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Abstract

The success of many machine learning and pattern recognition methods relies heavily upon the
identification of an appropriate distance metric on the input data. It is often beneficial to learn such a
metric from the input training data, instead of using a default one such as the Euclidean distance. In
this work, we propose a boosting-based technique, termed BOOSTMETRIC, for learning a quadratic
Mahalanobis distance metric. Learning a valid Mahalanobisdistance metric requires enforcing
the constraint that the matrix parameter to the metric remains positive semidefinite. Semidefinite
programming is often used to enforce this constraint, but does not scale well and is not easy to
implement. BOOSTMETRIC is instead based on the observation that any positive semidefinite ma-
trix can be decomposed into a linear combination of trace-one rank-one matrices. BOOSTMETRIC

thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable
boosting-based learning process. The resulting methods are easy to implement, efficient, and can
accommodate various types of constraints. We extend traditional boosting algorithms in that its
weak learner is a positive semidefinite matrix with trace andrank being one rather than a classifier
or regressor. Experiments on various data sets demonstratethat the proposed algorithms compare
favorably to those state-of-the-art methods in terms of classification accuracy and running time.

Keywords: Mahalanobis distance, semidefinite programming, column generation, boosting, La-
grange duality, large margin nearest neighbor

1. Introduction

The identification of an effective metric by which to measure distances between data points is an
essential component of many machine learning algorithms includingk-nearest neighbor (kNN), k-
means clustering, and kernel regression. These methods have been applied to a range of problems,
including image classification and retrieval (Hastie and Tibshirani, 1996; Yuet al., 2008; Jian and

c©2012 Chunhua Shen, Junae Kim, Lei Wang and Anton van den Hengel.



SHEN, K IM , WANG AND VAN DEN HENGEL

Vemuri, 2007; Xing et al., 2002; Bar-Hillel et al., 2005; Boiman et al., 2008;Frome et al., 2007)
amongst a host of others.

The Euclidean distance has been shown to be effective in a wide variety ofcircumstances.
Boiman et al. (2008), for instance, showed that in generic object recognition with local features,
kNN with a Euclidean metric can achieve comparable or better accuracy than more sophisticated
classifiers such as support vector machines (SVMs). The Mahalanobisdistance represents a gen-
eralization of the Euclidean distance, and offers the opportunity to learn a distance metric directly
from the data. This learned Mahalanobis distance approach has been shown to offer improved per-
formance over Euclidean distance-based approaches, and was particularly shown by Wang et al.
(2010b) to represent an improvement upon the method of Boiman et al. (2008). It is the prospect
of a significant performance improvement from fundamental machine learning algorithms which
inspires the approach presented here.

If we let ai , i = 1,2· · · , represent a set of points inRD, then the Mahalanobis distance, or
Gaussian quadratic distance, between two points is

‖ai −a j‖X =
√

(ai −a j)⊤X(ai −a j),

whereX < 0 is a positive semidefinite (p.s.d.) matrix. The Mahalanobis distance is thus param-
eterized by a p.s.d. matrix, and methods for learning Mahalanobis distances are therefore often
framed as constrained semidefinite programs. The approach we proposehere, however, is based
on boosting, which is more typically used for learning classifiers. The primary motivation for the
boosting-based approach is that it scales well, but its efficiency in dealingwith large data sets is also
advantageous. The learning of Mahalanobis distance metrics representsa specific application of a
more general method for matrix learning which we present below.

We are interested here in the case where the training data consist of a set of constraints upon the
relative distances between data points,

I = {(ai ,a j ,ak) |disti j < distik}, (1)

wheredisti j measures the distance betweenai and a j . Each such constraint implies that “ai is
closer toa j thanai is to ak”. Constraints such as these often arise when it is known thatai anda j

belong to the same class of data points whileai ,ak belong to different classes. These comparison
constraints are thus often much easier to obtain than either the class labels or distances between data
elements (Schultz and Joachims, 2003). For example, in video content retrieval, faces extracted from
successive frames at close locations can be safely assumed to belong to the same person, without
requiring the individual to be identified. In web search, the results returned by a search engine
are ranked according to the relevance, an ordering which allows a natural conversion into a set of
constraints.

The problem of learning a p.s.d. matrix such asX can be formulated in terms of estimating a
projection matrixL whereX = LL⊤. This approach has the advantage that the p.s.d. constraint
is enforced through the parameterization, but the disadvantage is that the relationship between the
distance measure and the parameter matrix is less direct. In practice this approach has lead to local,
rather than globally optimal solutions, however (see Goldberger et al., 2004 for example).

Methods such as Xing et al. (2002), Weinberger et al. (2005), Weinberger and Saul (2006) and
Globerson and Roweis (2005) which seekX directly are able to guarantee global optimality, but
at the cost of a heavy computational burden and poor scalability as it is nottrivial to preserve the
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semidefiniteness ofX during the course of learning. Standard approaches such as interior-point (IP)
Newton methods need to calculate the Hessian. This typically requiresO(D4) storage and has worst-
case computational complexity of approximatelyO(D6.5) whereD is the size of the p.s.d. matrix.
This is prohibitive for many real-world problems. An alternating projected (sub-)gradient approach
is adopted in Weinberger et al. (2005), Xing et al. (2002) and Globerson and Roweis (2005). The
disadvantages of this algorithm, however, are: 1) it is not easy to implement; 2) many parameters
are involved; 3) usually it converges slowly.

We propose here a method for learning a p.s.d. matrix labeled BOOSTMETRIC. The method
is based on the observation that any positive semidefinite matrix can be decomposed into a lin-
ear positive combination of trace-one rank-one matrices. The weak learner in BOOSTMETRIC is
thus a trace-one rank-one p.s.d. matrix. The proposed BOOSTMETRIC algorithm has the following
desirable properties:

1. BOOSTMETRIC is efficient and scalable. Unlike most existing methods, no semidefinite pro-
gramming is required. At each iteration, only the largest eigenvalue and its corresponding
eigenvector are needed.

2. BOOSTMETRIC can accommodate various types of constraints. We demonstrate the use of
the method to learn a Mahalanobis distance on the basis of a set of proximity comparison
constraints.

3. Like AdaBoost, BOOSTMETRIC does not have any parameter to tune. The user only needs to
know when to stop. Also like AdaBoost it is easy to implement. No sophisticated optimiza-
tion techniques are involved. The efficacy and efficiency of the proposed BOOSTMETRIC is
demonstrated on various data sets.

4. We also propose a totally-corrective version of BOOSTMETRIC. As in TotalBoost (Warmuth
et al., 2006) the weights of all the selected weak learners (rank-one matrices) are updated at
each iteration.

Both the stage-wise BOOSTMETRIC and totally-corrective BOOSTMETRIC methods are very
easy to implement.

The primary contributions of this work are therefore as follows: 1) We extend traditional boost-
ing algorithms such that each weak learner is a matrix with the trace and rank ofone—which must
be positive semidefinite—rather than a classifier or regressor; 2) The proposed algorithm can be
used to solve many semidefinite optimization problems in machine learning and computer vision.
We demonstrate the scalability and effectiveness of our algorithms on metric learning. Part of this
work appeared in Shen et al. (2008, 2009). More theoretical analysisand experiments are included
in this version. Next, we review some relevant work before we present our algorithms.

1.1 Related Work

Distance metric learning is closely related to subspace methods. Principal component analysis
(PCA) and linear discriminant analysis (LDA) are two classical dimensionality reduction tech-
niques. PCA finds the subspace that captures the maximum variance within theinput data while
LDA tries to identify the projection which maximizes the between-class distance and minimizes the
within-class variance. Locality preserving projection (LPP) finds a linearprojection that preserves
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the neighborhood structure of the data set (He et al., 2005). Essentially,LPP linearly approximates
the eigenfunctions of the Laplace Beltrami operator on the underlying manifold. The connection
between LPP and LDA is also revealed in He et al. (2005). Wang et al. (2010a) extended LPP to
supervised multi-label classification. Relevant component analysis (RCA)(Bar-Hillel et al., 2005)
learns a metric fromequivalenceconstraints. RCA can be viewed as extending LDA by incorpo-
rating must-link constraints and cannot-link constraints into the learning procedure. Each of these
methods may be seen as devising a linear projection from the input space to a lower-dimensional
output space. If this projection is characterized by the matrixL , then note that these methods may
be related to the problem of interest here by observingX = LL⊤. This typically implies thatX is
rank-deficient.

Recently, there has been significant research interest in supervised distance metric learning using
side information that is typically presented in a set of pairwise constraints. Most of these methods,
although appearing in different formats, share a similar essential idea: to learn an optimal dis-
tance metric by keeping training examples in equivalence constraints close, and at the same time,
examples in in-equivalence constraints well separated. Previous work of Xing et al. (2002), Wein-
berger et al. (2005), Jian and Vemuri (2007), Goldberger et al. (2004), Bar-Hillel et al. (2005) and
Schultz and Joachims (2003) fall into this category. The requirement thatX must be p.s.d. has led
to the development of a number of methods for learning a Mahalanobis distance which rely upon
constrained semidefinite programing. This approach has a number of limitations, however, which
we now discuss with reference to the problem of learning a p.s.d. matrix froma set of constraints
upon pairwise-distance comparisons. Relevant work on this topic includesBar-Hillel et al. (2005),
Xing et al. (2002), Jian and Vemuri (2007), Goldberger et al. (2004), Weinberger et al. (2005) and
Globerson and Roweis (2005) amongst others.

Xing et al. (2002) first proposed the idea of learning a Mahalanobis metricfor clustering using
convex optimization. The inputs are two sets: a similarity set and a dis-similarity set.The algorithm
maximizes the distance between points in the dis-similarity set under the constraintthat the distance
between points in the similarity set is upper-bounded. Neighborhood component analysis (NCA)
(Goldberger et al., 2004) and large margin nearest neighbor (LMNN) (Weinberger et al., 2005)
learn a metric by maintaining consistency in data’s neighborhood and keep a large margin at the
boundaries of different classes. It has been shown in Weinberger and Saul (2009); Weinberger et al.
(2005) that LMNN delivers the state-of-the-art performance among most distance metric learning
algorithms. Information theoretic metric learning (ITML) learns a suitable metric based on infor-
mation theoretics (Davis et al., 2007). To partially alleviate the heavy computationof standard IP
Newton methods, Bregman’s cyclic projection is used in Davis et al. (2007).This idea is extended
in Wang and Jin (2009), which has a closed-form solution and is computationally efficient.

There have been a number of approaches developed which aim to improvethe scalability of
the process of learning a metric parameterized by a p.s.d. metricX. For example, Rosales and Fung
(2006) approximate the p.s.d. cone using a set of linear constraints basedon the diagonal dominance
theorem. The approximation is not accurate, however, in the sense that it imposes too strong a con-
dition on the learned matrix—one may not want to learn a diagonally dominant matrix. Alternative
optimization is used in Xing et al. (2002) and Weinberger et al. (2005) to solve the semidefinite
problem iteratively. At each iteration, a full eigen-decomposition is applied toproject the solu-
tion back onto the p.s.d. cone. BOOSTMETRIC is conceptually very different to this approach, and
additionally only requires the calculation of the first eigenvector. Tsuda etal. (2005) proposed to
use matrix logarithms and exponentials to preserve positive definiteness. For the application of
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semidefinite kernel learning, they designed a matrix exponentiated gradientmethod to optimize von
Neumann divergence based objective functions. At each iteration of matrix exponentiated gradient,
a full eigen-decomposition is needed. In contrast, we only need to find the leading eigenvector.

The approach proposed here is directly inspired by the LMNN proposedin Weinberger and Saul
(2009); Weinberger et al. (2005). Instead of using the hinge loss, however, we use the exponential
loss and logistic loss functions in order to derive an AdaBoost-like (or LogitBoost-like) optimization
procedure. In theory, any differentiable convex loss function can beapplied here. Hence, despite
similar purposes, our algorithm differs essentially in the optimization. While the formulation of
LMNN looks more similar to SVMs, our algorithm, termed BOOSTMETRIC, largely draws upon
AdaBoost (Schapire, 1999).

Column generation was first proposed by Dantzig and Wolfe (1960) for solving a particular
form of structured linear program with an extremely large number of variables. The general idea
of column generation is that, instead of solving the original large-scale problem (master problem),
one works on a restricted master problem with a reasonably small subset ofthe variables at each
step. The dual of the restricted master problem is solved by the simplex method,and the optimal
dual solution is used to find the new column to be included into the restricted masterproblem. LP-
Boost (Demiriz et al., 2002) is a direct application of column generation in boosting. Significantly,
LPBoost showed that in an LP framework, unknown weak hypotheses can be learned from the dual
although the space of all weak hypotheses is infinitely large. Shen and Li (2010) applied column
generation to boosting with general loss functions. It is these results that underpin BOOSTMETRIC.

The remaining content is organized as follows. In Section 2 we present some preliminary math-
ematics. In Section 3, we show the main results. Experimental results are provided in Section
4.

2. Preliminaries

We introduce some fundamental concepts that are necessary for setting up our problem. First, the
notation used in this paper is as follows.

2.1 Notation

Throughout this paper, a matrix is denoted by a bold upper-case letter (X); a column vector is
denoted by a bold lower-case letter (xxx). The ith row of X is denoted byX i: and theith columnX:i .
111 and 000 are column vectors of 1’s and 0’s, respectively. Their size should beclear from the context.
We denote the space ofD×D symmetric matrices bySD, and positive semidefinite matrices bySD

+.
Tr (·) is the trace of a symmetric matrix and〈X,Z〉 = Tr (XZ⊤) = ∑i j X i j Z i j calculates the inner
product of two matrices. An element-wise inequality between two vectors likeuuu≤ vvv meansui ≤ vi

for all i. We useX < 0 to indicate that matrixX is positive semidefinite. For a matrixX ∈ S
D, the

following statements are equivalent: 1)X < 0 (X ∈ S
D
+); 2) All eigenvalues ofX are nonnegative

(λi(X)≥ 0, i = 1, · · · ,D); and 3)∀uuu∈ R
D, uuu⊤Xuuu≥ 0.

2.2 A Theorem on Trace-one Semidefinite Matrices

Before we present our main results, we introduce an important theorem that serves the theoretical
basis of BOOSTMETRIC.
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Definition 1 For any positive integer m, given a set of points{xxx1, ...,xxxm} in a real vector or matrix
spaceSp, theconvex hullof Spspanned by m elements inSp is defined as:

Convm(Sp) =
{

∑m
i=1wixxxi

∣
∣
∣wi ≥ 0,∑m

i=1wi = 1,xxxi ∈ Sp
}

.

Define the linear convex span ofSpas:1

Conv(Sp) =
⋃

m

Convm(Sp) =
{

∑m
i=1wixxxi

∣
∣
∣wi ≥ 0,∑m

i=1wi = 1,xxxi ∈ Sp,m∈ Z+

}

.

HereZ+ denotes the set of all positive integers.

Definition 2 Let us defineΓ1 to be the space of all positive semidefinite matricesX ∈ S
D
+ with trace

equaling one:
Γ1 = {X |X < 0,Tr (X) = 1} ;

andΨ1 to be the space of all positive semidefinite matrices with both trace and rank equaling one:

Ψ1 = {Z |Z < 0,Tr (Z) = 1,Rank(Z) = 1} .

We also defineΓ2 as the convex hull ofΨ1, that is,

Γ2 = Conv(Ψ1).

Lemma 3 LetΨ2 be a convex polytope defined asΨ2 = {λλλ ∈R
D|λk ≥ 0, ∀k= 0, · · · ,D, ∑D

k=1 λk =
1}, then the points with only one element equaling one and all the others being zeros are the extreme
points (vertexes) ofΨ2. All the other points can not be extreme points.

Proof Without loss of generality, let us consider such a pointλλλ′ = {1,0, · · · ,0}. If λλλ′ is not an
extreme point ofΨ2, then it must be possible to express it as a convex combination of a set of
other points in Ψ2: λλλ′ = ∑m

i=1wiλλλi , wi > 0, ∑m
i=1wi = 1 andλλλi 6= λλλ′. Then we have equations:

∑m
i=1wiλi

k = 0, ∀k = 2, · · · ,D. It follows thatλi
k = 0, ∀i andk = 2, · · · ,D. That means,λi

1 = 1 ∀i.
This is inconsistent withλλλi 6= λλλ′. Therefore such a convex combination does not exist andλλλ′ must
be an extreme point. It is trivial to see that anyλλλ that has more than one active element is an convex
combination of the above-defined extreme points. So they can not be extremepoints.

Theorem 4 Γ1 equals toΓ2; that is, Γ1 is also the convex hull ofΨ1. In other words, allZ ∈ Ψ1,
form the set of extreme points ofΓ1.

Proof It is easy to check that any convex combination∑i wiZ i , such thatZ i ∈ Ψ1, resides inΓ1,
with the following two facts: 1) a convex combination of p.s.d. matrices is still a p.s.d. matrix; 2)
Tr

(

∑i wiZ i
)
= ∑iwi Tr (Z i) = 1.

By denotingλ1 ≥ ·· · ≥ λD ≥ 0 the eigenvalues of aZ ∈ Γ1, we know thatλ1 ≤ 1 because
∑D

i=1 λi = Tr (Z) = 1. Therefore, all eigenvalues ofZ must satisfy:λi ∈ [0,1], ∀i = 1, · · · ,D and

1. With slight abuse of notation, we also use the symbolConv(·) to denote convex span. In general it is not a convex
hull.
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∑D
i λi = 1. By looking at the eigenvalues ofZ and using Lemma 3, it is immediate to see that a

matrixZ such thatZ < 0, Tr (Z) = 1 andRank(Z)> 1 can not be an extreme point ofΓ1. The only
candidates for extreme points are those rank-one matrices (λ1 = 1 andλ2,··· ,D = 0). Moreover, it is
not possible that some rank-one matrices are extreme points and others arenot because the other
two constraintsZ < 0 andTr (Z) = 1 do not distinguish between different rank-one matrices.

Hence, allZ ∈Ψ1 form the set of extreme points ofΓ1. Furthermore,Γ1 is a convex and compact
set, which must have extreme points. The Krein-Milman Theorem (Krein and Milman, 1940) tells
us that a convex and compact set is equal to the convex hull of its extreme points.

This theorem is a special case of the results from Overton and Womersley (1992) in the context
of eigenvalue optimization. A different proof for the above theorem’s general version can also be
found in Fillmore and Williams (1971).

In the context of semidefinite optimization, what is of interest about Theorem4 is as follows:
it tells us that a bounded p.s.d. matrix constraintX ∈ Γ1 can be equivalently replaced with a set of
constrains which belong toΓ2. At the first glance, this is a highly counterintuitive proposition be-
causeΓ2 involves many more complicated constraints. Bothwi andZ i (∀i = 1, · · · ,m) are unknown
variables. Even worse,mcould be extremely (or even infinitely) large. Nevertheless, this is the type
of problems thatboostingalgorithms are designed to solve. Let us give a brief overview of boosting
algorithms.

2.3 Boosting

Boosting is an example of ensemble learning, where multiple learners are trained to solve the same
problem. Typically a boosting algorithm (Schapire, 1999) creates a single strong learner by incre-
mentally adding base (weak) learners to the final strong learner. The base learner has an important
impact on the strong learner. In general, a boosting algorithm builds on a user-specified base learn-
ing procedure and runs it repeatedly on modified data that are outputs from the previous iterations.

The general form of the boosting algorithm is sketched in Algorithm 1. The inputs to a boosting
algorithm are a set of training examplexxx, and their corresponding class labelsy. The final output is
a strong classifier which takes the form

Fwww(xxx) = ∑J
j=1w jh j(xxx). (2)

Hereh j(·) is a base learner. From Theorem 4, we know that a matrixX ∈ Γ1 can be decomposed as

X = ∑J
j=1w jZ j ,Z j ∈ Γ2. (3)

By observing the similarity between Equations (2) and (3), we may viewZ j as a weak classifier
and the matrixX as the strong classifier that we want to learn. This is exactly the problem that
boosting methods have been designed to solve. This observation inspires us to solve a special type
of semidefinite optimization problem using boosting techniques.

The sparse greedy approximation algorithm proposed by Zhang (2003)is an efficient method for
solving a class of convex problems, and achieves fast convergence rates. It has also been shown that
boosting algorithms can be interpreted within the general framework of Zhang (2003). The main
idea of sequential greedy approximation, therefore, is as follows. Given an initializationuuu0, which
is in a convex subset of a linear vector space, a matrix space or a functional space, the algorithm
findsuuui andλ ∈ (0,1) such that the objective functionF((1−λ)uuui−1+λuuui) is minimized. Then the
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Algorithm 1 The general framework of boosting.

Input : Training data.
Initialize a weight setuuu on the training examples;1

for j = 1,2, · · · , do2

··· Receive a weak hypothesish j(·);3

··· Calculatew j > 0;4

··· Updateuuu.5

Output : A convex combination of the weak hypotheses:Fwww(xxx) = ∑J
j=1w jh j(xxx).

solutionuuui is updated asuuui = (1−λ)uuui−1+λuuui and the iteration goes on. Clearly,uuui must remain in
the original space. As shown next, our first case, which learns a metric using the hinge loss, greatly
resembles this idea.

2.4 Distance Metric Learning Using Proximity Comparison

The process of measuring distance using a Mahalanobis metric is equivalent to linearly transforming
the data by a projection matrixL ∈R

D×d (usuallyD ≥ d) before calculating the standard Euclidean
distance:

dist2i j = ‖L⊤ai −L⊤a j‖
2
2 = (ai −a j)

⊤LL⊤(ai −a j) = (ai −a j)
⊤X(ai −a j).

As described above, the problem of learning a Mahalanobis metric can be approached in terms
of learning the matrixL , or the p.s.d. matrixX. If X = I , the Mahalanobis distance reduces to the
Euclidean distance. IfX is diagonal, the problem corresponds to learning a metric in which different
features are given different weights,a.k.a.,feature weighting. Our approach is to learn a full p.s.d.
matrixX, however, using BOOSTMETRIC.

In the framework of large-margin learning, we want to maximize the distance betweendisti j
anddistik. That is, we wish to makedist2ik −dist2i j = (ai −ak)

⊤X(ai −ak)− (ai −a j)
⊤X(ai −a j) as

large as possible under some regularization. To simplify notation, we rewrite the distance between
dist2i j anddist2ik asdist2ik −dist2i j = 〈Ar ,X〉, where

Ar = (ai −ak)(ai −ak)
⊤− (ai −a j)(ai −a j)

⊤, (4)

for r = 1, · · · , |I| and|I| is the size of the set of constraintsI defined in Equation (1).

3. Algorithms

In this section, we define the optimization problems for metric learning. We mainly investigate the
cases using the hinge loss, exponential loss and logistic loss functions. Inorder to derive an efficient
optimization strategy, we look at their Lagrange dual problems and design boosting-like approaches
for efficiency.

3.1 Learning with the Hinge Loss

Our goal is to derive a general algorithm for p.s.d. matrix learning with the hinge loss function.
Assume that we want to find a p.s.d. matrixX < 0 such that a set of constraints

〈Ar ,X〉> 0, r = 1,2, · · · ,

1014
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are satisfied aswell as possible. HereAr is as defined in (4). These constraints need not all be
strictly satisfied and thus we define the marginρr = 〈Ar ,X〉, ∀r.

Putting it into the maximum margin learning framework, we want to minimize the following
trace norm regularized objective function:∑r F(〈Ar ,X〉)+vTr (X),with F(·) a convex loss function
and v a regularization constant. Here we have used the trace norm regularization. Of course a
Frobenius norm regularization term can also be used here. Minimizing the Frobenius norm||X||2F,
which is equivalent to minimize theℓ2 norm of the eigenvalues ofX, penalizes a solution that is far
away from the identity matrix. With the hinge loss, we can write the optimization problem as:

max
ρ,X,ξξξ

ρ−v∑|I|
r=1ξr , s.t.: 〈Ar ,X〉 ≥ ρ−ξr ,∀r;X < 0,Tr (X) = 1; ξξξ ≥ 000. (5)

HereTr (X) = 1 removes the scale ambiguity because the distance inequalities are scale invariant.
We can decomposeX into: X = ∑J

j=1w jZ j , with w j > 0, Rank(Z j) = 1 andTr (Z j) = 1, ∀ j.
So we have

〈Ar ,X〉=
〈
Ar ,∑J

j=1w jZ j
〉
= ∑J

j=1w j
〈
Ar ,Z j

〉
= ∑J

j=1w jHr j = Hr:www,∀r. (6)

HereHr j is a shorthand forHr j =
〈
Ar ,Z j

〉
. Clearly,Tr (X) = 111⊤www. Using Theorem 4, we replace

the p.s.d. conic constraint in the primal (5) with a linear convex combination of rank-one unitary
matrices:X = ∑ jw jZ j , and 111⊤www= 1. SubstitutingX in (5), we have

max
ρ,www,ξξξ

ρ−v∑|I|
r=1ξr , s.t.: Hr:www≥ ρ−ξr ,(r = 1, . . . , |I|);www≥ 000,111⊤www= 1; ξξξ ≥ 000. (7)

The Lagrange dual problem of the above linear programming problem (7)is easily derived:

min
π,uuu

π s.t.: ∑|I|
r=1urHr: ≤ π111⊤;111⊤uuu= 1,000≤ uuu≤ v111.

We can then use column generation to solve the original problem iteratively bylooking at both the
primal and dual problems. See Shen et al. (2008) for the algorithmic details.In this work we are
more interested in smooth loss functions such as the exponential loss and logistic loss, as presented
in the sequel.

3.2 Learning with the Exponential Loss

By employing the exponential loss, we want to optimize

min
X,ρρρ

log
(

∑|I|
r=1exp(−ρr)

)
+vTr (X)

s.t.:ρr = 〈Ar ,X〉, r = 1, · · · , |I|, X < 0. (8)

Note that: 1) We are proposing a logarithmic version of the sum of exponential loss. This transform
does not change the original optimization problem of sum of exponential loss because the logarith-
mic function is strictly monotonically increasing. 2) A regularization termTr (X) has been applied.
Without this regularization, one can always multiplyX by an arbitrarily large scale factor in order
to make the exponential loss approach zero in the case of all constraints being satisfied. This trace-
norm regularization may also lead to low-rank solutions. 3) An auxiliary variableρr , r = 1, . . . must
be introduced for deriving a meaningful dual problem, as we show later.
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We now derive the Lagrange dual of the problem that we are interested in. The original problem
(8) now becomes

min
ρρρ,www

log
(

∑|I|
r=1exp(−ρr)

)
+v111⊤www

s.t.:ρr = Hr:www, r = 1, · · · , |I|; www≥ 000. (9)

We have used the Equation (6). In order to derive its dual, we write its Lagrangian

L(www,ρρρ,uuu) = log
(

∑|I|
r=1exp(−ρr)

)
+v111⊤www+∑|I|

r=1ur(ρr −Hr:www)− ppp⊤www,

with ppp≥ 0. The dual problem is obtained by finding the saddle point ofL; that is, supuuu infwww,ρρρ L.

inf
www,ρρρ

L = inf
ρρρ

L1
︷ ︸︸ ︷

log
(

∑|I|
r=1exp(−ρr)

)
+uuu⊤ρρρ+ inf

www

L2
︷ ︸︸ ︷

(v111⊤−∑|I|
r=1urHr: − ppp⊤)www (10)

=−∑|I|
r=1ur logur .

The infimum ofL1 is found by setting its first derivative to zero and we have:

inf
ρρρ

L1 =

{

−∑rur logur if uuu≥ 000,111⊤uuu= 1,

−∞ otherwise.

The infimum is Shannon entropy.L2 is linear inwww, hence it must be 000. It leads to

∑|I|
r=1urHr: ≤ v111⊤. (11)

The Lagrange dual problem of (9) is an entropy maximization problem, whichwrites

max
uuu

−∑|I|
r=1ur logur , s.t.: uuu≥ 000,111⊤uuu= 1,and (11). (12)

Weak and strong duality hold under mild conditions (Boyd and Vandenberghe, 2004). That means,
one can usually solve one problem from the other. The KKT conditions link the optimal between
these two problems. In our case, it is

u⋆r =
exp(−ρ⋆

r )

∑|I|
k=1exp(−ρ⋆

k)
,∀r. (13)

While it is possible to devise a totally-corrective column generation based optimization proce-
dure for solving our problem as the case of LPBoost (Demiriz et al., 2002), we are more interested in
consideringone-at-a-timecoordinate-wise descent algorithms, as the case of AdaBoost (Schapire,
1999). Let us start from some basic knowledge of column generation because our coordinate descent
strategy is inspired by column generation.

If we know all the basesZ j ( j = 1. . .J) and hence the entire matrixH is known. Then either
the primal (9) or the dual (12) can be trivially solved (at least in theory) because both are convex
optimization problems. We can solve them in polynomial time. Especially the primal problem is
convex minimization with simple nonnegativeness constraints. Off-the-shelf software like LBFGS-
B (Zhu et al., 1997) can be used for this purpose. Unfortunately, in practice, we do not access all

1016



METRIC LEARNING USING BOOSTING-LIKE ALGORITHMS

the bases: the possibility ofZ is infinite. In convex optimization, column generation is a technique
that is designed for solving this difficulty.

Column generation was originally advocated for solving large scale linear programs (L̈ubbecke
and Desrosiers, 2005). Column generation is based on the fact that fora linear program, the number
of non-zero variables of the optimal solution is equal to the number of constraints. Therefore,
although the number of possible variables may be large, we only need a small subset of these in
the optimal solution. For a general convex problem, we can use column generation to obtain an
approximatesolution. It works by only considering a small subset of the entire variableset. Once
it is solved, we ask the question:“Are there any other variables that can beincluded to improve
the solution?”. So we must be able to solve the subproblem: given a set of dual values, one either
identifies a variable that has a favorable reduced cost, or indicates that such a variable does not exist.
Essentially, column generation finds the variables with negative reduced costs without explicitly
enumerating all variables.

Instead of directly solving the primal problem (9), we find the most violated constraint in the
dual (12) iteratively for the current solution and adds this constraint to the optimization problem.
For this purpose, we need to solve

Ẑ = argmaxZ
{

∑|I|
r=1ur

〈
Ar ,Z

〉
, s.t.: Z ∈ Ψ1

}

. (14)

We discuss how to efficiently solve (14) later. Now we move on to derive a coordinate descent
optimization procedure.

3.3 Coordinate Descent Optimization

We show how an AdaBoost-like optimization procedure can be derived.

3.3.1 OPTIMIZING FOR w j

Since we are interested in theone-at-a-timecoordinate-wise optimization, we keepw1, w2, . . . , w j−1

fixed when solving forw j . The cost function of the primal problem is (in the following derivation,
we drop those terms irrelevant to the variablew j )

Cp(w j) = log
[

∑|I|
r=1exp(−ρ j−1

r ) ·exp(−Hr j w j)
]
+vwj .

Clearly,Cp is convex inw j and hence there is only one minimum that is also globally optimal. The
first derivative ofCp w.r.t. w j vanishes at optimality, which results in

∑|I|
r=1(Hr j −v)u j−1

r exp(−w jHr j ) = 0. (15)

If Hr j is discrete, such as{+1,−1} in standard AdaBoost, we can obtain a closed-form solution
similar to AdaBoost. Unfortunately in our case,Hr j can be any real value. We instead use bisection
to search for the optimalw j . The bisection method is one of the root-finding algorithms. It repeat-
edly divides an interval in half and then selects the subinterval in which a root exists. Bisection is
a simple and robust, although it is not the fastest algorithm for root-finding.Algorithm 2 gives the
bisection procedure. We have used the fact that the l.h.s. of (15) must bepositive atwl . Otherwise
no solution can be found. Whenw j = 0, clearly the l.h.s. of (15) is positive.
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Algorithm 2 Bisection search forw j .

Input : An interval[wl ,wu] known to contain the optimal value ofw j and convergence
toleranceε > 0.

repeat1

··· w j = 0.5(wl +wu);2

··· if l.h.s.of (15)> 0 then3

wl = w j ;4

else5

wu = w j .6

until wu−wl < ε ;7

Output : w j .

3.3.2 UPDATING uuu

The rule for updatinguuu can be easily obtained from (13). At iterationj, we have

u j
r ∝ exp(−ρ j

r ) ∝ u j−1
r exp(−Hr j w j), and∑|I|

r=1u j
r = 1,

derived from (13). So oncew j is calculated, we can updateuuu as

u j
r =

u j−1
r exp(−Hr j w j)

z
, r = 1, . . . , |I|, (16)

wherez is a normalization factor so that∑|I|
r=1u j

r = 1. This is exactly the same as AdaBoost.

3.4 The Base Learning Algorithm

In this section, we show that the optimization problem (14) can be exactly and efficiently solved
using eigenvalue-decomposition (EVD).

FromZ < 0 andRank(Z) = 1, we know thatZ has the format:Z = vvvvvv⊤, vvv∈R
D; andTr (Z) = 1

means‖vvv‖2 = 1. We have
〈

∑|I|
r=1urAr ,Z

〉
= vvv

(

∑|I|
r=1urAr

)
vvv⊤.

By denoting

Â = ∑|I|
r=1urAr , (17)

the base learning optimization equals:

max
vvv

vvv⊤Âvvv, s.t.:‖vvv‖2 = 1. (18)

It is clear that the largest eigenvalue ofÂ, λmax(Â), and its corresponding eigenvectorvvv1 gives the
solution to the above problem. Note thatÂ is symmetric.

λmax(Â) is also used as one of the stopping criteria of the algorithm. Form the condition (11),
λmax(Â)< v means that we are not able to find a new base matrixẐ that violates (11)—the algorithm
converges.
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Algorithm 3 Positive semidefinite matrix learning with stage-wise boosting.

Input :

• Training set triplets(ai ,a j ,ak) ∈ I; ComputeAr , r = 1,2, · · · , using (4).

• J: maximum number of iterations;

• (optional) regularization parameterv; We may simply setv to a very small value, for
example, 10−7.

Initialize : u0
r =

1
|I| , r = 1· · · |I|;1

for j = 1,2, · · · ,J do2

··· Find a new baseZ j by finding the largest eigenvalue (λmax(Â)) and its eigenvector of3

Â in (17);
··· if λmax(Â)< v then4

break (converged);5

··· Computew j using Algorithm 2;6

··· Updateuuu to obtainu j
r , r = 1, · · · |I| using (16);7

Output : The final p.s.d. matrixX ∈ R
D×D, X = ∑J

j=1w jZ j .

Eigenvalue decompositions is one of the main computational costs in our algorithm.There
are approximate eigenvalue solvers, which guarantee that for a symmetric matrix U and anyε >
0, a vectorvvv is found such thatvvv⊤Uvvv ≥ λmax− ε. To approximately find the largest eigenvalue
and eigenvector can be very efficient using Lanczos or power method.We can use the MATLAB
function eigs to calculate the largest eigenvector, which calls mex files of ARPACK. ARPACK is
a collection of Fortran subroutines designed to solve large scale eigenvalue problems. When the
input matrix is symmetric, this software uses a variant of the Lanczos process called the implicitly
restarted Lanczos method.

Another way to reduce the time for computing the leading eigenvector is to computean approx-
imate EVD by a fast Monte Carlo algorithm such as the linear time SVD algorithm developed in
Drineas et al. (2004).

We summarize our main algorithmic results in Algorithm 3.

3.5 Learning with the Logistic Loss

We have considered the exponential loss in the last content. The proposed framework is so general
that it can also accommodate other convex loss functions. Here we consider the logistic loss, which
penalizes mis-classifications with more moderate penalties than the exponential loss. It is believed
on noisy data, the logistic loss may achieve better classification performance.

With the same settings as in the case of the exponential loss, we can write our optimization
problem as

min
ρρρ,www

∑|I|
r=1logit(ρr)+v1⊤www

s.t.:ρr = Hr:www, r = 1, · · · , |I|,www≥ 0. (19)
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Here logit(·) is the logistic loss defined as logit(z) = log(1+ exp(−z)). Similarly, we derive its
Lagrange dual as

min
uuu

∑|I|
r=1logit∗(−ur)

s.t.:∑|I|
r=1urHr: ≤ v1⊤,

where logit∗(·) is the Fenchel conjugate function of logit(·), defined as

logit∗(−u) = ulog(u)+(1−u) log(1−u),

when 0≤ u≤ 1, and∞ otherwise. So the Fenchel conjugate of logit(·) is the binary entropy function.
We have reversed the sign ofuuu when deriving the dual.

Again, according to the KKT conditions, we have

u⋆r =
exp(−ρ⋆

r )

1+exp(−ρ⋆
r )
, ∀r, (20)

at optimality. From (20) we can also see thatu must be in(0,1).
Similarly, we want to optimize the primal cost function in a coordinate descent way. First, let

us find the relationship betweenu j
r andu j−1

r . Here j is the iteration index. From (20), it is trivial to
obtain

u j
r =

1

(1/u j−1
r −1)exp(Hr j w j)+1

, ∀r. (21)

The optimization ofw j can be solved by looking for the root of

∑|I|
r=1Hr j u

j
r −v= 0, (22)

whereu j
r is a function ofw j as defined in (21).

Therefore, in the case of the logistic loss, to findw j , we modify the bisection search of Algo-
rithm 2:

• Line 3: if l.h.s.o f (22)> 0 then . . .

and Line 7 of Algorithm 3:

• Line 7: Updateuuu using (21).

3.6 Totally Corrective Optimization

In this section, we derive a totally-corrective version of BOOSTMETRIC, similar to the case of Total-
Boost (Warmuth et al., 2006; Shen and Li, 2010) for classification, in the sense that the coefficients
of all weak learners are updated at each iteration.

Unlike the stage-wise optimization, here we do not need to keep previous weights of weak
learnersw1,w2, . . . ,w j−1. Instead, the weights of all the selected weak learnersw1,w2, . . . ,w j are
updated at each iterationj. As discussed, our learning procedure is able to employ various loss
functions such as the hinge loss, exponential loss or logistic loss. To devise a totally-corrective
optimization procedure for solving our problem efficiently, we need to ensure the object function
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Algorithm 4 Positive semidefinite matrix learning with totally corrective boosting.

Input :

• Training set triplets(ai ,a j ,ak) ∈ I; ComputeAr , r = 1,2, · · · , using (4).

• J: maximum number of iterations;

• Regularization parameterv.

Initialize : u0
r =

1
|I| , r = 1· · · |I|;1

for j = 1,2, · · · ,J do2

··· Find a new baseZ j by finding the largest eigenvalue (λmax(Â)) and its eigenvector of3

Â in (17);
··· if λmax(Â)< v then4

break (converged);5

··· Optimize forw1,w2, · · · ,w j by solving the primal problem (9) when the exponential6

loss is used or (19) when the logistic loss is used;
··· Updateuuu to obtainu j

r , r = 1, · · · |I| using (13) (exponential loss) or (20) (logistic loss);7

Output : The final p.s.d. matrixX ∈ R
D×D, X = ∑J

j=1w jZ j .

to be differentiable with respect to the variablesw1,w2, . . . ,w j . Here, we use the exponential loss
function and the logistic loss function. It is possible to use sub-gradient descent methods when a
non-smooth loss function like the hinge loss is used.

It is clear that solving forwww is a typical convex optimization problem since it has a differentiable
and convex function (9) when the exponential loss is used, or (19) when the logistic loss is used.
Hence it can be solved using off-the-shelf gradient-descent solverslike L-BFGS-B (Zhu et al.,
1997).

Since all the weightsw1,w2, . . . ,w j are updated,u j
r on r = 1. . . |I| need not to be updated but

re-calculated at each iterationj. To calculateu j
r , we use (13) (exponential loss) or (20) (logistic loss)

instead of (16) or (21) respectively. Totally-corrective BOOSTMETRIC methods are very simple to
implement. Algorithm 4 gives the summary of this algorithm. Next, we show the convergence
property of Algorithm 4. Formally, we want to show the following theorem.

Theorem 5 Algorithm 4 makes progress at each iteration. In other words, the objective value is
decreased at each iteration. Therefore, in the limit, Algorithm 4 solves the optimization problem(9)
(or (19)) globally to a desired accuracy.

Proof Let us consider the exponential loss case of problem (9). The proof follows the same discus-
sion for the logistic loss, or any other smooth convex loss function. Assume that the current solution
is a finite subset of base learners (rank-one trace-one matrices) and their corresponding linear coef-
ficientswww. If we add a base matrix̂Z that is not in the current subset, and the corresponding ˆw= 0,
then the objective value and the solution must remain unchanged. We can conclude that the current
learned base learners andwww are the optimal solution already.

Consider the case that this optimality condition is violated. We need to show that wecan find
a base learner̂Z, which is not in the current set of all the selected base learners, such that ŵ > 0

1021



SHEN, K IM , WANG AND VAN DEN HENGEL

holds. Now assume thatẐ is the base learner found by solving (18), and the convergence condition

λmax(Â)≤ v is not satisfied. So, we haveλmax(Â) =
〈

∑|I|
r=1urAr , Ẑ

〉

> v.

If, after this weak learner̂Z is added into the primal problem, the primal solution remains
unchanged, that is, the corresponding ˆw= 0, then from the optimality condition thatL2 in (10) must

be zero, we know that ˆp= v−
〈

∑|I|
r=1urAr , Ẑ

〉

< 0. This contradicts the fact the Lagrange multiplier

p̂≥ 0.

We can conclude that after the base learnerẐ is added into the primal problem, its corresponding
ŵ must admit a positive value. It means that one more free variable is added intothe problem and
re-solving the primal problem would reduce the objective value. Hence a strict decrease in the
objective is guaranteed. So Algorithm 4 makes progress at each iteration.

Furthermore, as the optimization problems involved are all convex, there areno local optimal
solutions. Therefore Algorithm 4 is guaranteed to converge to the global solution.

Note that the above proof establishes the convergence of Algorithm 4 butit remains unclear
about the convergence rate.

3.7 Multi-passBOOSTMETRIC

In this section, we show that BOOSTMETRIC can use multi-pass learning to enhance the perfor-
mance.

Our BOOSTMETRIC uses training set triplets(ai ,a j ,ak) ∈ I as input for training. The Maha-
lanobis distance metricX can be viewed as a linear transformation in the Euclidean space by project-
ing the data using matrixL (X = LL⊤). That is, nearest neighbors of samples using Mahalanobis
distance metricX are the same as nearest neighbors using Euclidean distance in the transformed
space. BOOSTMETRIC assumes that the triplets of input training set approximately represent the
actual nearest neighbors of samples in the transformed space defined by the Mahalanobis metric.
However, even though the triplets of BOOSTMETRIC consist of nearest neighbors of the original
training samples, generated triplets are not exactly the same as the actual nearest neighbors of train-
ing samples in the transformed space byL .

We can refine the results of BOOSTMETRIC iteratively, as in the multiple-pass LMNN (Wein-
berger and Saul, 2009): BOOSTMETRIC can estimate the triplets in the transformed space under
a multiple-pass procedure as close to actual triplets as possible. The rule for multi-pass BOOST-
METRIC is simple. At each passp (p= 1,2, · · ·), we decompose the learned Mahalanobis distance
metric Xp−1 of previous pass into transformation matrixL p. The initial matrixL1 is an identity
matrix. Then we generate the training set triplets from the set of points{L⊤a1, . . . ,L⊤am} where
L = L1 ·L2 · · · ·L p. The final Mahalanobis distance metricX becomesLL⊤ in Multi-pass BOOST-
METRIC.

4. Experiments

In this section, we present experiments on data visualization, classification and image retrieval tasks.
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Figure 1: The data are projected into 2D with PCA (left), LDA (middle) and BOOSTMETRIC

(right). Both PCA and LDA fail to recover the data structure. The local structure of
the data is preserved after projection by BOOSTMETRIC.

4.1 An Illustrative Example

We demonstrate a data visualization problem on an artificial toy data set (concentric circles) in Fig-
ure 1. The data set has four classes. The first two dimensions follow concentric circles while the left
eight dimensions are all random Gaussian noise. In this experiment, 9000 triplets are generated for
training. When the scale of the noise is large, PCA fails find the first two informative dimensions.
LDA fails too because clearly each class does not follow a Gaussian distraction and their centers
overlap at the same point. The proposed BOOSTMETRIC algorithm find the informative features.
The eigenvalues ofX learned by BOOSTMETRIC are{0.542,0.414,0.007,0, · · · ,0}, which indi-
cates that BOOSTMETRIC successfully reveals the data’s underlying 2D structure. We have used
the exponential loss in this experiment.

4.2 Classification on Benchmark Data Sets

We evaluate BOOSTMETRIC on 7 data sets of different sizes. Some of the data sets have very
high dimensional inputs. We use PCA to decrease the dimensionality before training on these
data sets (MNIST, USPS and yFaces). PCA pre-processing helps to eliminate noises and speed
up computation. Table 1 summarizes the data sets in detail. We have used USPS and MNIST
handwritten digits, Yale face recognition data sets, and a few UCI machine learning data sets.2

Experimental results are obtained by averaging over 10 runs (except for large data sets MNIST
and Letter). We randomly split the data sets for each run. We have used thesame mechanism
to generate training triplets as described in Weinberger et al. (2005). Briefly, for each training
point ai , k nearest neighbors that have same labels asyi (targets), as well ask nearest neighbors
that have different labels fromyi (imposers) are found. We then construct triplets fromai and its
corresponding targets and imposers. For all the data sets, we have setk= 3 (3-nearest-neighbor). We
have compared our method against a few methods: RCA (Bar-Hillel et al., 2005), NCA (Goldberger
et al., 2004), ITML (Davis et al., 2007) and LMNN (Weinberger et al., 2005). Also in Table 1,
“Euclidean” is the baseline algorithm that uses the standard Euclidean distance. The codes for these
compared algorithms are downloaded from the corresponding author’s website. Experiment setting
for LMNN follows Weinberger et al. (2005). The slack variable parameter for ITML is tuned using

2. UCI data sets can be found athttp://archive.ics.uci.edu/ml/.
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v 10−8 10−7 10−6 10−5 10−4

Bal 8.98 (2.59) 8.88 (2.52) 8.88 (2.52) 8.88 (2.52) 8.93 (2.52)
B-Cancer 2.11 (0.69) 2.11 (0.69) 2.11 (0.69) 2.11 (0.69) 2.11 (0.69)
Diabetes 26.0 (1.33) 26.0 (1.33) 26.0 (1.33) 26.0 (1.34) 26.0 (1.46)

Table 2: Test error (%) of a 3-nearest neighbor classifier with different values of the parameterv.
Each experiment is run 10 times. We report the mean and variance. As expected, as long
asv is sufficiently small, in a wide range it almost does not affect the final classification
performance.

cross validation over the values 0.01,0.1,1,10 as in Davis et al. (2007). For BOOSTMETRIC, we
have setv= 10−7, the maximum number of iterationsJ = 500.

BOOSTMETRIC has different variants which use 1) the exponential loss (BOOSTMETRIC-E), 2)
the logistic loss (BOOSTMETRIC-L), 3) multiple pass evaluation (MP) for updating triplets with the
exponential and logistic loss, and 4) two optimization strategies, namely, stage-wise optimization
and totally corrective optimization. The experiments are conducted by using Matlab and a C-mex
implementation of the L-BFGS-B algorithm.

As reported in Table 1, we can conclude: 1) BOOSTMETRIC consistently improves the accu-
racy ofkNN classification using Euclidean distance on most data sets. So learning a Mahalanobis
metric based upon the large margin concept indeed leads to improvements inkNN classification.
2) BOOSTMETRIC outperforms other state-of-the-art algorithms in most cases (on 5 out of 7data
sets). LMNN is the second best algorithm on these 7 data sets statistically. LMNN’s results are
consistent with those given in Weinberger et al. (2005). ITML is faster than BOOSTMETRIC on
most large data sets such as MNIST. However it has higher error rates than BOOSTMETRIC in our
experiment. 3) NCA can only be run on a few small data sets. In general NCA does not perform
well. Initialization is important for NCA because NCA’s objective function is highly non-convex
and can only find a local optimum.

In this experiment, LMNN solves for the global optimum (learningX) except for the Wine data
set. When the LMNN solver solves forX on the Wine data set, the error rate is large (20.77%±
14.18%). So instead we have solved for the projection matrixL on Wine. Also note that the number
of training data on Iris, Wine and Bal in Weinberger et al. (2005) are different from our experiment.
We have used these data sets from UCI. For the experiment on MNIST, if we deskew the handwritten
digits data first as in Weinberger and Saul (2009), the final accuracy can be slightly improved. Here
we have not deskewed the data.

4.2.1 INFLUENCE OFv

Previously, we claim that the stage-wise version of BOOSTMETRIC is parameter-free like AdaBoost.
However, we do have a parameterv. Actually, AdaBoost simply setv= 0. The coordinate-wise gra-
dient descent optimization strategy of AdaBoost leads to anℓ1-norm regularized maximum margin
classifier (Rosset et al., 2004). It is shown that AdaBoost minimizes its losscriterion with anℓ1 con-
straint on the coefficient vector. Given the similarity of the optimization of BOOSTMETRIC with
AdaBoost, we conjecture that BOOSTMETRIC has the same property. Here we empirically prove
thatas long as v is sufficiently small, the final performance is not affected by thevalue of v. We have
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setv from 10−8 to 10−4 and run BOOSTMETRIC on 3 UCI data sets. Table 2 reports the final 3NN
classification error with differentv. The results are nearly identical.

For the totally corrective version of BOOSTMETRIC, similar results are observed. Actually for
LMNN, it was also reported that the regularization parameter does not have a significant impact on
the final results in a wide range (Weinberger and Saul, 2009).

4.2.2 COMPUTATIONAL TIME

As we discussed, one major issue in learning a Mahalanobis distance is heavy computational cost
because of the semidefiniteness constraint.

We have shown the running time of the proposed algorithm in Table 1 for the classification
tasks.3 Our algorithm is generally fast. Our algorithm involves matrix operations and an EVD for
finding its largest eigenvalue and its corresponding eigenvector. The time complexity of this EVD
is O(D2) with D the input dimensions. We compare our algorithm’s running time with LMNN in
Figure 2 on the artificial data set (concentric circles). Our algorithm is stage-wise BOOSTMETRIC

with the exponential loss. We vary the input dimensions from 50 to 1000 and keep the number
of triplets fixed to 250. LMNN does not use standard interior-point SDP solvers, which do not
scale well. Instead LMNN heuristically combines sub-gradient descent in both the matricesL and
X. At each iteration,X is projected back onto the p.s.d. cone using EVD. So a full EVD with
time complexityO(D3) is needed. Note that LMNN is much faster than SDP solvers like CSDP
(Borchers, 1999). As seen from Figure 2, when the input dimensions are low, BOOSTMETRIC

is comparable to LMNN. As expected, when the input dimensions become large, BOOSTMETRIC

is significantly faster than LMNN. Note that our implementation is in Matlab. Improvements are
expected if implemented in C/C++.

4.3 Visual Object Categorization

In the following experiments, unless otherwise specified, BOOSTMETRIC means the stage-wise
BOOSTMETRIC with the exponential loss.

The proposed BOOSTMETRIC and the LMNN are further compared on visual object cate-
gorization tasks. The first experiment uses four classes of the Caltech-101 object recognition
database (Fei-Fei et al., 2006), including Motorbikes (798 images), Airplanes (800), Faces (435),
and Background-Google (520). The task is to label each image according to the presence of a par-
ticular object. This experiment involves both object categorization (Motorbikes versus Airplanes)
and object retrieval (Faces versus Background-Google) problems.In the second experiment, we
compare the two methods on the MSRC data set including 240 images.4 The objects in the images
can be categorized into nine classes, includingbuilding, grass, tree, cow, sky, airplane, face, car
and bicycle. Different from the first experiment, each image in this database often contains multiple
objects. The regions corresponding to each object have been manually pre-segmented, and the task
is to label each region according to the presence of a particular object. Some examples are shown
in Figure 3.

3. We have run all the experiments on a desktop with an Intel CoreTM2 Duo CPU, 4G RAM and Matlab 7.7 (64-bit
version).

4. Seehttp://research.microsoft.com/en-us/projects/objectclassrecognition/.
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Figure 2: Computation time of the proposed BOOSTMETRIC (stage-wise, exponential loss) and the
LMNN method versus the input data’s dimensions on an artificial data set. BOOSTMET-
RIC is faster than LMNN with large input dimensions because at each iteration BOOST-
METRIC only needs to calculate the largest eigenvector and LMNN needs a full eigen-
decomposition.

Figure 3: Examples of the images in the MSRC data set and the pre-segmented regions labeled
using different colors.

4.3.1 EXPERIMENT ON THECALTECH-101 DATA SET

For each image of the four classes, a number of interest regions are identified by the Harris-affine
detector (Mikolajczyk and Schmid, 2004) and each region is characterized by the SIFT descrip-
tor (Lowe, 2004). The total number of interest regions extracted from the four classes are about
134,000, 84,000, 57,000, and 293,000, respectively. To accumulate statistics, the images of two
involved object classes are randomly split as 10 pairs of training/test subsets. Restricted to the im-
ages in a training subset (those in a test subset are only used for test), their local descriptors are
clustered to form visual words by usingk-means clustering. Each image is then represented by a
histogram containing the number of occurrences of each visual word.
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Figure 4: Test error (3-nearest neighbor) of BOOSTMETRIC on the Motorbikes versus Airplanes
data sets. The second plot shows the test error against the number of training triplets with
a 100-word codebook.

Motorbikes versus AirplanesThis experiment discriminates the images of a motorbike from
those of an airplane. In each of the 10 pairs of training/test subsets, there are 959 training images
and 639 test images. Two visual codebooks of size 100 and 200 are used, respectively. With the
resulting histograms, the proposed BOOSTMETRIC and the LMNN are learned on a training subset
and evaluated on the corresponding test subset. Their averaged classification error rates are com-
pared in Figure 4 (left). For both visual codebooks, the proposed BOOSTMETRIC achieves lower
error rates than the LMNN and the Euclidean distance, demonstrating its superior performance.
We also apply a linear SVM classifier with its regularization parameter carefullytuned by 5-fold
cross-validation. Its error rates are 3.87%± 0.69% and 3.00%± 0.72% on the two visual code-
books, respectively. In contrast, a 3NN with BOOSTMETRIC has error rates 3.63%± 0.68% and
2.96%± 0.59%. Hence, the performance of the proposed BOOSTMETRIC is comparable to the
state-of-the-art SVM classifier. Also, Figure 4 (right) plots the test errorof the BOOSTMETRIC

against the number of triplets for training. The general trend is that more triplets lead to smaller
errors.

Faces versus Background-GoogleThis experiment uses the two object classes as a retrieval
problem. The target of retrieval is face images. The images in the class of Background-Google are
randomly collected from the Internet and they represent the non-targetclass. BOOSTMETRIC is
first learned from a training subset and retrieval is conducted on the corresponding test subset. In
each of the 10 training/test subsets, there are 573 training images and 382 test images. Again, two
visual codebooks of size 100 and 200 are used. Each face image in a test subset is used as a query,
and its distances from other test images are calculated by the proposed BoostMetric, LMNN and the
Euclidean distance, respectively. For each metric, thePrecisionof the retrieved top 5, 10, 15 and
20 images are computed. ThePrecisionvalues from each query are averaged on this test subset and
then averaged over the 10 test subsets. The retrieval precision of these metrics is shown in Figure 5
(with a codebook size 100). As we can see that the BOOSTMETRIC consistently attains the highest
values on both visual codebooks, which again verifies its advantages over LMNN and Euclidean
distance. With a codebook size 200, very similar results are obtained.
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Figure 5: Retrieval accuracy of distance metric learning algorithms on the Faces versus Backgr-
ound-Google data set. Error bars show the standard deviation.

4.3.2 EXPERIMENT ON THEMSRC DATA SET

The 240 images of the MSRC database are randomly halved into 10 groups oftraining and test sets.
Given a set of training images, the task is to predict the class label for eachof the pre-segmented
regions in a test image. We follow the work in Winn et al. (2005) to extract features and conduct
experiments. Specifically, each image is converted from the RGB color space to the CIE Lab color
space. First, three Gaussian low-pass filters are applied to theL, a, andb channels, respectively.
The standard deviationσ of the filters are set to 1, 2, and 4, respectively, and the filter size is defined
as 4σ. This step produces 9 filter responses for each pixel in an image. Second, three Laplacian
of Gaussian (LoG) filters are applied to theL channel only, withσ = 1,2,4,8 and the filter size
of 4σ. This step gives rise to 4 filter responses for each pixel. Lastly, the firstderivatives of the
Gaussian filter withσ = 2,4 are computed from theL channel along the row and column directions,
respectively. This results in 4 more filter responses. After applying this set of filter banks, each
pixel is represented by a 17-dimensional feature vectors. All the feature vectors from a training set
are clustered using thek-means clustering with a Mahalanobis distance.5 By settingk to 2000, a
visual codebook of 2000 visual words is obtained. We implement the word-merging approach in
Winn et al. (2005) and obtain a compact and discriminative codebook of 300 visual words. Each
pre-segmented object region is then represented as a 300-dimensional histogram.

The proposed BOOSTMETRIC is compared with the LMNN algorithm as follows. With 10 near-
est neighbors information, about 20,000 triplets are constructed and used to train the BOOSTMET-
RIC. To ensure convergence, the maximum number of iterations is set as 5000 inthe optimization of
training BOOSTMETRIC. The training of LMNN follows the default setting.kNN classifiers with
the two learned Mahalanobis distances and the Euclidean distance are applied to each training and
test group to categorize an object region. The categorization error rateon each test group is summa-
rized in Table 3. As expected, both learned Mahalanobis distances achieve superior categorization

5. Note that this Mahalanobis distance is different from the one that we aregoing to learn with the BOOSTMETRIC.
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group index Euclidean LMNN BOOSTMETRIC

1 9.19 6.71 4.59
2 5.78 3.97 3.25
3 6.69 2.97 2.60
4 5.54 3.69 4.43
5 6.52 5.80 4.35
6 7.30 4.01 3.28
7 7.75 2.21 2.58
8 7.20 4.17 4.55
9 6.13 3.07 4.21
10 8.42 5.13 5.86

average: 7.05 4.17 3.97
standard devision: 1.16 1.37 1.03

Table 3: Comparison of the categorization performance.

Figure 6: Four generated triplets based on the pairwise information provided by the LFW data set.
For the three images in each triplet, the first two belong to the same individual and the
third one is a different individual.

performance to the Euclidean distance. Moreover, the proposed BOOSTMETRIC achieves better
performance than the LMNN, as indicated by its lower average categorization error rate and the
smaller standard deviation. Also, thekNN classifier using the proposed BOOSTMETRIC achieves
comparable or even higher categorization performance than those reported in Winn et al. (2005).
Besides the categorization performance, we compare the computational efficiency of the BOOST-
METRIC and the LMNN in learning a Mahalanobis distance. The computational time resultis based
on the Matlab codes for both methods. In this experiment, the average time costby the BOOSTMET-
RIC for learning the Mahalanobis distance is 3.98 hours, whereas the LMNN takes about 8.06 hours
to complete this process. Hence, the proposed BOOSTMETRIC has a shorter training process than
the LMNN method. This again demonstrates the computational advantage of the BOOSTMETRIC

over the LMNN method.

4.4 Unconstrained Face Recognition

We use the “labeled faces in the wild” (LFW) data set (Huang et al., 2007) for face recognition in
this experiment.
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number of triplets 100D 200D 300D 400D

3,000 80.91 (1.76) 82.39 (1.73) 83.40 (1.46) 83.64 (1.66)
6,000 81.13 (1.76) 82.59 (1.84) 83.58 (1.25) 83.70 (1.73)
9,000 81.01 (1.69) 82.63 (1.68) 83.65 (1.70) 83.72 (1.47)
12,000 81.06 (1.63) 83.00 (1.38) 83.60 (1.89) 83.57 (1.47)
15,000 81.10 (1.71) 82.78 (1.83) 83.69 (1.62) 83.80 (1.85)
18,000 81.37 (2.15) 83.19 (1.76) 83.60 (1.66) 83.81 (1.55)

Table 4: Comparison of the face recognition accuracy (%) of our proposed BOOSTMETRIC on the
LFW data set by varying the PCA dimensionality and the number of triplets for each fold.

This is a data set of unconstrained face images, which has a large range of variations seen in real
world, including 13,233 images of 5,749 people collected from news articles on Internet. The face
recognition task here ispair matching—given two face images, to determine if these two images
are of the same individual. So we classify unseen pairs to determine whethereach image in the pair
indicates the same individual or not, by applying MkNN of Guillaumin et al. (2009) instead ofkNN.

Features of face images are extracted by computing 3-scale, 128-dimensional SIFT descriptors
(Lowe, 2004), which center on 9 points of facial features extracted bya facial feature descriptor,
same as described in Guillaumin et al. (2009). PCA is then performed on the SIFT vectors to reduce
the dimension to between 100 and 400.

Simple recognition systems with a single descriptorTable 4 shows our BOOSTMETRIC’s per-
formance by varying PCA dimensionality and the number of triplets. Increasing the number of
training triplets gives slight improvement of recognition accuracy. The dimension after PCA has
more impact on the final accuracy for this task.

In Figure 7, we have drawn ROC curves of other algorithms for face recognition. To obtain our
ROC curve, MkNN has moved the threshold value across the distributions of match and mismatch
similarity scores. Figure 7 (a) shows methods that use a single descriptor and a single classifier only.
As can be seen, our system using BOOSTMETRIC outperforms all the others in the literature with a
very small computational cost.

Complex recognition systems with one or more descriptorsFigure 7 (b) plots the performance
of more complicated recognition systems that use hybrid descriptors or combination of classifiers.
See Table 5 for details. We can see that the performance of our BOOSTMETRIC is close to the
state-of-the-art.

In particular, BOOSTMETRIC outperforms the method of Guillaumin et al. (2009), which has a
similar pipeline but uses LMNN for learning a metric. This comparison also confirms the impor-
tance of learning an appropriate metric for vision problems.

5. Conclusion

We have presented a new algorithm, BOOSTMETRIC, to learn a positive semidefinite metric using
boosting techniques. We have generalized AdaBoost in the sense that theweak learner of BOOST-
METRIC is a matrix, rather than a classifier. Our algorithm is simple and efficient. Experiments
show its better performance over a few state-of-the-art existing metric learning methods. We are
currently combining the idea of on-line learning into BOOSTMETRIC to make it handle even larger
data sets.

1031



SHEN, K IM , WANG AND VAN DEN HENGEL

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

 

 

Eigenfaces
Nowak−funneled
Merl
V1−like/MKL
LDML
Single LE + holistic
BoostMetric

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

 

 

Merl+Nowak
Hybrid descriptor−based
LDML+LMNN
Combined b/g samples based methods
Attribute + Simile classifiers
Multiple LE + comp
Multishot combined
BoostMetric

Figure 7: (top) ROC Curves that use a single descriptor and a single classifier, (bottom) ROC curves
that use hybrid descriptors are plotted. Our BOOSTMETRIC with a single classifier is
also plotted. Each point on the curves is the average over the 10 folds of rates for a fixed
threshold.

We also want to learn a metric using BOOSTMETRIC in the semi-supervised, and multi-task
learning setting. It has been shown in Weinberger and Saul (2009) thatthe classification perfor-
mance can be improved by learning multiple local metrics. We will extend BOOSTMETRIC to learn
multiple metrics. Finally, we will explore to generalize BOOSTMETRIC for solving more general
semidefinite matrix learning problems in machine learning.
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single descriptor + single classifiermultiple descriptors/classifiers

Turk and Pentland (1991) 60.02 (0.79) -
‘Eigenfaces’

Nowak and Jurie (2007) 73.93 (0.49) -
‘Nowak-funneled’

Huang et al. (2008) 70.52 (0.60) 76.18 (0.58)
‘Merl’ ‘Merl+Nowak’

Wolf et al. (2008) - 78.47 (0.51)
‘Hybrid descriptor-based’

Wolf et al. (2009) 72.02 86.83 (0.34)
- ‘Combined b/g samples based’

Pinto et al. (2009) 79.35 (0.55) -
‘V1-like/MKL’

Taigman et al. (2009) 83.20 (0.77) 89.50 (0.40)
- ‘Multishot combined’

Kumar et al. (2009) - 85.29 (1.23)
‘attribute + simile classifiers’

Cao et al. (2010) 81.22 (0.53) 84.45 (0.46)
‘single LE + holistic’ ‘multiple LE + comp’

Guillaumin et al. (2009) 83.2 (0.4) 87.5 (0.4)
‘LDML’ ‘LMNN + LDML’

BOOSTMETRIC 83.81 (1.55) -
‘B OOSTMETRIC’ on SIFT

Table 5: Test accuracy in percentage (mean and standard deviation) onthe LFW data set. ROC
curve labels in Figure 7 are described here with details.
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