.09 fm. The gauge fields were generated using a Tadpole and Symanzik improved gauge
action with 1× 1+ 1× 2+ 1× 1× 1 terms and an AsqTad staggered dynamical fermion
action for the 2 + 1 flavours of dynamical quarks.

We also use quenched CSSM gauge fields created with the O(a2) mean-field improved
Lüscher-Weisz plaquette plus rectangle gauge action [80] using the plaquette measure
for the mean link. The CSSM configurations are generated using the Cabibbo-Marinari
pseudo-heat-bath algorithm [81] using a parallel algorithm with appropriate link parti-
tioning [82]. To improve the ergodicity of the Markov chain process, the three diagonal
SU(2) subgroups of SU(3) are looped over twice [69] and a parity transformation [83]
is applied randomly to each gauge field configuration saved during the Markov chain
process.

The local lattice operator [74] to represent the topological density for the stout-link
smeared configurations is based on a highly improved field-strength tensor,

F imp
μν (x) = k1C

(1,1)
μν (x) + k2C

(2,2)
μν (x) + k3C

(1,2)
μν (x) + k4C

(1,3)
μν (x) + k5C

(3,3)
μν (x) (2.26)

with

k1 =
19

9
− 55k5 ,

k2 =
1

36
− 16k5 ,

k3 = −32

45
+ 64k5 ,

k4 =
1

15
− 6k5 ,

(2.27)

and with

C(nm)
μν (x) =

1

8

(
W (n,m)

μν (x) +W (m,n)
μν (x)

)
(2.28)
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Figure 2.4: Plots showing how the topological charge evolves under standard (ε = 1),
Symanzik improved (ε = 0), and over-improved (ε = −0.25) stout-link smearing. The
two top graphs are from an ensemble of 28× 96 quenched gauge fields. The third graph
is from an ensemble of 28× 96 dynamical fields with light quark masses. The bottom is
a smaller 16× 32 quenched gauge field. The features of the graphs are explained in the
main text.

being a symmetrised “clover sum” of (n × μ̂,m × ν̂) Wilson loops around the site x.
A 3-loop improved field strength tensor can be achieved choosing k5 = 1/90, such that
k3 = k4 = 0. The topological charge density is then represented in the form

qsm(x) =
g2

16π2
tr
(
FμνF̃μν

)
, (2.29)

as was already discussed in Chapter 1.

2.5.1 Topological charge

Let us first consider the evolution of the total topological charge of a gauge field under
stout-link smearing. Typical studies in the past have rated a smearing algorithm’s
success by its ability to generate and maintain an integer charge. We will also use this
test to evaluate the effectiveness of the smearing procedures. It should be noted that we
will be smoothing extremely large 283×96 lattices. Due to the vast amount of non-trivial
topological charge field fluctuations present it will take a lot of smoothing to generate a
stable charge.

Fig. 2.4 provides a sample of 4 different gauge fields smeared by standard (ε = 1),
Symanzik improved (ε = 0), and over-improved (ε = −0.25) stout-link smearing. The
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first and third are 283 × 96 quenched MILC gauge fields, the second is a 283 × 96 light
dynamical MILC field, and the last is a smaller 163 × 32 quenched field.

The top-left graph shows an example of the over-improved stout-link smearing pro-
ducing a stable result. In this instance the standard stout-link smearing curve is fluc-
tuating widely, and is unable to reach a stable charge within 200 sweeps of smearing.
The Symanzik improved smearing is better in that it stabilises at around 120 sweeps,
however the over-improved stout-link smearing is clearly superior, stabilising 50 sweeps
earlier. At around 70-120 sweeps there must exist a small instanton-like object that
has been removed by the errors in the standard and improved smearing algorithms, but
preserved by the tuned over-improved stout-link smearing.

The bottom-left graph is another typical example of what one sees when using the
three different smearing algorithms. The standard stout-link smearing curve is still
clearly the worst of the three, fluctuating the most. Meanwhile, the Symanzik and over-
improved smearing algorithms are fairly similar in their behaviour. Both stabilise at the
same integer charge, but the over-improved algorithm stabilises earlier. This is also the
case in the top-right graph.

The final graph on the bottom-right is a sample of a 163×32 lattice. It is shown here
to represent how it is generally easier to smooth a smaller gauge field. For the larger
lattices, their larger size means that there is a greater probability of finding an unstable
topological object and it becomes more difficult to achieve integer charges rapidly.

These four graphs all demonstrate the benefits of using an improved smearing al-
gorithm over the standard stout-link smearing commonly used in the field at present.
Over-improved stout-link smearing typically provides a topological charge that is sta-
ble over hundreds of smearing sweeps, and one that approaches an integer much more
rapidly than the conventional stout-link smearing.

2.5.2 Topological charge density

For the next part of the analysis we will directly visualise the topological charge density
of the gauge fields. Our aim is to observe the differences in the gauge fields revealed by
using the standard and over-improved stout-link smearing algorithms.

To achieve this we will require a gauge field where the final topological charges from
the two smearing procedures differ. The topological charge of such a configuration, as a
function of the number of smearing sweeps, is shown in Fig. 2.5. It appears as though
an anti-instanton is being destroyed by the standard stout-link smearing from about 20
sweeps onwards. It will be interesting to visualise q(x) in this region to see if we can
observe this behaviour. Indeed, by considering the differences in the charge density,
we are able to locate the “anti-instanton” that is removed by the standard stout-link
smearing.

In Fig. 2.6 we show how the anti-instanton is affected by the standard stout-link
smearing, and in Fig. 2.7 we have the corresponding charge density from the over-
improved stout-link smearing. The pictures present a single slice of the charge density
of the 4-D lattices as they evolve under the stout-link smearing.

After 30 sweeps we see that both smearing methods have revealed a similar vacuum
structure. The effects of the errors in the standard smearing are first seen after 33 sweeps,
when the anti-instanton like object on the right begins to unwind in the upper-right
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Figure 2.5: The topological charge evolution under smearing for a 16×32 lattice. We see
that when standard smearing (ε = 1) is used an anti-instanton is destroyed at around
20-40 sweeps. Visualisations of the topological charge density in this region are discussed
in the following text.

corner. Here the charge density is approaching zero and therefore is not rendered. In a
few sweeps the action density in this region will manifest itself in the opposite winding,
largely eliminating the total topological charge. The net effect is to suggest that the
instanton-like object on the right invades the neighbouring negative object. However,
the change in Q indicates that this is not an instanton - anti-instanton annihilation.
At this point the majority of the negative topological charge density is lost and the
total Q for the configuration approaches 1. This kind of phenomenon should not be
seen as filtering is applied to a lattice, and indeed it does not occur when using the
over-improved smearing.

After 36 sweeps the opposite winding has grown in size and it continues to grow in
size as more smearing is applied to the lattice. After 39 sweeps the negatively charged
object has all but disappeared. Although not shown, eventually the neighbouring pos-
itive object expands to engulf the region originally occupied by the negatively charged
excitation.

Here we have directly demonstrated how the discretisation errors in the standard
stout-link smearing algorithm have resulted in an erroneous picture of the vacuum, and
how by modifying these errors in the over-improved algorithm we are able to present a
more accurate representation of the vacuum.

2.5.3 Single instanton evolution

We can also contrast the effects of different smearing algorithms by smearing a single
instanton gauge field configuration. We create an instanton in singular gauge [84] and
avoid Nahm-transform issues [79] via the action appearing at the boundaries of the
lattice. Given that over-improved stout-link smearing with ε = −0.25 has a dislocation
threshold of about 2 a we generate a gauge field containing a single instanton of size
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Figure 2.6: The evolution of the topological
charge density for various sweeps of stan-
dard stout-link smearing. The sweeps shown
are; 30 (top), 33, 36, 39 (bottom). Blue to
green represents negative topological charge
and red to yellow represents positive. We see
that a rather large anti-instanton is unsta-
ble under this smearing and is removed from
the lattice, presenting an erroneous view of
the vacuum.

Figure 2.7: A visualisation of the topological
charge density of the same gauge field shown
in Fig. 2.6, this time with over-improved
stout-link smearing. We see that in this case
the anti-instanton in the lower right corner
of the lattice is stable under smoothing, and
remains stable for at least 200 sweeps.
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Figure 2.8: The size evolution of single instanton under three different types of smearing.
ε = 0.25 refers to our over-improvement scheme, whilst Perez et al. denotes a stout-
link implementation of their over-improvement method. Standard refers to standard
unimproved stout-link smearing. The instanton is only stable under our proposed over-
improvement scheme.

ρinst = 3 a.

We compare our over-improved smearing against standard stout-link smearing and
a stout-link implementation of the Perez et al. over-improvement scheme. An instanton
of this size should stay relatively constant under over-improved smearing at ε = −0.25.
From Fig. 2.3 we anticipate that the Perez et al. over-improvement scheme will cause the
instanton to grow in size. Similarly, standard stout-link smearing is expected to shrink
the instanton. The size of the instanton is monitored by fitting the classical instanton
action profile to the lattice action density in a 34 hypercube located at the centre of the
instanton.

The instanton’s size evolution is presented in Fig. 2.8. We see that the instanton’s
size has remained constant under over-improved smearing. As predicted, Perez et al.’s
implementation of over-improvement has caused the instanton to grow. In a study of
QCD vacuum structure this would lead to an over-estimation of instanton sizes in the
vacuum. Also as predicted, using standard stout-link smearing has caused the instanton
to shrink. Further smearing would destroy the instanton. This calculation showcases
the obvious need for over-improvement in the stout-link smearing algorithm.

2.6 Summary

In this chapter we have demonstrated how to define an over-improved stout-link smearing
algorithm, with the aim of preserving instanton-like objects on the lattice. To the best
of our knowledge this is the first time link paths beyond the staple have been included
in the stout-link smearing algorithm.

Using maximally-local improvement we presented a new quantitative method of se-
lecting a suitable value of the parameter ε. With the procedure defined, we demonstrated
the success of the over-improved stout-link algorithm in preserving topological structures
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which were destroyed when using the standard stout-link smearing algorithm. This was
done by analysing both the topological charge and through visualisations of the topo-
logical charge density. We also performed a comparison of the over-improved smearing
method with standard methods by smoothing a single instanton of size ρinst = 3.0a.
Over-improved stout-link smearing is the only algorithm capable of smoothing an in-
stanton of this size without distorting it.

This work highlights the need for improvement schemes to be incorporated into
today’s modern smearing algorithms. Over-improved stout-link smearing can be used
in future studies of vacuum structure or other similar applications, where preserving
topology on the lattice is important. Of particular interest is a quantitative comparison
with the overlap-Dirac measure of topological charge density presented in Chapter 3.
The algorithm is also used to assess the impact of dynamical-fermions on QCD vacuum
structure in Chapter 5.



Chapter 3

Comparing the overlap operator to
over-improved smearing

The content of this chapter is based on the publication: E. M. Ilgenfritz, D. Leinweber,
P. Moran, K. Koller, G. Schierholz and V. Weinberg, Phys. Rev. D 77, 074502 (2008)
[arXiv:0801.1725 [hep-lat]].

This chapter presents a detailed comparison between the topological structure of
quenched QCD, as revealed by the previously discussed over-improved stout-link smear-
ing, and a similar analysis made possible by the overlap-fermionic topological charge
density both with and without a variable ultraviolet cutoff λcut. The matching is twofold,
provided by fitting the density-density two-point functions on one hand and by a point-
by-point fitting of the topological densities according to the two methods. We point
out the similar cluster structure of the topological density for moderate smearing and
200 MeV < λcut < 600 MeV, respectively. We demonstrate the relation of the gluonic
topological density, after extensive smearing, to the location of the overlap zero modes
and the lowest overlap non-zero mode as found from the unsmeared configurations.

3.1 Introduction

Massless overlap fermions [31, 85] have provided us with a fermionic definition of topo-
logical charge [86, 87]. This offers the advantage that, by truncating to the overlap
modes with |λ| < λcut, the effect of ultraviolet filtering can be studied [88] without
changing the gauge field itself. A broad study of different aspects of vacuum structure,
so far for quenched QCD, was performed in Ref. [89].

On the other hand, during the 80’s procedures of cooling or smearing of gauge fields
were proposed to exhibit the infrared structure of gauge fields [66, 90]. This has been
considered with reservations because it is difficult to assess in which aspect the gauge
field configuration could have changed under this procedure. The practitioners of cool-
ing/smearing, in particular those who were focusing on vacuum structure in the form of
extended, smooth (semi-classical) structures, have continued to improve their techniques:
cooling with improved actions [91], restricted improved cooling [92] etc). Over-improved
cooling [75, 93] has been applied in order to prevent instantons or other topological

40
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excitations from collapsing. In the previous chapter we applied the concept of over-
improvement to the stout-link smearing algorithm.

In this chapter, we want to characterise the subsequent mapping “link→ stout link”
as a particular relaxation scheme, eventually leading to a finally classical configuration.
One obvious way to discuss this process is to record the local distribution of topolog-
ical charge density expressed by an improved [74] gluonic definition of field strength
and topological density. We shall compare the emergent structures with the topological
density provided by the overlap definition [89] with different levels of ultraviolet filter-
ing. Surprisingly, the overlap topological charge density without filtering, that recently
has been found to form lower-dimensional structures [89, 94, 95], corresponds to a few
steps of smearing. This comparison will lead us to a one-to-one mapping of the ultra-
violet cutoff λcut (mode truncation in the overlap picture) to the number of stout-link
smearing iterations over a wide range of smearing iterations. In a similar spirit, the cor-
respondence of APE smearing [96], Laplacian filtering [97] and the topological density
filtered according to another Ginsparg-Wilson Dirac operator [98, 99] has been studied
recently [100, 101].

Only a few iterations of stout-link smearing are necessary before structures become
recognisable with the gluonic definition of the topological density, and these structures
are surprisingly far from 4D extended, sign-coherent lumps, such that the topological
density compares well with the unfiltered overlap definition. We have two criteria to
establish this relation between smearing and filtering. First, it is the behaviour of the
two-point correlation function of the topological density that emerges from the respec-
tive definition. The second is the actual site-by-site difference of the topological density
profile over a set of lattice configurations. The quality of the latter coincidence is sur-
prisingly good, which supports the reliability of both methods to explore the vacuum
structure.

Finally, however, this relation becomes loose because stout-link smearing turns the
configurations into piecewise classical fields which apparently resemble instantons and
anti-instantons. Although the coherence among the lowest overlap modes guarantees a
relatively simple picture of the fermionic topological density and the ultraviolet filtered
gluonic field strength with low cutoff λcut [89], there is no argument as to why the overlap
picture should be in correspondence to a (link-wise) classical lattice configuration.

It is intriguing to see that the instanton-like structure that is revealed in this late stage
of smearing corresponds to the overlap zero mode(s) and the lowest pair(s) of overlap
non-zeromodes obtained for the respective unsmeared (equilibrium) configuration. A
similar observation has already been made by Negele et al. [102]. In Ref. [95] the authors
presented a cluster analysis of individual eigenmodes of the overlap Dirac operator. It
turns out that the moderate number of clusters that the zero and first non-zero modes
consist of (at a level of scalar density below the peak values) are pointing towards the
positions where instantons and anti-instantons appear later.

This chapter is organised as follows; in Sec. 3.2 we briefly introduce the overlap
operator, in Sec. 3.3 we describe the matching between smearing and ultraviolet filtering,
according to the two-point correlator and according to a global fitting of the profile of
charge. In Sec. 3.4 we try to relate the clusters that both definitions exhibit to each
other. In the final stadium of smearing we shall confront the emergent semi-classical
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lumps with the lowest eigenmodes (zero mode and lowest non-zero mode) of the original
configurations.

3.2 Configurations and the overlap definition of topo-

logical density

The configurations underlying this comparison stem from an extended investigation
published in Ref. [89]. The configurations are taken from an ensemble of 163 × 32
quenched lattices generated with the tadpole improved Lüscher-Weisz action at β = 8.45.

The (massless) overlap Dirac operator is constructed for the Wilson-Dirac input
kernel DW = M − ρ/a, M being the massless Wilson-Dirac operator with r = 1, and
ρ = 1.4. The corresponding solution of the Ginsparg-Wilson relation reads as follows

D(0) =
ρ

a

(
1 +DW/

√
D†

WDW

)
=

ρ

a
(1 + γ5sgn(HW )) , (3.1)

with HW = γ5DW . Circa 150 overlap eigenmodes have been obtained per configuration.
They have been used to construct ultraviolet smeared topological densities according
to a cut-off λcut = 200 MeV, 400 MeV and 635 MeV. For half of the subset of 10
configurations particularly considered in the present study we have also calculated for
Refs. [89, 95] the overlap topological density without mode truncation, the “all-scale”
topological density.

The spectrum eventually consists of some zero modes, in addition to pairs of non-zero
modes of globally vanishing chirality. The topological density can be formally obtained
from the trace of the overlap Dirac operator [87]

q(x) = −tr
[
γ5

(
1− a

2
D(0;x, x)

)]
. (3.2)

Using the spectral representation of the overlap Dirac operator, a family of ultraviolet
filtered topological charge densities labelled by qλcut

(x) can be obtained [88, 103],

qλcut
(x) = −

∑
|λ|<λcut

(
1− λ

2

)
ψ†
λ(x)γ5ψλ(x) . (3.3)

The topological charge of each configuration fulfils the Atiyah-Singer index theorem [86]

Q = n− − n+ . (3.4)

Note that the zero modes of any given configuration carry the same chirality.

In the following sections we shall demonstrate how the above-mentioned family of
densities is well represented by the gluonic topological charge density after an appropriate
number of iterations of stout-link smearing. The over-improved stout-link smearing is
the same as was discussed in Chapter 2.
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nsw Q = −8 Q = 0 Q = −1 Q = −7 Q = 0
1 0.9954 -0.0001 1.0054 0.6442 0.0000
2 0.9634 -0.0001 -21.5369 0.7987 -0.0001
3 0.9494 -0.0001 3.6497 0.8990 -0.0001
4 0.9585 -0.0002 1.8690 0.9485 -0.0001
5 0.9760 -0.0004 1.4537 0.9728 -0.0001
6 0.9903 -0.0008 1.2736 0.9843 -0.0002
7 0.9982 -0.0015 1.1725 0.9894 -0.0004
8 1.0010 -0.0030 1.1105 0.9915 -0.0006

Table 3.1: Table of Zsm values for the initial five configurations. The normalisation
procedure is only valid for Q 	= 0 and works best for large |Q|. The fluctuating values for
the configuration with Q = −1 occurring at nsw = 2 are due to Qsm being approximately
0 at this point.

3.3 Matching stout-link smearing to overlap filter-

ing

3.3.1 Matching the two-point correlator

The two-point correlators for stout-link smearing and overlap filtering are matched using
a minimisation of the sum of the absolute difference between the correlators. That is,
we compute

min

(∑
x

|〈q(x)q(0)〉sm − 〈q(x)q(0)〉λcut
|
)

(3.5)

as a function of the number of smearing sweeps, nsw, for fixed λcut.

The topological charge of each overlap filtered configuration is integer valued because
they satisfy the Atiyah-Singer index theorem (3.4). For stout-link smearing it can take
up to 10 sweeps of smearing to achieve an integer charge on these 163 × 32 lattices. In
order to compare overlap filtering and stout-link smearing for nsw < 10 in a fair way a
non-perturbative normalisation is applied. Given that we know the topological charge
Q from the overlap configurations, we calculate, for each number of smearing sweeps
nsw, a normalisation factor Zsm via

Q = Zsm

∑
x

qsm(x) , (3.6)

and qsm(x) is then normalised through qsm(x) → Zsm qsm(x). This ensures that Qsm =
Q. We also experimented with an alternate normalisation where we matched the absolute
values of the topological charge density, however this proved less fruitful.

Typical values of Zsm are provided in Table 3.1. For obvious reasons, it is only
possible to extract a Zsm factor for Q 	= 0, and the procedure works best for Q far
from zero. Consequently, the best results are found for the configurations where Q =
−7 and −8, where the Zsm values rapidly approach 1. This is also the case for the
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λcut Q = −8 Q = 0 Q = −1 Q = −7 Q = 0
full density 005 005 005 — 005 005 005 004 005 —

all known modes 039 039 043 — 036 036 038 037 034 —
634 MeV 052 052 064 — 048 048 055 055 048 —
400 MeV 127 127 183 — 109 108 139 138 115 —
200 MeV 248 247 300 — 232 232 300 300 271 —

Table 3.2: The best matches for the two-point correlators of five different configurations
as determined by Eq. (3.5). For each configuration, the two columns give the number
of smearing sweeps that correspond to the best match for a given level of UV filtering.
In each case the left column gives the best match for the unnormalised gluonic density
and the right column gives the best match for the gluonic density normalised with Zsm

(see text). The right columns for the Q = 0 configurations are absent because the
normalisation procedure fails in these cases.

configuration with Q = −1, however Zsm fluctuates at nsw = 2, which is due to Qsm

being approximately 0 at this point.
In Table 3.2 we present the best matches for the two-point correlators between the

filtered overlap densities and the stout-link smeared gluonic densities. Configurations
have been used for which the unfiltered overlap topological density (full density) has
been measured. The correlators of the fermionic topological density including all known
modes, with λcut = 634 MeV, with λcut = 400 MeV and with λcut = 200 MeV are
matched against the smeared gluonic correlators.

We show in Fig. 3.1 the two-point correlator of the topological density for a single
configuration represented by the unfiltered fermionic topological density (full density)
of Eq. (3.2) of the equilibrium configuration on one hand and for the gluonic definition
of Eq. (2.29) after 5 smearing steps. It is remarkable that the two correlators follow
each other’s fluctuations at larger distance. There is some difference in normalisation of
the negative peak. This configuration has Qferm = −8, and the gluonic definition gives
Qsm = −8.19. In this case the “non-perturbative” renormalisation would even slightly
increase the difference between the curves as the three curves in Fig. 3.2 show.

In Fig. 3.3 the density-density two-point correlator for the same configuration is com-
pared for an ultraviolet cutoff λcut = 634 MeV for the fermionic, overlap definition and
the gluonic definition after 52 smearing steps. The filtered correlators match perfectly.
The third curve shows the correlator with the gluonic definition after 45 smearing steps.
This refers to the case of an optimal point-by-point matching of the densities, as dis-
cussed in the next section. The corresponding correlator is somewhat higher and steeper
because it uses slightly less smearing iterations.

Fig. 3.4 shows the same configuration for a lower ultraviolet cutoff λcut = 400 MeV.
After 127 smearing steps the correlator for the gluonic definition fits the correlation
function perfectly. Somewhat less smearing steps (103), again optimally fitting the
fermionic topological density point by point, tend to overestimate the correlator.

All smeared correlators discussed above were generated using a smearing parameter
of ρsm = 0.06. By using a different value for ρsm it is possible that a different number of
smearing sweeps will provide the best fit. This is because the amount of smearing applied
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Figure 3.1: The two-point function of the fermionic topological density for one config-
uration shown without mode truncation compared with the bosonic definition after 5
steps of smearing.

Figure 3.2: The same as in Fig. 3.1 with the effect of the renormalisation factor Zsm =
Qferm/Qsm also shown. (Qferm = 8, Qsm = 8.19)
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Figure 3.3: The two-point function of the fermionic topological density with an UV cutoff
at λcut = 634 MeV compared with the bosonic definition after 52 steps of smearing when
the correlator is fitted best. Smearing after 45 steps leads to the best global matching
of the density qλcut

with λcut = 634 MeV, but the correlator is steeper.

Figure 3.4: The same as Fig. 3.3 with an UV cutoff at λcut = 400 MeV fitted best by
the bosonic definition after 127 steps of smearing. Smearing after 103 steps leads to the
best global matching of the densities, but the correlator is steeper.
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Figure 3.5: The same as Figs. 3.3 and 3.4, now with an UV cutoff at λcut = 200 MeV
fitted best by 248 sweeps of smearing. 260 sweeps of smearing gives the best match for
the topological charge densities.

to a gauge field is proportional to ρsm nsw. By varying ρsm as well as the number of sweeps
one has greater fine-grained control over the matching. Using a variable ρsm, but holding
nsw = 5 fixed, and applying this to the same configuration considered previously we find
that ρsm = 0.055 provides the best match for the unfiltered topological density.

A comparison of some different values for for the smearing parameter is provided in
Fig. 3.6. As expected, increasing ρsm results in a suppression of the negativity of the two-
point correlator. Although ρsm = 0.055 provides the best match through a minimisation
of the sum of the differences in the two-point functions, ρsm = 0.06 gives the best match
for the x-intercept. The two-point function for this larger ρsm also appears to have a
similar shape to the two-point function of the full fermionic topological density.

3.3.2 Matching the topological density point by point

We now aim to match the filtered fermionic densities with the smeared gluonic densities
through a point-by-point matching of the respective topological charge densities qλcut

(x)
and qsm(x). Given some filtered fermionic topological charge density we compare it
against the gluonic density qsm(x) after some number of sweeps by calculating the abso-
lute value of the difference between the respective q at each x. To find the best match
we compute the minimum of the sum of the differences,

min

(∑
x

|qsm(x)− qλcut
(x)|
)

, (3.7)

as a function of the number of smearing sweeps, nsw, for fixed λcut. The non-perturbative
normalisation of Eq. (3.6) will also be applied. The best matches are presented in
Table 3.3. For a small number of sweeps the importance of the Zsm normalisation is
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Figure 3.6: A comparison of the smeared two-point function for three different values of
the smearing parameter, ρsm. The configuration shown is the same as that used in the
previous figures. A best match as dictated by Eq. (3.5) is given by ρsm = 0.055, however
ρsm = 0.06 gives the best match for the x-intercept.

λcut Q = −8 Q = 0 Q = −1 Q = −7 Q = 0
full density 300 005 300 — 300 006 300 005 300 —

all known modes 037 036 037 — 035 035 035 035 033 —
634 MeV 045 045 048 — 044 044 048 048 044 —
400 MeV 103 103 098 — 103 103 087 087 093 —
200 MeV 261 260 300 — 236 236 192 191 187 —

Table 3.3: Best matches for q(x) between the filtered overlap densities and smeared
gluonic densities. The left columns contain the best matches with the unnormalised
gluonic densities, and the right columns contain the best matches when including the
Zsm factor. We see the importance of the Zsm normalisation factor when attempting
the match the full fermionic density. The right columns are absent for the Q = 0
configurations because the normalisation method does not work for this Q.



3.4 Comparison of topological clusters 49

Figure 3.7: The two-point function as a function of smearing sweeps. The correlator
has been averaged over the two configurations with Q = −7 and Q = −8. Both charge
densities were normalised by an average of the Zsm values for the two configurations.
As the number of sweeps is decreased the negative dip increases in magnitude and the
x-intercept moves further toward zero.

apparent. Visualisations of some configurations are shown later in Sec. 3.4.

3.3.3 Towards the no-smearing limit

Increased smearing leads to a flattening of the Euclidean two-point function. It follows
that less sweeps of smearing leads to an increasing negative dip in the correlator, and
we now study the behaviour of the two-point function in the limit nsw → 0. After
only one or two sweeps of smearing there is a non-trivial renormalisation that must
be applied to the topological charge density. From Table 3.1 we see that after three
smearing iterations the Zsm factors for the Q = −7 and Q = −8 configurations are in
relatively good agreement. We can therefore study the correlator for nsw ≥ 3, averaging
over these two configurations.

Such a comparison leads to a series of correlators which are displayed in Fig. 3.7.
The x-intercept also moves further towards zero.

3.4 Comparison of topological clusters

3.4.1 Clusters of both topological densities compared for weak
stout-link smearing

Using the matching of Eq. (3.7) we are able to directly compare the overlap topological
charge density with some level of UV filtering to a given number of stout-link smearing
sweeps. In an early stadium of stout-link smearing the topological density does not yet
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show classical, instanton-like features. What is meant by “instanton-like features” and
how they gradually emerge from stout-link smearing is illustrated for a configuration
with Q = −1 in Fig. 3.8. The solid lines represent the relation

|q(x0)| = 6

π2ρ4inst
, (3.8)

typical for the (anti)instanton solution, between the gluonic topological charge density
in the maxima x0 of the modulus of the density |qsm(x)| and the “instanton radii” ρinst
obtained from a fit of the curvature of the action density in the points neighbouring x0.
The upper plot has to be considered with a grain of salt because a closer look at the

maxima reveals a substantial lack of isotropy of the peaks of topological density which
is however implicitly assumed in the fits of ρinst. The marked difference in this respect
between 5 and 40 smearing steps is visible in Fig. 3.9 showing a certain timeslice of the
same configuration as in Fig. 3.8.

For a moderate amount of smearing and filtering, respectively, the two topological
density definitions are faithfully exhibiting the outstanding clusterisation of charge, pro-
vided the cut-off λcut and the number of stout-link smearing steps are optimally tuned
to each other. This is exemplified by Fig. 3.10 which shows the same time-slice of a
Q = 0 configuration, on the left-hand side portrayed by the overlap-fermionic topologi-
cal density with λcut = 634 MeV and on the right-hand side by the gluonic topological
density after 48 stout-link smearing steps.

In Fig. 3.11 we show the fermionic density of the Q = −8 configuration, with λcut =
400 MeV and the gluonic density after 103 stout-link smearing steps. In this stadium of
smearing, the bias in favour of classical lumps is already visible.

Besides the similarity between the two methods, the tendency towards classical lumps
becomes obvious in Fig. 3.12. This figure shows the Q = −7 configuration with a cutoff
of λcut = 200 MeV. At this level of UV filtering the best match is provided by 193
sweeps of over-improved stout-link smearing. In this stadium of smearing, in particular
because of the over-improved action built into the smearing, the minority positive charge
has become stabilised compared with what the fermionic view shows.

3.4.2 Zero modes and lowest non-zeromodes and the instanton
content after long smearing

For long smearing with essentially more than 100 smearing steps, the similarity of the
topological densities slowly becomes less perfect. Still, the position of the gluonic topo-
logical lumps is not completely arbitrary from the point of view of the original con-
figuration. The zero modes (if Q 	= 0) and the lowest non-zero modes contain a high
predictive power over where these lumps will appear.

For 200 smearing steps, this is illustrated in Fig. 3.13 by a Q = −1 configuration.
In the left panel the gluonic topological density is shown, in the right panel the scalar
density of the zero mode. The zero mode covers three distinct centres of topological
charge of appropriate sign only in the selected time-slice. Two more examples of total
charge Q = ±1 are shown in Figs. 3.14 and 3.15. One sees that the zero mode does not
always cover all regions of appropriate charge. In other words, the gluonic version of the
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Figure 3.8: Three scatter plots showing the increasing instanton-like correlation between
the gluonic topological charge density in the maxima x0 of its modulus |qsm(x)| and the
“instanton radii” ρinst (see text). The solid lines represent the (anti)instanton-like re-
lation between the two cluster parameters. The upper plot shows a huge number of
maxima after 5 smearing steps, without any relation between density and size. The
middle and bottom plots show a decreasing number of maxima and an increasing accu-
racy of the instanton-like relation after 40 and 200 smearing steps, respectively.
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Figure 3.9: The gluonic topological charge density very close to the maxima in some
timeslice of the same configuration as analysed in Fig. 3.8 after 5 (left) and 40 stout-
link smearing iterations (right). In colour: negative density blue/green, positive density
red/yellow. In grey-scale: negative density dark, positive density light.

Figure 3.10: The fermionic topological charge density of a Q = 0 configuration with
λcut = 634 MeV (left) compared with 48 sweeps of over-improved stout-link smearing
(right). In colour: negative density blue/green, positive density red/yellow. In grey-
scale: negative density dark, positive density light.
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Figure 3.11: The fermionic topological charge density of a Q = −8 configuration with
λcut = 400 MeV (left) compared with 103 sweeps of over-improved stout-link smearing
(right). In colour: negative density blue/green, positive density red/yellow. In grey-
scale: negative density dark, positive density light.

Figure 3.12: The fermionic topological charge density of a Q = −7 configuration with
λcut = 200 MeV (left) compared with 192 sweeps of over-improved stout-link smearing
(right). In colour: negative density blue/green, positive density red/yellow. In grey-
scale: negative density dark, positive density light.
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Figure 3.13: The gluonic topological charge density after 200 smearing sweeps (left) and
the scalar density of the zero mode (right) for a Q = −1 configuration. One can see how
the zero mode extends over only regions of negative charge. All extended sign-coherent
objects seen are good local approximations to instantons or anti-instantons in the centre.
In colour: negative density is blue/green, positive density is red/yellow (left), and scalar
density is blue/green (right). In grey-scale: negative density dark, positive density light
(left).

Figure 3.14: The gluonic topological charge density after 200 smearing sweeps (left) and
the scalar density of the zero mode (right) for a Q = 1 configuration. In this case the
high density regions of the zero mode are centred on lumps of positive charge. Again all
objects are good approximations to classical instantons. In colour: negative density is
blue/green, positive density is red/yellow (left), and scalar density is red/yellow (right).
In grey-scale: negative density dark, positive density light (left).
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Figure 3.15: The gluonic topological charge density after 200 smearing sweeps (left)
and the scalar density of the zero mode (right) for another Q = −1 configuration. The
high density regions of the zero mode are again centred on lumps of negative charge.
All topological objects are good approximations to classical instantons. In colour: neg-
ative density is blue/green, positive density is red/yellow (left), and scalar density is
blue/green (right). In grey-scale: negative density dark, positive density light (left).

topological charge density for some clusters - even in a late stadium of smearing - may
be built by non-zero modes. This leads us to revise the naive expectations according to
which each zero mode would be residing on one lump of excess topological charge, for
which a cluster charge of Qcl = ±1 would be suggested by the instanton model. In fact,
in Ref. [95] it has been demonstrated that the zero modes typically are simultaneously
carried by a moderate number of centres below the peak density, before they start
percolating throughout the whole lattice at an even lower level of the scalar density.
Here we additionally learn that all theses centres are marked by lumps of topological
charge of appropriate sign, however not necessarily all lumps are covered.

For these same three configurations we now consider the distribution of the lowest
non-zero modes. Starting with the first Q = −1 configuration, we present the scalar
and pseudoscalar densities of the first non-zero mode in Fig. 3.16. One sees that the
pseudoscalar density, according to its local chirality, highlights certain parts of the topo-
logical lumps with appropriate sign of charge, and leaves others (for other low-lying
modes).

The densities for the next two Q = 1 and Q = −1 configurations are shown in
Figs. 3.17 and 3.18. In the instanton model, a whole band of almost-zero modes
is generated by diagonalising the Dirac operator in the field of a superposition of n+

instantons and n− anti-instantons in the basis of linear combinations of the n++n− zero
modes corresponding to the case of infinite diluteness. Apart from the remaining |Q| zero
modes, the almost-zero modes are expected to bridge at least one pair of instanton and
anti-instanton with the scalar density peaking on top of the topological charge lumps
and the pseudoscalar density peaking with the appropriate sign there. Qualitatively,
this is visible in Figs. 3.16, 3.17 and 3.18.
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Figure 3.16: The scalar (middle) and pseudoscalar (bottom) density of the first non-zero
mode for the Q = −1 configuration shown previously in Fig. 3.13, along with the gluonic
topological charge density after 200 sweeps of smearing (top). One sees how the scalar
density extends over objects of differing charge, but that the regions of alternate charge
are realised by the local chirality of the pseudoscalar density. In colour: negative density
is blue/green, positive density is red/yellow (top), positive chirality is blue/green and
negative chirality is red/yellow (bottom). In grey-scale: negative density dark, positive
density light (top), and positive chirality dark, negative chirality light (bottom).
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Figure 3.17: The scalar (middle) and pseudoscalar (bottom) density of the first non-
zero mode for the Q = 1 configuration shown previously in Fig. 3.14, along with the
gluonic topological charge density after 200 sweeps of smearing (top). Again, the scalar
density extends over objects of differing charge, and the regions of alternate charge are
revealed by the local chirality of the pseudoscalar density. In colour: negative density
is blue/green, positive density is red/yellow (top), positive chirality is blue/green and
negative chirality is red/yellow (bottom). In grey-scale: negative density dark, positive
density light (top), and positive chirality dark, negative chirality light (bottom).
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Figure 3.18: The scalar (middle) and pseudoscalar (bottom) density of the first non-
zero mode for the Q = −1 configuration shown previously in Fig. 3.15, along with the
gluonic topological charge density after 200 sweeps of smearing (top). Again, the scalar
density extends over objects of differing charge, and the regions of alternate charge are
revealed by the local chirality of the pseudoscalar density. In colour: negative density
is blue/green, positive density is red/yellow (top), positive chirality is blue/green and
negative chirality is red/yellow (bottom). In grey-scale: negative density dark, positive
density light (top), and positive chirality dark, negative chirality light (bottom).
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3.5 Summary

In this chapter we have confronted the overlap-fermionic topological charge density and
the improved gluonic topological charge at different levels of ultraviolet smoothing, re-
alised in one case by a truncation of the mode expansion at λcut and in the other case
by a certain number of smearing steps applied to the gauge field in order to wipe out
ultraviolet fluctuations. These two views of getting the infrared topological structure of
the gauge field correspond to each other. A similar result, however for APE smearing
and a different improved Dirac operator, was found in Refs. [100, 101]. In the present
work this has been confirmed for two other specific realisations of both methods, using
the massless overlap Dirac operator [85] on one hand and stout-link smearing with re-
spect to an over-improved Symanzik type action [104] on the other. These two methods
have their respective advantages compared to the approximate solution [98, 99] of the
Ginsparg-Wilson relation and APE smearing [105].

We have made the comparison more complete and detailed, based first on the density-
density two-point function and second on a point-by-point matching of the respective
topological densities. The correspondence between the ultraviolet cutoff λcut of the over-
lap analysis and the number of smearing steps justifies the use of over-improved stout-
link smearing, which is computationally less demanding, in the analysis of topological
vacuum structure. This is particularly relevant for our investigation into the differences
between the vacuum structure of quenched and non-quenched QCD in Chapter 5.



Chapter 4

Role of the Wilson-mass parameter
on the overlap topological charge
density

The content of this chapter is based on the paper: P. J. Moran, D. B. Leinweber and
J. B. Zhang, in preparation, (2010).

In Chapter 2 we defined a new over-improved stout-link smearing algorithm. This
was followed up with a detailed comparison between the topological charge densities
from the overlap operator and the new smearing algorithm in Chapter 3. The results of
that chapter demonstrated a strong correlation between the two approaches when the
number of smearing sweeps was varied, however the negative Wilson-mass in the overlap
Dirac operator was held fixed.

In this chapter the dependence of the overlap Dirac operator on the Wilson-mass
regulator parameter is studied through calculations of the overlap topological charge
densities at a variety of Wilson-mass values. In this formulation, the Wilson-mass is
used in the negative mass region and acts as a regulator governing the scale at which
the Dirac operator is sensitive to topological aspects of the gauge field. We observe a
clear dependence on the value of the Wilson-mass and demonstrate how these values
can be calibrated against a finite number of stout-link smearing sweeps.

The overlap topological charge density is also computed using a pre-smeared gauge
field for the input kernel. Of interest here is whether applying the overlap operator will
lead to further filtering of the gauge field. We demonstrate that this is indeed the case
and calibrate the output against the over-improved stout-link smearing algorithm. The
results suggest that the freedom typically associated with smearing algorithms, through
the variable number of sweeps, also exists in the overlap operator, through the variable
Wilson-mass parameter.

4.1 Introduction

Physical hadronic interactions observe an approximate chiral symmetry that is described
by the theory of QCD, where in the massless limit, an exact chiral symmetry is realised.

60
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Lattice QCD enables non-perturbative studies of the strong interaction from first princi-
ples, and ideally, should also observe this symmetry. Unfortunately, naive transcriptions
of the continuum theory explicitly break chiral symmetry at finite lattice spacing a.

The Wilson Dirac operator [1],

DW =
∑
μ

(
γμ∇μ − 1

2
r aΔμ +m

)
, (4.1)

contains the irrelevant Wilson term, rΔμ/2, that explicitly breaks chiral symmetry at
O(a) in order to remove fermion doublers. This lattice discretisation is often improved
through the introduction of a clover term [15], however issues with chiral symmetry
breaking still exist.

One technique that has recently been used to successfully reproduce the light hadron
spectrum [106], is to filter the gauge links prior to applying the Dirac operator. These
types of fermion actions are typically referred to UV-filtered or fat-link actions. The
term “fat-link” comes from the smeared, i.e. fat, links that are used to construct
the Dirac operator. One can smear either all links [26, 107–110], only the irrelevant
terms [27, 28, 111, 112], or even just the relevant terms [113]. Incorporating at least
some amount of UV-filtering has been shown to reduce the effects of chiral symmetry
breaking [23, 26, 107, 111, 112, 114]. Unfortunately, there is no firm prescription for
determining the correct amount of smearing to apply to the gauge background. One
must find a balance between speeding up convergence of the Dirac operator, reducing
chiral symmetry breaking effects, and removing short-distance physics from the gauge
field. Of course, when using a fixed number of smearing sweeps nsw, with a constant
smearing parameter α, the smearing procedure only introduces irrelevant terms to the
action. The fat-link action therefore remains in the same universality class of QCD.
Nevertheless, this freedom, in the number of smearing sweeps that can be applied to the
gauge field, can sometimes be regarded as a drawback to fat-link fermion actions.

The difficulties with implementing exact chiral symmetry on the lattice are sum-
marised by the well known Nielsen-Ninomiya no-go theorem [115]. The no-go theorem
forbids the existence of a local lattice Dirac operator, with exact chiral symmetry, and
is free of doublers. A path around this block was provided in 1982 by Ginsparg and
Wilson [29], who argued that the physical effects of chiral symmetry will be preserved
if one can find a lattice Dirac operator, D, satisfying the Ginsparg-Wilson relation,

Dγ5 + γ5D = aDRγ5D , (4.2)

where R is a local operator. Lüscher later showed [116] that any D, which is a solution
of (4.2), obeys an exact chiral symmetry. A popular solution to the Ginsparg-Wilson
relation is the Neuberger Dirac operator [30, 31],

D =
m

a

⎛⎝1 +
DW (−m)√

D†
W (−m)DW (−m)

⎞⎠ , (4.3)

which satisfies (4.2) with R = 1/m. Here we consider the standard choice of input kernel,
Dw(−m), the Wilson Dirac operator with a negative Wilson-mass term. To produce an
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acceptable Dirac operator m must lie in the range 0 < m < 2. For m < 0 there are no
massless fermions, while for m > 2 doublers appear [87]. Varying the choice of m within
the allowed range results in a flow of D-eigenvalues, and facilitates a scale-dependent
fermionic probe of the gauge field [31]. Any value of m in the range (0, 2) should yield
the same continuum behaviour. However, simulations are performed at a finite lattice
spacing a, and empirical studies prefer m � 0.9 [117].

The overlap Dirac operator is extremely useful for studies of QCD vacuum structure
because it satisfies the Atiyah-Singer index theorem, and will always give an exact integer
topological charge. However, the value is not always unique and depends on the value
of the Wilson-mass parameter [30, 117–119]. Studies of the topological susceptibility
χ = 〈Q2〉/V , have also observed this dependence [117, 120]. In particular, the study of
Ref. [120] found that χ varied with m for small values of β, but that this dependence
decreased as the continuum limit was approached.

In the following, we extend these previous studies to include an analysis of the
topological charge density q(x), Q =

∫
d4x q(x), as m is varied. A calculation of the

topological charge density is a useful probe of the gauge field, due to its strong correlation
with low-lying modes of the Dirac operator, as seen in Chapter 3. In recent years, the
available compute resources and algorithm enhancements have reached a point where
calculations of q(x) using the overlap operator have become feasible [88, 89, 121].

4.2 Simulation details

Due to the high computational effort involved in a full calculation of the overlap topo-
logical charge density, we consider a single slice of representative 163× 32 lattice config-
urations. The configurations were generated using a tadpole improved, plaquette plus
rectangle (Lüscher-Weisz [80]) gauge action through the pseudo-heat-bath algorithm,
with β = 4.60 giving a lattice spacing of a = 0.093 fm.

Five values of the Wilson-mass in the range (1, 2) are used to calculate the overlap
topological charge density,

qov(x) = −tr
(
γ5

(
1− a

2m
D
))

. (4.4)

Results are reported in terms of the input parameter κ, which at tree level is related to
m by

κ =
1

2 (−m) a+ 8 r
, (4.5)

with the standard choice r = 1. Note that the allowed range for κ is 1/8 < κ < 1/4, and
in the interacting theory renormalisation leads one to consider 1/6 � κ < 1/4. A single
calculation of qov(x) for one time-slice will contain 162 × 32 = 8192 sites of information
that must be analysed, and this most easily achieved through direct visualisations. In
all figures, we represent regions of positive topological charge density by the colour
red fading to yellow, for large to small qov(x) respectively. Similarly, regions of negative
topological charge are coloured blue fading to green. A cutoff is applied to the topological
charge density, below which no charge is rendered. This allows one to observe the
underlying structure of the field.
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Figure 4.1: The overlap topological charge density qov(x) calculated with five choices
for the Wilson hopping parameter, κ. From left to right, we have κ = 0.23, 0.21, and
0.19 on the first row, with 0.18, and 0.17 on the second. There is a clear dependence on
the value of κ used, with larger values revealing a greater amount of topological charge
density.



64 Chapter 4 Role of the Wilson mass parameter

4.3 Dependence on the Wilson-mass parameter

The topological charge densities, for the five choices of κ, are presented in Fig. 4.1. A
clear dependence on κ is apparent from the figures, with larger values of κ revealing
greater amounts of topological charge. This is consistent with expectations since as κ
is increased the Dirac operator becomes more sensitive to smaller topological objects.
When using smaller values of κ these objects will not be felt by the Dirac operator.

The removal of nontrivial topological objects as κ is decreased, bears a striking resem-
blance to the well tested cooling [64–66, 74, 119, 122] and smearing [67–71] algorithms
introduced in Chapter 2. In these procedures, the links on the lattice are systemati-
cally updated such that the gauge field is driven towards a more classical state. This
results in a removal of topological charge density, as the action is decreased. We now
extend the work of Chapter 3 in which a strong correlation was observed between the
UV-filtered overlap topological charge density, and the gluonic definition resolved with
an over-improved stout-link smearing algorithm.

For the over-improvement parameter we continue to use a value of ε = −0.25, however
for the smearing parameter of Eq. (2.25) we select a relatively weak value of ρ = 0.01.
This should be compared with the maximum value possible for this combination of
plaquettes and rectangles, ρ ≈ 0.06 and the standard stout-link smearing value of 0.1.
After smearing, the gluonic topological charge density can be calculated by recalling
that,

qsm(x) =
g2

32 π2
εμνρσF

ab
μν(x)F

ba
ρσ(x) . (4.6)

In comparing the two definitions for the topological charge density we apply a mul-
tiplicative renormalisation to the gluonic qsm(x),

qsm(x)→ Z qsm(x) . (4.7)

The renormalisation factor is chosen such that the structure of the two field densities can
be best compared. The best match to the overlap qov(x) is then found by calculating,

min
∑
x

(qov(x)− Z qsm(x))
2 , (4.8)

as the number of smearing sweeps is varied. For this work, two methods for calculating
Z are considered;

• Zcalc ≡
∑

x |qov(x)| /
∑

x |qsm(x)| ,
• Zfit, where the renormalisation factor is calculated such that (4.8) is minimised.

We also compare with an alternative matching procedure [100, 123] in which one calcu-
lates,

ΞAB =
χ2
AB

χAA χBB

, (4.9)

with
χAB = (1/V )

∑
x

(qA(x)− q̄A) (qB(x)− q̄B) , (4.10)
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κ nsw Zcalc nsw Zfit nsw ΞAB

0.17 28 0.56 29 0.47 29 0.76
0.18 26 0.70 27 0.61 27 0.78
0.19 25 0.82 25 0.68 25 0.77
0.21 23 0.91 23 0.76 23 0.75
0.23 22 0.89 23 0.76 23 0.73

Table 4.1: The number of smearing sweeps, nsw, needed to match the overlap topological
charge density calculated with the listed value of κ. The three methods used to find the
best match are detailed in the text.

where q̄ denotes the mean value of q(x), and in our case qA(x) ≡ qov(x), qB(x) ≡ qsm(x).
Here the best match is found when ΞAB is nearest 1. In this case, the ratio eliminates
any dependence on the renormalisation factor, Z.

We first consider Zcalc. The overlap topological charge densities, along with the
corresponding best matches, for three choices of κ are shown in Fig. 4.2. We see that
as κ is decreased, and non-trivial topological charge fluctuations are removed, a greater
number of smearing sweeps are needed in order to recreate the topological charge density.
Again this agrees with expectations since the overlap operator becomes less sensitive to
small objects as κ is decreased, and it is these objects that are removed by the smearing
algorithm. Comparing the different definitions in Fig. 4.2 shows good agreement in the
topological structures revealed.

The three different methods for calculating the renormalisation constant are com-
pared in Table 4.1. As we move down the table there is a monotonically increasing trend
in the number of sweeps required to match the value of κ. We note that despite some
minor variation in nsw, it is possible to correlate the number of sweeps to the value of the
Wilson hopping parameter. We note that the average renormalisation factor Z̄ ∼ 0.7,
reflecting the fact that with ρ = 0.01 the gauge fields remain rough after ∼ 25 sweeps
of smearing.

4.4 UV-filtered overlap

Let us now consider the effect of evaluating the overlap operator on a pre-smeared gauge
field. This is of some relevance to UV-filtered overlap actions [24, 114, 124, 125], in which
all links of a gauge field are smeared prior to applying the overlap operator. As already
seen in Fig. 4.2, applying the overlap operator is in some respects similar to smearing
the gauge field. Of interest here is whether the overlap operator, acting on a smeared
gauge field, will reveal a topological charge density close to the input smeared gauge
field, or whether further smearing will be needed to match the calculated qov(x).

To make comparisons clear, we denote the overlap topological charge density, calcu-
lated using a smeared configuration as input, by qUV

ov (x). We consider the third Wilson-
mass, where κ = 0.19 and the best smeared match was provided by nsw = 25. Figure 4.3
shows the original qov(x) along with the new UV-filtered qUV

ov (x). Far less topological
charge density is observed in the pre-filtered case. Given the previous results, it is clear
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κ = 0.23 nsw = 22

κ = 0.19 nsw = 25

κ = 0.17 nsw = 28

Figure 4.2: The best smeared matches (right) compared with the overlap topological
charge densities (left) in order of decreasing κ, where qsm(x) is renormalised using Zcalc.
There is a clear relationship between κ and nsw, with smaller κ values requiring a greater
number of smearing sweeps to reproduce the topological charge density.
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Figure 4.3: A comparison of the overlap topological charge density qov(x) computed
using κ = 0.19, with qUV

ov (x) calculated using the same κ, on the same configuration,
after first applying 25 sweeps of smearing.

that a far greater number of smearing sweeps will be required to reproduce q(x) using
the gluonic definitions.

Repeating the same calculation as before we find that 45 sweeps of over-improved
stout-link smearing provides the best match to the overlap topological charge density. A
comparison between qUV

ov (x) and the smeared qsm(x) is shown in Fig. 4.4, where Zcalc =
0.85. This is approximately double the original 25 sweeps required to match the overlap
topological charge density, once again revealing the smoothing aspect of the overlap
operator. These results indicate that the filtering that occurs in the overlap operator is
independent of the input gauge field.

4.5 Summary

Using direct visualisations of the topological charge density, we have analysed the de-
pendence of the overlap Dirac operator on the Wilson-mass regulator parameter m.
Systematic differences appear in the topological structure of the gauge field as m is var-
ied. By comparing qov(x) with the gluonic definition of the topological charge density,
resolved with a topologically stable smearing algorithm, a direct correlation between m
and the number of sweeps is revealed. Smaller values of κ reveals topological charge
densities that are similar to using a greater number of smearing sweeps.

From these observations, one can conclude that the “smoothness” of the gauge field,
as seen by the overlap operator depends, on the value of the Wilson-mass. This is
similar to fat-link fermion actions in which the smoothness is directly dependent upon
the number of applied smearing sweeps. These results indicate that the freedom typically
associated with fat-link fermion actions, through the number of smearing sweeps, is also
present in the overlap formalism, through the freedom in the Wilson-mass parameter.

We also considered the application of the overlap operator to a smeared gauge field,
which is of relevance to UV-filtered overlap actions. We demonstrated that, regardless
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Figure 4.4: The overlap charge density calculated on a configuration filtered by 25 of
stout-link smearing sweeps, compared with qsm(x) after 45 sweeps of smearing. There
is a strong correlation between the objects observed. It appears as though the overlap
operator has again “smoothed” the configuration.

of the input gauge field to the overlap operator, UV-filtering still occurs via the overlap
operator. The strength of the filtering is of a comparable strength to that of the overlap
acting on a hot, unfiltered configuration. When creating a UV-filtered overlap action,
one must therefore take care to preserve the short-distance physics of the gauge field.



Chapter 5

QCD vacuum structure and the
impact of dynamical quarks

The content of this chapter is based on the publications: P. J. Moran and D. B. Leinwe-
ber, Phys. Rev. D 78, 054506 (2008) [arXiv:0801.2016 [hep-lat]]. and P. J. Moran and
D. B. Leinweber, To appear in the proceedings of QCD Downunder II, Massey Univer-
sity, Albany, New Zealand 17 - 19 January 2008 [arXiv:0805.4246 [hep-lat]].

Following the extensive investigations into lattice topology in the previous chapters,
we are now in a position to perform an accurate study of QCD vacuum structure. We
begin in Sec. 5.1 with a discussion of the dominant features of QCD vacuum structure at
different scales. At short distances the vacuum is dominated by a sign-alternating sheet-
like structure, whilst at larger distances an instanton-like picture dominates. With the
introduction of a new Gaussian smoothing operator we demonstrate how the different
views of the QCD vacuum at short and long distance scales are compatible. Both should
be considered in studies of QCD topology.

In Sec. 5.2 we proceed to study the effects of dynamical quarks on QCD vacuum
structure using the over-improved stout-link smearing of Chapter 2. The work presented
in previous chapters justifies this choice of algorithm. At short distances we find that
the magnitudes of the negative dip in the 〈q(x)q(0)〉 correlator and the positive 〈q(0)2〉
contact term are both increased with the introduction of dynamical fermion degrees of
freedom. At large scales we examine the extent to which instanton-like objects are found
on the lattice, and how their distributions vary between quenched and dynamical gauge
fields. We show that dynamical gauge fields contain more instanton-like objects with an
average size greater than in the quenched vacuum and explain the physics generating
these phenomena. Finally, we directly visualise the topological charge density in order
to investigate the effects of dynamical sea-quark degrees of freedom on topology.

5.1 QCD vacuum structure at different scales

5.1.1 Short distance structure

It is argued [94, 126] that the predominant feature of the QCD vacuum at short-distance
scales is described in the Euclidean two-point function for the topological charge density
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Figure 5.1: The topological charge density correlator 〈q(x)q(0)〉 as computed on the
quenched MILC gauge configurations for both 3-loop improved cooling (left) and over-
improved stout-link smearing (right). We see that for a small number of sweeps it is
possible to obtain a negative 〈q(x)q(0)〉 correlator, similar to the overlap results [129].
Note that errors were calculated using a first-order jackknife procedure but are too small
to see.

q(x),

〈qq〉 ≡ 〈q(x)q(0)〉 , (5.1)

also referred to as the topological charge density correlator. Seiler and Stamatescu [127,
128] were the first to show that this two-point function should be negative, in the Eu-
clidean gauge, for any x > 0. This property arises from reflection positivity and Ref. [129]
provides a recent discussion.

Despite the long history of cooling and smearing algorithms, this negative behaviour
was first observed using the overlap operator [129]. Due to the filtering of short dis-
tance fluctuations, it wasn’t known whether a similar correlator could be realised using
either cooling or smearing. Unfortunately, the overlap operator is very computationally
intensive, and prohibits high statistics studies of QCD vacuum structure.

As we have already seen in Chapter 3, by using a variable number of smearing sweeps
it is possible to realise the negative behaviour of the 〈qq〉 correlator using traditional
approaches. We first observed this in Ref. [104] using both cooling and over-improved
smearing. For reference the results are provided here in Fig. 5.1, where we analyse the
dependence of the two-point function on the number of applied cooling and smearing
sweeps.

This negative behaviour of the 〈qq〉 correlator suggests a sign-alternating sheet-like
topological structure exists in the QCD vacuum [94, 126]. Using five-sweeps of over-
improved smearing we can directly observe this structure using visualisations of the
topological charge density. In Fig. 5.2 we present two such visualisations. In the left
graphic we have plotted the full range of topological charge density, including values
approaching zero, with negative charge coloured green to blue and positive charge yellow
to red. This approach reveals the proposed sheet-like structure of the vacuum [94]. In
the right graphic we render only the negative charge, colouring from light to dark the
regions of weakest to strongest charge. This approach serves to illustrates the structure
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Figure 5.2: [left] The short-distance sheet structure of the vacuum is clearly apparent
after five sweeps of over-improved stout-link smearing. Negative charge density is green
to blue, and positive charge density is yellow to red. [right] The same data, this time with
the positive charge removed and the magnitude of the negative charge shown through
the strength of the blue colouring.

that still exists within the sheets. Raising the cutoff threshold for q(x) so that only
the most intense regions of charge are shown presents a different view of the vacuum,
as seen in the left graphic of Fig. 5.3. Here the vacuum appears to have a granular,
sand-like structure. Ilgenfritz has investigated this idea of clustering deeply [89].

5.1.2 Long distance structure

The right plot of Fig. 5.3 shows the topological charge density after 45 sweeps of over-
improved stout-link smearing, where we see the familiar lava lamp structure appear. This
long-distance, infrared structure is believed to be dominated by instanton-like objects
and has been the focus of vacuum structure studies over the past few decades.

The presence of possible instanton-like objects in the vacuum can be measured using
the classical instanton solution. By using over-improved stout-link smearing we are able
to extract both the action and charge densities of our gauge fields. Starting with the
action density we locate the positions of all local maxima in the field. The local maxima
are identified by finding a point at the centre of a 34 hypercube whose action density
exceeds that of the neighbouring 80 points of the hypercube.

Taking each maxima to be the approximate centre of a possible instanton-like object
we fit the classical instanton action density

S0(x) = ξ
6

π2

ρ4inst

((x− x0)2 + ρ2inst)
4 , (5.2)

to the measured action density. An arbitrary scale factor, ξ, is included to allow the
shape of the action density to determine the size, ρinst. We fit the six parameters ξ,
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Figure 5.3: [left] Placing a high cutoff on q(x) such that only the most intense regions of
charge are seen presents a picture of the QCD vacuum which resembles the sand of one of
Australia’s many fine beaches. The grains of sand will diminish in size as the continuum
limit is approached. [right] The topological charge after 45 sweeps of over-improved
stout-link smearing.

ρinst, and the four components of x0 by fitting Eq. (5.2) to the action density of the
aforementioned 34 hypercube.

From ρinst one can infer the topological charge to be observed at the centre of the
distribution q(x0) if it truly is an instanton

q(x0) = Q
6

π2ρ4inst
. (5.3)

Here Q = ±1 for an instanton/anti-instanton. This can then be compared with the
topological charge measured directly from the charge density observed on the lattice.

A calculation of q(x0) on the sample MILC gauge configuration is provided in Fig. 5.4.
With the exception of only two outliers, the maxima are good local approximations to
the classical instanton solution. These results are strongly in favour of an instanton
dominated model of the QCD vacuum.

5.1.3 Bridging the gap

It is not is obvious how, or to what extent, the instanton-like representation of the
vacuum should coexist with the sheet-like structure. In order to make some comparisons
between the two different sheet and lava pictures of the QCD vacuum we require some
method of averaging the short-distance structure of Fig. 5.2, independent of the smearing
procedure. For this, we define a Gaussian smoothing operation to act on the topological
charge density itself. Given q(x) for some gauge field, each point on the lattice is
simultaneously updated according to,

q(x0) =
1

2πσ2

∑
x

e−r2/2σ2

q(x) , (5.4)
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Figure 5.4: Comparison of the calculated q(x0) after 45 sweeps of smearing with the exact
instanton solution. After 45 sweeps of smearing the majority of topological objects are
relatively good approximations to instantons at their cores.

where r is the Euclidean distance between x and x0, and σ is the standard deviation of
the Gaussian distribution in lattice units.

The evolution of the topological charge density of Fig. 5.2 under Gaussian smoothing
with increasing σ is shown in Fig. 5.5. The resulting effect appears to be quite similar to
that seen in the well known cooling and smearing animations. In Fig. 5.6 we provide a
side by side comparison of the Gaussian smoothed charge density with σ = 1.75 and the
topological charge density obtained after 45 sweeps of smearing. Recall that the Gaussian
smoothed charge density was generated from the topological charge density after only
five smearing sweeps. Although the resulting densities are certainly not identical, they
still share many common features.

These results suggest that the QCD vacuum consists of a sandwich of high-energy
fluctuations, with a long-distance structure hidden beneath. This kind of idea has been
discussed previously by P. de Forcrand [130], and is represented graphically in Fig. 5.7.
We argue that the two representations are complementary and should both we considered
in studies of QCD vacuum structure.

5.2 The impact of dynamical quarks on QCD vac-

uum structure

We now investigate the structure of the dynamical QCD vacuum on both short and long
distance scales using over-improved stout-link smearing. The stability of instanton-like
objects under over-improved stout-link smearing, as we saw in Chapter 2, allows us to
achieve the most accurate determination of instanton size distributions to date.

In addition, the work presented in Chapter 3 has demonstrated the strong correlation
between over-improved stout-link smearing and the truncated overlap Dirac operator.
To good accuracy, the UV-cutoff in the Dirac operator is directly related to the number
of over-improved stout-link smearing sweeps. However, the overlap Dirac operator is
computationally expensive and not suited for high-statistics studies on large dynamical
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Figure 5.5: The evolution of q(x) obtained from five sweeps of over-improved stout-link
smearing under Gaussian smoothing. The values of σ used were 0.25 [top-left], 0.75
[top-right], 1.25 [bottom-left], and 1.75 [bottom-right].
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Figure 5.6: [left] The Gaussian smoothed topological charge density after five smearing
sweeps, using σ = 1.75. [right] The topological charge density after 45 smearing sweeps.
While the two pictures are not identical, it is remarkable that several common features
are present.

Figure 5.7: An example of how UV fluctuations could be superimposed on a deeper
long-range structure, as suggested by P. de Forcrand [130].
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gauge fields. Over-improved stout-link smearing therefore provides the most accurate
technique for studying both quenched and dynamical gauge fields with statistics sufficient
to reveal differences in the vacuum structure.

As discussed in Sect. 5.1, at short distance scales one studies the topological charge
density correlator, the integrand of the topological susceptibility,

χ ≡ 〈Q
2〉

V
=

∫
d4x 〈q(x)q(0)〉 , (5.5)

where V is the 4-volume. Recent overlap results [89, 129] have detailed the strong
negative behaviour of the 2-point function in quenched gauge fields. In Chapter 3 we
demonstrated how it is also possible to generate a strong negative correlator using five
sweeps of over-improved stout-link smearing.

However, these studies have so far all been on quenched gauge fields. There have
been no studies of the differences between quenched and dynamical fields in the short-
distance correlator1. This work will address this issue with a high-statistics study on
several accurately matched large volume lattices from MILC [76, 77] using the accurate
over-improved stout-link smearing algorithm.

After examining the short-distance structure of the correlator and the role of dynam-
ical fermion degrees of freedom, we probe the infrared structure of the full dynamical
QCD vacuum. In Sec. 5.2.3 the effect of the extra degrees of freedom on instanton dis-
tributions is studied. Finally, in Sec. 5.2.4 we directly visualise the topological charge
density in order to investigate the effects of dynamical sea-quark degrees of freedom on
topology. Results are summarised in Sec. 5.3.

5.2.1 Simulation details

This work uses the suggested over-improvement parameter ε = −0.25, and the standard
smearing parameter ρsm = 0.06. Please refer to Chapter 2 for details of the over-improved
stout-link smearing algorithm.

The gauge fields for this study were generated by the MILC collaboration [76, 77]
using a Tadpole and Symanzik improved gauge action with 1 × 1 + 1 × 2 + 1 × 1 × 1
terms in the quenched case and an Asqtad staggered dynamical fermion action for the
2+1 flavors of dynamical quarks. The lattice spacing for all three types of gauge fields is
a = 0.086 fm. For the specifics of how the gauge fields were generated see Refs. [76, 77].
Simulation parameters are summarised in Table 5.1.

5.2.2 Topological charge density correlator

As has been discussed extensively, the 〈qq〉 correlator is negative for any x > 0 [127, 128].
Given that the correlator must have a positive contact term 〈q2(0)〉x, the correlator

1We note the early investigation of the dynamical 2-point function by Hasenfratz [105] on small
lattices where 30 sweeps of unimproved APE smearing [69] was applied. This level of smoothing is
sufficient to remove most of the short-distance fluctuations which give rise to the negative dip in the
correlator. And while a comparison was made between the highly-smoothed quenched and dynamical
fields it is impossible to draw any strong conclusions, as the lattice spacings were not matched accurately.
It is now well established that the shape of the topological charge density correlator depends significantly
on the lattice spacing [89, 129].
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Table 5.1: The gauge fields used in this study. The lattices were generated by the MILC
collaboration [76, 77]. In the following we refer to these ensembles as “quenched,”
“heavy” and “light.”

Size β a Bare Quark Masses
283 × 96 8.40 0.086 fm ∞
283 × 96 7.11 0.086 fm 27.1MeV, 67.8MeV
283 × 96 7.09 0.086 fm 14.0MeV, 67.8MeV

necessarily has the form

〈q(x)q(0)〉 = Aδ(x)− f(x) , (5.6)

where f(x) is positive for all x away from the origin. The negative behaviour of the 〈qq〉
correlator suggests a sign-alternating layered structure to the topological charge density
of the topological charge density correlator.

We begin our study by investigating the effects of dynamical sea-quark degrees of
freedom on the topological charge density. In quenched QCD the Witten-Veneziano [131,
132] formula gives a relation between the topological susceptibility and the mass of the
η′ meson [128]

χqu =
m2

η′F
2
π

2Nf

. (5.7)

However, in the full dynamical case the topological susceptibility should vanish in the
chiral limit [128, 133]

χdyn =
f 2
πm

2
π

2Nf

+O(m4
π) . (5.8)

Of course, a vanishing topological susceptibility puts no restraints on how the func-
tion 〈q(x)q(0)〉 should change with the addition of dynamical sea-quarks, it only requires
that the integral in Eq. (5.5) vanishes.

It is well known that the inclusion of dynamical sea-quarks in the QCD action nor-
malises the coupling constant. In order to maintain the same lattice spacing across
quenched and dynamical gauge fields, one finds that the coupling parameter, g, must
increase and hence β ∼ 1/g2 must be smaller for the dynamical fields.

In quenched QCD it is possible to make a prediction on how the amplitude of the
delta function, A, of Eq. (5.6) should change as β is altered. In the quenched QCD
action formulated in Euclidean space, β appears as a factor governing the width of the
probability distribution for gauge-field links. When generating quenched gauge fields,
the smaller β values will permit greater fluctuations in the gauge links. The increased
fluctuations can give rise to non-trivial field fluctuations, which will be manifest through
a greater mean-square topological-charge density 〈q2(0)〉x, and thus a larger A.

However, in full QCD the probability distribution is now proportional to e−SEff ,
where SEff = SG + ln Det[M ] and M denotes the fermion interaction matrix. Since M
depends on both the link variables and the quark masses, it is no longer evident that
smaller β values will allow larger fluctuations in the gauge links relative to quenched
QCD. Although one can not predict a change in the mean-square density, we can make
the following observation. As one approaches the chiral limit χdyn → 0, it follows
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Figure 5.8: A comparison of the 〈qq〉 correlator for quenched and dynamical gauge
fields. The greater field fluctuations present in the dynamical fields are visible through
an increase in the magnitude of the negative dip. Although not shown, the contact term
〈q2(0)〉x has also increased and values are given in the text. The right graph displays
the same data focusing on the negative dip for the dynamical fields. The magnitude of
the dip is greater for the lighter quark mass.

from Eq. (5.8) that an increasing (decreasing) mean-square density 〈q2(0)〉x must be
compensated for by a stronger (shallower) negative dip in the 〈qq〉 correlator.

Figure 5.8 examines the extent to which the local field fluctuations differ through a
comparison of the 〈qq〉 correlator for the quenched and two dynamical ensembles. These
correlators were generated after using five sweeps of over-improved stout-link smearing
to suppress otherwise large renormalisations. We see that the contact term 〈q2(0)〉x
is in fact larger, and the magnitude of the negative dip has also increased. These
effects are also stronger for lighter quark masses. This is consistent with our reasoning
from considerations of quenched QCD. Smaller quark masses require smaller β values.
The exact values of the positive contact term are; quenched = 1836 ± 3 fm−8, heavy
= 3344± 5 fm−8, light = 3443± 4 fm−8.

5.2.3 Instanton-like objects

Understanding the nature of instanton-like objects in the QCD vacuum continues to be
an active of area of investigation. Considerable UV filtering reveals the presence of long-
distance topological structures in the QCD vacuum. While these topological objects are
only approximations to the classical instanton solution, they are commonly referred to
as (anti-)instantons.

We now proceed to quantitatively analyse the similarity of the topological objects
in the QCD vacuum to the classical instanton solution, using the method for fitting
instantons described previously. For this part of the investigation we use 45 sweeps
of over-improved stout-link smearing. This corresponds to a λcut of 634 MeV in the
truncated overlap operator as we saw in Chapter 3. A calculation of q(x0) on the “light”
ensemble of dynamical gauge fields (with β = 7.09) is provided in Fig. 5.9. With the
exception of only two outliers, the maxima are good local approximations to the classical
instanton solution.

While the centres of the instanton-like objects resemble instantons, it is interesting to
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Figure 5.9: Comparison of the calculated q(x0) after 45 sweeps of smearing with the exact
instanton solution. After 45 sweeps of smearing the majority of topological objects are
relatively good approximations to instantons at their cores.

Figure 5.10: The percentage of points that are sign coherent within a relative distance
r/ρinst of each instanton-like objects’ centre x0 with size ρinst. For small r/ρinst the
percentage of sign-coherent points is close to 100, however the sign-coherence falls off
rapidly as r approaches the characteristic size ρinst.

assess how similar the remainder of the instanton-like objects are to a classical instanton.
To do so, we consider all points within a distance r from the centre x0, measured relative
to the instanton size ρinst, and examine the extent to which the points within this distance
have the same sign topological-charge density as observed at the centre, q(x0). If the
detected object is a good approximation to a classical instanton then all these points
should have the same charge as q(x0).

In Fig. 5.10 we show the percentage of points that are within a relative distance r/ρinst
of x0 that have the same sign as x0. For small r/ρinst the percentage of sign-coherent
points is close to 100, however it falls off rapidly as r approaches the characteristic
size ρinst. This suggests that although the object is representative of an instanton at its
centre, the tails of the objects are distorted by vacuum fluctuations. What is remarkable
is that at the characteristic size of the “instanton,” merely 2/3 of the points are sign
coherent, suggesting that the objects revealed after 45 sweeps of smearing are good
approximations of classical instantons only at the core.

Given the strong correlation between q(x0) extracted from the action density after
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Figure 5.11: Histogram of the instanton size ρinst in dynamical and quenched gauge
fields. The dynamical fields show both an increase in the number of instantons and in
the average instanton size.

45 sweeps of smearing and that given by the classical solution (5.3) we can now compare
“instanton” distributions between quenched and dynamical QCD.

Early attempts [134] to reveal differences in the distributions were limited by statis-
tical fluctuations, concluding that the differences must be subtle. However, this high-
statistics study exploiting the accuracy of over-improved stout link smearing is able to
resolve differences for the first time.

To examine the variation in instanton size between the different gauge fields, a his-
togram of ρinst is presented in Fig. 5.11. Compared to the quenched ensemble, the
dynamical gauge fields show a substantial increase in the total number of instantons
and a subtle but important increase in average instanton size. Our sample size of
73, 000 instantons from quenched QCD and 140, 000 from full QCD enables a precise
determination of the means of the distributions. We find ρinst(Quenched) = 4.646(4),
ρinst(amu,d = 0.0062) = 4.822(4), and ρinst(amu,d = 0.0124) = 4.825(3), and the standard
deviations of the distributions to be σ(Quenched) = 0.96, σ(amu,d = 0.0062) = 0.87,
σ(amu,d = 0.0124) = 0.87. These results are similar in spirit to our observations of the
short-distance 〈qq〉 correlator in that the introduction of dynamical fermion degrees of
freedom leads to more non-trivial topological charge fluctuations, at both short and long
distances.

It has been argued that an increased density of instanton-like objects on the lattice
could be explained through an instanton/anti-instanton attraction occurring due to the
presence of the fermion determinant in the QCD weight factor [133]. The idea is that
an isolated instanton or anti-instanton would give rise to a near zero mode of the Dirac
operator. When generating dynamical gauge fields the selection of typical configurations
is weighted by det( /D+m)e−Sg . If a near zero-mode of /D were to exist on the lattice then
the determinant would approach 0 in the chiral limit and it would be highly improbable
that the configuration would be selected. Thus, isolated instantons are unlikely to exist
in the light dynamical-fermion gauge fields and hence all instanton-like objects will be
closer in these fields. Combined with our earlier results displaying increased fluctuations
in the gauge-field links, these considerations lead one to anticipate a greater number of
instanton-like objects in the dynamical gauge fields and an increase in their size to aid
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in suppressing isolation.

5.2.4 Topological charge density

The effects of dynamical fermion degrees of freedom are realised significantly at short
distances in the calculation of the 〈qq〉 correlator. The increased magnitude of the non-
trivial topological charge field fluctuations that are permitted due to the inclusion of
fermion loops should also be visible in direct visualisations of the topological charge
density.

Using five sweeps of over-improved stout-link smearing, we consider the short-range
structure of the topological charge density. In Fig 5.12 we present the topological charge
density for the quenched and two dynamical ensembles. The extra field fluctuations are
clearly visible in the visualisations of the dynamical QCD vacuum structure.

In Fig 5.13, we compare the structure of the vacuum after 45 sweeps of over-improved
smearing as discussed in Sec 5.2.3. It is difficult to observe the increased density of
instantons upon the introduction of dynamical fermions in these figures. This is because
the charge density fluctuates over a long times scale and a single time-slice is insufficient
to portray an complete representation of the vacuum. We also note that despite the
apparent separation of these topological lumps in the vacuum, all regions of like charge
are connected throughout the gauge field; i.e. one can travel from one lump to any other
lump of the same charge along a sign-coherent path of small-magnitude topological-
charge density. This has been examined in detail elsewhere [94, 129].

5.3 Summary

Using the new over-improved stout-link smearing algorithm from Chapter 2 we are able
to perform the most accurate studies of QCD vacuum structure to date. The use of this
smearing algorithm allows one to accurately expose the differences between quenched
and dynamical fields on both long and short distance scales.

By suppressing large renormalisations of the lattice operators through five sweeps of
over-improved stout-link smearing on the gauge fields, which corresponds to the unfil-
tered overlap operator [121], we are able to demonstrate how dynamical fermions affect
the vacuum through a calculation of the topological charge density correlator. The
addition of fermions into the QCD action at constant lattice spacing renormalises the
coupling constant such that the coupling parameter β becomes smaller. In the quenched
approximation such a change permits greater field fluctuations, and this is realised in full
QCD. We find an increase in the mean-square topological charge density upon including
dynamical fermions, as is illustrated in Fig. 5.8. The larger contact term, reflecting the
greater mean-square topological charge density of dynamical configurations, also induces
an increase in the negative dip of the topological charge density correlators. The strength
of these compensating effects is expected to increase as one approaches the chiral limit.

The results also reflect the suppression of zero-modes due to the inclusion of the
det( /D+m) weight factor in the selection of typical gauge fields, resulting in a decrease in
the number of isolated instanton-like objects. This causes instantons and anti-instantons
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Figure 5.12: The topological charge density for the quenched and dynamical ensembles,
obtained after five sweeps of over-improved stout-link smearing. From top to bottom
we plot a quenched field, the heavy dynamical amu,d = 0.0124, ams = 0.031 field and
the light dynamical amu,d = 0.0062, ams = 0.031 field. The greater non-trivial field
excitations that are permitted upon the introduction of light dynamical fermions are
directly visible in the dynamical illustrations.
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Figure 5.13: The topological charge density for the quenched and dynamical ensembles,
obtained after 45 sweeps of over-improved stout-link smearing. From top to bottom we
plot a quenched field, the heavy dynamical amu,d = 0.0124, ams = 0.031 field and the
light dynamical amu,d = 0.0062, ams = 0.031 field. The longer correlation length makes
it difficult to observe a noticeable difference in the size-distribution of the gauge field
fluctuations when observing a single time-slice.
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to be “attracted” [133] and leads to an increase in both the density and size of instanton-
like objects in the dynamical gauge fields as illustrated in Figs. 5.11 and 5.12.

These results support the emerging picture of the vacuum as an alternating “sand-
wich” of opposite topological charge density [129]. Beneath this oscillating short-range
structure there exists a long-distance foundation of instanton-like objects [89, 130, 135]
that can be revealed through smoothing or Dirac eigenmodes [121]. The addition of
dynamical fermions allows stronger field fluctuations and a higher frequency of sign-
oscillations in the topological charge density. The density of instanton-like objects be-
neath these short-distance oscillations also increases, as does their average size.



Chapter 6

Preconditioning maximal centre
gauge with stout-link smearing

The content of this chapter is based on the paper: A. O. Cais, W. Kamleh, K. Langfeld,
B. Lasscock, D. Leinweber, P. Moran, A. Sternbeck and L. Smekal, arXiv:0807.0264
[hep-lat].

In Chapter 5 we used over-improved stout-link smearing in order to investigate the
effects of dynamical quarks on QCD vacuum structure. We intend to extend our inves-
tigations into the effects of dynamical sea quarks in Chapter 8 with calculations of the
proton and Δ+ electromagnetic form factors. However, for the moment we continue our
topological studies into the structure of the QCD vacuum and present an application
of how smearing smearing algorithms can also be used to precondition Maximal Centre
Gauge (MCG) fixers.

To this end, centre vortices are studied in the SU(3) gauge theory using MCG fixing.
Stout link smearing and over-improved stout link smearing are used to construct a pre-
conditioning gauge field transformation, applied to the original gauge field before fixing
to MCG. We find that preconditioning successfully achieves higher gauge fixing max-
ima. We observe a reduction in the number of identified vortices when preconditioning
is used, and also a reduction in the vortex-only string tension.

6.1 Introduction

Despite more than 30 years of intense study, quark colour confinement in hadron physics
remains unexplained (for a recent overview see Ref. [136]). Within the framework of
lattice gauge theory, the prevailing view is that quark confinement is the result of a
particular class of gauge field configurations which dominate the QCD vacuum on large
distance scales. Two potential candidates have been most commonly investigated: con-
finement by means of ZN centre vortices and confinement due to Abelian monopoles (for
a critical discussion of both see Ref. [137]). To enhance these particular features, gauge
fields can be first fixed to a suitable gauge, such as Maximal Abelian Gauge (MAG)
[138] or Maximal Centre Gauge (MCG) [139]. Monopoles and centre vortices are then
defined by the projection of these gauge-fixed fields onto U(1)N−1 or ZN , respectively.
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Significant progress to date has occurred in SU(2) using MAG and MCG, with orig-
inal findings reproducing about 90% [140] and about 100% [141], respectively, of the
non-Abelian string tension. Removing monopole [142–144] or centre-vortex [144–149]
degrees of freedom from SU(2) lattice gauge fields appears to leave topologically trivial,
non-confining gauge fields that do not spontaneously break chiral symmetry.

The significance of the centre of the gauge group is what connects possible candidates
for this special class of configurations. As outlined for the case of Laplacian Centre Gauge
(LCG) in Ref. [150], all monopole world lines are embedded in 2-dimensional vortex
surfaces. These topological objects naturally occur together as local gauge defects. In
MCG it has been observed computationally that over 90% of monopole currents are
localised on centre vortices [151, 152]. Strongly correlated effects between the two have
also been observed by means of studying monopoles after vortex removal and vice-versa
[153], as well as through the effect of their removal on the spectra of the overlap Dirac
operator [144].

Again, all these advancements have been in SU(2) and work in SU(3) has not pro-
gressed to this level. While initial investigations were hopeful [154, 155], subsequent
results for MCG [156, 157] had difficulty in reproducing the full non-Abelian string ten-
sion. Investigations using MAG were also discouraging [158] , however subsequent anal-
ysis has observed good Abelian dominance [159] in the unquenched case. Earlier studies
in SU(2) using MCG reported that the centre-projected configurations recovered the full
string-tension, however further study into the ambiguities of the gauge-fixing procedure
showed that this result is plagued by Gribov copy effects [160–162]: methods which give
higher values of the gauge fixing functional produce smaller values for the vortex-induced
string tension. We point out that when the Laplacian Centre Gauge of Refs. [150, 163]
(which is free of Gribov ambiguities on the lattice) is used as the fixing method, the full
SU(3) (and SU(2)) string tension is recovered for the centre-projected gauge fields but
only in the continuum limit. However, unlike MCG vortices [164], the interpretation of
LCG vortex matter is cumbersome in the same continuum limit [156, 165].

In the current work we focus on the Gribov problem of the SU(3) centre-vortex
picture of confinement using the MCG fixing method. We apply the “smeared gauge
fixing” method of Ref. [166] to MCG to ameliorate this Gribov problem. This creates a
pre-conditioning gauge transformation for the configuration that should bring it closer to
the global maximum. We investigate the effect of this method on the features of the long-
distance behaviour of the static quark potential as evaluated on configurations where the
P-vortices derived from MCG have been removed and configurations composed purely
of these P-vortices. In SU(2), it has been shown that centre-vortex removal specifically
targets topological properties [144, 147], so as well as using stout-link smearing we also
employ over-improved stout-link smearing to attempt to exploit the link to topological
structure.
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6.2 Methodology

6.2.1 The static quark potential

The spectrum of the static quark potential is determined from Wilson loops W (r, t) of
area r × t,

W (r, t) =
∑
i

Ci(r) exp(−Vi(r) t) . (6.1)

In order to enhance C1(r), which measures the overlap of the loop with the ground state
potential, the spatial links are smeared.

Efficient methods exist for the unimproved Wilson action for fine tuning the smearing
parameters to provide optimal overlap with the ground state potential. For t = 0,
W (r, t = 0) = 1 providing the constraint

∑
i Ci(r) = 1 for a given r. For unimproved

actions, where the transfer matrix is positive definite, each Ci(r) ≥ 0. This means C1(r)
can be monitored at large r but small t as the number of smearing sweeps are varied,
with the optimal amount of smearing occurring when C1(r) ≈ 1. The proximity of C1(r)
to 1 for small t may be easily estimated from the ratio

W t+1(r, t)/W t(r, t+ 1) (6.2)

which equals C1(r) in the limit C1(r) → 1. This provides a quantitative measure of
ground-state-dominance for unimproved Wilson actions. We note that it is sufficient
[167] to fix the smearing fraction, α, and explore the parameter space via the number of
smearing sweeps, n.

This procedure can be repeated for a number of alternate paths of links for a given
separation r. By using variational techniques as described in Ref.[168], the combination
of paths that gives the greatest overlap with the ground state can be found.

Wilson loops, W (r, t), or more precisely W (x, y, z, t) where r2 = x2 + y2 + z2, are
calculated both on-axis, along the Cartesian directions, and off-axis. On-axis Wilson
loops are those that lie, e.g., in the x − t plane only; off-axis loops begin, for example,
by first stepping into the y or z (or both) directions before proceeding through the x− t
plane.. This provides an alternative to the usual method of calculating the off axis
potential by building paths in three different directions using small elemental squares,
rectangles or cubes and multiplying them together to form larger paths (see, for exam-
ple, Ref. [169]). These standard techniques for calculating the off-axis potential may
be combined with the approach described here using the variational method described
extensively in Ref. [168].

Due to the periodicity of the lattice, the size of our Wilson loops are limited from 1
to a little over half the smallest lattice dimension in the on-axis directions and between
0 and 3 in the transverse directions. For example, for a 163 × 32 lattice, the sizes of the
Wilson Loops, t× x× y × z, vary from a 1× 1× 0× 0 loop, to a 10× 10× 3× 3 loop.
Statistics are improved by transposing the loops over all points on the lattice and by
rotating through the three spatial directions

In order to efficiently calculate Wilson loops of various sizes, including off-axis loops,
we build products of links in each direction that we are considering for our Wilson loop.
Link products extending from every lattice site are calculated in parallel. The loops
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are then formed in parallel by multiplying the appropriate sides together. Each side is
created by reusing the components of the previous loop and one additional link. The
same approach can be extended to loops that travel off-axis.

In an attempt to isolate the ground state potential for off-axis paths, one symmetrises
over the path of links connecting the off-axis heavy quark propagators, exploiting the
full cubic symmetry of the lattice. For example, two points separated by nx sites in the
x-direction, ny sites in the y-direction and nz sites in the z-direction, may be connected
by nx link products in the x-direction, ny link products in the y-direction and nz link
products in the z-direction which we denote by the triplet xyz. Instead of only calculat-
ing off-axis paths in the specific order xyz, we average over spatial paths calculated in
the order xyz, xzy, yxz, yzx, zxy, zyx. We calculated loops using this path-symmetrised
technique as well as loops using a non-path-symmetrised operator where the order xyz
alone is considered. The former form of operator is designed to suppress excited states by
incorporating the full hyper-cubic symmetry of the lattice, whereas the latter operator is
susceptible to excited state contamination. By comparing the static quark potential for
these two operators, one can gain qualitative information on the effect of excited states
in the static quark potential.

6.2.2 Identifying vortex matter

In the centre-vortex picture of confinement the gauge fields are considered to be decom-
posed into a long-range, smooth field Zμ carrying all the confining fluctuations and a
short-range field Vμ containing non-confining perturbations as well as other short-range
effects

Uμ(x) = Zμ(x)Vμ(x).

Here Zμ(x) is the centre element which is closest, on the SU(3) group manifold, to Uμ(x).
A vortex is a configuration of the gauge potentials topologically characterised by non-
trivial elements of Z3 and is created by a singular gauge transformation. The non-trivial
centre element of the singular gauge-transformation characterising the vortex may be
made to be distributed over many links of an encircling loop (due to the short-range
effects of Vμ(x)). If we assume that by a gauge transformation the non-trivial centre
element can be concentrated on just one link we can compress this thick vortex into a thin
one. If we then project this gauge transformed configuration onto its centre elements, the
projected vortices (P-vortices) linking with the loop should then correspond to the thin
vortex. It is for this reason that we adopt the use of gauge-fixing to obtain the necessary
gauge transformation. It is the choice of gauge that determines our method for finding
the centre vortices and, therefore, the connection between the P-vortices and the thick
centre vortices present in the original configuration. The particular choice of gauge, the
properties of the P-vortices associated with each choice and the Gribov problem that it
creates is what has polarised opinions in this area [150, 156, 160, 170, 171].

Here, we employ the MCG gauge-fixing algorithm as outlined in Ref. [156]. The
gauge condition we chose to maximise (with respect to the gauge transformations Ω(x))
in this algorithm is

VU [Ω] =
1

Nl

∑
x,μ

[1
3
trUΩ

μ (x)
][1
3
trUΩ

μ (x)
]†
,
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where Nl is the number of links on the lattice and UΩ is the gauge-transformed field.
After fixing the gauge, each link should be close to a centre element of SU(3), Zm =

eiφ
m

, φm = 2π
3
m with m ∈ {−1, 0, 1}. Since, for every link,

1

3
trUΩ

μ (x) = ux,μe
iφx,μ and φx,μ = tan−1

Im(trUΩ
μ (x))

Re(trUΩ
μ (x))

then φx,μ should be near to some φm, by construction of the gauge-fixing condition. We
then perform the centre projection by mapping

SU(N) �→ ZN : UΩ
μ (x) �→ Zμ(x) with Zμ(x) = eiφ

m
x,μ ,

with the appropriate choice of φm
x,μ, m ∈ {−1, 0, 1}.

To reveal the vortex matter we simply take a product of links around an elementary
plaquette. We say a vortex pierces the plaquette if this product is a non-trivial centre
element and the plaquette is then a P-vortex. We can remove these P-vortices by hand
from the configuration using U ′

μ(x) = Z†
μ(x)U

Ω
μ (x).

6.2.3 Smearing as a preconditioner

In the centre-vortex picture of confinement, the centre elements correspond to the long-
range physics. It would seem reasonable then to employ the use of smearing to smooth
out the short-range fluctuations and allow the gauge transformation to see more of the
underlying long-range physics. To this end we construct a preconditioning gauge trans-
formation for each gauge field to obtain higher maxima in the gauge-fixing procedure
and thereby directly address the Gribov-copy issue [166].

Firstly, we smear the gauge field using any smearing algorithm (stout-link smearing
[71] has been applied here as well as over-improved stout-link smearing which has been
shown to better preserve the topological structure underlying the original configuration
[172]). We then fix the smeared field using the MCG gauge-fixing method. At each
iteration we keep track of the total gauge transformation that has been applied to the
smeared gauge field. Once the algorithm has converged we use the stored total trans-
formation as a preconditioning gauge transformation for the unsmeared gauge field. We
emphasise that the (unsmeared) preconditioned gauge field remains on the same gauge
orbit since the preconditioning is merely a (specific) gauge transformation on the original
links. Gauge-fixing the preconditioned field simply gives us a Gribov-copy of the result
from gauge-fixing the original gauge field.

6.3 Results

Calculations are performed using 200 quenched configurations with the Lüscher-Weisz
plaquette plus rectangle gauge action [80] on a 203 × 40 lattice with β = 4.52. Similar
preliminary results have being found on 100 163 × 32 lattices (with β = 4.6) and have
been reported elsewhere [173].

Stout-link smearing with a smearing parameter of 0.1 is used to construct the pre-
conditioning transformation with the number of sweeps ranging from 0 to 20 in steps of
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Sweeps Iteration Smear Max Vortices
Blocks Max

0 80± 20 − 0.7350(7) 3.21(12)%
4 118± 22 0.9150(11) 0.7400(6) 1.93(10)%
8 126± 26 0.9369(54) 0.7407(6) 1.71(10)%
12 126± 21 0.9459(12) 0.7411(6) 1.58(10)%
16 128± 23 0.9506(12) 0.7412(6) 1.53(10)%
20 135± 26 0.9541(12) 0.7414(5) 1.45(11)%

OI 80 148± 29 0.9625(14) 0.7417(6) 1.28(13)%

Table 6.1: Results for the average maximum gauge condition VU [Ω] as a function of pre-
conditioning stout-link smearing sweeps (OI signifies over-improved stout-link smearing).
For each of the sweeps used in the preconditioning: the average total (smeared gauge field
fixing plus preconditioned gauge field fixing) number of blocks of 50 iterations used, the
average smeared gauge condition maximum reached, the average preconditioned gauge
condition maximum reached and the percentage of plaquettes that are P-vortices.

4 sweeps. We also employ over-improved stout-link smearing with a smearing param-
eter of 0.06 and an ε parameter of −0.25. Here, each preconditioning was conducted
independently.

Given that the original goal was to increase the gauge-fixing maxima achieved in
MCG fixing, we can see from Table 6.1 that we are successful, in this regard, in every
case. With each level of preconditioning a higher gauge condition maximum is achieved
both for the smeared gauge field and the preconditioned original field. If we compare
0 and 4 sweeps of preconditioning, we can see that the magnitude of this increase is
initially large but the increase is slower as we precondition to higher levels. However
this increase does not come without a cost, the number of gauge-fixing iteration blocks
(a block is 50 iterations) required almost doubles between the unpreconditioned fixing
and the maximum amount of preconditioning. Typically, two-thirds of the iterations are
spent fixing the smeared field and one-third fixing the preconditioned field.

What is most significant about this table however is that with each level of precondi-
tioning the percentage of projected plaquettes which are P-vortices drops significantly.
Without preconditioning 3.21% of plaquettes are vortices and this drops to as low as
1.28% for the highest level of preconditioning.

In Table 6.2 we investigate further by looking at this particular effect between all the
different levels of preconditioning. In the upper triangle of this table (from precondition-
ing level row to preconditioning level column) we report the percentage of configurations
that experience a reduction in the measured number of P-vortices. As we can see, this
percentage is always high but the effect is lessened as we move to transitions, particularly
small transitions, between higher levels of preconditioning. It should be noted however
that the relative difference between, for example, 20 sweeps of stout-link and 80 sweeps
of over-improved stout-link preconditioning is difficult to quantify but the effect is still
significant for this transition.

The magnitude of this effect is also reported in Table 6.2. When reading from the
lower triangle (preconditioning level column to preconditioning level row) of this table
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Sweeps 0 4 8 12 16 20 OI 80

0
. . . 100 100 100 100 100 100

4 39±4 . . . 96.5 100 100 100 100

8 46±4 11±6 . . . 81.5 91.5 97.5 99.5

12 50±4 17±6 9±6 . . . 69 81 97.5

16 52±3 20±6 12±6 7±5 . . . 69.5 95.5

20 54±4 24±7 15±7 10±7 8±6 . . . 85.5

OI 80 59±4 33±7 24±8 19±9 16±9 14±8 . . .

Table 6.2: Comparisons between different preconditioning levels of stout-link smearing
(OI signifies over-improved stout-link smearing). The upper triangle of this table (from
preconditioning level row to preconditioning level column) we report the percentage of
configurations that experience a reduction in the measured number of P-vortices. The
lower triangle (preconditioning level column to preconditioning level row) of this table
gives the percentage reduction of the number of P-vortices for the configurations that
experienced a reduction.

we can see the percentage reduction of the number of P-vortices for the configurations
that experienced a reduction. In the transition from no preconditioning to any other
level, the order of a 50% reduction is observed. For other transitions it would seem the
effect drops to the 10% level reasonably quickly, but again we see an increased effect
when we consider over-improved smearing. It should be noted that, regardless of the
preconditioning level, the centre phases of the links of the fields always remain evenly
distributed across the three possible values, reflecting the fact that the realisation of
centre symmetry remains unaffected.

We can look to Table 6.3 when considering whether a higher gauge-fixing maximum
translates into a lower number of P-vortices. When reading from preconditioning level
row to preconditioning level column, the percentage of configurations that experience an
increase in the gauge-fixing maximum is shown. Similar trends to that of Table 6.2 are
observed, with large effects initially which become reduced for small transitions between
higher levels. Of these configurations with an increased maximum we can see almost
exclusively (when reading from preconditioning level column to preconditioning level
row) that an increased gauge-fixing maximum does lead to a lower number of P-vortices.

6.3.1 The static quark anti-quark potential

The fact that we can reduce the number of P-vortices through preconditioning is not
necessarily a cause for concern. As stated previously, our method for determining the
location of centre vortices is only justified by the physical relevance of the P-vortices
that we determine. A first step in determining this relevance is the calculation of the
static quark anti-quark potential. In the centre-vortex picture, the string tension σ as
determined from the infrared behaviour of this potential should be fully accounted for by
the centre-vortex component of the gauge fields, Zμ, with the Coulombic term accounted
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No Smearing Preconditioning 80 Sweeps OverImp. Preconditioning
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Figure 6.1: The effective potential plots for the lowest (left) and highest (right) levels
of preconditioning smearing. The upper plots contain the data for the original gauge-
fixed configurations, the middle plots contain the data for the vortex-only configurations
and the lower plots contain the data for the vortex-removed configurations. Each plot
contains data for a range of quark separations.
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Sweeps 0 4 8 12 16 20 OI 80

0
. . . 100 100 100 100 100 100

4 100
. . . 89.5 98 99 100 100

8 100 100
. . . 75 78.5 89.5 93.5

12 100 100 95.33
. . . 59 71.5 87.5

16 100 100 98.09 97.46
. . . 62.5 77.5

20 100 100 100 97.2 93.6
. . . 71

OI 80 100 100 100 100 100 97.18
. . .

Table 6.3: Comparisons between different preconditioning levels of stout-link smearing
(OI signifies over-improved stout-link smearing). When reading from sweep row to sweep
column (upper triangle) the value shown is the percentage of configurations that achieve
a higher gauge fixing maximum. When reading from sweep column to sweep row (lower
triangle) the value shown is the percentage of the configurations with higher maximum
that achieve a lower number of P-vortices.

for by the vortex removed component, Vμ. Since we can “remove” the determined P-
vortices by the operation U ′

μ(x) = Z†
μ(x)U

Ω
μ (x), we can seek to observe these properties

directly. However, since the determined P-vortices are gauge-dependent (and their num-
ber Gribov-copy dependent, as we have already seen) then so too are the subsequent
measurements of the static quark potential from the vortex-only and vortex-removed
components of the configuration.

Computing the static quark anti-quark potential as a function of the quark separation
is a two step process. Wilson loops W (R, T ) of extension of R × T have the large T
behaviour

〈W (R, T )〉 ∝ exp{−V (r)aT}, r := Ra,

where a is the lattice spacing. The method for extracting the effective potential is thus
identical to that of extracting effective masses from two-point functions in hadronic
spectroscopy. To obtain the static quark anti-quark potential as a function of the quark
separation we simply repeat this process for a range of values of the separation R. By
using off-axis spatial paths for the Wilson loops, we can obtain non-integer values of R.
We exploit full space-time translation to improve the statistics of our Wilson loops.

Since the final plot is composed of fits performed on a large number of effective
potential plots for all the different separations, it is prudent and necessary that the
factors determining those fits are given, and taken into account, when analysing the
subsequent static quark anti-quark potential as a function of separation. The difficulties
associated with such fits can be easily recognised in Fig. 6.1. In these plots we show
the static quark potential for a variety of quark separations for each of the original,
vortex-only and vortex-removed configurations. On the left we show these plots for the
unpreconditioned MCG fixing and on the right we show the same plots for 80 sweeps of
over-improved smearing as a preconditioner.

One of the first things to discuss is the difficulty in obtaining a satisfactory fit range
for the data, particularly in the case of the vortex-removed configurations. With these
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configurations, more so at larger separations, the potential falls rapidly and decays into
noise quickly. A visually satisfying plateau region is not evident and we must rely on
the fitting routine to determine the goodness of the fit. What the plot can tell us is that
the effective potential continues to fall (at separations of 5 lattice spacings and greater)
until at least time-slice 5. Since the data decays into noise around this point, we chose
to constrain our fit using timeslice 5 and fit from this slice to slice 7 (a straight-line
fit to 3 points). This constraint is then applied to all values of the separation. What
we find is that while this may lead to reasonable (� 1.3) values of the χ2 per degree
of freedom in the majority of cases, there are certainly significant deviations from this
desirable result.

Global fit ranges are chosen in a somewhat similar way for the unpreconditioned
and vortex-only configurations. For the unpreconditioned configurations, the global fit-
range was chosen to be between timeslice 4 and 6 since these accounted for the systematic
drift of the potential at large separations for lower time values and also gave reasonable
χ2 behaviour. In the case of the vortex-only configurations, the errors are far more
controlled but the potential rises at small times and plateaus far later so the fit range
was chosen to be from timeslice 10 to 12 but again some of the χ2 per degree of freedom
values were unsatisfactory. This is most likely due to the heavy constraints placed on
the fit by the accurate potential determinations.

Of significant concern when comparing the potentials of the unpreconditioned and
preconditioned results in Fig. 6.1 is the direct comparison of the potentials in each case.
The top figures show the potential after gauge-fixing but prior to the centre projection
and vortex-removal and, of course, since the static quark potential is gauge invariant
these plots are identical. For the lowest plots, which contain the vortex-removed data,
we can see that the rate of decay for the preconditioned data has dropped and the quality
of the data does not allow us to see whether it is possible that it plateaus at the same
level as the unpreconditioned data. Of course the most dramatic effect occurs in the
middle plots with the vortex-only data. There is a dramatic reduction in the magnitude
of potential for all separations and this is direct manifestation of the Gribov-copy effect
for this gauge-fixing method.

This Gribov-copy effect is also manifest in Fig. 6.2. Here we show plots of the effective
potential as a function of separation for each of the six levels of preconditioning used as
well as the unpreconditioned data. It would appear that the findings are consistent with
loss of confinement upon P-vortex removal. Although it would seem that this is perhaps
not such a reasonable observation in the over-improved case, if we look exclusively at
the on-axis contributions to the potential in this case (Fig. 6.3) and compare it to that
of the unpreconditioned case, we observe that a plateau in the potential may exist but
at larger values of the separation. This would concur with our previous observation that
the potential takes longer to plateau in this case and therefore the fit window may not be
adequately account for this effect. Careful examination of the vortex-removed plot also
reveals that we obtain an increasingly more accurate fit to the short-range Coulombic
portion of the potential.

What is more significant however is that the value of the string-tension determined
from the vortex-only configurations drops dramatically, and systematically, from ∼ 60%
to as low as ∼ 16% of the full string tension with increased preconditioning providing
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Figure 6.2: Static quark anti-quark potential plots for each of preconditioning smearing
sweeps used. Each plot contains data for the full, vortex-removed and vortex-only con-
figurations.The data shown uses a 3 timeslice fit window in each case with the fit window
being from timeslice 4 to 6 for the full data, timeslice 5 to 7 for the vortex-removed data
and timeslice 10 to 12 for the vortex-only data.
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Figure 6.3: The static quark anti-quark potential plots for both the lowest (left) and
highest (right) levels of preconditioning. Only the on-axis data is shown for the vortex-
removed configurations.

improvement. This is a disturbing manifestation of the Gribov problem since it perhaps
questions how accurately we have determined the centre vortices by our projection of
the P-vortices with our fixing method.

6.3.2 Discussion

The use of smearing as a preconditioning technique does indeed lead to higher maxima
in the MCG gauge-fixing condition VU [Ω]. These higher maxima in turn lead to lower
numbers of P-vortices determined in the centre projection. In SU(2), similar results
have been obtained when seeking higher maxima by means of simulated annealing [161]
and by pre-fixing to Landau gauge prior to MCG fixing [160]. As observed in SU(2)
[161, 162], there appears to be a significant anti-correlation between the value achieved
in the gauge fixing functional and the percentage string tension reproduced by centre
vortices.

As can be seen in Fig. 6.4, the ratio between the vortex-only string tension and the
vortex density (simply the fraction of vortex plaquettes to total number of plaquettes)
as a function of preconditioning is not independent of the preconditioning. Had it been
independent one might conclude the reduction in the string tension is associated with
simply not identifying all the vortices present. Either the mechanism with which vortices
produce confinement is not entirely intact or the physical relevance of the vortices is not
uniformly distributed.

In SU(2), it was seen that smearing an SU(2) configuration prior to MCG fixing
reduced the centre projected string tension considerably [139]. It was argued there that
this is because smearing greatly expands the vortex cores making the MCG process of
collapsing them to pierce a single plaquette more difficult. A similar point was used
to address the issue raised by prefixing to Landau gauge [160]. In principle the same
position could be taken here, the generated preconditioning transformation may allow
the vortex cores to be distributed across a larger number of lattice sites and again make
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Figure 6.4: Ratio between the vortex-only string tension and the vortex density as a
function of preconditioning.

the MCG task of compressing them more difficult. However, the over-improved stout-
link smearing parameters are deliberately chosen to maintain the size of instantons and
there is a case to say that if the link between centre vortices and topology seen in SU(2)
persists in SU(3) then it should be possible to smear configurations without expanding
the vortex cores. It is difficult to attribute the same vortex-expanding behaviour to the
case of simulated annealing. However, the fact that known higher maxima exist (having
these properties) and that simulated annealing is designed to locate them could explain
the similar behaviour.

It is significant that much of the discussion in Ref. [150], where there is no Gribov
ambiguity, can also be reconciled with the results found here. In this case a number
of different Laplacian operators were constructed simply by using smeared links in the
definition of the operator. There too it was seen that this caused an analogous effect
on the vortex-only string tension. It was argued that the use of smearing caused the
Laplacian to be blind to the short-range physics making the decomposition of the gauge
field into the confining and non-confining components less effective — disorder in the
vortex-only component is absorbed into the vortex-removed component resulting in a
loss of string tension. It was contended there that in the continuum limit the smearing
radius shrinks to zero, restoring the string tension.

In the same way, the smearing preconditioning may allow this effect to occur for
MCG. That the locations of vortices as determined by both methods coincide serves to
strengthen this position. Indeed, as discussed in Ref. [150], periodic boundary conditions
cause gauge defects to have an opposite partner and, perhaps, the non-locality introduced
by the preconditioning procedure may allow these opposites to annihilate producing no
net defect after projection and a resultant drop in the vortex-only string tension.
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6.4 Summary

The use of smearing as a preconditioning technique leads to higher maxima in the MCG
gauge-fixing condition VU [Ω]. These higher maxima in turn lead to lower numbers of
P-vortices determined in the centre projection and, subsequently, lower values of the
vortex-only string tension.

Although the fundamental modular region of MCG would be an ideal candidate for
a unique definition of vortex texture, it seems that the vortex matter arising from the
first Gribov region as a whole has a greater phenomenological relevance. While all forms
of preconditioning lead to a loss of string tension, it is the centre-projected physics that
is not consistent. An improvement in VU [Ω] causes one to miss vortices in the projection
and spoil the phenomenology.

While MCG has proved successful to a large extent in SU(2), what is different
in SU(3) is that centre-projection has never been shown to find enough vortices to
reproduce the full string tension1. Indeed improving the gauge-fixing functional leads
to fewer vortices and poor phenomenology. We conclude that MCG gauge-fixing does
not provide evidence sufficient to explain the essential non-perturbative features of the
QCD vacuum. Nevertheless, it would be informative to look for correlations between the
locations of the determined P-vortices with each preconditioning since their removal still
leads to a loss of string tension. The key discovery of this chapter is one of anticorrelation;
the higher the gauge fixing functional, the worse the phenomenology picture.

1Apart from possibly vortices as determined via Laplacian gauge [150] in the continuum limit.



Chapter 7

Smeared overlap quark propagator

The content of this chapter is based on the publication: J. B. Zhang, P. J. Moran,
P. O. Bowman, D. B. Leinweber, A. G. Williams and Phys. Rev. D 80, 074503 (2009)
[arXiv:0910.2781 [hep-lat]].

In this chapter we study the properties of the momentum space quark propagator in
Landau gauge, for the overlap quark action in quenched lattice QCD. Such an analysis is
necessary because in Chapter 8 we intend to study the effect of dynamical quarks on the
proton and Δ+ electromagnetic form factors, and we must first choose an appropriate
fermion action. Among the choices are smeared, or fat-link, fermion actions. We have
done much work analysing smearing in the context of topology, but have not yet studied
the effect of smearing on the propagation of quarks through the vacuum.

Numerical calculations are performed over four ensembles of gauge configurations,
where three are smeared using either 1, 3, or 6 sweeps of stout-link smearing. We
calculate the non-perturbative wave function renormalisation function Z(p) and the
non-perturbative mass function M(p) for a variety of bare quark masses.

We find that the wave-function renormalisation function is slightly sensitive to the
number of stout-link smearing sweeps. For the mass function we find the effect of the
stout-link smearing algorithm to be small for moderate to light bare quark masses. For a
heavy bare quark mass we find a strong dependence on the number of smearing sweeps.

7.1 Introduction

The quark propagator is one of the fundamental components of Quantum Chromody-
namics (QCD). Although it is not a physical observable, many physical quantities are
related to it. By studying the momentum-dependent quark mass function in the infrared
region we can gain valuable insights into the mechanisms of dynamical chiral symmetry
breaking and the associated dynamical generation of mass. At high momenta, one can
also use the quark propagator to extract the running quark mass [174].

Lattice QCD techniques provide an avenue for the non-perturbative study of the
quark propagator. There have been several lattice studies of the momentum space
quark propagator [175–187] using different fermion actions. Finite volume effects and
discretisation errors have also been extensively explored in lattice Landau gauge [186–
189].
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The overlap fermion formalism [30, 85] realises an exact chiral symmetry on the lattice
and is automaticallyO(a) improved. There are many salient features of overlap fermions,
which include no additive renormalisations to the quark masses, an index theorem linking
the number of zero-modes of the Dirac operator to the topological charge Q, and evading
the so called “no-go theorem” etc., however they are rather computationally demanding.
There are many suggestions on how to reduce the computational cost. One such proposal
is the use of a more elaborate kernel, together with a fattening of the gauge links [114,
124, 190].

The idea of any UV-filtered fermion action [22–26] is that one will carry out the
calculation on a smoothed copy of the actual gauge field and evaluate the Dirac op-
erator on that background. This yields a new fermion action which differs from the
old one by terms which are both simultaneously ultralocal and irrelevant. The term
“UV-filtered” indicates that such an action is less sensitive to the UV fluctuations of the
gauge background. Sometimes, one also speaks of “fat-link” actions.

There is a great amount of freedom available when generating a smoothed copy of
some gauge field. One needs to decide on the smoothing recipe (APE [68], HYP [70],
stout-link [71], etc.), on the parameter (αAPE, αHYP

1,2,3 ,α
SL ≡ ρ) and on the number of iter-

ations, niter. In any case, with fixed (α, niter) the filtered “fat-link” action is in the same
universality class as the usual “thin-link” version [25]. Unfortunately, if any smoothing
process is over-applied, some important properties of the theory are lost. Therefore, one
needs to find a balance between the smoothing procedure, which will accelerate con-
vergence of the quark operator inversion and improve the localisation properties, at the
danger of losing important physics. Recently, Stephan Durr and collaborators [24–26]
applied 1-3 sweeps stout-link smearing [71] to the lattice gauge configurations and anal-
ysed how this affected various physical quantities. They claim that it is safe to use 1-3
sweeps of standard stout-link smearing on the gauge configurations. More recently, 6
sweeps of stout-link smearing was used in the Science article exploring the hadron mass
spectrum [106].

In this chapter, we investigate the momentum space quark propagator on quenched
gauge configurations. We utilise both the original lattice configurations and also the
configurations which are produced by one, three, and six sweeps of standard stout-link
smearing respectively. We compare results across all four cases, in order to explore the
effect of smearing on the quark propagator with different quark masses and different
lattice momenta.

7.2 Overlap quark propagator

The massive overlap operator can be written as [191]

D(μ) =
1

2
[1 + μ+ (1− μ)γ5ε(Hw)] , (7.1)

whereHw(x, y) = γ5Dw(x, y) is the HermitianWilson-Dirac operator, ε(Hw) =Hw/
√

H2
w

is the matrix sign function, and the dimensionless quark mass parameter μ is

μ ≡ m0

2mw

, (7.2)
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where m0 is the bare quark mass and mw is the Wilson quark mass which, in the free
case, must lie in the range 0 < mw < 2.

The bare quark propagator in coordinate space is given by

Sbare(m0) ≡ D̃−1
c (μ) , (7.3)

where

D̃−1
c (μ) ≡ 1

2mw

D̃−1(μ) and

D̃−1(μ) ≡ 1

1− μ

[
D−1(μ)− 1

]
. (7.4)

When all interactions are turned off, the inverse bare lattice quark propagator reduces
to the tree-level version, and in momentum space is given by

(S(0))−1(p) ≡ i

(∑
μ

C(0)
μ (p)γμ

)
+ B(0)(p) , (7.5)

where p is lattice momentum. One can calculate S(0)(p) directly by setting all links
to unity in coordinate space, doing the matrix inversion, and then taking its Fourier
transform. It is then possible to identify the appropriate kinematic lattice momentum q
directly from the definition

qμ ≡ C(0)
μ (p). (7.6)

The form of qμ(pμ) is shown and its analytic form given in Ref. [185]. Having identified
the appropriate kinematical lattice momentum q, we can now define the bare lattice
propagator as

Sbare(p) ≡ Z(p)

iq/+M(p)
. (7.7)

This ensures that the free lattice propagator is identical to the free continuum propa-
gator. Due to asymptotic freedom the lattice propagator will also take the continuum
form at large momenta. In the gauge sector, this type of analysis dramatically improves
the gluon propagator [192–195].

The two Lorentz invariants can then be obtained via

Z−1(p) =
1

12iq2
tr{q/S−1(p)} , (7.8)

M(p) =
Z(p)

12
tr{S−1(p)} . (7.9)

Here Z(p) is the wave-function renormalisation function and M(p) is the mass function.
The above equations imply that Z(p) is directly dependent on our choice of momentum
q, whilst M(p) is not.

7.3 Simulation details

We work on 163×32 lattices, with gauge configurations created using a tadpole improved,
plaquette plus rectangle (Lüscher-Weisz [80]) gauge action through the pseudo-heat-
bath algorithm. The lattice spacing, a = 0.093 fm, is determined from the static quark
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potential with a string tension of
√
σ = 440 MeV [196]. The number of configurations to

be used for each ensemble in this study is 50. The first smeared ensemble is created by
applying one sweep of stout-link smearing to the original configurations with a smearing
parameter of ρ = 0.10. The second smeared ensemble is created using three sweeps of
stout-smearing with the same value of α. We work in an O(a2)-improved Landau gauge,
and fix the gauge using a Conjugate Gradient Fourier Acceleration [197] algorithm with
an accuracy of θ ≡∑ |∂μAμ(x)|2 < 10−12. The improved gauge-fixing scheme was used
to minimise gauge-fixing discretisation errors [198].

Our numerical calculation begins with an evaluation of the inverse of D(μ) on the
unfixed gauge configurations, where D(μ) is defined in Eq. (7.1). We then calculate
the quark propagator of Eq. (7.3) for each configuration and rotate it to the Landau
gauge by using the corresponding gauge transformation matrices {Gi(x)}. We then
take the ensemble average to obtain Sbare(x, y). The discrete Fourier transformation is
then applied to Sbare(x, y) and the momentum-space bare quark propagator, Sbare(p), is
finally obtained.

We use the mean-field improved Wilson action in the overlap fermion kernel. The
value κ = 0.19163 is used in the Wilson action, which provides mwa = 1.391 for the
Wilson regulator mass in the interacting case [185]. We calculate the overlap quark
propagator for 15 bare quark masses on each ensemble by using a shifted Conjugate
Gradient solver. The bare quark mass m0 is defined by Eq. (7.2). In the calculation,
we choose the mass parameter μ = 0.009, 0.010, 0.012, 0.014, 0.016, 0.018, 0.021, 0.024,
0.030, 0.036, 0.045, 0.060, 0.075, 0.090, and 0.105. This choice of μ corresponds to bare
quark masses, in physical units, of m0 = 53, 59, 71, 82, 94, 106, 124, 142, 177, 212, 266,
354, 442, 531, and 620 MeV respectively.

The partial results for the mass functionM(p) and the wave-function renormalisation
function Z(R)(p) ≡ Z(ζ; p) on a 163 × 32 lattice without any smearing in Landau gauge
were reported in Ref. [187]. Here we focus on a comparison of the behaviour of the
overlap fermion propagator when using different numbers of stout-link smearing sweeps.
All data is cylinder cut [192, 193]. Statistical uncertainties are estimated via a second-
order, single-elimination jackknife.

7.4 Results

In a standard lattice simulation, one begins by tuning the value of the input bare quark
mass m0 to give the desired renormalised quark mass, which is usually realised through
the calculation of a physical observable. However, smearing a lattice configuration filters
out the ultraviolet physics and the renormalisation of the mass will be different. To some
extent, the effect is similar to that of an increase in the lattice spacing a. After smearing,
the same input m0 will therefore give a different renormalised quark mass. The input
bare quark mass must then be re-tuned in order to reproduce the same physical behaviour
as on the unsmeared configuration.

We wish to directly study how the quark propagator S(p) is affected by smearing,
through a calculation of the mass M(p) and wave-renormalisation Z(p) functions. In
order to replicate the re-tuning procedure described above, we begin by first calculating
M(p) and Z(p) for all values of m0 listed previously, over all four types of configura-
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tions. We then select a value of the bare quark mass m0 to investigate, and force the
mass functions M(p) to agree at a given reference momentum, ζ. This is achieved by
interpolating M(p), for the smeared configurations, between neighbouring values of the
bare quark masses, in order to determine the required effective bare quark mass. Any
reasonable choice of ζ should suffice. By reasonable, we mean any point out of the far
infrared (IR) or ultraviolet (UV) momentum regions, where lattice artifacts will spoil
the results.

In comparing the renormalisation function, we first interpolate Z(p) to the effective
bare quark mass, obtaining Z(I)(p). We then multiplicatively renormalise Z(I)(p) to
Z(R)(p) ≡ Z(ζ, p), subject to Z(ζ, ζ) = 1.

We begin with a comparison of the functions M(p) and Z(R)(p) for a small bare
quark mass, with three choices of the reference momentum ζ = 2.0, 3.9 and 6.0 GeV.
The interpolated mass functions for the smallest bare quark massm0 = 53 MeV are given
in Fig. 7.1. We note the significant reduction in the statistical error, even after a single
sweep of smearing. For all choices of ζ, the mass functions display strong agreement
over all four levels of smearing, with the only differences occurring in the most infrared
points. For the function Z(R)(p) the effect of smearing is also subtle, however the link
smearing does introduce a minor splitting in the UV region. This splitting leads to small
differences in the lower momentum regions of Z(R)(p) when we select ζ = 6.0 GeV.

Next we consider a moderate bare quark mass of 177 MeV, for which the functions
M(p) and Z(R)(p) are shown in Fig. 7.2. As in the case of a small bare quark mass, we
find that the mass function appears independent of the choice of reference momentum,
however the discrepancy at the most infrared point is no longer apparent. The renor-
malisation function displays the same splitting in the UV region. The effect of smearing
on the quark propagator still appears to be relatively minor at this value of m0.

Finally we consider a larger choice of the bare quark mass, m0 = 531 MeV. A
consideration of the mass functions M(p) given in Fig. 7.3 reveals a strong dependence
on the choice of reference momentum ζ. We see that a choice of either ζ = 3.9, or
6.0 GeV leads to large discrepancies in both the low and moderate momentum regions.
With a choice of ζ = 2.0 GeV we are able to obtain agreement in the low momentum
region.

The dependence of M(p) on ζ indicates that the suppression of ultraviolet fluctua-
tions by the smearing algorithm has spoilt the physics of the theory above ∼ 2− 3 GeV,
for this value of m0. These effects are clearly visible after just a single sweep of smear-
ing at this heavy bare quark mass. We further note that in the case of 6 sweeps and
ζ = 6.0 GeV, the mass function drops to the bare quark mass. This is a clear indica-
tion that the Compton wavelength of the quark is small enough to reveal the void of
short-distance interactions following 6 stout-link smearing sweeps.

The renormalisation functions Z(R)(p) for a heavy bare quark mass of m0 = 531 MeV
are also provided in Fig. 7.3. Apart from the small splitting in the UV region, Z(R)(p)
still appears to be mostly unaffected by the smearing algorithm. In Fig. 7.4 we show
the differences in Z(R)(p) between the smallest and largest bare quark masses, where in
order to examine the UV splitting we choose ζ = 2.0 GeV. Figure 7.4 shows that the
magnitude of the splitting in Z(R)(p) introduced by the smearing algorithm is unaffected
of the input bare quark mass.
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Figure 7.1: The interpolated mass M(p) and renormalisation Z(R)(p) functions for the
small bare quark mass, m0 = 53 MeV, with three choices of ζ. The effective bare quark
masses are given in square brackets. There is good agreement in M(p) for all choices
of ζ with up to six sweeps of stout-link smearing. A small splitting in the UV region
of Z(R)(p) is apparent after three sweeps of smearing. This leads to a disagreement in
Z(R)(p) for a large choice of ζ = 6.0 GeV.
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Figure 7.2: The interpolated mass M(p) and renormalisation Z(R)(p) functions for the
moderate bare quark mass, m0 = 177 MeV, with the three choices of ζ. The effective
bare quark masses are given in square brackets. As with the small bare quark mass,
the mass function displays good agreement for all choices of ζ, and there is also a small
splitting apparent in the UV region of Z(R)(p). We note that the differences in Z(R)(p)
appear to be independent of the bare quark mass.
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Figure 7.3: The interpolated mass M(p) and renormalisation Z(R)(p) functions for the
heavy bare quark mass, m0 = 531 MeV, for the three choices of ζ. The effective bare
quark masses are given in square brackets. We see that for this value of m0, the choices
ζ = 3.9, and 6.0 GeV lead to large differences in the moderate and infrared momentum
regions of M(p). This indicates that the physics above approximately 3 GeV has been
spoilt by the smearing algorithm. In Z(R)(p) we again find that the stout-link smearing
algorithm introduces a small splitting in the infrared region.
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Figure 7.4: The difference χ(p) ≡ |Z(R)
light(p) − Z

(R)
heavy(p)| between the renormalisation

functions Z(R)(p) for the heavy and small bare quark masses considered previously, with
ζ = 2.0 GeV. We see that the difference rapidly approaches zero, indicating that the
magnitude of the splitting introduced by the smearing algorithm is independent of the
input bare quark mass. The differences at lower momenta are due to a flattening of Z(p)
as m0 is increased.

7.5 Summary

The stout-link smearing procedure can save a large amount of compute time in the
calculation of hadronic physics. Not only is the Dirac operator easier to invert but
statistical errors are reduced significantly. The conclusion drawn from this study is that
up to six sweeps of stout-link smearing sweeps induces rather small effects on the quark
propagator for small and moderate bare quark masses, as claimed by Durr, et al. [24–26].
After an appropriate rescaling of the bare quark mass, the renormalised quark propagator
displays the same physics as the untouched configuration. The only notable exceptions
are order 2% discrepancies in the renormalisation function for all quark masses and the
most infrared point of the lightest quark mass function. There an effect approaching 2σ
is revealed.

These effects provide some evidence of a link between small topologically nontrivial
gauge field configurations linked to dynamical chiral symmetry breaking through their
production of approximate zero-modes in the Dirac operator. Upon smearing this short
distance physics is modified. Certainly the effects are subtle. However, they may require
further investigation in the event that fermion actions, in which all links of the action
are smeared, become the action of choice for calculating the physics beyond the standard
model.



Chapter 8

Magnetic moments in quenched and
dynamical QCD

The formalism of this chapter follows that presented in the publication: S. Boinepalli,
D. B. Leinweber, P. J. Moran, A. G. Williams, J. M. Zanotti and J. B. Zhang, Phys.
Rev. D 80, 054505 (2009) [arXiv:0902.4046 [hep-lat]].

In Chapter 5 we directly examined the structure of the QCD vacuum to study the ef-
fects of including dynamical quarks. We demonstrated how the extra dynamical degrees
of freedom lead to “rougher” gauge fields containing a greater density of instanton-like
objects.

We now extend this analysis to examine the effects of dynamical quarks on the elec-
tromagnetic properties of baryons through calculations of the nucleon and Δ magnetic
moments. The absence of strange valence quarks in these baryons makes them partic-
ularly suited for studies of chiral physics, where the effects of dynamical quarks will be
greatest. We focus on the magnetic moments of the proton and Δ+ and compare μΔ+/μp

between quenched and dynamical lattice simulations. In line with expectations, we find
that the differences in vacuum structure lead to a significant and important change in
the chiral curvature, following the inclusion of dynamical quarks.

8.1 Introduction

The study of the electromagnetic properties of baryons provides valuable insight into
the non-perturbative structure of QCD (see Refs. [199–203] for reviews). Baryon charge
radii and magnetic moments provide an excellent opportunity to observe the non-analytic
quark-mass behaviour predicted by chiral effective field theory (χEFT). Since these are
inherently non-perturbative properties of hadrons, first-principles calculations on the
lattice are essential for our understanding of hadronic structure, and indeed there has
been much progress in this direction, mainly for the nucleon and pseudoscalar states
(see [204] for a review).

On the lattice, decuplet baryons are stable as a result of the unphysical large quark
masses that are used in present calculations and the finite volume of the lattice. Decay
to a pion and an octet baryon is forbidden by energy conservation. However, stability
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of decuplet baryons is common to most hadronic models. In this sense, lattice results
provide a useful forum in which the strengths and weaknesses of various models may be
identified.

In a recent calculation, we examined the decuplet baryon form factors using quenched
QCD [205]. The results were compared with experimental measurements where available,
and with the predictions of Quenched Chiral Perturbation Theory (QχPT). Of particular
interest was an observed turn over in the magnetic moment of the Δ+ baryon as the
chiral regime was approached. As will be explained, this chiral behaviour is due to
the presence of the Δ → Nπ decay channel. What was not done in Ref. [205] was a
comparison of the Δ magnetic moment in the quenched approximation with that in full
dynamical QCD.

This chapter is organised as follows. The octet and decuplet baryon interpolating
fields used in the correlation functions are discussed in Sec. 8.2.1. The extraction of
baryon mass and electromagnetic form factors proceeds through a calculation of two
and three-point correlation functions. These are discussed in Sec. 8.2.2. The two and
three point functions for the proton and Δ+ are discussed in Secs. 8.2.3 and 8.2.4. Our
methods for extracting quark sector contributions and magnetic moments are detailed
in Secs. 8.2.5 and 8.2.6. Throughout this analysis we employ the lattice techniques
introduced in Ref. [206], and these are summarised in Sec. 8.3. Our expectations for the
calculation are then discussed in Sec. 8.4, before presenting an overview of the quenched
results in Sec. 8.5. The dynamical results are presented and discussed in Sec. 8.6, and
summarised in Sec. 8.7.

8.2 Theoretical formalism

8.2.1 Interpolating fields

The commonly used interpolating field for exciting the Δ++ resonance from the QCD
vacuum takes the long established [207, 208] form of

χΔ++

μ (x) = εabc
(
uTa(x)Cγμu

b(x)
)
uc(x). (8.1)

Unless otherwise noted, we follow the notation of Sakurai1 [6]. The Dirac gamma ma-
trices are Hermitian and satisfy {γμ, γν} = 2 δμν , with σμν = 1

2i
[γμ, γν ]. C = γ4γ2 is the

charge conjugation matrix, a, b, c are colour indices, u(x) is a u-quark field, and the
superscript T denotes transpose. The generalisation of this interpolating field for the
Δ+ composed of two u quarks and one d quark has the form

χΔ+

μ (x) =
1√
3
εabc
[
2
(
uTa(x)Cγμd

b(x)
)
uc(x) +

(
uTa(x)Cγμu

b(x)
)
dc(x)

]
. (8.2)

To access the proton we use the interpolating field,

χp+(x) = εabc
(
uTa(x)Cγ5d

b(x)
)
uc(x) . (8.3)

1Useful properties of the Dirac gamma matrices are provided in App. B.
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Figure 8.1: Diagrams illustrating the two topologically different insertions of the current
within the framework of lattice QCD.

The neutron interpolating field can be obtained via the exchange u↔ d. Other octet and
decuplet baryon interpolating fields can be obtained with the appropriate substitutions
of u(x), d(x) → u(x), d(x) or s(x) in Eqs. (8.2) and (8.3). The general form of a
baryon interpolating field is derived in App. C.

8.2.2 Correlation functions

Two-point correlation functions at the quark level are obtained through the standard
procedure of contracting pairs of quark fields. Considering the Δ+ correlation function
at the quark level and performing all possible quark field contractions gives the two-point
function as〈

T
(
χΔ+

μ (x)χΔ+

ν (0)
)〉

=
1

3
εabcεa

′b′c′
{

4Saa′

u γν CSTbb′

u C γμ S
cc′

d + 2Saa′

u tr
[
γν CSTbb′

u C γμ S
cc′

d

]
+ 4Saa′

u γν CSTbb′

d C γμ S
cc′

u + 2Saa′

u tr
[
γν CSTbb′

d C γμ S
cc′

u

]
+ 4Saa′

d γν CSTbb′

u C γμ S
cc′

u + 2Saa′

d tr
[
γν CSTbb′

u C γμ S
cc′

u

] }
,

(8.4)

where the quark-propagator Saa′

u = T
(
ua(x)ua′(0)

)
and similarly for the other quark

flavors. SU(3)flavor symmetry is clearly displayed in this equation. For the proton one
finds, 〈

T (χp(x)χp(0))
〉
= −εabcεa′b′c′

{
Saa′

u γ5 CSTbb′

d C γ5 S
cc′

u + Saa′

u tr
[
γ5 CSTbb′

d C γ5 S
cc′

u

] }
.

(8.5)

In determining the three point function, one encounters two topologically different
ways of performing the current insertion. Figure 8.1 displays skeleton diagrams for
these two insertions. These diagrams may be dressed with an arbitrary number of
gluons. Diagram (a) illustrates the connected insertion of the current to one of the
valence quarks of the baryon. Diagram (b) accounts for the alternative time ordering
where the current first produces a disconnected q q pair which in turn interacts with the
valence quarks of the baryon via gluons.

The number of terms in the three-point function is four times that in Eq. (8.4). The
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correlation function relevant for a Δ+ three-point function is

T
(
χΔ+

μ (x2) j
α(x1)χ

Δ+

ν (0)
)
=

1

3
εabcεa

′b′c′
{

4Ŝaa′

u γν CSTbb′

u C γμ S
cc′

d + 4Ŝaa′

u γν CSTbb′

d C γμ S
cc′

u + 4Ŝaa′

d γν CSTbb′

u C γμ S
cc′

u

+4Saa′

u γν CŜTbb′

u C γμ S
cc′

d + 4Saa′

d γν CŜTbb′

u C γμ S
cc′

u + 4Saa′

u γν CŜTbb′

d C γμ S
cc′

u

+4Saa′

u γν CSTbb′

d C γμ Ŝ
cc′

u + 4Saa′

d γν CSTbb′

u C γμ Ŝ
cc′

u + 4Saa′

u γν CSTbb′

u C γμ Ŝ
cc′

d

+2Ŝaa′

u tr
[
γν CSTbb′

u C γμ S
cc′

d

]
+ 2Ŝaa′

u tr
[
γν CSTbb′

d C γμ S
cc′

u

]
+ 2Ŝaa′

d tr
[
γν CSTbb′

u C γμ S
cc′

u

]
+2Saa′

u tr
[
γν CŜTbb′

u C γμ S
cc′

d

]
+ 2Saa′

d tr
[
γν CŜTbb′

u C γμ S
cc′

u

]
+ 2Saa′

u tr
[
γν CŜTbb′

d C γμ S
cc′

u

]
+2Saa′

u tr
[
γν CSTbb′

d C γμ Ŝ
cc′

u

]
+ 2Saa′

d tr
[
γν CSTbb′

u C γμ Ŝ
cc′

u

]
+ 2Saa′

u tr
[
γν CSTbb′

u C γμ Ŝ
cc′

d

]}
+
∑

q=u, d, s

eq
∑
i

tr
[
Sii
q (x1, x1) γμ

] 1
3
εabcεa

′b′c′
{

4Saa′

u γν CSTbb′

u C γμ S
cc′

d + 4Saa′

u γν CSTbb′

d C γμ S
cc′

u + 4Saa′

d γν CSTbb′

u C γμ vS
cc′

u

+2Saa′

u tr
[
γν CSTbb′

u C γμ S
cc′

d

]
+ 2Saa′

u tr
[
γν CSTbb′

d C γμ S
cc′

u

]
+ 2Saa′

d tr
[
γν CSTbb′

u C γμ S
cc′

u

]}
,

(8.6)

where

Ŝaa′

q (x2, x1, 0) = eq
∑
i

Sai
q (x2, x1) γα S

ia′

q (x1, 0) , (8.7)

denotes the connected insertion of the probing current to a quark of charge eq. Note
that here we have explicitly selected the electromagnetic current. However, the present
discussion may be generalised to any quark-field-based current operator bilinear in the
quark fields.

The latter term of Eq. (8.6) accounts for the disconnected quark loop contribution
depicted in Fig. 8.1b. The sum over the quarks running around the loop has been
restricted to the flavors relevant to the ground state baryon octet and decuplet. In the
SU(3)flavor limit the sum vanishes for the electromagnetic current. However, the heavier
strange quark mass allows for a nontrivial result. Due to the technical difficulties of
numerically estimating M−1 for the squared lattice volume of diagonal spatial indices,
these contributions have been omitted from lattice QCD calculations of electromagnetic
structure in the spirit of QχPT, and we will also do so here. For other observables such
as the scalar density or forward matrix elements of the axial vector current relevant to
the spin of the baryon, the “charges” running around the loop do not sum to zero. In
this case the second term of Eq. (8.6) can be just as significant as the connected term
[209, 210].

An examination of Eq. (8.6) reveals complete symmetry among the quark flavors in
the correlation function. For example, wherever a d quark appears in the correlator, a u
quark also appears in the same position in another term. An interesting consequence of
this is that the connected insertion of the electromagnetic current for Δ0 vanishes. All
electromagnetic properties of the Δ0 have their origin strictly in the disconnected loop
contribution. Physically, what this means is that the valence wave function for each of
the quarks in the Δ resonances are identical under charge symmetry. This is in contrast
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to the proton for which one finds (neglecting the disconnected quark loop insertion),〈
T (χp(x)χp(0))

〉
= −εabcεa′b′c′

{
Ŝaa′

u γ5 CSTbb′

d C γ5 S
cc′

u + Ŝaa′

u tr
[
γ5 CSTbb′

d C γ5 S
cc′

u

] }
Saa′

u γ5 CŜTbb′

d C γ5 S
cc′

u + Saa′

u tr
[
γ5 CŜTbb′

d C γ5 S
cc′

u

] }
Saa′

u γ5 CSTbb′

d C γ5 Ŝ
cc′

u + Saa′

u tr
[
γ5 CSTbb′

d C γ5 Ŝ
cc′

u

] }
.

(8.8)

Here we see that there the symmetry between different quark flavours appearing in the
correlation function is no longer present. Thus, the contribution from the u-quark, to
the connected insertion of the electromagnetic current, will differ to that of the d-quark
contribution.

8.2.3 Two-point Green functions

In this and the following subsection discussing correlation functions at the hadronic
level, the Dirac representation of the γ-matrices is used to facilitate calculations of the
γ-matrix algebra. It is then a simple task to account for the differences in γ-matrix and
metric definitions in reporting the final results using Sakurai’s notation.

The extraction of baryon masses and electromagnetic form factors proceeds through
the calculation of the ensemble average (denoted

〈 · · · 〉) of two and three-point Green
functions. The two-point function for octet baryons is defined as〈

GBB(t; �p; Γ)
〉
=
∑

x

e−i
p·
xΓβα
〈
Ω
∣∣ T (χα(x)χβ(0)

) ∣∣ Ω 〉 . (8.9)

Here Ω represents the QCD vacuum, Γ is a 4 × 4 matrix in Dirac space and α, β are
Dirac indices. At the hadronic level one proceeds by inserting a complete set of states∣∣ B, p, s

〉
and defining

〈
Ω
∣∣ χ(0) ∣∣ B, p, s

〉
= ZB(p)

√
M

Ep

u(p, s) , (8.10)

where ZB represents the coupling strength of χ(0) to the baryon B. Our use of smeared
interpolators makes this momentum dependent. Momentum is denoted by p, spin by s,
and u(p, s) is a Dirac spinor. Ep =

√
�p2 +M2 and Dirac indices have been suppressed.

Using the Dirac spin-sum, ∑
s

u(p, s)u(p, s) =
(γ · p+M)

2M
, (8.11)

and �p = (p, 0, 0), the large Euclidean time limit of the two point function takes the form

〈
GBB(t; �p,Γ)

〉
=

ZB(p)ZB(p)

2Ep

e−Ept tr [Γ(−iγ · p+M)] . (8.12)
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Here ZB(p) denotes the overlap associated with our smeared source. ZB(p) is associated
with the sink which need not have the same smearing. With the usual definitions for Γ,

Γj =
1

2

(
σj 0
0 0

)
, Γ4 =

1

2

(
I 0
0 0

)
, (8.13)

selecting Γ ≡ Γ4 in Eq. (8.12) allows one to extract the mass of an even parity octet
baryon.

For decuplet baryons the two-point function is defined as〈
GBB

στ (t; �p; Γ)
〉
=
∑

x

e−i
p·
xΓβα
〈
Ω
∣∣ T (χα

σ(x)χ
β
τ (0)
) ∣∣ Ω 〉 , (8.14)

where the subscripts σ, τ are the Lorentz indices of the spin-3/2 interpolating fields.
Once again we proceed by inserting a complete set of states,

〈
Ω
∣∣ χσ(0)

∣∣ B, p, s
〉
= ZB(p)

√
M

Ep

uσ(p, s) , (8.15)

where we now define uα(p, s) to be a spin-vector in the Rarita-Schwinger formalism. So,
this time using the Rarita-Schwinger spin sum,∑

s

uσ(p, s)uτ (p, s) = − γ · p+M

2M

{
gστ − 1

3
γσγτ − 2pσpτ

3M2
+

pσγτ − pτγσ
3M

}
,

≡ Λστ ,

(8.16)

the large Euclidean time limit of the two point function takes the form〈
GBB

στ (t; �p,Γ4)
〉
= ZB(p)ZB(p)

M

Ep

e−Ept tr [ Γ4 Λστ ] , (8.17)

where 〈
GBB

00 (t; �p,Γ4)
〉

= ZB(p)ZB(p)
2

3

|�p|2
M2

B

(
Ep +MB

2Ep

)
e−Ept, (8.18)

〈
GBB

11 (t; �p,Γ4)
〉

= ZB(p)ZB(p)
2

3

E2
p

M2
B

(
Ep +MB

2Ep

)
e−Ept, (8.19)

〈
GBB

22 (t; �p,Γ4)
〉

= ZB(p)ZB(p)
2

3

(
Ep +MB

2Ep

)
e−Ept, (8.20)

〈
GBB

33 (t; �p,Γ4)
〉

= ZB(p)ZB(p)
2

3

(
Ep +MB

2Ep

)
e−Ept. (8.21)

Equations (8.18) through (8.21) provide four correlation functions from which a de-
cuplet baryon mass may be extracted. All masses extracted from the different selections
of Lorentz indices agree within statistical uncertainties, and different indices may be
added together to reduce statistical fluctuations.

It should be noted that the spin-3/2 interpolating field also has overlap with spin-
1/2 baryons, however for the Δ baryons this poses no problem as these baryons are the
lowest lying baryons in the mass spectrum having the appropriate isospin and strangeness
quantum numbers.
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8.2.4 Three-point functions and multipole form factors

Here we begin with a brief overview of the results of Refs. [211] and [212], for octet and
decuplet baryons respectively, where the multipole form factors are defined in terms of
the current matrix elements. In a manner similar to that for the two-point function, the
three-point Green function for the spin-1/2 octet baryons is defined as〈

GBjμB(t2, t1; �p
′, �p; Γ)

〉
=
∑

x2, 
x1

e−i
p ′· 
x2e+i(
p ′−
p)· 
x1Γβα

× 〈 Ω ∣∣ T (χα(x2)j
μ(x1)χ

β(0)
) ∣∣ Ω 〉 .

(8.22)

For large Euclidean time separations, t2− t1 >> 1 and t1 >> 1, the three-point function
is dominated by the contribution from the ground state and becomes〈

GBjμB(t2, t1; �p
′, �p; Γ)

〉
=
∑
s,s′

e−Ep′(t2−t1)e−Ept1Γβα

× 〈 Ω ∣∣ χα
∣∣ p′, s′ 〉〈 p′, s′ ∣∣ jμ ∣∣ p, s 〉〈 p, s ∣∣ χβ

∣∣ Ω 〉 , (8.23)

The matrix element of the electromagnetic current has the general form,

〈
p′, s′

∣∣ jμ ∣∣ p, s 〉=√ M2

EpEp′
u(p′, s′)

(
F1(q

2)γμ − F2(q
2)σμν qν

2M

)
u(p, s) , (8.24)

where p and p′ (s and s′) denote the momentum (spin) of the initial and final states
respectively, q = p′ − p and u(p, s) denotes a Dirac spinor.

The time dependence of the three-point function may be eliminated through the use
of the two-point functions. Maintaining the lattice Ward identity, which guarantees the
lattice electric form factor reproduces the total charge of the baryon at q2 = 0, provides
an indispensable guide to the optimum ratio of Green functions. The preferred ratio of
two- and three-point Green functions is [206]

Rμ(t2, t1; �p
′, �p; Γ) =

(〈
GBjμB(t2, t1; �p

′, �p; Γ)
〉〈

GBjμB(t2, t1; �p, �p
′; Γ)
〉〈

GBB(t2; �p ′; Γ4)
〉〈

GBB(t2; �p; Γ4)
〉 )1/2

,(8.25)

�
(
Ep +M

2Ep

)1/2(
Ep′ +M

2Ep′

)1/2

R
μ
(�p ′, �p; Γ) , (8.26)

where we have defined the reduced ratio R
μ
(�p ′, �p; Γ). Note that in contrast to Refs. [205,

206, 213] which used,

Rμ(t2, t1; �p
′, �p; Γ) =

(〈
GBjμB(t2, t1; �p

′, �p; Γ)
〉〈

GBjμB(t2, t1; �−p, �−p ′; Γ)
〉〈

GBB(t2; �p ′; Γ4)
〉〈

GBB(t2; �−p; Γ4)
〉 )1/2

,

(8.27)
we prefer a symmetric momentum combination when forming the ratio of correlation
functions. The symmetric combination in Eq. (8.25) provides an exact cancellation of
the momentum-dependent ZB(p) factors, and results in smaller statistical errors2.

2However we note that after including the U∗ trick (discussed later), the statistical errors from both
approaches are exactly equal (see App. E).
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With the reduced ratio defined, the Sachs forms for the electromagnetic form factors,

GE(q2) = F1(q
2)− q2

(2M)2
F2(q

2) ,

GM(q2) = F1(q
2) + F2(q

2) ,

(8.28)

can be extracted by making appropriate choices for Γ. A straightforward calculation
reveals,

GE(q2) = R
4
(�q ′,�0; Γ4) ,

|εijkqi| GM(q2) = (Eq +M)R
k
(�q ′,�0; Γj) ,

|qk| GE(q2) = (Eq +M)R
k
(�q ′,�0; Γ4) .

(8.29)

For the decuplet baryons we proceed in much the same way. For large Euclidean
time separations the relevant three-point correlation function takes the form,〈

GBjμB
στ (t2, t1; �p

′, �p; Γ)
〉
=
∑
s,s′

e−Ep′(t2−t1)e−Ept1Γβα

× 〈 Ω ∣∣ χα
σ

∣∣ p′, s′ 〉〈 p′, s′ ∣∣ jμ ∣∣ p, s 〉〈 p, s ∣∣ χβ
τ

∣∣ Ω 〉 , (8.30)

where σ and τ label the Lorentz indices. The electromagnetic current matrix element
for spin-3/2 particles may be written as

〈
p′, s′

∣∣ jμ(0) ∣∣ p, s 〉=√ M2
B

EpEp′
uα(p

′, s′)Oαμβuβ(p, s) (8.31)

where uα(p, s) is a Rarita-Schwinger spin-vector. The following Lorentz covariant form
for the tensor

Oαμβ = −gαβ
{
a1γ

μ +
a2

2MB

P μ

}
− qαqβ

(2MB)2

{
c1γ

μ +
c2

2MB

P μ

}
, (8.32)

where P = p′ + p, q = p′ − p and MB is the mass of the baryon, satisfies the standard
requirements of invariance under time reversal, parity, G-parity and gauge transforma-
tions. The parameters a1, a2, c1 and c2 are independent covariant vertex functions.

The multipole form factors are defined in terms of the covariant vertex functions
through the following Lorentz invariant expressions [212],

GE0(q
2) = (1 +

2

3
τ) {a1 + (1 + τ)a2} − 1

3
τ(1 + τ) {c1 + (1 + τ)c2} , (8.33)

GE2(q
2) = {a1 + (1 + τ)a2} − 1

2
(1 + τ) {c1 + (1 + τ)c2} , (8.34)

GM1(q
2) = (1 +

4

5
τ)a1 − 2

5
τ(1 + τ)c1 , (8.35)

GM3(q
2) = a1 − 1

2
(1 + τ)c1 , (8.36)
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with τ = −q2/(2MB)
2 (≥ 0). The multipole form factors GE0, GE2, GM1 and GM3 are

referred to as the charge (E0), electric-quadrupole (E2), magnetic-dipole (M1) and
magnetic-octupole (M3) multipole form factors.

Similar to the octet case, the preferred ratio of two- and three-point Green functions
for decuplet baryons is,

Rσ
μ
τ (t2, t1; �p

′, �p; Γ) =

(〈
GBjμB

στ (t2, t1; �p
′, �p; Γ)

〉〈
GBjμB

στ (t2, t1; �p, �p
′; Γ)
〉〈

GBB
στ (t2; �p ′; Γ4)

〉〈
GBB

στ (t2; �p; Γ4)
〉 )1/2

�
(
Ep +M

2Ep

)1/2(
Ep′ +M

2Ep′

)1/2

Rσ
μ
τ (�p

′, �p; Γ) .

(8.37)

There is no implied sum over σ and τ in Eq. (8.37). Also, the square root in Eq. (8.37)
spoils the covariant/contraviant nature of Rσ

μ
τ and no meaning should be attached to

the location of the indices. We still prefer this notation due to the close connection with
GBjμB

στ .

After performing a slightly more complex calculation, using the Rarita-Schwinger
spin sum of Eq. (8.16), one finds that the multipole form factors may be isolated and
extracted from the following combinations of Rσ

μ
τ (�p

′, �p; Γ)3

GE0(q
2) =

1

3

(
R1

4
1(�q1, 0; Γ4) +R2

4
2(�q1, 0; Γ4) +R3

4
3(�q1, 0; Γ4)

)
, (8.38)

GE2(q
2) = 2

M(E +M)

|�q1|2
(
R1

4
1(�q1, 0; Γ4) +R2

4
2(�q1, 0; Γ4)− 2R3

4
3(�q1, 0; Γ4)

)
, (8.39)

GM1(q
2) =

3

5

E +M

|�q1|
(
R1

3
1(�q1, 0; Γ2) +R2

3
2(�q1, 0; Γ2) +R3

3
3(�q1, 0; Γ2)

)
, (8.40)

GM3(q
2) = 4

M(E +M)2

|�q1|3
(
R1

3
1(�q1, 0; Γ2) +R2

3
2(�q1, 0; Γ2)− 3

2
R3

3
3(�q1, 0; Γ2)

)
,

(8.41)

where �q1 = (q, 0, 0). We note that smaller statistical uncertainties may be obtained for
GE2 by using the symmetry

R2
4
2(�q1, 0; Γ4) = R3

4
3(�q1, 0; Γ4) , (8.42)

in Eq. (8.39). Hence, one typically defines an average R
4

avg as

R
4

avg(�q1, 0; Γ4) =
1

2

[
R2

4
2(�q1, 0; Γ4) +R3

4
3(�q1, 0; Γ4)

]
. (8.43)

With this definition the expression for GE2(q
2) most commonly used in simulations is

GE2(q
2) = 2

M(E +M)

|�q1|2
(
R1

4
1(�q1, 0; Γ4)− R

4

avg(�q1, 0; Γ4)
)
. (8.44)

3Reduce code for performing this calculation is provided in App. F
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8.2.5 Quark sector contributions

The baryon form factors are calculated on a quark-sector by quark-sector basis with each
sector normalised to the contribution of a single quark with unit charge. For example,
the d-quark sector contribution to the Δ+ three-point correlation function is given by

T
(
χΔ+

μ (x2) j
α(x1)χ

Δ+

ν (0)
)
d
=

1

3
εabcεa

′b′c′
{

+ 4Ŝaa′

d γν CSTbb′

u C γμ S
cc′

u + 2Ŝaa′

d tr
[
γν CSTbb′

u C γμ S
cc′

u

]
+ 4Saa′

u γν CŜTbb′

d C γμ S
cc′

u + 2Saa′

u tr
[
γν CŜTbb′

d C γμ S
cc′

u

]
+ 4Saa′

u γν CSTbb′

u C γμ Ŝ
cc′

d + 2Saa′

u tr
[
γν CSTbb′

u C γμ Ŝ
cc′

d

]}
.

(8.45)

Hence to calculate the corresponding baryon property, each quark sector contribution
should be multiplied by the appropriate charge and quark number. Under such a scheme
for a generic form factor f , the Δ+ form factor, fΔ+ , is obtained from the u- and d-quark
sectors normalised for a single quark of unit charge via

fΔ+ = 2× 2

3
× fu + 1×

(
−1

3

)
× fd . (8.46)

8.2.6 Charge radii and magnetic moments

We now discuss how the charge radii and magnetic moments of the octet and decuplet
baryons can be extracted from the calculated form factors. In this section it should be
understood that GE, (GM) denotes both the octet electric (magnetic) form factor, and
the decuplet GE0, (GM1) form factor.

It is well known that the experimental electric (and magnetic) form factor of the
proton is well described by a dipole ansatz at small Q2

GE(Q2) =
GE(0)

(1 +Q2/m2)2
; Q2 ≥ 0 . (8.47)

This behaviour has also been observed in recent lattice calculations [214]. Using this
observation, together with the standard small Q2 expansion of the Fourier transform of
a spherical charge distribution,〈

r2E
〉
= −6 d

dQ2
GE(Q2)

∣∣
Q2=0

, (8.48)

we arrive at an expression which allows us to calculate the electric charge radius of a
baryon using our two available values of the Sachs electric form factor (GE(Q2

min), GE(0)),
namely

〈r2E〉
GE(0) =

12

Q2

(√
GE(0)
GE(Q2)

− 1

)
. (8.49)

However to calculate the charge radii of the neutral baryons, the above equation cannot
be used, due to the fact that in those cases GE = 0. For the neutral baryons it becomes
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a simple matter to construct the charge radii by first calculating the charge radii for
each quark sector. These quark sectors are then combined using the appropriate charge
and quark number factors as described in Sec. 8.2.5 to obtain the total baryon charge
radii. Indeed all baryon charge radii, including the charged states, are calculated in this
manner.

The magnetic moment is provided by the value of the magnetic form factor at zero
momentum transfer, Q2 = 0,

μ = GM(0)
e

2MB

, (8.50)

in units of the natural magneton, where MB is the mass of the baryon. Since the
magnetic form factors must be calculated at a finite value of momentum transfer, Q2, the
magnetic moment must be inferred from our results, GM(Q2), obtained at the minimum
non-vanishing momentum transfer available on our periodic lattice. We choose to scale
our results from GM(Q2) to GM(0). We do this by assuming that the Q2 dependence of
the electric and magnetic form factors are similar at the quark masses simulated herein.

This is supported by experiment where the proton ratio GM (Q2)
μGE(Q2)

� 1 for values of Q2

similar to that probed here. In this case

GM(0) =
GM(Q2)

GE(Q2)
GE(0) . (8.51)

We apply Eq. (8.51) to the individual quark sectors for both the proton and Δ+ baryons.
Baryon properties can then be reconstructed using Eq. (8.46).

8.3 Lattice techniques

The three-point functions discussed in Sec. 8.2 are constructed using the sequential
source technique outlined in Refs. [206, 211, 215]. For the quenched simulation we
report our earlier results of Ref. [205]. The gauge fields were generated with the O(a2)
mean-field improved Lüscher-Weisz plaquette plus rectangle gauge action [80] using the
plaquette measure for the mean link. The simulations were performed on a 203 × 40
lattice with a lattice spacing of 0.128 fm as determined by the Sommer scale [216]
r0 = 0.50 fm. This provides a spatial length of 2.56 fm, enabling safe simulations at
the lowest pion mass of 300 MeV. The large volume lattice also ensures a good density
of low-lying momenta which are key to giving rise to chiral non-analytic behaviour in
the observables simulated on the lattice [217, 218]. A high-statistics analysis using a
large sample of 400 configurations was used for the lightest eight quark masses. We
also considered a subset of 200 configurations for the three heaviest quark masses in
order to explore the approach to the heavy-quark regime, however these results won’t
be reproduced here.

For our present calculation we use dynamical gauge fields provided by the PACS-CS
collaboration [21] and obtained using the International Lattice Data Grid (ILDG) [219].
The ensembles consist of 323 × 64 lattices with a continuum lattice spacing of a =
0.0907(3) fm. The gauge fields were generated using a NP-clover improved-fermion
action with CSW = 1.715 and the Iwasaki gauge action [220].
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We consider two values of the pion mass, mπ = 296, and 701 MeV. This allows
us to both investigate the expected chiral curvature in the light mass regime, and the
prediction from the constituent quark model, which should hold at heavy quark masses.
The Sommer scale, with r0 = 0.50 fm, gives an estimate of a = 0.095(1), and 0.102(1) fm
for the configurations at the light and heavy pion masses respectively. These compare
favourably with the lattice spacings from the Lüscher-Weisz gauge configurations.

For the original Lüscher-Weisz configurations we used a fat-link irrelevant clover
(FLIC) Dirac operator [27] which provided O(a) improvement [28]. For the present
calculation we prefer to match the fermion action used in creating the gauge fields and
use a NP-clover Dirac operator with CSW = 1.715, such that we have O(a) improvement.
For the vector current, we use an O(a)-improved conserved vector current [213]. We use
fixed boundary conditions and consider a Gaussian smeared source [221] at t0 = 16, with
smearing parameter [222] α = 0.7, and 50 sweeps of smearing. The current insertion is
centred at t1 = 23.

In order to improve systematics we use the U∗ trick [223], which is discussed in
App. D. The error analysis of the correlation function ratios is performed via a third-
order, single-elimination jackknife, with the χ2 per degree of freedom (χ2

dof) obtained
via covariance matrix fits. We perform a series of fits through the ratios after the
current insertion at t1. By examining the χ2

dof we are able to establish a valid window
through which we may fit in order to extract our observables. In some instances we
select fits to ensure that fit windows agree between different baryon. We can therefore
be confident that any differences in the results are a result of the different baryons
under consideration. The values of the static quantities quoted in this paper on a per
quark-sector basis correspond to values for single quarks of unit charge.

The following calculations are performed in the lab frame �p = 0, �p ′ = �q = |�q| x̂ at
|�q|a = 2π/Lx with Lx = 20 for the quenched ensemble and Lx = 32 for the dynamical
ensemble. Although the values of q2 differ, our focus is on a reconstruction of the
magnetic moment at q2 = 0. Where a spatial direction of the electromagnetic current is
required, it is chosen to be the z-direction.

Because lattice momenta are restricted to discrete values, the decay Δ→ π N cannot
occur due to energy conservation if the Δ is initially stationary. On the light dynamical
ensemble, the stationary Δ has energy EΔ = mΔ ∼ 1.45 GeV. To decay into a nucleon
and pion moving in opposite directions requires at least EN + Eπ =

√
m2

N + |�q|2 +√
m2

π + |�q|2 ∼ 1.69 GeV. Stationary Δ particles are therefore stable on our lattice. If we
consider the case where a moving Δ decays into a moving proton and a stationary pion,
then we find that the initial energy EΔ ∼ 1.50 GeV, and the final energy EN +mπ ∼
1.50 GeV. Because the Δ and π N states have degenerate energies one would therefore
expect that a mixed Δ, π N state will exist on the lattice. In this case the usual technique
of evolving through Euclidean time may not isolate the Δ ground state. However, we
use three quark interpolating fields to excite and annihilate the Δ from the vacuum. We
therefore expect that the overlap with the five quark π N state to be small, and for the
majority of the spectral strength to be provided by contributions from the Δ. With this
assumption we proceed in the usual manner.

We note that the scales for the NP-clover dynamical and Lüscher-Weisz quenched
ensembles differ. In order to remove any ambiguity in comparing the results it is therefore
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beneficial to consider ratios of lattice quantities. Fortunately, this is exactly what we
wish to do. As we are working in the scaling regime, any differences resulting from the
different lattice spacings should therefore be largely eliminated in our results.

8.4 Expectations

In the simple constituent quark model the magnetic moments of the proton and Δ+ can
be expressed as (see e.g. Ref. [224]),

μp =
4

3
μu − 1

3
μd ,

μΔ+ = 2μu + μd ,
(8.52)

where μu,d represent the intrinsic magnetic moments of the constituent u, d quarks. If
we assume that the constituent u, d quark masses are degenerate then this implies that,

μu =
2

3

e �

2mu c

= − 1

2

(
−1

3

e �

2md c

)
μu = − 1

2
μd .

(8.53)

If we consider the ratio of the proton magnetic moment over the Δ+ magnetic moment,

μp

μΔ+

=
4/3μu − 1/3μd

2μu + μd

=
3/2μu

3/2μu

μp

μΔ+

= 1 ,

(8.54)

we see that in this simple model it is 1. However, this model doesn’t take into account
explicit meson cloud contributions to the magnetic moments. Therefore, one would only
expect this result to hold at unphysically large quark (i.e. pion) masses.

The “Access” quark model provides a formalism for extrapolating from the heavy
quark region into the chiral regime [225]. The model uses both leading and also the
next-to-leading non-analytic (NLNA) structure of chiral perturbation theory (χPT) in
the extrapolation function. In Fig. 8.2 we reproduce a plot from Ref. [225] showing the
extrapolation of the proton and Δ+ magnetic moments. At heavier masses the moments
are equal as discussed above. However, as the chiral regime is approached the proton
magnetic moment is slightly larger than that for the Δ+ due to differences in the chiral
non-analytic behaviour.

A key difference is associated with the Δ→ Nπ dressing. Curvature associated with
this non-analytic behaviour appears at larger pion masses near the N -Δ mass splitting,
mπ ∼MΔ−MN . As described below, quenched-QCD decay-channel contributions come
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Figure 8.2: An extrapolation of the proton and Δ+ magnetic moments in nuclear mag-
netons. The extrapolation used the “Access” quark model and included next-to-leading
non-analytic terms. Figure reproduced from Ref. [225].

Figure 8.3: Quark-flow diagrams for the meson-cloud contributions to the Δ++ in full
QCD.
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with a sign opposite to that of full QCD. This artifact holds tremendous promise for
revealing unmistakable signatures of the quenched meson cloud.

The change in sign for the decay-channel contributions is easily understood through
the consideration of the quark flow diagrams in Fig. 8.3, illustrating the meson-cloud
contributions to the Δ++ resonance in full QCD. Quark flow diagram (a) corresponds to
the hadronic process described in the top left diagram of Fig. 8.3. Since QCD is flavor-
blind, the process illustrated in diagram (b) is equivalent to diagram (a) provided the
masses of the u and d quarks are taken to be equal. On its own, diagram (b) describes
the decay of the Δ++ to a doubly-charged uuu “proton,” which we denote p++. Of
course, such states do not exist in full QCD and diagram (c) provides a contribution
which is exactly equal but opposite in sign to diagram (b) when the intermediate state
is a uuu proton. Upon quenching the theory, both diagrams (a) and (b) are eliminated,
leaving only diagram (c). Hence the physics of the Δ → Nπ decay is present in the
quenched approximation [226] but its contribution has the wrong sign.

We therefore expect that this calculation will expand upon the results of earlier chap-
ters, by revealing the physical differences introduced by the inclusion of the dynamical
sea degrees of freedom. In the quenched approximation we expect the μΔ+/μp ratio to
show significant curvature at lighter quark masses. For the dynamical simulation we
still expect the ratio to remain much closer to 1, as illustrated in Fig. 8.2.

8.5 Quenched results

We now provide a summary of our earlier results using the Lüscher-Weisz gauge config-
urations. We focus primarily on the Δ baryon, however extensive results for the entire
baryon decuplet are provided in Ref. [205]. Figures showing sample fits of the effec-
tive mass and form factor correlation functions were also provided, and so won’t be
repeated here. For the proton we include results from Ref. [213] which used the same
Lüscher-Weisz gauge configurations.

Figure 8.4 is a plot of the proton and Δ baryon masses from the quenched calcula-
tions. The mass of the Δ baryon begins to show a small upward chiral curvature as the
m2

π becomes lighter. This behaviour, anticipated in χEFT, has already been discussed
in Refs. [111, 227, 228]. The numerical values of the masses are available in the relevant
references.

The quark sector contributions to the electric form factor of the proton is shown
in Fig. 8.5 and for the Δ in Fig. 8.6. Calculations on the lattice are performed using
degenerate up and down quark masses. One consequence of this approximation is that
the up and down quark sector contributions to the three-point correlation function of the
Δ baryon (normalised to the contribution of a single quark) are exactly equal. All form
factors for the Δ+ can therefore be calculated using fΔ+ = 2× 2

3
×fu+1× −1

3
×fd = fu,d.

Similarly, the electromagnetic form factors for the Δ0 are all exactly zero and we have
fΔ++ = 2 fΔ+ , and fΔ− = −fΔ+ .

Note that at the light quark masses, we fit the change in the form factor correlation
function from one quark mass to the next and add this to the previous result at the
heavier quark mass. This approach provides significant cancellation of correlated sys-
tematic errors and makes the selection of the fit regime transparent. Greater detail is
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Figure 8.4: Masses of the proton and Δ baryon as a function of the squared pion mass
from the quenched calculations [205, 213].

Figure 8.5: Quark sector contributions to
the proton GE electric form factor from the
quenched calculation. The values for the
d quark are slightly offset for clarity.

Figure 8.6: Quark sector contributions to
the Δ+ GE0 electric form factor. The val-
ues for the d quark are slightly offset for
clarity.
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Figure 8.7: Quark sector contributions to
the proton GM magnetic form factor from
the quenched calculation.

Figure 8.8: Quark sector contributions to
the Δ+ GM1 magnetic form factor. The
values for the d quark are slightly offset
for clarity.

Figure 8.9: The electric charge radii of the
proton and Δ+ baryon from the quenched
calculation.

Figure 8.10: The magnetic moment of the
Δ+ baryon from the quenched calculation
compared with the magnetic moment of
the proton.

provided in Refs. [205, 213].
The quark sector contributions to the magnetic form factors GM and GM1 for the

proton and Δ are shown in Figs. 8.7 and 8.8 respectively. Here we report results in
units of the nuclear magneton, e/(2mN) by multiplying the lattice results by the ratio
mN/mp,Δ. We note the beginning of chiral curvature at the lightest pion mass in Fig. 8.8.

8.5.1 Charge radii and magnetic moments

The charge radius and magnetic moment are calculated from the electromagnetic form
factors using the techniques described in Sec. 8.2.6. The charge radii of the proton and
Δ+, as a function of the pion mass, are plotted in Fig. 8.9, and the magnetic moment is
shown in Fig. 8.10.

The differences in the magnetic moments of the proton and Δ+ seen in Fig. 8.10 are
particularly interesting. In Fig. 8.11 we show the ratio μΔ+/μp. As already discussed,
the physics of the Δ→ Nπ decay comes with the wrong sign in the quenched simulation.
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Figure 8.11: The ratio μΔ+/μp for the quenched calculation. There is a strong negative
chiral curvature at light quark masses.

Figure 8.12: Effective mass plots for the proton (left) and Δ+ (right) baryons at mπ =
296 MeV as a function of Euclidean time. χ2

dof are given in square brackets next to the
fit result.

This leads to the strong negative chiral curvature seen in Fig. 8.11. This is where we
will focus our attention for the dynamical calculation.

8.6 Dynamical results

We now present our results for the electromagnetic form factors of the proton and Δ+ in
dynamical QCD. Focusing on the μΔ+/μp ratio, we expect that the chiral curvature seen
in Fig. 8.11 will be suppressed following the inclusion of dynamical sea quarks, and that
the ratio will remain much closer to 1. In the following we refer to the two dynamical
ensembles as the “light” and “heavy” ensembles for the configurations with pseudoscalar
masses mπ = 296 and 701 MeV respectively.

The effective mass plots for the proton and Δ+ masses are shown in Figs. 8.12
and 8.13 for the light and heavy ensembles respectively. For the light ensemble we find
that mp = 1.15(3) GeV, and mΔ+ = 1.45(5) GeV. For the heavy ensemble we find that
mp = 1.43(2) GeV, and mΔ+ = 1.68(3) GeV.

The fit results for the electric and magnetic form factors at the light mass of mπ =
296 MeV are shown in Figs. 8.14 and 8.15, along with the numerical values and χ2

dof .



126 Chapter 8 Magnetic moments in quenched and dynamical QCD

Figure 8.13: Effective mass plots for the proton (left) and Δ+ (right) baryons at mπ =
701 MeV as a function of Euclidean time. χ2

dof are given in square brackets next to the
fit result.

Figures 8.16 and 8.17 show the fit results at the heavier mass of mπ = 701 MeV.

At the light mass, we see that for each form factor a clear plateau appears soon after
the current insertion at t1 = 23. In contrast to this, the heavier pion mass displays
a systematic drift in both the electric and magnetic correlation functions. In order
to obtain a reasonable χ2

dof for each fit, this drifting forces one to select fits at larger
Euclidean times. However, this means that the fits are taken from the tails of the
correlation functions, where it is well known that the central values do not fairly represent
the true ensemble average. For example, using the fits shown in Figs. 8.16 and 8.17,
one obtains a value for the magnetic moment of the Δ+ of 2.80(28) μN , which is far
higher than the quenched result of 1.70(7) μN and comes with a much larger error.
Similarly, for the proton one finds that μp = 2.08(13) μN in the dynamical case, which
also does not agree with the quenched result, μp = 1.68(3) μN . At this heavy quark
mass, one expects only small differences between quenched and full QCD. Certainly
these differences should be smaller than those observed at light quark masses. These
large discrepancies indicate that the fits seen in Figs. 8.16 and 8.17 are plagued by
uncertainties and do not accurately represent the ensemble average.

We therefore perform a self consistent analysis between the light and heavy dynam-
ical ensembles, where fits at the heavy pion mass are selected such that the Euclidean
time scales match those at the lighter pion mass. In this way we ensure that any phe-
nomenological differences in the final values are a direct result of the different quark
masses used, and are not due to systematic errors introduced by fitting the tails of
correlation functions.

Figure 8.18 shows the final result for the proton charge radius at both mπ = 296 and
701 MeV, compared with the previous quenched results. The Δ+ charge radius is shown
in Fig. 8.19. In both cases we see little change from the quenched results.

The magnetic moments of the proton and Δ+ are shown in Figs. 8.20 and 8.21. The
Δ+ shows the greatest deviation from the quenched result. Since the two calculations
are performed with different lattice spacings, we focus on the μΔ+/μp ratio where scale
dependence is largely eliminated.

For the magnetic moment ratio we find that μΔ+/μp = 0.92(9) for the light ensemble
and μΔ+/μp = 1.07(3) for the heavy. A comparison with the quenched magnetic moment
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Figure 8.14: Contributions to the proton (top) and Δ+ (bottom) electric form factors
for the doubly represented u (left) and d (right) quark sectors at mπ = 296 MeV as a
function of Euclidean time. χ2

dof are given in square brackets next to the fit result.

Figure 8.15: Contributions to the proton (top) and Δ+ (bottom) magnetic form factors
for the doubly represented u (left) and d (right) quark sectors at mπ = 296 MeV as a
function of Euclidean time. χ2

dof are given in square brackets next to the fit result.
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Figure 8.16: Contributions to the proton (top) and Δ+ (bottom) electric form factors
for the doubly represented u (left) and d (right) quark sectors at mπ = 701 MeV as a
function of Euclidean time. χ2

dof are given in square brackets next to the fit result.

Figure 8.17: Contributions to the proton (top) and Δ+ (bottom) magnetic form factors
for the doubly represented u (left) and d (right) quark sectors at mπ = 701 MeV as a
function of Euclidean time. χ2

dof are given in square brackets next to the fit result.
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Figure 8.18: The charge radii of the pro-
ton calculated in dynamical QCD (full
symbols) compared with the previous
quenched results (open symbols).

Figure 8.19: The charge radii of the
Δ+ calculated in dynamical QCD (full
symbols) compared with the previous
quenched results (open symbols).

Figure 8.20: The magnetic moment of
the proton calculated in dynamical QCD
(full symbols) compared with the previous
quenched results (open symbols).

Figure 8.21: The magnetic moment of
the Δ+ calculated in dynamical QCD
(full symbols) compared with the previous
quenched results (open symbols).

Proton Δ+

mπ (MeV) 296 701 296 701
GE (e) 0.776(26) 0.839(5) 0.807(41) 0.837(7)
GM (μN) 1.61(10) 1.45(3) 1.55(12) 1.54(5)
〈r2E〉 (fm2) 0.449(64) 0.318(11) 0.374(93) 0.322(17)
μ (μN) 2.08(12) 1.72(4) 1.92(16) 1.83(6)
μΔ+/μp 0.92(9) 1.07(3) 0.92(9) 1.07(3)

Table 8.1: Collected final results for the proton and Δ+ electromagnetic form factors,
charge radii and magnetic moments from the dynamical calculation.
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Figure 8.22: A comparison of the magnetic moment ratio μΔ+/μp in dynamical QCD
(full symbols) with quenched QCD (open symbols).

ratio is provided in Fig. 8.22. Here we see the expected suppression of the chiral curvature
in the dynamical case. At the light pion mass the ratio agrees with 1 within errors, and
supports the model of Ref. [225]. The central value suggests that the Δ+ magnetic
moment is still slightly smaller than the proton’s at this mass. At the heavier pion
mass the ratio is just above 1, agreeing with earlier Lattice QCD calculations [205, 206,
211, 213]. Quark Model considerations anticipate μΔ+/μp > 1, as hyperfine repulsion
between constituent quarks leads to smaller effective masses and thus larger intrinsic
moments in the Δ+ [206]. The final numerical values from our calculation are listed in
Table 8.1.

8.7 Summary

We have performed a calculation of the proton and Δ+ charge radii and magnetic mo-
ments using dynamical NP-clover gauge fields. The results were compared with earlier
calculations that used the quenched approximation [205, 213].

We demonstrated how the suppression of sea-quark loop contributions in quenched
QCD reduces the Δ+ magnetic moment considerably, and showed that in dynamical
QCD the μΔ+/μp ratio remains close to 1, as anticipated from models incorporating the
non-analytic effects of χEFT. At large pion masses, the Δ+ moment is enhanced relative
to the proton moment in accord with earlier lattice QCD calculations [205, 206, 211, 213]
and model expectations [206]. As the chiral regime is approached, the non-analytic
behaviour of the quenched meson cloud starts to be revealed, enhancing the proton
relative to the Δ+, in accord with the expectations of QχPT.

While there are still more statistics to be gathered, this calculation represents an
important first look into the effects of chiral dressings on the electromagnetic properties
of baryons.
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Conclusions and outlook

This work has presented an extensive study on the differences between quenched and
dynamical QCD vacuum structure. In order to facilitate this, a new over-improved
stout-link smearing algorithm was formulated. As far as we aware, this is the first time
link paths beyond the staple have been included in the stout-link smearing algorithm.
This work highlights the importance of using improvement for topological studies of the
QCD vacuum. The over-improved stout-link smearing algorithm is currently the most
topologically stable smearing algorithm available in Lattice QCD.

The utility of over-improved stout-link smearing was demonstrated in both Chap-
ters 3 and 6. The comparison with the overlap topological charge q(x) revealed a strong
correlation between topological objects in the QCD vacuum, regardless of the method
used to extract q(x). This chapter demonstrated how to tune the number of smearing
sweeps nsw against an UV cutoff λcut in the overlap operator, providing strong support
for the use of smearing in studies of QCD vacuum structure. It would certainly be
interesting to increase the statistics of this study to see if the relationship between λcut

and nsw can be strengthened. In this chapter we also observed an intimate relationship
between the location of Dirac zero- (and near zero) modes, and the gluonic topological
charge density.

Chapter 4 continued the comparison of smearing to the overlap operator by consid-
ering variations in the negative Wilson-mass in the overlap Dirac input kernel. Here we
saw how the freedom usually associated with smearing algorithms, through the variable
number of applied sweeps, also exists in the overlap operator through the Wilson-mass
regulator parameter. This should be of interest both to Lattice researchers studying the
QCD vacuum and to advocates of fat-link fermion actions. Whilst the effects may be
small, it should be investigated further by anyone intending to use the overlap operator
to make accurate physical predictions.

The use of smearing as a preconditioner for Maximal Centre Gauge fixing in Chapter 6
enabled a study of centre vortices in QCD. Here, in contrast to SU(2), we showed that
MCG gauge fixing is not sufficient to explain the essential non-perturbative features of
the QCD vacuum.

The over-improved stout-link smearing algorithm was employed in Chapter 5 in order
to probe the structure of the dynamical QCD vacuum. At short distances we observed
the proposed, rapidly oscillating sheet-like structure of the vacuum. On longer scales,
however, we also saw the more traditional instanton dominated picture of the vacuum
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emerge. Importantly, we discussed how these two pictures can be considered complemen-
tary, and are not self-exclusive. Finally, when structure within the sheets is rendered,
one discovers a speckled sandy structure in the topological charge density of the QCD
vacuum.

The way in which this structure is affected by dynamical quarks was also studied.
This analysis showed an increase in non-trivial topological charge fluctuations in the
dynamical vacuum, leading to “rougher” gauge fields. Perhaps surprisingly, there was
also an increase in the observed number of instanton-like objects. The reasons for this
were discussed; that the increased density of instantons leads to fewer near zeromodes,
which are suppressed by the inclusion of the fermion determinant in full QCD. An
obvious extension here would be to consider the use of different lattice fermion actions.
Unfortunately, at the current time differences in the lattice spacings and quark masses of
the publicly available lattice ensembles prevent a thorough comparison. However, given
time this will change, and this question should then be revisited.

Chapter 7 shifted the focus onto the quark propagator and examined the effects of
smearing on the wave renormalisation and mass functions. This is currently of relevance
given the increased use of fat-link fermion actions in modern simulations [106]. Here
smearing was shown to have a strong effect on heavy quarks, but less of an effect at
lighter masses. Nevertheless, at the lightest quark mass, a suppression of dynamical
mass generation was observed, which may be of concern for fat-link actions. Clearly this
should be investigated further, should fat-link actions become more common.

Finally, in Chapter 8 we returned to the issue of dynamical vacuum structure by
investigating the effects of sea-quark loops on the electromagnetic properties of baryons.
Focusing on the proton and Δ+, we performed a dynamical calculation of the particles’
charge radii and magnetic moments at a light pion mass of 296 MeV and a heavy
mass of 701 MeV. Focusing on the μΔ+/μp ratio, we showed how near the chiral limit,
the addition of sea quark loops leads to a suppression of the negative chiral curvature
observed in previous quenched results. This work could be extended to an analysis of the
Ω− in which chiral effects are also expected to be important and accurate experimental
results are already available.
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