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CChhaapptteerr  1100::  IIMMMMUUNNOOHHIISSTTOOCCHHEEMMIICCAALL  CCHHAANNGGEESS  IINN  

MMIICCRROOGGLLIIAALL  AANNDD  AASSTTRROOCCYYTTIICC  CCEELLLL  MMAARRKKEERRSS  

 

10.1 Introduction 

Numerous glial cells support the retinal neurons and optic nerve axons. Main glial cells in the 

retina consists of microglia and two types of macroglial cells, astrocytes and specialized Müller 

cells.[674] The small oval-shaped retinal microglial cells are distributed mainly in the INFL, IPL 

and OPL of the retina. Astrocytes are limited to the inner retinal surface, mainly located within 

the INFL and GCL. Müller cells, on the other hand, have wider distribution and they extend 

radially between the inner and outer limiting membranes. As all retinal neurons including the 

RGC neurons in INFL are unmyelinated, no oligodendroglia are seen in the retina. As Müller 

cells are restricted only to the retina, the glial cell population in optic nerve consists of 

astrocytes, microglia and oligodendrocytes which are distributed between the axons along the 

whole length. 

 

Microglia, the smallest glial cells representing the innate immune system, are derived from 

myeloid progenitor cells. They are the immunocompetent cells, related to the macrophage-

phagocytic system. They act as phagocytes and protect the brain from the invading micro-

organisms. They provide first line of defense in response to any form of neuronal injury and 

play an important role in neuroprotection. Astrocytes have the classical morphology, with part 

of the cell in contact with a blood vessel, and many fine processes interwoven around 

neuronal cell bodies and processes. They play a vital role in neuronal signaling by maintaining 

ionic equilibrium, as well as by protecting the retina by contributing to the blood-retinal 

barrier.[675] Besides regulating the neuronal metabolism and maintaining neuronal function, 

astrocytes in the optic nerve provide mechanical support to the axons.[676, 677] They protect 
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axons against various sources of damage by forming a protective blood nerve barrier and 

once damaged, they participate in the scarring and repair of the nervous system.[677] 

Similarly, müller cells in the retina provide structural support to the retinal neurons and 

regulate their function through various mechanisms.[101] 

 

In neural injury, microglia and astrocytes transform into their „activated‟ phenotypes. This 

process of activation of glial cells is termed as „reactive gliosis‟.[124] Under pathological 

conditions, such as trauma, stroke or any inflammation-mediated degeneration of the central 

nervous system, the resting microglia proliferate and change their shape to become rod-

shaped „activated microglia‟, which possess numerous lysosomes and phagosomes and 

release pro-inflammatory and neurotoxins such as cytokines, eicosanoids, ROS and NO.[123] 

This microglia-driven neuroinflammatory response has been identified in conditions such as 

Alzheimer‟s disease.[678] multiple sclerosis [679] and stroke and NMDA induced 

neurotoxicity.[680] Astroglial cells undergo proliferation and differentiation to support axons in 

CNS injury as seen in various inflammatory and demyelinating autoimmune diseases.[681, 

682] Their proliferation results in the formation of a scar in distal stump following axotomy.[512] 

 

Detection of glial activation provides diagnostically useful information on the site and 

progression of the disease or neurodegeneration.[683] Besides relevance to clinicians, 

markers of glial activation are important for researchers. Imaging tools using positron emission 

tomography with relative selectivity for activated microglia, are under development to study 

and diagnose in vivo neuropathology.[683] Although, nerve degeneration is classically 

evaluated using histopathological techniques, gliosis can be assessed using specific antigenic 

biomarkers. 
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There are only a few specific microglial antigens. Therefore, most of the antibodies used for 

the detection are raised against macrophage-cell line. Common molecular biomarkers in 

immunological detection of microglia use antibodies OX-42 [684], MAC-1 [685] and ED-1 

(CD68). ED-1 is a monoclonal antibody (mAb) that recognizes a single chain glycoprotein of 

90-110kDa expressed predominantly on the lysosomal membranes of the fixed and wandering 

macrophages including microglia in the nervous system and expression of this antigen in cells 

increases during phagocytic activity.[686] Similarly, one of the best known markers for the 

altered macroglial cell activity is GFAP.[113, 687] GFAP is a 51-kDa intermediate filament 

protein found in the astrocyte and Müller cell end feet and processes. Although, Müller glial 

cells in normal rat retinas express little or no GFAP,[688] they show increased expression in 

retinal injuries including ischemia,[689] glaucoma [690] and kainite induced neurotoxicity.[469] 

 

Based on the results obtained in the present and previous studies, it is obvious that the 

injection of NMDA into the rat vitreous humor causes degeneration of the inner retinal neurons 

as well as optic nerve axons. Although gliosis is a common phenomenon seen in neural injury, 

whether this is primary or secondary factor contributing to the axon damage remains to be 

determined. In order to solve the mystery, the current part of the study focused on these glial 

cell changes secondary to axon damage as a result of NMDA induced retinal insult. These 

glial cell changes will be studied using immunolabelling with ED-1 for microglia and GFAP for 

astrocytes and müller cells. This immunohistological study focused on the temporal changes 

in the expression profile of these two molecular markers so as to better understand the role of 

astrocytes and microglial cells in the excitotoxin-induced somagenic optic nerve degeneration. 
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10.2 Results 

10.2.1 ED-1 immunostaining in the retina 

No ED-1 immunostaining was observed in the saline-treated retinas at all the time intervals 

examined.[See Figure 52] Negative and positive controls showed no damage at any time 

point. 

 

 

Figure 52. ED-1 immunoreactivity of saline-injected retinas of rat. Soon after injection no 

immunoreactivity was detected (A). X200 magnification. Bar= 50m 
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No ED-1 immunostaining was seen in the retina immediately after the NMDA injection. At 1 

day after NMDA injection, punctate ED-1 immunoreactive products were seen confined to the 

INFL, GCL and inner IPL. ED-1 positive cells with round profile were also noticed in the 

vitreous. At 3 days post NMDA injection, amoeboid or pleomorphic ED-1 immunoreactive 

cells, with many of them showing thin and stout processes, were seen distributed in the INFL, 

GCL and IPL. The immunoreactivity increased further at 7 days, when ED-1 positive cells 

became more numerous in these layers as well as the vitreous. [See Figure 53] 

 
 

Figure 53. ED-1 immunoreactivity in the retinas of NMDA-injected rats. Soon after injection no 
immunoreactivity was detected (A). Punctate ED-1 expression is seen 24hrs post-injection (B, 
arrows). Pleomorphic microglia sending thin processes are seen in INFL, GCL and IPL 72hrs 
after NMDA injection (C, arrows). ED-1 expression is more pronounced at 7days with labelled 
(D, arrows) microglial processes seen in INFL, GCL, IPL as well as OPL. X200 magnification. 

Bar= 50m 
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10.2.2 ED-1 immunostaining in the optic nerve 

Saline control optic nerves did not show immunoreactivity in proximal as well as distal 

segments at any time points examined. [See Figure 54] Negative and positive controls 

showed no damage at any time point. 

 

 

Figure 54. ED-1 immunoreactivity in the longitudinal sections of saline-injected optic nerves. 

No immunoreactivity is seen at any time points. X200 magnification. Bar=50m 

 

No ED-1 immunostaining was seen upto 24hrs in the NMDA-injected nerves. Occasional 

punctate staining appeared at 72hrs. The ED-1 immunostaining increased enormously at 7 

days where large number of cells showed ED-1 immunoreactivity. At this stage, punctate 

immunoreactive material was clearly evident in the thin processes of microglial cells. Careful 
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observation of the optic nerve sections did not reveal any difference in the ED-1 

immunostaining between the proximal and distal optic nerve segments. [See Figure 55] 

 

Figure 55. ED-1 immunoreactivity in the longitudinal sections of NMDA-injected optic nerves. 
No ED-1 immunoreactivity is seen in NMDA injected optic nerves at 0hrs (A1, A2) and 24hrs 
(B1, B2) after injection. Slight immunostaining in seen at 72hrs (C1, C2, arrows), which 
becomes very intense at 7days (D1, D2 arrows). Note- no difference is observed in ED-1 
immunostaining between the proximal and distal optic nerve segments at each time point. 

X200 magnification. Bar=50m 
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10.2.3 GFAP immunostaining in the retina 

Negative controls showed no damage at any time point. In the control saline-injected retinas, 

astrocytes and Müller glial cells showed a moderate level of GFAP immunoreactivity. Thin 

GFAP-labelled processes of the Müller cells ran perpendicular to the surface extending into 

the outer part of the IPL. No change was observed in the saline-treated animals at any time 

point. [See Figure 56] 

 

 

Figure 56. GFAP immunoreactivity in the saline-injected rat retinas. In the saline-injected 
retinas, GFAP immunoreactivity was restricted primarily to the INFL and GCL (arrowhead). 

X200 magnification. Bar= 50m 
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Although, the intensity of GFAP immunostaining remained unaffected at 1 day after NMDA 

injection, the pattern of staining was affected mildly. Thin GFAP-labelled processes extended 

deeper into the IPL, INL and OPL. At day 3 post-NMDA exposure, GFAP immunoreactivity 

increased further. The number of GFAP-labelled processes in the INFL increased. The 

intensely labelled processes of the Müller cells became thick and were seen extending into the 

IPL, INL and OPL. GFAP immunostaining increased markedly at day 7 after NMDA injection, 

when the intensely stained cells and processes increased further in the INFL. The thickness of 

the retina reduced and the heavily labelled thick Müller cell processes were seen in parallel 

arrays now extending across the entire width of the retina. Throughout the process of analysis, 

the somata of the Müller glial cells within the INL did not show a well-defined GFAP staining at 

any of the time points studied. [See Figure 57] 
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Figure 57. GFAP immunoreactivity in NMDA injected rat retinas. GFAP expression is mildly 
increased 24hrs post NMDA injection where thin Müller cell processes are seen extending into 
the IPL, INL and OPL (B, arrows). The expression is noticeably enhanced at 72hrs after 
NMDA injection during which increased GFAP immunoreactivity is seen in the INFL (C, 
arrowhead) and thick Müller cell processes are seen extending into the IPL, INL and OPL (C, 
arrows). GFAP expression is more pronounced in INFL at 7days (D, arrowhead) and heavily 
labelled processes extend across the entire width of retina (D, arrows). X200 magnification. 

Bar= 50m 
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astrocytic web in the optic nerve. The saline-injected retinas showed similar level and pattern 

of GFAP immunostaining at all time points observed. [See Figure 58] Negative controls also 

showed no damage at any time point. 

 

 

Figure 58. GFAP immunoreactivity in the transverse sections of saline-injected rat optic nerve. 
GFAP immunoreactivity is observed in star-shaped astrocytes (arrowhead) which send out 
multiple thin immunoreactive processes  (arrows) to form an astrocytic web in the optic nerve. 
No difference in immunostaining is seen at any time points after saline injection. X400 

magnification. Bar= 25m 

 

No change in immunoreactivity was seen at 0 and 24 hrs of NMDA exposure. Although a 

similar distribution pattern was observed in all experimental (NMDA-injected) and control optic 

nerves, some of the GFAP-immunoreactive astrocytes were characterized by hypertrophy of 

the cell bodies, with a few showing thick and intensely labelled processes after 72hrs of 

NMDA injection. GFAP immunostaining at 7 days showed more numerous GFAP 
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immunoreactive processes from enlarged reactive astrocytes, which seemed to nearly fill the 

whole optic nerve specimen. No apparent difference was observed in the GFAP 

immunoreactivity between the proximal and distal segments of the saline or the NMDA-

injected optic nerve segements. [See Figure 59] 
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Figure 59. GFAP immunoreactivity in the transverse sections of NMDA-injected rat optic 
nerve. Normal profile and GFAP staining is seen immediately (A1, A2) and 24hrs (B1, B2) 
after NMDA injection. GFAP reactive astrocyte distribution is same at 72hs (C1, C2) post-
injection but note the thick fibrillary process (C1, C2, arrows) with hypertrophied cell bodies 
(C1, C2, arrowheads), typical of reactive astrocytes. At 7days, increased number of astrocytic 
process form a dense network through the nerve cross-section (D1, D2). Large-sized 
astrocytic cell bodies (D1, D2, arrowheads) with thick processes (D1, arrow) are still clearly 
seen. No difference in immunoreactivity is seen between the proximal (A1, B1, C1, D1) and 
distal optic nerve segments (A2, B2, C2, D2) at any time points. X400 magnification. Bar= 

25m  
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10.3 Discussion  

This section of the study recorded the temporal sequence of microglial and astroglial changes 

in the retina and optic nerve of the eyes exposed to 20nM NMDA for up to7 days. Microglial 

response in the form of increased ED-1 immunoreactivity and macroglial response in the form 

of enhanced GFAP expression in astrocytes and Müller cell end feet processes was detected 

in the retina as early as 24hrs followed by a steady increase in the expression of both at 3 and 

7 days after NMDA injection. Optic nerve showed a late response with a moderate but gradual 

increase in the GFAP and ED-1 immunoreactivity beginning after 72hrs of NMDA injection. No 

observable difference was seen in the GFAP and ED-1 immunostaining between the proximal 

and distal optic nerve segments. Further studies need to be conducted, where minor 

differences in the astroglial and microglial response between these two segments, if present, 

can be quantified by quantitative immunoblot using an image analyser. 

 

NMDA induced excitotoxic RGC death is a very useful model to study the role of glial cells in 

neuronal degeneration and protection. Inward Ca2+ current due to NMDA receptor stimulation 

releases intracellular glutamate, which in turns stimulate glutamate transporters and establish 

a positive feedback loop to maintain chronic or delayed excitotoxicity.[264, 265] Studies have 

shown that the localization of the glutamate transporter, GLAST, determines the glutamate 

clearance ablility of astrocytes and the expression of this glutamate transport protein is 

modulated by the GFAP distribution in the cytoskeleton of astrocytes.[691] The current study 

showing increased expression of GFAP indicates that the astrocytes become proactive in the 

uptake of extracellular glutamate when exposed to NMDA. Also, increasingly accumulated 

glutamate in the extracellular milieu, activates the surrounding microglia via direct or indirect 

T-cell mediated protective immune response in an attempt to limit further excitotoxic damage 

.[692, 693] Astrocytes have a limited clearance ability in comparison to microglial cells due to 
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the arachidonic acid and ROS released by the injured cells via incompletely defined molecular 

mechanisms,[694] Progressive microglial and astrocytic activation as is seen in the current 

study represent the CNS immune response against neuronal degeneration and play a major 

role in the defence against excitotoxic nerve damage. 

 

Microglial cells, the sensors of even minor pathological changes in the nervous system, are 

the key cells in the T-cell mediated immune response against the antigens of injured cells. 

Cytokines and growth factors released from the activated T cells regulate the sentinel 

microglia and recruited macrophages.[692] Once activated, microglial cells prevent 

excitotoxin-mediated neurodegeneration by phagocytosis and removal of neuronal debris and 

reuptake of the excessive glutamate.[695] Also, the release of interferon-gamma from 

activated microglial cells improves glutamate uptake by astrocytes and other microglial cells 

and as antigen presenting cells, activated microglia expressing Major Histocompatibility 

Complex II (MHC-II) and B7.2 proteins bind to T cell receptors to activate them further.[692, 

696] Although, the neuroprotective role of microglial cells is under surveillance, evidences are 

emerging for its controversial role in neurodegeneration. It is believed that the activated 

microglial cells, which do not express MHC-II proteins, secrete neurotoxins such as PGE2, NO 

and TNF-α.[692] NO and TNF-α are directly neurotoxic and prevent glutamate reuptake,[697] 

whereas, PGE2 stimulate glial cells to release more glutamate which results in further 

neurotoxicity.[698] 

 

Following axotomy-induced cell death of retinal ganglion cells, intact blood-retinal barrier 

prevents recruitment of new ED-1+ wandering macrophages into the retina, whereas 

proliferation and activation of the resident microglia (OX42+ and 5D4+ cells) causes increased 

immunological expression of lysosomal ED-1 protein in the retina.[699, 700] Increasing 
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recruitment of large, round ED-1+ cells derived from circulating monocytes/ macrophages due 

to disruption of the blood-retinal barrier causes increased ED-1 immunolabelling seen with 

ischemic retinal injury.[701] Results are available to show steadily increasing ED-1 expression 

following kainite-induced retinal excitotoxicity.[702] NMDA induced retinal injury produced in 

this experiment produces progressively increasing ED-1 immunoreactivity at day 1, 3 and 7 

post-injection. The study suggests increased microglial activation in response to excitotoxic 

retinal injury, however, it is difficult to say whether the increased ED-1 immunolabelling is due 

to activation of resident microglia or appearance of blood-derived macrophages or both, 

especially when evidence is available that NMDA can cause disruption of blood-brain 

barrier.[703] 

 

Microglial cells derived from the precursor cells prior to the development of retinal vasculature 

lack macrophage specific markers.[687] However, microglia originating from blood-derived 

monocytes after establishment of the retinal vascularity, express markers for 

macrophage/monocyte lineage such as OX41, OX42, OX3, OX6, OX18, ED-1, Mac-1, F4/80, 

5D4 anti-keratan sulfate, and lectins.[687] Most commonly used markers to study retinal 

microglia are OX42, 5D4, ED-1 and OX6. OX42 recognizes the complement receptor;[704] 

5D4, a cell surface keratan sulphate;[705] ED-1, a lysosomal protein [686] and OX6 binds to 

the major histocompatibilty complex II. Three major types of resident microglial cells seen in 

the normal rat retina are OX42+/5D4-, OX42-/5D4+ and OX42+/5D4+.[701] Studies have 

shown that during post-natal phase of development, OX42+ and ED-1+ large, round amoeboid 

microglia derived from blood monocytes appear transiently in the retina, to be transformed 

later into small, ramified OX42+ and ED-1- resting microglial cells.[704] However, few weekly 

staining ED-1+ microglial cells encountered in the normal adult rat retina,[700, 701] may 

represent blood-borne macrophages recently infiltrating the retina as a part of normal turnover 
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process.[704] However, the present study found no ED-1 immunoreactivity in the saline-

injected control retinas. 

 

Increase in the GFAP immunoreactivity in the astroglial cells could indicate the increased 

synthesis of new protein or enhanced expression of this protein due to conformational 

changes. After retinal photocoagulation, Humphrey et al detected a prolonged increase in 

retinal GFAP immmunorectivity upto 45 days following a transient rise in retinal GFAP mRNA 

which returned back to normal within 7 days.[706] The study suggested the increased 

synthesis of GFAP as the cause of enhanced expression of this protein. Following intravitreal 

injection of NMDA, increased production of CNTF in the retinal Müller cells [469] via the Jak-

STAT (Signal transducers and activators of transcription) pathway [707] increases the 

transcription of GFAP protein in these cells resulting in increased retinal GFAP expression as 

is observed in this study. 

 

As already explained that this is the first study to focus on nerve degeneration following 

isolated somal injury, astroglial and microglial changes observed in the optic nerve are 

discussed in comparison to glial reaction following direct axonal injury. Axonal damage 

produced striking changes in the astrocytic and microglial cells seen as increased GFAP and 

ED-1 immunoreactivity in the optic nerve, respectively. Similar to axotomy or crush injury,[708] 

optic nerve degeneration secondary to excitotoxic perikaryal death provided no evidence of 

astrocytic proliferation. Although, the number of astrocytes remained same after injury, 

astroglial cells developed filament rich processes which became markedly hypertrophic and 

stained intensely with antibodies to GFAP.[605, 709, 710] Valat J et al also observed a stable 

astrocytic population after enucleation, which, according to them, was due to equilibrium 

between increased differentiation of glioblasts and increased death.[711] 
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Generally, glial cell in the CNS respond much slower to injury than in PNS.[369] Macrophage 

response and clearance of myelin occur more slowly than astrocytic activation.[605, 711] In 

the optic nerve post NMDA intravitreal injection, astrocytic reaction was observed at 72hrs and 

intense ED-1 labelling of microglial cells appeared at day 7. Delayed mononuclear 

macrophage response, as observed in the present and previous studies,[711, 712] suggests 

the intactness of the blood-nerve barrier for a long time after axonal damage preventing the 

recruitment of circulating macrophages.[349] Before any damage to the blood-nerve barrier, 

the activated microglia may originate either from resident microglia [349] or transformed from 

glioblasts and oligodendrocytes.[711] However, once the protective barrier formed by 

astrocytic end feet processes is damaged, increased number of circulating macrophages enter 

into the CNS at the site of damage. 

 

Astrocytic and microglial activation, besides playing role in neurodegeneration, play a role in 

nerve regeneration. [713] Various growth factors released from these cells may cause 

neuronal regrowth. A study by Barouch et al has shown that the major source of neurotrophic 

factors in excitotoxin injured retina are macrophages/microglia, expressing NGF and NT-3 and 

astrocytes which secrete NT-3 and T-cells releasing BDNF and NT-3.[714] 

 

In conlusion, an increase in the retinal and optic nerve GFAP and ED-1 reactivity was 

detected after intravitreal NMDA injection in rats. Delayed immunolabelling  of GFAP and ED-

1 in the optic nerve indicates that the optic nerve degeneration is secondary to the retinal 

response to NMDA. This immunohistochemistry study using GFAP and ED-1 markers may be 

useful for understanding the optic nerve damage in other acquired causes of optic 

neuropathies including glaucoma. 
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CChhaapptteerr  1111::  CCOONNCCLLUUSSIIOONN  AANNDD  FFUUTTUURREE  DDIIRREECCTTIIOONNSS  

 

Animal models have been widely used in neuropathologic and ophthalmic research to 

advance the knowledge of pathophysiology of many chronic neurodegenerative and blinding 

conditions. The current study is aimed to explore various aspects of optic nerve pathology 

after NMDA-induced excitotoxic injury to the rat retina. In this study, the spatiotemporal pattern 

of light microscopic and ultrastructural changes, impairment of axon transport system and glial 

cell response are examined in the retina and optic nerve following intravitreal injection of 20nM 

NMDA in the rat eyeball. Retinal exposure to NMDA induces progressive thinning of the inner 

retina, RGC loss, Wallerian-like dying-back optic nerve degeneration, slow and fast axon 

transport impairment, and astrocytic and microglial activation in the inner retina and optic 

nerve. 

 

As early as 24hrs after NMDA injection, RGCs show reversible pathological changes in the 

form of somatodendritic swellings without nuclear damage. Immunoperoxidase staining at the 

same time for GFAP and ED-1 demonstrate trivial macroglial and microglial cell activation 

concomitant with inner retinal stress. While the RGCs undergo reversible injury, the optic 

nerve axons and glial cells remain virtually unaffected. This indicates that early sublethal 

pathological events in RGCs preceed the axonopathy in somagenic degeneration. Although 

these retinal changes remain unidentified under a light microscope, they can be detected 

using other methods such as EM, histochemistry and genetic studies. This study provides 

grounds for the development of more accurate and sensitive diagnostic techniques to identify 

early subtle retinal damage. Such methods can also serve as good screening tools for 

recognizing glaucoma and possibly other neurodegenerative conditions in high-risk 

populations. 
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Retina at 72 hrs show severe necrotic RGC death with significant loss of approximately half of 

the cells. Retinal injury is associated with progressive increase in inflammatory response of 

microglial, Müller and astroglial cells in the form of enhanced GFAP and ED-1 

immunoreactivity. Optic nerve at this stage start to show pathological changes which are more 

prominent distally (optic tract > distal optic nerve > proximal optic nerve) suggesting „dying-

back‟ nature of pathology. Nerve fibres are seen in various stages of degeneration. Fibres in 

the early stages show exclusive nodal changes in the absence of disturbed paranodal axo-

glial relationships. Nerve fibres in the late stages of degeneration, which express features of 

watery degeneration, dark degeneration and demyelination, reflect that the final pathway of 

cytoskeletal breakdown is similar to classical Wallerian degeneration. The most prominent 

finding at this stage is„watery‟ degeneration‟, where the axonal swellings show features of 

cytoskeletal disintegration, complete loss of cytoskeletal elements or abnormal accumulation 

of organelles and neurofilaments. Only a few fibres undergoing „dark degeneration‟ show 

features of demyelination. Excitotoxic retinal injury causes impairment of slow axonal transport 

resulting in decrease anterograde transport of NF-L to the axon terminal and hence their 

accumulation in proximal neuron (seen as NF-L rich spheroids). Absence of β-APP 

immunoreactivity in the axons suggests that fast axon transport is still functional. These optic 

nerve changes are associated with mild microglial and astrocytic activation reflecting the 

inflammatory reaction in response to the axonal injury seen as increased ED-1 and GFAP 

immunoreactivity. Activation of these cells results in their enhanced interaxonal β-APP 

immunouptake. The current study provides evidence in support of the theory that the impaired 

axonal transport play an important role in the structural damage to axons in dying-back 

degeneration of somagenic aetiology. 
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At day 7 of NMDA injection, necrotic cell death in GCL reduces the RGC population to 30%. 

Optic nerve degeneration progresses further with additional axonal loss. Impairment of slow 

axonal transport causes more shrinkage of remaining optic nerve axons. At this stage, 

impaired fast axonal transport results in increased axonal β-APP accumulation. These 

degenerative changes enhance the microglial and macroglial inflammatory response in the 

retina and optic nerve seen as more pronounced ED-1 and GFAP immunostaining. The inner 

retina now shows features of dendritic sprouting with the dendrites occupying the empty 

spaces created by the dead RGCs. This astonishing finding challenges the view that the 

neurons have limited ability to regenerate with necrotic type of cell death. Though it may be 

difficult to achieve control over the process of necrosis, this study provides a hope in the field 

of nerve regeneration after acute neuronal loss. Although the study does not intend to identify 

the source of origin of the regenerating dendrites, it opens the doors for future studies in which 

the growth potential of various retinal cells can be assessed, in order to replace the damaged 

neurons. This may keep our hopes alive in the field of optic nerve regeneration. 

 

Future Directions 

This unique non-traumatic optic neuropathy model provides details of the major pathological 

events in somagenic nerve degeneration, where axonal changes indirectly result from somal 

injury. This pathological study explains the sequential changes in neurons and glial cells after 

excitotoxic perikaryal death and also suggests the role of axonal transport system in 

somagenic degeneration. 

 

This fundamental research revealed a pathological picture of Wallerian-like degeneration after 

perikaryal excitotoxic injury in the CNS. This novel finding is consistent with recent evidence of 

a labile axonal "survival" factor, nicotinamide mononucleotide adenylyltransferase 2,(Nmnat2) 
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produced by the neuronal cell body.  Further study is required to test the hypothesis that a 

lack of Nmnat2 is the mechanism by which axons degenerate after excitotoxic perikaryal 

injury.
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CChhaapptteerr 1122 AAPPPPEENNDDIICCEESS
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