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Similarity analysis of the momentum field of a subsonic,
plane air jet with varying jet-exit and local Reynolds
numbers

Ravinesh C. Deo,1,a) Graham J. Nathan,2 and Jianchun Mi3
1University of Southern Queensland, Faculty of Sciences, Department of Mathematics
and Computing, Springfield, QLD 4300, Australia
2The University of Adelaide, School of Mechanical Engineering, Adelaide, Australia
3College of Engineering, Peking University, China

(Received 14 August 2012; accepted 2 January 2013; published online 25 January 2013)

A similarity analysis is presented of the momentum field of a subsonic, plane air
jet over the range of the jet-exit Reynolds number Reh (≡ Ubh/υ where Ub is the
area-averaged exit velocity, h the slot height, and υ the kinematic viscosity) = 1500
− 16 500. In accordance with similarity principles, the mass flow rates, shear-layer
momentum thicknesses, and integral length scales corresponding to the size of large-
scale coherent eddy structures are found to increase linearly with the downstream
distance from the nozzle exit (x) for all Reh. The autocorrelation measurements
performed in the near jet confirmed reduced scale of the larger coherent eddies for
increased Reh. The mean local Reynolds number, measured on the centerline and
turbulent local Reynolds number measured in the shear-layer increases non-linearly
following x1/2, and so does the Taylor microscale local Reynolds number that scales as
x1/4. Consequently, the comparatively larger local Reynolds number for jets produced
at higher Reh causes self-preservation of the fluctuating velocity closer to the nozzle
exit plane. The near-field region characterized by over-shoots in turbulent kinetic
energy spectra confirms the presence of large-scale eddy structures in the energy
production zone. However, the faster rate of increase of the local Reynolds number
with increasing x for jets measured at larger Reh is found to be associated with a
wider inertial sub-range of the compensated energy spectra, where the −5/3 power
law is noted. The downstream region corresponding to the production zone persists
for longer x/h for jets measured at lower Reh. As Reh is increased, the larger width of
the sub-range confirms the narrower dissipative range within the energy spectra. The
variations of the dissipation rate (ε) of turbulent kinetic energy and the Kolmogorov
(η) and Taylor (λ) microscales all obey similarity relationships, εh/U 3

b ∼ Re3
h , η/h

∼ Reh
−3/4, and λ/h ∼ Reh

−1/2. Finally, the underlying physical mechanisms related to
discernible self-similar states and flow structures due to disparities in Reh and local
Reynolds number is discussed. [http://dx.doi.org/10.1063/1.4776782]

I. INTRODUCTION

Research interest into turbulent plane jets has been elevating since the pioneering works of
Schlichting,1 Forthman,2 and Bickley.3 This is because the flow statistics of these jets, described by
the mean, turbulent, and higher order velocity and scalar moments are represented as two-dimensional
fields. This statistical two-dimensionality is valuable for understanding the control and transport of
mixing processes4 so these jets remain prototypical flows of relevance to engineering applications

a)Author to whom correspondence should be addressed. Electronic addresses: ravinesh.deo@usq.edu.au and
physrcd@yahoo.com. Telephone: +61 (07) 3470 4430.

1070-6631/2013/25(1)/015115/31/$30.00 25, 015115-1

Downloaded 13 Aug 2013 to 192.43.227.18. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4776782
http://dx.doi.org/10.1063/1.4776782
http://dx.doi.org/10.1063/1.4776782
http://dx.doi.org/10.1063/1.4776782
mailto: ravinesh.deo@usq.edu.au
mailto: physrcd@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4776782&domain=pdf&date_stamp=2013-01-25


015115-2 Deo, Nathan, and Mi Phys. Fluids 25, 015115 (2013)

in propulsion, combustion, ventilation, air conditioning, and other environmental systems. The
simplified flow statistics offer advantages in basic turbulence research and mathematical applications
such as numerical modeling, validation of models, and investigating the large and small-scale eddy
structures in moving fluids.5, 6 Nevertheless, there are far fewer investigations of plane jets than of
their round-jet counterparts. Henceforth, this article is devoted to furthering the understanding of
the role of large and small-scale structures in turbulent plane jets.

A plane jet is generated by a rectangular slot, whose dimension (w × h) is characterized by the
aspect ratio, AR = w/h, with w � h, where w and h are measured along the spanwise (z) and lateral
(y) directions, respectively (Fig. 1). Two parallel sidewalls attached to either end of the primary jet
restrict fluid entrainment along the spanwise (z) direction, so that the velocity component, W (x, y)
along the z-plane is nominally taken to be zero. The self-sustaining jet is approximated to originate
from a concentrated (line) source of momentum and is typically analysed for the case where it
issues into a quiescent (stagnant) or a co-flowing environment. The main freestream velocity, U(x,
y) decays in the streamwise (x) direction that is also accompanied by jet spreading in the y-direction
which is proportional to the entrainment velocity, V (x, y).

For a smoothly contoured nozzle, the time-averaged mean flow exhibits a potential core region
immediately downstream of the exit up to an axial distance of 4 < x/h < 6, in which U(x, y) is
uniform so that the mean centerline velocity, Uc(x, 0) approximately equals the bulk mean velocity,
Ub (Fig. 1). Within the interaction zone (6 < x/h < 20), the large-scale eddy structures interact with
the ambient flow to transport gross momentum flux along the x-direction.7, 8 In the self-similar field,
the jet becomes self-preserving where statistical properties such as jet spreading and velocity decay
rates, turbulence intensity, etc. become invariant. Despite the voluminous research quantifying basic
statistical parameters of plane jet flows, several aspects of the similarity behavior, especially with
respect to the flow structure, remain unevaluated.

One fundamental parameter known to influence the downstream development, evolution, and
self-preservation of a jet is the jet-exit Reynolds number (Reh) which for a plane jet, is usually
defined by

Reh = Ubh/υ. (1)

Here Ub is the area-averaged bulk mean velocity, υ is the kinematic viscosity of fluid, and h is
the characteristic length scale of the nozzle, which is mostly taken as the smallest dimension of
the nozzle, i.e., the “height” when the jet issues horizontally. The investigations of Lemieux and
Oosthuizen9 for Reh between 700 ≤ Reh ≤ 4200, Suresh et al.10 between 250 ≤ Reh ≤ 6250 and
Klein et al.11 for Reh ≤ 6000 identified that Reh exerts a substantial influence on most of the basic
flow statistics. However, these studies were limited to the relatively low Reh range that only extended
into the lower end of the turbulent regime. The investigation by Namar and Otugen12 extended this
range slightly to consider 1000 ≤ Reh ≤ 7000, but their nozzle was not constrained by sidewalls,
and hence does not conform to the requirement for a fully planar jet.13 While the measurements by
Everitt and Robbins14 covered Reh between 16 000 ≤ Reh ≤ 75 000, their study does not isolate the
influence of Reh from other initial conditions since they simultaneously varied the AR between 21
and 128. That is, their work does not separate the effect of Reh from that of AR, which is also known
to influence the flow statistics.15, 16

To our best knowledge, the first independent study of the dependence of flow statistics of plane
jets from the low to moderate ranges of Reh between 1500 ≤ Reh ≤ 57 500 was reported by Deo
et al.17 That study demonstrated that the self-preserving magnitudes of jet decaying and spreading
rates decreased with Reh, while the turbulence intensity, the skewness, and flatness factors increased
asymptotically with it. The study also identified an initial increase in the dimensionless frequency
of primary vortices with Reh, but this increase did not extend to higher values of Reh. Also, the flow
structure of jets driven by dynamical changes in the large and small-scale vortices in the near and
self-similar fields has not been explored previously.

Another parameter of relevance that typically characterizes a jet’s shear layer development is
the momentum thickness, θm. This quantity is believed to scale with the size of large-scale eddy
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FIG. 1. (a) A schematic of the plane jet nozzle, (b) time-averaged flow, and (c) laboratory dimensions. Note: Uc ≡ centerline
mean velocity, y0.5 ≡ half-width (y-value where U(x, y) = 1/2Uc(x)).

structures generated by the shear-layer roll-up process.18 Such an effect is known to prevail in the
case of round and non-circular jets19, 20 although there is substantial paucity of experimental data of
this phenomenon for the case of a plane jet. At the exit plane, θm characterizes the initial shear layer,
which in turn influences the growth and development of the large-scale eddies including the double
roller-like vortices shed in the von-Karman sheets.21 Further downstream, θm characterizes the jet
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spread, and is numerically obtained for any value of x by integrating the mean velocity, U(x, y)

θm(x) =
y= ∞∫

y=0

(
U (x, y)

Uc(x)

)(
1 − U (x, y)

Uc(x)

)
dy. (2)

Several studies have demonstrated that the axial growth of θm(x), and of the large-scale eddies
on which this growth depends, is a function of Reh.4, 11, 12 However, the role of the local Reynolds
number, Reθ , based on the scale, θm(x), is less clear in previous literature although this parameter is
also known to evolve non-identically for jets measured at different Reh.17 This is because, unlike a
round jet where the Reθ is invariant, or for a planar wake flow where Reθ decreases,22 that in a plane
jet Reθ increases with x.17 This suggests that the relative importance of viscosity on self-preservation
appears to diminish with increasing x. However, the axial location of the self-preserved state due
to increasing Reθ is not well understood, and its dependence on initial and boundary conditions
especially on a plane jet remains to be explored.

Johansson et al.22 showed that the turbulent kinetic energy spectra of a planar wake flow exhibits
unique regions of the inertial sub-range that satisfy the Kolmogorov’s −5/3 power law for different
Reynolds numbers but this phenomenon remains unexplored for a plane jet. Based on a similar view,
George23 postulated that similarity solutions for a planar wake flow measured at high Reynolds
number will apply if there is a conspicuous inertial sub-range in the spectra to ensure the scales
of motion are effectively inviscid. However, the separate influences of Reh and Reθ on the self-
preservation through their effects on the flow structure, especially for a plane jet, have received less
attention.

Similarly, to our best knowledge, less is known on the influences of Reh and Reθ on θm (x)
and on the energy spectra of a plane jet. The present investigation aims to bridge this gap by
revisiting the underlying theory behind self-preservation by analysis of experimental data of a series
of sub-sonic plane air jets measured for Reynolds numbers, 1500 ≤ Reh ≤ 16 500. The physical
mechanisms driving discernible flow structures for jets with varying Reh are explored using spectral,
autocorrelation, and probability density analysis of the instantaneous velocity signal in the near and
the far fields.

II. ANALYTICAL OVERVIEW

The time-averaged mean momentum equation for a two-dimensional, incompressible plane
jet (neglecting spanwise motion along the z axis) is given by the modified Navier-Stokes and the
continuity equations, respectively,

U
∂U

∂x
+ V

∂U

∂y
= − ∂

∂y
〈uv〉 and

∂U

∂x
+ ∂V

∂y
= 0, (3)

where U, u, and V, v are the components of the mean and turbulent velocity along the x and y-
direction, respectively, and 〈uv〉 is the Reynolds shear stresses term. For the case of a plane jet, the
x-direction is the general direction of mean propagation and y-direction is the direction of mean jet
spread. In the self-preserving field, the distributions of the streamwise component of mean velocity
U(x, y) and root-mean-square velocity 〈u(x, y)2〉1/2, and transverse component of mean velocity
V (x, y), and root-mean-square velocity 〈v(x, y)2〉1/2 are represented by

U (x, y) = Uc(x) F ′(η), V (x, y) = Uc(x)F ′(η) (4)

and

< u(x, y) >2= U 2
c (x)g(η),< v(x, y) >2= U 2

c (x)g(η),< u(x, y) v(x, y) > = U 2
c (x)g2(η).

(5)
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Likewise, the normalisation of U(x, y) and V (x, y) by Uc(x) yields the Reichardt’s similarity
solution (e.g., Ref. 24),

U (x, y)

Uc(x, 0)
= exp(− ln 0.5 η2),

V (x, y)

Uc(x, 0)
= C

4

[
4η exp(−η2 ln 2) − √

πer f (−η
√

2ln2)
]
, (6)

where η = y(x)/y0.5(x), y0.5(x) is the y-location where U(x, y) = 1/2Uc(x), the error function er f (η)
= 2√

π

∫ η

0 e−ξ 2
dξ and F(η) and g(η) are smooth functions = 0 at y = 0. The momentum equation (3)

and expressions for U and V are used to solve for the Reynolds stress as

< u(x, y) v(x, y) >

U 2
c(x)

=
√

πC

4
exp(−η2) er f (η). (7)

Differentiating (4) with respect to x, substituting for η and clearing the redundant terms yields

∂U

∂x
= U

′
c (x) F ′(η) − Uc(x)

y
′
0.5(x) η

y0.5(x)
F ′′(η),

∂U

∂y
= Uc(x)

y0.5(x)
F ′′(η). (8)

Applying the freestream and continuity conditions (3) and substituting into (7) results in

V =
y∫

0

∂V

∂y
dy = −

y∫
0

∂U

∂x
dy

= Uc(x) y
′
0.5(x) ηF ′(η) − [Uc(x) y0.5(x)] ′ [F(η) − F(0)] .

(9)

The partial derivative of the Reynolds stress equation (5) with respect to y yields

∂

∂y
〈u v〉 = U 2

c (x)

y0.5(x)
g′(η). (10)

Substituting (10) into (3) and rearranging the terms yields

U
′
c(x) y0.5(x)

Uc(x)
F ′2 − [Uc y0.5(x)]′

Uc(x)
F F ′′ + g = 0. (11)

For the case of a self-preserving jet, the coefficients in Eq. (11) must be constant since Uc(x)
and y0.5(x) are functions of x only.25 It thus follows that y0.5 (x) ∼ x since dy0.5/dx is constant in the
self-preserving field.

The similarity of the large-scale, mean jet flow obeys solutions of the form, θm (x) ∼ x and Uc

(x) ∼ x−1/2 and y0.5 (x) ∼ x as previously so that

Uc(x)

Ub
=

[
Ku

(
x − x01

h

)]−1/2

= K −1/2
u ξ−1/2, (12)

y0.5(x)

h
= Ky

(
x − x02

h

)
= Ky ξ, (13)

θ (x)

h
= Kθ

(
x − x03

h

)
= Kθ ξ, (14)

where Ku, Ky, Kθ are the velocity decay, jet spreading, and shear layer growth rates, and x01, x02,
and x03 are the virtual origins in Eqs. (12)–(14).
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015115-6 Deo, Nathan, and Mi Phys. Fluids 25, 015115 (2013)

From the practical point of view, one of the most valuable properties of the mean jet flow is
the entrainment (E) measured by the mass flow rate, m(x), at any x relative to the initial value mo

at x = 0. Since the jet is to spread laterally, E is proportional to the ratio of m(x) to mo so that

E ≡ m(x)

mo
= 1

hUb

+∞∫
−∞

U (x, y)dy (15)

to obey a similarity solution of the form m(x)/m0 ∼ Uc(x)/Ub, where the Uc (x) ∼ x−1/2 substituted
into Eq. (15) yields (

m(x)

mo

)2

= Km

(
x − x04

h

)
= Km ξ, (16)

where Km is associated with the entrainment induced by large and small-scales, and is subject to
initial conditions of the jet flow.

In accordance with theoretical arguments of George,23 we define the centerline value of the
mean local Reynolds number Reθ of a plane jet, based on two length scales, θm(x) and y0.5 (x) as

Reθ (x) = Uc(x) θm(x)

ν
and Rey0.5 (x) = Uc(x)y0.5(x)

ν
. (17)

Following Eqs. (12)–(14) that Uc ∼ x−1/2, θm(x) ∼ x, and y0.5 ∼ x, the Reθ varies as
x−1/2 × x1 ∼ x1/2. Based on this, similarity analysis indicates that irrespective of the initial value
of Reh, all plane jets will eventually attain high local Reynolds numbers if measured at sufficiently
great downstream distances. Accordingly, this downstream location should correlate with their
unique transition to non-identical self-similar states, depending on the value of Reh.

To seek similarity solutions for the Re-dependence of the small-scale flow, consider a plane
jet where the turbulent kinetic energy produced by mean motion of the large-scale eddies at low
wave numbers that are localized over a region, �(x). At sufficiently high Reynolds number, it is
usually considered that the centerline dissipation rate εc(x) of the turbulent kinetic energy (Ek) by
the smallest eddies equals the supply from the large-scale eddies, e.g., Ref. 26. Thus

εc(x) ≡ U 3
c (x)

y0.5(x)
and εc(x) = 15υ

〈(
∂uc(x)

∂x

)2
〉

, (18)

where the small-scale eddies convect downstream with a velocity that scales cubically with Uc(x),
and that Ek(x) ≡ 1/2 < u2 + v2 + w2 >≈ 3/2 < u2 > in locally isotropic turbulence. In accordance
with Kolmogorov’s theory27

η =
(

ν3

ε

)1/4

, (19)

which gives

η/� ∼ Re−3/4
h , (20)

if one incorporates <u2>1/2 ≡ (2Ek/3)1/2 into Reh = E2
k /εν by stating that � ≡ (Ek)3/2/ε, where

� and η are large-scale (production range) and small-scale (dissipative range) eddies in the self-
preserving jet.

Several previous studies, e.g., Refs. 26–29 have consistently verified the inertial sub-range in
spectra of Ek for a self-similar jets where the turbulent eddy motions of length scale equals the Taylor’s
transverse microscale (λ). Incorporating ε (x) into u2/λ2 = (∂u /∂x)2 and Ek = 3

2 < u2 >1/2 yields

λ =
√

15νu2

ε
=

√
10νEk

ε
, (21)

where the inequality � < λ < η is a priori following Eqs. (18)–(21). That is, the self-preservation
of isotropic turbulence requires the scale of the inertial sub-range eddies to measure in between the
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015115-7 Deo, Nathan, and Mi Phys. Fluids 25, 015115 (2013)

scale of the largest (production-scale) and the smallest (dissipation-scale) eddies. Some manipulation
of Eq. (21) yields

λ/� ≡
√

10 Re−1/2
h (22)

and

λ/η ≡
√

10 Re1/4
h . (23)

We now seek similarity solutions for the x-dependence of small-scale flow statistics. In accor-
dance with Eq. (18), εc(x) varies as U 3

c(x)/y0.5(x). Substituting Uc ∼ x−1/2 and y0.5 ∼ x yields

ε(x) ∼ x−5/2. (24)

Likewise, based on Eqs. (19)–(21), self-similarity requires that η(x) ∼ ε(x)−1/4 and λ(x)
∼ ε(x)−1/2 whose incorporation into Eq. (24) yields the x-dependence of Kolmogorov and Tay-
lor microscales

η(x) ∼ x5/8 (25)

and

λ(x) ∼ x3/4. (26)

Combining the x and Reh dependence of both microscales yields similarity relationships for
small-scale statistics in the self-preserving plane jet

εh

U 3
b

= Kε (x/h)−5/2 , (27)

η

h
= K −1/4

1,ε Re−3/4
h (x/h)5/8 , (28)

λ

h
= K −1/2

2,ε Re−1/2
h (x/h)3/4 , (29)

where the experimental constants Kε, K1ε, and K2ε are subject to initial conditions.

III. EXPERIMENTAL DESIGN

A. Plane jet facility

The present experiment is described in detail elsewhere (e.g., Refs. 17 and 30) so is only
summarized in this article. All data were collected in the Fluid Mechanics Laboratory (Fig. 1(c))
located within the School of Mechanical Engineering at The University of Adelaide, Australia.
Air was supplied by an open circuit wind tunnel driven by a variable-speed, 14.5 kW aerofoil-
type centrifugal motor. The mainstream flow was pre-conditioned by a wide angle diffuser, settling
chamber, honeycomb, and screens to feed a large polynomial contraction of the tunnel. The exit of the
contraction measured 720 mm × 340 mm where the plane jet nozzle was clamped. The nozzle was
constructed from two perspex plates separated by slot height h = 5.6 mm and width w = 340 mm.
The upstream edges were radially contoured with r = 12 mm. Consequently, the design ensured a
sufficiently large aspect ratio AR = w/h = 60 necessary to produce a statistically two-dimensional
jet far into the self-preserving region13 together with the nozzle profile-contraction factor r* = r/h
≈ 2.14 necessary to generate a mean velocity profile resembling the Blasius curve.31

B. Hot wire anemometry

A constant temperature anemometer employing single hot wire probes operating at an overheat
ratio of 1.5 was chosen. Custom-designed sensors were constructed to minimize heat losses along the
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lengths of the wire and for the resolution of small-scale structures in jets measured at different Reh.
The length (lw) and diameter (dw) of the sensor was chosen based on previous research following
Browne et al.8 who used lw/dw ≈ 208 and Champagne32 who used lw/dw ≈ 160 to resolve fine-scale
turbulence structures in their jets. Bradshaw33 stated that the heat loss from a sensor is ≈15% when
lw/dw ≈ 200. Bearing in mind that lw and dw are critical parameters, we chose copper-plated tungsten
sensors of lw ≈1 mm and dw = 5 μm to yield lw/dw ≈ 200. A three-dimensional traverse enabled
measuring instruments to be traversed laterally (across the jet) and axially (direction of the mean
flow). The mean static pressure was monitored with a Pitot static tube for the calibration of the hot
wire sensor. The streamwise component of the instantaneous velocity, U(x) was measured on the
centerline between the locations 0 ≤ x/h ≤ 160, while the lateral velocity component U(x, y) was
measured at selected x/h (across all jets) for different Reh.

For the present measurements, a PC-30F data acquisition system was utilized. The system has a
200 kHz multi-channel analogue to digital (A/D) converter with a 12-bit (≈ 2.4 mV) resolution. After
monitoring the real-time raw velocity signal on a Tektronix Oscilloscope, all data were visualized in
WaveView 2.0 (DOS based data interface) for preliminary inspection. The input range of A/D board
chosen was ± 5.0 V so an appropriate offset was applied to the sampled voltage to rectify the signal
into the ± 3.0 V range. This avoided clipping some important tails of the higher order moments
of the fluctuating signal.34 A cut-off frequency, fc = 9.2 kHz was used to sample data at a Nyquist
frequency of 18.4 kHz for 22.4 s to collect approximately 4 × 105 data samples per measurement
location.

It is acknowledged that stationary hot-wire measurements may downgrade the accuracy of
the present measurements especially near the outer edge of the jet where turbulence intensity is
relatively high. In this region greater amplitudes of the fluctuating velocities can produce erroneous
values of the small-scale statistics especially those calculated using the Taylor’s hypothesis. In such
cases, flying-hot wire or Laser Doppler Velocimetry (LDV) techniques should be employed for
better resolution of the flow properties.35 However, in this article we are interested in comparing the
relative magnitudes of the flow statistics for different Reh so it is hoped that such errors are absorbed
proportionally into the individual jet measurements. Some portion of such redundant noise is also
removed by the digital filtering scheme adopted from Mi et al.40 prior to resolving the small-scale
statistics. This helps determine as correctly as possible the dissipation rates even though the data
acquisition rate is fixed for every downstream location and different cases of Reh.

Based on the present hot-wire calibrations and the observed scatter in the analysed data, the
uncertainties in the mean quantities within the jet’s shear layer are estimated to be ∼4.0% and
those on the jet’s centre-plane are ∼0.8%. The estimated errors in the turbulent quantities amount
to ∼2.0% and the integral quantities (momentum thickness and mass flow rates) are ∼3.0%. The
estimated errors in the small-scale statistics are as follows: (ε ±4.0%; η ± 1.0%; λ ± 6.0%).

C. Jet exit conditions

The volumetric flow rates through the jet facility spanned the range 7.6 × 10−3≤ Q ≤ 8.4
× 10−2 m3s−1 which corresponded to Reynolds numbers, 1500 ≤ Reh ≤ 16 500 and Mach numbers,
M = Ub/c of 0.01 ≤ M ≤ 0.13 (where c is the speed of sound in ambience). The Mach numbers
confirmed that these isothermal jets were subsonic, quasi-steady, and incompressible. As such, the
simplified incompressible models used for the analysis of self-preservation are appropriate. The
measurement of the lateral distributions of mean and fluctuating velocity close to the exit plane (x/h
≈ 0.5) showed subtle dependence on Reh.17 Although all cases produced an approximately “top-hat”
velocity profile, small differences were found for the different cases under investigation. As Reh was
increased, the velocity profiles became flatter, with a larger region of flow uniformity.

The jet-exit conditions are determined by the normalized values of δm and θm (at x/h = 0.5)
previously reported for same plane jet by Deo et al.17 (Fig. 2(a)). The same parameters for a high-AR
rectangular jet by Namar and Otugen12 are also included. For the present plane jets, the increase in
Reh produced an asymptotic decrease in θm and δm, which is in agreement with the trends noted for
round jets36 and high-AR rectangular jets.12 However, the shape factor H increased asymptotically
with Reh to approach a constant value of 2.6, that accorded with that of a laminar Blasius profile for
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FIG. 2. The jet-exit conditions defined by (a) displacement thickness (δm), momentum thickness (θm) and shape factors (H)
at x/h = 0.5 reported by Deo et al.17 (b) Momentum-based Reynolds number (Reθ ) and shear layer-peak turbulent Reynolds
number (Re<u p>1/2 ) measured at x/h = 0.25. In part (a), δm and θm at x/h = 1 for high-AR rectangular jet of Namar and
Otugen12 are shown.

the cases Reh ≥ 10 000. The decrease in displacement and momentum thickness for increased Reh

is expected because we have changed Reh by varying the jet exit velocity.
That H increases with increasing Reh to approach the Blasius value for Reh > 10 000 demon-

strates that the radial contraction of the nozzle is effective in producing a nearly laminar flow
at the exit plane. Note that a direct comparison of the magnitudes of present δm and θm with
Namar’s values is unreasonable because the latter jet was measured at a different downstream lo-
cation and was configured without sidewalls along the x-y plane. Despite the present decrease in
θm with Reh, the momentum-based Reynolds number (Reθ ) increased linearly (Fig. 2(b)). How-
ever, the normalized values of the shear layer turbulence intensity (< u2

p >1/2 /Uc) decreased with
increasing Reh, although the opposite trend is found for the peak rms-based Reynolds number,
Re<u p>1/2 =< u2

p >1/2 h/υ. That is, the exit shear layer of the jet with the highest Reh depicted
high initial unsteadiness despite the laminar mean velocity profile. Hence too, the instabilities of the
initial shear layer of this jet are expected to decrease with increased Reh.
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FIG. 3. Streamwise evolution of mass flow rates m(x) normalized by bulk mass flow rate (m0) at the exit plane.

IV. RESULTS AND GENERAL DISCUSSION

A. Mean and turbulent statistics

Figure 3 presents the streamwise variations of the kinematic mass flow rates (m(x)/mo)2 as a
function of x/h for all cases investigated. Notice that the mass flow rates have been derived indirectly
from the lateral (y-direction) profiles of mean velocity, U(x, y) reported previously by Deo et al.17 In
accordance with the similarity Eq. (16), all experimental data obey the relationship m(x) ∼ x1/2 for
x/h ≥ 10 when the mean flow has become self-preserving. It is also clear that the self-preserving low
Reh jet exhibits a higher mass flow rate than its high Reh counterparts, which is self-evident from the
direct measurements showing identical trends in the velocity decay and jet spreading rates.10, 12, 17, 30

Additionally, the gross entrainment rates (Km) and the x-location of virtual origins of mass flow (x03)
for each measured jet is Re-dependent (Fig. 4). As with the previously reported trends of Ky and
x02,17 Km and x03 decrease asymptotically with increasing Reh so that the horizontal asymptote of
the former attains a value of ≈0.26 for the two high-Re cases.
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FIG. 4. Dependence of entrainment rates (Km) and virtual origin (x04/h) on Reh.
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The increased entrainment rates of low Reh jets over the high Reh cases are correlated with
increased momentum thicknesses θm(x) of their shear layers (Fig. 5), which also follows the previ-
ously reported trends of linear growth of the jet half-widths, e.g., Ref. 17. The linear rise in θm(x)
with increasing x is consistent with the previously reported trends of increased jet half-width17 and
is in accordance with the similarity analysis of a plane jet (Sec. II). A smaller value of θm(x) indi-
cates lesser deficit in the shear-layer momentum, which is consistent with similarity equation (2).
Imperatively, the high-Re jets appear to be nominally more inviscid than their low-Reh counterparts
at any downstream location which explains their low momentum thicknesses. Since the shear layer
growth rates are proportional to θm(x), which in turn characterizes the scale of larger structures, it is
deduced that the size of these eddies decrease with increasing Reh. Similar were the observations of
Bogey and Bailly18 for round jet measurements.

Figure 6 displays the dependence on Reh on Kθ and lm where Kθ represents the growth rate of the
shear-layer in the linear regime and lm is the mixing length based on Prandtl’s hypothesis. Evidently,
Kθ decreases asymptotically with increasing Reh which is consistent with the previously reported data
of Deo et al.17 The mixing length (lm) in a self-preserving plane jet is proportional to its spreading
rate Ky to exhibit the relationship lm ≈ 0.09Ky.37, 38 This empiricism emerges from the uniform eddy
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FIG. 6. The Reh-dependence of the shear-layer growth rate (Kθ ) and mixing length (lm) based on Prandtl’s mixing length
hypothesis where lm is proportional to Ky as embodied in Eq. (13).
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viscosity model that advocates the proportionality equation νT = l2
m

∣∣∣∣∂U

∂y

∣∣∣∣ = l2
m(x)Uc(x)

y0.5(x)

∣∣F ′′(η)
∣∣ .39

However, the similarity analyses depicting that υT varies as x1/2 appears to be a limitation of the
eddy viscosity model as it suggests that the plane jet is not a perfect self-similar flow.

Figure 6 (right ordinate) demonstrates that lm like Kθ , also decreases asymptotically with
increasing Reh indicating that the spatial domain of the mixing regime shrinks when Reynolds
number is increased.

The characteristic size of the large-scale eddy structures (�) is estimated for each Reh using
the auto-correlation functions, Ruu (x, 0, 0) of the fluctuating velocity (u). Here Ruu (x, 0, 0)
convolutes the instantaneous velocity, u, at a given point, x0, and given time lag, τ = 0 to another
time, τ + τ , and displacement x0 + x. According to Taylor’s transformation, τ is linked to
the eddy separation distance (r = x0 + x) where r(x) = Uc(x)τ (t). Based on this, the size

of large-scale eddies (�) is estimated viz � =
(x=x,Ru,u=0)∫
(x=0,Ruu=1)

Ruu(x, 0, 0) dx from x = 0 to a

separation distance, r.40 As per Figure 7, �(x) increases linearly with x for all cases of investigation
to accord with the similarity relationship

�(x)

h
= K�

(
x − x05

h

)
= K� ξ. (30)

In the similarity equation (30), K� represents the growth rate of the large-scale eddies, and x05

is some virtual origin. Based on the present data, the size of eddies, denoted by the magnitude of
�(x), decreases for increased Reh. Furthermore, the value of K� is found to decrease asymptotically
with increasing Reh, which is also in agreement with the deductions of Figure 6 and the previous
round jet data of Bogey and Bailly.18 It is noteworthy that the trend coincides with a slight increase
in the Strouhal number of eddies in the potential core region, as reported previously by Deo et al.17

and elsewhere by Suresh et al.10

Figures 8(a) and 8(b) display the evolution of the two different forms of the mean local Reynolds
number Reθ (x) = Uc(x)θm(x)/υ and Rey0.5 (x) = Uc(x)y0.5(x)/υ, where θm(x) and y0.5(x) are the
characteristic length scales of jets with different values of Reh. The similarity relationships embodied
in Eq. (17) (Reθ (x) ∼ x1/2 and Rey0.5(x) ∼ x1/2) are well demonstrated for all cases of Reh. This
relationship is verified unambiguously, in Figure 8(b) where plot of Rey0.5(x) versus xnorm = √

x
shows reasonably good linear trends with generally good collapse of data within the experimental
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errors. This sort of dependence exists in previous data showing that plane jets exhibit higher Ky than
their corresponding Ku values irrespective of the magnitude of Reh [Fig. 6; Fig. 9(b) of Ref. 17].

Accordingly, it is deduced that Uc(x) ∼ 1/
√

Ku and y0.5(x) ∼ Ky , so a slower decay rate
of Uc(x) relative to y0.5(x) and θm(x) is self-evident. Despite the square root growth of Reθ (x)
with x, every case tested characterises unique values of Reθ (x) at any given downstream location.
However, the actual magnitude of the mean local Reynolds number is correspondingly higher for a
jet measured at a larger Reh. Our results agree qualitatively with those of Namar and Otugen12 for
high-AR rectangular jets (reproduced in Fig. 9(b)) and other investigations on plane jet flows.4, 45

The one-dimensional streamwise component of the turbulent kinetic energy Ek(x) is displayed
in Figure 9 where Ek(x) normalized by U 2

c(x). The data of Namar and Otugen12 for the cases Reh

= 1000–7000 are also included. As with the previously reported data on the rms of fluctuating
velocity, Ek(x)/U 2

c (x) exhibits a rapid rate of initial increase with x to acquire a local maximum
for all Reh. Interestingly, the maximum values are strongly dependent on Reh. These differences
are consistent with the unique scaling of the large eddy structures with increasing downstream
distance (Fig. 6). In accordance with Dracos et al.,52 the large-scale eddy structures are primarily
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responsible for most anisotropic behavior in the propagated jets. It is deduced that low-Reh cases
exhibit higher anisotropic behavior than high-Reh counterparts, and hence possess more ordered
large-scale structures that are evidenced by consistently larger values of Ek(x)/U 2

c (x) and more
rapid growth rate of momentum thicknesses within the shear layers (see Figs. 5 and 6).

A closer examination of Figure 9 shows the upstream shift in the peak turbulent kinetic energy
with increasing Reh. The comparatively larger peak supports decreased momentum thickness and
reduced size of large-scale eddy structures in high-Re jets (Figs. 5 and 18) that accords with the
direct numerical simulations of round jet flows by Bogey and Bailly.18 The low-Re jet produces
substantially higher turbulent kinetic energy than its high-Re counterparts at identical x-locations.
For example, at x/h = 20, Ek(x)/U 2

c(x) = 4.62 × 10−2 for Reh = 1500, which is double the
corresponding value of 2.09 × 10−2 for Reh = 16 500. Again, this difference is associated with
stronger anisotropic turbulence in the near field of the low-Re jet as also confirmed later (see
Fig. 25(b)) where a slower rate of decay of the autocorrelation coefficient (Ruu) is depicted.

Consistent with well-known views on self-preservation (e.g., Ref. 47), no net turbulent kinetic
energy is produced in the far field, as Ek(x)/U 2

c(x) becomes invariant for all cases of investigation
(Fig. 9). However, the magnitude of Ek(x)/U 2

c(x) and x-locations where this invariance occurs
along the x-plane strongly depends on Reh, and the corresponding local Reynolds number acquired
by these jets.

It is noteworthy that, in accordance with local Reynolds number effects, the asymptotic invari-
ance of Ek(x)/U 2

c(x) is realized at a shorter axial distance (x/h ≈ 40) for Reh = 16 500 compared to
x/h = 100 for Reh = 1500. This correlates with a mean local Reynolds number, Rey0.5 (x) ≈ 40 000
for the former jet relative to Rey0.5 (x) ≈ 5000 for the latter. Clearly the acquisition of substantially
large mean local Reynolds number for the high-Re jet appears to determine the x-location of the
onset of self-preservation, as also confirmed later, by spectral analysis (Sec. IV C). Furthermore,
the magnitude of self-preserving values of the turbulent kinetic energy is discernible for each tested
case; with low Re-jets sustaining a greater amount of energy than their high-Re counterparts.

Figure 10 checks the self-preserving behavior within the lateral distributions of turbulence
intensity un = 〈u(x, y)1/2/Uc(x)〉 measured across the present jets. Except the case Reh = 1500,
all turbulence intensity profiles exhibit self-similar behavior at some value of x/h, although the
x-locations are dependent on Reh. That is, for cases of Reh = 3000, 7000 and ≥ 10 000, un becomes
congruent for approximately x/h ≥ 50, 20, and 10, respectively. Clearly, the different x-location at
which self-preservation of the turbulence intensity profiles is achieved depends on Reh.
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FIG. 10. Lateral profiles of turbulence intensity un = <[u(x, y)]>1/2/Uc(x) measured across the jet for Reh = (a) 1500,
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Figure 11 examines the asymptotic invariance of
〈
u2

c(x)
〉1/2

/Uc(x) with respect to Reθ (x) for
the cases Reh ≥ 3000. It is demonstrated that the self-preservation of plane jets is attained at
approximately identical values of Reθ ∼ 2500, irrespective of Reh, despite some scatter, particularly
for lower Reh. Again, this confirms the key role of high local Reynolds number for attaining self-
preservation of turbulent properties of the present plane jets.

Figure 11 displays the streamwise evolutions of the turbulent local Reynolds number,
Re〈u2

p〉1/2
,y0.5

(x) = 〈
u2

p(x)
〉1/2

y0.5(x)/ν in the jet’s shear-layer. Here, the characteristic scales used

are y0.5(x) = jet half width and
〈
u2

p(x)
〉1/2 ≡ peak shear-layer turbulence intensity at its corre-

sponding downstream locations. Similar to the trends for the mean local Reynolds number (Fig. 8),
the turbulent local Reynolds number increases with x1/2 although the absolute values of Rey0.5 (x)
and Re〈u2

p〉1/2
,y0.5

(x) are somewhat different due to different lengths scaled used (i.e., Uc(x) versus〈
u2

p(x)
〉1/2

). However, the square-root scaling ensures that, no matter how low the initial Reh is, all
plane jets will eventually attain sufficiently large turbulent Reynolds number in the self-preserving
field if measured at great downstream distance from the exit plane.

Comparing Figure 12 with Figure 10, the lateral profiles of the turbulence intensity became
congruent at x/h ≈ 10 for Reh ≥ 16 500. This corresponded to a turbulent local Reynolds num-
ber of Re〈u2

p〉1/2
,y0.5

(x) = 2 650 (Fig. 12). However, the congruency emerged at x/h ≈ 50 for Reh
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= 3000, where the corresponding turbulent local Reynolds number was Re〈u2
p〉1/2

,y0.5
(x) = 1000.

This provides overwhelming support that a relatively large value of turbulent local Reynolds number
is necessary for the self-preserving state to evolve. This requirement reinforces the view that the role
of viscosity diminishes when the mean and turbulent local Reynolds numbers are large enough to
allow the onset of the self-preserving state.

Figure 13 plots the streamwise evolution of the peak turbulence intensity,
〈
u2

c(x)
〉1/2

/Uc(x)
within a transverse profile at that axial distance. It is noted that both properties increase monotonically
from nearly zero to reach an absolute maximum value over the range 5 < x/h < 20 for Reh ≥ 7000.
This location, however, appears to be dependent on Reh. The substantially larger peaks for high-Re
jets are associated with the production of more coherent, large-scale eddy structures. As deduced
previously (Fig. 7), these eddies are generally smaller than those compared with low-Re jets. Further,
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the lower the Reh, the greater is the axial distance where the peak is realised, which accords with the
trends noted for the centerline turbulent kinetic energy (Fig. 9) and higher momentum thicknesses
(Fig. 5). For all measured jets, the magnitudes of

〈
u2

c(x)
〉1/2

/Uc(x) decay with increasing x/h as the
jet becomes self-preserving despite discernible differences among the different cases of Reh. For
example, at x/h = 100, the Reh = 16 500 registers turbulence intensity values approximately fourteen
times larger values than the case Reh = 1500 (Fig. 13(a)). Additionally, it is found that the peak
shear-layer turbulence intensity did not attain self-preservation within the measured range of x/h for
this jet.

Figure 14 presents the transverse profiles of the skewness and the flatness factors defined by
Su(x, y) = <u(x, y)3 > /( < u(x, y)2 > )3/2 and Fu(x, y) = <u(x, y)4 > /( < u(x, y)2 > )2 at 20 nozzle
widths downstream which is approximately the interaction zone. Both factors vary from the nearly
Gaussian values (Su ≈ 0, Fu ≈ 3) in the inner half of the boundary layer close to the jet centerline to
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across the jet at x/h = 20. The dashed (- - -) line shows the maximum skewness in the outer boundary layer.
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increasingly large values in the middle of the shear layers where they register local maximum values
(Su,max and Fu,max) for all tested cases. That the near Gaussian values are found on the jet centerline
shows that Reh does not influence the turbulent statistics at x/h = 20. However, the influence of Reh

becomes apparent away from the axis, where the profiles of Su and Fu are different for different
cases. This becomes more conspicuous near the boundary-layer edges, which, in ad hoc terms is
defined as the y-location where maximum skewness and flatness factors (e.g., Ref. 47) are detected
by the probe.

Based on this rather crude definition, the low-Re jet exhibits significantly higher value of Su

and Fu than the high-Re counterparts. Notably, the case Reh = 1500 produces larger peaks in
the boundary layer, with (Su,max, Fu,max) ≈ (4, 24) relative to (2, 12), respectively, for the case
Reh = 16 500. Similarly, the Reh = 1500 jet at the greatest width, at (yn ≡ y/y0.5) ≈ 3.5, while the Reh

= 16 500 jet measures only yn ≈ 1.9 which accords with greater spreading rate (Fig. 4) and higher
shear layer growth rate (Fig. 6) for the former. Overall, both the skewness and the flatness factors
indicate that the instantaneous velocity signals fluctuate with greater amplitude to characterize more
intermittent flows for low-Re jets, as discussed further in Sec. IV D.

B. Isotropic turbulence statistics

In Sec. IV A, the impact of the downstream propagation of large-scale, energy bearing coherent
eddies on the similarity behavior has been demonstrated. As these convect downstream, they cascade
into smaller sized eddies until the jet is fully inviscid when the turbulent properties essentially behave
in isotropic manner. In this situation, the net turbulent kinetic energy (Ek) acquired in the energy
production zone is dissipated at the smallest (known as Kolmogorov) scale of turbulence (e.g.,
Ref. 27). To provide some insights into the behavior of these small-scale statistics of jets with
various Reh, the trends in isotropic turbulence statistics are presented in the following.

Figures 15 and 16 show the streamwise distributions of the Kolmogorov microscales η(x) /h
and Taylor microscales λ(x) /h. These data were acquired by a digital filtering scheme designed
for resolving small-scale statistics in jet flows.41 The data within the presented range of x/h show
that the microscales obey similarity relationships of the form, η(x) ∼ x5/8 and λ(x) ∼ x3/4 in all
measured jets, which is in accordance with Eqs. (25) and (26). The experimental data showing η(x)
∼ x5/8 demonstrates that the dissipative-scale eddies (η) are about an order of magnitude smaller than
the inertial sub-range eddies (λ) for any given value of Reh. This also accords with Kolmogorov-
Oboukhov 1941 theory that the sub-range eddies (λ) are unaffected by the outer width scale (y0.5)
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of the jet and generally large compared to the inner, viscous-dissipation sub-scale eddies (η), e.g.,
Ref. 27.

The present data also conforms to both microscales enlarging with increasing x/h for all cases,
as expected. Thus the dissipative scales are all much smaller than those characterizing the energy of
the turbulent fluctuations, and their relative size decreases with increasing Reh. In spite of this, the
Kolmogorov scales of all jets increase with increasing energy containing scales for fixed values of the
Reynolds number. Perhaps of more interest, both microscales are found to be strictly Reh-dependent
as they scale uniquely with distinct values of their experimental constants, K1,ε and K2,ε. Generally,
these constants tend to decrease with increasing value of Reh.

Figure 17 plots the streamwise evolutions of the Taylor microscale-based local Reynolds number
Reλ(x) =< u2 >1/2 λ(x)/υ for jets measured between Reh = 1500 and 7000. Unlike the case of a
circular jet where Reλ(x) is almost constant,42 that for the present plane jet increases as x1/4. The
fourth-root scaling concurs with Mi et al.42 for their plane jet data too, measured at Reh = 9125, AR

50

100

200

2.0 2.5 3.0 3.5 4.0

Re
h
= 1 500

         3 500
         4 500
         7 000

Mi et al. [42]; 
Re

h
= 9125

x
norm

= [x / h]
1/4

R
e λ(x

) 
=

 <
u2 >

1/
2  λ

(x
) 

/ ν

FIG. 17. Centerline variation of the local Taylor microscale-based Reynolds number, Reλ(x) =< u2 >1/2 λ(x)/υ. The plane
jet data of Mi et al.42 is included.
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= Uc (x)/ [2π η (x)], (b) Eddy turnover Taylor frequency, finertial. Note: dashed line in (a) shows over-filtering for higher Reh

cases.

= 36, and r/h = 1.80. However, it is not surprising that the slope of the literature data contrasts that
from the present investigation. No doubt this is attributable to the underlying differences in initial
conditions of the jets of these investigations.16, 30, 31 Apparently, the present data reveals significant
disparities in the magnitude Reλ that accord with different Reh, with the general trend that the lower
the Reh, the smaller is the Taylor microscale-based local Reynolds number.

Figure 18(a) presents the streamwise evolution of the ratio of the sampling frequency fcut-off and
Kolmogorov frequency fk(x) = Uc(x)/(2πη(x)) for the cases Reh = 1500–7000. It is self-evident that
the present sampling frequency (fc = 9.2 kHz) resulted in under-resolution of fk(x) in the near field
of the higher Reynolds number cases, since fk > fc for x/h ≤ 20 for the cases Reh = 3000, x/h ≤ 30
for Reh = 4500 and x/h ≤ 50 for Reh = 7000. A closer observation shows that similar effect was
manifested in the data of Gutmark and Wygnanski47 which too had a poor frequency response for
adequate resolution of η. Hence their data has deviated from the x5/8 line (see Fig. 15). However, for
the present cases, fK was fully resolved for Reh = 1500 since fk < fc everywhere within the present
range of x/h. Figure 18(a) also embodies unambiguously the inversely varying relationship between
fk and x/h for the cases Reh ≥ 3000. Importantly, the eddy scale of jets measured at higher Reh
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exhibit greater frequencies of motion within the entire range of x/h, which perhaps indicates more
rapid diffusion of the small-scale eddies for these more inviscid jets.

Figure 18(b) presents the streamwise evolutions of the ratio of the sampling frequency fcut-off and
the mean eddy turnover frequency finertial = (ε/λ2)1/3 for Reh = 1500–7000. Opposite to the trends
noted for the frequency of Kolmogorov scales, the eddy motion denoted by Taylor microscales
exhibit smaller turnover frequencies for the low-Re-jets compared to their high-Re counterparts.
However, consistent with the frequency of Kolmogorov scales, the streamwise variation of finertial in
locally isotropic flow also accords to the inversely proportional relationship where the eddy turnover
frequency decreases with increasing x/h for all measured jets.

Figure 19 assesses the scaling of the Kolmogorov and Taylor microscales as a function of Reh.
Evidently, both scales exhibit inversely proportional relationships η ∼ Reh

−3//4 and λ ∼ Reh
−1/2,

respectively (Figs. 19(a) and 19(b)). Clearly, as Reh is decreased, the Taylor and Kolmogorov
scales are indeed larger at identical downstream locations. This is perhaps associated with a greater
fraction of the turbulent scales being moderated by the dominating viscous forces for low-Re jets,
thus implying higher dissipation rates. These were reported previously for plane jets10, 17, 30 and for
round jets by Bogey and Bailey.18

Figures 20 and 21 presents the lateral distributions of η, λ, and ε measured in the self-preserving
field at x/h = 20 for three Reh-cases. For each jet, the microscales and turbulent kinetic energy
dissipation rates are approximately invariant near the central axis of the jet, but then increase
with lateral distance although the dissipation term declines rapidly toward the outer edge of the
jet. Clearly, the actual magnitude of each micro-scale decreases with increasing Reh, as expected.
Reasonable agreement with measurements of Bradbury45 is also met although the notable deviations
from the present data are due to different measurement locations and initial conditions employed.17, 30

Furthermore, the present measurements over y-range 0 ≤ yn ≤ 1.5 appear to be over-filtered for the
case Reh = 7000, since fk is larger than fc in the inner boundary layer of this jet.

C. Explanation of flow structures by spectral analysis

The contrasting statistical properties depicted in the low and high Re-jets are further investigated
using the power spectrum plots, �Ek (k). The spectra are obtained by Fourier transformation of the
one-dimensional streamwise turbulent kinetic energy, Ek(x), where

∫ ∞
0 �Ek (k)dk = 〈u〉2 and the

wave number k ≡ 2π f/Uc(x).
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FIG. 20. The lateral distributions of (a) Kolmogorov scales (η), (b) Taylor microscales (λ) measured at x/h = 20.

Figure 22 presents the streamwise evolutions of �Ek (k) for Reh = 1500, 7000, and 16 500.
In each spectral plot, the turbulent kinetic energy production zone is exemplified by the dominant
peaks in �Ek (k). These peaks extend over the region 0–10h for Reh = 1500, 0–8h for Reh = 7000,
and 0–4h for Reh = 16 500. As is well-known, this near-field location corresponding to the potential
core region is primarily responsible for generating the Kelvin–Helmholtz eddy structures that are
primarily large-scale in nature. Propagating downstream, these eddies coalesce, grow in size and
pair-up while they counter-rotate on the axis of the centerline, as detected previously in plane jet
flows.10, 17 In present cases, the increasing axial range of the production zone with decreased Reh

signifies the dominance of more coherent, large-scale eddy structures in low Re-jets. This pattern also
mirrors the enhanced peaks in turbulent kinetic energy profiles, which actually transformed away
from the nozzle as Reh was decreased [see Fig. 9 and Refs. 5–8). The near-field motion of large-scale
eddy structures are deduced to elevate anisotropic disorders in low-Re jets, which are predominantly
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FIG. 22. Streamwise evolutions of turbulent kinetic energy spectra, �Ek (k) on Reh between x/h = 0 and 10. The dashed
lines show energy production zones and nth spectra have been transformed in coordinate-axis by a factor of 10n.

responsible for higher growth, larger entrainment, and greater mixing lengths as noted previously
(Figs. 4–6).

To check the spectral behavior in the interaction and self-similar zones, Figure 23 displays the
compensated power spectra k5/3ε−2/3�Ek (k) versus kh for Reh = 1500 and 16 500 over the down-
stream region, x/h = 20–100. The corresponding mean local Reynolds numbers at each downstream
location is also shown. For a fully-developed, locally isotropic jet measured at sufficiently high Reh,
the small-scale eddy structures propagate with a length scale proportional to the inverse of their wave
number and velocity scale, uk proportional to (ε/k)1/3. Based on this, dimensional analysis yields the
Kolmogorov’s law for the inertial sub-range �Ek (k) ≡ u2

k/k ∼ ε2/3k−5/3.7, 27, 42 This clearly points
out that the self-preservation of small-scale statistics is pertinent to the energy spectra satisfying
the Kolmogorov’s k−5/3 exponential form. Evidently, in the present cases, the ordinate span of the
spectra at any given x, where �Ek (k) ∼ k−5/3, is significantly larger for the high-Reh jet. For example,
at x/h = 100, the high-Re jet satisfies at over two decades of wave numbers exhibiting the −5/3
dependence, whereas only a decade of k-values are satisfied for the low-Re jet.

Indeed, the smaller span of the inertial sub-range in the spectra for the low-Re case is perhaps
due to greater influence of viscosity on the small-scale eddy structures. This presumably prohibits
the transition into fully-developed, homogeneous flows at axial distances < 100h, especially for
Reh ≤ 1500 where the −5/3 region does not eventuate. From the same standpoint, the relative
proportion of the turbulent energy per unit wave number contained in the small scale motions should
be less for the low-Re jet, whereas those contained in the large scales should be greater. Since no net
energy is produced in the far field, the larger equilibrium energy in the sub-range for high-Re must
be compensated by smaller fraction of turbulent energy available for viscous dissipation, as found
previously for plane jet flows, e.g., Refs. 10 and 17. This also concurs with the turbulent far-wake
data of Zhou et al.,43 where the energy dissipation was five fold greater for Re = 9750 relative to Re
= 2800.

An ostensible implication of the present findings is that the sub-range of the spectra, the local
Reynolds number at the designated location and the downstream location where the jet locks into
the self-preserving state are closely related (Figs. 11 and 22). It is easily observable that our spectral
plots mimic those of Uberoi and Freymuth44 and Gourlay et al.45 where similar effect of the local
Reynolds number on the inertial sub-range of turbulent wake flow was reported. In our case, the
sub-range with k−5/3 dependence is completely absent for Reh = 1500, until at least x/h ≈ 100 when
the local Reynolds number is sufficiently large (i.e., Rey0.5(x) ≈ 4660). By contrast, the jet with Reh
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FIG. 23. Streamwise evolutions of compensated spectra of the turbulent kinetic energy, k5/3ε−2/3�Ek (k) on Reh and Rey0.5

measured between x/h = 20 and 160. The width of the inertial sub-range where �Ek (k) ∼ k−5/3 for is characterized by the
flat region on the ordinate axis.

= 16 500 propagated only up to x/h ≈ 30 to develop the k−5/3 zone, which had actually acquired
Rey0.5(x) ≈ 18 000 (Fig. 8(a)), a value that appears to be well above the minimum threshold required
to converge into the self-preserving state. This justifies why the turbulent kinetic energy became
self-similar at x/h = 100 and 30 for jets measured at Reh = 1500 and 16 500, respectively (see
Fig. 9). It so appears that the plane jet evolves from the low to high Reynolds number similarity
state only when Rey0.5(x) is sufficiently large to facilitate the k−5/3 sub-range to emerge. Apparently,
the present results also conform to George23 theoretical deduction that the high Reynolds number
similarity applies only if there is an inertial sub-range in the spectrum so that the energy and scales
of motion are effectively inviscid. To our best knowledge, no prior experimental or numerical studies
have demonstrated this phenomenon for a plane jet previously although it does explain the evolution
of self-similar state closer to the nozzle for high-Re jets. Similar deduction was made by Johansson
et al.22 who reanalysed wake flow data to detect the disappearance of the sub-range when local
Reynolds number declined below a minimum threshold value.

D. Further analysis of flow structure

Next we assess the flow structure of jets with different Reh using the probability density
functions (PDF) of the fluctuating velocity (u) on the jet centerline. Figure 24 displays the PDFs
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FIG. 24. The probability density functions PDF of centerline velocity fluctuations uc(x). The Gaussian distribution PDF
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in the near- (a-f) and interaction-fields (g-h). To compare the shapes, the x axis is normalised by

〈u2〉1/2 such that the integral
+∞∫
−∞

p(un)dun = 1, which are shown with the Gaussian form p(un)

= 1/
√

2π exp
(−0.5 ln u2

n

)
. Between the downstream locations 0 and 3h, all PDFs resemble the

Gaussian distribution. This is primarily due to the amplitude of the fluctuating velocity being
relatively small within the potential core region of all measured jets. This also agrees qualitatively
with our previous measurements that the skewness and kurtosis factors were found to be ≈ 0 and
3, respectively, see Ref. 17, that also confirmed low velocity fluctuations within the potential core
region.

Downloaded 13 Aug 2013 to 192.43.227.18. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



015115-26 Deo, Nathan, and Mi Phys. Fluids 25, 015115 (2013)

Between x/h = 4 and 12, the PDFs exhibit significant departures from Gaussian, which appear
to be most pronounced for low-Re jets. The largest deviation found for Reh = 1500 indicates the
greatest skewness in the distribution of the instantaneous velocity signal as also confirmed by the
larger peaks of turbulent kinetic energy spectra (cf., Fig. 9).

For the case Reh = 1500, the PDFs in the near-field exhibit dual peaks which are especially
pronounced between x/h = 6 and 8 although they disappear by x/h = 10. The bimodal behavior
can be explained by revisiting our earlier study17 that demonstrated the near field of the low-Reh

jet was composed of both symmetric and anti-symmetric modes of large-scale structures. In this jet
both modes dominated the near-field flow in the initial flow region but the anti-symmetric mode
disappeared for x/h > 8. Thus it is deduced that the bimodal behavior of the present PDFs between
x/h = 4 and 8 is associated with the dual mode of large-scale structures present in the low-Re jet.
This, however, contrasted the case of the high-Reh jet where only the symmetric mode dominated
the entire near-field that in the present investigation is shown by the single peaks of the PDF.

Interestingly enough we note that the jet measured at the lowest Reh demonstrates consistently
negatively skewed PDF between x/h = 10 and 12 which appears to vanish by x/h = 14. The negatively
skewed instantaneous signal between 10 and 12 nozzle widths downstream depicts greater incursion
of the low-velocity ambient fluid that is drawn rapidly into the low-Re jet by Biot–Savart law. This
also accords the increased spurt in the turbulent kinetic energy noted previously (Fig. 9).

Figure 25(a) plots the intermittency factors, γ ≡< u4 > /(< u2 >)2
C L/ < u4 > (< u2 >)2 as

a function of normalised distance (yn = y/y0.5) at x/h = 20. γ , which in our case is the ratio
of the flatness factors along a given lateral distance (y) relative to its centerline (CL) value, has
been deduced indirectly following the work of Wygnanski and Fielder.46 The data show that the
magnitude of intermittency decreases outside the outer edge of the jet, in agreement with the direct
measurements of Gutmark and Wygnanski.47 Importantly, the magnitude of γ also depends on Reh.
It is deduced that a generally higher γ value for any given yn especially for the low Reh-jet typifies
a greater fraction of the jet that retains a turbulent state. This accords with Figure 10, where of the
lateral distribution of turbulence intensity is not self-preserving for Reh = 1500, at least within the
measured range of x/h, and is perhaps attributable to increased instabilities within the shear-layer
for this case.

The large-scale intermittency of the low-Re jet is also depicted in the auto-correlation function
(Ruu) of the fluctuating velocity (Fig. 25(b)). The rapid oscillations in the tail of Ruu about the x axis,
especially for the low-Re jet indicates greater instabilities in its shear layer, which aptly disappear
at x/h ≥ 20.

Since the spectral and autocorrelation plots (Figs. 22 and 25) are Fourier transform pairs (e.g.,
Ref. 48), the distinct peaks in power spectrum and the corresponding periodicity of Ruu at x/h = 5 for
the jet measured at Reh = 1500 confirms the dominant role of the large-scale, coherent vortices in the
near field. By contrast, the reduced height of the peaks in spectra and the absence of periodicity at
larger Reh concur with less coherent vortical structures. Taken together, the present results supports
a greater incursion of low-velocity ambient fluid for low-Re cases, where more coherent large-scale
eddies for the (initially) low Re-jet are prevalent. This is consistent with the larger peaks in the
turbulent kinetic energy distribution of jets measured at low Reh (Fig. 9).

Figure 26 compares the PDFs of the velocity fluctuation on the jet centerline with those close
to the edge of the jet measured at x/h = 20. Note that the edge is approximately the y-location of
where maximum skewness and flatness factors are found. All measured PDFs close to the edge
are characterized by significant deviations from the Gaussian, and are skewed to the left with the
elongated tails on right side of the distribution. There is some evidence that as Reh is increased, the
PDFs become narrower and somewhat less skewed. By contrast, all PDFs on the jet centre closely
align with the Gaussian, despite subtle differences between them due to experimental uncertainties.

V. FURTHER DISCUSSION

The present results have demonstrated that both the large and small-scale turbulence structure of
plane jets scale with Reh and the corresponding local Reynolds number. Statistical parameters such as
the turbulent kinetic energy spectra, probability distribution functions, and autocorrelations signify

Downloaded 13 Aug 2013 to 192.43.227.18. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



015115-27 Deo, Nathan, and Mi Phys. Fluids 25, 015115 (2013)

0

0.25

0.50

0.75

1.00

0 0.5 1.0 1.5 2.0 2.5

Re
h
= 3 000

         7 000
       10 000
       16 500

Gutmark & Wygnanski [47],
Re

h
= 30 000, x/h ≈ 100 

x/h = 20

y
n
= y/y

0.5

γ 
≡ 

<
u4 >

/(
<

u2 >
)2 C

L
/<

u4 >
/(

<
u2 >

)2 

-1.0

-0.5

0

0.5

1.0

0.00001 0.0001 0.001 0.01 0.1

     = 100
     = 20
     = 10
x/h = 5

 Re
h
= 1500

R
u,

u(τ
)

-0.5

0

0.5

1.0

0.00001 0.0001 0.001 0.01 0.1

Re
h
= 16500

τ (sec)

R
u,

u( τ
)

(a) 

(b) 

FIG. 25. (a) Lateral distribution of the intermittency factor, γ estimated indirectly from the flatness factor of the fluctuating
velocity at x/h = 20 compared with Gutmark and Wygnanski’s47 direct measurements. (b) Autocorrelation functions, Ruu on
the jet centerline for Reh = 1500 and 16 500.

the differences in underlying flow structures of jets with varying Reh. Support of this may also be
drawn from the flow visualizations of Namar49 and Dimotakis et al.,50 which found similar changes
in flow structures of rectangular and round jets measured at different Reynolds numbers. In their
research, as Reynolds number was increased, the jet became narrower and produced increasingly
disorganised and more three-dimensional eddy structures. These changes could be attributable to
the corresponding increases in the overall enstrophy of the large-scale flow29 as also demonstrated
by the present results. Interestingly, the flow visualizations of Namar49 found that the high Re-jet
flow were composed of large-scale eddies superimposed on the small-scale eddies. Similarly, the
present spectral plots indicated that increasing the Reh causes a redistribution of the turbulent kinetic
energy across a broader range of eddy structures, with comparatively smaller sizes. The change in
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FIG. 26. Comparing the probability density function (PDF) of the fluctuating velocity (u) at x/h = 20 between the jet
centerline (blue dash line) and edge (red full line). The y axis is normalised by p(un) at un = 0 and Gaussian PDF is
p(un) = 1/

√
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)
.

the relative role of the large and small scale eddies for different Reh concurs with unique self-similar
states of the present jets. Furthermore, the entrainment and shear-layer growth rates decreased with
Reh, thus suggesting that the role of smaller-scale eddies become less important (Figs. 5 and 6).

Based on previous literature,18, 53 the downstream development of large-scale eddy structures
accedes with the boundary layer characteristics. As noted in the present work, the propagated jets
with different Reh possessed unique momentum thicknesses (Fig. 5), which also corresponded to
unique growth rate of large-scale eddy structures (Fig. 7). It is deduced that a wider shear layer for
the low Reh jet promotes larger eddy sizes than those found for high-Re cases. This explains the
higher entrainment and growth rate of shear layers, which in turn facilitates greater mixing lengths
(Fig. 6). Indeed, the enhancement of spreading rates for low-Re jets are correlated with greater
mixing rates that are initiated by the periodic production, advection, and interaction of large-scale
eddies.51

In the present investigation, the low Reh exhibited greater jet spreading rates, which led to the
correspondingly large eddy viscosity (υT) (Fig. 27) and more coherent eddy structures as deduced
previously. Thus a relatively smaller value of υT and the correspondingly larger turbulent Reynolds
number (ReT = Ubh /υT) for low-Re jets further supports the reduced role of viscous forces governing
the high-Re jets. Our analysis thus support the ansatz that, a high Reynolds number is a necessary
criterion for self-preservation, so that the leading order viscous terms vanish at a critical downstream
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FIG. 27. The Reh-dependence of turbulent viscosity (υT) and turbulent Reynolds number (ReT = Ub h /υT).

location beyond which any jet will lock itself into self-preservation.23 Obviously, for the plane jet
case, this is only possible when the local Reynolds number at that downstream location is sufficiently
high due to the square root increase, and so indeed, the jet is nominally inviscid to allow the onset
of self-preservation.

VI. CONCLUSIONS

This present study has investigated analytically and experimentally the effects of jet-exit and
local Reynolds number on self-preservation of plane jets. The mass flow rates and momentum
thicknesses are found to increase linearly with axial distance and the rate of this increase decreases
asymptotically with Reh, in accordance with the principles of preservation. The greater entrainment
of the ambient fluid for low-Re jets coincides with higher magnitude and axial extent of the near-field
peak in turbulent kinetic energy spectra, some-times termed the “production zone”. For example
this overshoot spanned a range of 10 x/h for the case Reh = 1500, three times larger than the 4
x/h for the case Reh = 16 500. The integral length scale, which characterises the size of large-scale
coherent eddies deduced from the autocorrelation functions, was found to increase linearly with x/h
for all cases, as expected. However, the growth rate of large-scale eddies was found to decrease
asymptotically with increasing Reh. This is consistent with a decreasing dominance of larger eddies
due to reduced role of viscosity for jets measured at high Reh.

The mean local Reynolds number measured on the centerline and the turbulent local Reynolds
number measured in the jet’s shear layers are found to increase proportionally with x1/2. This
scaling applies to both the turbulent velocity field and spectra of turbulent kinetic energy in the
self-preserving jet. Consequently, the significance of viscous terms in the momentum equations of
high-Re jets become negligible closer to the nozzle than for low-Re counterparts. This concurs with
the increasing importance of the local Reynolds number, which grows non-linearly with downstream
distance for the case of a plane jet. Consequently, the streamwise evolution of the one-dimensional
turbulent kinetic energy became self-similar at a shorter downstream distance for high Reh cases.

The one-dimensional compensated turbulent kinetic energy spectra reveals the −5/3 Kol-
mogorov law in the spectra of jets at sufficiently great distance from the exit, but the span of
this range increased with Reh. This again highlighted the relevance of the local Reynolds number in
achieving fully developed turbulence. Accordingly, the widener inertial sub-range for increased Reh

should correlate with reduced range of energy dissipation within the energy spectra, and thus lower
dissipation rates reported previously by Suresh et al.10 and Deo et al.17 for plane jet flows. This also
accords with similarity arguments that the dissipation (ε) of turbulent kinetic energy should obey the
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form ε ∼ Reh
3 for self-preservation of a plane jet flow so that in high-Re jets, the cubical exponent

means substantially greater dissipation and thus narrower range of wave numbers in dissipation re-
gion of the spectra. This happens as the acquisition of relatively large local Reynolds number, which
subsequently dampens the role of viscosity, promotes the larger inertial sub-range and dissipation
scales resolved for high-Re jets.

Based on present measurements, the relative growth of small-scale eddy structures (Kol-
mogorov and Taylor microscales) are found to increase linearly with downstream distance in the
self-preserving field, albeit each being strictly dependent on Reh. That is, an increase in Reh reduces
the size of small-scale eddy structures, as expected. Also importantly, the Taylor Reynolds number
(Reλ) increases with x as Reλ ∼ x1/4 although jets measured at higher Reh acquire larger values of
Reλ. Hence, discrepancies seen in the large and the small-scale statistics appear to be associated with
the differences in gross initial conditions manifested by the source (or the jet-exit) Reynolds number
Reh, which governs the downstream evolution of the various forms of the local Reynolds number
used to explain the transition to self-preservation of a plane jet. That is, the higher the Reh, the faster
is the growth of local mean, local turbulent or local Taylor Reynolds number. Thus, it is conjectured
that the magnitude of Reh is perhaps the most important parameter in predicting the transition to
self-preservation, as also exemplified in autocorrelation and spectral plots that reflected discernable
flow structures.
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