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Abstract

Lattice quantum chromodynamics is to date the only way to solve QCD non-
perturbatively from first-principles. Although it has enjoyed much success
there are still many challenges involved in matching calculated observables
with their experimental values. In this thesis we use a chiral model to study
the finite volume effects on the axial form factor in order to understand the
discrepancy between lattice and experimental results. We also examine the
possibility of extra corrections arising from a spin-flip arising through the
tensor interaction between neighbouring nucleons on the periodic lattice.
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Chapter 1

Introduction

Understanding the nature of matter and its most fundamental constituents
has long been an important part of human endeavour. In today’s world there
is an ever increasing body of work devoted to this topic. In the realm of sub-
atomic physics, in particular what goes on inside protons and neutrons, the
theory which to date best explains what goes on is quantum chromodynamics
(QCD).

QCD makes many predictions and these predictions on the whole agree
exceptionally well with experiment. Unfortunately, due to the nature of the
theory, there are some aspects which cannot be solved using the conventional
perturbative techniques. In this low energy region lattice QCD must be used
instead.

Lattice QCD is an excellent tool for studying QCD from first princi-
ples; however, there are some areas where it is inconsistent with experiment.
This thesis will look specifically at the disparity between the lattice and ex-
perimental values of the axial form factor - an object which gives information
on the structure of the nucleon.

In order for this issue to be clear, a good understanding of the methods
lattice QCD uses and how these relate to the continuum case needs to be
developed. The second chapter seeks to do this, showing how lattice QCD
is obtained from the continuum theory and how the results obtained can be
compared with experimental values. The particular case of finding a mass
serves as an example. This chapter also includes the details on how the axial
form factor was found on the lattice. As well as that there is a discussion on
the related observable, the axial radius.

A chiral bag model and its axial form factor will be studied in order to
give insight into this problem. It must be pointed out that while this rather
basic model fails to replicate precisely the state of affairs on the lattice, the
results, as we show, prove remarkably similar.
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In chapter 3 we introduce a number of models in order to place this
particular chiral model in its correct setting. Chiral symmetry is an im-
portant concept in all these models and therefore the chapter begins with
a discussion on this symmetry. How it is present and how it is broken in
nature are also included in this section. The first model reviewed is the MIT
bag model, followed immediately by the sigma model. The successes and
failures of both are examined before the model that will actually be used -
the hedgehog - is described. This chapter is completed with a model known
as the cloudy bag model.

Most of the actual calculations that needed to be performed are shown
in chapter 4. There is a significant and important amount of background
work which needs to be explained and this is done in the first section. The
next two sections show the calculations involving the axial form factor and
axial radius respectively. The relationship between the two observables are
also shown. Results are shown in the chapter that follows, as well as a
discussion on what they mean and what can be drawn from them.

In order to include results which more closely resemble the lattice sit-
uation, the penultimate chapter includes a (relatively) quick calculation in-
volving the cloudy bag model. The last chapter presents the conclusions of
our discussion.



Chapter 2

Lattice QCD

2.1 Overview

It has been known now for a long time that neutrons and protons are not
the most fundamental particles of matter but that they are made up of even
smaller particles known as quarks and gluons. The interactions between these
particles constitute the strong force which binds the nucleus together. Quan-
tum chromodynamics is the gauge theory which governs these interactions
[You04]. It makes up part of the Standard Model - the quantum field theory
which governs all forces present in Nature except gravity.

One feature unique to QCD is asymptotic freedom: when quarks are
close together the force between them is weak - they appear to behave like
free particles. However, when they start to be pulled apart the force increases
dramatically. A result of this asymptotic freedom is that while we know much
about the high energy spectrum of QCD, where perturbative methods work
well, the low energy spectrum (i.e. at longer distances) has proven to be
much more resistive to solution. In this region, the strong coupling constant
αs becomes large and the perturbative series no longer converge.

To date, the most successful way of solving problems in the low en-
ergy limit is lattice QCD (LQCD). In LQCD, the continuum of space-time
is replaced by a four-dimensional lattice or “box” with side length usually
denoted as L and spacing between points as a. Our infinite path integrals are
then replaced with large, but finite sums and derivatives by finite differences.
In order to compare results from the lattice with experiments, limits need to
be taken:

L → ∞ ,

a → 0 .

4



2.1. OVERVIEW 5

Figure 2.1: Computer time vs pseudoscalar meson mass, for (a) lattice spac-
ing 0.1fm (b) lattice volume (3fm)3 (c) 200 configurations and with [Wit02]’s
clover action [All05].

However, this process of replacing the continuum theory with a discretised
version is not all that straightforward. Computational costs place limits on
the size of the box and lattice spacing, not only that but parameters such as
the quark and pion masses are restricted to values significantly larger than
their experimental ones. A plot taken from [All05] shows the relationship
between computational time and mass parameters for a typical lattice con-
figuration. As a result of these restrictions, extrapolation of lattice values is
required in order to compare with physical ones. Aside from problems relat-
ing to computer power, LQCD must also deal with systematic errors arising
from discretisation: by using a finite difference instead of a true derivative in
the action, errors of O(a) are introduced. On top of that, periodicity results
in the fermion doubling problem where, for the basic action, there are sixteen
fermions on the lattice instead of one!

In spite of these difficulties LQCD has grown into a vast and successful
area of research. Modified actions such as the Wilson and staggered1 actions
have dealt with the problem of doubling, while further adjustments have seen
O(a) errors drop to O(a2). Although not so common nowadays, the quenched
approximation - where quark-anti-quark pairs are not included in vacuum -

1Although this method also allows from much faster calculations, it suffers from com-
plications involving fermion lattice spacing and extra “tastes” [LTY05].
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Figure 2.2: Light hadron masses, where π, K and Ξ have been used to set
the light quark, strange quark and overall scale [D+08].

was also used and meant that calculations were several orders of magnitude
faster [All05], thus going some way to solve the computer power problem.

All these improvements have led to impressive results. Full QCD calcu-
lations have now reproduced nucleon masses to within 1−2% [D+08, YT10];
Fig 2.2 shows how close lattice results are to the empirical values for the
entire light hadron spectrum. As can be seen below, the pion and kaon de-
cay constants have also been calculated to high levels of precision [D+04].
(“Symanzik-improved” staggered fermions were used here, as opposed to in
the above case, where “clover-improved” Wilson fermions were used. How-
ever, like Dürr et al. the work was done in full QCD.)

Now the story could end there, all we would have to do is wait for
the lattice to produce results and show that QCD was the correct theory of
strong interactions. Our work, in a sense, would be done. However, this is
not the case. There are still some areas where lattice results are considerably
different from experiments. Unstable particles and disconnected diagrams
still resist the onslaught of LQCD and it may be a while before we can get
good results for these values. Another difficult case is the axial form factor.

Lattice results for the axial form factor GA(Q2) have consistently pre-
dicted results which are flatter than the measured value [AKL+07, OY08,
Ale09]. Even the most recent results by Bratt et al. [B+10] fail to match
those found by pion electroproduction and neutrino scattering methods. A
plot from Ref. [Ale09] shows this discrepancy quite clearly. Before we look
deeper into this problem though, it is a good idea to look at a brief discussion
on general lattice methods so as to have enough background so that when
we look at the specific lattice calculations involving the axial form factor we

a1172507
Text Box
 
                          NOTE:  
   This figure is included on page 6 
 of the print copy of the thesis held in 
   the University of Adelaide Library.



2.1. OVERVIEW 7

Figure 2.3: A comparison showing the results of unquenched QCD (right-
hand side) as opposed to quenched (left-hand side), for a number of different
constants [D+04].

Figure 2.4: Axial form factor vs Q2. The dashed line is a (dipole) fit to the
lattice results, while the solid line represents the experimental results [Ale09].
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8 CHAPTER 2. LATTICE QCD

will be in a better position to understand them. At this point it is important
to mention that although we are primarily concerned with the form factor,
lattice values of the axial charge - a quantity closely related to the axial form
factor - also differs significantly from experimental values [Y+08].

2.2 Lattice Scalar Field Theory

In order to see what a lattice field theory looks like we follow Rothe’s example
in Ref. [Rot92] of a free scalar field theory. In this case the action is:

S = −1

2

∫
d4xφ(x)(∂µ∂

µ +M2)φ(x). (2.1)

To extract information about our theory we need the Green functions and in
path integral formulation this gives us,

G(x, y, ...) =

∫
Dφφ(x)φ(y)...eiS[φ]∫

DφeiS[φ]
(2.2)

= 〈φ(x)φ(y)...〉 . (2.3)

There is a problem with this equation though: it is extremely difficult to get
the right-hand side to converge for numerical simulations [Rot92]. The way
round this issue is to make the replacement x0 → −ix4 thus transforming
our fields into Euclidean space. This is known as a Wick rotation. Once all
the replacements have been made we get,

G(x, y, . . .) = 〈φ(x)φ(y) . . .〉 =

∫
Dφφ(x)φ(y) . . . e−SE [φ]∫

Dφe−SE [φ]
(2.4)

where the Euclidean action is given as,

SE =
1

2

∫
d4xφ(x)(−∂µ∂µ +M2)φ(x) (2.5)

with the µ indices now running from 1 to 4. On a lattice with spacing a the
action can be discretised by making the substitutions,

xµ → nµa , (2.6)

φ(x) → φ(na) , (2.7)∫
d4x → a4

∑
n

, (2.8)

∂µ∂µφ(x) → 1

a2
(∂µ∂µ)′φ(na) , (2.9)

Dφ →
∏
n

dφ(na) , (2.10)
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where we define the lattice Laplacean as

(∂µ∂µ)′φ(na) =
∑
µ

(φ(na+ µ̂a) + φ(na− µ̂a)− 2φ(na)) . (2.11)

With the final exchanges of φ̂n = aφ(na) and M̂ = aM our action becomes
dimensionless and Eq. (2.4) becomes,

〈φ̂nφ̂m . . .〉 =

∫ ∏
l

dφ̂lφ̂nφ̂m . . . e
−SE [φ̂]∫ ∏

l

dφ̂le−SE [φ̂]
, (2.12)

where µ̂ is a unit vector pointing in the µ direction and

SE = −1

2

∑
n,µ̂

φ̂nφ̂n+µ̂ +
1

2
(8 + M̂2)

∑
n

φ̂nφ̂n . (2.13)

In a sense we are done, we have successfully exchanged our continuous
path integral over all space-time for a discretised version which works on a
finite lattice. Any observable we seek can now be worked out from this new
equation. Having said that, as a check, it would be nice to show that by
taking the limit a→ 0, Eq. (2.12) returns the same value as the continuous
one. With this as our aim, we take a look at the two-point correlation
function.

The first step to solving this theory is to rewrite the action as,

SE =
1

2

∑
n,m

φ̂nKnmφ̂m , (2.14)

where,

Knm = −
∑
µ>0

[δn+µ̂,m + δn−µ̂,m − 2δnm] + M̂2δnm . (2.15)

Beginning with the generating functional2,

Z0[J ] =

∫ ∏
l

dφ̂le
−S[φ̂]+

∑
n
Ĵnφ̂n

, (2.16)

2We dropped the subscript E of the action as we will be in Euclidean space from now on.
We have also taken out the summation signs and use the Einstein summation convention
instead.
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we can diagonalise Knm using orthogonal matices OT and O to get,

Z0[J ] =

∫ ∏
l

dφ̂le
− 1

2
φ̂nKnmφ̂m+Jnφ̂n (2.17)

=

∫ ∏
l

dx̂le
− 1

2
x̂i(O

T )inKnmOmj x̂j+JnOnkx̂k (2.18)

=

∫ ∏
l

dx̂le
− 1

2
Dii(x̂i)

2

eJnOnkx̂k (2.19)

where φ̂n = Onix̂i and D = OTKO with D being a diagonal matrix. The
integral now has a simple Gaussian form, and if we integrate over all the
fields we end up with,

Z0[J ] = (2π)
l
2

l∏
i=1

1

Dii

e
1
2

(JnOni)
2

Dii , (2.20)

where l is the number of lattice points. This equation can be manipulated
further such that,

Z0[J ] =
1√
detK

e
1
2
JnK

−1
nmJm , (2.21)

where we have dropped the (2π)
l
2 term as this “plays no role when computing

ensemble averages” [Rot92]. From the Eqs. (2.12) and (2.14) it is not too
hard to show that the two-point function is given by,

〈φ̂nφ̂m〉 = K−1
nm, (2.22)

using the relation KK−1 = I and the switching to momentum space, we find
finally that:

K−1
nm = 〈φ̂nφ̂m〉 =

∫ π

−π

d4k̂

(2π)4

eik̂·(n−m)

4
∑
µ

sin2 k̂µ
2

+ M̂2
. (2.23)

From this discretised version of the two-point correlation function, we want
to be able to produce the physical version. To do this we need to reintroduce
the lattice spacing a using the substitutions we made earlier and then take
the limit a→ 0. In this case we have,

〈φ(x)φ(y)〉 = lim
a→0

1

a2

∫ π

−π

d4k̂

(2π)4

eik̂·(
x
a
− y
a

)

4
∑
µ

sin2 k̂µ
2

+ a2M2
, (2.24)
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then, making the substitution k̂ = ka this gives

〈φ(x)φ(y)〉 = lim
a→0

1

a2

∫ π/a

−π/a

d4k

(2π)4
a2 eik·(x−y)

4
∑
µ

4
a2

sin2 kµa

2
+M2

. (2.25)

Over this interval, the integral will be dominated by the momenta which are
small compared to the 1

a
this means that the sine term in the denominator can

be expanded out. After taking the limits we are then left with the familiar
expression,

〈φ(x)φ(y)〉 =

∫ ∞
−∞

d4k

(2π)4

eik·(x−y)

k2 +M2
(2.26)

In order to extract a mass, we can use the fact that for large time the corre-
lation function becomes ∼ e−M |x−y|. As long as the points x and y are known
the mass of the state can be found.

To calculate masses on the lattice, we need to move from free fields
to interacting theory. Ref. [LMR+05] provides a good discussion of this
procedure which we shall follow. To begin an interpolating operator, i.e.
creation/annihilation operator, O, needs to be chosen which provides a good
overlap with the state of interest. That is, if N is the state being examined,
then 〈0|O|N〉 is non-zero and preferably large. The next step involves forming
the discrete Fourier transform of the correlation function for a particular
point in time,

G(t,~k) =
∑
~x

〈0|O(~x, t)O†(~0, 0)|0〉e−i~k·~x. (2.27)

After that, insert the identity between the two operators and switch to Eu-
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clidean space,

G(t,~k) =
∑
~x

∑
N

∫
d3p

(2π)32E(~p)
e−i

~k·~x〈0|O(~x, t)|N(~p)〉〈N(~p)|O†(~0, 0)|0〉

=
∑
~x

∑
N

∫
d3p

(2π)32E(~p)
e−i

~k·~x〈0|eiĤte−iP̂ ·~xO(~0, 0)e−iĤteiP̂ ·~x|N(~p)〉

.〈N(~p)|O†(~0, 0)|0〉

=
∑
~x

∑
N

∫
d3p

(2π)32E(~p)
e−i

~k·~xei~p·~xe−iEN (~p)t〈N(~p)|O(~0, 0)|0〉

.〈N(~p)|O†(~0, 0)|0〉

=
∑
~x

∑
N

∫
d3p

(2π)32E(~p)
ei(~p−

~k)·~xe−iEN (~p)t|〈0|O|N〉|2

=
∑
N

∫
d3p

2E(~p)
δ(3)(~p− ~k)e−iEN (~p)t|〈0|O|N〉|2

=
∑
N

|〈0|O|N〉|2

2EN(~k)
e−iEN (~k)t (2.28)

Performing the Wick rotation t→ −it,

G(t,~k) =
∑
N

|〈0|O|N〉|2

2EN(~k)
e−EN (~k)t (2.29)

Finally Eq. (2.29) can be approximated by,

G(t,~k) ≈ λ0e
−M0t + λ1e

−M1t (2.30)

where λ0 and λ1 are the coupling constants and M0 and M1 are the masses
of the eigenstates. For large time this becomes,

λ0e
−M0t + λ1e

−M1t = λ0e
−M0t

(
1 +

λ1

λ0

e−(M1−M0)t

)
t→∞−→ λ0e

−M0t (2.31)

where M1 > M0. So we see that on the lattice the mass of the lightest state
can be found3.

Although full LQCD is much more complicated, with fermion fields
and interactions both bringing in extra difficulties, the fundamental ideas
remain the same. Using this section as a foundation, we can now look at
some of the details involved in lattice calculations of the axial form factor.

3If M0 > M1 then the equation would be reversed: with e−M1t out the front and
e−(M0−M1)t inside the brackets
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2.3 Axial Form Factor on the Lattice

As it is an important tool in understanding the nucleon, much effort [J+76,
GMT83, LDD+94, A+10] has gone into studying the axial form factor. Al-
though Arrington et al. were referring specifically to electromagnetic form
factors when they expressed them as “... a measurable and physical mani-
festation of the nature of the nucleons’ constituents and the dynamics that
binds them together,” [ARZ07] such a description would be equally true of
the axial form factor. This combination of being measurable and providing
such valuable information on the nucleon make it a prime candidate for study
on the lattice.

The LHPC collaboration calculated the axial form factor using un-
quenched QCD. Like Ref. [OY08], and unlike Ref. [Ale09], they use 2 + 1
flavours of quarks, with two degenerate, light masses representing the up and
down quarks, and a heavier one representing the strange quark. This choice
makes their theory much closer to the physical situation [All05].

Using the same lattice spacing a = 0.124(25) fm for each of their
ensembles, Bratt et al. operated on two different physical volumes: (2.5 fm)3

and (3.5 fm)3 respectively. Their pion masses ranged from 293 MeV to 598
MeV, whereas Alexandrou in Ref. [Ale09] performed calculations for mπ as
low as 270 MeV, while in Ref. [OY08], 330 MeV.

By using the asqtad action for the sea fermions, Bratt et al. were able
benefit from the lower computational costs of staggered fermions [You04],
as well as enjoying smaller taste (and chiral) symmetry breaking as a result
of using fat links [DD]. However there is still some debate over the phys-
ical nature of such a description [RT10, Neu04]. For the valence fermions,
the domain wall action ensures that chiral symmetry is preserved [H+08].
Alexandrou in Ref. [Ale09] uses a similar mixed action.

In the continuum case the axial form factor is found by placing the
Fourier transform of the axial current between any baryon state like so,

〈B |~jµ5(q)|B 〉 = 〈B |
∫
d3r ei~q.~r ~Aµ(r)|B 〉

= ū

[
GA(q2)γµ γ5 +

iσµνqν
2m

γ5GT(q2) + qµγ5GP(q2)

]
~τu

(2.32)

where ū and u are spinors i.e.,

u =

(
up
un

)
, (2.33)



14 CHAPTER 2. LATTICE QCD

Figure 2.5: Two-point(left) and three-point(right) functions, where Aµ is the
axial current [TW].

and ~τ are the Pauli matrices for isospin. The first and third term are the
axial and pseudo-scalar form factors respectively, while the middle term, GT

is the axial tensor term. Although all these form factors are worthy subjects
in and of themselves, in this thesis we will only be studying the axial form
factor.

In analogy to Eq. (2.32), the operator they ([B+10]) used on the lattice
to calculate the matrix element was,

Oµγ5 = q̄(0)γµγ5q(0) (2.34)

giving the matrix element for the axial current as,

〈
k, s|Oµγ5|p, r

〉
= ū(k, s)γµγ5u(p, r)Ã10(t) +

kµ − pµ

2m
ū(k, s)γ5u(p, r)B̃10(t)

(2.35)
where k and p are the momenta, and s and r the spin of the nucleon. Their
form factors are Ã10(t) and B̃10(t) the first being the axial and the second,
the pseudoscalar form factor with t = −Q2.

To find this matrix element on the lattice, two-point and three-point
correlation functions are used, these are shown in Fig. 2.5. Although the
principles governing these correlation functions are the same as the one found
for the scalar theory, there are extra complications which somewhat hide their
similarities. The two-point function in this case looks like [B+10],

C2pt(T, ~p) =
∑
~x

e−i~p·~xTr
(

Γproj〈n(~x, T )n̄(~0, 0)〉
)
. (2.36)

While the expression for the three-point function is,

C3pt(T, T0, ~p,~k) =
∑
~x,~y

e−i
~k·~x+i(~k−~p).~yTr

(
Γproj〈n(~x, T0)O(~y, T )n̄(~0, 0)〉

)
(2.37)
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Figure 2.6: Axial form factor of the nucleon versus Q2 for mπ = 356 MeV
[B+10]. The thick line represents the dipole fit, while the thin line a small-
scale expansion fit.

where,

Γproj =
1

2
(1 + γ4)

1

2
(1− iγ3γ5) , (2.38)

p̄ and p are proton creation and annihilation operators, and O is the axial
current mentioned earlier. By dividing the three-point function by two-point
functions in the following fashion, [B+10]

R(T, T0) =
C3pt(T, T0, ~p,~k)√
C2pt(T, ~p)C2pt(T,~k)

√
C2pt(T0 − T, ~p)C2pt(T,~k)

C2pt(T0 − T,~k)C2pt(T, ~p)
, (2.39)

Bratt et al. obtained an expression which, for large enough separation be-
tween source and sink, is proportional to the required matrix elements. Fig.
2.6 shows [B+10]’s plot for GA(Q2) with pion mass 356 MeV. They include
both dipole and small-scale expansion (SSE) fits. However, the SSE depends
linearly on Q2 and so only works for small values of momentum transfer
[B+10].

The dipole used was of the form,

GA(Q2) = gA

(
1

1 + Q2

Λ2

)2

, (2.40)
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with an axial mass Λ = 1.587(29) GeV [B+10] which is much greater than
the physical values Λ = 1.069(16) GeV and 1.026(21) GeV obtained using
electroproduction methods and neutrino scattering experiments [BEM02] re-
spectively 4. This results in a graph whose slope is much flatter than it should
be. [Ale09] has the same problem with Fig. 2.4 showing the comparison be-
tween the physical and lattice dipole fits.

Before examining the possible reasons for this discrepancy, which we
shall do so in later chapters, we look at another observable directly related
to the form factor: the axial radius. In the next section we examine recent
lattice results and see how they compare with experiment.

2.4 Axial Radius

While much effort has gone into finding the correct form of GA(Q2) on the
lattice, the axial radius 〈r2

A〉 has also been explored. The axial radius mea-
sures the spatial distribution of the axial current in the nucleon [You] and can
be found relatively simply from the slope of the axial form factor at Q2 = 0.5

If we look at the expansion of the axial form factor,

GA(Q2) = gA(1− 〈r
2
A〉
6
Q2) +O(Q4), (2.41)

where gA = GA(Q2 = 0) is the axial charge, we see that the axial radius can
be worked out from the formula,

〈
r2
A

〉
= − 6

GA(0)

d

dQ2
GA(Q2)

∣∣∣∣
Q2=0

, (2.42)

and therefore that the radius is proportional to the slope of GA(Q2). Given
then that the form factors found on the lattice were all too flat we suspect
that the 〈r2

A〉 values will be much smaller than the measured value. A look at
Table 2.1 confirms these suspicions, for the experimental value of ≈ 0.44 fm2

(using neutrino scattering techniques) is much larger than any of these values.
A plot from [OY08] shows similar results,

Given the nature of the relationship between the axial form factor and
the axial radius, if we could explain the discrepancy with the axial form
factor, then it is most likely that we would have found an explanation for the

4This difference in experimental values is due to pion cloud effects[TW]. What the
electroproduction methods actually measures is

〈
r̃2A
〉

=
〈
r2A
〉

+ 3
64fπ

(
1− 12

π2

)
.

5The radius can also be found from the electric dipole amplitude for ep → e′π+n in
the limit that mπ = 0 [TW].
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Table 2.1: Axial radius at different pion masses [B+10].

Figure 2.7: Axial radius for different values of mπL using domain wall
fermions (DWF) and Wilson fermions. The solid lines show the experimental
value [OY08].
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problem with the axial radius as well. In the next few chapters this is what
we seek to do.

* * *

Lattice results for the axial form factor consistently come up with val-
ues that are significantly different from experimental results. Due to the fact
that larger lattice configurations are computational expensive much smaller
ones have to be use. We suspect that the finite nature of the lattice is part
of the reason behind this discrepancy.

In order to provide evidence for our suspicions we will look at a chiral
model of the nucleon and examine the volume dependence of its axial form
factor. Before we can proceed in this direction however, we must first pro-
vided some background on the chiral theory of QCD. As well as that we will
discuss a number of other models in order to allow the reader to see where
our choice sits in the scheme of things.



Chapter 3

Chiral Bag Models

In order to explain the discrepancy in the previous chapter we will be using
an idealised model of the nucleon known as the “hedgehog”. Without delving
into the specifics of the solutions of this model (that is saved for the next
chapter) we hope to provide a good understanding of the background ideas
to the theory which governs this object.

No theory or model exists in a vacuum [DD] and so we will also discuss
some other models which have gone before, and come after the hedgehog -
providing the setting in which the hedgehog lies.

As chiral symmetry is such an important concept in this topic we will
spend some time discussing the nature of this symmetry. We will also show
its relation to the models being used and why it is necessary to include it.

Perhaps the best place to start is with chiral symmetry itself. After-
wards, as we start examining the models we can then include the model’s
relation to this symmetry much more smoothly.

3.1 Chiral symmetry

The Lagrangian density for QCD is,

L = ψ̄iq(iγ
µDij

µ − δijmq)ψ
j
q −

1

4
F a
µνF

aµν , (3.1)

where Fµν is the non-abelian field tensor,

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , (3.2)

and Dij
µ is the covariant derivative defined as,

Dij
µ = δij∂µ +

ig

2
λa ijAaµ . (3.3)

19
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The i, j indices label the three colours, q, the six quark flavours and a, the
eight gluon fields. g is the strong coupling constant and fabc the structure
constants which come from the commutation relations between fields. The
generators of the symmetry group are λa ij and as usual we use the Einstein
summation convention where like indices are summed over.

Under the following global chiral transformations,

ψ → ψ − i

2
~τ · ~α γ5 ψ ; (3.4)

ψ̄ → ψ̄ − i

2
ψ̄ γ5 ~τ · ~α , (3.5)

with ψ now a doublet including only the up and down quark flavours,

ψ =

(
u
d

)
. (3.6)

This Lagrangian remains invariant in the case where the quark masses are
set to zero1. Substituting the transformed fields into Eq. (3.1),

L → L′

= (ψ̄ − i

2
ψ̄ γ5 ~τ · ~α)iq iγ

µDij
µ (ψ − i

2
~τ · ~α γ5 ψ)jq −

1

4
F a
µνF

aµν

= ψ̄iq iγ
µDij

µ ψ
j
q −

i2

2
(ψ̄ γ5 ~τ · ~α)iqγ

µDij
µ ψ

j
q

−i
2

2
ψ̄iq γ

µDij
µ (~τ · ~α γ5 ψ)jq −

1

4
F a
µνF

aµν +O(α2)

= L+
1

2
ψ̄iq′(~τ · ~α)q′q(γ5γ

µ + γµγ5)Dij
µ ψ

j
q .

Then using the anticommutation relation,

{γ5, γ
µ} = 0 , (3.7)

we find that L′ = L. This is known as chiral symmetry. Now the quark
masses in the real world actually have finite masses and this means that
the symmetry is broken. Nevertheless this is still a good approximation -
accurate to within 7% [Pag75].

From Noether’s theorem, we know that for every symmetry found in
nature there is a conserved current associated with it. In this case our con-
served currents are,

~V
µ

= ψ̄γµ~τψ ; (3.8)

~A
µ

= ψ̄γµγ5~τψ . (3.9)

1Since the gluon fields, Aaµ, live in colour space they are not affected by the transfor-
mation. For the same reason the covariant derivative also remains invariant.
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These two currents are often combined in the form V ± A i.e. ,

~L
µ

= ψ̄γµ(1− γ5)~τψ ; (3.10)

~R
µ

= ψ̄γµ(1 + γ5)~τψ , (3.11)

where ~Lµ and ~Rµ are the left and right-handed quark currents respectively.
QCD is then described as containing chiral SU(2)L×SU(2)R symmetry. An-
other way to put it is to say that the left and right-handed particles do not
mix [Tho84]. As the QCD Lagrangian is not exactly symmetric when masses
are included the axial current is only partially conserved. This leads to the
partially conserved axial current (PCAC) theorem.

PCAC

In Ref. [Col] Coleman explains that the “PCAC is the statement that the
matrix elements of ∂µA

µ are ... normally varying ”. This means that these
matrix elements are proportional to m2

π and so will go to zero in the limit
mq → 0 [TW].

Looking at Eq. (2.32) again,

〈B |~jµ5(q)|B 〉 = ū

[
GA(q2)γµ γ5 +

iσµνqν
2m

γ5GT(q2) + qµγ5GP(q2)

]
~τu ,

(2.32)

if we contract both sides with qµ and ignore quark masses for now we have

0 = ū
[
GA(q2)q/ γ5 + q2γ5GP(q2)

]
~τu

= ū
[
GA(q2)2mN γ

5 + q2γ5GP(q2)
]
~τu

(3.12)

and therefore[PS],

gA = lim
q2→0

q2

2mN

GP(q2) . (3.13)

This equation would cause problems if it were not for the pole GP(q2) -
illustrated in Fig. 3.1. By including the pole we end up with the Goldberger-
Treimann relation:

gA =
fπ
mN

gπNN . (3.14)

So the PCAC leads necessarily to the production of a pion. Let us now turn
to another issue involving chiral symmetry.
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Figure 3.1: Pion pole contribution to the pseudoscalar form factor [TW].

* * *

As we showed above, the axial current is conserved when the quarks are
massless. This means that the axial charge commutes with the Hamiltonian,

[QA,H] = 0. (3.15)

From this it follows that if an eigenstate of H with positive parity exists, then
there must also exist a corresponding state of negative parity with the same
mass [Tho84, You04] i.e. if,

H|N+〉 = m|N+〉. (3.16)

then with,
|N−〉 = QA|N+〉 (3.17)

we end up with,

H|N−〉 = HQA|N+〉
= QAH|N+〉
= QAm|N+〉
= m|N−〉 . (3.18)

The nucleon is an eigenstate of H with positive parity, however no such
particle of m ≈ 940 MeV exists with negative parity. The closest that exist
are the N(1535) and ∆(1620) and these are over 600 MeV heavier [You04].
Clearly this must be resolved before we can accept seriously the assumption
that chiral symmetry is reliable.

The solution is provided by Goldstone, who, in the theorem named
after him, showed that when a symmetry is broken a particle of zero spin
and zero mass must be produced [Gol61]. These particles are known as Gold-
stone bosons. In the case of negative parity states then, what we have is a
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mixture of the nucleon and the Goldstone bosons [Tho84, You04]. For QCD
the pions are considered to be the approximation of these Goldstone particles
- approximate because they actually have a small mass.

* * *

In summary, the agreement between the theory and experiment pro-
vides evidence that chiral symmetry is a good symmetry of QCD [Pag75]. We
showed how for massless quarks the QCD Lagrangian is invariant. We also
looked at how the conservation of axial current was preserved by inclusion
of a Goldstone boson which in the case of QCD is the pion.

As a result of these factors, when people began to construct a model
of the nucleon, one of the important features they tried to include was chiral
symmetry. In the next few sections we will examine what these models were
and how they incorporated (or failed to incorporate) chiral symmetry.

3.2 MIT Bag Model

By the time of the construction of the MIT bag model, confinement and
asymptotic freedom had become fundamental tenants of QCD. Quarks were
known to behave freely in the high energy state while at low energies the
increase in the strong coupling constant, αs, prevented them from being seen
individually.

It was the desire to incorporate these features of QCD in a covariant
manner that produced the MIT bag model [CJJT74, DJJK75]. The MIT
bag model successfully predicted the value of the axial coupling constant as
well as providing reasonably good results for the baryon masses. These are
shown in Fig. 3.2.

However, there were some problems with it too. The model failed
to produce the right values for the charge radius and magnetic moments
[Tho84]. It also suffered from the fact that chiral symmetry was explicitly
broken.

The Lagrangian of the MIT bag model is,

LMIT = (iψ̄γµ∂µψ −B)θV −
1

2
ψ̄ψδS , (3.19)

where,

θV =

{
1 inside the bag
0 outside

(3.20)
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Figure 3.2: MIT bag model baryon mass spectrum [DJJK75]. The dotted
lines are the experimental values, the thick lines the bag model predictions,
and the thin lines were the masses used to set model parameter.
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Figure 3.3: Chiral symmetry breaking at the surface of the bag [Tho84, Gri].

and δS is a surface delta function. By applying the same transformations
(Eqs. (3.4) and (3.5)) used on the QCD Lagrangian, we see that there is an
extra term which breaks the invariance of LMIT.

LMIT → L′MIT = [i(ψ̄ − i

2
ψ̄ γ5 ~τ · ~α)γµ∂µ(ψ − i

2
~τ · ~α γ5 ψ)−B]θV

−1

2
(ψ̄ − i

2
ψ̄ γ5 ~τ · ~α)(ψ − i

2
~τ · ~α γ5 ψ)δS

= L′MIT +
1

2
ψ̄(γ5γ

µ + γµγ5)~τ · ~α∂µψ +
i

2
ψ̄γ5~τ · ~αψδS

= L′MIT +
i

2
ψ̄γ5~τ · ~αψδS , (3.21)

Thomas in Ref.[Tho84] puts it this way:

Confinement implies that any quark impinging on the bag surface must be
reflected. However, there is no spin-flip associated with the reflection, and

hence the chirality, or handedness of the quarks is changed.

Fig. 3.3 shows this explicitly. As a result of all these problems, the physicists
working on the model quickly began to look for ways to solve this problem.
In the next section we look at one of these attempts: the σ-model.

3.3 The σ-model

Another representation of the nucleon, slightly different from the bag models
of the nucleon is the σ-model. Invented by Gell-Mann and Levy in the 1960s
the σ-model was used to reconcile the heavy mass of the nucleon with the
fact that the axial current is partially conserved [Tho84].
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The essential features of this model are the extra ~π and σ fields. By
defining these fields to transform as,

σ → σ − ~α · ~π ; (3.22)

~π → ~π + σ~α , (3.23)

and replacing the mass term with gψ̄(σ + i~τ · ~πγ5)ψ chiral symmetry is re-
stored.

The Lagrangian for this model is thus [Tho84],

Lσ = iψ̄γµ∂µψ + gψ̄(σ + i~τ · ~πγ5)ψ +
1

2
(∂µσ)2 +

1

2
(∂µ~π)2

− λ2

4

(
(σ2 + ~π2)− ν2

)
. (3.24)

Spontaneous symmetry breaking then produces the required mass term for
the nucleon.

Unfortunately the σ-model cannot be taken as a serious representation
of QCD. Instead of treating the nucleon as a complex combination of quarks
and gluons, the sigma model makes out the nucleon to be a point particle.
On top of the that, the axial charge gA is assumed to be equal to 1, when
experimentally it has been found to be 1.27.

Having now seen the σ-model and explained some of its characteristics,
we turn our attention to another model - the hedgehog.

3.4 Hedgehog Model

Soon after the MIT bag model was produced, Chodos and Thorn [CT75]
(and also Inoue and Maskawa [IM75]) created a model which incorporated
chiral symmetry. Like the sigma model, new fields σ and ~π are introduced
although in this case they included in the MIT surface term. This can be
seen explicitly in [CT75],

LCT = (iψ̄γµ∂µψ−B)θV−λψ̄(σ+ i~τ ·~πγ5)ψδS +
1

2
(∂µσ)2 +

1

2
(∂µπ)2 , (3.25)

where λ = 1
2
(σ2 + ~π2)−

1
2 is a Lagrangian multiplier. We leave this as an

exercise to show that this expression is invariant under chiral transformations.
One of the important things to note from the Lagrangian is the fact

that both the σ and ~π fields couple only to the surface of the bag. This
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means that except for when they interact with the bag’s surface they behave
as free fields.

The beauty of this Lagrangian is that its equations of motion can be
solved exactly. However, this is somewhat tempered by the fact that the
physical nature of the solution is questionable. When Chodos and Thorn
solved these equations, what they found was a rather idealistic baryon - one
which was neither an eigenstate of spin or isospin. The wave function of this
baryon is proportional to [CT75],

|h〉 = |χh〉1 |χh〉2 |χh〉3 (3.26)

where,

|χh〉 =
1√
2

(|u ↓〉 − |d ↑〉) . (3.27)

Obviously no such state has ever been observed in experiments. Despite
this, the hedgehog has been used to study the features of the nucleon. This
is mainly due to the fact that it is possible to extract exact solutions [CT75].

For the massless case, the solutions Chodos and Thorn found were,

q(~r) =

(
j0

(
Ωr
R

)
i~σ · r̂j1

(
Ωr
R

) )χhe−i(Ω/R)t

(3.28)

σ(~r) = f(r) (3.29)

~π(~r) = g(r)r̂, (3.30)

where j0 and j1 are spherical Bessel functions, Ω is the bag frequency, and
R is the radius of the bag. This radial dependence we see in the solutions is
the origin of the name - if we were to draw a diagram of the spin (or isospin)
fields then they would look rather like a pin-cushion or a “real-life” hedgehog.

Thomas et al. used the hedgehog in [TALY05] to study the finite
volume properties of the axial charge gA. We will follow their use of the
hedgehog in order to extend it to the study the axial form factor. As op-
posed to Chodos and Thorn who solved for the massless case, Thomas et
al. found solutions for massive quarks and pions which we also use. Before
we do that though, there is one more model that we need to describe. This
model also respects chiral symmetry and does not suffer from the problem
of the hedgehog which produces a rather abstract view of the nucleon. This
last model is the cloudy bag model.
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3.5 The Cloudy Bag Model

The cloudy bag model (CBM) [TTM80, TTM81, MTT81] grew up out of
the attempt to solve the problems of a non-linear version of the MIT bag
model2. Like the MIT (and hedgehog) model, the quarks are confined to a
“bag” of specified radius denoted here as R. As in the case of the hedgehog
a new field, designated ~φ, is introduced to preserve chiral symmetry. This
pion field is allowed to move both inside and outside the bag.

The Lagrangian density for the CBM is given as [TTM80, DeT81],

LCBM = (iψ̄γµ∂µψ −B)θV −
1

2
ψ̄ψδS +

1

2
(∂µ~φ)2

−1

2
m2
π(~φ)2 − i

2fπ
ψ̄γ5~τ · ~φψ δS , (3.31)

where fπ is the pion decay constant and the extra mass term 1
2
m2
π(~φ)2 breaks

the exact chiral symmetry and leaves the axial current partially conserved -
as is the case in the real world.

The pions themselves are assumed to have a large Compton wavelength
and this means that perturbation theory can be used [Tho84]. This is true
as long as the pion “cloud” around the nucleon contains only a small number
of particles and the bag radius is large (≥ 0.7 fm) [TW].

The CBM has produced impressive results. The root-mean-square ra-
dius, magnetic moment of the nucleon, and gA are all in good agreement
with experiment [TTM81]. In fact the calculated magnetic moments of all
the baryon octets agree well with measured values which we can see in Fig.
3.4.

An extra transformation on the LCBM

ψ → ψw = Sψ (3.32)

ψ̄ → ψ̄w = ψ̄S (3.33)

where

S = exp(
i~τ · ~φγ5

2fπ
), (3.34)

gives a new form of the Lagrangian [Tho84]:

L′CBM = (iψ̄w∂/ψw −B)θV −
1

2
ψ̄wψwδS −

θV

4f 2
π

ψ̄wγ
µ~τ · (~φ× ∂µ~φ)φw

+
θV

2fπ
ψ̄wγ

µγ5~τ · ∂µ~φψw +
1

2
(∂µ~φ)2 − 1

2
m2
π(~φ)2 . (3.35)

2See the lectures by Jaffe in Ref. [Jaf].
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Figure 3.4: CBM model baryon magnetic moments [TT83]. For a) R = 0.82
was used from [TTM81]. b) A preliminary result at the time [TT83] was
published.

* * *

In this chapter we have described a number of different models used to
represent the nucleon. We looked at the MIT bag model and how its failure
to include chiral symmetry meant it was not a viable option. We looked at
the σ-model and saw how it treated the nucleon only as a point particle thus
loosing the complexity of QCD. Finally we reviewed the cloudy bag model.
Ideally we would use the CBM to study the nucleon’s axial form factor rather
than the hedgehog. However, as mentioned before, the hedgehog has an exact
solution making it more fitting for use in this thesis.



Chapter 4

Hedgehog Calculations

We are now close to the point where we calculate the axial form factor of the
hedgehog. From Eqs. (3.28), (3.29) and (3.30) we know the general form of
the field solutions; substituting these into the matrix element involving the
axial current, Eq. (2.32), would then give the axial form factor. However,
Refs. [CT75] and [TALY05] have shown it is possible to find exact, analytic
solutions and it is beneficial to look at these background calculations first.
Once we have understood these we can move on to the challenge of finding
the form factor; this occurs in the second section.

The axial radius is another important observable to be discussed. In
the final section we examine its relationship to the form factor - looking at
both dipole and gradient methods for extracting a value from the lattice
data. It is important to note that for both the axial form factor and the
axial radius, calculations were made for several different configurations of
pion mass and lattice volume.

Finally, we must make mention of the special use of the lattice side-
length L. Conventionally the lattice is a four dimensional “box” or hypercube
with side length L. In our case we make use of the fact that we are dealing
with radially symmetric solutions and instead use a 4-D “sphere”. L then
becomes the radius of this sphere. We will often use the diameter, d = 2L,
as a measure as well. Although this complicates how we understand the
boundary conditions, it allows us to introduce volume dependence much more
simply.

4.1 Background

Most of the initial work in this section has already been done in Refs. [CT75]
and [TALY05]. Chodos and Thorn solved the equations of motion for the

30
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massless case, while Thomas et al. did the same with quark and pion masses
included. This section provides an overview of their work.

We start with [TALY05],

L = [ψ̄(i∂/−mq)ψ −B]θV − λψ̄ (σ + i~τ · ~πγ5)ψδS

+
1

2
(∂µσ) (∂µσ) +

1

2
(∂µ~π) · (∂µ~π)− 1

2
m2
π~π · ~π . (4.1)

where we have included the mass terms in the Lagrangian. As is the case
in all our models, the quarks have been confined to the inside of a spherical
bag of radius R; this is enforced by θV . The δS is a surface delta function
which guarantees that the σ and ~π fields couple to the quark fields only at
the surface. Energy-momentum conservation through the surface of the bag
is ensured with B - an energy density term which we will put in explicitly.
Finally, λ is a Lagrange multiplier equal to 1

2
(σ2 + ~π2)−

1
2 .

Using Hamilton’s principle of least action, i.e. requiring that:

δS = 0 (4.2)

we obtain the following Euler-Lagrange equations [TALY05]

(i∂/−mq)ψ = 0, r < R; (4.3)

∇2σ =
1

2
ξψ̄ψδ(r −R); (4.4)

∇2~π −m2
π~π =

1

2
ξψ̄i~τγ5ψδ(r −R); (4.5)

ir̂ · ~γψ = −ξ (σ + i~τ · ~πγ5)ψ, r = R; (4.6)

B = −1

2
ξ
∂

∂r

[
ψ̄ (σ + i~τ · ~πγ5)ψ

]
r=R

, (4.7)

where ξ = [(σ2(R) + ~π2(R)]−
1
2 ; and we are now considering a static spherical

bag. The first three are the equations of motion of the q, σ and ~π fields,
while the last two are boundary conditions.

Returning to all four dimensions for a moment, we see that Eq. (4.6),
along with our original Lagrangian, implies quark confinement. Starting
with,

in · ~γψ = −ξ (σ + i~τ · ~πγ5)ψ, r = R , (4.6)

with nµ the normal vector and taking the Hermitian conjugate we have,

(in · ~γψ)† = − [ξ (σ + i~τ · ~πγ5)ψ]† ,

−iψ†n · γ† = −ψ†(−iγ†5~τ · ~π + σ)ξ .
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If we now multiply both sides on the right by γ0 the above equation becomes,

−iψ†n · γ†γ0 = −ψ†(−iγ†5~τ · ~π + σ)ξγ0

iψ̄γ · n = ψ̄(iγ5~τ · ~π + σ)ξ . (4.8)

Then taking the product of the quark current jµ = ψ̄γµψ with nµ we have
[Tho84],

inµj
µ = ψ̄iγ · nψ

= (ψ̄iγ · n)ψ = [ψ̄(γ5~τ · ~π + σ)ξ]ψ

= ψ̄(iγ · nψ) = −ψ̄[ξ(σ + i~τ · ~πγ5)ψ]

= 0 .

This means that there is no quark current coming out of the bag and thus
the quarks must be confined. The last equation, Eq. (4.7), is the non-
linear boundary condition which ensures that the pressure created by the
free quarks inside the bag is matched by the outside pressure [TW].

The solutions to these equations are similar to the ones we showed
before, however, there are now a few extra terms stemming from the fact that
quark and pion masses are now present. The new solutions are [TALY05],

ψ(~r) =

(
α+j0

(
Ωr
R

)
iα−~σ · r̂j1

(
Ωr
R

) )χhθ(R− r)e−iαt/R
(4.9)

σ(~r) = f(r) (4.10)

~π(~r) = g(r)r̂, (4.11)

with

α = ER =
√

Ω2 + (mqR)2 (4.12)

and

α± =

√
α±mqR

α
. (4.13)

Substituting these solutions into the equations of motion, beginning with the
sigma field equation,

∇2σ =
1

2
ξψ̄ψδ(r −R); (4.4)
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the left-hand side becomes,

L.H.S. =
1

2
ξψ̄ψδ(r −R)

=
1

2
ξe−iαt/Rχ†h(α+j0(Ω),−iα−j1(Ω)~σ · r̂)

(
1 0
0 −1

)(
α+j0(Ω)

iα−~σ · r̂j1(Ω)

)
.χhθ(R− r)e−iαt/Rδ(r −R)

= χ†h[α
2
+j

2
0(Ω)− α2

−j
2
1(Ω)(~σ · r̂)2]χhθ(R− r)δ(r −R)

=
1

2
ξ(α2

+j
2
0(Ω)− α2

−j
2
1(Ω))χ†hχhδ(R− r), (4.14)

while the right-hand side,

R.H.S. = ∇2σ

= ∇2f(r)

=
1

r2

∂

∂r
r2 ∂

∂r
f + 0 + 0

=
2

r
f ′ + f ′′. (4.15)

Combining the two we end up with [TALY05],

f ′′(r) +
2

r
f ′(r) =

1

2
ξ(α2

+j
2
0(Ω)− α2

−j
2
1(Ω))χ†hχhδ(R− r)

≡ aδ(R− r). (4.16)

Similarly, if we look at the pion field equation:

∇2~π −m2
π~π =

1

2
ξψ̄i~πγ5ψδ(r −R), (4.5)

then the left-hand side under substitution becomes,

L.H.S. =
1

2
ξie−iαt/Rχ†h(α+j0(Ω),−iα−j1(Ω)~σ · r̂)

(
1 0
0 −1

)
.

(
~τ 0
0 ~τ

)(
0 1
1 0

)(
α+j0(Ω)

iα−~σ · r̂j1(Ω)

)
χhθ(R− r)e−iαt/Rδ(r −R)

= iχ†h(α+j0(Ω),−iα−j1(Ω)~σ · r̂)
(
~τiα−~σ · r̂j1(Ω)
−~τα+j0(Ω)

)
χhδ(r −R)

= iχ†h [iα+j0(Ω)~τα−~σ · r̂j1(Ω) + iα−j1(Ω)~σ · r̂~τα+j0(Ω)]χhδ(r −R)

(4.17)
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Using χ†hτiσjχh = −δijχ†hχh this ends up as,

L.H.S. = ξα+α−j0(Ω)j1(Ω)χ†hχhr̂δ(r −R) . (4.18)

With the right-hand side,

R.H.S. = ∇2~π −m2
π~π

= ∇2(g(r)r̂)−m2
πg(r)r̂

= g′′(r)r̂ +
2

r
g′(r)r̂ − 2

r2
g(r)r̂ −m2

πg(r)r̂ (4.19)

putting the two together the pion field equation becomes [TALY05],

g′′(r) +
2

r
g′(r)− (

2

r2
+m2

π)g(r) = ξα+α−j0(Ω)j1(Ω)χ†hχhδ(R− r)

≡ bδ(R− r). (4.20)

Two more conditions then help us to specify the solutions to these
equations: regularity and periodicity. The lattice approximates the contin-
uum by requiring that the hypercube should have periodic boundary condi-
tions, this means that the value for the fields at L are equal to those at zero
- remembering that L is the side-length. In essence what happens is that the
hypercubes are stacked up together, each with a nucleon inside it. In our
special case we implement it by demanding that the gradient of the pion be
zero at the edge of the boundary, i.e.

∂π

∂r

∣∣∣∣
r=L

= 0 . (4.21)

Applying these two conditions gives the solutions [TALY05]

f(r) = f0 + aR2(
1

R
− 1

r
)θ(r −R) (4.22)

g(r) = b(R coshRmπ −
sinhRmπ

mπ

)(−cosh rmπ

rmπ

+
sinh rmπ

r2m2
π

)Γ(Lmπ)

+ b(R sinhRmπ −
coshRmπ

mπ

)(
cosh rmπ

rmπ

− sinh rmπ

r2m2
π

)θ(R− r)

+ b(R coshRmπ −
sinhRmπ

mπ

)(
sinh rmπ

rmπ

− cosh rmπ

r2m2
π

)θ(r −R) ,

(4.23)

with the volume dependence of the pion field being given by,

Γ(Lmπ) =

(
coshLmπ
Lmπ

− 2 sinhLmπ
L2m2

π
+ 2 coshLmπ

L3m3
π

sinhLmπ
Lmπ

− 2 coshLmπ
L2m2

π
+ 2 sinhLmπ

L3m3
π

)
. (4.24)
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Note that it is the periodic b.c. which brings the volume dependence into
g(r).

It is also interesting to look at the case where instead of the gradient
being zero, the pion field itself is set to zero. Beginning with the general
solution of the pion field [TALY05],

g(r) = b(R sinhRmπ −
coshRmπ

mπ

)(
cosh rmπ

rmπ

− sinh rmπ

r2m2
π

)θ(R− r)

+ b(R coshRmπ −
sinhRmπ

mπ

)(
sinh rmπ

rmπ

− cosh rmπ

r2m2
π

)θ(r −R)

+ (−cosh rmπ

rmπ

+
sinh rmπ

r2m2
π

)C , (4.25)

and applying the new b.c. ~π = 0 at r = L we have,

0 = b(R coshRmπ −
sinhRmπ

mπ

)(
sinhLmπ

Lmπ

− coshLmπ

L2m2
π

)

+ (−coshLmπ

Lmπ

+
sinhLmπ

L2m2
π

)C , (4.26)

where C is a constant. Rearranging this equation to get C,

C =
b(R coshRmπ − sinhRmπ

mπ
)( sinhLmπ

Lmπ
− coshLmπ

L2m2
π

)

(− coshLmπ
Lmπ

+ sinhLmπ
L2m2

π
)

, (4.27)

substituting this expression for C back into Eq. (4.25) the result for the pion
field is,

g(r) = b(R coshRmπ −
sinhRmπ

mπ

)(−cosh rmπ

rmπ

+
sinh rmπ

r2m2
π

)Γ′(Lmπ)

+ b(R sinhRmπ −
coshRmπ

mπ

)(
cosh rmπ

rmπ

− sinh rmπ

r2m2
π

)θ(R− r)

+ b(R coshRmπ −
sinhRmπ

mπ

)(
sinh rmπ

rmπ

− cosh rmπ

r2m2
π

)θ(r −R) ,

(4.28)

where,

Γ′(Lmπ) =

(
sinhLmπ
Lmπ

− coshLmπ
L2m2

π

coshLmπ
Lmπ

− sinhLmπ
L2m2

π

)
. (4.29)

We will see in the next chapter what effects these different boundary condi-
tions have on the axial form factor.
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The boundary condition for the sigma field is found using the PCAC
relation:

〈0|∂µAµa(x)|πb(q)〉 = fπm
2
πδabe

−iq·x (4.30)

comparing this with the infinite volume case,

〈0|∂µAµa(x)|πb(q)〉 = 〈σ〉m2
πδabe

−iq·x , (4.31)

we see that 〈σ〉 = fπ as r goes to infinity. In order to set a boundary condition
that approximates the lattice, we take the value of the sigma field at r = L
i.e. σ(r = L) in the infinite volume solution and set this to be the value at
the edge of the lattice [TALY05].

Once the field solutions have been placed in Eq. (4.7) and the deriva-
tives on the right-hand side performed1, the equation becomes,

4πR4B = τ(Ω,mq,mπ, R, L) , (4.32)

where τ is a rather complicated function not shown. Combining this with
the solution for f(r) at infinity:

lim
r→∞

f(r) = fπ = f0(R,Ω) + a(R,Ω)R , (4.33)

produces two eigenvalue equations, Eqs. (4.32) and (4.33) involving a number
of parameters, mq, mπ, B etc. To solve these two equations for R and Ω we
substitute the values for the parameters. In our case we used a number of
different values of mπ and then applied the Gell-Mann-Oakes-Renner relation
m2
π ∝ mq to work out the quark mass. B, the energy density is set to 13.97

MeV/fm3

The solutions for the cases L = 100 fm and L = 3 fm are shown below2.
Both the quark and the sigma fields show little variation. The pion field

however, is much larger for the finite volume. This is because it has not had
time to die off before it reaches the boundary of the lattice. As we shall see,
this behaviour will become significant in our study of the axial form factor.

* * *

Although this section has been essential to our understanding of the
hedgehog model, it is all introduction. The primary object of interest is the
axial form factor. In the next section we show the details of this calculation.

1The derivatives are found using ∂σ
∂r

∣∣∣∣
r=L

= 1
2
∂σ
∂r

∣∣∣∣
r=L−

+ 1
2
∂σ
∂r

∣∣∣∣
r=L+

and similarly for the

pion field.
2As the case for L =∞ is for all intents and purposes identical to the 100 fm case. We

may then refer to the L = 100 fm case as the infinite volume solution, while L = 3 fm will
be referred to as the finite volume solution.
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Figure 4.1: Fields for the infinite volume case: the solid line represents the
quark fields, the dotted line the sigma field and the dashed line the pion
fields respectively [TALY05].

Figure 4.2: Fields for a finite volume case: the solid line represents the quark
fields, the dotted line the sigma field and the dashed line the pion fields
respectively [TALY05].
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Figure 4.3: Kinematics of the reaction involving the axial current [PS].

4.2 The Axial Form Factor

The axial form factor provides information on the “spin-isospin distribution
of the nucleon” [BEM02]. Before studying the specifics of the hedgehog’s
form factor calculation, there is a little more to be said about the general
QCD form factor.

In QCD, the axial current is [PS],

Aµ = Q̄γµγ5τaQ (4.34)

where,

Q =

(
u
d

)
(4.35)

Placing this between states we get the familiar factors shown in Eq. (2.32).
Fig. 4.3 shows what happens kinematically. This is similar to what occurs
with the hedgehog, except here the axial current is instead,

~Aµ =
1

2
ψ̄γµγ5~τψθR + (∂µσ)~π − σ(∂µ~π) . (4.36)

Substituting the expression for ~Aµ into Eq. (2.32) gives,

〈HH |~j5a(q)|HH 〉 = 〈HH |
∫
d3r ei~q.~r

1

2
ψ̄γµγ5~τψθR + (∂µσ)~π − σ(∂µ~π)|HH 〉

which will then give the axial form factor.

The most difficult part of taking the Fourier transform involves the
quark field terms, i.e. 1

2
ψ̄γµγ5~τψ. As we are looking at the static case, this

term becomes 1
2
ψ̄γaγ5~τψ, where a = 1, 2, 3. Substituting the field solutions

a1172507
Text Box
 
                          NOTE:  
   This figure is included on page 38 
 of the print copy of the thesis held in 
   the University of Adelaide Library.
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into Eqs. (4.10) and (4.11), the Fourier transform becomes,∫
d3reiq·r

1

2
ψ̄(r)γaγ5~τψ(r) =∫ R

0

drr2

∫
dr̂eiq·r

1

2
χ†h

(
α+j0

(
Ωr

R

)
,−iα−~σ · r̂j1

(
Ωr

R

))
.γ0γ5γa~τ

(
α+j0

(
Ωr
R

)
iα−~σ · r̂j1

(
Ωr
R

) )χh
=

∫ R

0

drr2χ
†
h

2
(α2

+j
2
0

(
Ωr

R

)
− α2

−j
2
1

(
Ωr

R

)
)

[∫
dr̂eiq·r

]
σa~τχh

+

∫ R

0

drr2χ
†
h

2
2α2
−j

2
1

(
Ωr

R

)[∫
dr̂eiq·r~σ · r̂r̂a

]
~τχh (4.37)

where dr̂ is the solid angle,∫
dr̂ =

∫ π

0

dθ sin θ

∫ 2π

0

dφ . (4.38)

Now we can choose a particular axis and, for simplicity’s sake, we chose the
3-axis for both spin and isospin,

R.H.S. =

∫ R

0

drr2χ
†
h

2
(α2

+j
2
0

(
Ωr

R

)
− α2

−j
2
1

(
Ωr

R

)
)

[∫
dr̂eiq·r

]
σ3τ3χh

+

∫ R

0

drr2χ
†
h

2
2α2
−j

2
1

(
Ωr

R

)[∫
dr̂eiq·r~σ · r̂r̂3

]
τ3χh

(4.39)

From Chodos and Thorn [CT75], we know that

χ†hτiσjχh = −δijχ†hχh , (4.40)

so the only non-zero term coming from the dot product in the second term
is σ3r̂3. This leaves us with the equation,∫

d3reiq·r
1

2
ψ̄(r)iγ3γ5τ3ψ(r) =∫ R

0

drr2χ
†
h

2
(α2

+j
2
0

(
Ωr

R

)
− α2

−j
2
1

(
Ωr

R

)
)

[∫
dr̂eiq·r

]
σ3τ3χh

+

∫ R

0

drr2χ
†
h

2
2α2
−j

2
1

(
Ωr

R

)[∫
dr̂eiq·rr̂3r̂3

]
σ3τ3χh

(4.41)
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After considerable work, the two integrals over the solid angles give,∫
dr̂eiq·r = 4πj0(qr); (4.42)∫

dr̂eiq·rr̂3r̂3 = 4π(
j1(qr)

qr
− j2(qr)q̂3q̂3) , (4.43)

while from Eq. (4.40),

χ†hσ3τ3χh = −χ†hχh
= −N2 (4.44)

where N is some normalisation constant and there will be a similar minus
sign for 〈σ3τ3〉 in a hedgehog elementary nucleon cancelling this one. Putting
all this together our Fourier transform now becomes,∫

d3reiq·r
1

2
ψ̄(r)iγaγ5~τψ(r) =

2πN2

∫ R

0

drr2

{
(α2

+j
2
0

(
Ωr

R

)
− α2

−j
2
1

(
Ωr

R

)
)j0(qr) + 2α2

−j
2
1

(
Ωr

R

)

.(
j1(qr)

qr
− j2(qr)q̂3q̂3)

}
(4.45)

the last term in the integral involving the q̂3q̂3 is actually the quark contri-
bution to the pseudoscalar form factor GP (q2) and so we drop it here. The
contributions from the sigma and pion fields can be worked out in a similar
fashion, and when this is done, we get

GAhh

(
Q2
)

= 2πN2

∫ R

0

dr r2

{[
α2

+j
2
0

(
Ωr

R

)
− α2

−j
2
1

(
Ωr

R

)]
j0(qr)

+ α2
−2j2

1

(
Ωr

R

)
j1(qr)

qr

}
+ 4π

∫ ∞
0

dr r2f ′(r)g(r)
j1(qr)

qr

− 4π

∫ ∞
0

dr r2f(r)

[
g′(r)

j1(qr)

qr
+
g(r)

3r
(2j0(qr)− j2(qr))

]
(4.46)

where the last two contributions are from the σ and ~π fields.
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To compute the radius of the axial form factor we need GA(Q2)/G(0)
and must therefore find the expression for the axial charge gA. We can do
this by taking the limit q → 0 in Eq. (4.46):

lim
q→0

j0(qr) = lim
q→0

sin(qr)

qr
= 1 ,

and,

lim
q→0

j1(qr)

qr
= lim

q→0

(
sin(qr)

(qr)3
− cos(qr)

(qr)2

)
=

1

3
,

while the lim
q→0

j2(qr) = 0. Thus our final expression for gA is,

gA = 2πN2

∫ R

0

dr r2

{[
α2

+j
2
0

(
Ωr

R

)
− α2

−j
2
1

(
Ωr

R

)]
+ α2

−
2

3
j2

1

(
Ωr

R

)}

+
4π

3

∫ ∞
0

dr r2f ′(r)g(r)

− 4π

3

∫ ∞
0

dr r2f(r)

[
g′(r) +

2g(r)

r

]
. (4.47)

* * *

We now have an expression for GA(q2) and all that remains is to evalu-
ate the integral for several different values of L and mπ and observe how the
axial form factor varies. On top that, the axial radius is derived from GA(q2)
so we can extend our working even further to see what volume dependence
〈r2
A〉 might have. This is done in the next section.

4.3 The Axial Radius

The mean square radius can be found from the slope of the form factor. In
this case we are dealing with the axial radius and so needed to use Eq. (2.42).
Here it is again, 〈

r2
A

〉
= − 6

GA(0)

d

dQ2
GA(Q2)

∣∣∣∣
Q2=0

, (2.42)
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where Q2 = −q2. As stated in chapter 2, the experimental axial form factor
can be (well) approximated by a dipole of the form shown in Eq. (2.40).

GA(Q2) = gA

(
1

1 + Q2

Λ2

)2

(2.40)

Taking the derivative of the axial form factor,

d

dQ2
GA(Q2) = −2

gA
Λ2
, (4.48)

the axial radius becomes, 〈
r2
A

〉
=

12

Λ2
, (4.49)

where again Λ is the axial mass.
If we have only a small amount of data on GA(Q2) at discrete values of

Q2, we must resort to cruder measures to approximate the slope of the form
factor at Q2 = 0, such as the ratio “rise over run” i.e.

d

dQ2
GA(Q2) =

y2 − y1

x2 − x1

, (4.50)

where (x1, y1) and (x2, y2) are points on the graph GA(q2). We use this
second method to compare with lattice results because, as shown later on,
near q2 = 0 the model acts somewhat unexpectedly and the dipole form of
Eq. (2.42) no longer applies. Because of the periodicity requirement,

q =
2π

d
, (4.51)

the momentum q can only take certain integer multiples of 2π/L. These val-
ues are reasonably spaced out and so this way of finding the slope at Q2 = 0
is rather approximate. Nevertheless it still serves as an interesting compari-
son to the dipole option. Having said that, in the infinite volume situation,
periodicity is no longer a requirement and so we can take a point as close to
Q2 = 0 as we want. In this particular circumstance the values for the dipole
and the “rise over run” slope will be much closer.

* * *

Beginning with the Lagrangian and working with the Euler-Lagrange
equations, we were able to explain how Refs. [TALY05] and [CT75] obtained
the solutions in their respective scenarios. We explained how the non-linear
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boundary condition along with the infinite volume solution for the σ field
produced two eigenvalue equations from which we could extract the bag
frequency and radius R. Using these values, along with the solutions for
σ(~r) and ~π(~r) in the axial current we performed a Fourier transform to work
out the axial and pseudo-scalar form factors. This latter term was neglected
as we were primarily interested in the GA(Q2). From the physical dipole we
showed how to find the mean square radius.

In the next chapter we present our results for the hedgehog axial form
factor. By using multiple pion masses along with multiple volumes we seek
to show what effect the finite volume of the lattice has on the form factor.
Along with these results we also present our findings for the axial radius.



Chapter 5

Hedgehog Results

Before being able to calculate GA(Q2) the eigenvalue problems,

4πR4B = τ(Ω,mq,mπ, R, L) (4.32)

fπ = f0(R,Ω) + a(R,Ω)R , (4.33)

needed to be solved. Initially this was done for L → ∞, with eigenvalues
of the lowest energy state chosen as this gave the shortest bag radius R.
Using these values for R and Ω, the axial charge and axial form factor were
calculated.

Once the infinite volume solutions were found, the eigenvalues for the
finite volumes could be worked out. Table 5 shows these values for the case
where the physical pion mass is used. Notice that the values converge to that
for the d =∞ solution. As pointed out in Refs. [TALY05] and [HTY] these
values of R are rather large compared to the physical radius of ∼ 0.8 fm1.

1Since we are interested only in what happens when the boundary conditions are ap-
plied, the value of the radius is not really the issue.

d (fm) Ω R (fm)
5 1.60557 1.45501
6 1.58487 1.41483
10 1.58784 1.40043
20 1.58805 1.40000
∞ 1.58805 1.40000

Table 5.1: Numerical solutions to the eigenvalue equations for mπ = 140
MeV.

44
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Figure 5.1: Axial form factor of the nucleon plotted versus Q2 for a variety
of diameters (d) of the lattice volume. The pion mass, mπ, is 140 MeV.

[TALY05].

Once these tasks were completed it was possible to find GA(Q2). In
the next section we show the results for three different pion masses over a
range of volumes. After that the results for the axial radius are displayed.

5.1 GA(Q
2)

Figure 5.1 shows the result for the physical pion mass, mπ = 140 MeV. At
the moment lattice calculations of GA(Q2) have not reached this value - the
lowest calculations being performed are around the 270 MeV mark [Ale09]
- so it is interesting to see what results lattice computations may find when
they do reach the physical pion mass.

The eigenvalue equations for physical mπ could not be solved for some
of the smaller d volumes. The lowest lattice diameter for which there were
solutions was d = 5, corresponding to a gap of around 1.1 fm between the
bag surface and lattice edge. For the other pion masses, 300 and 500 MeV,
solutions were possible down to d = 3.6 fm with a gap between the bag
surface and lattice edge of ∼ 0.4 fm.
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Figure 5.2: Axial form factor of the nucleon plotted versus Q2 for a variety
of diameters (d) of the lattice volume. The pion mass, mπ, is 300 MeV.

In the physical pion case there is clearly a large volume dependence:
the axial form factor becomes flatter and flatter as the volume decreases.
Notice that it also turns over for small Q2 [HTY]. Although this particular
feature makes a fit with a simple dipole impossible as it produces a negative
axial radius, it does not take away from the fact that there are significant
changes to the GA(Q2) as the volume gets smaller.

Fig. 5.2 shows the mπ = 300 MeV case. This value is much closer to
the graph in Ref. [B+10] where the pion mass was 356 MeV. Notice that
the form factor no longer turns over for small Q2 as in the previous graph.
As before there is a strong, albeit smaller, volume dependence. For d = 3.6
fm the curve is much much lower than the d = 20 case - which is almost
identical to the infinite volume solution.

Finally, the much larger π mass is given in Fig. 5.3. In this result
there is very little volume dependence. All the curves are closely bunched
up together for the entire range of Q2, with only a very small difference
between smallest volume and the infinite volume. This tells us that the
volume dependence of the axial form factor disappears with increasing mπ.

It is clear from all these figures that for our model the axial form factor
has a large volume dependence for the range of pion masses that Bratt et al.
were using. For both the 140 MeV and 300 MeV cases the form factor became
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Figure 5.3: Axial form factor of the nucleon plotted versus Q2 for a variety
of diameters (d) of the lattice volume. The pion mass, mπ, is 500 MeV.

significantly flatter as the lattice volume decreased. Therefore, although it
is not possible to say conclusively, these results suggest that it is large finite
volume effects which are lowering the lattice values.

In the previous chapter we looked at the graphs of the quark, sigma and
pion fields for the both the finite (Fig. 4.2) and infinite (Fig. 4.1) volumes.
Comparing these two graphs we saw that both the quark and sigma fields
showed little change. However, the pion field was much larger for L = 3 than
for the infinite case and this was suggested to be caused by the fact that the
pion field did not have enough time to die off before reaching the edge of
the lattice. It would therefore be interesting to see if the behaviour of the
fields is mirrored by their individual contributions to GA(Q2). The specific
contributions made by each field to the axial form factor are shown in Figs.
5.4 - 5.6. In each case mπ = 300 MeV.

The graphs for the quark and sigma field show very little change over
the entire range of volumes. The quark fields are extremely similar for small
momentum transfer and then slowly separate for larger Q2. On the other
hand, the sigma field is virtually identical for all values of Q. These results
suggest that no significant volume dependence is coming from either of these
fields. However, the situation is very different for the pion field, Fig. 5.6
shows a large difference between curves for varying volumes. These three
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Figure 5.4: Quark field contribution to the axial form factor for mπ = 300
MeV.
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Figure 5.5: Sigma field contribution to the axial form factor for mπ = 300
MeV.
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Figure 5.6: Pion field contribution to the axial form factor for mπ = 300
MeV.

graphs do indeed mirror our results from chapter 2 and also confirm our
suspicion that the finite volume effects in this model were due to the pion
field.

Alternate Boundary Conditions

In the previous chapter we also discussed the use of a different boundary
condition for the pion field. Setting the pion field to be zero at the edge of
the lattice instead of the gradient, we found that resulting solution for the
pion field was somewhat altered. As Figs. 5.7 and 5.8 show, the axial form
factors have also been affected, no longer showing any volume dependence at
low Q2. These figures show quite clearly that the model’s volume dependence
relies on setting the gradient to zero at the boundary. Although these results
are interesting to look at, we follow Ref. [TALY05] in saying that it is the
original boundary conditions which represent the lattice periodic conditions.

The results for the hedgehog’s axial form factor have now been shown
in detail. We can now, therefore, turn to the axial radius, where once again
we use the original boundary conditions for the pion field. Given the rela-
tionship between the two observables - Eq. (2.42) - we know there must be
similar finite volume effects for the axial radius also.
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Figure 5.7: Axial form factor of the nucleon plotted versus Q2 for a variety
of diameters (d) of the lattice volume with new boundary conditions. The
pion mass, mπ, is 140 MeV.

5.2
〈
r2
A

〉
In the earlier discussion of the axial radius we mentioned that it was possible
to find the slope of GA, and thus 〈r2

A〉, in different ways. The conventional
way is to use the Eq. (2.40) for the physical dipole and take its derivative.
These results for the pion mass of 300 MeV are shown in Table. 5.2. The
other approach is to use the “rise over run” method. Figs. 5.9 - 5.11 show
the comparison between these two methods.

In the first graph, the two curves are almost identical, with the axial
radius demonstrating strong volume dependence, slowly converging to the
infinite volume value. Note also that for small volumes the axial radius is
negative. This is expected because of the shape of the form factor.

The case where the π mass is 300 MeV also has evidence of finite volume
effects. Importantly though, there are no negative radii - thus corresponding
much more closely to the physical 〈r2

A〉. There is now a discernible difference
between dipole and “slope” graphs but their shape is still essentially the
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Figure 5.8: Axial form factor of the nucleon plotted versus Q2 for a variety
of diameters (d) of the lattice volume with new boundary conditions. The
pion mass, mπ, is 300 MeV.

d (fm) 〈r2
A〉 (fm) Λ2 (GeV)

5 0.69746 0.818387
6 0.75503 0.786568
10 0.97325 0.692796
20 1.02556 0.674897
∞ 1.02207 0.676049

Table 5.2: Results for the axial radius and axial mass with mπ = 300 MeV.
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Figure 5.9: Axial radius of the nucleon versus the diameter of the lattice
volume d for mπ = 140 MeV.

same. However in order to compare with Bratt et al. it is perhaps best to
use the dipole, given this is what they used for their results.

Finally, for Fig. 5.11 there is very little volume dependence. This
agrees with what we saw for GA at this mass. What is interesting though is
that while the dipole rA hugs the infinite volume value, showing virtually no
difference, using the “rise over run” ratio for the slope showed a discernibly
larger volume dependence - reaching the d =∞ value really only for a diam-
eter of 13 fm.

Combining the graphs for the dipole into a plot (Fig. 5.12) of the
axial radius against the pion mass squared makes the volume dependence
even more explicit. It is interesting to note that even for large diameters -
exceptionally large in fact, when compared with the lattices currently in use
- the axial radius is notably smaller than the infinite volume for small mπ.

* * *

The results for the hedgehog axial form factor have now been shown
in detail. A comparison of Figs. 5.1 to 5.3 provides compelling evidence
of GA being flattened by finite volume effects. These effects are seen most
clearly in the mπ = 300 MeV case, with the 140 MeV case suffering from
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Figure 5.10: Axial radius of the nucleon versus the diameter of the lattice
volume d for mπ = 300 MeV.
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54 CHAPTER 5. HEDGEHOG RESULTS

æ

æ

æ

æ

æ
æ æ

à

à

à à
à

à
à

ò

ò

ò

ò
ò

ò
ò

ò

0.00 0.05 0.10 0.15 0.20 0.25
-0.5

0.0

0.5

1.0

mΠ
2 HGeV2L

Xr
A

2 \H
fm

2 L

d = ¥

ò d = 20

à d = 10

æ d = 5
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lattice volumes, including the infinite volume case.

some unphysical issues, while there were only small volumes effects at 500
MeV.

By looking at each field’s individual contribution, we found that the
finite volume effects were due to the pion field with quark and sigma fields
showing very little variation over the range of diameters used. This is what
was suspected in chapter 2 after comparing the graphs of the finite and
infinite volume solutions.

We also looked at the axial radius and saw that these results exhibited
a similar volume dependence.



Chapter 6

Corrections Involving Nucleon
Spin-flip

In the past few chapters we have looked at the hedgehog model and the
finite volume effects on its axial form factor. We saw that this effect was
quite large, given the right boundary conditions. However this particular set
up, although similar, is not directly related to the situation on the lattice,
and hence it is difficult to show that finite volume effects are the cause of the
discrepancy between experimental and lattice values. Indeed, Cohen [Coh02]
argues that the finite volume effects on the pion pole cannot be the cause
of small values of gA and if this is the case, then neither would GA(Q2) be
effected.

In an attempt to find an alternative explanation we now look at what
happens in the case where the situation more closely resembles the conditions
on the lattice. Calculations of one-loop finite volume corrections have already
been made by Beane and Savage [BS04] and Detmold and Lin [DL05] for the
nucleon axial form factor, and to these we add another correction.

For the case where the nucleons are considered point-like we calculate
corrections involving the tensor interaction which arise from the fact that
periodic boundary conditions mean that each nucleon is surrounded by a
neighbouring set of nucleons. This approximation is valid when the lattice
containing the nucleon is much larger than the nucleon. At this point it is
important to note that we will now be dealing with the conventional four-
dimensional box and not the spherical cavity that was used earlier; as a result
L is now the side length and not the radius.

55
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Figure 6.1: Lattice nucleon with spin up surrounded by neighbouring nucle-
ons.

6.1 Point-like Nucleon

For large L, the nucleon can be thought of as a point-like particle. Fig. [6.1]
shows a two-dimensional view of what the situation looks like when the stan-
dard boundary conditions are applied. As shown, each nucleon is surrounded
by other nucleons. These are a direct consequence of periodic/anti-periodic
boundary conditions1.

In chapter 3 we mentioned that in the CBM the quarks are confined
to a spherical bag with pion fields being allowed to move inside and outside
the bag thus bringing to mind the picture of a “cloud” of pions. Now at any
point in time, there is the possibility that one of the nucleons will emit a
pion which is then absorbed by one of the surrounding nucleons. In the case
where the pion emitted is a π0, the proton, say, which emits this pion will
most likely have its spin flipped. The neighbouring proton which absorbs the
π0 is also most likely to have its spin flipped2. This reaction is shown in Fig.
6.2 with time going up the page.

This spin flip that occurs has the effect of lowering the axial charge

1In actual fact there are surrounding nucleons in one other dimension bringing the
direct neighbour count to 6.

2This process cannot occur for π± since conservation of charge would prevent the proton
from remaining a proton and we may, for example, end up with particles of different charge
in neighbouring boxes thus destroying the periodicity requirement.
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Figure 6.2: Proton emitting a π0 before it being absorbed by a neighbouring
proton.

Figure 6.3: Proton emitting/absorbing a π0 with the axial current inserted.

gA which in turn will lower the axial form factor. Fig. 6.3 shows the same
process, except now an axial current is inserted in order to measure gA.

We now examine the magnitude of the change in the axial charge and
whether it is large enough to account for the discrepancy seen in lattice
simulations.
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Calculation

The amplitude for the reaction (in this case going from spin down to spin
up) shown on the right-hand side of Fig 6.3 looks like,〈

p1 ↑ p2 ↑ |Hint | p1 ↓ p2 ↑ π0
k

〉
G0

×
〈
p1 ↓ p2 ↑ π0

k |A2z | p1 ↓ p2 ↑ π0
k

〉
G0

×
〈
p1 ↓ p2 ↑ π0

k |Hint | p1 ↓ p2 ↓
〉
(6.1)

where,〈
p1 ↑ p2 ↑ |Hint | p1 ↓ p2 ↑ π0

k

〉
= 〈p1 ↑ |Hint | p1 ↓ π0

k〉

= i

√
2π

ωk

fNNπ
mπ

vkτ13〈χ1/2 |~σ1 · ~k |χ−1/2〉 ,

(6.2)

and,〈
p1 ↓ p2 ↑ π0

k |Hint | p1 ↓ p2 ↓
〉

= 〈p2 ↑ π0
k |Hint | p2 ↓〉

= (−i)
√

2π

ωk

fNNπ
mπ

vkτ23〈χ1/2 |~σ2 · ~k |χ−1/2〉 ,

(6.3)

while
〈
p1 ↓ p2 ↑ π0

k |A2z | p1 ↓ p2 ↑ π0
k

〉
is what we calculated in the previous

chapter. G0 = 1/ωk is the propagator and vk is the phenomenological func-
tion which for now we set to one3. Since only the π0 is involved in this
interaction, only the τi3 component is included in the amplitude.

Substituting Eqs. (6.2) and (6.3) into Eq. (6.1) and then taking the
Fourier transform we have,

〈A2z〉
〈

1

2

1

2

∣∣∣∣ ∫ d3k

(2π)3
ei
~k·~L

.(−i2)
2π

ωk

(
fNNπ
mπ

)2

(vk)
2 τ13 ~σ1 · ~k

1

(ωk)2
τ23 ~σ2 · ~k

∣∣∣∣− 1

2
− 1

2

〉
= 〈A2z〉

〈
1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2 ∫
d3k ei

~k·~L (vk)
2 ~σ1 · ~k ~σ2 · ~k

(k2 +m2
π)3/2

∣∣∣∣− 1

2
− 1

2

〉
.

(6.4)

3Later, when we look at the bag-like nucleon, vk is no longer equal to one.
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Setting vk = 1 and since we know that

~kei
~k·~L =

~∇
i
ei
~k·~L , (6.5)

for ~∇ = ∂/∂~L, this becomes,

= 〈A2z〉
〈

1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2

~σ1 ·
∇
i
~σ2 ·
∇
i

∫
d3k

ei
~k·~L

(k2 +m2
π)3/2

∣∣∣∣− 1

2
− 1

2

〉
= 〈A2z〉

〈
1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2

~σ1 ·
∇
i
~σ2 ·
∇
i

∫ ∞
0

dk
k2

(k2 +m2
π)3/2

.

∫
dk̂ei

~k·~L
∣∣∣∣− 1

2
− 1

2

〉
.

However, as we found earlier, ( Eq. (4.42)),∫
dk̂ei

~k·~L = 4πj0(kL); (4.42)

so the amplitude becomes,

〈A2z〉
〈

1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2

~σ1 ·
∇
i
~σ2 ·
∇
i

∫ ∞
0

dk
k2

(k2 +m2
π)3/2

.4π j0(kL)

∣∣∣∣− 1

2
− 1

2

〉
.

(6.6)

Performing the momentum integral we have:∫ ∞
0

dk
k2

(k2 +m2
π)3/2

j0(kL) = K0(mπL) , (6.7)

where K0(mπL) is the modified Bessel function. Substituting this result into
Eq. (6.6) the amplitude ends up as,

〈A2z〉
〈

1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2

~σ1 ·
∇
i
~σ2 ·
∇
i

∫ ∞
0

dk
k2

(k2 +m2
π)3/2

.4π j0(kL)

∣∣∣∣− 1

2
− 1

2

〉
= 〈A2z〉

〈
1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2

~σ1 ·
∇
i
~σ2 ·
∇
i

4πK0(mπL)

∣∣∣∣− 1

2
− 1

2

〉
.

(6.8)
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Figure 6.4: Two nucleons with spin up a distance L apart.

In this reaction the spins of the protons are being flipped from down to
up, which means that the only component from ~σi · ∇ to contribute to this
amplitude is σi+ since,

〈1/2 |σ+| −1/2〉 = 〈1/2 | 1/2〉
= 1 (6.9)

where the i index refers to the particular proton involved. If,

σi± = ∓1

2
(σix ± iσiy); σi0 = σiz, (6.10)

and similarly,

∇± = ∓1

2
(∇x ± i∇y); ∇0 = ∇z, (6.11)

then

~σi · ∇ = −2(σi−∇+ + σi+∇−) + σi0∇0. (6.12)

Since only the σi+ terms contribute, we can substitute σi+∇− for ~σi · ∇ in
Eq. (6.8). Then, given that the interaction is proportional to dot product of
σi± and L, it is clear from Fig. 6.4 that the ∇− = 1

2
(∇x − i∇y) term will be

greatest when ∇y = ∂/∂L. Including these extra modifications we have
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〈A2z〉
〈

1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2

~σ1 ·
∇
i
~σ2 ·
∇
i

4πK0(mπL)

∣∣∣∣− 1

2
− 1

2

〉
= 〈A2z〉

〈
1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2
4π

i2
4 (σ1+∇−)(σ2+∇−)K0(mπL)

∣∣∣∣− 1

2
− 1

2

〉
= 〈A2z〉

〈
1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2
4π

i2
4σ1+(− i

2

∂

∂L
)σ2+(− i

2

∂

∂L
)

.K0(mπL)

∣∣∣∣− 1

2
− 1

2

〉
= 〈A2z〉

〈
1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
fNNπ
mπ

)2

4π
4

i2
i2

4
σ1+σ2+

∂2

∂L2
K0(mπL)

∣∣∣∣− 1

2
− 1

2

〉
.

(6.13)

Differentiating the Bessel K function,

∂2

∂L2
K0(mπL) =

1

2
m2
π(K0(mπL) +K2(mπL)), (6.14)

and substituting in,

4π

(
fNNπ
mπ

)2

=

(
gA
2fπ

)2

; (6.15)

the final form of the amplitude is:

〈A2z〉
〈

1

2

1

2

∣∣∣∣ τ13τ23

(2π)2

(
gA
2fπ

)2

σ1+σ2+
m2
π

2
[K0(mπL) +K2(mπL)]

∣∣∣∣− 1

2
− 1

2

〉
.

(6.16)

A plot of this function, not including the 〈A2z〉 part of course, and for physical
pion mass is shown in Fig. 6.5. This graph shows us that at the lattice size of
L = 2 fm the correction to the form factor is ∼ 1 % multiplying this by 4 to
include the other nearest neighbour protons, the total moves up to roughly
4 % for physical mπ. Corrections from other neighbours can be included
as well. If we look at Fig. 6.6, then the light gray shows the neighbouring
protons which have already been included. The boxes labelled “N” are the
next largest contributors, with L →

√
2L since the distance between them

and the original proton is
√

2L, there are four of these. The eight protons
labelled “M” are similar to the previous one except now there is a factor of
1/2 out the front as well. Finally, the smallest contributors, “J”, as well as
including the 1/2 factor out the front, have L →

√
3L. Adding up all these

additional terms brings the total correction to about 8.4 %. While, in itself,
this is not sufficient to explain the full suppression seen in lattice QCD it is
a substantial correction.
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Figure 6.5: Correction to the axial form factor as a result of proton interac-
tions via the π0.
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Figure 6.6: Static lattice box with surrounding nucleons.



Chapter 7

Conclusion

Lattice QCD has been extremely successful over the course of its lifetime.
New techniques, coupled with ever increasing computational power have led
to lattice values extremely close to their experimental partners. As the field
advances, more improvements can be expected, leading to an even better
understanding of QCD.

Although LQCD has indeed much to be proud of, there are still a few
issues which need to be ironed out. In this thesis we have discussed how state-
of-the-art lattice calculations consistently give low values for the curvature
of the nucleon axial form factor. The examination of the hedgehog’s form
factor may provide some insight into this discrepancy.

It is clear from the results that the model’s axial form factor suffers
from large finite volume effects. These effects were shown to come from
the pion field which was unable to die out by the time it reached the lat-
tice boundary in the smaller volumes. This in turn arose from our periodic
boundary condition requiring that the gradient be zero at the lattice value.
The finite volume effects on the axial form factor also led to a variation of
the axial radius with volume at small pion mass.

These displays of finite volume dependence provide tantalising sugges-
tions that if the lattice size used in the calculation were larger, the values
produced by the lattice would be much closer to the empirical values. This
further emphasises the point of [TALY05] that the rule of thumb,

mπL� 4

should really be [TALY05]:

mπ(L− 2R)� 4 ,

in order to produce results which resemble nature more closely. However, be-
cause the model used remains somewhat removed from the lattice situation,
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it is impossible to say with full assurance that the described finite volume
effects are indeed the cause of the discrepancy in current lattice calculations.

Another possible reason for the lowering of the axial form factor ex-
amined was the pion interaction between neighbouring nucleons. Using pion
exchange and conventional lattice boundary conditions provided a scenario
much closer to the actual situation on the lattice. However, with corrections
being around 10 % for a 2 fm box it was not possible to account for the entire
difference between lattice and experimental values.

Although a complete explanation for the lower form factor continues
to elude the best efforts, this thesis has produced some reasons which may
well make up part of any full solution to the problem. Further work is
needed, perhaps using the CBM or some other model to ultimately pin down
a complete explanation.
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