A NEW RISK ANALYSIS OF CLEAN-IN-PLACE (CIP) MILK PROCESSING

by

Mr Saravanan CHANDRAKASH

School of Chemical Engineering

The University of Adelaide

A thesis submitted for examination for the degree of

Master of Engineering Science

May – 2012
Addendum

p 31&93 The international publication from this thesis is now in press and available as:

STATEMENT OF DECLARATION

I, Saravanan Chandrakash certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis\(^1\) resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date:

EXECUTIVE SUMMARY

The food and pharmaceutical industry are generally a nation’s largest manufacturing sector – and importantly one of the most stable. Clean-In-Place (CIP)\(^2\) is a ubiquitous process in milk processing as thorough cleaning of wet surfaces of equipment is an essential part of daily operations. Faulty cleaning can have serious consequences as milk acts as an excellent substrate in which unwanted micro-organisms can grow and multiply rapidly.

Davey & Cerf (2003) introduced the notion of *Friday 13\(^{th}\) Syndrome*\(^3\) i.e. the unexpected failure of a well-operated process plant by novel application of *Uncertainty Failure Modelling* (Davey, 2010; 2011). They showed that failure cannot always be put down to human error or faulty fittings but could be as a result of stochastic changes inside the system itself.

In this study a novel CIP failure model based on the methodology of Davey and co-workers is developed using the published models of Bird & Fryer (1991); Bird (1992) and Xin (2003); Xin, Chen & Ozkan (2004) for the first time. The aim was to gain insight into conditions that may lead to unexpected failure of an otherwise well-operated CIP plant. CIP failure is defined as failure to remove proteinaceous deposits on wet surfaces in the auto-set cleaning time.

The simplified two-stage model of Bird & Fryer (1991) and Bird (1992) was initially investigated. This model requires input of the thickness of the deposit ($\delta = 0.00015$ m) and the temperature and Re of the cleaning solution (1.0-wt% NaOH). The deposit is considered as two layers: an upper layer of swelled deposit which can be removed ($x\delta$) by the shear from the circulating cleaning solution and a lower layer ($y\delta$) that is not yet removable. The output parameters of particular interest are the rate of deposit removal (R) and total cleaning time (t_T) needed to remove the deposit.

The more elaborate three-stage model of Xin (2003) and Xin, Chen & Ozkan (2004) is based on a polymer dissolution process. This model requires input values of temperature of

\(^2\) see Appendix A for a definition of some important terms used in this research.

\(^3\) Unexpected (unanticipated) failure in plant or product of a well-operated, well-regulated unit-operation.
the cleaning solution \((T)\), critical mass of the deposit \((m_c)\) and cleaning rate \((R_m)\). The
output parameters of particular interest are the rate of removal during swelling and uniform
stage \((R_{SU})\), the rate of removal during decay stage \((R_D)\) and the total cleaning time needed
to remove the deposit \((t_T)\). The two CIP models are appropriately formatted and
simulations used to validate them as a unit-operation.

A risk factor \((p)\) together with a practical process tolerance is defined in terms of the auto-
set CIP time to remove a specified deposit and the actual cleaning time as affected by
stochastic changes within the system \((t_T')\). This is computationally convenient as it can be
articulated so that all values \(p > 0\) highlight an unwanted outcome i.e. a CIP failure.

Simulations for the continuous CIP unit-operation are carried out using Microsoft ExcelTM
spreadsheet with an add-in @RiskTM (pronounced ‘at risk’) version 5.7 (Palisade
Corporation) with some 100,0004 iterations from Monte Carlo sampling of input
parameters. A refined Latin Hypercube sampling is used because ‘pure’ Monte Carlo
samplings can both over- and under-sample from various parts of a distribution. Values of
the input parameters took one of the two forms. The first was the traditional Single Value
Assessment (SVA) as defined by Davey (2011) in which a single, ‘best guess’ or mean
value of the parameter is used. The output therefore is a single value. The alternate form
was a Monte Carlo Assessment (MCA) (Davey, 2011) in which the ‘best guess’ values take
the form of a probability distribution around the mean value. Many thousands of randomly
sampled values for each input parameter are obtained using Monte Carlo sampling.
Generally, in QRA the input parameters take the form of a distribution of values. The
output therefore is a distribution of values with each assigned a probability of actually
occurring.

The values of all inputs are carefully chosen for a realistic simulation of CIP.

Results reveal that a continuous CIP unit-operation is actually a mix of successful cleaning
operations along with unsuccessful ones, and that these can tip unexpectedly. For example
for the unit-operations model of Bird & Fryer (1991) and Bird (1992) failure to remove a

4 Experience with the models highlighted that stable output values would be obtained with 100,000 iterations
(or CIP ‘scenarios’).
proteinaceous milk deposit ($\delta = 0.00015 \text{ m}$) can occur unexpectedly in 1.0% of all operations when a tolerance of 6% is allowed on the specified auto-set cleaning time ($t_T = 914 \text{ s}$) with a cleaning solution temperature of 60 $^\circ$C. Using Xin, Chen & Ozkan (2004) model as the underlying unit-operation some 1.9% of operations at a nominal mid-range cleaning solution temperature of 75 $^\circ$C could fail with a tolerance of 2% on the auto-set CIP time ($t_T = 448 \text{ s}$).

Extensive analyses of comparisons of the effect of structure of the two CIP unit-operations models on predictions at similar operating conditions i.e. 2% tolerance on the auto-set clean time (~ 656 s) and 1%-sd in the nominal mean temperature of the NaOH cleaning solution at 65 $^\circ$C, highlighted that the underlying vulnerability to failure of the simplified model of Bird & Fryer (1991) and Bird (1992) was 1.8 times that of the more elaborate model of Xin (2003) and Xin, Chen & Ozkan (2004).

The failure analysis presented in this thesis represents a significant advance over traditional analysis in that all possible practical scenarios that could exist operationally are computed and rigorous quantitative evidence is produced to show that a continuous CIP plant is actually a mix of failed cleaning operations together with successful ones. This insight is not available from traditional methods (with or without sensitivity analysis). Better design and operating decisions can therefore be made because the engineer has a picture of all possible outcomes.

The quantitative approach and insight presented here can be used to test re-designs to reduce cleaning failure through changes to the plant including improved temperature and auto-set time control methods.
ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr K R (Ken) Davey, my principal supervisor from the School of Chemical Engineering, The University of Adelaide, for providing me an opportunity to do research work and for his guidance and help throughout my candidature.

Also I wish to thank Dr Brian O’Neill, my co-supervisor from the School of Chemical Engineering, The University of Adelaide, for providing guidance.

I would also like to thank Professor Mark Biggs, Head of the School, and to all the staff members in the School of Chemical Engineering, for giving me the opportunity for continuing my studies.

I am greatly indebted to my parents who gave me an opportunity to come here and study in Australia and I would also like to thank them for providing me with the financial assistance for doing so.

I would also like to thank my colleagues and all my friends here in Australia for being there when needed and for providing moral support.

I trust that the results of my research work justify the expectations and confidence of all the people concerned, and the interest and encouragement of my family, friends and colleagues.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Clean-In-Place (CIP)</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Factors influencing CIP cleaning</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Types of CIP Systems</td>
<td>8</td>
</tr>
<tr>
<td>2.4.1 Comparison between different CIP systems</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Equipment design types</td>
<td>9</td>
</tr>
<tr>
<td>2.6 CIP Failure seen from food process engineering and hygiene viewpoint</td>
<td>10</td>
</tr>
<tr>
<td>2.6.1 Causes of failure</td>
<td>10</td>
</tr>
<tr>
<td>2.7 Advantages of CIP</td>
<td>11</td>
</tr>
<tr>
<td>2.8 Milk fouling</td>
<td>11</td>
</tr>
<tr>
<td>2.9 Biofilms</td>
<td>12</td>
</tr>
<tr>
<td>2.10 Growth of micro-organisms</td>
<td>14</td>
</tr>
<tr>
<td>2.11 CIP process models</td>
<td>14</td>
</tr>
<tr>
<td>2.12 Single Value Assessment (SVA) modelling</td>
<td>21</td>
</tr>
<tr>
<td>2.13 Monte Carlo Assessment (MCA) modelling</td>
<td>21</td>
</tr>
<tr>
<td>2.14 Various risk assessment techniques</td>
<td>23</td>
</tr>
<tr>
<td>2.15 Insight offered by MCA</td>
<td>24</td>
</tr>
<tr>
<td>2.16 Uncertainty modelling using refined Monte Carlo Sampling techniques</td>
<td>25</td>
</tr>
<tr>
<td>2.17 Methodology for vulnerability to failure modelling</td>
<td>27</td>
</tr>
<tr>
<td>2.18 Summary</td>
<td>29</td>
</tr>
</tbody>
</table>
CHAPTER 3 A NEW UNCERTAINTY MODEL FOR CLEAN-IN-PLACE (CIP) MILK PROCESSING BASED ON A BIRD & FRYER (1991) AND BIRD (1992) UNIT-OPERATIONS MODEL

3.1 Introduction 32
3.2 CIP model of Bird & Fryer (1991) and Bird (1992) 33
 3.2.1 A unit-operations model 33
 3.2.2 Data from Bird (1992) for model constants 35
3.3 Traditional Single Value Solution (SVA) 36
3.4 Vulnerability to failure model solution 37
 3.4.1 Defining CIP Failure (Risk Factor) 38
 3.4.2 Simulation of vulnerability to failure 38
3.5 Results 39
3.6 Discussion 39
3.7 Summary and conclusions 43

4.1 Introduction 46
4.2 Xin (2003) and Xin, Chen & Ozkan (2004) model 46
 4.2.1 A unit-operations model 48
4.3 Effect of temperature and flow rate 53
4.4 Traditional Single Value Solution (SVA) 54
4.5 Vulnerability to failure Modelling 55
 4.5.1 CIP Failure (Risk Factor) 55
4.6 Results 56
4.7 Discussion 58
4.8 Summary and conclusions 60

5.1 Introduction 62
5.2 CIP unit-operations model structure 62
5.3 Vulnerability to failure predictions 64
5.4 Effect of nominal cleaning solution temperature (T) on removal of deposits 66
 5.4.1 Bird & Fryer (1991) and Bird (1992) model 66
 5.4.2 Xin (2003) and Xin, Chen & Ozkan (2004) model 68
5.5 Overall effect of cleaning solution temperature (T) on removal 71
5.6 Summary and conclusions 72

CHAPTER 6 CONCLUSIONS 73

6.1 Recommendations for future research 75

APPENDIX A A definition of some important terms used in this research 78

APPENDIX B Fish Bone Diagram for simulation of CIP unit-operations model based on Xin (2003) and Xin, Chen & Ozkan (2004) analyses 80

APPENDIX C Referred publications from this research 81

NOMENCLATURE

 Bird & Fryer (1991) and Bird (1992) model 87
 Xin (2003) and Xin, Chen & Ozkan (2004) model 88

REFERENCES 90
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2-1</td>
<td>Schematic of wet surface in 5-step CIP operation</td>
</tr>
<tr>
<td>Fig. 3-1</td>
<td>Predicted CIP curve obtained using Bird & Fryer (1991) and Bird (1992) unit-operations model for a cleaning solution (1-wt% NaOH) temperature of 60 °C on a proteinaceous milk deposit of thickness 0.00015 m</td>
</tr>
<tr>
<td>Fig. 3-2</td>
<td>Predicted effect of %-tolerance on CIP failures with a 1-wt% NaOH cleaning solution at a mid-range temperature of $T = 60$ °C with a tolerance of 6% on total cleaning time (t_T)</td>
</tr>
<tr>
<td>Fig. 3-3</td>
<td>Fish bone (Ishikawa) diagram to highlight uncertainty model solution of the unit-operations CIP model of Bird & Fryer (1991) and Bird (1992)</td>
</tr>
<tr>
<td>Fig. 4-1</td>
<td>Diagrammatic representation of Xin (2003) and Xin, Chen & Ozkan (2004) CIP model</td>
</tr>
<tr>
<td>Fig. 4-2</td>
<td>Predicted CIP curve based on Xin (2003) and Xin, Chen & Ozkan (2004) model for Alkali-clean step (with 0.5-wt% NaOH) at a temperature $T = 348$ K (75 °C) and Re = 5418</td>
</tr>
<tr>
<td>Fig. 5-1</td>
<td>Effect of nominal temperature of the (1-wt% NaOH) cleaning solution (T) on maximum removal rate (R_{max}) of proteinaceous milk deposit ($\delta = 0.00015$ m) for the CIP unit-operations model of Bird & Fryer (1991) and Bird (1992) for $30 < T < 80$ °C</td>
</tr>
<tr>
<td>Fig. 5-2</td>
<td>Effect of nominal temperature of cleaning solution (1-wt% NaOH) (T) on total cleaning time (t_T) for removal of proteinaceous milk deposit ($\delta = 0.00015$ m) for the CIP unit-operations model of Bird & Fryer (1991) and Bird (1992) for $30 < T < 80$ °C</td>
</tr>
</tbody>
</table>
Fig. 5-3 Effect of nominal temperature of the (0.5-wt% NaOH) cleaning solution (T) on reptation time (t_r) of proteinaceous milk deposits for the CIP unit-operations model of Xin (2003) and Xin, Chen & Ozkan (2004) for $308 < T < 373$ K

Fig. 5-4 Effect of nominal temperature of the (0.5-wt% NaOH) cleaning solution (T) on maximum rate of removal (R_m) of proteinaceous deposits for the CIP unit-operations model of Xin (2003) and Xin, Chen & Ozkan (2004) for $308 < T < 373$ K

Fig. 5-5 Effect of nominal temperature of the (0.5-wt% NaOH) cleaning solution (T) on Reynolds number (Re) for removal of proteinaceous milk deposits in the CIP unit-operations model of Xin (2003) and Xin, Chen & Ozkan (2004) for $308 < T < 373$ K

Fig. B-1 Fish bone (Ishikawa) diagram for Xin (2003) and Xin, Chen & Ozkan (2004) CIP model
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Comparison of different CIP systems</td>
<td>9</td>
</tr>
<tr>
<td>2-2</td>
<td>Summary and chronological listing of models available for CIP unit-operation</td>
<td>15</td>
</tr>
<tr>
<td>2-3</td>
<td>Comparison of experimental conditions of selected CIP models</td>
<td>20</td>
</tr>
<tr>
<td>3-1</td>
<td>Constants for the unit-operations model of Bird & Fryer (1991) extracted from the experimental data of Bird (1992) for the Alkali-clean step (1-wt% NaOH) as a cleaning solution on proteinaceous milk deposit</td>
<td>36</td>
</tr>
<tr>
<td>3-2</td>
<td>Summary comparison of uncertainty model with traditional SVA for the CIP unit-operations model of Bird (1992) and Bird & Fryer (1991 a, b) for an Alkali-clean step with a 1-wt% NaOH cleaning solution at a mid-range temperature of $T = 60 , ^\circ\text{C}$ with a tolerance of 6% on total cleaning time (t_T)</td>
<td>39</td>
</tr>
<tr>
<td>3-3</td>
<td>10 failures per 1,000 CIP operations at $T = 60 , ^\circ\text{C}$ and %-tolerance = 6</td>
<td>41</td>
</tr>
<tr>
<td>4-1</td>
<td>Experimental parameters used in Xin (2003) and Xin, Chen & Ozkan (2004) model for Alkali-clean (0.5-wt% NaOH) step</td>
<td>53</td>
</tr>
<tr>
<td>4-2</td>
<td>Temperature dependence of parameters in the CIP model based on Xin (2003) and Xin, Chen & Ozkan (2004) and reported by Davey, Chandrakash & O’Neill (2012)</td>
<td>54</td>
</tr>
<tr>
<td>4-3</td>
<td>Summary comparison of vulnerability to failure model with traditional SVA for the CIP unit-operations model based on Xin (2003) and Xin, Chen & Ozkan (2004) for an Alkali-clean step (with 0.5-wt% NaOH) at a mid-range temperature of $T = 348 , \text{K} (75 , ^\circ\text{C})$ with a tolerance of 2% on total cleaning time (t_T)</td>
<td>57</td>
</tr>
</tbody>
</table>
Table 4-4 19 failures in total cleaning time (t_T) per 1,000 CIP operations with a cleaning solution (0.5-wt% NaOH) temperature of $T = 348$ K (75°C) on a proteinaceous deposit

Table 4-5 Effect of standard deviation in the risk function for cleaning solution (0.5-wt% NaOH) temperature $T = 348$ K (75°C) on the number of failures ($p > 0$) of CIP total cleaning time (t_T)

Table 5-1 Summary comparison of the two CIP unit-operations models for the Alkali-clean step

Table 5-2 Comparison of predictions of vulnerability to failure of the two unit-operations models at a mid-range cleaning solution temperature $T = 65$ °C together with a 2% tolerance on auto-set clean time (t_T) and a sd of 1% in the temperature distribution

Table 5-3 Comparison of predictions of vulnerability to failure of the unit-operations model of Bird & Fryer (1991) and Bird (1992) with a 2% tolerance of auto-set clean time (t_T) and a sd of 1% in the mean value of temperature for 30 °C $< T < 80$ °C

Table 5-4 Comparison of predictions of vulnerability to failure of the unit-operations model of Xin (2003) and Xin, Chen & Ozkan (2004) with a 2% tolerance on auto-set clean time (t_T) and a sd of 1% in the mean value of temperature for 308 K $< T < 373$ K