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In this paper, we propose a new diagnostic test for residual cross-section uncorre-
latedness (CU) in a nonparametric panel data model. The proposed nonparametric
CU test is a nonparametric counterpart of an existing parametric cross-section de-
pendence test proposed in Pesaran (2004, Cambridge Working paper in Economics
0435). Without assuming cross-section independence, we establish asymptotic dis-
tribution for the proposed test statistic for the case where both the cross-section
dimension and the time dimension go to infinity simultaneously, and then analyze
the power function of the proposed test under a sequence of local alternatives that
involve a nonlinear multifactor model. The simulation results and real data analysis
show that the nonparametric CU test associated with an asymptotic critical value
works well.

1. INTRODUCTION

Existing studies in nonparametric and semiparametric estimation and model spec-
ification testing mainly assume cross-section independence. Such an assumption
is far from realistic, because cross-section dependence is common in practice and
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it may arise from the presence of common shocks and unobserved components
that become a part of the error term. If observations are cross-section corre-
lated, parametric and nonparametric estimators based on the assumption of cross-
section uncorrelatedness (CU) may be inconsistent. Hence, it is appealing to test
for CU before one attempts to make statistical inference for a panel data model.

There is substantial literature on diagnostic tests for CU in parametric panel
data models. Breusch and Pagan (1980) proposed a Lagrange multiplier (LM)
test statistic, which is based on the average of the squared pairwise correlation
coefficients of the residuals. As pointed out by Pesaran (2004), the LM test is
only applicable to the case where T → ∞ while N is fixed, where T and N are
the time dimension and the cross-section dimension, respectively. Frees (1995)
thus proposed a test statistic that is based on the squared Spearman rank corre-
lation coefficients and allows N to be larger than T . Recently, Pesaran (2004)
introduced a cross-section dependence (CD) test. The main idea of the CD test
is to use a simple average of all pairwise correlation coefficients of the residuals
from the individual parametric linear regressions in the panel. The advantage of
the CD test is that it is correctly centered when both N and T are fixed. How-
ever, the tests proposed by Frees (1995) and Pesaran (2004) can only be used to
test for uncorrelatedness rather than independence unless the residuals are further
assumed to be normally distributed. For other recent contributions to diagnostic
tests of cross-section independence, we refer to Ng (2006), Huang, Kab, and Urga
(2008), Pesaran, Ullah, and Yamagata (2008), Sarafidis, Yamagata, and Robertson
(2009), and Su and Ullah (2009).

This paper proposes a new diagnostic test for CU in a nonparametric panel
data model. We construct a local linear estimator for each individual regression
function and then propose a nonparametric CU test statistic in a similar fashion to
that proposed in Pesaran (2004) for the parametric case. Without assuming cross-
section independence, we show that the proposed test has an asymptotically nor-
mal distribution under the null hypothesis and is also consistent under a sequence
of local alternatives that involve a nonlinear multifactor model.

The rest of this paper is organized as follows. A nonparametric test for CU in a
panel data model is proposed in Section 2. An asymptotic distribution of the pro-
posed nonparametric CU test statistic is established in Section 3. One simulation
example is given in Section 4. An empirical analysis of a set of Consumer Price
Index (CPI) data in Australian capital cities is given in Section 5. An outline of
the proofs of the main results is given in Appendix A. Appendix B provides some
useful lemmas. Several other simulation examples are available from Section 5 of
the working paper by Chen, Gao, and Li (2009). Detailed proofs of some useful
lemmas are also available from the working paper.

2. NONPARAMETRIC CU TEST STATISTIC

Consider a nonparametric panel data model of the form

Yit = gi (Xit )+σi (Xit ) uit , i = 1, . . . , N ; t = 1, . . . ,T, (2.1)
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where {gi (·)} is a sequence of individual regression functions, {Xit } is a sequence
of random regressors, {σi (·)} is a sequence of unknown positive functions, and
{uit } is independent of {Xit } with E[uit ] = 0 and E[u2

i t ] = 1.
Note also that Xit are assumed to be one-dimensional. As shown in the con-

struction of the test that follows, the same procedure remains applicable when Xit

are multidimensional. In addition, each gi (·) may be approximated by an additive
function of one-dimensional functions when Xit are high-dimensional (see, e.g.,
Gao, 2007, Ch. 2). To avoid tedious technicalities, this paper focuses on the scalar
case where Xit are only one-dimensional.

The aim of this paper is to test the null hypothesis

H0 : E
[
uit u jt

]= 0 for all t ≥ 1 and all i �= j, (2.2)

without assuming the cross-section independence between uit and ujt for all
i �= j . This kind of independence has been assumed in some existing studies (see,
e.g., Frees, 1995, Assump. 1; Pesaran, 2004, Assump. 2).

Following Pesaran (2004) in the parametric linear panel data case, this paper
proposes to use the simple average of all pairwise correlation coefficients of the
residuals from the individual nonparametric regression in the panel. In this paper,
we propose using a local linear kernel estimation method to construct our non-
parametric CU test. The local linear kernel estimator of gi (x) can be expressed as
(see, e.g., Fan and Gijbels, 1996)

ĝi (x) =
T

∑
t=1

wi t (x)Yit , 1 ≤ i ≤ N , (2.3)

where wi t (x) = (
K̃x,h(Xit )

)
/
(
∑T

t=1 K̃x,h(Xit )
)
, in which

K̃x,h(Xit ) = 1

h
K

(
Xit − x

h

)[
Si2(x)−

(
Xit − x

h

)
Si1(x)

]

with Si j (x) = 1
T h ∑T

t=1

(
(Xit − x)

/
h
) j

K
(
(Xit − x)

/
h
)

for j = 0,1,2.
Let vi t = σi (Xit )uit . Note that E

[
vi tv j t

] = E
[
σi (Xit )σj (X jt )

]
E
[
uit u jt

] = 0
when H0 of (2.2) holds. Thus, to test for the uncorrelatedness of {uit }, it suffices
to test for the uncorrelatedness of {vi t }. With the help of the local linear smoother
defined previously, we estimate vi t by ṽi t = Yit − ĝi (Xit ). We are now ready to
propose a nonparametric CU test statistic of the form

NCU =
√

T

N (N −1)

N

∑
i=1

N

∑
j �=i

ρ̃i j , (2.4)
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where

ρ̃i j =
T
∑

t=1
v i tv j t√

T
∑

t=1
v2

i t

√
T
∑

t=1
v2

j t

=
1
T

T
∑

t=1
v i tv j t√

1
T

T
∑

t=1
v2

i t

√
1
T

T
∑

t=1
v2

j t

,

in which v i t = ṽi t f̂i (Xit ) and f̂i (x) = 1
T ∑T

s=1 K̃x,h(Xis).

3. LARGE-SAMPLE THEORY

To establish asymptotic theory of the test statistic, we need the following assump-
tions.

A1.

(a) The kernel function K (·) is a symmetric and continuous density function
with a compact support.

(b) gi (·), 1 ≤ i ≤ N , are twice continuously differentiable. Let g′′
i (·) be the

second-order derivative of gi (·). Then, max
i≥1

E
[|g′′

i (Xi1)|2
]
< ∞.

(c) For fixed i ≥ 1, both {Xit , t ≥ 1} and {uit , t ≥ 1} are sequences of station-
ary random variables.

(d) Let fi (·) be the density function of {Xit }; then fi (x) is continuous and
bounded in x ∈ R. Define X̃i jst = (Xis1 , . . . , Xisl , X jt1 , . . . , X jtk ) and let
fis1,...,isl , j t1,..., j tk (. . . , . . .) be the joint density of X̃i jst . Then, fis1,...,isl ,

j t1,..., j tk (. . . , . . .) is also continuous and bounded for all 1 ≤ i, j ≤ N ,
1 ≤ l,k ≤ 4.

A2.
(a) 0 < min

i, j≥1
E
[
σi (Xi1)σj (X j1)

] ≤ max
i, j≥1

E
[
σi (Xi1)σj (X j1)

]
< ∞ and

max
i≥1

E
[
σ 8

i (Xit )
]
< ∞.

(b) Define τ 2
i, j,∗ = μ4

2μ
4
0

(
σ 2

ui j κi, j,∗ +2
∞
∑

t=2
E[ui1uit u j1ujt ] κi, j,∗(t)

)
, where

μk = ∫
uk K (u)du,

σ 2
ui j = E

[
u2

i1u2
j1

]
, κi, j,∗ =

∫ ∫
f 4
i (x) f 4

j (y)σ 2
i (x)σ 2

j (y)

× fi1, j1(x, y)dxdy and

κi, j,∗(t) =
∫ ∫ ∫ ∫

f 2
i (x1) f 2

i (x2) f 2
j (y1) f 2

j (y2)σi (x1)σi (x2)σj (y1)σj (y2)

× fi1,i t, j1, j t (x1, x2, y1, y2)dx1dx2dy1dy2,
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and σ 2
i, j∗ = μ4

2μ
4
0
∫∫

f 5
i (x) f 5

j (y)σ 2
i (x)σ 2

j (y)dxdy. Moreover, there exists
some τ0(∗) > 0 such that

lim
N→∞

1

N (N −1)

N

∑
i=1

∑
j �=i

τ 2
i, j,∗

σ 2
i, j∗

= τ0(∗). (3.1)

A3. The bandwidth h satisfies

T θ h

log T
→ ∞ and N 2T h8 → 0 as T → ∞ and N → ∞, (3.2)

where θ = (χ0 −3)/(χ0 +2) and χ0 is defined in A4(a) which follows. In
addition, N = O

(
T q0−1

)
, where q0 > 1 is a constant defined in A4(a).

A4.

(a) Let ut = (u1t , . . . ,uNt )
τ and Xt = (X1t , . . . , X Nt )

τ . Suppose that
{(ut ,Xt )} is a sequence of stationary α-mixing random variables with
maxi≥1E

[|Xi1|2q0
]
< ∞ for some q0 > 1 and with mixing coefficient α(·)

satisfying α(k) = O
(
k−χ0

)
for k large enough and some χ0 > max

{
2 +

4
/
(q0 −1),6

}
.

(b) Let max
i≥1

E
[
u4

i1

]
< ∞ and for each 1 ≤ k ≤ 4, let ( j∗1 , . . . , j∗k ) be any set of k

positive integers satisfying 1 ≤ j∗l ≤ 2, 1 ≤ l ≤ k, and
k
∑

l=1
j∗l = 4. Suppose

that

4

∑
k=3

∑
(i∗1 ,...,i∗k )∈	∗

k

E

[
u

j∗1
i∗1 ,1 . . .u

j∗k
i∗k ,1

]
= O

(
N 2
)

, (3.3)

where 	∗
k ={

(i∗1 , . . . , i∗k ) : 1 ≤ i∗l ≤ N , and all i∗l , 1 ≤ l ≤ k, are different
}
.

(c) Let max
i≥1

E
[
u8

i1

]
< ∞ and for each 1 ≤ k ≤ 8, let ( j1, . . . , jk) be any set of

k positive integers satisfying 1 ≤ jl ≤ 8, 1 ≤ l ≤ k, and
k
∑

l=1
jl = 8. Suppose

that

8

∑
k=5

∑
(i1,...,ik )∈	k

E

[
u j1

i1,1
. . .u jk

ik ,1

]
= O

(
N 4
)

, (3.4)

where 	k = {(i1, . . . , ik) : 1 ≤ il ≤ N , and all il ,1 ≤ l ≤ k,are different}.
Remark 3.1.
(a) The preceding assumptions are mild and can be satisfied in many cases. For

example, A1(a) is a mild condition on the kernel function and is assumed
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by many authors in nonparametric inference of both stationary time series
and panel data (see, e.g., Fan and Yao, 2003; Gao 2007; Cai and Li, 2008).
A1(b) and A1(d) are some mild conditions on the individual regression
functions.

(b) Note that when {uit } is independent in (i, t), and Xit and X jt are inde-
pendent for all i �= j and each given t , we have κi, j,∗ = ∫ ∫

f 5
i (x) f 5

j (y)

σ 2
i (x)σ 2

j (y)dxdy and τ 2
i, j,∗ = μ4

2μ
4
0κi, j,∗σ 2

ui j = σ 2
i, j,∗. Thus, τ0(∗) ≡ 1.

(c) Condition A3 is a set of conditions on the bandwidth and on T and N . The
first bandwidth condition in A3 is proposed to apply the uniform consis-
tency of the nonparametric kernel estimator in the proofs of Theorems 3.1
and 3.2 in Appendix A. The second bandwidth condition in A3 is needed in
the proofs of Theorems 3.1 and 3.2. Note that the first two parts of A3 are
satisfied in many cases. For example, when gi (Xit ) = g(Xit ) + αi (αi is
the individual effect) and σi (·) ≡ σ0, (2.3) may be replaced by a pooled
local linear estimator and an optimal bandwidth will satisfy hoptimal =
O
(
(N T )−1/5

)
. In this case, the first and the second parts of A3 require(

T 3/2
/

N
)→ ∞. Note also that h0 = O

(
T −1/5

)
is not necessarily an op-

timal bandwidth in this kind of nonparametric panel data regression unless
N is fixed.

Furthermore, the third condition of N = O
(
T q0−1

)
allows for the fol-

lowing two cases. The first case is that the rate of T → ∞ is faster than that
of N → ∞ when 1 < q0 < 2. The second case is that the rate of T → ∞ is
slower than that of N → ∞ when q0 > 2. In addition, the simulation stud-
ies in Section 4 support that the nonparametric CU test works well even
when T is as small as T = 20, although it cannot be shown at this stage
that the main theorems remain true when T is fixed.

(d) The α-mixing condition assumed in A4(a) is a commonly used condition
in the time series case (see, e.g., Fan and Yao, 2003; Gao, 2007; Li and
Racine, 2007). Assumptions A4(b) and (c) impose a kind of correlation as-
sumptions as a weak alternative to the independence assumption that {uit }
is a sequence of independent and identically distributed random errors for
all (i, t) as used in Assumption 1 of Frees (1995) and Assumption 2 of
Pesaran (2004). Obviously, equations (3.3) and (3.4) hold trivially when
{uit } are cross-sectionally independent.

More detailed discussion about the plausibility and justifiability of conditions
A1–A4 is given in Remarks 3.1 and 3.2 of the working paper by Chen et al.
(2009). In Theorem 3.1, which follows, we show that the nonparametric CU test
statistic has an asymptotically normal distribution. This has also been obtained
by Pesaran (2004) and Hsiao, Pesaran, and Pick (2007) under the assumption
that uit and ujt are cross-sectionally independent in the context of parametric
linear and nonlinear panel data models. The proof of Theorem 3.1 is given in
Appendix A.
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THEOREM 3.1. Assume that, for model (2.1), A1–A4 hold. Then under H0,

NCU =
√

T

N (N −1)

(
N

∑
i=1

N

∑
j �=i

ρ̃i j

)
d−→ N (0,τ0(∗)) (3.5)

as T → ∞ and N → ∞ simultaneously.

We then analyze the power of the proposed test under a sequence of local alter-
natives. Naturally, the power of the proposed test for the cross-section correlation
relies on the form of the alternative hypothesis. We consider a sequence of cross-
section correlation alternatives via a nonlinear multifactor model of the form

H1 : uit = FN T (zt ,βi )+ εi t with FN T (zt ,βi ) = 1

N k/2T k/4 G(zt ,βi ) (3.6)

for k = 0,1, where {G(zt ,βi )} is a sequence of known functions indexed by {zt }
and {βi }, {zt , t ≥ 1} is a sequence of stationary α-mixing random variables,
{βi , i ≥ 1} is a sequence of common factors, {εi t , t ≥ 1} is a sequence of sta-
tionary α-mixing random errors with E[εi1] = 0 for each i and is independent of
{zt }, and E

[
εi tεj t

] = 0 for all i �= j . Note that (3.6) defines a global alternative
when k = 0, whereas it gives a sequence of local alternatives when k = 1.

Before establishing the asymptotic distribution of the proposed test statistic
under the alternative hypothesis H1, we need the following set of conditions.

A5.

(a) {zt } is a sequence of stationary α-mixing random variables with mixing
coefficient satisfying

αz(t) = O(t−χ1) for χ1 > max

{
q1(2q1 + δ1)

δ1
,3

}
,

where δ1 > 0 and q1 > 1 are some constants such that equation (3.7), which
follows, is satisfied.

(b) The nonlinear function G(·, ·) satisfies

E[G(zt ,βi )] = 0 and max
(i, j)

E

[∣∣G(zt ,βi )G(zt ,βj )
∣∣4q1+2δ1

]
< ∞ (3.7)

for some q1 > 1 and δ1 > 0. Let

ψ(∗) = lim
N→∞

1

N (N −1)

N

∑
i=1

∑
j �=i

ψi j (∗)

σi, j∗
, (3.8)
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where ψi j (∗)=μ2
2μ

2
0E[σi (Xit)σj (X jt ) f 2

i (Xit) f 2
j (Xjt)G(zt ,βi )G(zt ,βj )].

The condition max
i≥1

E
[|σi (Xi1)|8

]
< ∞ in A2(a) is strengthened to

max
i≥1

E

[
|σi (Xi1)|8q1+4δ1

]
< ∞,

where q1 > 1 and δ1 > 0 are the same as in (3.7).

(c) A4 is satisfied when {uit } is replaced by {εi t }. Moreover, {εi t } is indepen-
dent of {zt }. Let τ1(∗) be defined in the same way as τ0(∗) with {uit } being
replaced by {εi t }.

Condition A5 allows for a general class of forms for G(zt ,βi ). It obviously
covers the linear multifactor case, G(zt ,βi ) = ztβi , which has been studied by
Pesaran (2004). When the alternative hypothesis H1 holds, we have the following
asymptotic distribution for the test statistic NCU.

THEOREM 3.2. For model (2.1), assume that conditions A1–A3 and A5 are

satisfied. In addition, N = o
(√

T q1

)
, where q1 > 1 was defined in A5(a).

(i) Under H1 with k = 0, we have, as T → ∞ and N → ∞ simultaneously,

NCU

N T 1/2
P→ ψ(∗). (3.9)

(ii) Under H1 with k = 1, we have, as T → ∞ and N → ∞ simultaneously,

NCU
d−→ N (ψ(∗),τ1(∗)), (3.10)

where τ1(∗) was defined in A5(c).

The proof of Theorem 3.2 is given in Appendix A. To apply the asymptotic
distribution of the test statistic in practice, we need to construct some consistent
estimators for σ 2

i j∗ and τ 2
i, j,∗. In practice, we propose using the following estima-

tors of the form

σ̂ 2
i, j∗ = 1

T 2

T

∑
t=1

T

∑
s=1

Ẑ2
is∗ Ẑ2

j t∗ and τ̂ 2
i, j,∗ = 1

T 2

(
T

∑
t=1

Ẑi t∗ Ẑ j t∗

)2

,

where Ẑi t∗ = μ2
2μ

2
0 ṽi t f̂ 2

i (Xit ), in which ṽi t = Yit − ĝi (Xit ) and f̂i (·) was de-
fined in Section 2. It may be shown that σ̂ 2

i, j∗ and τ̂ 2
i, j,∗ are both consistent. The

details are given in Appendix C of the working paper by Chen et al. (2009).
The simulation study in Section 4 shows that the power of the proposed test is

satisfactory when ψ(∗) > 0 (or ψ(∗) < 0). However, when ψ(∗) = 0, the asymp-
totic distribution in (3.10) is the same as that in Theorem 3.1, which implies that
the test would not have a satisfactory power. In the context of parametric panel
data models, Pesaran et al. (2008) proposed a bias-adjusted LM test to avoid the
problem of poor power for the case of ψ(∗) = 0. It is interesting to consider a
nonparametric type of bias-adjusted LM test statistic. However, such an issue is
left for our future study.



1152 JIA CHEN ET AL.

4. A SIMULATED EXAMPLE

In this section, we give a simulated example to demonstrate the finite-sample per-
formance of the nonparametric CU test. We also compare its performance with
those of two parametric CD tests in the working paper by Chen et al. (2009).
Because both the sizes and power values of the proposed nonparametric CU test
associated with an asymptotic critical value in each case are already comparable
with those of the parametric CD test based on a critical value selected by a boot-
strap resampling procedure, there is no need to adopt the bootstrap procedure to
improve the finite-sample performance of the proposed NCU test.

In the following experiments, the uniform kernel K (u) = 1
2 I{|u| ≤ 1} is used

in the proposed nonparametric CU test. We now introduce a leave-one-out cross-
validation method for the choice of h. Define the leave-one-out estimator of gi (x)
as

ĝi,−t (x) =
T

∑
s=1, �=t

wis,−t (x)Yis, i = 1,2, . . . , N ; t = 1,2, . . . ,T, (4.1)

where wis,−t (x) = K̃ (−t)
x,h (Xis)

/(
T
∑

s=1,�=t
K̃ (−t)

x,h (Xis)

)
, in which

K̃ (−t)
x,h (Xis) = 1

h
K

(
Xis − x

h

)[
Si2,−t (x)−

(
Xis − x

h

)
Si1,−t (x)

]
with Si j,−t (x) = 1

T h ∑T
s=1, �=t

(
(Xis − x)

/
h
) j

K
(
(Xis − x)

/
h
)

for j = 0,1,2.

An optimal bandwidth, ĥ, based on the leave-one-out cross-validation method
is chosen such that

ĥ = arg min
{over all possible h values}

1

N T

N

∑
i=1

T

∑
t=1

[
Yit − ĝi,−t (Xit )

]2
. (4.2)

The bandwidth selection method is used in both the simulation study and em-
pirical analysis.

Consider a nonparametric panel data model of the form

Yit = Xit

1+ X2
i t

+uit , i = 1,2, . . . , N ; t = 1,2, . . . ,T, (4.3)

where Xit
i.i.d.∼ N (0,1), uit = f (βi , zt ) + eit , zt are the time-variant common

effects, zt
i.i.d.∼ N (0,1), eit

i.i.d.∼ N (0,1), {βi } is a sequence of nonrandom num-
bers indicating the degree of cross-section error correlations, and f (·, ·) takes one
of the two forms: f (βi , zt ) = βi zt and f (βi , zt ) = βi zt

/(
1 + β2

i z2
t

)
. Note that

{uit } and {Xit } are independently generated.
For βi = 0, the sizes of the proposed nonparametric CU test are reported in

Table 1, and for βi ∼ U (0.1,0.3), the power values are given in Table 2.
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TABLE 1. Size of the nonparametric test for model (4.3) at the 5% level

T \N 10 20 30 50 100

10 0.053 0.049 0.044 0.062 0.046
20 0.049 0.049 0.046 0.057 0.046
30 0.040 0.053 0.046 0.041 0.049
50 0.044 0.044 0.041 0.052 0.045
100 0.052 0.046 0.047 0.052 0.047

TABLE 2. Power of the nonparametric test for model (4.3) at the 5% level

f (βi , zt ) = βi zt f (βi , zt ) = βi zt

1+β2
i z2

t

T \N 10 20 30 50 100 10 20 30 50 100

10 0.149 0.326 0.374 0.581 0.848 0.117 0.192 0.296 0.450 0.787
20 0.136 0.376 0.652 0.879 0.986 0.161 0.308 0.486 0.757 0.969
30 0.201 0.584 0.723 0.960 0.999 0.169 0.418 0.711 0.920 0.999
50 0.338 0.556 0.927 0.997 1.000 0.210 0.602 0.823 0.964 1.000
100 0.653 0.898 0.979 1.000 1.000 0.261 0.846 0.982 1.000 1.000

Table 1 shows that the nonparametric CU test has some reasonable sizes for
the nonparametric panel data model (4.3), and Table 2 shows that the simulated
power values of the nonparametric CU test are also satisfactory. This shows that
the proposed nonparametric CU test is a generally applicable test in this kind of
testing for CU, as the applicability does not require a model to be parametrically
specified. In other words, it still works well without necessarily prespecifying the
conditional mean function.

5. EMPIRICAL APPLICATION: AN ANALYSIS OF AUSTRALIAN CPI
DATA

As an application of our testing method, we test for CU of CPI among the eight
Australian capital cities during the period 1989–2008. The data, which were ob-
tained from the web site of the Australian Bureau of Statistics, are recorded quar-
terly each year. Hence, they consist of the CPI numbers for eight cities (N = 8)
at 80 different times (T = 80). We chose Yit as the log of the food CPI for
city i at time t and Xit as the log of all group CPI for city i at time t . For
each city i , we computed the nonparametric regression function of Yit on Xit

(t = 1,2, . . . ,T ) using the local linear estimation method. Then, we used the es-
timation residuals ṽi t to compute the nonparametric CU test statistic. In a simi-
lar way, we also computed the regression of the logarithm of the transportation
CPI on the log of all group CPI for each city. The results are summarized in
Table 3.
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TABLE 3. Cross-section correlation of CPI in Australian capital cities

Food Transportation

Nonparametric CU test 47.2378 47.0227
Bootstrap 1% critical values [−2.3130,2.6100] [−2.4895,2.7300]
Bootstrap 5% critical values [−1.8796,1.8517] [−1.8786,1.8899]
Bootstrap 10% critical values [−1.6086,1.5584] [−1.6532,1.6203]

Note that the two-sided bootstrap critical values were calculated using 1,000
iterations. It follows from Table 3 that there is some evidence to suggest rejecting
the null hypothesis that there is CU for both the food and transportation indexes. In
addition, based on the bootstrap simulated critical value in each case, CU should
be rejected at all the levels of 1%, 5%, and 10%. This suggests that the CU as-
sumption in such empirical studies may not be appropriate. Further studies are
needed to find ways of defining a suitable cross-section correlation structure to
deal with panel data analysis when there is some cross-section correlation.
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APPENDIX A: Proofs of the Main Results

Here and in what follows we use a double sum of the form
T
∑

t=1
∑

s �=t
to replace

T
∑

t=1

T
∑

s=1,�=t
for notational simplicity. Before proving the main theorems, we introduce some useful
lemmas. Because the proof of Lemma A.1 is of general interest, the full details are given
in this paper. As the proofs of Lemmas A.2–A.6 are quite technical, they are relegated to
the working paper by Chen et al. (2009).

We now provide a new central limit theorem for quadratic forms of panel data series for
the case where T → ∞ and N → ∞ simultaneously in Lemma A.1, which is of general
interest in itself.

LEMMA A.1. Assume that the following three sets of conditions hold:

(i) E
[
Ui1

] = 0 and E
[
Ui1Uj1

] = 0 for all i �= j . For Ut = (U1t , . . . ,UNt )
τ , {Ut }

is a vector of α-mixing random variables with mixing coefficient α(·) satisfying
α(k) = O(k−χ ) as k → ∞ for some constant χ > 6.

(ii) max
i≥1

E

[
U8

i1

]
< ∞. For each 1 ≤ k ≤ 8, let ( j1, . . . , jk) be any set of k positive

integers satisfying 1 ≤ jl ≤ 8, 1 ≤ l ≤ k, and
k
∑

l=1
jl = 8. Suppose that

8

∑
k=5

∑
(i1,...,ik )∈	k

E

[
U j1

i1,1
. . .U jk

ik ,1

]
= O

(
N 4
)

, (A.1)

where 	k = {(i1, . . . , ik) : 1 ≤ il ≤ N , and il ,1 ≤ l ≤ k,are all different}.
(iii) 0 < �(U ) < ∞ with �(U ) = lim

N→∞
1

N (N −1)

{
N
∑

i=1
∑

j �=i
E

[
U2

i1U2
j1

]
+

2
∞
∑

t=2

N
∑

i=1
∑

j �=i
E[Ui1UitUj1Ujt ]

}
.

Then, as T → ∞ and N → ∞ simultaneously

1√
N (N −1)T

N

∑
i=1

∑
j �=i

T

∑
t=1

Uit Ujt
d−→ N (0,�(U )) . (A.2)

Proof. Let ξ0 = �(U ) and

VT,N (t) = 1√
N (N −1)T

N

∑
i=1

∑
j �=i

UitUjt = 1√
N (N −1)T

⎡⎣( N

∑
i=1

Uit

)2

−
N

∑
i=1

U2
i t

⎤⎦ .

(A.3)
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Then,

1√
N (N −1)T

N

∑
i=1

∑
j �=i

T

∑
t=1

Uit Ujt =
T

∑
t=1

VT,N (t).

Hence, to prove (A.2), it suffices for us to show that as T → ∞ and N → ∞ simultaneously,

T

∑
t=1

VT,N (t)
d−→ N (0,ξ0). (A.4)

Because {Ut } is assumed to be stationary with α-mixing and {VT,N (t)} is a sequence
of simple functions of {Uit }, thus {VT,N (t)} is also stationary with α-mixing. We can then
apply the large-block and small-block technique to prove (A.4). The large-block and small-
block technique has been applied by many authors in the time series case (see, e.g., Gao,
2007, proof of Thm. A.1; Fan and Yao, 2003, proof of Thm. 2.21). The idea is to partition
the set {1, . . . ,T } into 2kT + 1 subsets with a large block of size lT and a small block of
size sT and the remaining set of size T − kT (lT + sT ), where

lT =
[
T (λ−1)/λ

]
, sT =

[
T 1/λ

]
, and kT = [T/(lT + sT )] for any λ > 2. (A.5)

Then define

Ṽq =
qlT +(q−1)sT

∑
t=(q−1)(lT +sT )+1

VT,N (t), V q =
q(lT +sT )

∑
t=qlT +(q−1)sT +1

VT,N (t), q = 1, . . . ,kT ,

and V̂ = T
∑

t=kT (lT +sT )+1
VT,N (t).

Note that

Var

(
kT

∑
q=1

V q

)
= E

[
kT

∑
q=1

V q

]2

=
kT

∑
q=1

E

[
V 2

q

]
+2

kT

∑
q=2

(kT −q +1)E
[
V 1V q

]
.

By Lemma B.1 in Appendix B, (A.5), and the condition on the α-mixing coefficient, we
have

kT

∑
q=1

E

[
V 2

q

]
= O

(
kT sT

T

)
and

kT

∑
q=2

(kT −q +1)E
[
V 1V q

]= o

(
kT sT

T

)
,

which implies that

Var

(
kT

∑
q=1

V q

)
= O

(
kT sT

T

)
= o(1). (A.6)

Analogously, we can also show that

Var
(

V̂
)

= O

(
T − kT lT

T

)
= o(1). (A.7)
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It follows from (A.6) and (A.7) that to prove (A.4), we need only to show

kT

∑
q=1

Ṽq
d−→ N (0,ξ0) . (A.8)

In Theorem 2 of Phillips and Moon (1999), the authors provided a central limit theorem
for a partial sum of linear processes. The establishment of (A.8) will provide a central limit
theorem for a quadratic form of stationary mixing processes.

We now turn to the proof of (A.8). By (A.5), Lemma B.1, and the condition on the
α-mixing coefficient, we have∣∣∣∣∣E
[

exp

(
kT

∑
q=1

Ṽq

)]
−

kT

∏
q=1

E

[
exp

(
Ṽq

)]∣∣∣∣∣≤ CkT α(sT ) → 0,

which implies that Ṽq , q = 1, . . . ,kT , are asymptotically independent. Moreover, as in the
proof of Theorem 2.20(ii) in Fan and Yao (2003), we have

E

[
Ṽ 2

1

]
= lT ξ0

T
[1+o(1)],

which implies that as T → ∞ and N → ∞ simultaneously,

kT

∑
q=1

E

[
Ṽ 2

q

]
= kT E

[
Ṽ 2

1

]
= kT lT

T
ξ0[1+o(1)] → ξ0. (A.9)

Thus, the Feller condition is satisfied.
Furthermore, by Lemma B.3 in Appendix B, we have

E

[
N

∑
i=1

∑
j �=i

Ui1Uj1

]4

= O(N 4),

which, in conjunction with Lemma B.2 (with p = 3 and r = 4) in Appendix B, implies

E

[∣∣∣Ṽq

∣∣∣3]≤
(

lT
N 2T

)3/2
⎧⎨⎩E

[
N

∑
i=1

∑
j �=i

Ui1Uj1

]4
⎫⎬⎭

3/4

= O

((
lT
T

)3/2
)

.

It follows from Cauchy–Schwarz inequality that, for any ε > 0,

E

[
Ṽ 2

q I{|Ṽq | ≥ ε}
]

≤
{
E

[∣∣∣Ṽq

∣∣∣3]}2/3 [
P(|Ṽq | ≥ ε)

]1/3

≤ C

{
E

[∣∣∣Ṽq

∣∣∣3]}2/3{
E

[∣∣∣Ṽq

∣∣∣2]}1/3
= O

((
lT
T

)4/3
)

= o

(
lT
T

)
.

(A.10)

By (A.10), we have, for any ε > 0,

kT

∑
q=1

E

[
Ṽ 2

q I{|Ṽq | ≥ ε}
]

= o(kT lT /T ) = o(1). (A.11)
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Hence, the Lindeberg condition is satisfied. This, along with (A.9), proves (A.8). Thus, the
proof of Lemma A.1 is completed. n

LEMMA A.2. Suppose that conditions A1(a) and (c) and A3 hold. If, in addition, fi (·)
is continuous and integrable uniformly in i ≥ 1, then for k = 0,1,2, . . . ,

max
1≤i≤N

sup
x∈R

|Sik(x)− fi (x)μk | = oP (1),

where μk = ∫
uk K (u)du.

The proof of Lemma A.2, and also those of Lemmas A.3–A.6 in this Appendix, are
available in the working paper by Chen et al. (2009).

Proof of Theorem 3.1. Observe that

v i t = [
Yit − ĝi (Xit )

]
f̂i (Xit ) = vi t f̂i (Xit )+ [

gi (Xit )− ĝi (Xit )
]

f̂i (Xit ),

where vi t = σi (Xit )uit . By a standard decomposition, we have

N

∑
i=1

∑
j �=i

T

∑
t=1

v i tv j t =
N

∑
i=1

∑
j �=i

T

∑
t=1

vi t f̂i (Xit )v j t f̂ j (X jt )

−
N

∑
i=1

∑
j �=i

T

∑
t=1

vi t f̂i (Xit )

(
1

T

T

∑
s=1

v js K̃ j
st

)

+
N

∑
i=1

∑
j �=i

T

∑
t=1

vi t f̂i (Xit )

{
1

T

T

∑
s=1

[
gj (X jt )− gj (X js)

]
K̃ j

st

}

−
N

∑
i=1

∑
j �=i

T

∑
t=1

v j t f̂ j (X jt )

(
1

T

T

∑
s=1

vis K̃ i
st

)

+
N

∑
i=1

∑
j �=i

T

∑
t=1

v j t f̂ j (X jt )

{
1

T

T

∑
s=1

[
gi (Xit )− gi (Xis)

]
K̃ i

st

}

+
N

∑
i=1

∑
j �=i

T

∑
t=1

[
gi (Xit )− ĝi (Xit )

][
gj (X jt )− ĝj (X jt )

]
f̂i (Xit ) f̂ j (X jt )

=:
N

∑
i=1

∑
j �=i

6

∑
k=1

ρT (i, j,k), (A.12)

where K̃ i
st = K̃ Xit ,h(Xis). Furthermore, by Lemma A.2 and μ1 = 0, we have

sup
x∈R

∣∣∣∣hK̃x,h(Xit )− K

(
Xit − x

h

)[
fi (x)μ2 −oP (1)

(
Xit − x

h

)]∣∣∣∣= oP (1)

uniformly in i ≥ 1. This implies that

K̃x,h(Xit ) = μ2 fi (x)

h
K

(
Xit − x

h

)
+oP

(
h−1). (A.13)

Define K i
st = K

(
(Xit − Xis)

/
h
)
. Then, the conclusion of Lemma A.3 is still valid if we

replace K̃ i
st with h−1 K i

st .
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It follows from (A.12) and Lemmas A.3–A.6 that

NCU =
√

T

N (N −1)

N

∑
i=1

∑
j �=i

ρ̃i j

=
√

1

N (N −1)T

N

∑
i=1

∑
j �=i

T

∑
t=1

[
σi (Xit )σj (X jt ) f 2

i (Xit ) f 2
j (X jt )μ

2
2μ2

0

σi∗ σj∗

]
uit u jt

+oP (1), (A.14)

where σi∗ is as defined in Lemma A.6.
In view of (A.14), we need only to show that the leading term of NCU has a joint limit

distribution of normal. If we let Uit = (μ2μ0
/
σi∗)σi (Xit ) f 2

i (Xit )uit in Lemma A.1, then
conditions A2 and A4, equation (A.14), and Lemma A.1 imply that Theorem 3.1 holds as
T → ∞ and N → ∞ simultaneously. �

LEMMA A.3. Assume that the conditions of Theorem 3.1 are satisfied. Then under H0,
we have

N

∑
i=1

∑
j �=i

ρT (i, j,2) = oP

(
N

√
T
)

and
N

∑
i=1

∑
j �=i

ρT (i, j,4) = oP

(
N

√
T
)

. (A.15)

LEMMA A.4. Assume that the conditions of Theorem 3.1 are satisfied. Then, under H0,
we have

N

∑
i=1

∑
j �=i

ρT (i, j,k) = oP

(
N

√
T
)

, for k = 3,5,6. (A.16)

LEMMA A.5. Assume that the conditions of Theorem 3.1 are satisfied. Then, under H0,
we have

N

∑
i=1

∑
j �=i

ρT (i, j,1)=
N

∑
i=1

∑
j �=i

T

∑
t=1

uit u jtσi (Xit )σj (X jt ) f 2
i (Xit ) f 2

j (X jt )μ
2
2μ2

0 +oP

(
N

√
T
)
.

(A.17)

LEMMA A.6. Assume that the conditions of Theorem 3.1 are satisfied. Then, under H0,
we have

1

T

T

∑
t=1

v2
i t = σ 2

i∗ +oP (1) with 0 < σ 2
i∗ = μ2

2μ2
0

∫
σ 2

i (x) f 5
i (x)dx < ∞

uniformly in i ≥ 1.

The main technique in the proofs of Lemmas A.3–A.6 is to evaluate the order of the
following form:
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E

[
N

∑
i=1

N

∑
j=1

T

∑
t=1

N

∑
s=1

uit u js

]2

=
N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
s=1

E

[
u2

i t u2
js

]
+ ∑

(i1,i2, j1, j2;t1,t2,s1,s2)∈A1212

E
[
ui1t1 ui2t2 uj1s1 uj2s2

]
= O

(
N 2T 2

)
, (A.18)

where A1212 = {(i1, i2, j1, j2; t1, t2,s1,s2) : at least one of i1, i2, j1, j2 is different from
the others and (or) at least one of t1, t2,s1,s2 is different from the others}. Condition A4
and Lemma B.1 in Appendix B are used to show that the second term on the right-hand
side of the first equality in (A.18) is at most of the same order as the first term. In the
detailed evaluation, one will need to consider cases where i1, i2, j1, j2 are either the same
or different and t1, t2,s1,s2 are the same or different.

Proof of Theorem 3.2. We start with the case of k = 1. To simplify the notations,
let σ̃i (Xit ) = σi (Xit ) f 2

i (Xit )
/
σi∗, where σi∗ was defined in Lemma A.6. Following the

proof of Theorem 3.1, we need only to show that under H1

1

N (N −1)T

N

∑
i=1

∑
j �=i

T

∑
t=1

σ̃i (Xit )σ̃j (X jt )G(zt ,βi )G(zt ,βj )
P−→ ψ(∗), (A.19)

N

∑
i=1

∑
j �=i

T

∑
t=1

σi (Xit )F(zt ,βi )

[
1

T

T

∑
s=1

εjsσj (X js )K̃ j
st

]
= oP (RN T ),

(A.20)

N

∑
i=1

∑
j �=i

T

∑
t=1

σi (Xit )F(zt ,βi )

[
1

T

T

∑
s=1

σj (X js )F(zs ,βj )K̃ j
st

]
= oP (RN T ),

(A.21)

N

∑
i=1

∑
j �=i

T

∑
t=1

[
1

T 2

T

∑
s1=1

σi (Xis1 )F(zs1 ,βi )K̃ i
s1t

][
T

∑
s2=1

σj (X js2 )F(zs2 ,βj )K̃ j
s2t

]
= oP (RN T ),

(A.22)

N

∑
i=1

∑
j �=i

T

∑
t=1

[
1

T 2

T

∑
s1=1

σi (Xis1 )F(zs1 ,βi )K̃ i
s1t

][
T

∑
s2=1

εjs2σj (X js2 )K̃ j
s2t

]
= oP (RN T ),

(A.23)

N

∑
i=1

∑
j �=i

T

∑
t=1

εi t σi (Xit )

[
1

T

T

∑
s=1

σj (X js )F(zs ,βj )K̃ j
st

]
= oP (RN T ),

(A.24)

1

N

1

T

T

∑
t=1

N

∑
i=1

F2(zt ,βi )
P→ 0, (A.25)

where F(zt ,βi ) = FN T (zt ,βi ) and RN T = N
√

T .
We first prove (A.20). By conditions A3 and A5 and Lemma B.1, we have

E

{
N

∑
i=1

∑
j �=i

T

∑
t=1

σi (Xit )F(zt ,βi )

[
1

T

T

∑
s=1

εjsσj (X js)K̃ j
st

]}2

≤ C

T 2h2

N

∑
i1=1

N

∑
i2=1

∑
j �=i1,i2

T

∑
t1=1

T

∑
t2=1

T

∑
s=1
E
[∣∣F(zt1 ,βi1 )F(zt2 ,βi2 )

∣∣]E[ε2
js

]
E

[
K j

st1 K j
st2

]
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≤ C

T 2h2

N

∑
i1=1

N

∑
i2=1

∑
j �=i1,i2

T

∑
t1=1

T

∑
t2=1

T

∑
s=1

h2
E
[∣∣F(zt1 ,βi1 )F(zt2 ,βi2 )

∣∣]E[ε2
js

]

≤ C

T 2h2

N

∑
i1=1

N

∑
i2=1

∑
j �=i1,i2

T 2h2

N T 1/2 = O
(

N 2T −1/2
)

,

which, by Markov inequality, implies that (A.20) holds. The proofs of (A.21) and (A.24)
are similar to that of (A.20).

We then prove (A.22). By condition A5 and Lemma B.1, we have

E

{[
1

T

T

∑
s1=1

σi (Xis1 )F(zs1 ,βi )K̃ i
s1,t

][
1

T

T

∑
s2=1

σj (X js2 )F(zs2 ,βj )K̃ j
s2,t

]}2

≤ C

T 4h4

T

∑
s1=1

T

∑
t1=1

T

∑
s2=1

T

∑
t2=1

E
[
F(zs1 ,βi )F(zt1 ,βi )F(zs2 ,βj )F(zt2 ,βj )

]
E

[
K i

s1t K i
t1t K j

s2t K j
t2t

]

= O

(
1

N 2T

)
,

which implies that (A.22) holds. By the same argument, we can show that (A.23) holds.
For the proof of (A.19), by (3.8) and Lemma 6(a) in Phillips and Moon (1999), it suffices

for us to show that for any ε > 0,

lim
N ,T →∞ P

{∣∣∣∣∣ 1

N (N −1)

N

∑
i=1

∑
j �=i

[
1

T

T

∑
t=1

σi (Xit )σj (X jt )G(zt ,βi )G(zt ,βj )−ψi, j (∗)

]∣∣∣∣∣> ε

}
= 0.

(A.26)

Let QT (i, j) = 1
T

T
∑

t=1
σi (Xit )σj (X jt )G(zt ,βi )G(zt ,βj ) − ψi j (∗), i �= j . Then, to show

(A.26), we need only to prove that

lim
N ,T →∞ P

{
max

1≤i �= j≤N
|QT (i, j)| > ε

}
= 0 for any ε > 0.

Note that

P

{
max

1≤i �= j≤N
|QT (i, j)| > ε

}

≤ N (N −1)

ε2q1
max
i, j
E

[
|QT (i, j)|2q1

]

≤ C N 2T −2q1 max
1≤i, j≤N

E

⎡⎣∣∣∣∣∣ T

∑
t=1

σi (Xit )σj (X jt )G(zt ,βi )G(zt ,βj )

∣∣∣∣∣
2q1
⎤⎦ .

By Lemma B.2 and the conditions of Theorem 3.2, we have



1162 JIA CHEN ET AL.

E

⎡⎣∣∣∣∣∣ T

∑
t=1

σi (Xit )σj (X jt )G(zt ,βi )G(zt ,βj )

∣∣∣∣∣
2q1
⎤⎦

≤ CT q1 max
1≤i, j≤N

{
E

[∣∣G(zt ,βi )G(zt ,βj )
∣∣4q1+2δ1

]}2q1

/
(4q1+2δ1){

E

[
|σi (Xit )|8q1+4δ1

]}2q1

/
(8q1+4δ1)

= O
(
T q1

)
,

which implies P

{
max

1≤i �= j≤N
|QT (i, j)| > ε

}
= O

(
N 2

T q1

)
= o(1) by N = o

(
T q1/2

)
.

Hence, (A.26) holds, and this completes the proof for the case of k = 1.

Now we turn to the proof for the case of k = 0. Define G̃(zt ,βi ) =
(

N 1/2T 1/4G(zt ,βi )
)

.

Then,

FN T (zt ,βi ) = G(zt ,βi ) = 1

N 1/2T 1/4

[
N 1/2T 1/4G(zt ,βi )

]
= 1

N 1/2T 1/4 G̃(zt ,βi ).

The proof for the case of k = 0 is similar and details are omitted here. �

APPENDIX B: Technical Lemmas

This Appendix provides some technical lemmas on α-mixing sequences and U -statistics.
Such lemmas are used in the proofs of the main results. Lemma B.1 provides a useful
inequality for α-mixing processes. This lemma is taken from Lemma A.1 in Gao (2007).
Lemma B.2 gives the moment inequality for the partial sum of α-mixing random variables,
which follows from Theorem 4.1 of Shao and Yu (1996). Lemma B.3 provides the fourth-
order moment for U -statistics under some mild conditions. For the detailed proofs of the
first two lemmas, we refer to the aforementioned literature. The proof of Lemma B.3 is
available from the working paper by Chen et al. (2009).

LEMMA B.1. Suppose that Mn
m are the σ -fields generated by a stationary α-mixing

process {ξi } with mixing coefficient α(·). For some positive integers m, let ηi ∈ Mti
si where

s1 < t1 < s2 < t2 < · · · < tm and ti − si > τ for all i . Assume further that ||ηi ||pi
pi =

E|ηi |pi < ∞ for some pi > 1 with Q := l
∑

i=1
1/pi < 1. Then,

∣∣∣∣∣E
[

l

∏
i=1

ηi

]
−

l

∏
i=1

E[ηi ]

∣∣∣∣∣≤ 10(l −1)α(τ)(1−Q)
l

∏
i=1

||ηi ||pi .

LEMMA B.2. Let 2 < p < r ≤ ∞ and {Zt } be α-mixing with E[Zt ] = 0 and E[|Zt |r ]

< ∞. Define Sn = n
∑

t=1
Zt and suppose that the α-mixing coefficient α(k) satisfies

α(k) = O
(

k−β∗)
for k large enough and β∗ > (pr)/2(r − p). Then,

E[|Sn |p] ≤ C0n p/2 max
1≤t≤n

(
E|Zt |r

)p/r
,

where C0 is a positive constant.
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LEMMA B.3. Let {Ui , 1 ≤ i ≤ n} be a sequence of random variables with E
[
Ui
]= 0,

E
[
Ui Uj

] = 0 for all i �= j , and max
i≥1

E

[
U8

i

]
< ∞. For each 1 ≤ k ≤ 8, let ( j1, . . . , jk) be

any set of k positive integers satisfying 1 ≤ jl ≤ 8, 1 ≤ l ≤ k, and
k
∑

l=1
jl = 8. Suppose that

8

∑
k=5

∑
(i1,...,ik )∈	k

E

[
U j1

i1,1
. . .U jk

ik ,1

]
= O

(
N 4
)

, (B.1)

where 	k = {(i1, . . . , ik) : 1 ≤ il ≤ N , and il ,1 ≤ l ≤ k,are all different}. Then, for large
enough N,

E

⎡⎣( N

∑
i=1

∑
j �=i

Ui Uj

)4
⎤⎦= O

(
N 4
)

.


