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Abstract

The success of many machine learning and pattern recogmit&thods relies heavily upon the
identification of an appropriate distance metric on the imfaa. It is often beneficial to learn such a
metric from the input training data, instead of using a ditfane such as the Euclidean distance. In
this work, we propose a boosting-based technique, terncemsBM ETRIC, for learning a quadratic
Mahalanobis distance metric. Learning a valid Mahalandidstance metric requires enforcing
the constraint that the matrix parameter to the metric rempositive semidefinite. Semidefinite
programming is often used to enforce this constraint, besdwot scale well and is not easy to
implement. BDOSTMETRIC is instead based on the observation that any positive sénitdema-
trix can be decomposed into a linear combination of tracefank-one matrices. BOSTMETRIC
thus uses rank-one positive semidefinite matrices as waakdes within an efficient and scalable
boosting-based learning process. The resulting meth@dsaamy to implement, efficient, and can
accommodate various types of constraints. We extend imadltboosting algorithms in that its
weak learner is a positive semidefinite matrix with trace mmk being one rather than a classifier
or regressor. Experiments on various data sets demongiedtthe proposed algorithms compare
favorably to those state-of-the-art methods in terms afsifecation accuracy and running time.

Keywords: Mabhalanobis distance, semidefinite programming, colunmegsion, boosting, La-
grange duality, large margin nearest neighbor

1. Introduction

The identification of an effective metric by which to measure distances betdagta points is an
essential component of many machine learning algorithms includimgarest neighboklNN), k-

means clustering, and kernel regression. These methods have Ipdied &pa range of problems,
including image classification and retrieval (Hastie and Tibshirani, 199t al., 2008; Jian and
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Vemuri, 2007; Xing et al., 2002; Bar-Hillel et al., 2005; Boiman et al., 208®me et al., 2007)
amongst a host of others.

The Euclidean distance has been shown to be effective in a wide varieycamstances.
Boiman et al. (2008), for instance, showed that in generic object néomg with local features,
kNN with a Euclidean metric can achieve comparable or better accuracy thansmyhisticated
classifiers such as support vector machines (SVMs). The Mahaladisbasice represents a gen-
eralization of the Euclidean distance, and offers the opportunity to leaistande metric directly
from the data. This learned Mahalanobis distance approach has kmem tshoffer improved per-
formance over Euclidean distance-based approaches, and wasilpditishown by Wang et al.
(2010b) to represent an improvement upon the method of Boiman et aB)(2[d0s the prospect
of a significant performance improvement from fundamental machineiteaaigorithms which
inspires the approach presented here.

If we let a,i = 1,2---, represent a set of points iRP, then the Mahalanobis distance, or
Gaussian quadratic distance, between two points is

lai—ajlx = /(@ —aj)" X (ai —ay),

whereX = 0 is a positive semidefinite (p.s.d.) matrix. The Mahalanobis distance is thuspara
eterized by a p.s.d. matrix, and methods for learning Mahalanobis distarecéiseaefore often
framed as constrained semidefinite programs. The approach we progesehowever, is based
on boosting, which is more typically used for learning classifiers. The pyirmativation for the
boosting-based approach is that it scales well, but its efficiency in deaiihdarge data sets is also
advantageous. The learning of Mahalanobis distance metrics reprasgpesific application of a
more general method for matrix learning which we present below.

We are interested here in the case where the training data consist of a@es$twaints upon the
relative distances between data points,

1= {(ai,aj,ak) ’diS’[ij < diStik}, Q)

wheredist;; measures the distance betwesgranda;. Each such constraint implies tha; “is
closer toa; thang; is to a”. Constraints such as these often arise when it is knownghatda;
belong to the same class of data points whijl@y belong to different classes. These comparison
constraints are thus often much easier to obtain than either the class lalistaioces between data
elements (Schultz and Joachims, 2003). For example, in video contentaktidees extracted from
successive frames at close locations can be safely assumed to beloagéoid person, without
requiring the individual to be identified. In web search, the results retuby a search engine
are ranked according to the relevance, an ordering which allows aahatnversion into a set of
constraints.

The problem of learning a p.s.d. matrix suchXasan be formulated in terms of estimating a
projection matrix. whereX = LL ". This approach has the advantage that the p.s.d. constraint
is enforced through the parameterization, but the disadvantage is thatdtierrship between the
distance measure and the parameter matrix is less direct. In practice thia@ppeas lead to local,
rather than globally optimal solutions, however (see Goldberger et al4, f2d@xample).

Methods such as Xing et al. (2002), Weinberger et al. (2005), Wageband Saul (2006) and
Globerson and Roweis (2005) which seldirectly are able to guarantee global optimality, but
at the cost of a heavy computational burden and poor scalability as it isiviat to preserve the
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semidefiniteness of during the course of learning. Standard approaches such as irgeindid P)
Newton methods need to calculate the Hessian. This typically redd{@¥ storage and has worst-
case computational complexity of approximat€yD8°) whereD is the size of the p.s.d. matrix.
This is prohibitive for many real-world problems. An alternating projectet{(gjradient approach
is adopted in Weinberger et al. (2005), Xing et al. (2002) and Globesigd Roweis (2005). The
disadvantages of this algorithm, however, are: 1) it is not easy to implememiardy parameters
are involved; 3) usually it converges slowly.

We propose here a method for learning a p.s.d. matrix labeedsBMETRIC. The method
is based on the observation that any positive semidefinite matrix can be desemninto a lin-
ear positive combination of trace-one rank-one matrices. The wealele@arnBoOSTMETRIC is
thus a trace-one rank-one p.s.d. matrix. The proposedBMETRIC algorithm has the following
desirable properties:

1. BoosTMETRIC s efficient and scalable. Unlike most existing methods, no semidefinite pro-
gramming is required. At each iteration, only the largest eigenvalue andriessponding
eigenvector are needed.

2. BOOSTMETRIC can accommodate various types of constraints. We demonstrate the use of
the method to learn a Mahalanobis distance on the basis of a set of proximityadsam
constraints.

3. Like AdaBoost, BOSTMETRIC does not have any parameter to tune. The user only needs to
know when to stop. Also like AdaBoost it is easy to implement. No sophisticatihiap-
tion techniques are involved. The efficacy and efficiency of the pegp&O0STMETRIC is
demonstrated on various data sets.

4. We also propose a totally-corrective version @@ TMETRIC. As in TotalBoost (Warmuth
et al., 2006) the weights of all the selected weak learners (rank-one estaie updated at
each iteration.

Both the stage-wise 80STMETRIC and totally-corrective BOSTMETRIC methods are very
easy to implement.

The primary contributions of this work are therefore as follows: 1) Werekteaditional boost-
ing algorithms such that each weak learner is a matrix with the trace and ranle-efwhich must
be positive semidefinite—rather than a classifier or regressor; 2) Tpmoged algorithm can be
used to solve many semidefinite optimization problems in machine learning and comwipiate.
We demonstrate the scalability and effectiveness of our algorithms on memmigaPart of this
work appeared in Shen et al. (2008, 2009). More theoretical anaydigxperiments are included
in this version. Next, we review some relevant work before we preserdlgorithms.

1.1 Related Work

Distance metric learning is closely related to subspace methods. Principabeentpanalysis
(PCA) and linear discriminant analysis (LDA) are two classical dimensionaditiuction tech-
niques. PCA finds the subspace that captures the maximum variance withinpthelata while
LDA tries to identify the projection which maximizes the between-class distarttearnimizes the
within-class variance. Locality preserving projection (LPP) finds a lipeajection that preserves
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the neighborhood structure of the data set (He et al., 2005). EssentRifhinearly approximates
the eigenfunctions of the Laplace Beltrami operator on the underlying niénifdve connection
between LPP and LDA is also revealed in He et al. (2005). Wang et dl0&Gxtended LPP to
supervised multi-label classification. Relevant component analysis (RE#)Hillel et al., 2005)
learns a metric fronequivalenceconstraints. RCA can be viewed as extending LDA by incorpo-
rating must-link constraints and cannot-link constraints into the learning guoee Each of these
methods may be seen as devising a linear projection from the input spaceweradimensional
output space. If this projection is characterized by the matrithen note that these methods may
be related to the problem of interest here by obser¥ing LL . This typically implies tha is
rank-deficient.

Recently, there has been significant research interest in superistatbg metric learning using
side information that is typically presented in a set of pairwise constraintst Mahese methods,
although appearing in different formats, share a similar essential ideaarno & optimal dis-
tance metric by keeping training examples in equivalence constraints clabaf ¢he same time,
examples in in-equivalence constraints well separated. Previous Wiikget al. (2002), Wein-
berger et al. (2005), Jian and Vemuri (2007), Goldberger et aD4ARBar-Hillel et al. (2005) and
Schultz and Joachims (2003) fall into this category. The requiremenXthaist be p.s.d. has led
to the development of a number of methods for learning a Mahalanobis distdrich rely upon
constrained semidefinite programing. This approach has a number of limitdtimmever, which
we now discuss with reference to the problem of learning a p.s.d. matrixdrset of constraints
upon pairwise-distance comparisons. Relevant work on this topic incBaleBlillel et al. (2005),
Xing et al. (2002), Jian and Vemuri (2007), Goldberger et al. (200&)inberger et al. (2005) and
Globerson and Roweis (2005) amongst others.

Xing et al. (2002) first proposed the idea of learning a Mahalanobis nfetridustering using
convex optimization. The inputs are two sets: a similarity set and a dis-similaritylseglgorithm
maximizes the distance between points in the dis-similarity set under the cont$taaithie distance
between points in the similarity set is upper-bounded. Neighborhood canpanalysis (NCA)
(Goldberger et al., 2004) and large margin nearest neighbor (LMNWinberger et al., 2005)
learn a metric by maintaining consistency in data’s neighborhood and keegeantargin at the
boundaries of different classes. It has been shown in Weinbende®aul (2009); Weinberger et al.
(2005) that LMNN delivers the state-of-the-art performance among disgnce metric learning
algorithms. Information theoretic metric learning (ITML) learns a suitable me&ged on infor-
mation theoretics (Davis et al., 2007). To partially alleviate the heavy computtistandard IP
Newton methods, Bregman’s cyclic projection is used in Davis et al. (200¥3.idea is extended
in Wang and Jin (2009), which has a closed-form solution and is compuéji@ificient.

There have been a number of approaches developed which aim to intheogealability of
the process of learning a metric parameterized by a p.s.d. nXetfior example, Rosales and Fung
(2006) approximate the p.s.d. cone using a set of linear constraintsdraezldiagonal dominance
theorem. The approximation is not accurate, however, in the sense thabgemioo strong a con-
dition on the learned matrix—one may not want to learn a diagonally dominant matiexnative
optimization is used in Xing et al. (2002) and Weinberger et al. (2005) teedblr semidefinite
problem iteratively. At each iteration, a full eigen-decomposition is applieggrdgect the solu-
tion back onto the p.s.d. coneoBSTMETRIC is conceptually very different to this approach, and
additionally only requires the calculation of the first eigenvector. Tsu@é €2005) proposed to
use matrix logarithms and exponentials to preserve positive definitenesgheFapplication of
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semidefinite kernel learning, they designed a matrix exponentiated grask¢imbd to optimize von
Neumann divergence based objective functions. At each iteration akreafronentiated gradient,
a full eigen-decomposition is needed. In contrast, we only need to finddtdabpeigenvector.

The approach proposed here is directly inspired by the LMNN proposéginberger and Saul
(2009); Weinberger et al. (2005). Instead of using the hinge losgever, we use the exponential
loss and logistic loss functions in order to derive an AdaBoost-like (oitBogst-like) optimization
procedure. In theory, any differentiable convex loss function caappiied here. Hence, despite
similar purposes, our algorithm differs essentially in the optimization. While thautation of
LMNN looks more similar to SVMs, our algorithm, termedBSTMETRIC, largely draws upon
AdaBoost (Schapire, 1999).

Column generation was first proposed by Dantzig and Wolfe (1960)dieing a particular
form of structured linear program with an extremely large number of vi@salbrhe general idea
of column generation is that, instead of solving the original large-scaldgmmogmaster problem),
one works on a restricted master problem with a reasonably small subthet wdiriables at each
step. The dual of the restricted master problem is solved by the simplex metimbthe optimal
dual solution is used to find the new column to be included into the restricted rpasidem. LP-
Boost (Demiriz et al., 2002) is a direct application of column generation isthap Significantly,
LPBoost showed that in an LP framework, unknown weak hypothesebe& learned from the dual
although the space of all weak hypotheses is infinitely large. Shen ar@D10) applied column
generation to boosting with general loss functions. It is these resultsrttiatpin BOOSTMETRIC.

The remaining content is organized as follows. In Section 2 we preser geeliminary math-
ematics. In Section 3, we show the main results. Experimental results areqmam Section
4,

2. Preliminaries

We introduce some fundamental concepts that are necessary for settng problem. First, the
notation used in this paper is as follows.

2.1 Notation

Throughout this paper, a matrix is denoted by a bold upper-case I&ttea(column vector is
denoted by a bold lower-case lett&).(Theith row of X is denoted byX;. and theith columnX;.
1 and®@are column vectors of 1's and 0’s, respectively. Their size shoutiddae from the context.
We denote the space Bfx D symmetric matrices b$P, and positive semidefinite matrices Y.
Tr () is the trace of a symmetric matrix afl,Z) = Tr(XZ") = 3;; Xi; Z;; calculates the inner
product of two matrices. An element-wise inequality between two vectorsilike meanay; < v
for all i. We useX := 0 to indicate that matriX is positive semidefinite. For a matri € SP, the
following statements are equivalent: X)>= 0 (X € SE); 2) All eigenvalues oiX are nonnegative
(A\i(X)>0,i=1,---,D); and 3)vu € RP, u" Xu > 0.

2.2 A Theorem on Trace-one Semidefinite Matrices

Before we present our main results, we introduce an important theorérsettves the theoretical
basis of BBOSTMETRIC.
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Definition 1 For any positive integer m, given a set of poifs, ...,Xm} in a real vector or matrix
spaceSp, theconvex hullof Spspanned by m elements$pis defined as:

Convin(Sp) = {z{‘llwixi‘wi >0,5Mw =1, € Sp}.
Define the linear convex span ®pas:!

Conv(Sp) = UConvm Sp = {z{ilwixi‘wi >0,5m,w =1,% €Spme Z+}.

HereZ, denotes the set of all positive integers.

Definition 2 Let us defin€ 1 to be the space of all positive semidefinite matrDéessSE with trace
equaling one:
M ={X|X=0,Tr(X)=1};

andW¥; to be the space of all positive semidefinite matrices with both trace and raaitiieg| one:
W, ={Z|Z>>0,Tr(Z) =1,Rank(Z) =1}.
We also defin€, as the convex hull 3¢4, that is,
M2 = Conv(W¥q).

Lemma 3 LetW, be a convex polytope defined#s = {A € RP|\¢>0,vk=0,--- D, ZE:ﬂ\k =
1}, then the points with only one element equaling one and all the others beasgaze the extreme
points (vertexes) d¥,. All the other points can not be extreme points.

Proof Without loss of generality, let us consider such a pain& {1,0,---,0}. If A" is not an
extreme point of¥,, then it must be possible to express it as a convex comblnatlon of a set of
other points in Wa: N = s TWiA', w > 0, z, w=1 and\' 7£ N\. Then we have equations:

M WAl =0, ¥k =2,---,D. It follows thatA} =0, Vi andk = 2,---,D. That means\} = 1Vi.

This is inconsistent with' #\'. Therefore such a convex combination does not exist)\émabst

be an extreme point. It is trivial to see that @nthat has more than one active element is an convex
combination of the above-defined extreme points. So they can not be exicénte |

Theorem 4 I'1 equals tol o; that is, I'; is also the convex hull 3P;1. In other words, allZ € W,
form the set of extreme pointsIof.

Proof It is easy to check that any convex combinatipiw; Z;, such thatZ; € Wy, resides in 1,
with the following two facts: 1) a convex combination of p.s.d. matrices is still a.msadrix; 2)
Tr(3iwiZi) = Siw Tr (Z;) = 1.

By denotingA; > --- > Ap > 0 the eigenvalues of & € I'1, we know thatA; < 1 because
PN =Tr(Z) = 1. Therefore, all eigenvalues @f must satisfy:A; € [0,1], Vi = 1,---,D and

1. With slight abuse of notation, we also use the syn@anhv(-) to denote convex span. In general it is not a convex
hull.
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yPAi = 1. By looking at the eigenvalues @ and using Lemma 3, it is immediate to see that a
matrixZ such tha = 0, Tr (Z) = 1 andRank(Z) > 1 can not be an extreme pointlof. The only
candidates for extreme points are those rank-one matiiges { andA;... p = 0). Moreover, it is
not possible that some rank-one matrices are extreme points and othertt dexause the other
two constraintZ = 0 andTr (Z) = 1 do not distinguish between different rank-one matrices.
Hence, alZ € W; form the set of extreme points bf. Furthermorel 1 is a convex and compact
set, which must have extreme points. The Krein-Milman Theorem (Krein ahdavl, 1940) tells
us that a convex and compact set is equal to the convex hull of its extremts.p |

This theorem is a special case of the results from Overton and Womet$18g2)(in the context
of eigenvalue optimization. A different proof for the above theorem’ssgarnversion can also be
found in Fillmore and Williams (1971).

In the context of semidefinite optimization, what is of interest about Thedrésras follows:
it tells us that a bounded p.s.d. matrix constraint I'; can be equivalently replaced with a set of
constrains which belong t0,. At the first glance, this is a highly counterintuitive proposition be-
causd » involves many more complicated constraints. BetlandZ; (Vi =1,---,m) are unknown
variables. Even worsey could be extremely (or even infinitely) large. Nevertheless, this is the type
of problems thaboostingalgorithms are designed to solve. Let us give a brief overview of boosting
algorithms.

2.3 Boosting

Boosting is an example of ensemble learning, where multiple learners aralttaiselve the same
problem. Typically a boosting algorithm (Schapire, 1999) creates a sitrglegdearner by incre-
mentally adding base (weak) learners to the final strong learner. Thddmser has an important
impact on the strong learner. In general, a boosting algorithm builds oeraspscified base learn-
ing procedure and runs it repeatedly on modified data that are outpuotstieoprevious iterations.

The general form of the boosting algorithm is sketched in Algorithm 1. Thet&ito a boosting
algorithm are a set of training exampdeand their corresponding class labglsThe final output is
a strong classifier which takes the form

Fw(X) = 37-1wjh; (). ey
Hereh;(-) is a base learner. From Theorem 4, we know that a mxteéx 1 can be decomposed as
X=31,wZj,Zjel. (3)

By observing the similarity between Equations (2) and (3), we may vigws a weak classifier
and the matrixX as the strong classifier that we want to learn. This is exactly the problem that
boosting methods have been designed to solve. This observation insptresalve a special type

of semidefinite optimization problem using boosting techniques.

The sparse greedy approximation algorithm proposed by Zhang (RO&3¥fficient method for
solving a class of convex problems, and achieves fast convergatese It has also been shown that
boosting algorithms can be interpreted within the general framework ofgZ{#003). The main
idea of sequential greedy approximation, therefore, is as follows.nGimeanitializationug, which
is in a convex subset of a linear vector space, a matrix space or a fualctjpace, the algorithm
findsu; andA € (0, 1) such that the objective functidh((1— A)ui_1 + Au;) is minimized. Then the
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Algorithm 1 The general framework of boosting.

Input: Training data.
1 Initialize a weight set1 on the training examples;
2 for j=1,2,---,do
3 - Receive a weak hypothedig(-);
- Calculatew; > 0;
- Updateu.

b

Output: A convex combination of the weak hypothesBg(x) = zlewj h;j(x).

solutiony; is updated ag; = (1—A)u;_1 + Au; and the iteration goes on. Cleanlly,must remain in
the original space. As shown next, our first case, which learns a meinig the hinge loss, greatly
resembles this idea.

2.4 Distance Metric Learning Using Proximity Comparison

The process of measuring distance using a Mahalanobis metric is equtedlararly transforming
the data by a projection matrix € RP*9 (usuallyD > d) before calculating the standard Euclidean
distance:

dist] = L e —L a3 = (ai—aj) LL " (& —a)) = (& — &) X (a —aj).
As described above, the problem of learning a Mahalanobis metric capdreazhed in terms
of learning the matridt, or the p.s.d. matriX. If X = I, the Mahalanobis distance reduces to the
Euclidean distance. K is diagonal, the problem corresponds to learning a metric in which different
features are given different weightsk.a.,feature weighting. Our approach is to learn a full p.s.d.
matrix X, however, using BOSTMETRIC.

In the framework of large-margin learning, we want to maximize the distantveekadist;;
anddisti. That is, we wish to makeistf, — distf; = (& —ax)" X (a —ax) — (a —aj) " X(a —a) as
large as possible under some regularization. To simplify notation, we reweitdistance between
dist}, anddistf asdistf, — dist; = (A;,X), where

Ar=(a—ad@-a) —(a—a)a-a), (4)
forr=1,---,|Z| and|Z| is the size of the set of constrairfglefined in Equation (1).

3. Algorithms

In this section, we define the optimization problems for metric learning. We maindgiigate the

cases using the hinge loss, exponential loss and logistic loss functiarsleinto derive an efficient
optimization strategy, we look at their Lagrange dual problems and desagtihg-like approaches
for efficiency.

3.1 Learning with the Hinge Loss

Our goal is to derive a general algorithm for p.s.d. matrix learning with thgehlass function.
Assume that we want to find a p.s.d. matix= 0 such that a set of constraints

(A, Xy>0,r=12,---,

1014



METRIC LEARNING USING BOOSTING-LIKE ALGORITHMS

are satisfied awell as possible. Herd; is as defined in (4). These constraints need not all be
strictly satisfied and thus we define the margin= (A, X), Vr.

Putting it into the maximum margin learning framework, we want to minimize the following
trace norm regularized objective functiop; F ((Ar, X))+ VTr (X), with F (-) a convex loss function
andv a regularization constant. Here we have used the trace norm regulariz&iocourse a
Frobenius norm regularization term can also be used here. Minimizing theifius norm|X||2,
which is equivalent to minimize th& norm of the eigenvalues of, penalizes a solution that is far
away from the identity matrix. With the hinge loss, we can write the optimization probk

mag(p—vz‘rﬂlir, st (A, X) > p—&,VrX = 0,Tr(X) =1; & >0. (5)

p.X,

HereTr (X) = 1 removes the scale ambiguity because the distance inequalities are scéainvar
We can decomposk¥ into: X = zlewjzj, with wj > 0, Rank(Z;) = 1 andTr (Z;) = 1, Vj.

So we have

(ArX) = (A 31w Zj) = 3aWj(Ar, Zj) = 31-aWjHrj = Hew, vr. (6)

HereH,; is a shorthand foHj = (A, Z;). Clearly,Tr (X) = 1'w. Using Theorem 4, we replace
the p.s.d. conic constraint in the primal (5) with a linear convex combinatioard-one unitary
matrices:X = ¥ ;w;Z;j, andl' w = 1. SubstitutingX in (5), we have

ma.%(p—vzﬂlzr, st:HW>p—&,(r=1,...[7));w>01w=1;& >0. (7)
PW,

The Lagrange dual problem of the above linear programming probleia €&sily derived:

rpLiUn st z'i'lurHr; <m"1'u=1,0<u<wvi.
We can then use column generation to solve the original problem iterativétoking at both the
primal and dual problems. See Shen et al. (2008) for the algorithmic ddtailkis work we are
more interested in smooth loss functions such as the exponential loss artid logs as presented
in the sequel.

3.2 Learning with the Exponential Loss

By employing the exponential loss, we want to optimize

r;gig] log( Elexp(—pr))—var (X)
stipr = (A, X),r=21,--- |Z], X = 0. (8)

Note that: 1) We are proposing a logarithmic version of the sum of expohksiga This transform
does not change the original optimization problem of sum of exponent@ablesause the logarith-
mic function is strictly monotonically increasing. 2) A regularization ta@ngX) has been applied.
Without this regularization, one can always multipdyby an arbitrarily large scale factor in order
to make the exponential loss approach zero in the case of all constramysshésfied. This trace-
norm regularization may also lead to low-rank solutions. 3) An auxiliary égia ,r = 1,... must
be introduced for deriving a meaningful dual problem, as we show later.
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We now derive the Lagrange dual of the problem that we are interest&tiénoriginal problem
(8) now becomes

minlog (3, exp(—pr)) +vi'w
We have used the Equation (6). In order to derive its dual, we write itsalbgggin
L(w,p,u) = log(3," exp(—pr)) +vA W+ 3,7 ur(pr — Hrw) —p'w,
with p > 0. The dual problem is obtained by finding the saddle poirt, dhat is, suginfwp L.

L1 Lo
w;L:ianog(ZElexp(—pr))+qu+i51vf(v1T s uH. —phw (10)
z‘rﬂlur logu;.

The infimum ofL1 is found by setting its first derivative to zero and we have:

— ifu>01"u=
inle:{ S Ur loguy |fu_q,1u 1,
—00 otherwise.

The infimum is Shannon entroply; is linear inw, hence it must b8.0It leads to

HuH, <va (11)

The Lagrange dual problem of (9) is an entropy maximization problem, whiitbs
max — 52 urlogur, st:u>0,1"u=1and (11) (12)

Weak and strong duality hold under mild conditions (Boyd and Vandenbefl04). That means,
one can usually solve one problem from the other. The KKT conditions lialoitimal between
these two problems. In our case, it is

. ol IS
F= .
\I\l exp(— pk)

While it is possible to devise a totally-corrective column generation based optiorizproce-
dure for solving our problem as the case of LPBoost (Demiriz et al., 20@2are more interested in
consideringone-at-a-timecoordinate-wise descent algorithms, as the case of AdaBoost (Sshapir
1999). Let us start from some basic knowledge of column generati@ubeour coordinate descent
strategy is inspired by column generation.

If we know all the base&; (j =1...J) and hence the entire matrkk is known. Then either
the primal (9) or the dual (12) can be trivially solved (at least in theoegalise both are convex
optimization problems. We can solve them in polynomial time. Especially the primblgmois
convex minimization with simple nonnegativeness constraints. Off-the-sffeleze like LBFGS-

B (Zhu et al., 1997) can be used for this purpose. Unfortunately, ictipea we do not access all

(13)
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the bases: the possibility & is infinite. In convex optimization, column generation is a technique
that is designed for solving this difficulty.

Column generation was originally advocated for solving large scale linegrams (lilbbecke
and Desrosiers, 2005). Column generation is based on the fact tladiriear program, the number
of non-zero variables of the optimal solution is equal to the number of @ntr Therefore,
although the number of possible variables may be large, we only need a simsgt ®f these in
the optimal solution. For a general convex problem, we can use colummagieneto obtain an
approximatesolution. It works by only considering a small subset of the entire varsdtleOnce
it is solved, we ask the question:“Are there any other variables that camclhuled to improve
the solution?”. So we must be able to solve the subproblem: given a sealofalues, one either
identifies a variable that has a favorable reduced cost, or indicatesited sariable does not exist.
Essentially, column generation finds the variables with negative reduss without explicitly
enumerating all variables.

Instead of directly solving the primal problem (9), we find the most violatetsiraint in the
dual (12) iteratively for the current solution and adds this constrainte¢mtimization problem.
For this purpose, we need to solve

Z = argmax { Hu(A,2Z),st:Z € Wl}. (14)

We discuss how to efficiently solve (14) later. Now we move on to derivecadamate descent
optimization procedure.

3.3 Coordinate Descent Optimization

We show how an AdaBoost-like optimization procedure can be derived.

3.3.1 CPTIMIZING FORW,;

Since we are interested in tbae-at-a-timeoordinate-wise optimization, we keap, Wa, ..., Wj_1
fixed when solving fow;. The cost function of the primal problem is (in the following derivation,
we drop those terms irrelevant to the variaiig
C 3= [Z| S A CHeiwWs '
o(Wj) =log[y,— exp(—pi~h) - exp(—Hjw;j) ] + vw;.
Clearly,Cp is convex inwj and hence there is only one minimum that is also globally optimal. The
first derivative ofC, w.r.t. wj vanishes at optimality, which results in

El(Hrj —v)ul"texp(—wjH,;) = 0. (15)

If Hy; is discrete, such ast+1, —1} in standard AdaBoost, we can obtain a closed-form solution
similar to AdaBoost. Unfortunately in our cas¢;; can be any real value. We instead use bisection
to search for the optimat;. The bisection method is one of the root-finding algorithms. It repeat-
edly divides an interval in half and then selects the subinterval in whiclteesasts. Bisection is
a simple and robust, although it is not the fastest algorithm for root-finditgprithm 2 gives the
bisection procedure. We have used the fact that the I.h.s. of (15) mpsisiizve atw;. Otherwise
no solution can be found. Whew = 0, clearly the I.h.s. of (15) is positive.
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Algorithm 2 Bisection search fow;.

Input: An interval [w;,w,] known to contain the optimal value af; and convergence
tolerances > 0.

1 repeat

2 - Wj = 0.5(W +wy);

3 -if Lh.s.of (15)> Othen
4 L Wi = Wj;

5 else

6 Wy =w;.

7 until wy—w <€
Output: w;.

3.3.2 UPDATING U

The rule for updatingl can be easily obtained from (13). At iteratiprwe have
ul Dexp(—pl) Oul texp(—Hjw;), andy ! ul =1,
derived from (13). So onoej is calculated, we can updateas

j—1

iU Texp(—Hrjw;

g = SR g, (16)
z

wherez is a normalization factor so thgﬂluﬂ = 1. This is exactly the same as AdaBoost.

3.4 The Base Learning Algorithm

In this section, we show that the optimization problem (14) can be exactly fioidmrtly solved
using eigenvalue-decomposition (EVD).
FromZ 3= 0 andRank(Z) = 1, we know thaZ has the formatZ =w',v e RP; andTr(z) =1

meang|v||, = 1. We have
<z‘rI:|1qurvz> :V(ZLI:‘lurAr)VT-
By denoting
A= erﬂlurAh (17)

the base learning optimization equals:

m‘?vaAv, st:|v], =1 (18)

It is clear that the largest eigenvalue&f)\max(,&), and its corresponding eigenvectargives the
solution to the above problem. Note thfais symmetric.

)\max(A) is also used as one of the stopping criteria of the algorithm. Form the condition (
Amax(A) < vmeans that we are not able to find a new base méztthat violates (11)—the algorithm

converges.
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Algorithm 3 Positive semidefinite matrix learning with stage-wise boosting.

Input:
e Training set tripletga;,a;,ax) € Z; ComputeA;,r = 1,2,---, using (4).
e J: maximum number of iterations;
e (optional) regularization parameter\WWe may simply set to a very small value, for
example, 107.
1 Initialize : U = .1 =1---|Z];
2 for j=1,2,---,Jdo

3 - Find a new bas& by finding the largest eigenvalukn(ax(A)) and its eigenvector of
Ain (17);

5 | break (converged);

6 - Computew; using Algorithm 2;

7 | - Updateu to obtainu,r = 1,---|Z] using (16);
Output: The final p.s.d. matrix € RP*P, X = 57, w;Z;.

Eigenvalue decompositions is one of the main computational costs in our algorithere
are approximate eigenvalue solvers, which guarantee that for a symmetrig bhand anye >
0, a vectorv is found such thav' Uv > Amax— €. To approximately find the largest eigenvalue
and eigenvector can be very efficient using Lanczos or power methedcan use the MATLAB
functioneigs to calculate the largest eigenvector, which calls mex files of ARPACK. ARPAC
a collection of Fortran subroutines designed to solve large scale eigermalblems. When the
input matrix is symmetric, this software uses a variant of the Lanczos maedsd the implicitly
restarted Lanczos method.

Another way to reduce the time for computing the leading eigenvector is to compaigprox-
imate EVD by a fast Monte Carlo algorithm such as the linear time SVD algorithreloj@®d in
Drineas et al. (2004).

We summarize our main algorithmic results in Algorithm 3.

3.5 Learning with the Logistic Loss

We have considered the exponential loss in the last content. The pdojpasework is so general
that it can also accommodate other convex loss functions. Here we cotigdegistic loss, which
penalizes mis-classifications with more moderate penalties than the exponestidt isbelieved
on noisy data, the logistic loss may achieve better classification performance.

With the same settings as in the case of the exponential loss, we can writetwnizapon
problem as

i |2l ; T
miny —1logit(pr) +vi w

1019



SHEN, KiM, WANG AND VAN DEN HENGEL

Here logi(-) is the logistic loss defined as loggj = log(1+ exp(—z)). Similarly, we derive its
Lagrange dual as

rrLing‘rzz‘llogit*(—ur)
st.: ZﬂlurHr; <vi',
where logit(-) is the Fenchel conjugate function of logjt defined as
logit*(—u) = ulog(u) + (1—u)log(1—u),

when 0< u <1, ande otherwise. So the Fenchel conjugate of 1¢gits the binary entropy function.
We have reversed the signwfvhen deriving the dual.
Again, according to the KKT conditions, we have

* eXp(*p?)
Y= T rop o (20)

at optimality. From (20) we can also see thatust be in(0,1).
Similarly, we want to optimize the primal cost function in a coordinate descewnt kiest, let
us find the relationship betweep andul 1, Herej is the iteration index. From (20), it is trivial to

obtain )
ul = — , V. (21)
(1/ul™" —1)exp(Hjwj) + 1

The optimization ofv; can be solved by looking for the root of

HiHgul —v=0, (22)

whereu! is a function ofw; as defined in (21).
Therefore, in the case of the logistic loss, to fiag we modify the bisection search of Algo-
rithm 2:

e Line 3:if Lh.s.of (22) > Othen...
and Line 7 of Algorithm 3:
e Line 7: Updatau using (21).

3.6 Totally Corrective Optimization

In this section, we derive a totally-corrective version @@ M ETRIC, similar to the case of Total-
Boost (Warmuth et al., 2006; Shen and Li, 2010) for classification, ingheesthat the coefficients
of all weak learners are updated at each iteration.

Unlike the stage-wise optimization, here we do not need to keep previouhteeifyweak
learnerswy,wo, ..., wj_1. Instead, the weights of all the selected weak learngrsw,...,w; are
updated at each iteration As discussed, our learning procedure is able to employ various loss
functions such as the hinge loss, exponential loss or logistic loss. Toeda\istally-corrective
optimization procedure for solving our problem efficiently, we need to renthe object function
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Algorithm 4 Positive semidefinite matrix learning with totally corrective boosting.
Input:

e Training set tripletga;,a;,ax) € Z; ComputeA;,r = 1,2,---, using (4).
e J: maximum number of iterations;
e Regularization parametsr

1 Initialize: =L r=1.-|T

=

2 for j=1,2,---,Jdo

3 - Find a new basg; by finding the largest eigenvalukn(ax(A)) and its eigenvector of
Ain (17);

4 | -if Amax(A) <Vvthen

| break (converged);

6 - Optimize forwy, wo, - -, w; by solving the primal problem (9) when the exponential
loss is used or (19) when the logistic loss is used,;

7 - Updateu to obtainuf,r = 1,---|Z| using (13) (exponential loss) or (20) (logistic loss);

Output: The final p.s.d. matrix € RP*P, X = 57_, w;Z;.

to be differentiable with respect to the variablesws,...,w;. Here, we use the exponential loss
function and the logistic loss function. It is possible to use sub-gradiestet® methods when a
non-smooth loss function like the hinge loss is used.

It is clear that solving fow is a typical convex optimization problem since it has a differentiable
and convex function (9) when the exponential loss is used, or (19 wWieelogistic loss is used.
Hence it can be solved using off-the-shelf gradient-descent sdikerd-BFGS-B (Zhu et al.,
1997). '

Since all the weightsv;,wo, ..., w; are updatedy! onr = 1...|Z| need not to be updated but
re-calculated at each iteratignTo calculates!, we use (13) (exponential loss) or (20) (logistic loss)
instead of (16) or (21) respectively. Totally-corrective®sTMETRIC methods are very simple to
implement. Algorithm 4 gives the summary of this algorithm. Next, we show the cgermee
property of Algorithm 4. Formally, we want to show the following theorem.

Theorem 5 Algorithm 4 makes progress at each iteration. In other words, the obggtlue is
decreased at each iteration. Therefore, in the limit, Algorithm 4 solves ttimiaption problemn(9)
(or (19)) globally to a desired accuracy.

Proof Let us consider the exponential loss case of problem (9). The pobofk the same discus-
sion for the logistic loss, or any other smooth convex loss function. Assuehéecurrent solution
is a finite subset of base learners (rank-one trace-one matrices)andaitesponding linear coef-
ficientsw. If we add a base matriX that is not in the current subset, and the correspondirg0;
then the objective value and the solution must remain unchanged. We aadadmthat the current
learned base learners awdare the optimal solution already.

Consider the case that this optimality condition is violated. We need to show thedwiénd
a base learnez, which is not in the current set of all the selected base learners, satli th 0
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holds. Now assume thtis the base learner found by solving (18), and the convergence canditio
Amax(A) < Vis not satisfied. So, we hagnax(A) = <zr JUrAZ > > V.

If, after this weak learneZ is added into the primal problem, the primal solution remains
unchanged, that is, the correspondmg: 0, then from the optimality condition thap in (10) must

be zero, we know that = v— < 1z |1urAr, > < 0. This contradicts the fact the Lagrange multiplier
p>0.

We can conclude that after the base learhisradded into the primal problem, its corresponding
W must admit a positive value. It means that one more free variable is addetiénpooblem and
re-solving the primal problem would reduce the objective value. Henddch decrease in the
objective is guaranteed. So Algorithm 4 makes progress at each iteration.

Furthermore, as the optimization problems involved are all convex, themodaeal optimal
solutions. Therefore Algorithm 4 is guaranteed to converge to the glohaian.

Note that the above proof establishes the convergence of Algorithm i tarhains unclear
about the convergence rate. |

3.7 Multi-passBOOSTMETRIC

In this section, we show thatd@®STMETRIC can use multi-pass learning to enhance the perfor-
mance.

Our BOOSTMETRIC uses training set triplet&y, aj,ax) € Z as input for training. The Maha-
lanobis distance metri can be viewed as a linear transformation in the Euclidean space by project-
ing the data using matrik (X = LL "). That is, nearest neighbors of samples using Mahalanobis
distance metricX are the same as nearest neighbors using Euclidean distance in therinaoasfo
space. BOSTMETRIC assumes that the triplets of input training set approximately represent the
actual nearest neighbors of samples in the transformed space defitieel ldahalanobis metric.
However, even though the triplets ofo®STMETRIC consist of nearest neighbors of the original
training samples, generated triplets are not exactly the same as the actaat neghbors of train-
ing samples in the transformed spacelby

We can refine the results of@STMETRIC iteratively, as in the multiple-pass LMNN (Wein-
berger and Saul, 2009): ®sTMETRIC can estimate the triplets in the transformed space under
a multiple-pass procedure as close to actual triplets as possible. Therofelfepass BDOST
METRIC s simple. At each pags(p=1,2,---), we decompose the learned Mahalanobis distance
metric Xp_1 of previous pass into transformation mattix. The initial matrixL 1 is an identity
matrix. Then we generate the training set triplets from the set of péintsy,...,L " an} where
L=Li-Lo----Lp. The final Mahalanobis distance metlcbecomed L " in Multi-pass BoosT
METRIC.

4. Experiments

In this section, we present experiments on data visualization, classificatiomage retrieval tasks.
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Figure 1: The data are projected into 2D with PCA (left), LDA (middle) andoBTMETRIC
(right). Both PCA and LDA fail to recover the data structure. The localcstire of
the data is preserved after projection bg BSTMETRIC.

4.1 An lllustrative Example

We demonstrate a data visualization problem on an artificial toy data seeftoieccircles) in Fig-

ure 1. The data set has four classes. The first two dimensions follavewtit circles while the left
eight dimensions are all random Gaussian noise. In this experiment, 98l@édstare generated for
training. When the scale of the noise is large, PCA fails find the first twornmitive dimensions.
LDA fails too because clearly each class does not follow a Gaussiandtistrand their centers
overlap at the same point. The proposedd@ ™™ ETRIC algorithm find the informative features.
The eigenvalues oX learned by BOSTMETRIC are {0.542,0.414,0.007,0,---,0}, which indi-
cates that BosTMETRIC successfully reveals the data’s underlying 2D structure. We have used
the exponential loss in this experiment.

4.2 Classification on Benchmark Data Sets

We evaluate BOSTMETRIC on 7 data sets of different sizes. Some of the data sets have very
high dimensional inputs. We use PCA to decrease the dimensionality beforegdran these
data sets (MNIST, USPS and yFaces). PCA pre-processing helps toaknmaises and speed

up computation. Table 1 summarizes the data sets in detail. We have used USRBIET
handwritten digits, Yale face recognition data sets, and a few UCI machimérigalata sets.

Experimental results are obtained by averaging over 10 runs (exardptde data sets MNIST
and Letter). We randomly split the data sets for each run. We have usedutiee mechanism
to generate training triplets as described in Weinberger et al. (2005) flyBfier each training
point &, k nearest neighbors that have same labelg &mrgets), as well ak nearest neighbors
that have different labels from (imposers) are found. We then construct triplets franand its
corresponding targets and imposers. For all the data sets, we h&ve 3¢B-nearest-neighbor). We
have compared our method against a few methods: RCA (Bar-Hillel et 8b) 2dCA (Goldberger
et al., 2004), ITML (Davis et al., 2007) and LMNN (Weinberger et al.020 Also in Table 1,
“Euclidean” is the baseline algorithm that uses the standard Euclideanadisteime codes for these
compared algorithms are downloaded from the corresponding authelsite. Experiment setting
for LMNN follows Weinberger et al. (2005). The slack variable paramfetel TML is tuned using

2. UCI data sets can be foundhatt p: // archive.ics. uci.edu/n/.
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v [ 108 | 107 | 10° | 10° | 10°

Bal 8.98 (2.59)[ 8.88 (2.52)[ 8.88 (2.52)[ 8.88 (2.52)] 8.93 (2.52)
B-Cancer| 2.11 (0.69)| 2.11 (0.69)| 2.11 (0.69)| 2.11 (0.69)| 2.11 (0.69)
Diabetes | 26.0 (1.33)| 26.0 (1.33)| 26.0 (1.33)| 26.0 (1.34)| 26.0 (1.46)

Table 2: Test error (%) of a 3-nearest neighbor classifier with @iffevalues of the parameter
Each experiment is run 10 times. We report the mean and variance. Agtedpas long
asv is sufficiently small, in a wide range it almost does not affect the final claasin
performance.

cross validation over the values0Q,0.1,1,10 as in Davis et al. (2007). FordSTMETRIC, we
have set = 10~7, the maximum number of iteratiods= 500.

BoosTMETRIC has different variants which use 1) the exponential lossdBTMETRIC-E), 2)
the logistic loss (BOSTMETRIC-L), 3) multiple pass evaluation (MP) for updating triplets with the
exponential and logistic loss, and 4) two optimization strategies, namely, wiageptimization
and totally corrective optimization. The experiments are conducted by usatigid/and a C-mex
implementation of the L-BFGS-B algorithm.

As reported in Table 1, we can conclude: 1p@&sTMETRIC consistently improves the accu-
racy of kNN classification using Euclidean distance on most data sets. So learningadaviabis
metric based upon the large margin concept indeed leads to improvemdaibl inlassification.
2) BoosTMETRIC outperforms other state-of-the-art algorithms in most cases (on 5 outlata?
sets). LMNN is the second best algorithm on these 7 data sets statisticallyNlsvbkults are
consistent with those given in Weinberger et al. (2005). ITML is fastan tBOOSTMETRIC on
most large data sets such as MNIST. However it has higher error rale8GOSTMETRIC in our
experiment. 3) NCA can only be run on a few small data sets. In generaldd¢€s not perform
well. Initialization is important for NCA because NCA's objective function istthjgnon-convex
and can only find a local optimum.

In this experiment, LMNN solves for the global optimum (learn¥igexcept for the Wine data
set. When the LMNN solver solves fof on the Wine data set, the error rate is large. {206+
14.18%). So instead we have solved for the projection méatman Wine. Also note that the number
of training data on Iris, Wine and Bal in Weinberger et al. (2005) areifit from our experiment.
We have used these data sets from UCI. For the experiment on MNIST déskew the handwritten
digits data first as in Weinberger and Saul (2009), the final accueathe slightly improved. Here
we have not deskewed the data.

4.2.1 INFLUENCE OFV

Previously, we claim that the stage-wise version of B TM ETRICis parameter-free like AdaBoost.
However, we do have a parameteActually, AdaBoost simply set= 0. The coordinate-wise gra-
dient descent optimization strategy of AdaBoost leads téyarorm regularized maximum margin
classifier (Rosset et al., 2004). It is shown that AdaBoost minimizes itstiteson with an¢; con-
straint on the coefficient vector. Given the similarity of the optimization ofoBTMETRIC with
AdaBoost, we conjecture thatd®STMETRIC has the same property. Here we empirically prove
thatas long as v is sufficiently small, the final performance is not affected lwathe of v We have
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setv from 108 to 10~* and run BbosTMETRIC on 3 UCI data sets. Table 2 reports the final 3NN
classification error with different. The results are nearly identical.

For the totally corrective version of 8STMETRIC, similar results are observed. Actually for
LMNN, it was also reported that the regularization parameter does netéhaignificant impact on
the final results in a wide range (Weinberger and Saul, 2009).

4.2.2 GOMPUTATIONAL TIME

As we discussed, one major issue in learning a Mahalanobis distance jsdwagputational cost
because of the semidefiniteness constraint.

We have shown the running time of the proposed algorithm in Table 1 for tissifotation
tasks® Our algorithm is generally fast. Our algorithm involves matrix operations ane\D for
finding its largest eigenvalue and its corresponding eigenvector. The eimplexity of this EVD
is O(D?) with D the input dimensions. We compare our algorithm’s running time with LMNN in
Figure 2 on the artificial data set (concentric circles). Our algorithm iestage BOOSTMETRIC
with the exponential loss. We vary the input dimensions from 50 to 1000 eeg the number
of triplets fixed to 250. LMNN does not use standard interior-point SDiPes®, which do not
scale well. Instead LMNN heuristically combines sub-gradient descerdtmthe matrices and
X. At each iterationX is projected back onto the p.s.d. cone using EVD. So a full EVD with
time complexityO(D?) is needed. Note that LMNN is much faster than SDP solvers like CSDP
(Borchers, 1999). As seen from Figure 2, when the input dimensimnsoa, BOOSTMETRIC
is comparable to LMNN. As expected, when the input dimensions become BogesTMETRIC
is significantly faster than LMNN. Note that our implementation is in Matlab. Imprems are
expected if implemented in C/C++.

4.3 Visual Object Categorization

In the following experiments, unless otherwise specifiedOBTMETRIC means the stage-wise
BoosTMETRIC with the exponential loss.

The proposed BosTMETRIC and the LMNN are further compared on visual object cate-
gorization tasks. The first experiment uses four classes of the Cdl@clobject recognition
database (Fei-Fei et al., 2006), including Motorbikes (798 images)|ahies (800), Faces (435),
and Background-Google (520). The task is to label each image acgdadihe presence of a par-
ticular object. This experiment involves both object categorization (Motesgbilersus Airplanes)
and object retrieval (Faces versus Background-Google) problémihe second experiment, we
compare the two methods on the MSRC data set including 240 irfafies.objects in the images
can be categorized into nine classes, includogding, grass, tree, cow, sky, airplane, face, car
and bicycle Different from the first experiment, each image in this database oftdaiogmultiple
objects. The regions corresponding to each object have been maneafiggmented, and the task
is to label each region according to the presence of a particular objetie 8&tamples are shown
in Figure 3.

3. We have run all the experiments on a desktop with an Intel ®t#éuo CPU, 4G RAM and Matlab 7.7 (64-bit
version).
4. Seehttp://research. mcrosoft.com en-us/projects/objectclassrecognition/
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Figure 2: Computation time of the proposed8sSTMETRIC (stage-wise, exponential loss) and the
LMNN method versus the input data’s dimensions on an artificial data ssdSBVIET-
RIC is faster than LMNN with large input dimensions because at each iteraticos®
METRIC only needs to calculate the largest eigenvector and LMNN needs a fuli-eige
decomposition.

Figure 3: Examples of the images in the MSRC data set and the pre-segmegitats rlabeled
using different colors.

4.3.1 EXPERIMENT ON THECALTECH-101 DaTA SET

For each image of the four classes, a number of interest regions atiiédey the Harris-affine
detector (Mikolajczyk and Schmid, 2004) and each region is charadebiyd¢he SIFT descrip-

tor (Lowe, 2004). The total number of interest regions extracted frarfdbr classes are about
134,000, 84000, 57000, and 29000, respectively. To accumulate statistics, the images of two
involved object classes are randomly split as 10 pairs of training/testtsuliRestricted to the im-
ages in a training subset (those in a test subset are only used for testjotial descriptors are
clustered to form visual words by usitkgmeans clustering. Each image is then represented by a
histogram containing the number of occurrences of each visual word.
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Figure 4: Test error (3-nearest neighbor) ad®&TMETRIC on the Motorbikes versus Airplanes
data sets. The second plot shows the test error against the numbérmiatitteplets with
a 100-word codebook.

Motorbikes versus Airplaneshis experiment discriminates the images of a motorbike from
those of an airplane. In each of the 10 pairs of training/test subsets,areB59 training images
and 639 test images. Two visual codebooks of size 100 and 200 ateraspectively. With the
resulting histograms, the proposed8sTMETRIC and the LMNN are learned on a training subset
and evaluated on the corresponding test subset. Their averagdticzlden error rates are com-
pared in Figure 4 (left). For both visual codebooks, the proposedBMETRIC achieves lower
error rates than the LMNN and the Euclidean distance, demonstrating itdasuperformance.
We also apply a linear SVM classifier with its regularization parameter cardfuilyd by 5-fold
cross-validation. Its error rates are8B3%-+ 0.69% and 300%-+ 0.72% on the two visual code-
books, respectively. In contrast, a 3NN wittoBSTMETRIC has error rates.83%-+ 0.68% and
2.96%+ 0.59%. Hence, the performance of the proposembBTMETRIC is comparable to the
state-of-the-art SVM classifier. Also, Figure 4 (right) plots the test esfdhe BOOSTMETRIC
against the number of triplets for training. The general trend is that moretsrigiad to smaller
errors.

Faces versus Background-Goodlhis experiment uses the two object classes as a retrieval
problem. The target of retrieval is face images. The images in the classkfBaind-Google are
randomly collected from the Internet and they represent the non-telags. BDOSTMETRIC is
first learned from a training subset and retrieval is conducted on thespmnding test subset. In
each of the 10 training/test subsets, there are 573 training images andBB2ages. Again, two
visual codebooks of size 100 and 200 are used. Each face image treatisst is used as a query,
and its distances from other test images are calculated by the propossati/Bticc, LMNN and the
Euclidean distance, respectively. For each metricRieisionof the retrieved top 5, 10, 15 and
20 images are computed. TReecisionvalues from each query are averaged on this test subset and
then averaged over the 10 test subsets. The retrieval precision efittescs is shown in Figure 5
(with a codebook size 100). As we can see that the@BTM ETRIC consistently attains the highest
values on both visual codebooks, which again verifies its advantaged MINN and Euclidean
distance. With a codebook size 200, very similar results are obtained.
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Figure 5: Retrieval accuracy of distance metric learning algorithms on tbesRaersus Backgr-
ound-Google data set. Error bars show the standard deviation.

4.3.2 EXPERIMENT ON THEMSRC DATA SET

The 240 images of the MSRC database are randomly halved into 10 growmamisfg and test sets.
Given a set of training images, the task is to predict the class label forafdbbk pre-segmented
regions in a test image. We follow the work in Winn et al. (2005) to extraduifea and conduct
experiments. Specifically, each image is converted from the RGB coloe $péise CIE Lab color
space. First, three Gaussian low-pass filters are applied tb, theandb channels, respectively.
The standard deviatiom of the filters are set to 1, 2, and 4, respectively, and the filter size isedefin
as 4. This step produces 9 filter responses for each pixel in an image. Geitwee Laplacian
of Gaussian (LoG) filters are applied to thechannel only, witho = 1,2,4,8 and the filter size
of 40. This step gives rise to 4 filter responses for each pixel. Lastly, thed@rstatives of the
Gaussian filter witlo = 2,4 are computed from the channel along the row and column directions,
respectively. This results in 4 more filter responses. After applying thisfddter banks, each
pixel is represented by a 17-dimensional feature vectors. All the featators from a training set
are clustered using tHemeans clustering with a Mahalanobis distahcBy settingk to 2000, a
visual codebook of 2000 visual words is obtained. We implement the wanmdring approach in
Winn et al. (2005) and obtain a compact and discriminative codebook®¥i30al words. Each
pre-segmented object region is then represented as a 300-dimensstogddm.

The proposed BosTMETRICis compared with the LMNN algorithm as follows. With 10 near-
est neighbors information, about, 20 triplets are constructed and used to train tkkedBTMET-
RIC. To ensure convergence, the maximum number of iterations is set as S0@iptimization of
training BoosTMETRIC. The training of LMNN follows the default settindkNN classifiers with
the two learned Mahalanobis distances and the Euclidean distance arel apgléeh training and
test group to categorize an object region. The categorization errarmaach test group is summa-
rized in Table 3. As expected, both learned Mahalanobis distances echipgrior categorization

5. Note that this Mahalanobis distance is different from the one that wgoamg to learn with the BOSTMETRIC.
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group index [ Euclidean] LMNN [ BOOSTMETRIC

1 9.19 6.71 4.59

2 5.78 3.97 3.25

3 6.69 2.97 2.60

4 5.54 3.69 4.43

5 6.52 5.80 4.35

6 7.30 4.01 3.28

7 7.75 2.21 2.58

8 7.20 4.17 4.55

9 6.13 3.07 4.21
10 8.42 5.13 5.86
average: 7.05 4.17 3.97
standard devision 1.16 1.37 1.03

Table 3: Comparison of the categorization performance.

)

Figure 6: Four generated triplets based on the pairwise information pbiidéhe LFW data set.
For the three images in each triplet, the first two belong to the same individdahan
third one is a different individual.

performance to the Euclidean distance. Moreover, the proposexsBVETRIC achieves better
performance than the LMNN, as indicated by its lower average categorizatior rate and the
smaller standard deviation. Also, tkBIN classifier using the proposedoBSTMETRIC achieves
comparable or even higher categorization performance than thos¢edpoMVinn et al. (2005).
Besides the categorization performance, we compare the computatiooigineffi of the BDOST
MEeTRIC and the LMNN in learning a Mahalanobis distance. The computational time rebalsed
on the Matlab codes for both methods. In this experiment, the average tini®/¢hstBOOSTMET-
RiIC for learning the Mahalanobis distance i98 hours, whereas the LMNN takes aboui@hours
to complete this process. Hence, the proposed8M™METRIC has a shorter training process than
the LMNN method. This again demonstrates the computational advantage obth&B ETRIC
over the LMNN method.

4.4 Unconstrained Face Recognition

We use the “labeled faces in the wild” (LFW) data set (Huang et al., 2@i7ate recognition in
this experiment.
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number of triplets] 100D | 200D [ 300D | 400D
3,000 80.01 (1.76)] 82.39 (1.73)] 83.40 (1.46)| 83.64 (1.66)
6,000 81.13 (1.76)| 82.59 (1.84)| 83.58 (1.25)| 83.70 (1.73)
9,000 81.01 (1.69)| 82.63 (1.68)| 83.65 (1.70)| 83.72 (1.47)
12,000 81.06 (1.63)| 83.00 (1.38)| 83.60 (1.89)| 83.57 (1.47)
15,000 81.10 (1.71)| 82.78 (1.83)| 83.69 (1.62)| 83.80 (1.85)
18,000 81.37 (2.15)| 83.19 (1.76)| 83.60 (1.66)| 83.81 (1.55)

Table 4: Comparison of the face recognition accuracy (%) of our @egp@O0STMETRIC On the
LFW data set by varying the PCA dimensionality and the number of triplets & fedd.

This is a data set of unconstrained face images, which has a large farag@tions seen in real
world, including 13233 images of 5749 people collected from news articles on Internet. The face
recognition task here igair matching—given two face images, to determine if these two images
are of the same individual. So we classify unseen pairs to determine whettteimage in the pair
indicates the same individual or not, by applyingMNN of Guillaumin et al. (2009) instead &NN.

Features of face images are extracted by computing 3-scale, 128-dimarBiBT descriptors
(Lowe, 2004), which center on 9 points of facial features extracted facial feature descriptor,
same as described in Guillaumin et al. (2009). PCA is then performed onRfie/8ttors to reduce
the dimension to between 100 and 400.

Simple recognition systems with a single descripiable 4 shows our BOSTMETRIC'S per-
formance by varying PCA dimensionality and the number of triplets. Incrgabki@ number of
training triplets gives slight improvement of recognition accuracy. The déoenafter PCA has
more impact on the final accuracy for this task.

In Figure 7, we have drawn ROC curves of other algorithms for facegr@tion. To obtain our
ROC curve, MKNN has moved the threshold value across the distributions of match and mismatch
similarity scores. Figure 7 (a) shows methods that use a single descrigtarsargle classifier only.
As can be seen, our system using@sT™M ETRIC outperforms all the others in the literature with a
very small computational cost.

Complex recognition systems with one or more descrigfagare 7 (b) plots the performance
of more complicated recognition systems that use hybrid descriptors or catiobimof classifiers.
See Table 5 for details. We can see that the performance of oosBMETRIC is close to the
state-of-the-art.

In particular, BbosSTMETRIC outperforms the method of Guillaumin et al. (2009), which has a
similar pipeline but uses LMNN for learning a metric. This comparison also rosfihe impor-
tance of learning an appropriate metric for vision problems.

5. Conclusion

We have presented a new algorithmro@sTMETRIC, to learn a positive semidefinite metric using
boosting techniques. We have generalized AdaBoost in the sense thatdkdearner of BOST
METRIC is a matrix, rather than a classifier. Our algorithm is simple and efficient. Ewppsts
show its better performance over a few state-of-the-art existing metricihgamethods. We are
currently combining the idea of on-line learning int@B8sTMETRIC to make it handle even larger
data sets.
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Figure 7: (top) ROC Curves that use a single descriptor and a singldielagsottom) ROC curves
that use hybrid descriptors are plotted. OuwdsTMETRIC with a single classifier is
also plotted. Each point on the curves is the average over the 10 fold&esffor a fixed
threshold.

We also want to learn a metric usingpBSTMETRIC in the semi-supervised, and multi-task
learning setting. It has been shown in Weinberger and Saul (2009)hhatassification perfor-
mance can be improved by learning multiple local metrics. We will extend BIMETRIC to learn
multiple metrics. Finally, we will explore to generalizeoBSTMETRIC for solving more general
semidefinite matrix learning problems in machine learning.
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|| single descriptor + single classifiermultiple descriptors/classifiers
Turk and Pentland (1991) 60.02 (0.79) -
‘Eigenfaces’
Nowak and Jurie (2007) 73.93 (0.49) -
‘Nowak-funneled’

Huang et al. (2008)| 70.52 (0.60) 76.18 (0.58)
‘Merl’ ‘Merl+Nowak’
Wolf et al. (2008) || - 78.47 (0.51)
‘Hybrid descriptor-based’
Wolf et al. (2009)| 72.02 86.83 (0.34)

- ‘Combined b/g samples based’
Pinto et al. (2009)/| 79.35 (0.55) -

‘V1-like/MKL'
Taigman et al. (2009)| 83.20 (0.77) 89.50 (0.40)
- ‘Multishot combined’
Kumar et al. (2009))| - 85.29 (1.23)
‘attribute + simile classifiers’
Cao et al. (2010)| 81.22 (0.53) 84.45 (0.46)
‘single LE + holistic’ ‘multiple LE + comp’
Guillaumin et al. (2009)|| 83.2 (0.4) 87.5(0.4)
‘LDML’ ‘LMNN + LDML’

BoosTMETRIC || 83.81 (1.55) -
‘BOOSTMETRIC on SIFT

Table 5: Test accuracy in percentage (mean and standard deviatiding afrW data set. ROC
curve labels in Figure 7 are described here with details.
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