# Osteometric Variation of the Human Spine in Central Europe by 

## Historic Time Period and Its Microevolutionary Implications

Dr. med. Frank Jakobus Rühli
Biological Anthropology and Comparative Anatomy Research Unit
Department of Anatomical Sciences
The University of Adelaide - Australia

Supervisor:
Prof. Dr. M. Henneberg
Department of Anatomical Sciences, The University of Adelaide - Australia

Co-Supervisor:
Prof. Dr. Dr. M. Schultz
Zentrum Anatomie, Georg-August-Universität Göttingen - Deutschland

## Table of Contents

Tables ..... 5
Figures ..... 7
Abstract ..... 9
Statement ..... 11
Acknowledgments ..... 12
Introduction ..... 14
Anatomical aspects of the human spine ..... 14
Sexual dimorphism and age-related adaptations of the human spine ..... 27
Biomechanics and spinal morphology ..... 31
Osteometric findings of earlier spinal studies ..... 34
Impact of osteometric research of the human spine ..... 51
Spinal pathologies - especially lower back pain ..... 59
Clinical and dynamic assessment of the spinal neural pathways ..... 68
Historical perspectives of spinal disorders and morphometry ..... 78
The non-human spine ..... 83
Major evolution of the human spine and its physiological adaptations ..... 87
Anatomical variations of the spine ..... 92
Microevolutionary and secular trends in human anatomy ..... 97
Aim of the study ..... 105
Hypothesis to be tested ..... 105
Material ..... 106
Supplementary information on the samples ..... 112
F. J. Rühli - Osteometric Variation of the Human Spine ..... 2
Methods ..... 119
Measurements ..... 119
Technical equipment ..... 128
Estimation of intra- and inter-observer error ..... 129
Examination permission ..... 135
Data analysis ..... 135
Critical sample size ..... 136
Modern samples ..... 137
Results ..... 139
Sex and age composition of the samples ..... 139
Descriptive statistics of the measurements ..... 139
Osteometric data of the whole sample ..... 142
Sexual dimorphism ..... 150
Side differences of spinal measurements ..... 151
Inter-correlations of all measurements ..... 151
Correlation of examined variables with individual age ..... 152
Microevolutionary trends since the Late Pleistocene ..... 158
Secular changes of the intervertebral foramen in the modern samples ..... 163
Analysis of variance: variable means with respect to time before present ..... 166
Analysis of variance: variable standard deviations with respect to time before present 172
Principal components analysis of the spinal variables ..... 176
Discussion ..... 178
Osteometric knowledge of historic spines ..... 178
Study limitations ..... 179
Comparative analysis of the results ..... 187
Variation of spinal morphometry due to sex and age ..... 225
Inter-populational variations of spinal morphometry ..... 230
Relation of geography and society to spinal morphometry ..... 230
Influence of stature and body size on spinal morphometry ..... 234
Microevolutionary trends in body size and robusticity ..... 236
Alterations of brain and skull morphometry as models for the spinal microevolution ..... 256
Microevolution and secular trends of the spine and their possible etiologies ..... 258
Importance and functional implications of osteometric spinal data ..... 273
Osteometric dimensions and their possible clinical value: the intervertebral foramen ..... 275
Conclusions ..... 278
References ..... 280
Appendix ..... 334

## Tables

Table 1: Osteometric studies of recent and historic spine samples ..... 53
Table 2: Morphological studies of spines in living people and cadavers ..... 55
Table 3: Individuals / samples included in the present study ..... 108
Table 4: Measurements used ..... 123
Table 5: Inter-observer error of selected vertebral and long bone dimensions ..... 134
Table 6: Composition of modern samples St. Johann and "Geneva", with individually known sex and age ..... 138
Table 7: Mean, standard deviation (SD) and number of individuals measured (N) ofall variables for whole sample and modern subgroups144
Table 8: Pearson correlation coefficients (r) of caudal intervertebral foramen width with birth year ..... 164
Table 9: Pearson correlation coefficients (r) of intervertebral foramen height with birth year ..... 165
Table 10: Inter-correlation of anterior vertebral body height at various levels ..... 186
Table 11: Vertebral body height ( mm ) of various samples ..... 188
Table 12: Vertebral body diameters (mm) of various samples ..... 196
Table 13: Maximum pedicle height ( mm ) of various samples ..... 202
Table 14: Neural canal sizes (mm) of various samples ..... 207
Table 15: Intervertebral foramen width (mm) of various samples ..... 215
Table 16: Correlation coefficient between individual stature and foramen magnum breadth ..... 217
Table 17: Foramen magnum dimensions ( mm ) of various samples ..... 218
Table 18: Length of spinous process as a percentage of the sagittal diameter of the
vertebral body ..... 221
Table 19: Transverse process width (mm) of various samples ..... 222
Table 20: Maximum humeral length (mm) of various samples ..... 239
Table 21: Femur length (mm) and femur head breadth (mm) of various samples ..... 240
Table 22: Femur mid-shaft circumference (mm) of various European samples ..... 241
Table 23: Bi-iliac breadth (mm) of various European samples ..... 242
Table 24: Estimated statures ( cm ) of various European samples ..... 243
Figure 1: Anatomy of the intervertebral foramen ..... 19
Figure 2: CT based 3-D-surface reconstructions of thoracic and lumbar spines of selected ape cadavers ..... 85
Figure 3: Major samples examined ..... 110
Figure 4: Historic age groups (time groups) represented in the whole sample ..... 110
Figure 5: Major time groups represented in the whole sample ..... 111
Figure 6: Age groups distribution in the whole sample ..... 111
Figure 7: Map of Central-Western Europe with sample origins ..... 118
Figure 8: Lateral views of measurement definitions of the intervertebral foramen ..... 124
Figure 9: Cranial views of osteometric measurement definitions of the intervertebralforamen .................................................................................................... 126Figure 10: Technical error of measurement for selected spinal dimensions byexperienced and inexperienced observers133
Figure 11: Sagittal diameter of L1 vertebral body in females showing mostly a normaldistribution140
Figure 12: Transverse process width of L5 in females showing a non-normal distribution140
Figure 13: Transverse spinal canal diameters at L1 in males showing mostly a normal distribution141
Figure 14: Spinous process lengths at C3 in males showing a non-normal distribution 141
Figure 15: Variables by vertebral levels with mean for males and females and maximumone standard deviation range .................................................................... 145
Figure 16: Selected variables with significant change with known individual age inmodern samples ....................................................................................... 155
Figure 17: Selected variables with significant microevolutionary trends in males ..... 159
Figure 18: Selected variables with significant microevolutionary trends in females ..... 161
Figure 19: Significant and borderline alterations of mean values between Neolithic /
Bronze Age and modern samples ..... 170
Figure 20: Significant and borderline alterations of standard deviations values between Neolithic / Bronze Age and modern samples ..... 174
Figure 21: Principal components 1 and 2 of males and females in modern samples ..... 177
Figure 22: Mean humerus length of various historic and modern samples ..... 246
Figure 23: Mean femur length of various historic and modern samples ..... 247
Figure 24: Estimated male stature of various historic and modern samples ..... 248
Figure 25: Estimated female stature of various historic and modern samples ..... 249
Figure 26: Means of measured long bones by time periods in the present study ..... 250
Figure 27: Secular trends of male and female spinal dimensions ..... 262
Figure 28: Microevolutionary trends of selected vertebral measurements ..... 263
Figure 29: Selected variables in males with significant alterations with time before present and independent of maximum femur length ..... 264
Figure 30: Selected variables in females with significant alterations with time before present and independent of maximum femur length ..... 265


#### Abstract

For most parts of the human body, the morphometry and its variation with regard to microevolutionary and secular trends, sexual dimorphism and individual aging are well known. Surprisingly, studies focusing on the vertebral column have so far primarily used either a macroevolutionary or a clinical focus. The aim of this study is to address the osteometry and variation of the human spine from a special perspective, possible microevolutionary alterations.

A total of 348 human skeletons, dating from 28,000 B.C. to the mid $20^{\text {th }}$ century A.D., from 24 sites mostly in Switzerland and Southern Germany, and without macroscopic pathology, were measured with a caliper by a single observer. These measurements at vertebral levels cervical 3 and 7, thoracic 1, 6 and 10, and lumbar 1 and 5 were taken: ventral and dorsal vertebral body height, sagittal and transverse vertebral body and spinal canal diameters, spinous and transverse process length, pedicle height and intervertebral foramen widths; as well as the diameters of the foramen magnum, humerus and femur length and circumference, femur head breadth and bi-iliac widths.

With the exception of most of the bony outlines of the neural pathways, males show larger osteometric dimensions than females. No side difference of bilaterally measured variables was found. Variables of neighbouring vertebrae correlate to a higher extent than more distantly located variables; similar measurements at different vertebral levels correlate generally better than non-related measurements. With greater individual age, especially in males, the diameters of the vertebral body and pedicle height increase. A positive microevolutionary trend, with both increasing mean values and standard deviations, could be found; this trend was independent of stature for selected measures.


The samples show a microevolutionary increase in most of the spinal variables. Since both, mean values and standard deviations, increased, one may explain this higher intra-group variability to be a result of relaxed natural selection. Various environmental or genetic factors could explain the short-term alteration of the spinal osteometry. Furthermore, the relative smaller size and decrease with age of the bony outline of the neural pathways in males, could explain their higher vulnerability to modern lower back pathologies.

## Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Dr. med. Frank J. Rühli
Adelaide, 9. 6. 2003

## Acknowledgments

"May those deceased individuals, whose sleep was disturbed driven by scientific curiosity, rest forever peacefully!"

I would like to express my deepest gratitude to my beloved parents for their unrestricted support. This work is dedicated to them.

Furthermore, I would like to cordially thank

- Prof M. Henneberg, Department of Anatomical Sciences, The University of Adelaide, for being a superb supervisor, acting as a scientific role model and, together with his wife, Dr R. Henneberg, facilitating and enriching my stay in Adelaide
- Prof M. Schultz, Department of Anatomy, Georg-August-University Göttingen, for being a helpful co-supervisor and providing generous access to skeletal samples
- Prof B. Rüttimann, Medizinhistorisches Institut und Museum, Universität Zürich, for support by employing me at his institution during part of the data collection
- Prof H. de Lumley and Dr E. Herrscher, Institut de Paléontologie Humaine, Paris; Prof M. Teschler-Nicola and Dr K. Wiltschke-Schrotta, Abteilung Archäologische Biologie und Anthropologie, Naturhistorisches Museum, Wien; Dr B. Kaufmann, Anthropologisches Forschungsinstitut, Aesch; Prof A. Langaney and Dr P. Mennecier, Laboratoire d'Anthropologie biologique, Musée de l'Homme, Paris; Prof A. Gallay and Dr C. Kramar, Département d'Anthropologie, Université de Genève; Prof G. Grupe, Institut für Anthropologie und Humangenetik, Universität München and Dr P. Schröter, Staatssammlung für Anthropologie und Paläoanatomie, München; Kantonsmuseum Basel-Land, Liestal; Prof R. D. Martin (now at Academic Affairs,

Field Museum, Chicago) and Ms E. Langenegger, Anthropologisches Institut und Museum, Universität Zürich; Ms L. Meyer, Archäologische Bodenforschung BaselStadt, Basel and dipl. nat. M. Lörcher, Dr F. Wiedenmeyer and Dr G. Hotz, Abteilung Anthropologie, Naturhistorisches Museum, Basel; Dr J. Tauber, Kantonsarchäologie, Kantonsmuseum Basel-Land, Liestal; Prof D. Ramseyer and lic. phil. F.-X. Chauvière, Institut de Préhistoire, Université de Neuchâtel and Latènium, Hauterive, for their hospitable help and providing access to the collections and their staff for technical help - Prof E. Trinkaus, Department of Anthropology, Washington University, St. Louis; Prof T. W. Holliday, Department of Anthropology, Tulane University, New Orleans; Prof N. Tatarek, Department of Sociology and Anthropology, Ohio University, Athens and Mr B. M. Auerbach, Centre for Functional Anatomy and Evolution, John Hopkins University School of Medicine, Baltimore for providing me with comparative measures, additional collection data or literature references

- T. Morgenstern and other members of the Department of Anatomical Sciences, The University of Adelaide, for technical support
- the University of Adelaide for awarding me an "International Postgraduate Research Scholarship" to financially allow this study
- the staff of "Dr. Jones and Partners", Adelaide, for performing the CT scans of the great apes
- the $12^{\text {th }}$-Year-students involved in the "Commonwealth Scientific and Industrial Research Organisation" Student Research Scheme; Adelaide, for their participation in the project on reliability of osteometric measurements
- and last but not least my girlfriend Ms C. F. Gassiot and my siblings Dr M. B.MettlerRühli and $\operatorname{Dr}$ M. E. Rühli for their permanent morale encouragement!


## Introduction

## Anatomical aspects of the human spine

The spine is a crucial and individually different part of the human axial skeleton. As Bohart (1929, p. 698) mentioned: "...an individual's spinal column is as characteristic of that individual as his face...". Similarly, Ravenel (1877) already mentioned the high degree of inter-individual variability of the human spinal dimensions.

The anatomical structure of the human spine has been studied on a macroscopic and microscopic level for many centuries. To be able to distinguish between the occurrence of an abnormality and an anatomical variation within the human vertebral column, one has essentially to conduct a precise assessment of the normal structure and its size. This assessment can be done by various approaches, either by using animal models (Iwamoto et al., 1995), in clinical studies involving asymptomatic and / or symptomatic patients (Horner, 1854; Blumensaat and Clasing, 1932; Junghanns, 1933; Elsberg and Dyke, 1934; Wolf et al., 1956; Epstein et al., 1962; Burrows, 1963; Hurxthal, 1968; Katz et al., 1975; Ramani, 1976; Porter et al., 1978a; Porter et al., 1978b; MacGibbon and Farfan, 1979; Larsen and Smith, 1980a; Larsen and Smith, 1980b; Porter et al., 1980; Stockdale and Finlay, 1980; Ullrich et al., 1980; Ogino et al., 1983; Weisz and Lee, 1983; Drinkall et al., 1984; Kikuchi et al., 1984; Macdonald et al., 1984; Nissan and Gilad, 1984; Bolender et al., 1985; van Schaik et al., 1985; Gilad and Nissan, 1986; Nissan and Gilad, 1986; Gallagher et al., 1988; Hedlund and Gallagher, 1988; Minne et al., 1988; Davies et al., 1989; Black et al., 1991; Hermann et al., 1993; Frobin et al., 1997; Humphreys et al., 1998; Wildermuth et al., 1998; Schmid et al., 1999; Harrington et al., 2001), by using cadaver material (Horner, 1854; Ravenel, 1877; Jacobi, 1927;

Larmon, 1944; Magnuson, 1944; Dommisse, 1974; Dommisse, 1975; Veleanu, 1975; Crock, 1981; Hasue et al., 1983; Bose and Balasubramaniam, 1984; Kikuchi et al., 1984; Rauschning, 1987; Stephens et al., 1991; Yoo et al., 1992; Hasegawa et al., 1995; Ebraheim et al., 1996; Nowicki et al., 1996; Lu et al., 2000; Fujiwara et al., 2001; Cinotti et al., 2002) or by analysing macerated bone specimens (Anderson, 1883; Thomson, 1913; Huizinga et al., 1952; Epstein et al., 1962; Epstein et al., 1964; Dommisse, 1975; Veleanu, 1975; Eisenstein, 1977; Kikuchi et al., 1977; Eisenstein, 1980; Postacchini et al., 1983; Berry et al., 1987; Scoles et al., 1988; Lee et al., 1995; Ebraheim et al., 1996; Cinotti et al., 2002).

The measurement of the human vertebral column has been so far defined for radiological (Elsberg and Dyke, 1934; Wolf et al., 1956; Burrows, 1963; Hurxthal, 1968; Jones and Thomson, 1968; Vital et al., 1983; Nissan and Gilad, 1984; Bolender et al., 1985; van Schaik et al., 1985; Gilad and Nissan, 1986; Nissan and Gilad, 1986; Krag et al., 1988; Marchesi et al., 1988; Olsewski et al., 1990; Stephens et al., 1991; Vaccaro et al., 1995; Kothe et al., 1996; Karaikovic et al., 1997; Schmid et al., 1999; Harrington et al., 2001; Kandziora et al., 2001) or osteometric studies (Horner, 1854; Aeby, 1879; Anderson, 1883; Rosenberg, 1899; Wetzel, 1910; Hasebe, 1913; Thomson, 1913; Cyriax, 1920; Stefko, 1926; Jacobi, 1927; Martin, 1928; Huizinga et al., 1952; Veleanu, 1972; Veleanu, 1975; Saillant, 1976; Kikuchi et al., 1977; Putz, 1981; Postacchini et al., 1983; Larsen, 1985; Cotterill et al., 1986; Berry et al., 1987; Marchesi et al., 1988; Scoles et al., 1988; Olsewski et al., 1990; Gepstein et al., 1991; Panjabi et al., 1991a; Panjabi et al., 1991b; Panjabi et al., 1992; Hou et al., 1993; Shapiro, 1993; Shapiro, 1995; Tominaga et al., 1995; Vaccaro et al., 1995; Xu et al., 1995; Karaikovic et al., 1997; Kandziora et al., 2001; Cinotti et al., 2002).

The normal human spine consists, besides the sacrum and the coccyx, of 24 vertebrae: seven cervical (abbreviated: C1-C7), twelve thoracic (Th1 - Th12) and five lumbar ones (L1 - L5). The vertebrae enclose the spinal cord, which usually ends between L1 and L2 (McCotter, 1916).

Whereas the major function of the vertebral bodies is to carry the body weight and serve as an axis for body mechanics, with the intervertebral discs acting as buffers, the main purpose of the vertebral arch, the pedicles and the laminae, is to protect the spinal cord and to link with the transverse and spinous processes, which serve as the attachment points of various supportive back muscles. The spinous processes also limit, together with the ligamenta flava, extension movements at least of the human thoracic spine (White and Hirsch, 1971).

The spinal cord consists of the grey matter, the nerve cell bodies, and the white matter, containing the nerve fibres. Nerve roots exit from the spinal cord on each vertebral level and provide sensory and motor innervation to the periphery. The white matter includes the dorsal columns, linked with sensory abilities, and the latero-ventral columns, which represent the motor innervation.

The neural canal contains the spinal cord and its nerve roots, the cerebrospinal fluid, the dural sac, extradural fat, ligaments and, just behind the vertebral bodies, a venous plexus. Furthermore, a menigeal recurrent nerve providing nociception to the ligaments, the spine, the dura and the vertebrae can be found in this area. The dural sac extends further caudally and ends mostly on sacral (S) level 1 or 2 (Salamon et al., 1966).

The particular spinal neural situation was reviewed earlier (Rydevik et al., 1984; Group and Stanton-Hicks, 1991) as well as the spinal ontogeny and adult anatomy (Donaldson and Davis, 1903) and its aging related adaptation (Bailey, 1953). Larsen
(1985) already discussed widely the specific anatomical interaction of the lumbar spinal nerves and the posterior surface of the vertebrae. He even mentions the fact that the postero-lateral vertebral body parts develop from the same ossification centre, as do the spinal neural arches.

The spinal cord is surrounded among others by its meninges and peridural fat. Between the spinal cord and the osseous and ligamentous borders of the spinal canal, a free space, so called "spinal canal reserve capacity" (Weisz and Lee, 1983), is located, which allows the spinal cord to move freely and independently from body movements.

The anatomy of the intervertebral foramen in relation to its surrounding osseous and soft tissue structures has already been widely addressed (Swanberg, 1915; Larmon, 1944; Magnuson, 1944; Epstein et al., 1964; Veleanu, 1975; Crock, 1981; KirkaldyWillis et al., 1982; Hasue et al., 1983; Vital et al., 1983; Bose and Balasubramaniam, 1984; Kikuchi et al., 1984; Vanderlinden, 1984; Rauschning, 1987; Hoyland et al., 1989; Mayoux-Benhamou et al., 1989; Stephens et al., 1991; Hasegawa et al., 1995; Ebraheim et al., 1996). Rauschning (1987) describes the outline of the lumbar root canal as being of an inverted teardrop form with an oval shaped intervertebral foramen at its caudal end. Hasue et al. (1983) characterize the normal form of the lumbar intervertebral foramen as being oval or almost triangular at least in the cadaveric spine. Bose and Balasubramaniam (1984) call the intervertebral foramen the "external ring" of the nerve root canal with oval size for the two lowest lumbar levels and more circular shape for S1. Lee et al. (1988) divide the lateral section of the lumbar spinal canal into three major parts: The entrance zone containing the nerve root and the dura mater; the mid-zone which consists of the dorsal root ganglion, which is usually located in the supero-lateral area and often plays a significant role in lower back pain symptoms (Vanderlinden, 1984; Weinstein, 1986;

Hasue et al., 1989), and the ventral motor nerve root surrounded by fibrous extensions of the dura mater and, finally, the exit zone with the peripheral nerve and its perineurium cover. Vital et al. (1983) divide the lumbar radicular canal also into three morphologically different sections, which are the retrodiscal space, the parapedicular space or lateral recess and, the intervertebral foramen. The major factors affecting the intervertebral foramen size are e.g., degenerative changes of the bony borders, increased spinal mobility, disc degeneration, subluxation of the facet joints or bulging of the ligamentum flavum. The intervertebral foramen, the exit zone according to the categorization by Lee et al. (1988), contains beside the spinal nerve, which is mostly located in its inferior section, only fat and blood vessels in the upper section of the foramen (Swanberg, 1915).

Surprisingly, most of the intervertebral foramen seems to be filled out by fat tissue, which acts, due to its semi-liquid consistence in living people, as a natural buffer for any physical stress operating on this anatomical region and, in particular, the exiting nerve roots (Swanberg, 1915). According to Swanberg (1915), who examined the microscopic structure of the intervertebral foramen, the neural tissues in the intervertebral foramen also show a lack of major lymphatic vessels. Hoyland et al. (1989) investigated the normal and clinically abnormal microscopic structure of the intervertebral foramen and describe its main content similar to previous reports. In a normal intervertebral foramen, the fibrous tissue occupies less than $28 \%$, the neural tissue less than $35 \%$ and a lot of vessels of diverse sizes were found (Hoyland et al., 1989). The foramen, according to them, forms an outline of an upside-down pear. Some of the earlier described outlines of the intervertebral foramen could be found in Figure 1.


Figure 1: Anatomy of the intervertebral foramen (figures unchanged or slightly modified from original references)
A) Intervertebral foramen of the cervical spine (Veleanu, 1975); 1: spinal ganglion, 2: anterior root of the spinal nerve, 3: anterior ramus of the spinal nerve, 4: posterior ramus of the spinal nerve, 5: vertebral artery, 6: vertebral periarterial venous sinus, 7 : cervical epidural venous sinus, 8: dura mater, 9: spinal cord, 10: unciform process, 11: upper articular process
B) Bony and cartilage outline of the intervertebral foramen (Swanberg, 1915); A: inferior articular process, $B$ : root of superior vertebral arch, $C$ : vertebral body, $D$ : intervertebral fibro-cartilage, $E$ : head of rib, F: root of inferior vertebral arch, G: superior articular process
C) Intervertebral foramen shape (Stephens et al., 1991); P: pedicle of the vertebral arch, VB: vertebral bodies above and below, D: intervertebral disc, LF: ligamentum flavum, CAP: capsule of zygoapophysial joint, LAF / SAF: inferior and superior articular facets

A precise knowledge of the anatomical peculiarities of the human vertebral column is crucial to understand not only its special purpose and to help to evaluate its specific evolutionary background, but also to understand some particular clinical problems.

The clinical significance of the particular anatomy of the lower human spinal column has already been discussed in detail by Magnuson (1944). Crock (1981) described the anatomy and its linked pathology of the lumbar spinal nerve root canal, which was also reviewed by Rydevik et al. (1984). Crock (1981) emphasizes the importance of the "spinal nerve root canal concept" especially for the lowest lumbar region, rather than the use of the term "lateral recess" which, according to him, is just true and useful for a minor part of the spinal nerve pathway. Furthermore, Bose and Balasubramaniam (1984) discuss the particular anatomy of the lumbar nerve roots canals. They introduce the term "external ring" for the exit at the intervertebral foramen. They also provide, besides detailed anatomical descriptions, measurements of the nerve root canal lengths. Veleanu (1972; 1975) addressed the particular anatomy of the cervical nerve root grove and the unco-transversal region. For the cervical nerve groove, he differentiates two parts, the initial radicular part and the terminal groove of the anterior spinal nerve ramus.

The particular situation of the lumbo-sacral dural sac and the linked nerve roots has been discussed widely by Salamon et al. (1966) and the anatomy of the lumbar nerve root canals has been highlighted by Bose and Balasubramaniam (1984). Nerve roots in the spinal column have no perineurium, weakening them in strength in comparison to other peripheral nerves (Sunderland and Bradley, 1961) and implying a higher susceptibility to compression. Nevertheless, Hasue et al. (1983) and Kikuchi et al. (1984) mention an epiradicular membranous layer around the exiting nerve root and Hoyland et
al. (1989) describe the dura mater covering the nerve roots at the entry of the intervertebral foramen. Nerve roots fill out approximately $20-50 \%$ of the intervertebral foramen dimension and lie anterior to the dorsal root ganglion, which is also a part of the lateral intervertebral foramen and consists of the cell bodies of the sensory neurons (Swanberg, 1915; Bornstein and Peterson, 1966; Panjabi et al., 1983; Vital et al., 1983; Bose and Balasubramaniam, 1984; Vanderlinden, 1984; Hoyland et al., 1989; Hasegawa et al., 1995). Magnuson (1944) states that the nerve ganglion is just slightly smaller than the intervertebral foramen, both apparently measuring 7 mm in average at L 4 and L5. The exiting spinal nerve roots pass just below the pedicle of the upper vertebral level, in the upper part of the intervertebral foramen (Kirkaldy-Willis et al., 1982; Rauschning, 1987). Larsen (1985) highlights the fact that the lumbar nerve roots are even more flexible than the more cranial ones due to their longer intraspinal segments, which may have an impact on the infero-lateral posterior vertebral surface.

All these facts have clinical relevance, as discussed later. This is particularly true for example for the interaction between the osseous- and non-osseous parts of the intervertebral foramen and its corresponding nerve roots, which according to MayouxBenhamou et al. (1989) are key factors in such clinical situations.

Another osteometric landmark of the neural spinal canal is the foramen magnum, located at the skull base. Schaefer (1999) found e.g., that the distance of the foramen magnum from the bi-carotid chord could be used to differentiate human from non-human e.g., chimpanzee, crania. Nakashima (1986) compared types of size of the foramen magnum in male middle Kyushuites with that of male Germans and postulates a possible change of type during individual growth. Nakashima (1986) found a variance in length but not in breadth of the foramen magnum among these groups. Martin (1928) stated that
there is a high individual variability in foramen magnum dimensions. The main diameters of the foramen magnum have already proven their possible predictor qualities for body mass, not only in humans but also in other hominids (Aiello and Wood, 1994). Furthermore, foramen magnum size does not correlate well with spinal cord size in primates but with body weight (MacLarnon, 1996a).

The osteometry of the major spinal regions has been widely covered in the studies by Panjabi et al. (1991a; 1991b; 1992). Based on their morphometric research they declare the following major spinal zones to be of transitional nature: $\mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 6 / \mathrm{C} 7-$ Th1, Th1 - Th4, Th10 - Th12, L1 - L3', L3 - L5. Furthermore, Putz (1981) investigated and reviewed the major aspect of the spinal anatomy, its ontogenetic development and the functional anatomy with special focus on the spinal joints.

The ontogeny of the human spine has already been addressed by Aeby (1879). He found e.g., that adults have a relatively longer lumbar spine but shorter cervical spine, with the thoracic spine being relatively similar to its size in childhood. According to Aeby (1879), the spinal canal dimensions change remarkably by becoming relatively smaller in adulthood. Additionally, the adult spine is slimmer in the transverse plane (Aeby, 1879). Also Donaldson and Davis (1903) as well as Lassek and Rasmussen (1938) reported the ontogenetic aspects and the adult anatomy of the spinal cord. According to Donaldson and Davis (1903), the majority of the spinal cord area increase occurs after the age of five years, with a relative higher increase of the white matter and more prominent change in the thoracic region. Lassek and Rasmussen (1938) describe a relatively bigger increase of the white matter and of the thoracic spinal cord as well as a relative shrinking of the spinal cord length from the newborn to to adulthood; with the average spinal canal length being 410 mm . Donaldson and Davis (1903) found an average length of the spinal
cord in adults of 441 mm , with an indication for a correlation between the length of the vertebral column and the osseous spine.

Furthermore, Donaldson and Davis (1903) found differences in adults between spinal cord cross-section areas and volumes of the grey and white matter at various spinal levels. Whereas the maximum spinal cord area locates in a mixed sex sample at level C6, followed by the values on level L3 and L5, the ratio between white and grey matter varies depending on vertebral level, with the grey matter usually being approximately $20 \%$ of the white one (Donaldson and Davis; 1903). Lassek and Rasmussen (1938) found an average ratio of approximately $18 \%$. The highest volume of grey matter is found, according to Donaldson and Davis (1903), at the level C6, whereas the highest value of grey matter area can be found at level L5. Donaldson and Davis (1903) further explored the relation between grey matter and spinal nerves at various vertebral levels. They found that only for the cervical and sacral region there is a correspondence between the two, whereas for the thoracic and lumbar section there is not. In the latter two, the grey matter volume is bigger than expected, explained by them as a reaction of vertebral elongation during growth rather than increased neural complexity at these levels. McCotter (1916) reports an average spinal cord length for White males of 448 mm and for White females of 418 mm , as well as 434 mm in Black cadavers with unlisted sex. Furthermore, Ravenel (1877) reports lengths of the total vertebral column for fresh male and female cadavers. He highlights the high degree of inter-individual variability of spinal osteometric measurements, which reaches in some dimensions up to a third of the mean value.

Surprisingly, the juvenile spine reaches at a very early age most of its adult dimensions (Porter and Pavitt, 1987). However, the juvenile spinal canal still further changes its shape by maturing (Porter and Pavitt, 1987). Wolf et al. (1956) state that the
lower clinically critical limits of the sagittal spinal canal dimensions are attained at the age of four to five years, whereas the adult size, according to them, may be reached at an average age of 12 years. Clark et al. (1985) state that approximately $90 \%$ of the adult vertebral canal size is completed by late infancy, which makes the spine more vulnerable to prenatal growth disruptions than other parts of the human body.

Various reports already addressed the relationship between spinal cord size and brain size (Marshall, 1892; Latimer, 1950; MacLarnon, 1996b). Latimer (1950) reports for Guinea pigs correlations between spinal cord weight and total brain weight as well as the weight of various brain parts, between spinal cord weight and length and between spinal cord weight and both body weight and length. Latimer (1950) found weaker correlations for the spinal cord length than weight e.g., in relation to body weight. MacLarnon (1996b) describes also a correlation between brain weight and spinal cord weight for primates. Marshall (1892) calculated the spinal cord to be $2.1 \%$ of the brain weight in humans. MacLarnon (1996b) lists, based on own studies and summarized from earlier published data, an average brain weight of an adult 60 kg human to be 1274 g and a spinal cord weight of 29.7 g . These values are from unpublished data sources by Martin and MacLarnon and differ from established averages of approximately 59 kg and brain weight of about 1350 g (Pakkenberg and Voigt, 1964; Beals et al., 1984; Henneberg, 1990), and, therefore, some caution is necessary for these data. The overall spinal cord length was reported in this study to be 448 mm in males and 413 mm in females (MacLarnon, 1996b). Nevertheless, Elliot (1945) found no evidence for a correlation between individual stature, and weight, as well as sex or age and spinal cord dimensions in humans.

The size of the vertebrae and its use for estimation of body size is still doubtful (Martin and Saller, 1957; Tibbetts, 1981). Tibbetts (1981) found that the coefficient of correlation mostly increases the larger the vertebral numbers included in individual stature estimation are. Gozdziewski et al. (1976) found a clear correlation between thoraco-lumbar spine length and individual height in a sample of living individuals. Karaikovic et al. (1997) describe a dependence of pedicle diameters on individual body height of $30 \%$ up to $70 \%$. In a modern Polish medical student sample individual height was significantly correlated with the length of the thoraco-lumbar spine (Gozdziewski et al., 1976). Also, Minne et al. (1988) mention a clear correlation between individual stature and vertebral dimensions. In a radiographic study on living women, Gallagher et al. (1988) found a correlation between thoraco-lumbar vertebral anterior and posterior height and individual height or weight. Amonoo (1985) found a change in the midsagittal neural canal diameters in relation to alterations of the sagittal diameter of the vertebral body. For both sexes, he mentions for such a ratio a value of 0.5 on L2 - L5 and 0.6 on L 1 respectively.

On the other hand, in the osteometric study published by Berry et al. (1987), the combined vertebral body heights did not show a correlation with the recorded individual height of the deceased person. Piera et al. (1988) found no correlation between pedicle transverse diameter and its equivalent dimension of the neural canal. Katz et al. (1975) found no influence of stature on human cervical vertebra morphometry. Contrary, the "ponderal index", which is body height divided by $\sqrt[3]{ }$ body weight, as well as the head weight correlated at least with some of the cervical spine measurements.

The influence of body size and weight on spinal morphometry, especially the size of the neural canal diameters has already been addressed (Legg and Gibbs, 1984; Porter et F. J. Rühli - Osteometric Variation of the Human Spine
al., 1987; Sanders, 1991; MacLarnon, 1995; Harrington et al., 2001). Porter et al. (1987) found that patients with a narrow sagittal spinal canal diameter were $22 \%$ heavier than their counterparts with a wide one. Body weight is proposed to be the best variable reflecting body size (Jungers, 1984). Harrington (2001) did not find a correlation between individual stature, weight and body mass index for the occurrence of a disc herniation in the lower lumbar region. On the other hand, Heliövaara (1987) describes a link between stature and in particular moderate increase in body mass index and, only in males, the hospitalisations due to herniated lumbar discs. Legg and Gibbs (1984) found no clear correlation between individual stature or body weight and lumbar spinal canal dimensions. Furthermore, Murrie et al. (2003) found a more prominent lumbar lordosis in individuals with a higher body mass. Furthermore, body weight seems not to be related with the dorsal root / ventral root ratio in the spinal canal (Corbin and Gardner, 1937). Nevertheless, body weight in mammals is correlated with the size and number of spinal nerve root fibres (Dunn, 1912).

In an archaeological sample, Hibbert et al. (1981b) describes a correlation for individual long bone sizes and transverse spinal canal diameter, but not for its sagittal counterpart. Additionally, Porter and Pavitt (1987) were unsure about the direct influence of small transverse juvenile spinal canal diameters, the known stress marker dental hypoplasia and individual stature. Jankauskas (1994) reports a correlation of less than 0.4 between individual stature and longitudinal spinal measurements. Furthermore for a female sample, Ross et al. (1991) could not detect a significant change in vertebral morphology such as anterior / posterior vertebral body height ratio with individual stature. McCotter (1916) did just find a tendency but no clear correlation between spinal cord length and individual stature as measured by height or vertebral column length. In a
clinical study by Harrington et al. (2001), individual height, weight or body mass index did not have an influence on the occurrence of disc herniation. Nevertheless, there was a correlation between vertebral body diameters and individual body weight, but a just very weak one with pelvic breadth.

## Sexual dimorphism and age-related adaptations of the human spine

It is well known that sex influences the spinal morphology, since e.g., already Dwight (1894) reported longer relative lumbar regions in women. Martin (1928) mentions, that the female ventral vertebral body height is usually smaller than its male counterpart, with an especially prominent difference for the cervical and upper thoracic region. MacGibbon and Farfan (1979) found no influence of sex on the occurrence of transitional lumbar vertebra and rudimentary ribs. However, they found the transverse process at L 5 , in relation to the reference one at L 3 , to be longer in females. This would predispose females to have more likely degenerative changes at L4 / L5 and males at L5 / S1 (MacGibbon and Farfan, 1979). The overall morphology of the lumbar spinal canal does not show any sex dependent variation (Piera et al., 1988). Amonoo-Kuofi (1985) describes in a study of vertebral columns from Nigeria a narrower and generally more variant sagittal diameter of the neural canal for females. Francis (1955) reports to have found only absolute smaller values for female spines, but without any apparent relative alterations of the vertebral dimensions in relation to male samples. Furthermore, Mitra et al. (2002) found only non-significant differences in pedicle size in relation to sex, mostly similar to the results presented by Ebraheim et al. (1997), Hou et al. (1993) or Xu et al. (1995). In addition, Karaikovic et al. (1997) did not find sex-dependent differences in pedicle dimensions, once the influence of different body height was taken out of the
calculations. Nevertheless, for the pedicle height, Olsewski et al. (1990) found a significant sex difference, with women having smaller dimensions than males, for most lumbar levels. Burrows (1963) could not find a significant difference in sagittal spinal canal diameter between sexes, he describes a difference of usually 1 mm or less. No significant differences have been shown in foraminal dimensions in relation to sex (Ebraheim et al., 1996). Also Hinck et al. (1966), in their study of the interpediculate distance as observed on roentgenograms, stress the only minor influence of sex on at least a selection of spinal dimensions. In a biomechanical study, Nachemson et al. (1979) found no correlation between age or degenerative lower back pathologies and altered mechanical behaviour of the lumbar motion segments. Furthermore, they only describe a slightly higher flexibility of female motion segments to bending or compression forces. Sex differences were also found by Tatarek (2001) with larger neural lumbar canals in males than in females. This is in general consistent with the findings reported by Lee et al. (1995) for the mid-sagittal diameter but not for the interpedicular diameter. Piera et al. (1988) found in an X-ray based study, that there is a link between sex and interpeduncular distance of lumbar L1 - L4. Katz et al. (1975) found in another X-ray based study on recent volunteers, that males have significantly larger cervical vertebrae height and sagittal width than females. These findings by Katz et al. (1975) may be caused by the fact that for the two sexes individuals of the same percentile and not absolute stature were chosen and, therefore, males were bigger on average. Van Schaik et al. (1985) found smaller osteometric length values in females, but no differences in vertebral angles or ratios. Horwitz (1939) also reported, at least for all measurements but not for the indices, a highly significant sexual dimorphism with a general tendency of kyphosis in males in thoracic spine. Minne et al. (1988) describe only a non-significant sexual difference in
spinal morphology; such as the higher lumbar increase in vertebral body height in females. Females also show a significantly more prominent lumbar lordosis (Murrie et al., 2003). In an osteometric study on the lumbar spinal canal significant sexual dimorphism was found for the ratios of the spinal canal dimension to vertebral body (Kikuchi et al., 1977). Men have significantly larger lower lumbar vertebral endplates but the shape ratio of them seems not to differ between sexes (Harrington et al., 2001). In a sample of asymptomatic Polish medical students Gozdziewski et al. (1976) found a larger thoraco-lumbar spine in the male sample than in the females. Berry et al. (1987) did not separate sexes in their study on spinal morphometry. According to them, even without separating the data, sex showed a coefficient of variation of mostly less than $10 \%$. In the thoracic spine, Piontek (1973) detected that females show a stronger increase caudally in main vertebral body dimensions, such as sagittal and transverse diameter. The single exception was vertebral body height (Piontek, 1973). Piontek (1973) describes also in the thoracic spine a higher enlargement of the sagittal dimension caudally than for the transverse ones, whereas for the lumbar spine this trend seems to be opposite. In the Early Medieval samples presented by Piontek (1973) the relative increase of vertebral body height was higher for males than females and the relative increase of the sagittal dimension was bigger for females than males.

The earlier reports on the influence of aging on spinal morphometry are equivocal. Age-related alterations of the spinal morphometry (Jacobi, 1927; Hurxthal, 1968; Trotter and Hixon, 1974; Ericksen, 1976; Hansson and Roos, 1980; Porter et al., 1980; Weisz and Lee, 1983; Gallagher et al., 1988; Piera et al., 1988; Jankauskas, 1992; Hermann et al., 1993; Edmondston et al., 1994; Jankauskas, 1994; Diacinti et al., 1995; Jason and Taylor, 1995; Lee et al., 1995; Humphreys et al., 1998; Tatarek, 2001), changes in
relative spinal region length (Schultz, 1961; Jason and Taylor, 1995) and vertebral bone mineral content (Hansson and Roos, 1980) have been reported so far. Furthermore, aging results in a general decrease of skeletal weight, with the male bones being significantly heavier than the female ones (Trotter and Hixon, 1974). In a radiographic study on asymptomatic females, Gallagher et al. (1988) found no correlation of the anterior vertebral body height and individual age, whereas the posterior height was negatively correlated. Surprisingly, in a similar study conducted by Davies et al. (1989), no change in either anterior or posterior vertebral body height was reported for asymptomatic females as well as women suffering from osteoporosis within time periods of at least 10 years span shortly before menopause. Contrary, Black et al. (1991) conclude that no morphometric changes occur depending on age, while Hermann et al. (1993) found just a very weak interference. Hermann et al. (1993) even argue that the described aging effect could be due to secular increases in individual stature within the cohort. However, no age related changes in lumbar spinal canal dimensions were found in an osteometric study by Kikuchi et al. (1977). Also the lumbar lordosis seems not to change with age (Murrie et al., 2003). Edmonston et al. (1994), in cadaver spines of elders, found just a weak correlation of vertebral body height ratios and bone density. Bone density is representative of bone remodelling, which in the elder spine can be present in form of wedging and increased thoracic kyphosis. Piera et al. (1988) describe the absence of any relation between general lumbar spinal morphology and age. Nevertheless, the lumbar interpeduncular distance in particular seems to increase with age, more prominent on the upper than on the lower lumbar spine (Piera et al., 1988). In the same study, a correlation of L1 - L4 interpeduncular distance in relation to sex was found as well. By focusing on the anatomy of the human spinal cord, Elliot (1945) found not only a high degree of inter-
individual variation, but also independence of individual sex, age or weight from the cord dimensions. In addition, Bailey (1953) did not find any major atrophy of the spinal canal in the elderly. However, in a study on albino rats, Dunn (1912) reports a clear decrease of nerve tissue with older age in the cervical nerve root.

The particular aspect of spinal ontogeny was highlighted, as discussed above, by Donaldson and Davis (1903). In addition, Aeby (1879) emphasizes the ontogenetic impact on relative dimensions in the vertebral column. Jacobi (1927) describes in his cadaver series an increase in vertebral body heights within the young adult age group, most likely due to still ongoing vertebral growth. Furthermore, he found for most anterior and posterior vertebral body heights a decrease for the oldest group, aged 70 and above. Similar age related changes were addressed by Hurxthal (1968) with in particular an anterior decrease in vertebral body height in the elderly and a widely seen slight wedging of the dorsal part of the vertebrae. For the spinal cord of the elderly, Bailey (1953) did not find a decrease in size nor frequent thickening of the meninges, but occasionally calcareous deposits and quite often mild arteriosclerosis. Burrows (1963) could not find a change in cervical sagittal spinal canal dimensions with age. The influence of aging and menopausal status was examined by Diacinti et al. (1995). According to them, in the female spine there is a decrease in vertebral body height of approximately 1.5 mm per year with a more prominent trend for the anterior part of the vertebra.

## Biomechanics and spinal morphology

The unique stability and instability of the human spine was discussed among others by Louis (1985). His proposed classic "three-column" theory of spinal stability is in accordance with the normal ossification pattern of the spine. The first pillar is the
vertebral body, whereas the second and third ones are formed by the posterior articular processes, all of them resisting the forces of gravity (Louis, 1985). Louis (1985) found an increased size of the three pillars and of the flexor and extensor trunk muscles caudally. According to his model, the vertical axial stability is maintained by the three pillars, which are toughened by the horizontal vertebral arch. Louis (1985) attributes the spinous processes no role in maintaining spinal stability. Transverse stability of the spine is reinforced by bony and ligamentous stabilizers, varying for flexion, extension or rotation movements (Louis, 1985). Louis (1985) describes the spinal segment units as consisting of three joints, the intervertebral disc and the two zygoapophysial joints; the latter ones orientated at a different angel to the disc and supporting the weight bearing. Depending on the body position and physical load, either the disc of the two posterior joints resists compression forces with the other one resisting shearing impact (Louis, 1985).

The important role of the so called posterior elements, consisting mainly of the facet joints, parts of the laminae, the spinous processes and some ligaments, was examined by White and Hirsch (1971) by showing the biomechanical result after the ablation of these structures. Putz (1981) not only describes the main osseous aspects of the human spine but focuses especially in his study on the anatomical and functional particularities of the vertebral joints as they act in collaboration with other bony structures, ligaments and muscles. He divides the human spine in various "Bewegungsregionen", motion regions, which show a different active and reactive pattern at the various positions and forces acting on them. These segments stretch, according to him, from C 1 to $\mathrm{C} 3, \mathrm{C} 3$ to $\operatorname{Th} 1(2)$, $\operatorname{Th} 1(2)$ to $\operatorname{Th}(11) 12$, and $\operatorname{Th}(11) 12$ to the end of the sacrum, with the thoracic part consisting of two major regions, Th1 to Th8 and Th8 to Th12. Putz (1981) widely discusses the functional implications of the particular
anatomy of the vertebral joints. He describes the axial pressures to be transmitted to the spine in three main axes, the vertebral body and the two vertebral joints. The importance of the zygoapophysial joints in maintaining spinal stability was also highlighted by Putz (1981). Veleanu $(1972 ; 1975)$ highlights the importance of the "unco-transverso-articularcomplex" in particular for the mechanical stability of the cervical spine, with the transverse epiphysis as a blocking factor preventing mechanical instability and protection for the neural and vascular contents of the neural pathways. Schmorl and Junghans (1968) used the term "motor segment" to describe all the soft tissue linking the disc and the apophyseal joint complex.

The impact of axial loading on the human spine with a particular focus on the posterior vertebral body and the intervertebral disc was studied by Larsen (1985). The concavity of the posterior vertebral body surface is explained in his model as caused by load induced traction forces as well as the pressure acting by the cerebrospinal fluid. Adams et al. (1994) and Panjabi et al. (1976) already discussed the impact of axial loading on motion segments, which consists of two adjoin vertebra and their intervertebral discs. The lack of this axial impact on the spine in cadaveric studies is discussed as a weak methodological point e.g., by Fujiwara et al. (2001). Both, flexion and extension biomechanically influence in different ways the various spinal components.

The amount of physiological forces acting on the healthy vertebral column, even in simple movements only, is quite astonishing. Nachemson (1966) detected, in an experimental in vivo study in sitting positions, involved forces of at least twice the individual body weight above the selected mid-lumbar vertebral levels; such forces are ranging from approximately 1000 N up to 1800 N . The decrease of these forces to roughly half of their value in upright standing situation was explained by Nachemson
(1966) as a result of smaller forces impacting from the muscles such as psoas major in this particular position. An even higher decrease was found in a physiological reclining movement. The load increases dramatically if one bends forward, especially with weight bearing hands. For such a situation forces of up to four times of the individual's body weight working on the lumbar intervertebral discs have been proven by Nachemson (1966). Apparently, the ligamentous components of the spine are not strong load bearing forces, but work together with the rib cage as stabilizer of the spine (Nachemson, 1966). Nachemson (1966) emphasizes the extremely high shearing forces, which act on the dorsal part of the anulus fibrosus and may be of clinical significance as well. In another biomechanical study, Nachemson et al. (1979) found no clear influence of age or sex on physical performance of lumbar motion segments. Only females seem to have segments that are slightly more flexible in response to bending and compression forces. Furthermore, Veleanu $(1972 ; 1975)$ highlights in his study of macerated and cadaveric cervical spines, the importance of the transverse process within the "uncotransversoarticular" complex in limiting possibly pathologic movements. Adams et al. (1994) examined the influence of flexion and extension on the various load-bearing spinal structures. Surprisingly, Adams et al. (1994) conclude that a mild flexion is the best compromise for a spinal position in weight bearing.

## Osteometric findings of earlier spinal studies

Spinal morphometry differs essentially for each vertebral level (Black et al., 1991; Hermann et al., 1993) and is reported remarkably different in various studies.

The ventral vertebral body height, according to Lanier (1939), increases from C3 caudally, with the exception of C5 and C6 that have the smallest values. Hermann et al.
(1993) report a consistent increase for both sexes from Th4 caudally. Anderson (1883) describes a decrease caudally in anterior vertebral body height for most of the cervical spine with an increase of its size caudally towards L3, with the second last lumbar level being smaller but the last lumbar level being of absolute highest value. Edmondston et al. (1994) describe for the thoraco-lumbar spine in the elderly, a caudal increase in ventral vertebral body height, except for the mostly constant mid-thoracic region. Ross et al. (1991) found an increase in anterior vertebral body height, measured in an X-ray study on postmenopausal women, from thoracic levels caudally to L3, with a subsequent slight decrease for the two last lumbar levels. Jankauskas (1994) in his osteometric study of an archaeologic sample found a decrease in anterior vertebral body height for level C 3 to C 6 with an increase in size caudally to L5, mostly similar for females and males. Minne et al. (1988) list for males a steady increase in anterior vertebral body height caudally, whereas females reach the highest value in anterior vertebral body height at level L3. In another radiological study, Hurxthal (1968) found in females an increase in anterior body height caudally of Th7. Other radiographic studies (Nissan and Gilad, 1984; Gilad and Nissan, 1986) report a decrease followed by an increase for the anterior height of the cervical vertebrae and similar for the lumbar levels but with an increase from level L4 to L5. Berry et al. (1987) report a consistent increase caudally in anterior vertebral body height in the thoracic and lumbar spine. Gallagher et al. (1988) describe an increase in anterior vertebral body height in a sample of living asymptomatic females from Th3 caudally to L3 with a slight decrease for L4 and another increase at the last lumbar level. Similarly, Davies et al. (1989) found in their radiographic study on healthy women that the anterior vertebral body height increases caudally from Th 7 to L 4 . The anterior vertebral body height increases caudally in the female cadaver sample, as examined by Aeby (1879),
with the exception of the lower cervical spine and Th6. Cyriax (1920) describes for a sample of macerated spines of both sexes a consistent increase in anterior vertebral body height caudally. The thoracic and upper lumbar anterior vertebral body height, according to the study on cadaver spines by Jacobi (1927), continuously increases caudally. Tominaga et al. (1995) found mostly an increase in anterior cervical vertebral body height caudally. In the osteometric study by Marchesi et al. (1988) mainly an increase caudally in anterior vertebral body height was reported for the mid-thoracic to lumbar spine.

Posterior vertebral body height is strongly correlated with anterior body height with a correlation coefficient of 0.74 (Clark et al., 1985). The posterior vertebral body height shows a steady caudal increase for the whole thoracic spine, with a maximum at L1 and a decrease in size for the rest of the lumbar region (Lanier, 1939; Hermann et al., 1993; Edmondston et al., 1994). Anderson (1883) describes mostly an increase of posterior vertebral body height caudally for the thoracic spine and a further increase for the upper lumbar spine, but a decrease in size for the last three lumbar levels. According to Minne et al. (1988) the posterior vertebral body height increases, as measured in their study caudally from Th4, in the thoracic spine and reaches in both sexes its highest value at L3. Hurxthal (1968) found in females an increase in posterior vertebral body height from Th7 to L3 with a slight decrease for the last two lumbar levels. Putz (1981) describes a decrease from C 3 to C 7 with a continuous increase in size for the posterior vertebral body height caudally, with a maximum on L1 and a caudally decline within the lumbar spine. In an X-ray based study on healthy elderly women, Ross et al. (1991) found increasing values in posterior vertebral body height from the thoracic spine down to L2 with a slight decline more caudally. Also Berry et al. (1987) found an increase in
posterior vertebral body height from upper thoracic level up to L2 with a decrease caudally. Jankauskas (1994) reports, for his historic samples, a decrease in posterior vertebral body height caudally from C 3 till C 7 , with a subsequent increase in size to L 1 . According to him, the lumbar spine shows caudally a decrease in posterior vertebral body height for males but mixed patterns for females. In a study on asymptomatic females, Gallagher et al. (1988) found an increase in posterior vertebral body height from Th3 to L3, with a decrease in size for the last two lumbar levels. The same findings were mentioned by Davies et al. (1989), who showed an increase in posterior vertebral body height for their sample of radiologically assessed measurements of female spines caudally of Th7. In the female sample of Aeby (1879) the posterior vertebral body height increases caudally, with the exception of the lower cervical spine. The posterior vertebral body height, as measured by Jacobi (1927) on thoracic and upper lumbar levels, increases caudally with the exception of the mid-thoracic region. Panjabi et al. (1991a; 1991b; 1992) found a decrease of the posterior vertebral body height in the upper cervical spine, with a steady increase from the lower cervical spine caudally to level L2. For the cervical spine, Tominaga et al. (1995) found an increase caudally in posterior vertebral body height. Marchesi et al. (1988) report an increase in posterior vertebral body height caudally from the mid-thoracic spine to L3 with a decrease at L4 and L5. Gilad and Nissan (1984; 1986) found a caudal decrease followed by an increase in the posterior cervical vertebrae height, but on the lumbar level an opposite trend with the highest value for L2.

The particular anatomy of the posterior vertebral surface has been addressed by Larsen (1985). The foraminae of the basivertebral veins as well as the concave shape of the dorsal part of the lumbar vertebra are highlighted by him. The maximum medial
concave depth was in his sample approximately 0.5 mm for both levels, L 1 and L 5 , respectively. He found no correlation between the posterior vertical lumbar scalloping and posterior vertebral body height or maximum transverse dimension. The scalloping of the lumbar vertebrae is biomechanically explained by Larsen (1985) by various factors, such as axial loading and pressure originating from the cerebrospinal fluid. He explains the development of the lumbar posterior vertebral surface to be a result of its surrounding structure, namely the spinal canal and its contents such as the pressure in the epidural space. The fact that the epidural space changes in its size from cranial to become larger more caudally is another aspect. Furthermore, Larsen (1985) mentions that in cases of narrowing of the spinal cord space the epidural space is altered in form of decreased content of epidural fat, which may result in an decreased buffer action, which then will interfere with the posterior surface of the vertebra. The influence of the dural sac and its contents, according to Larsen (1985), may be more important at the foetal stage, since at this time the direct physical contact of these two anatomical structures is more intense than later in life.

The sagittal diameters of the vertebral body, as measured by Lanier (1939) on the superior and inferior surface level of each vertebra, increase constantly caudally with the single exception of C7 and L5. Others (Nissan and Gilad, 1984; Gilad and Nissan, 1986) report for the cervical spine mostly a caudal increase in size and for the lumbar spine a similar mostly caudal increase for the lower sagittal surface diameter, whereas the upper sagittal diameter increases only through L3 and decreases further caudal. Katz et al. (1975) found in an X-ray based study of the cervical spine trends similar as to those described by Lanier (1939), with C5 having the smallest absolute height, whereas C3 showed the minimal sagittal diameter. For all of the cervical vertebrae, Katz et al. (1975)
found higher values for the sagittal diameter than for the average vertebral body height. Larsen and Smith (1980b) report in a myelographic study of the lumbar spine an increase of the sagittal vertebral body diameter from L1 to L3 with identical values for the more caudal levels. The results were similar for both sexes (Larsen and Smith, 1980b). Berry et al. (1987) report, with the exception of the mid-thoracic level, a mild increase in the main vertebral body diameters from upper thoracic caudally. Anderson (1883) in an osteometric study found mostly an increase of the sagittal diameter of the vertebral body caudally. Scoles et al. (1988) report in their study on macerated spines for both sexes in the thoraco-lumbar region a continuous increase in sagittal vertebral body dimension caudally. Postacchini et al. (1983) found mostly an increase in sagittal and transverse vertebral body dimension from L1 caudally. Piontek (1973) mentions an increase in vertebral body dimensions at all levels caudally. This increase was in the cervical spine, according to him, more prominent in females. For both females and males the sagittal vertebral body diameter seems to increase caudally, with single exception on a few selected vertebral levels (Aeby, 1879). Surprisingly, sagittal and transverse cord diameters, according to Elliot (1945), correlate only vaguely with each other. He also describes the cervical enlargement of the spinal cord, at level C5/C6, to be flatter in sagittal direction, the thoracic to be minimal at level Th6 / Th7 and the lumbar enlargement at level L5 / S1 to be of small and round shape.

The vertebral body surface area shows in the lower thoracic spine an increase with a maximum at the second last lumbar level (Shapiro, 1993). This surface area is, again with the exception of the last lumbar level, well correlated with the body weight, but the human data in the study by Shapiro (1993) were merged in a sample with great ape. Davis (1961) examined the relationship between vertebral body area, pedicle dimension and
transverse processes size in the lumbar spine. He concludes that L4 is larger than L5 on average, but it is the other way round for the pedicles. He found no significant correlation between the vertebral body area changes and transverse process size. He explains the caudal transition of the trunk and upper limb weight in the lower lumbar area to be done by lumbo-sacral zygoapophyseal joints but also substantially by ilio-lumbar joints.

The transverse vertebral body diameter, as measured by Lanier (1939) on the inferior surface of the vertebral body, continuously increases caudally, with exceptions of Th3 to Th6 and at L5. Larsen and Smith (1980b) report a steady increase for the lumbar transverse vertebral body dimension caudally. Jankauskas (1994) found for most of the cervical levels in males an increase of the transverse vertebral body diameter caudally, a decrease in the upper thoracic levels and a subsequent increase in size in almost all of the more caudal levels. According to him, females show a similar pattern. Scoles et al. (1988) describe for both sexes a steady increase caudally, on the thoraco-lumbar level. Aeby (1879) found in his cadaveric sample for both males and females similar trends in transverse vertebral body diameters. The transverse diameter decreases caudally both in the upper cervical and thoracic spine, shows an increase in size in the lower cervical and thoracic as well as the whole lumbar spine (Aeby, 1879). Anderson (1883) describes for the transverse width of the vertebral body, which was in his osteometric study measured as the maximal width varying in relative position on each vertebral level, mostly an increase in size caudally. The only exception in his study was the upper thoracic spine, which showed a decrease of this measurement caudally from level Th2 to Th5. Cyriax (1920) found for the transverse vertebral body diameter of a sex pooled sample an increase in size in the cervical spine, with a slight decrease in the upper thoracic spine and another increase caudally.

The size of the intervertebral discs, according to radiological studies (Nissan and Gilad, 1984; Gilad and Nissan, 1986), mostly shows an anterior and posterior increase increases in height in the lumbar segment, whereas no such clear trend is visible for the cervical intervertebral disc anterior and posterior height (Kandziora et al., 2001). The cervical intervertebral discs are relatively larger than the lumbar ones (Brain, 1948). Furthermore, Aeby (1879) found that the increase in intervertebral disc size is mainly in the lumbar spine. He provides data on intervertebral disc height for all vertebral levels and both sexes, whereas Tribus and Belanger (2001) only do for the last lumbar one and Kandziora et al. (2001) for the cervical spine. Jacobi (1927) presents similar results in his sample of cadaver spines from Th1 to L3, with the major increase of the intervertebral disc to be found in the upper lumbar spine. Also Piontek and Zaborowski (1973) list normative data on the intervertebral disc height, with mostly an increase caudally for the cervical spine. Hurxthal (1968) provides in a radiological study on women data for the lower thoracic and lumbar intervertebral disc heights in normal as well as osteoporotic individuals. Hurxthal (1968) found an increase caudally. Hasegawa et al. (1995) describe in their cadaver study of the lumbar spine no increase in intervertebral disc height caudally.

The maximum spread of the transverse processes increases in the cervical spine caudally, decreases through the thoracic spine and reaches its smallest size at Th12. Finally, it increases again through the lumbar spine and shows its overall highest value at L3 and L5, respectively (Lanier, 1939). Francis (1955) found a decrease of the transverse process size from C 1 to C 3 with an increase for the caudal half of the cervical spine. Cyriax (1920) reports an increase caudally of the total transverse process width within the cervical spine, with a stabilization or clear size decrease within the thoracic spine, and
another strong increase for the lumbar vertebral levels. Panjabi et al. (1991a; 1991b; 1992) report a decrease of the transverse process width for the upper cervical spine with an increase caudally. From Thl caudally, the transverse process width decreases again through Th4, shows caudally a slight increase with a further drop in size at the lowest thoracic levels (Panjabi et al., 1991b). With the exception of L4 this vertebral dimension show an increase in the lumbar spine caudally (Panjabi et al., 1992).

The spinous process, as measured including the sagittal diameter of the spinal canal in an X-ray study (Nissan and Gilad, 1984), decreases from C3 caudally and increases in size at the caudal half of the cervical spine. According to this particular study, this is not the case for the lumbar level, where there is an opposite trend visible with an initial increase caudally and later decrease in size for the lower lumbar spine.

The normal osseous spinal canal diameters follow mostly a different pattern. According to Larsen and Smith (1980b) there is no correlation between the main vertebral body dimensions and the spinal canal outline, but there is a correlation between the bony spinal canal and the dural sac size (Larsen and Smith, 1980a).

The sagittal spinal canal dimension shows generally an increase in the cervical segment with its highest dimension on C6, except for C2 (Panjabi et al., 1991a). In the thoracic spine it shows caudally of Th2 an increase to reach a maximum at Th6, with a subsequent further decrease in the lower thoracic spine (Panjabi et al., 1991b). The two lowest thoracic levels show another increase in size, which continues to L1 (Panjabi et al., 1991b; Panjabi et al., 1992). From L1 caudally the sagittal dimension decreases to L3 and shows another increase in the last two lumber levels (Panjabi et al., 1992). At L5, with the exception of C 2 , the overall biggest sagittal spinal canal diameter can be found (Panjabi et al., 1991a; Panjabi et al., 1991b; Panjabi et al., 1992).

The sagittal spinal canal diameter shows a mild increase caudally with relatively and absolutely higher measures for the C3-C5 and Th11-L2 regions (Lanier, 1939). Wolf et al. (1956), based on an X-ray study, describe a decrease in sagittal spinal canal diameters from C 1 to C 4 , with similar values for the lower cervical levels. Burrows (1963) in a similar study, found caudal of C2 a slight decrease in cervical sagittal spinal canal dimensions, with the osseous cervical spinal canal to be shaped like a "triangular tube", with the interpedicular width being much bigger than the sagittal dimension. Furthermore, Burrows (1963) mentions that the spinal cord seems to have more than sufficient space, especially in the transverse dimension. Dommisse (1974; 1975) highlights the fact that the human spinal canal shows the narrowest part in the midthoracic region, with in most cases particularly involving Th6. Dommisse (1974; 1975) describes a decrease in sagittal and transverse osseous diameters of the spinal canal from upper thoracic to the narrow zone, with an increase caudally. This most constricted spinal canal region is the region, where the vascular supply of the spinal cord is also to be least rich (Dommisse, 1974). This could result in certain instances in paraplegia (Dommisse, 1974). Whereas the transverse diameter of the cervical spinal canal shows an increase in size caudally, the sagittal dimension shows a decrease from C 3 to C 4 with a mostly stable size caudally, as shown in a mixed-sex cadaveric sample (Tominaga et al., 1995). In an osteometric study conducted by Francis (1955), the main diameters of the spinal canal show an inconsistent size pattern caudally, depending on the sex and populational background of the sample. In general, Francis (1955) lists for the sagittal diameter in males a decrease in size caudally only for the upper cervical part with the lower caudal half of the cervical spine having roughly similar values; whereas in females the sagittal diameter decreases caudally throughout the whole cervical spine. For the transverse
dimension, Francis (1955) found generally for both sexes a decrease in size in the upper half of the cervical spine and an increase in size for the caudal cervical spine. The minimal sagittal diameter of osseous spinal canal shows, in an osteometric study by Marchesi et al. (1988), in the mid- / low thoracic and lumbar spine two major values at L1 and L5, respectively. Aeby (1879) found for both sexes a puzzling pattern of size alterations in sagittal spinal canal size caudally. In general, the canal size decreased caudally in the cervical spine, whereas mostly in the upper thoracic spine this dimension increased and was mostly smaller but stable in size caudally in the lower thoracic spine (Aeby, 1879). The lumbar spine showed for both sexes caudally an increase followed by a decrease (Aeby, 1879), with males having smaller absolute sagittal lumbar spinal canal diameters than females. Stockdale and Finlay (1980) found in their ultrasound based study a decrease in oblique sagittal lumbar spinal dimension from L1 to L3 with an increase caudally.

The transverse diameter of the spinal canal usually demonstrates two peaks in size, one for the cervical spine and another one for the lumbar region. Obviously, these mark the cervical and lumbar enlargements of the spinal cord, which reflect the increased neural tissue demand for the upper and lower limbs. The cervical enlargement is usually broader than the lumbar one (Elsberg and Dyke, 1934; Elliott, 1945; MacLarnon, 1995). Magnuson (1944) gives an average size of the osseous transverse spinal canal diameter of 19 mm at L 4 and 12 mm at L5. Berry et al. (1987) report for the transverse spinal canal diameter a mild increase caudally, whereas the sagittal diameter did not change from the upper thoracic down to the lower lumbar levels. Aeby (1879) found for both sexes similar trends in transverse spinal canal diameters. He reports a sharp decrease in the most upper cervical spine then mostly a slight increase caudally, with the single exception of the
upper third of the thoracic spine, which shows caudally a decrease in transverse spinal canal size. The transverse diameter of the osseous spinal canal reveals mostly an increase in the cervical spine caudally, with a decrease in size in the upper thoracic spine and generally steady dimensions in the mid-thoracic segment, and a further increase caudally (Panjabi et al., 1991a; Panjabi et al., 1991b; Panjabi et al., 1992). For the low thoracic and lumbar levels the minimal transverse spinal canal shows, according to a study by Marchesi et al. (1988), mostly an increase caudally. In their study on recent macerated spines, Postacchini et al. (1983) describe a decrease in mid-sagittal neural canal size from L1 to L4 with a slight increase for the last lumbar level. The interpedicular distance shows in general the opposite trend. The value of the above mentioned normal limits for the neural canal size in individuals were doubted by Postacchini et al. (1983). Furthermore, two similar ultrasound based studies on the spinal canal dimensions showed significantly different results (Porter et al., 1978a; Legg and Gibbs, 1984). Nevertheless, Hinck et al. (1966), based on an X-ray study, provide also normal range values for the interpedicular distance in adults. This particular landmark demonstrates an increase in the middle cervical spine caudally and decreases towards mid-thoracic spine, with a final continuous increase from mid-thoracic to low lumbar levels. Already Elsberg and Dyke (1934) defined and reported normal values for the interpedicular distance of all vertebral levels, as measured on conventional X-ray films. They describe a similar pattern of normal interpedicular morphology, as did Hinck et al. (1966). Furthermore, Gepstein et al. (1991) found an increase in lumbar interpedicular distance caudally and also for the mid-cervical spine. According to Eisenstein (1977), the normal interpedicular diameter measures 23 mm in the lumbar spine and shows no noteworthy variation within the lumbar levels.

A decrease in spinal canal dimension from L1 caudally was reported in another ultrasound study by Macdonald et al. (1984), with a slight increase for the last lumbar level. The values were slightly different in symptomatic individuals with another decrease in size for the last lumbar level (Stockdale and Finlay, 1980). In a similar study, Legg and Gibbs (1984) found mostly a decrease for the lumbar spinal canal dimension caudally. Williams (1975) explored the pathologic narrow lumbar spinal canal relative to the vertebral body size at the same level, with a ratio of $1 / 6$ or $1 / 6.5$ to be defined as being pathologic. The major spinal canal dimensions were investigated by Scoles et al. (1988) for both sexes on selected thoraco-lumbar levels in a sample of macerated spines. They describe an increase in sagittal diameter caudally in the thoracic region, followed by a decrease in the upper lumbar and another increase in the lower lumbar spinal levels. The transverse diameter, as described in the study by Scoles et al. (Scoles et al., 1988) shows also similar for both sexes a decrease in size in the upper thoracic spine with an increase caudally in the lower thoracic and lumbar spine. For the lumbar spinal canal, Huizinga et al. (1952) found an increase in interpedicular width only for the last lumbar level, whereas the antero-posterior spinal canal dimension shows a decrease from L1 to L3 with a slight increase further caudal. A significant relation between these two vertebral canal dimensions are found only for L3 and L4 (Huizinga et al., 1952). Kikuchi et al. (1977) describe for the sagittal diameter of the lumbar spinal canal a decrease caudally of L1 with a subsequent increase for the last two lumbar levels, whereas the interpedicular canal shows a steady increase caudally. Larsen and Smith (1980a) found a decrease in size for the mean sagittal diameter from L1 to L4 with an increase for the last lumbar level, whereas the transverse diameter showed a steady decrease in size in the lumbar spine caudally. The lumbar subarachnoid space, according to them, was the smallest in sagittal
direction at L4. As Larsen and Smith (1980a) pointed out, the subarachnoid space consists mostly of blood vessels and loose tissue and measures 1 to 3 mm . Clark et al. (1985) mention a significant correlation of the two main spinal canal diameters at thoracic and lumbar levels in two historic samples.

Critical values of spinal canal dimensions are reported in various studies. Epstein et al. (1964) mention a sagittal diameter of less than 13 mm to be of pathologic value. If so, the condition was often accompanied by short and bulky pedicles and massive neural arches (Epstein et al., 1964). Similar critical values for X-ray measurements are mentioned by Wolf et al. (1956). In a clinical study, Porter et al. (1987) group patients in two samples, based on their $15^{\circ}$ oblique sagittal spinal canal diameter on L1, with the very narrow ones being below 14.1 mm and the very wide ones being above 15.8 mm . The averages for these two particular groups were 13.8 mm and 16.4 mm , respectively. In other ultrasound based studies, Porter et al. (1978b; 1980) report data of the normal sagittal lumbar spinal canal diameter. They found a decrease in $15^{\circ}$ oblique size from L1 to L4 with another increase at L5, consistent for both sexes, but in general slightly bigger for females. They mention the cut-off point in oblique sagittal neural canal diameter for people at clinical risk as being 14 mm . Eisenstein (1977) declares as lower limits of the interpedicular distance a width of 18 mm , whereas the normal width, according to him, seems to be 23 mm . Eisenstein (1980) further reports in another study that the trefoil shape of the lumbar spinal canal is mainly caused not by osteophytic overgrowth but rather by a local thickening of the laminae. Wolf et al. (1956) mention a minimal sagittal diameter of the cervical spinal canal of 10 mm , based on X-ray assessments, to avoid clinical symptoms in form of spinal cord compression. Eisenstein (1977) states for the sagittal lumbar vertebral foramen diameter values of 13 mm and 16 mm , respectively.

Larmon (1944) mentions as average size for the intervertebral foramen width in cadavers of 7 mm , similar to the mid-sagittal diameter of the vertebral canal, whereas the transverse diameter of the vertebral canal was in his sample on average 12 mm . KirkaldyWillis et al. (1982) list 4 mm as a borderline for the lumbar intervertebral foramen width as measured on CT scans. Hasegawa et al. (1995) declare a posterior disc height of 4 mm and a foraminal height of 15 mm as crucial minimal limits.

The cross-sectional area of the lumbar spine was calculated in a cadaver study by Hasue et al. (1983). For the osseous and non-osseous dimensions of the spinal canal in males, the largest value was found at L5, with the smallest being at mid-lumbar, whereas no such trend was found in females. The mean areas of the neural tissue become smaller in caudal direction for both sexes, with the single exception of an increase at L5 in females (Hasue et al., 1983; Kikuchi et al., 1984). According to Hasue et al. (1983) and Kikuchi et al. (1984), males have larger osseous and non-osseous dimensions, except at L5, but have smaller neural tissue sizes than females. Similar trends can be found for the relation between spinal nerve and the osseous and non-osseous intervertebral foramen size (Hasue et al., 1983; Kikuchi et al., 1984). The lumbar spinal canal, at least as reported for symptomatic subjects (Porter et al., 1978b), shows side differences in its $15^{\circ}$ oblique diameter, varying between 0.4 mm at L 1 and 0.7 mm at L 4 .

The pedicle size increases in humans in the lower thoracic spine caudally, decreases slightly in the upper lumbar part and shows another but even stronger increase towards the caudal end of the lumbar spine (Shapiro, 1993). The most striking enlargement of pedicle sizes occurs between the second last and the final lumbar vertebra with an average increase of $73 \%$ (Shapiro, 1993). Human pedicle size, as pointed out by Shapiro (1993), is correlated with body size for most lower back levels; unlike pedicle
shape, which is defined as the ratio of pedicle width to pedicle length. The pedicle height, as described for a sex pooled cadaveric sample by Tominaga et al. (1995), shows an increase from C 3 to C 4 , with a decrease caudally and another increase in the last cervical level. Zindrick et al. (1987) found, in their radiological cadaver study, for the pedicle length an increase in the thoracic spine to Thll and a decrease caudally. Krag et al. (1988) in a similar study, report that the pedicle length decreases from Th9 caudally. Misenhimer et al. (1989) describe a decrease in pedicle height caudally for the upper thoracic levels with an increase through Th12. The lumbar levels show a similar pattern, as do the thoracic, with a decrease in size for the upper part and an increase for the lower levels (Misenhimer et al., 1989). Furthermore, Misenhimer et al. (1989) state that the thoraco-lumbar pedicles have a teardrop-shape with the widest part in the inferior half. Saillant (1976) describes an increase in pedicle height from C7 caudally, most prominent for the upper thoracic and the most lower thoracic spine, with a caudal decrease in size for the majority of the lumbar levels. Ebraheim et al. (1997) found predominantly a slight decrease caudally in pedicle height for the mid-cervical spine in both sexes. For the cervical pedicle width Karaikovic et al. (1997) found generally an increase in size caudally. In a study on the pedicle dimensions in an Indian population, Mitra et al. (2002) report a decrease in pedicle length from L1 to L4 with a size increase at L5, with females having non-significantly larger values in general. Olsewski et al. (1990) found for males a decrease in size of the pedicle height from L 1 to L 2 with an increase caudally. Females showed a decrease caudally of L1 with only an increase in size for the last lumbar level (Olsewski et al., 1990). The pedicle angle, as measured in relation to the sagittal axis, increases especially in the lower lumbar spine (Krag et al., 1988). Scoles et al. (1988) report for both sexes an increase in maximum pedicle diameter caudally for most of the
thoracic levels, with a decrease in size in the upper lumbar region. They found the overall largest values for the maximum pedicle diameter on the lowest lumbar level. Vaccaro et al. (1995) describe mostly a slight increase in mid-lower thoracic pedicle height caudally, similar to the findings by Hou et al. (1993). Vaccaro et al. (1995), furthermore, describe a decrease caudally in the lumbar spine, with a sharp increase in pedicle height for the last lumbar level. The pedicle height, as measured on all levels and bilaterally by Panjabi et al. (1991a; 1991b; 1992), shows in general a decrease in size caudally in the upper cervical, mid-thoracic and upper- $/$ mid-lumbar spine, whereas an increase caudally can be found in the other spinal regions. The highest values are reported for level L5 (Panjabi et al., 1992).

The particular anatomy of the dural sac, the shape of the dural sheath at lumbar levels and the lumbo-sacral nerve roots, have been widely addressed by Salamon et al. (1966). The size of the subarachnoid space in the lumbar spine of symptomatic and asymptomatic individuals has also already been addressed (Larsen and Smith, 1980a).

The lordosis of the cervical spine is, according to Jankauskas (1994), only caused by the intervertebral discs, whereas the lumbar one is formed by the discs as well as the vertebral bodies` shape. The lumbar lordosis was to be found more prominent in females and in individuals of greater body weight (Murrie et al., 2003).

The size of lumbar intervertebral foramen is usually the biggest for $\mathrm{L} 5 / \mathrm{S} 1$, whereas L1 / L2 have the smallest area (Stephens et al., 1991). Putti (1927) describes the opposite, with the L5/S1 intervertebral foramen being the smallest and lists as a rule that the more cranially located, the bigger the lumbar foramen is supposed to be. On the other hand, Putti (1927) mentions the contrary for the nerve root size, with $L 5$ being the largest, and the more cranial one being smaller in size. Kirkaldy-Willis et al. (1982) list,
independent of the vertebral level, an average of 4 mm as a borderline for the intervertebral foramen width, as measured by CT. Ebraheim et al. (1996) reported the dimensions of the cervical intervertebral foramen in cadaver and macerated specimens. They divided the cervical intervertebral foramen in three parts, a medial pedicle section, the middle section next to the foramen transversarium, and finally, a most lateral part. Except for the first level at $\mathrm{C} 2 / \mathrm{C} 3$, all other cervical levels showed, according to Ebraheim et al. (1996) an increase in size caudally. The minimum intervertebral foramen width was $1-2 \mathrm{~mm}$ at all levels.

The weight of the dry human spine differs by region and sex. According to Trotter and Hixon (1974), the cervical, thoracic and lumbar vertebrae of White adults weigh approximately $53 \mathrm{~g}, 131 \mathrm{~g}, 112 \mathrm{~g}$ for males and for females $39 \mathrm{~g}, 98 \mathrm{~g}$, and 81 g , respectively. The relative weight of the axial postcranial skeleton, consisting for this analysis of the vertebral column, ribs and sternum, decreases mostly in adulthood in both sexes, and is on average $18 \%$ of the total adult skeleton weight (Trotter and Hixon, 1974). Additionally, Trotter and Hixon (1974) found that males show higher mean bone densities in all spinal parts.

## Impact of osteometric research of the human spine

Spinal osteometric data can be applied for various purposes. They help e.g., to estimate stature, since the size, weight and volume of the spine are usually correlated with individual height in humans (Hasebe, 1913; Martin, 1928; Latimer, 1950; Martin and Saller, 1957; Fully and Pineau, 1960; Tibbetts, 1981; Jason and Taylor, 1995). Nevertheless, in the osteometric study by Berry et al. (1987) the size of the combined vertebral body heights did not correlate with the individual body height at autopsy.

Furthermore, morphometric studies of the osseous vertebral column help to define gold-standards for subsequent clinical applications (Saillant, 1976; Kikuchi et al., 1977; Postacchini et al., 1983; Nissan and Gilad, 1984; Gilad and Nissan, 1986; Berry et al., 1987; Zindrick et al., 1987; Krag et al., 1988; Marchesi et al., 1988; Scoles et al., 1988; Misenhimer et al., 1989; Olsewski et al., 1990; Black et al., 1991; Panjabi et al., 1991a; Panjabi et al., 1991b; Panjabi et al., 1992; Hermann et al., 1993; Hou et al., 1993; Vaccaro et al., 1995; Xu et al., 1995; Kothe et al., 1996; Ebraheim et al., 1997; Karaikovic et al., 1997; Mitra et al., 2002) or they can proof the suitability of animal models in relation to the human spinal dimensions (Cotterill et al., 1986; Tominaga et al., 1995). Panjabi et al. (1992) declare their study on the three-dimensional vertebral morphometry to be useful as a "blueprint", which can be implied in clinical issues or in mathematical analysis of the spine. Furthermore, Scoles et al. (1988) emphasize the fact that the knowledge of spinal morphometry is still limited, despite its need for orthopaedic implant assessments. For example, Scoles et al. (1988) and a similar study undertaken by Berry et al. (1987) disagree on the minimum pedicle dimensions, which would have a crucial impact on the use of transpedicular fixation screws. In their study on Indian populations, Mitra et al. (2002) also found pedicle values different from earlier published ones, which led them e.g., to recommend specific screw dimensions to be used in chirurgical approaches. Similar observations are reported for the non-White sample examined by Hou et al. (1993), which showed in general smaller pedicle dimensions than earlier reported standards.

A list of performed earlier major osteometric studies could be found in Table 1, whereas morphological studies on cadaveric samples and living individuals are listed in Table 2.

Table 1: Osteometric studies of recent and historic spine samples

| Reference | Time Period | N | Method | Spinal region |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Aeby (1879) | Late $19^{\text {dut century }}$ | 13 | Scale | All |
| Amonoo-Kuofi (1985) | Recent | 92 | Caliper | Lumbar |
| Anderson (1883) | Late $19{ }^{\text {th }}$ century | 53 | Ruler | All |
| Berry et al. (1987) | Late $19^{\text {lh }} /$ Early $20^{\text {in }}$ century | 1 | Caliper? | All |
| Boszczyk et al. (2001) | Recent | 106 | Anthropometer | All |
| Clark et al. (1985) | $10^{\text {th }}-13^{\text {ut }}$ century | ?/95 | Caliper | All |
| Cotterill et al. (1986) | Recent | 10 | Caliper | Th6, Th12 and L3 |
| Cwirko-Godycki and Swedborg (1977) | $13^{\text {th }}$ century | 48 | Caliper | C1 / C2 |
| Суriax (1920) | Early $20{ }^{\text {a }}$ century | Ca 70 | ? | All |
| Davis (1961) | Mid $20^{\text {at }}$ century | 201 | Caliper | All |
| Dommisse (1974; 1975) | Recent | 6/25 | Caliper | Thoracic and lumbar |
| Ebraheim et al. (1996) | Recent | 443 | Caliper | Lumbar |
| Ebraheim et al. (1997) | Recent | 40 | Caliper | Cervical |
| Eisenstein (1977) | $\text { Late } 19^{\mathrm{m}} / \text { Early } 20^{0^{\prime \prime}}$ century | 338 | Caliper? | L3/L4 |
| Ericksen (1976) | Late $19^{\text {li }} /$ Early $20^{\text {lh }}$ century | 3-4 | Caliper / clay casts | Lumbar |
| Francis (1955) | Mid $20{ }^{\text {in }}$ century? | 284 | Caliper | Cervical |
| Frey (1929) | Early $20^{\text {at }}$ century | 150 | Measurement tape | All |
| Fully and Pineau (1960) | Mid $20{ }^{\text {min }}$ centruy | 164 | ? | All |
| Gepstein et al. (1991) | Recent | 54 | Caliper | Cervical and lumbar |
| Hasebe (1913) | Early $20{ }^{\text {in }}$ century | 30 | Measurement tape | All |
| Hou et al. (1993) | Recent | 40 | Caliper | Th9-L5 |
| Huizinga et al. (1952) | $19^{\text {th }}$ century | 51 | Caliper | Lumbar |
| Jacobi (1927) | Early $20{ }^{\text {dit }}$ century | 102 | Ruler | Th1-L3 |
| Jankauskas (1994) | $1^{4 /} / 2^{\text {nd }}$ Millennium A.D. | 539 | Caliper | All |
| Kaliszewska (1966) | $12^{\text {th }}$ century | 1 | Caliper | All |


| Kanziora et al. (2001) | Recent | 20 | Digital ruler | Cervical |
| :---: | :---: | :---: | :---: | :---: |
| Karaikovic et al. (1997) | Recent | 53 | Caliper / CT | Cervcical |
| Kikuchi et al. (1977) | Recent | 80 | Caliper | Lumbar |
| Lanier (1939) | , . $=$ Recent | 30 | Caliper | Th2, Th7, Th12 and lumbar |
| Lee et al. (1995) | Recent | 90 | Caliper | Lumbar |
| Marchesi et al. (1988) | Recent | 33 | Caliper? / X-ray | Th6 - L5 |
| Piontek (1973); Piontek and Budzynska (1972); Piontek and Zaborowski (1973) | $\begin{aligned} & 12-14^{\text {th }} \text { century } / 14-18^{\text {th }} \\ & \text { century } \end{aligned}$ | 41/50 | Caliper | Cervical |
| Porter and Pavitt (1987) | Anglo-Saxon and RomanBritish |  | Photographic | Lumbar |
| Postacchini et al. (1983) | Recent? | 121 | Caliper | Lumbar |
| Present study | Since Late Upper Paleolithic to mid 20 ${ }^{16}$ century | 348 | Caliper | C3, C7, Th1, Th6, Th10, L1, L5 |
| Putz (1981) | Recent | $66 ?$ | Scales / Goniometer | All |
| Ravenel (1877) | Late $19{ }^{\text {dh }}$ century | 22 | Scale | All |
| Rosenberg (1899) | Late $19{ }^{\text {bh }}$ century | 5 | Compass | Low thoracic and lumbar |
| Scoles et al. (1988) | Late $19^{\text {lh }} /$ Early $20^{\text {Lh }}$ century | 50 | Caliper | Selected thoracic and lumbar levels |
| Shapiro (1993) | Recent | 42 | ? | Low thoracic and lumbar |
| Stefko (1926) | Early $20{ }^{\text {th }}$ century? | $54 ?$ | ? | All |
| Swedborg (1974) | $10^{\text {th }}-12^{\text {th }}$ century | $91 ?$ | Caliper | All |
| Tatarek (2001) | Prehistoric / recent | 90 | Caliper | Thoracic and lumbar |
| Thomson (1913) | Early $20{ }^{\text {bh }}$ century | 6 | Caliper? | All |
| Todd and Pyle (1928b) | Early $20{ }^{\text {th }}$ century | 59 | Surface drawing | Lumbar |
| Tominaga et al. (1995) | Recent | 6 | Caliper | Cervical |
| Wetzel (1910) | Late $19^{\text {ha }} /$ Early $20^{\text {th }}$ century? | 16 | ? | All |
| Wood-Jones (1938) | Early $20{ }^{\text {li }}$ century? | ? | $?$ | C1/C2 |
| Xu et al. (1995) | Recent | 56 | Caliper | C7 |

Table 2: $\quad$ Morphological studies of spines in living people and cadavers

| Reference | Material | N | Method | Type | Spinal Region |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Adams et al. (1994) | Cadavers | 19 | Biomechanical | Dynamic | Lumbar |
| Banta et al. (1989) | Cadavers | 16 | Caliper / X-ray | Static | Th6 - L5 |
| Davies et al. (1989) | Living, asymptomatic women | 191 | X-ray | Static | Th7-L4 |
| Diacinti et al. (1995) | Living, asymptomatic women | 126 | X-ray | Static | Thoracic and lumbar |
| Dommisse (1974; 1975) | Living, asymptomatic | 50 | X-ray | Static | Thoracic and lumbar |
| Drinkall et al. (1984) | Asymptomatic and symptomatic | 386 | Ultrasound | Static | Lumbar |
| Ebraheim et al. (1996) | Cadavers | 14 | Caliper | Static | Cervical |
| Edmonston et al. (1994) | Cadavers of elderly people | 18 | CT | Static | Thoracic and lumbar |
| Elsberg and Dyke (1934) | Asymptomatic / symptomatic | $\begin{array}{r} 100 / \\ 86 \end{array}$ | X-ray | Static | All |
| Fujiwara et al. (2001) | Cadavers | 39 | CT / biomechanical | Dynamic | Lumbar |
| Gallagher and Hedlund (1988) | Living, asymptomatic women | 150 | X-ray | Static | Th3-L5 |
| Gozdziewski et al. (1976) | Living, asymptomatic | 776 | Anthropometric | Static | Thoraco-lumbar |
| Harrington et al. (2001) | Living, symptomatic and asymptomatic | 72 | CT | Static | L4 / L5 only |
| Hasegawa et al. (1995) | Cadavers | 18 | Photographic measurements | Static | Lumbar |
| Hedlund and Gallagher (1988) | Living, symptomatic women | 153 | X-ray | Static | Thoracic and lumbar |
| Hermann et al. (1993) | Living, asymptomatic | 113 | X-ray | Static | Mid-thoracic and lumbar |
| Hinck et al. (1966) | Living, no obvious pathology | 121 | X-ray | Static | All |
| Horner (1854) | Cadaver/living, asymptomatic | $\begin{array}{r} 4 ? 1 \\ 1 ? \end{array}$ | Ruler? | Static / <br> Dynamic | All |
| Humphreys et al. (1998) | Living, asymptomatic and symptomatic | 43 | MRI | Static | Cervical |

F. J. Rühli - Osteometric Variation of the Human Spine

| Hurxthal (1968) | Living, asymptomatic women | 20 | X-ray | Static | Th7-L5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inufusa et al. (1996) | Cadavers | 37 | CT | Static and dynamic | Lumbar |
| Jason and Taylor (1995) | Cadavers | 167 | Flexible ruler | Static | All |
| Katz et al. (1975) | Living, asymptomatic | 61 | X-ray | Static | Cervical |
| Kothe et al. (1996) | Cadavers | 14 | X-ray | Static | Selected thoracic levels |
| Krag et al. (1988) | Living, symptomatic | 41 | CT | Static | T9-L5 |
| Larsen and Smith (1980a; 1980b) | Symptomatic and asymptomatic | 83 | X-ray / <br> Myelography | Static | Lumbar |
| Legg and Gibbs (1984) | Living, asymptomatic males | 50 | Ultrasound | Static | Lumbar |
| Lu et al. (2000) | Cadavers | 16 | Computer-assisted photographic simulation | Dynamic | Cervical |
| Macdonald et al. (1984) | Living, symptomatic and asymptomatic | 204 | Ultrasound | Static | Lumbar |
| Magnuson (1944) | Cadavers | 10 | Caliper? | Static | Lumbar |
| Mayoux-Benhamou et al. (1989) | Cadavers | 7 | Caliper / Cast | Dynamic | Lumbar |
| Minne et al. (1988) | Living, asymptomatic | 110 | X-ray | Static | Mid- and low-thoracic and lumbar |
| Misenhimer et al. (1989) | Cadavers | 6 | Caliper / CT | Static | Thoracic and lumbar |
| Mitra et al. (2002) | Cadavers | 20 | Caliper, X-ray and CT | Static | Lumbar |
| Nissan and Gilad (1984; 1986) | Living, asymptomatic | 157 | X-ray | Static | Cervical and lumbar |
| Nowicki et al. (1996) | Cadavers | 31 | CT/ MRI | Dynamic | Lumbar |
| Olsewski et al. (1990) | Cadavers, living symptomatic | 100 | Caliper / X-ray, CT | Static | Lumbar |
| Panjabi et al. (1983) | Cadavers | 12 ? | Biomechanical | Dynamic | Lumbar |
| Panjabi et al. (1991a) | Cadavers | 12 | Biomechanical | Dynamic | Cervical |
| Panjabi et al. (1991b) | Cadavers | 12 | Biomechanical | Dynamic | Thoracic |
| Piera et al. (1988) | Living, symptomatic | 215 | X-ray | Static | Lumbar |
| Piontek and Zaborowski (1973) | Living patients | 185 | X-ray | Static | Cervical |


| Porter et al. (1978a) | Living, asymptomatic and symptomatic | 273 | Ultrasound | Static | Lumbar |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Porter et al. (1980) | Living, <br> asymptomatic and symptomatic | $550 ?$ | Ultrasound | Static | Lumbar |
| Ross et al. (1991) | Living, asymptomatic women | 1098 | X-ray | Static | Thoracic and lumbar |
| Saillant (1976) | Cadavers | 35 | Caliper? | Static | Thoracic and lumbar |
| Schmid et al. (1999) | Living, asymptomatic | 12 | MRI (open) | Dynamic | Lumbar |
| Stephens et al. (1991) | Cadavers | 20 | Molding technique and X-ray | Static | Lumbar |
| Stockdale and Finlay (1980) | Asymptomatic and symptomatic | $\begin{aligned} & +/- \\ & 100 \end{aligned}$ | Ultrasound | Static | Lumbar |
| Tibbetts (1981) | Cadavers | 200 | Caliper | Static | All |
| Ullrich et al. (1980) | Living, asymptomatic | 60 | CT | Static | Lumbar |
| Vaccaro et al. (1995) | Cadavers, asymptomatic patients | 36 | Caliper, CT | Static | Mid- / Lower thoracic |
| Van Schaik et al. (1985) | Living, symptomatic | 123 | CT | Static | L3-L5 |
| Weisz and Lee (1983) | Living, symptomatic | 75 | CT | Static | Low lumbar |
| Wildermuth et al. (1998) | Living, symptomatic | 30 | MRI, Myelography | Dynamic | Lumbar |
| Williams (1975) | Living, symptomatic | 100 | Myelography | Static | L3-L5 |
| Wolf et al. (1956) | Living, asymptomatic | 200 | X-ray | Static | Cervical |
| Zindrick et al. (1987) | Cadavers | $\begin{array}{r} 522- \\ 628 \end{array}$ | X-ray and CT | Static | Thoracic and lumbar |

The study of the bony outline of the lumbar spinal canal allows drawing limited conclusions about the size of the dural sac in the particular individual, since these two measurements are mostly well correlated (Larsen and Smith, 1980a). The measured osseous spinal canal dimensions may at least partially reflect the outline of its neural content. Spinal canal dimensions correlate well with spinal cord size in primates (MacLarnon, 1995; MacLarnon, 1996a). MacLarnon (1995) found that the white matter size, unlike the grey matter dimensions of the spinal cord, correlates with the osseous spinal canal dimensions. MacLarnon (1995) links partially the found differences of the spinal canals in various primates with their particular fore- and hind-limb innervation.

Therefore, if one finds an alteration of the osseous spinal outline this may have various functional implications as well. MacLarnon (1995) interprets the larger dimensions in more dominant limbs is more likely due to more or thicker nervous fibres instead of higher numbers of nerve cells. Whatever the underlying factor, such as increased myelination of fibres or more branched nervous fibres, an apparent increase of neural transmission speed of more developed limb innervation is visible in an altered white matter pattern and, following, the osseous dimensions of the vertebral column (MacLarnon, 1995). MacLarnon (1995) also found that any increased neuronal demand in a limb is more reflected in a more prominent development, within the spinal cord white matter, of the dorsal rather than the latero-ventral columns. This finding was interpreted by MacLarnon (1995) as a reflection of a possible higher proprioceptive demand rather than in numbers of motor neurons. Any increased neuronal supply in a limb seems, therefore, to be mainly influencing the sensory and fibrous part of the spinal cord and, therefore, be also present in an increased number of sensory neurons, to be found in the dorsal root ganglion that plays a crucial part in the etiology of lower back pain not in an
altered motor neuronal supply. Lassek and Rasmussen (1938) interpret the high variability of white spinal cord matter cross-sectional area as a result of inter-individual differences in fibre size and number. Spinal cord weight shows no clear correlation with locomotion pattern at least in primates (MacLarnon, 1996b). Surprisingly, the white matter seems to be more sensitive than the grey matter to such locomotive alterations. Humans have a higher amount of such white matter in their lumbar spinal enlargement than predicted for their body weight (MacLarnon, 1996b). It is well known that the number of neurons and the size of central nervous tissue decrease with age (Dunn, 1912). Earlier studies also showed a notable decrease of the myelinated spinal nerve root fibres with age (Dunn, 1912; Corbin and Gardner, 1937). Furthermore, it is also well known that muscle mass, represented by robusticity in skeletal specimens, influences the number and size of nerve fibres (Dunn, 1912). For example, the size of the spinal cord and brain parts are positively influenced in growing cats undergoing physical training (Agduhr, 1917), at least for the regions that are innervating the trained muscles. Additionally, Dunn (1912) reports for albino rats a correlation of size and number of cervical nerve root fibres with increased weight, but also with age to a certain point, before the senile fibre size decrease start. Furthermore, he suggests a correlation between nerve root calibre and size of tissue innervated. Corbin and Gardner (1937) also found such a clear correlation between muscle mass and number of ventral root fibres in the spinal column of selected individuals.

## Spinal pathologies - especially lower back pain

The vulnerability of the human back produces various neurological and orthopaedic pathologic conditions (Simmonds, 1903; Bailey and Casamajor, 1911;

Willis, 1924; Jacobi, 1927; Putti, 1927; Willis, 1929; Blumensaat and Clasing, 1932; Philipp, 1932; Samuel, 1932; Junghanns, 1933; Larmon, 1944; Magnuson, 1944; Brain, 1948; Pallis et al., 1954; Verbiest, 1954; Gill and White, 1955; Nathan et al., 1960; Roaf, 1960; Epstein et al., 1962; Burrows, 1963; Epstein et al., 1964; Hurxthal, 1968; Jones and Thomson, 1968; Dommisse, 1974; Swedborg, 1974; Veleanu, 1975; MacGibbon and Farfan, 1979; Ciric et al., 1980; Park, 1980; Crock, 1981; Kirkaldy-Willis et al., 1982; Dorwart et al., 1983; Ogino et al., 1983; Louis, 1985; Resnick, 1985; Gaskill et al., 1991; Jankauskas, 1992; An and Glover, 1994). Furthermore, one has to remember that the occurrence of some spinal pathologies are inter-correlated with each other (Swedborg, 1974).

Low back pain and other severe clinical symptoms, such as radiculopathy, are extremely common (Brown, 1975; Kelsey and White, 1980; Macdonald et al., 1984; Hartvigsen et al., 2001; Stebler et al., 2001) and cause enormous socio-economic costs in modern societies (Macdonald et al., 1984; Gaskill et al., 1991; Maniadakis and Gray, 2000). Therefore, approaches to determine their possible etiologies are numerous (Bailey and Casamajor, 1911; Willis, 1924; Putti, 1927; Willis, 1929; Blumensaat and Clasing, 1932; Philipp, 1932; Mixter and Barr, 1934; Larmon, 1944; Magnuson, 1944; Brain, 1948; Huizinga et al., 1952; Pallis et al., 1954; Gill and White, 1955; Epstein et al., 1962; Burrows, 1963; Epstein et al., 1964; Nachemson, 1966; Salamon et al., 1966; Jones and Thomson, 1968; Brown, 1975; Ramani, 1976; Eisenstein, 1977; Kikuchi et al., 1977; Porter et al., 1978a; MacGibbon and Farfan, 1979; Nachemson et al., 1979; Ciric et al., 1980; Eisenstein, 1980; Larsen and Smith, 1980a; Larsen and Smith, 1980b; Porter et al., 1980; Crock, 1981; Hasue et al., 1983; Ogino et al., 1983; Panjabi et al., 1983; Weisz and Lee, 1983; Jungers, 1984; Kikuchi et al., 1984; Macdonald et al., 1984; Rydevik et al.,

1984; Vanderlinden, 1984; Clark et al., 1985; Weinstein, 1986; Heliövaara, 1987; Porter et al., 1987; Porter and Pavitt, 1987; Rauschning, 1987; Hoyland et al., 1989; MayouxBenhamou et al., 1989; Yoo et al., 1992; Yoshida et al., 1992; Ebraheim et al., 1996; Nowicki et al., 1996; Leboeuf-Yde et al., 1997; Schmid et al., 1999; Fujiwara et al., 2001; Harrington et al., 2001; Hartvigsen et al., 2001; Cinotti et al., 2002; Al Faraj and Al Mutairi, 2003; Murrie et al., 2003) and the clinical and diagnostic impact of low back pain has been described for more than one hundred years, as already reviewed earlier (Dyck, 1984; Rüttimann, 1990; Wiltse, 1991; An and Glover, 1994).

Various radiological techniques, such as conventional X-ray, ultrasound, myelography or CT-scanning, can be used in clinical situations to address the size of the neural pathways and vertebral bodies (Burrows, 1963; Hurxthal, 1968; Williams, 1975; Ramani, 1976; Porter et al., 1978a; Porter et al., 1978b; Larsen and Smith, 1980a; Park, 1980; Porter et al., 1980; Stockdale and Finlay, 1980; Hibbert et al., 1981a; KirkaldyWillis et al., 1982; Legg, 1982; Weisz and Lee, 1983; Drinkall et al., 1984; Legg and Gibbs, 1984; Macdonald et al., 1984; Bolender et al., 1985; Gallagher et al., 1988; Hedlund and Gallagher, 1988; Minne et al., 1988; Davies et al., 1989; Schmid et al., 1999) or pedicle dimensions (Zindrick et al., 1987; Krag et al., 1988; Marchesi et al., 1988; Banta et al., 1989; Misenhimer et al., 1989; Olsewski et al., 1990; Hou et al., 1993; Vaccaro et al., 1995; Kothe et al., 1996; Ebraheim et al., 1997; Karaikovic et al., 1997; Mitra et al., 2002). Lumbar spine imaging counts for approximately 4\% of all X-ray facility workloads (Park, 1980), with a lot of them dealing with lower back pain issues.

Imaging data, gained even with most sophisticated techniques such as advanced CT-scanning and MRI, differ slightly from data obtained in situ. Black et al. (1991) and Hermann et al. (1993) remind that morphological measurements obtained from
conventional radiographs may differ depending on the positioning of measuring landmarks. Jones and Thomson (1968) recommend, based on their experience in clinical cases, the use of the vertebral canal to vertebral body ratio in plain X-rays as a supplementary aid. This recommendation was followed in various studies e.g., in a myelographic study on the narrow lumbar spinal canal by Williams (1975) or in an osteometric study by Kikuchi et al. (1977). No difference between pedicle measurements obtained by either conventional X-ray or CT scanning was found by Zindrick et al. (1987), a statement mostly supported by Krag et al. (1988) too. Karaikovic et al. (1997) also mentioned that there is no relevant difference between caliper based measurements and CT data of the same spinal structure. Mitra et al. (2002) found slightly different values of various pedicle dimensions for X-ray and CT-scanning in comparison to direct measurements, similar to Misenhimer et al. (1989); whereas Marchesi et al. (1988) did not found any significant difference. Olsewski et al. (1990) report mostly significant differences between osteometric and X-ray measurements of various lumbar pedicle dimensions.

Spinal stenosis is a clinical syndrome, which originates from a narrowing of the spinal canal, the lateral recess or the neural foramen as a result of bony and / or soft tissue alterations (Bailey and Casamajor, 1911; Putti, 1927; Larmon, 1944; Magnuson, 1944; Brain, 1948; Pallis et al., 1954; Verbiest, 1954; Epstein et al., 1962; Burrows, 1963; Epstein et al., 1964; Arnoldi et al., 1976; Kikuchi et al., 1977; Porter et al., 1978a; Porter et al., 1980; Crock, 1981; Kirkaldy-Willis et al., 1982; Dorwart et al., 1983; Hasue et al., 1983; Ogino et al., 1983; Postacchini et al., 1983; Weisz and Lee, 1983; Bose and Balasubramaniam, 1984; Kikuchi et al., 1984; Rydevik et al., 1984; Vanderlinden, 1984;

Bolender et al., 1985; Rauschning, 1987; Lee et al., 1988; Hoyland et al., 1989; An and Glover, 1994; Nowicki et al., 1996; Fujiwara et al., 2001).

Radiological abnormalities of the cervical spine can be found frequently and in general more commonly in men (Pallis et al., 1954). Roughly, $75 \%$ of the individuals aged 50 years and above show a narrowing of the spinal canal due to various underlying conditions, such as osteophytes or vertebral subluxation. Surprisingly, in such a sample of individuals without neurological symptoms, a similar fraction of adults showed radiological signs of foraminal narrowing and even more had signs of a narrowed intervertebral disc space or marginal osteophytes on the anterior vertebral body border (Pallis et al., 1954). In an unselected sample of individuals who underwent myelographic imaging, Williams (1975) found a total of $3 \%$ narrow lumbar spinal canals. In a Danish longitudinal study assessment, investigated by Hartvigsen et al. (2001), it was found that heavy work load is important for the occurrence of low back pain and sedentary work acts protectively. Hartvigsen et al. (2001) discussed this result with regard to the "healthy worker effect", which confuses findings of cross-sectional studies on the prevalence of lower back pain, due to the self-selection process of healthier individuals remaining in their job; a bias occurring in form of a migration between possible exposure groups. Heliövaara (1987), as already mentioned above, found a correlation between herniated lumbar intervertebral disc and body height as well as body mass in males.

Classification of the spinal stenosis etiology usually differentiates between the congenital-developmental and the acquired forms (Arnoldi et al., 1976). Most patients are approximately $35-65$ years old, with the majority being over 50 years, and express various clinical symptoms and signs such as senso-motoric defects, dysfunction of the bladder, gait instability and radicular pain. A clinical sample of a general practice in rural

England showed a slightly higher, but statistically not significant, frequency of low back pain in males with $54 \%$ of all 193 cases and a mean age for patients of 45 years (Drinkall et al., 1984). In a sample investigated by Harrington et al. (2001) the average age of symptomatic patients was 43 years for men and 44 years for women, respectively. Nowicki et al. (1996) found in a cadaver sample the stenotic intervertebral foramen to be most frequent at L5 / S1, whereas the occult or resolved intervertebral foramen showed no preference within the lumbar vertebral levels. Eisenstein (1977) found in a skeletal sample a total of over $6 \%$ with suggested stenosis in at least one of the two main spinal canal diameters.

Major etiologies for spinal stenosis are congenital or degenerative reasons, rather than tumorous conditions or traumatic pathologies. One possibility is disc herniation, which occurs commonly in the lower lumbar spine at the postero-lateral border of the disc and alters the intervertebral foramen size. Pallis et al. (1954) describe osteoarthritis to be the main cause of foraminal stenosis.

Neurologic symptoms may be caused either by direct nerve impingement e.g., the nerve root or by compression of adjoining vascular structures (Bailey and Casamajor, 1911; Putti, 1927; Brain, 1948; Dommisse, 1974; Rauschning, 1987; Hoyland et al., 1989; Gaskill et al., 1991). Rydevik et al. (1984) propose an etiological model of initial trauma due to e.g., herniated disc, causing oedema and other acute and chronic effects including local ischemia, which finally leads to a dysfunction of the nerve fibres.

These etiologies have been shown in various clinical reports (Bailey and Casamajor, 1911; Putti, 1927; Mixter and Barr, 1934; Brain, 1948; Epstein et al., 1962; Epstein et al., 1964; Jones and Thomson, 1968; Ciric et al., 1980; Kirkaldy-Willis et al., 1982; Dorwart et al., 1983; Ogino et al., 1983; Weisz and Lee, 1983; Vanderlinden,

1984; An and Glover, 1994; Avrahami et al., 1994; Jeanneret and Jeanneret, 2002); since the first report of nerve root compression due to osteoarthritis and in the absence of tumorous or fracture etiology has been published (Bailey and Casamajor, 1911). This early report already highlighted the frequent involvement of the intervertebral foramen in such cases of spinal neural compression. Huizinga et al. (1952) label, due to the various de facto relative morphological approaches trying to clearly define it, clinical stenosis to be rather a non-absolute concept. The shape and partially size of the vertebral endplate was found to influence the prevalence of herniated intervertebral discs in the low lumbar spinal region (Harrington et al., 2001). Harrington et al. (2001) have linked a circularly shaped vertebral endplate, with its increased anular tension forces together with acting force vectors especially in large males, to such pathologies. They did not find a correlation between individual stature, weight or body mass index and the presence of a herniated low lumbar intervertebral disc. Harrington et al. (2001) also discuss if an "inherited morphologic factor" may be involved in this etiological puzzle.

A possible etiological influence of the extrinsic vascular supply in the pathogenesis of spondylotic myelopathy was raised by Ogino et al. (1983). Brain (1948) argues that the initial alterations by protruded intervertebral discs are of circulatory nature most likely involving the venous system by causing an oedema. The arterial system, according to him, either would be involved indirectly at a later stage or will be implicated directly by mechanical compression due to protrusion or osteoarthritis. Magnuson (1944) mentions inflammation e.g., of the joint capsules and the ligamentum flavum, as a possible cause for lower back pain. Hasue et al. (1983) list intraneural fibrosis of the spinal nerve roots and ossifications of the ligamenta flava and posterior longitudinal ligaments as further possible etiologies causing lower back pain and radicular symptoms.

Kikuchi et al. (1984) already studied the pathophysiology of radicular pain. They discuss, based on clinical as well as cadaveric cases, a plethora of possible etiologies of congenital, acquired, or both combined backgrounds. Vanderlinden (1984) reports selected clinical cases of compression of the dorsal root ganglion causing sciatic pain. Rauschning (1987) mentions disc bulging, altered ligamentum flavum and degeneratively changed facet joints as main contributors in narrowed lumbar root canals, similar to the reported findings by Nowicki et al. (1996). Putti (1927) highlights the mismatch in size between the intervertebral foramen and the exiting nerve root, making especially the lowest lumbar levels vulnerable to clinical conditions. Hoyland et al. (1989) propose the hypothesis that venous obstruction e.g., due to a herniated disc, may cause periradicular fibrosis and subsequently clinical symptoms. This is similar to an etiological multifactor model proposed by Rydevik et al. (1984). Already Gill and White (1955) reported the etiological connection between the presence of a transitional last lumbar vertebra and the occurrence of lower back pain. Also MacGibbon and Farfan (1979) found a link between the presence factors such as a transitional lumbar vertebra, rudimentary ribs or size of transverse process and lower lumbar degeneration. The shape of the lumbar vertebral endplate was found to be linked with disc herniation (Harrington et al., 2001). Metabolic etiologies, such as Vitamin D deficiency (Al Faraj and Al Mutairi, 2003), correlate with lower back pain as well.

Various reports already examined the possible morphologic difference between healthy and pathologic individuals with regard to lower back pain. Drinkall et al. (1984) report a significant difference of the sagittal spinal canal diameter for patients with lower back pain and control groups, with the former one having narrower values. Stockdale and Finlay (1980) also found in their ultrasound based study differences between
asymptomatic and symptomatic individuals with the latter ones having a narrower oblique sagittal diameter at L5. Larsen and Smith (1980a; 1980b) did not report in a myelographic study any altered lumbar vertebral body diameters in lower back pain patients in comparison to a neutral control group, making the involvement of spinal canal size changes to be found in such clinical case independent of the main vertebral body dimensions. In contrast, Ramani (1976) describes differences in vertebral canal / vertebral body ratio between asymptomatic and symptomatic individuals in an X-ray based study. Porter et al. (1980) emphasise in their ultrasound study that the size of the spinal canal is more crucial in cases of disc symptomatology and neurogenic claudicatio than in classic root entrapment syndrome. Stephens et al. (1991) found a change in intervertebral foramen size from either round or auricular in shape to being more of auricular and teardrop shape in cases of spinal pathologies; see also Figure 1.

Foraminal stenosis is defined as the narrowing of the bony exit of the nerve root Patients may have radicular pain with or without sensori-motor findings and symptoms usually exacerbated with extension movements of the spine (Yoo et al., 1992; Inufusa et al., 1996; Humphreys et al., 1998; Chung et al., 2000). These radiculopathies are caused, among others, by ischemia or direct nerve root impingement (Ciric et al., 1980; KirkaldyWillis et al., 1982; Resnick, 1985; Group and Stanton-Hicks, 1991). Hoyland et al. (1989) link the mechanical obstruction of the intervertebral foramen venous plexus the subsequent ischemic related periradicular fibrosis, which would finally cause clinical symptoms.

The quantitative and qualitative assessment of the influence of static and dynamic body positions on the dural sac and the intervertebral foramina has been reported for various radiographic techniques (Verbiest, 1954; Epstein et al., 1964; Salamon et al.,

1966; Jones and Thomson, 1968; Park, 1980; Kirkaldy-Willis et al., 1982; Vital et al., 1983; Weisz and Lee, 1983; Bolender et al., 1985; Liyang et al., 1989; Nowicki et al., 1996; Wildermuth et al., 1998; Chung et al., 2000; Fujiwara et al., 2001). A correlation between the collapse of the intervertebral disc height and its possible clinical symptoms has already been shown as well (Hasegawa et al., 1995; Lu et al., 2000). Nevertheless, Cinotti et al. (2002) doubt the alteration by a narrowing of the disc space and the intervertebral foramen width reduction. According to them, it influences mainly the height, whereas the intervertebral foramen width is mostly correlated with the sagittal diameter of the spinal canal and the pedicle length. Nowicki et al. (1996) emphasise the fact that an abnormal intervertebral dise is significantly correlated with stenotic foramen in the lumbar cadaver spine. Salamon et al. (1966) link the acute nerve root pain rather to herniated discs compromising the fossa below the nerve root than to the inflammation of the root itself.

## Clinical and dynamic assessment of the spinal neural pathways

No exact characteristics exist, which mark the transition from asymptomatic to symptomatic in the spine (Wolf et al., 1956; Burrows, 1963; Postacchini et al., 1983; Porter et al., 1987; Humphreys et al., 1998). Clinical evaluations of the osseous spinal neural pathways have been reported in a plethora of studies. One of the changes to be associated with spinal stenosis seems to be inferior facet hypertrophy, with the major changes occurring in the middle of the intervertebral foramen (Humphreys et al., 1998). According to Humphreys et al. (1998) the spinal nerve is forced, due to this inferior facet hypertrophy to the superior, more frequently, or to the inferior part of the foramen. Since these foramen areas are small, nerve compression and, consequently, clinical symptoms
can occur. Kirkaldy-Willis et al. (1982) stress the fact that the exiting spinal nerve root is especially vulnerable while passing below the pedicle, while Putti (1927) emphasises the finding that the most lower lumbar levels are particularly susceptible to such a neural entrapment. The particular anatomy of the cervical spine in relation to possible pathologies involving neural pathways has already been addressed by Veleanu (1975), whereas Crock (1981) and Bose and Balasubramaniam (1984) addressed it for the lumbar spine.

As one example, the inter-individual variability of the transverse spinal canal diameter varies, apparently mostly depending on vertebral level rather than age or sex (Hinck et al., 1966). From a clinical perspective, the interpedicular distance increases in cases of spinal tumors (Elsberg and Dyke, 1934), whereas Drinkall et al. (1984) found smaller values of lumbar sagittal spinal canal dimensions for lower back pain sufferers than for control groups. Similar are the findings for a coal miners sample, as presented by Macdonald et al. (1984), where smaller spinal canal diameters were correlated with higher lower back pain morbidity. Additionally, in an ultrasound study by Porter et al. (1978a) the symptomatic individuals showed significantly smaller oblique sagittal spinal canal diameters than the asymptomatic ones. But, according to Drinkall et al. (1984), the sagittal spinal canal diameter cannot be used for the management or the prognostic value of lower back pain. Furthermore, Legg and Gibbs (1984) could not find a clear link between individual anthropometric characteristics such as stature and body weight and spinal canal size. Stockdale and Finlay (1980) describe in their ultrasound based study differences in symptomatic versus asymptomatic individuals especially in form of a narrower sagittal spinal canal diameter at L5 in the latter group. In another large ultrasound study, Porter et al. (1980) found that the size of the spinal canal does not
correlate with occupation, therefore, an altered spinal canal might be more likely due to an ontogenetic rather than degenerative etiology. In general, symptomatic individuals show more often in ultrasound imaging a narrow spinal canal than their asymptomatic counterparts (Porter et al., 1978a).

Furthermore, age, associated disc pathology, a trefoil-shape of the canal, degenerative vertebral bars, soft tissue alterations and instability contribute as well (Porter et al., 1978a; Porter et al., 1980). A strong correlation exists between vitamin D deficiency and lower back pain in areas with such endemic vitamin shortage (Al Faraj and Al Mutairi, 2003). Also Macdonald et al. (1984) found that smaller spinal canal dimensions are linked with higher back pain morbidity. The size of the oblique sagittal spinal canal dimension correlates with the treatment in symptomatic individuals but the size of the L5 lumbar canal does not correlate with the intra-operative findings (Porter et al., 1978a). In an X-ray based study, Ramani (1976) reports differences in spinal canal / vertebral body ratios between asymptomatic and symptomatic individuals, with the latter ones having narrower spinal canals. As already mentioned above, Dommisse (1974) emphasises that the narrowest osseous spinal canal dimensions in the mid-thoracic region correlate with the region where the vascular supply for the spinal cord is the least, causing in some cases paraplegia. Eisenstein (1977) reports an uniform shape and capacity of the lumbar spinal canal, regardless of sex or inter-populational background. No significant difference, between a symptomatic and a control group, in lumbar vertebrae diameters have been reported by Larsen and Smith (1980b). On the other hand, the occurrence of the anatomical variation of the trefoil shaped lumbar spinal canal can vary between sex and inter-populational groups (Eisenstein, 1980). In general, Kikuchi et al. (1977)
highlighted already the fact that the lumbar osseous spinal canal shows a high variability in size and shape.

A plethora of cut-off points for pathologic spinal neural pathways has been proposed so far (Elsberg and Dyke, 1934; Larmon, 1944; Wolf et al., 1956; Epstein et al., 1964; Hinck et al., 1966; Williams, 1975; Kikuchi et al., 1977; Porter et al., 1978a; Ullrich et al., 1980; Kirkaldy-Willis et al., 1982; Bolender et al., 1985; Hasegawa et al., 1995; Lee et al., 1995; Inufusa et al., 1996). Postacchini et al. (1983) doubt the value of existing cut-off points in neural canal size. According to their findings, there is also no clear correlation between the presence of a trefoil shape and the mid-sagittal dimension of the spinal canal. The depth of the lateral recess decreases caudally and seems to be linked to the shape of the neural canal and the pedicle length. Furthermore, according to them the last two lumbar levels show the biggest normal variability. The interpedicular distance is always bigger than the mid-sagittal one, making the later one, according to Postacchini et al. (1983), the clinically more vulnerable. They also describe the presence of at least some relationship between the mid-sagittal neural canal dimensions and interpedicular distance and vertebral body size. Additionally, Postacchini et al. (1983) also found abnormally sized lateral recesses in cases of normal neural canal dimensions, and the lateral recess size in an individual with ontogenetically altered neural canal dimensions may be more easily affected in pathologic situations.

The overall high prevalence of radiologically detectable cervical spinal pathologies has been showed by Pallis et al. (1954). Surprisingly, after the age of 50 , neither the incidence nor the severity of canal or foraminal narrowing increased in his sample of patients without neurological symptoms. Beside age per se, they discuss other possible etiological factors such as spinal arteriosclerosis or fibrosis as well.

The concept of "spinal reserve capacity", as proposed by Weisz and Lee (1983) for the lumbar spine, allows to correlate to a certain extent the absences of morphological reserve space with the ability of coping with pathological positional situations. In the elderly and in cases of spinal canal narrowing, when the spinal reserve capacity is reduced, as proposed by Weisz and Lee (1983), clinical symptoms of lower back pain may occur. Also the lowest lumbar level seems to show the highest variability of the spinal canal reserve capacity, which may defy the correlation of measured osseous diameters and, based on this, assumed spinal cord morphometry (Weisz and Lee, 1983). How far spinal stenosis as a clinical entity is a result of lack of canal capacity or more of its neural content is still unclear (Huizinga et al., 1952). Dissimilar patterns and significant differences can be found in motion of patients and healthy subjects (Dvorak et al., 1993).

Flexion, extension, lateral bending and axial rotation change the relationship of the ligamentum flavum and the intervertebral disc to the spinal nerve (Vital et al., 1983; Louis, 1985; Liyang et al., 1989; Mayoux-Benhamou et al., 1989; Nowicki et al., 1996; Schmid et al., 1999; Fujiwara et al., 2001). The non-pathologic spine shows a range in motion from flexion through extension of approximately $70^{\circ}$, with the majority of it being localised in the lowermost spine (Park, 1980). The thickness of the ligamentum flavum increases bilaterally in extension (Vital et al., 1983; Nowicki et al., 1996; Schmid et al., 1999; Chung et al., 2000; Fujiwara et al., 2001). Besides a described asymmetry of the right and left foramen, Mayoux-Benhamou et al. (1989) found a significant decrease of the intervertebral foramen size in extension, whereas the flexion position shows the opposite. Similar findings of altered size in lumbar intervertebral foramen size have been reported by Schmid et al. (1999). According to them, after a modelled intervertebral disc
collapse, these positional differences were much smaller. Mayoux-Benhamou et al. (1989) report no significant differences of intervertebral foramen sizes at various lumbar levels. For the cervical spine, Yoo et al. (1992) described an increase in the foramen size caudally. Yoo et al. (1992) also stress the fact that ipsilateral rotation increases the narrowing of the intervertebral foramen. This is particularly important, according to them, since, most cervical spine movements are combined multi-planar ones. Fujiwara et al. (2001), Mayoux-Benhamou et al. (1989), Nowicki et al. (1996) and Yoo et al. (1992) addressed in dynamic cadaver studies the alterations of the intervertebral foramen dimensions in extreme extension, flexion and rotational pose, the major positional influences on human intervertebral foramen widths. Rauschning (1987) also examined the influence of positional movements on the lumbar intervertebral foramen in a cadaver based study. Liyang et al. (1989) showed, in a cadaver lumbar spine study, that in flexion not only the capacity of the spinal canal increased but also the length of the spinal canal and the posterior height of the intervertebral discs. Veleanu $(1972 ; 1975)$ reports the impact of rotational movements on the cervical spine and how the transverse process helps to block non-physiological positions. Whereas extreme form of flexion mainly causes high tensions within the posterior ligaments, extreme lordosis has a high impact on the apophyseal joints (Adams et al., 1994). Lumbar lordosis was not found to be linked with lower back pain (Murrie et al., 2003). Flexion of cervical (Yoo et al., 1992) or lumbar spine (Panjabi et al., 1983; Liyang et al., 1989; Nowicki et al., 1996; Schmid et al., 1999; Fujiwara et al., 2001) increases the dimension of the neural pathways, especially of the intervertebral foramina, whereas extension decreases it drastically. Nowicki et al. (1996) widely addressed the effect of body positions such as flexion, extension, lateral bending and axial rotation on the lumbar intervertebral foramen
dimensions, whereas Veleanu (1972; 1975) focused on the particular situation of movements in the cervical spine. Fujiwara et al. (2001) did a similar study on the impact of various body positions on the intervertebral foramen size in motion segments of the lumbar cadaver spine. In case of degenerative alterations, Panjabi et al. (1983) found a higher decrease in size in physiologic-dynamic situations, such as rotational movements, for intervertebral width than height.

The bulging of the intervertebral disc is, according to Reuber cited by Panjabi et al. (1983), in case of degenerative lumbar spine approximately 2 mm . An artificial collapse of the intervertebral disc, which anatomically influences the neural pathways less than a degenerative disc with subsequent fattening and protrusion, decreased the relative changes in relation to the two extreme positions (Mayoux-Benhamou et al., 1989).

Computer assisted simulation of narrowing of intervertebral disc space to determine the relationship between intervertebral disc height, which is greatest anteriorly, and the size of the intervertebral foramina, with a 1 mm narrowing leads to a reduction of $20 \%$ to $30 \%$ of the foraminal area (Lu et al., 2000). In a similar study by Cinotti et al. (2002), the artificial narrowing of the disc space caused mainly a decrease in intervertebral foramen height, rather than foramen width. The latter one was more linked to the sagittal diameter of the spinal canal or pedicle length.

The use of a chronic compression model in rats allowed Iwamoto et al. (1995) to explore the sequence of pathologic alterations in lower lumbar spinal compression. Surprisingly, at the very beginning of such a process, the epidural blood vessels are damaged and only later in the long-lasting process the nerve roots are injured.

Cross-sectional areas of the non-pathologic spinal cord in cadavers have been published earlier (Lassek and Rasmussen, 1938; Elliott, 1945; Kameyama et al., 1992).

Scoles et al. (1988) provide gold-standard data of the non-pathologic spinal canal dimensions in the macerated thoraco-lumbar spine. Bolender et al. (1985) provided radiological values of cross-sectional areas of the dural sac and spinal canal diameters in symptomatic patients. Inufusa et al. (1996) report a significant correlation between the mid-sagittal diameter of the spinal canal and its cross-sectional area on the lumbar level. Inufusa et al. (1996) report as normal value for the lumbar spinal canal an overall crosssectional area of $200 \mathrm{~mm}^{2}$. The measuring the mid-sagittal diameter, as done in their study, allows estimating overall canal size. These sizes show for the neural tissue no significant correlation with body weight but with body height, and a remarkable interindividual variation. The relative cervical cross-sectional area, according to Kameyama et al. (1992), is alike within individuals. According to Gepstein et al. (1991) the sagittal diameter of the spinal canal is the only parameter of a series of osseous vertebral dimensions, which correlates with the cross-sectional area of the spinal canal. Eisenstein (1977) recommends focusing on the absolute values in sagittal canal dimensions, which are more crucial than the transverse diameter or any ratios with the vertebral bodies. This view of mainly the sagittal diameter of the spinal canal being the clinically critical measurement, is also supported, at least for the cervical spine, by Wolf et al. (1956) or for the lumbar spine by Kikuchi et al. (1977).

A clear relationship between intervertebral foramen height and sagittal diameter of the spinal canal was reported by Epstein et al. (1964), which they declare to be a crucial factor, together with a tendency of narrowing in the lateral recess, in the occurrence of clinically relevant spinal diseases. In an earlier report, Epstein et al. (1962) discuss the importance of decreased lateral spinal canal recess size in the occurrence of clinical lower back symptoms. Such a variation in lateral recess size can be found, according to them in
approximately $10-15 \%$ of all individuals. The particular shape of the lateral recess has also been addressed widely by Kikuchi et al. (1977). Eisenstein (1977) summarizes in his lumbar spine study that the osseous narrowing of the spinal canal, as the only reason for spinal stenosis, may not be correct. Spinal stenosis will affect more the intervertebral foramen than the main vertebral canal. In another study by Eisenstein (1980), he rules out facet osteophytes or trefoil configuration of the lumbar spinal canal as main etiologies for nerve root compression.

The clinically crucial and unique patho-anatomical features of the intervertebral foramen have already been addressed by Magnuson (1944) and Rauschning (1987). Surprisingly, Magnuson (1944) found the root ganglion in fresh cadavers to fill out the vast majority of the foramen and, furthermore, he describes a high variability of the anatomy of the intervertebral foramen and its content. Hasegawa et al. (1995) found, in their cadaver study of the lumbar spine, a significant correlation between posterior intervertebral disc height and foramen height. Furthermore, they found a correlation between foraminal cross-sectional area and the nerve roots size. The ratio of these two measurements was higher, according to Hasegawa et al. (1995), in individuals with a possible nerve root compression. Additionally, in the possibly affected subgroup the posterior disc height as well as the foraminal height was generally smaller. As Putti (1927) already stated, there seems to be a mismatch between intervertebral foramen space and spinal nerve size particularly in the two lowest lumbar segments. Ebraheim et al. (1996) provided cadaver and macerated cervical intervertebral foramen dimensions acquired in neutral position, which can be used as reference data. In a cadaver study, Hoyland et al. (1989) suggest that mechanical occlusion of the intervertebral foramen venous plexus could lead via ischemia to periradicular fibrosis and, therefore, to clinical
symptoms. They report a positive correlation between the sizes of the venous plexus, which would be increased in cases of mechanically caused stasis, and the amount of neural fibrosis to be found in the intervertebral foramen. On the other hand, Rauschning (1987) found in cases of present disc bulging decreased diameters of the adjoining venous structures. In a recent skeletal series, Amonoo-Kuofi (1985) found a high degree of variation of the intervertebral foramen width, a decrease in size caudally in the lumbar region and a connection of its size to the sagittal diameter of the vertebral body. AmonooKuofi (1985) explains the fact that L 1 shows the largest sagittal neural canal diameter of all lumbar levels with various influences. The change of the thoracic kyphosis towards the lumbar lordosis, the lower end of the main spinal cord at this level and the fact that this seems to be a transition point from the more rigid thoracic spine to the movable lumbar section could all be possible reasons. In general, the morphometric pattern of the lumbar spinal canal and the lumbar intervertebral foramen are more related to alterations of laminae morphometry than with pedicle size (Amonoo-Kuofi, 1985). This view is also expressed by Eisenstein (1977), who traces mid-sagittal stenosis of the lumbar spinal column back to be a result of shortening of the lamina rather than of the pedicles.

A novel approach was selected by Porter et al. (1987) in relating clinically relevant narrowed spinal canal conditions and possible health and educational etiologies. The sub-sample of adult patients with a narrow sagittal spinal canal versus a sub-sample of individuals with a wide sagittal spinal canal showed more episodes of lower back pain, infections and trauma related attendances at their general practitioner but less episodes of allergies per year. No significant correlation was found with dermatological, gynaecological or psychological episodes and spinal canal size (Porter et al., 1987). Additionally, children showed a correlation between wider sagittal spinal canal size and
better school test scoring (Porter et al., 1987). Furthermore, workers with smaller spinal canal dimensions show in general a higher lower back morbidity (Macdonald et al., 1984).

## Historical perspectives of spinal disorders and morphometry

A historic perspective on the spinal morphology is still not widely used. In a archaeologic pilot study exploring the possible influences of individual hardship during growth on juvenile spinal canal dimension, Porter and Pavitt (1987) describe several significant links between individual skeletal or dental stress markers such as Harris lines, cribra orbitalia, porotic hyperostosis or dental hypoplasia. Noteworthy, they found a positive correlation between the decrease of mid-sagittal spinal canal size, which is the most important clinical diameter of spinal neural pathways, and the occurrence of Harris lines on most lumbar levels (Porter and Pavitt, 1987). Porter and Pavitt (1987) postulate that unknown factors acting on the foetal development of the individual spinal canal may also result in a susceptible immune system. Therefore, the latter could explain the link with the occurrence of Harris lines, since Harris lines are in general to be more frequently found in cases of severe acute infection or poor diet. The secular change of neural spinal pathways in a cultural transition period from a hunter-gatherer to a settled agricultural society in North America was examined by Clark et al. (1985). They found a slightly smaller sagittal spinal canal dimension in the thoracic and lumbar spine in the agricultural society, even after controlling for sex and age. For the transverse diameters, only females had smaller dimensions, whereas males had higher values than their hunter-gatherer counterparts. The agricultural males also had larger lumbar vertebral body heights; which was less expressed in the thoracic spine and with an opposite trend for females (Clark et
al., 1985). Clark et al. (1985) state that the lumbar sagittal spinal canal dimension is an excellent indicator for disrupted growth in individual's early life. This dimension is not correlated with tibial length, whereas transverse diameters are. Both, tibial length and vertebral body height did, according to the results by Clark et al. (1985) not change during a cultural shift. Since the thoracic spine completes more of its growth in the prenatal stage than the lumbar spine, it is not surprising that the first one shows stronger correlations between main spinal canal dimensions and vertebral body height (Clark et al., 1985). Clark et al. (1985) describe more correlations of various osteometric spinal assessments. Sagittal and transverse spinal canal diameters are correlated as high as transverse spinal canal diameter and age groups. Furthermore, transverse spinal canal diameter is correlated with sex, unlike the sagittal diameter. Posterior vertebral body height is correlated with sex and cultural transition. Finally, anterior vertebral body height is also correlated with cultural change and with posterior vertebral body height. Clark et al. (1985) also found that intervertebral foramen width is only correlated with sagittal diameters of the spinal canal but not with the transverse diameter of the spinal canal or with vertebral body height. These correlations seem not to be clouded by variables such as sex, age or culture (Clark et al., 1985). The shift from a protein-rich hunter-gatherer society to a protein-poorer agricultural life style, as examined by Clark et al. (1985), results in smaller spinal canals. This is more strongly expressed in the sagittal dimension, which is more vulnerable to influences in the pre-and neonatal growth period and more visible in the lumbar spine (Clark et al., 1985).

In an osteometric studies including two Early Medieval samples from present Poland, Piontek (1973), found a strong correlation for all vertebral levels between sagittal and transverse diameters, but no such significant relationship exists for the majority of all
vertebral levels between these two diameters measurements and the vertebral body height. Piontek (1973) describes, with just a few exceptions, a correlation between the transverse vertebral body diameter and the transverse spinal canal diameter. This seems, according to him, not to be true for the sagittal dimensions of these two structures. Another study briefly focusing on historic spinal morphometry is the one by Tatarek (2001).

From a historic perspective, changes in the prevalence of degenerative spinal diseases have been linked to possible alterations in cultural and, therefore, mechanical loads (Larsen, 1980; Larsen, 1981; Larsen, 1982; Bridges, 1991). Larsen (1980; 1981; 1982) mentions a significant decrease of cervical and lumbar degenerative joint diseases, with a reduction of up to $27 \%$ of its prevalence, from a pre-agricultural hunter-gatherer society to a settled corn dependent agricultural community, both located in the same American costal area. He explained this as being related to a decrease in mechanical stress due to the change in life-style (Larsen, 1980; Larsen, 1982).

The osteometric definitions of spinal landmarks allow comparison of data with various geographic and historic backgrounds (Aeby, 1879; Anderson, 1883; Rosenberg, 1899; Wetzel, 1910; Hasebe, 1913; Thomson, 1913; Cyriax, 1920; Stefko, 1926; Jacobi, 1927; Martin, 1928; Frey, 1929; Matiegka, 1938; Wood-Jones, 1938; Lanier, 1939; Huizinga et al., 1952; Francis, 1955; Davis, 1961; Schultz, 1961; Stewart, 1962; Epstein et al., 1964; Kaliszewska, 1966; Hurxthal, 1968; Piontek and Budzynska, 1972; Piontek and Zaborowski, 1973; Dommisse, 1974; Dommisse, 1975; Heim, 1976; CwirkoGodycki and Swedborg, 1977; Eisenstein, 1977; Kikuchi et al., 1977; Riegerova, 1979; Tibbetts, 1981; Postacchini et al., 1983; Nissan and Gilad, 1984; Amonoo-Kuofi, 1985; Trinkaus, 1985; Cotterill et al., 1986; Gilad and Nissan, 1986; Nakashima, 1986; Nissan and Gilad, 1986; Berry et al., 1987; Porter and Pavitt, 1987; Minne et al., 1988; Scoles et
al., 1988; Gepstein et al., 1991; Sanders, 1991; Jankauskas, 1994; Lee et al., 1995; Tominaga et al., 1995; Xu et al., 1995; Sanders, 1998; Tatarek, 2001).

Nevertheless, as Katz et al. (1975) stated at least for the cervical spine, there is not much data available e.g., on vertebral body size. Scoles et al. (1988) highlight this fact in terms of the absence of knowledge on the thoraco-lumbar spinal morphometry, despite its crucial need of it e.g., in orthopaedic surgery

This lack of morphometric information is striking especially if one is aware of the importance, such as in modern clinical medicine, of human spinal disorders linked with morphologic mal-adaptations. Furthermore, this lack of knowledge on spinal short-term evolution is surprising in particular for the macerated intervertebral foramen and neural canal dimensions. At least for the cervical intervertebral foramen dimensions one can rely on data published by Ebraheim et al. (1996). Nevertheless, the well-established standard measurement schemes by Hasebe (1913) and Martin (1928) provided definitions for the measurement of the spinal canal diameters only.

Surprisingly, no study including historic specimens paid full attention to possible secular trends in spinal neural pathways dimensions. The assessment of the intervertebral foramen is crucial as its alterations play a significant role in the pathophysiology of radiculopathy or spinal stenosis, main etiologies of back pain, which, cause enormous costs in industrialized countries health care (Maniadakis and Gray, 2000). No study exploring a possible secular alteration of the intervertebral foramen in postindustrialization societies exists. Since the inverted teardrop-like shape of the superior and inferior soft tissue parts of the intervertebral foramen space (Swanberg, 1915; Panjabi et al., 1983; Vital et al., 1983; Rauschning, 1987; Inufusa et al., 1996) is different from its osseous outline, earlier proposed clinical measurements (Ciric et al., 1980; Mayoux-

Benhamou et al., 1989̄; Humphreys et al., 1998; Chung et al., 2000) cannot be easily reproduced on dry bone specimens. Hitherto, the assessment of the macerated intervertebral foramen was done for just one or two of the three main spinal regions (Clark et al., 1985; Ebraheim et al., 1996; Boszczyk et al., 2001) or explored in a prehistoric sample (950-1300 A.D.) only (Clark et al., 1985).

Microevolutionary trends of specific spinal pathologies such as spina bifida occulta (Henneberg and Henneberg, 1999), ossification of the posterior longitudinal ligament (Hukuda et al., 2000), spondyloarthropathy (Rothschild and Rothschild, 1996), vertebral body size (Clark et al., 1985; Jankauskas, 1994) or neural canal dimensions (Piontek and Budzynska, 1972; Clark et al., 1985; Tatarek, 2001) have been published. On the other hand, Jankauskas (1992) found no clear secular trend in the occurrence of spinal pathologies such as osteophytes or Schmorl's nodes.

Another important spinal neural pathway - the size of the neural canal - has been investigated among others by Tatarek (2001). Upon examination of lumbar region only, she found, significant variation in relation to sex, individual age, geographic origin and historic background of the sample. Specimens from the $19^{\text {th }}$ century were analysed for their lumbar spinal canal size by Huizinga et al. (1952), but without a secular perspective.

Correlations of the main spinal diameters with vertebral body diameters and long bone measurements have been shown in an archaeological sample by Hibbert et al. (1981b). According to their study, the interpedicular distance and the spinal canal area showed such correlations, whereas the mid-sagittal diameter of the vertebral canal did not. A possible relation between juvenile neural canal size and the occurrence of individual stress markers, such as dental hypoplasia or Harris lines has been investigated by Porter and Pavitt (1987) on two historic samples. They found e.g., a correlation
between the dental hypoplasia in an individual and a small lumbar interpedicular distance or between the presence of a small sagittal diameter of the spinal canal and the prevalence of Harris line.

## The non-human spine

Various functional and morphological aspects of the non-human spinal column have already been addressed (Keith, 1902; Wetzel, 1910; Nathan et al., 1964; Mehler, 1969; Farfan, 1978; Cotterill et al., 1986; Fox and Wilczynski, 1986; Pun et al., 1987; Shapiro, 1993; MacLarnon, 1995; Shapiro, 1995; Tominaga et al., 1995; MacLarnon, 1996a; MacLarnon, 1996b; Sanders, 1998; Boszczyk et al., 2001; Kandziora et al., 2001; Argot, 2003). Animal spines have been used as models for the human spine for various reasons. Both, the cervical spine of sheep (Kandziora et al., 2001) as well as the one of the baboons, at least as highlighted by Tominaga et al. (1995) show to a certain degree similarities to the human spinal anatomy.

The increase in spinal cord size during primate evolution is explained by MacLarnon (1996a) most likely due to increased complexity in locomotion. Both, Homo sapiens and Pan troglodytes show a sudden end of the spinal cord, most likely due to the absence of any tail. The expansion of the corticospinal tract, only to be found in mammals and important for fast and smooth activities (Towe, 1973), and of the dorsal columns, consisting of afferent sensory nerves, within the spinal cord, could be the reasons for the increase in cervical and thoracic spinal cord dimensions during primate evolution (MacLarnon, 1996a). The human lumbar spinal canal shows, according to MacLarnon (1995), even more particularities, such as the lack of any decrease in diameter towards its caudal end. MacLarnon (1995) explains this as being a result of intrinsic and / or extrinsic
influences, such as bipedialism, acting on the vertebral canal. The osseous human spinal canal, therefore, does not reflect its neural content as it does in other primates. This is only true for the lumbar segment, since for the more cranial parts such a correlation apparently does exist (MacLarnon, 1995).

Surprisingly, in comparison with other primates humans tend to have large and wide pedicles in relation to their pedicle length and body size (Shapiro, 1993). At least this distinctive human pedicle morphology may be resulting from the unique pattern of locomotion (Shapiro, 1993). Furthermore, human lumbar pedicle morphology may echo bending forces and may by influenced by the presence of the ilio-lumbar ligament (Davis, 1961; Shapiro, 1993).

The particular spinal anatomy with its bulky lower back muscles, the functional lordosis and a more dorsal displacement of the posterior spinal ligaments, makes humans able to handle much higher weight bearing than their primate relatives (Farfan, 1978).

As a side issue of this work, which will not be further addressed, CT scans of some selected ape cadavers have been performed to illustrate the in vivo spinal morphology, and in particular the relation between vertebral body height and intervertebral disc dimensions in the lumbar spin; see also Figure 2.

a) Chimpanzee (Pan troglodytes)

b) Orangutan (Pongo pygmaeus)

Figure 2: CT based 3-D-surface reconstructions of thoracic and lumbar spines of selected ape cadavers

c) Gibbon (Hylobates, species unknown)

Figure 2 (cont.): CT based 3-D-surface reconstructions of thoracic and lumbar spines of selected ape cadavers

Earlier reports (Keith, 1902; Schultz, 1961) addressed the variation in the nonhuman spine in comparison with its situation in humans. Bohart (1929) already mentioned the fact, that sacralisation of the lower lumbar spine is not only very frequent in humans, but even more often to be found in some species of monkeys. The primate spinal cord does not differ from the one in other mammals with regard to its size / body weight ratio, also there is just a small variation in relative cord length in primates (MacLarnon, 1996b). Primate spinal cord weight and length are strongly correlated with body weight (MacLarnon, 1996b). Shapiro (1993) examined the features of the vertebral body surface areas and pedicle dimensions among primates including an Australopithecus africanus individual and anatomically modern human samples. The influence of unique human posture and locomotion was in general found to be weaker than expected (Shapiro, 1993). To summarize, Farfan (1978) concludes that the human spine is from an evolutionary perspective a well adapted structure.

## Major evolution of the human spine and its physiological adaptations

The human vertebral column has evolved from the ones of other primates by adaptations possibly linked with changes in life-style and environmental habitat. Boszczyk et al. (2001) highlights the fact that humans, in comparison to their closest living relative, the chimpanzee, show a functional adaptation to the higher axial loading, mostly by an increase in the transverse rather than the sagittal vertebral body diameter. This allows humans to have a relatively large surface area, especially in the lumbar spine. Mehler (1969) mentions not only the increase of the spino-thalamic tract during mammal evolution, but also as a cut-off between the neuronal tract of humans and chimpanzee
versus other primate and non-primate spines, the absence of the spino-olivary connections in the formers, with this fact possibly being a reflection of bipedal locomotion.

Another striking evidence of unique human neuronal evolution has been reported as the loss of a sialic acid (Varki, 2001). Other possible examples of biochemical evolution in humans (Rühli and Henneberg, 2001; Rühli and Henneberg, 2002) will be addressed later in this work.

The particularities of the human lumbar spine in relation to it closest relatives have been highlighted by Farfan (1978), by emphasizing the great functional variability due to e.g., greater thickness of lumbar discs. Schultz (1961) pointed out, that the human spine shows, due to the particular posture and its related mechanical implications, very broad lumbar vertebrae. The reduction of the nuchal musculature, according to Schultz (1961), results in exceptionally short cervical spinous processes in humans.

The spinal morphology is reflective of the amount or direction of physical forces acting on vertebrae (Davis, 1961; Putz, 1981; Louis, 1985). In contrast to terrestrial quadrupedal animals, the human spine is exposed to the demands of bending. The impact of locomotion patterns such as bipedialism, posture influences and other functional aspects e.g., loading / forces in lifting, of the vertebral column and its linked muscles have been outlined earlier (Davis, 1961; Nathan et al., 1964; Putz, 1981; Yettram and Jackman, 1982; Louis, 1985; Pun et al., 1987; Sanders, 1991; Putz and Müller-Gerbl, 1996; Sanders, 1998; Boszczyk et al., 2001). It is well known that bipedialism directly influences the arrangement of central nervous system structures such as e.g., the position of the spinal cord in relation to the brain and thus the placement of the foramen magnum (Schaefer, 1999). The particular interaction of physiological and pathological mechanics and spinal anatomy has also been discussed in earlier reports (White and Hirsch, 1971;

Panjabi et al., 1976; Farfan, 1978; Nachemson et al., 1979; Yettram and Jackman, 1982; Panjabi et al., 1983; Louis, 1985; Silva et al., 1997; Sanders, 1998).

The early hominids, the Australopithecines, show different spinal morphology than modern Homo sapiens̀ (Cook et al., 1983; Sanders, 1998), with some functional implications such as proposed greater massiveness of their back musculature. Osteoarthritic changes, as seen e.g., in the skeleton of the La Chapelle-aux-Saints 1 remains of Homo sapiens neandertalensis (Trinkaus, 1985), influence the morphologic characteristics of the human vertebral column. Another example of a frequent pathology interfering with normal spinal architecture is juvenile kyphosis, so called Morbus Scheuermann, which e.g., was supposed to be present in the Al-288 Australopithecus afarensis skeleton (Cook et al., 1983). Individual STS 14, an Australopithecus africanus, showed distinctive morphological features compared to modern humans by having small vertebral surface areas and relatively short pedicles at L6, both suggesting a possibly unique locomotive pattern or being simply an allometric trait related to small size (Shapiro, 1993). Sanders (1991) studied the cross-sectional areas of the neural canal for each level in the lumbar spine. Among hominoids, lumbar canal decreases in size relative to centrum areas with increasing body weight. Modern humans generally possess much larger neural canal areas relative to body size than their ancestors. The lumbar vertebrae of Australopithecines show smaller centra than predicted for their estimated body sizes and relatively wide neural arches and canals (Sanders, 1991). The intervertebral foramina of the STS 14 individual are supposed to be relatively large in comparison with modern humans, unlike its relatively short pedicles (Shapiro, 1993). The spinal nerve size of STS 14 may have been increased or, more likely, the spinal nerves may had occupied relatively less space of the intervertebral foramen as in anatomically modern humans,
making a symptomatic nerve injury less likely in STS 14 (Shapiro, 1993). The Early Upper Paleolithic individuals from Predmosti, which are of the Cro-Magnon type, show in comparison to modern samples relatively small neural pathways (Matiegka, 1938). Stewart (1962) found no evidence for an anatomical essentially different cervical spine in Neandertals in comparison to modern humans and describes the long spinous process at C5 as one characteristics of the Neandertal spine. Apparently, the lower cervical spinous process became less robust. Additionally, European Neandertals show relatively shorter upper and lower limbs, as pointed out by their brachial and crural indices (Trinkaus, 1981; Ruff, 1994; Holliday, 1996; Holliday, 1997; Holliday, 1999). It is also still debated how the scapula morphology of the Neandertals changed towards modern humans (Churchill, 1996). Trinkaus (1985) and Heim (1976) emphasize the high robusticity of the Neandertal spine in comparison to the one of anatomically modern humans, but both also stress that conclusions drawn shortly after the discovery of these skeletons about its special morphology are not correct. Heim (1976) mentions, among other particularities, the big cervical neural canal of the La Ferrassie 1 Neandertals individual as well as its robust cervical neural arch.

Some altered spinal features are expressed in modern humans e.g., as variation of the number of vertebrae, mostly thoracic and lumbar, increased spinous process or neural canal size, changed intervertebral disc height, changed numbers of segmental nerves in comparison with total number of vertebrae, variation of the foramen of the transverse process, or different proportions of the major spine regions (Keith, 1902; Horwitz, 1939; Francis, 1955; Gill and White, 1955; Bornstein and Peterson, 1966; MacGibbon and Farfan, 1979; Cotterill et al., 1986).

The resulting ảnatomical arrangement of the human spine can generally be explained by its mechanical needs (Davis, 1961; Farfan, 1978; Louis, 1985; Putz and Müller-Gerbl, 1996). Silva et al. (1997) explored specifically the load distribution between the centrum and shell of the lower back vertebrae, with the first one apparently bearing the vast majority of the body weight in vivo. Unfortunately, they did limit their study to forces acting on the vertebral body only and did not include the neural arch (Silva et al., 1997). In another biomechanical study, Nachemson et al. (1979) reported on the influence of age, sex and degenerative changes on the properties of lumbar motion segments. They found no clear correlation between any of these factors and altered mechanical performance. As already outlined above, the main parts of the spinal column serve different purposes. Therefore, they may react independently and differently to environmental stimuli.

One example of spinal alterations is the evolution of the human spinal lordosis; which develops at least partially during early ontogeny (Horner, 1854; Aeby, 1879). The human spinal lordosis is usually considered to be a result of bipedialism (Martin and Saller, 1957; Farfan, 1978), since it is not present in the monkeys, despite the anthropoid ape being able to sit in an upright position (Pun et al., 1987), or in the bovine spine (Cotterill et al., 1986). The pedicles and the other posterior elements of the vertebral column seem to play a crucial role in relation to human lordosis and bipedialism as pointed out by Davis (1961). The lumbar vertebral column of Australopithecus africanus exhibits a lordosis similar to the one of Homo sapiens (Martelli and Schmid, 2000). The lordosis of the lumbar spine, which is typical for humans, is an acquired ontogenetic character (Aeby, 1879; Martin and Saller, 1957). Males have usually a more prominent kyphosis of the thoracic (Jankauskas, 1994) and a developed curvature of the lumbar
spine (Hasebe, 1913). Anatomical alterations of the same structure but on dissimilar levels can be a result of different etiologies. Cervical lordosis, for example, is apparently an exclusive effect of intervertebral discs, whereas the lumbar lordosis is a result of both, the arrangement of the vertebral bodies and of the intervertebral discs (Jankauskas, 1994).

Besides obvious osseous adaptations, the non-osseous parts of the human spine such as the ligamentous elements are expressing evolutionary adjustments as well (Farfan, 1978). The ligamentous apparatus of the vertebral column, which includes beside the major anterior and posterior intervertebral ligaments the annulus fibrosus of the intervertebral disc, is of particular evolutionary relevance (Farfan, 1978).

The mechanical load bearing function of the human spine, as it is evolved into its current physiological form, is vital. The main function of the human intervertebral discs is to distribute equally any mechanical loading regardless of the vertebral position. In addition, the deep back muscles as well as various ligaments support this function. The anatomical adaptation of the spine in general can be seen as the best solution of very competitive needs, this is stability and mobility (Darwin, 1859; Davis, 1961; Veleanu, 1972; Veleanu, 1975; Putz, 1981; Louis, 1985; Putz and Müller-Gerbl, 1996; Boszczyk et al., 2001). The still ongoing evolution of the human vertebral column can also be investigated by exploring the frequency and extent of anatomical variations and by the occurrence and type of pathologic mal-adaptations.

## Anatomical variations of the spine

Numerous variations in the occurrence, the arrangement and the function of soft tissue body parts such as muscles, vessels or visceral organs exist. Anatomical variations in the human vertebral column are rather frequent. Many studies have been conducted to
explore the form and intensity of expression of spinal variations (Rosenberg, 1899; Dwight, 1901; Keith, 1902; Cyriax, 1920; Willis, 1923; Willis, 1924; Putti, 1927; Martin, 1928; Bohart, 1929; Cushway and Maier, 1929; Frey, 1929; Willis, 1929; Giles, 1931; Philipp, 1932; Stewart, 1932; Junghanns, 1933; Horwitz, 1939; Lanier, 1939; Larmon, 1944; Magnuson, 1944; Allbrook, 1955; Francis, 1955; Gill and White, 1955; Schultz, 1961; Epstein et al., 1962; Burrows, 1963; Epstein et al., 1964; Post, 1966; Salamon et al., 1966; Veleanu, 1975; Arnoldi et al., 1976; Eisenstein, 1977; MacGibbon and Farfan, 1979; Riegerova, 1979; Eisenstein, 1980; Susa and Varga, 1981; Tibbetts, 1981; Hasue et al., 1983; Kikuchi et al., 1984; Larsen, 1985; Parke et al., 1994; Hoshovski, 1996; Tribus and Belanger, 2001). Willis (1929) differentiates between phylogenetic, (e.g., partial sacralisation of the last lumbar vertebra), developmental (e.g., defective spinous process) and acquired spinal variations (e.g., trauma related conditions).

The various patterns of variability of the human vertebral column can be shown among others by the variation in the number of vertebrae, the configuration of processes of the neural canal, the disposition and asymmetry of zygoapophyseal articular facets, the sacralisation and lumbalisation of the sacro-lumbar junction, the variation of the transverse foramen, the extent of vertebral fusions, the vertebral body, pedicle, spinal canal, spinal nerve or dural sac morphology, the variations of the nerve root sizes and the occurrence of additional ribs (Rosenberg, 1899; Dwight, 1901; Keith, 1902; Hasebe, 1913; Cyriax, 1920; Willis, 1923; Willis, 1924; Putti, 1927; Martin, 1928; Bohart, 1929; Cushway and Maier, 1929; Frey, 1929; Willis, 1929; Giles, 1931; Blumensaat and Clasing, 1932; Philipp, 1932; Stewart, 1932; Horwitz, 1939; Lanier, 1939; Allbrook, 1955; Francis, 1955; Gill and White, 1955; Schultz, 1961; Epstein et al., 1962; Burrows, 1963; Bornstein and Peterson, 1966; Salamon et al., 1966; Veleanu, 1975; Saillant, 1976;

Kikuchi et al., 1977; MacGibbon and Farfan, 1979; Riegerova, 1979; Susa and Varga, 1981; Tibbetts, 1981; Hasue et al., 1983; Postacchini et al., 1983; Kikuchi et al., 1984; Larsen, 1985; Hoshovski, 1996).

Anatomical variations can be extremely common even in asymptomatic individuals. Cushway and Maier (1929) found in an X-ray sample of 931 healthy men a total of 414 cases showing any osseous spinal variations. A similar percentage of approximately $45 \%$ of symptomless individuals expressing some sort of spinal variation was reported by Bohart (1929). Giles (1931) reports in an X-ray based study a prevalence of approximately $14 \%$ of vertebral anomalies of any form. This includes alterations of vertebral segmentation, hemivertebra, spina bifida, or the occurrence of cervical or lumbar ribs. A high frequency of numerical vertebral variations of approximately $15 \%$ was reported by Allbrook (1955) for a modern East African sample, whereas Bornstein and Peterson (1966) detected an overall variance of $11 \%$, Stewart (1932) one of $12 \%$, Tibbetts (1981) for males a total of $8 \%$ and one of $10 \%$ for females, Willis (1923) for the thoraco-lumbar spine of Whites one of approximately $5 \%$, Blumensaat and Clasing (1932) in a clinical sample a total of 5\%, Martin and Saller (1957) a total of $8 \%$ and Keith (1902) mentions the same percentage. Schultz (1961) and Frey (1929), both found a total of $31 \%$ and $32 \%$, respectively, of any vertebral numerical variation. Dommisse (1974) describes in a sample of six cadavers one with an additional lumbar vertebra. MacGibbon and Farfan (1979) found in their large sample a total of $8 \%$ with transitional vertebra, whereas in another osteometric study, briefly mentioned in a more clinically orientated report by Gill and White (1955), 11\% of skeletons show transitional vertebrae. Philipp (1932) reports more than $25 \%$ of a sample of pelvis specimens to have some sort of sacral anomalies. Epstein et al. (1962) estimate 10\% - $15 \%$ of all individuals showing a
decreased size in the lumbar spinal canal recess size. Cyriax (1920) describes in his sample of cadaveric and macerated spines a high degree of variation especially in the vertebral size ratios. Also a high number of uni- / or bilateral alterations in numbers of vertebrae has been reported earlier by Horwitz (1939). Furthermore, he found a link in the occurrence of vertebral segmentation alterations and anatomical variations of the lumbosacral nerve plexus.

By addressing the blood supply of the spinal cord, Dommisse (1974), emphasizes the fact that the vascular supply shows a striking anatomical variability. Parke et al. (1994) describe a higher variability of the arterial supply for the three lowest lumbar intervertebral foramina than show the more cranial or caudal ones. On the other hand, Tribus and Belanger (2001) did not find a variation in the occurrence but only in the localization of the median sagittal artery. Larsen (1985) investigated not only the expression but also the variability in the posterior vertebral body anatomy by focusing e.g., on the foraminae caused by the basivertebral veins and the scalloping of the lumbar vertebrae.

A high variation in spinal nerve and intervertebral foramen arrangement was described by Magnuson (1944) based on a sample of ten fresh cadavers. Similar reports are provided by Hasue et al. (1983) and Kikuchi et al. (1984) stating that congenital variations of the nerve root, such as branching or root merges, are quite common, with a prevalence of approximately $9 \%$. Vanderlinden (1984) describes a few clinical cases with a variant location of the dorsal root ganglion, in the proximal instead of lateral part of the intervertebral foramen, linked to sciatic pain. Francis (1955) describes a high degree of variation of the foramen of the transverse process. Horwitz (1939) mentions the variation of the lumbo-sacral and posterior sacral nerve plexus and its relation to the alteration in
number of vertebrae. Furthermore, Dunn (1912) reports a high variability for the size of cervical nerve roots in albino rats.

The trefoil shaped lumbar spinal canal, another frequent spinal morphology variant, is addressed by Eisenstein $(1977 ; 1980)$ as being just an anatomical developmental modification, which is most frequent at L5 and more often to be found in females and in certain inter-populational group, and which is not primarily linked with local nerve entrapment and its subsequent symptoms. It is present in approximately $15 \%$ of all individuals at L5 (Eisenstein, 1977; Eisenstein, 1980). Postacchini et al. (1983) describe this particular shape in $16 \%$ of an Italian sample and in $12 \%$ of an Indian sample, but they do not describe a correlation between the trefoil shape and the midsagittal neural canal dimension. Furthermore, Kikuchi et al. (1977) stress the fact that the osseous spinal canal shows a wide variation in size and shape. The variation of the spinal dural sac has been shown by Salamon et al. (1966), who fund its termination at S1 / S2 in $87 \%$ of their sample only, with its ending in other cases even further caudal.

Additionally, in forensic situations the variability of the human spinal morphology in individuals has been used for identification purposes (Riepert et al., 1995).

Summarizing, it is difficult to define a clear division in the human spine between a pathologic finding and an anatomical variation (Niedner, 1932; Allbrook, 1955). Bohart (1929) did not find any correlation between the presence of any spinal variation and the likelihood of work-related back injuries. Even anatomical variations itself can be tricky to be identified, especially on X-rays (Cushway and Maier, 1929). While Giles (1931) denies a clear link between the occurrence of spinal abnormalities and backaches in a particular individual, spinal variations such as transitional lumbar vertebra and rudimentary rib have been linked by MacGibbon and Farfan (1979) to low lumbar
degeneration and its subsequent clinical impact. Gill and White (1955) also mention a correlation between transitional last lumbar vertebra and lower back pain. They describe a smaller sagittal spinal canal dimension in cases of a transitional last lumbar vertebra. Already Philipp (1932) linked the occurrence of sacral pain and the presence of sacralisation of the lower lumbar spine. Willis $(1924 ; 1929)$ and Gill and White (1955) already highlighted the importance of a link between the presence of low lumbar vertebral anomalies and the occurrence of back pain. Therefore, it is essential to recapitulate some of the major spinal pathologies, which may have at least a partial evolutionary background and may help to better define the true normal range of spinal morphology.

## Microevolutionary and secular trends in human anatomy

The term "secular trend" is linguistically derived from the Latin word saeculum meaning a generation. Therefore, secular trends describe short-term changes especially of morphological traits.

Humans are in evolutionary terms actors, which do not fully reflect their active participation (Henneberg, 1997). Henneberg (1997) describes the process of evolution as a feedback regulated by interactions between environment, technology, society and the human body. He also states, that, since our environment is self-changing and, additionally, influenced by us too, our anatomy may be adapted to technology as well. For him society and technology are acting as sieves between the human body and its environment. Particularly, modern lifestyle with its unique aspects of workload or sports activities does have an influence. Its medical significance is repeatedly underestimated.

Morphologic body changes occurring in the modern Homo sapiens may fall within various etiological categories such as anagenetic or cladogenetic microevolution
(Wiercinski, 1979). Nêw selective forces, mutagenic agents, genetic intermixtures and environmental conditions act differently on the human body.

Various influences like variation of selective pressures, exchange of genes, environment e. g., climate as in the case of the altered prevalence rate of the lateral internal thoracic artery (Surtees et al., 1989a; Surtees et al., 1989b; Henneberg, 1992), or change of socio-economical structures, such as from hunter-gathering societies to more settled communities e.g., in the Late Paleolithic-Mesolithic transition period in Central Europe, have an impact on human anatomy, metabolism and behaviour.

Especially, gracilisation of the human body, a structural reduction of its size and bony robusticity, has been shown since the Late Paleolithic in European samples (Schwidetzky, 1962; Schwidetzky, 1967; Schwidetzky, 1969; Schwidetzky, 1972; Schwidetzky and Rösing, 1976; Vallois and de Félice, 1977; Frayer, 1980; Frayer, 1981; Wurm, 1982; Frayer, 1984; Schwidetzky and Rösing, 1984; Jacobs, 1985a; Jacobs, 1985b; Schwidetzky and Rösing, 1989; Ruff et al., 1993; Mathers and Henneberg, 1996; Ruff et al., 1997; Trinkaus, 1997). The advantage, in terms of energetic fitness, of having more gracile bodies has already been highlighted as a possible underlying factor (Frayer, 1981; Frayer, 1984; Henneberg and Steyn, 1995). Wurm (1982) describes a decrease in stature in historic times based on the assumption of etiologically related decreased animal protein intake. Contrary, Larsen (1981) doubts for a historic American sample the primary role of altered protein intake in causing a decrease of postcranial size and robusticity, blaming diminished mechanical load to be more likely responsible. This negative secular trend, as found in Europe, is only reversed since the early $20^{\text {th }}$ century by a positive temporal trend in increased stature only in the Northern Hemisphere of still debated etiology. As one of the few exceptions, no secular stature increase have been
described in a sample of indigenous South Australians (Pretty et al., 1998). Also, poor rates of trends have been found among white Australians and South Africans (Henneberg and Van den Berg, 1990; Henneberg, 2000; Henneberg, 2001b).

For Europe, Jacobs (1985b) found a significant decrease of approximately $6 \%$ in long bone sizes, stronger expressed in females than in males, during the cultural transition period from Late Upper Paleolithic to Mesolithic. Also Formicola (1983) describes for Italian samples a decrease of individual stature from Upper Paleolithic to the Bronze age. Frayer (1981) mentions a similar decrease in general body size of 5.2\%, more visible than alterations of limb proportions, which are more prominent in males than females. In another study, including an expanded Mesolithic and Neolithic sample size, Frayer (1984) found again obvious trends of stature changes in the European Holocene. Individual stature decreased from the Late Upper Paleolithic until the Neolithic period for both males and females by $4.5 \%$ and $3.2 \%$ respectively. From the Neolithic until the most modern times, there is an increase of individual stature. Frayer (1984) found the increase for both sexes to be similar of approximately $4.3 \%$. Surprisingly, according to him, even most modern males are still smaller than their Late Upper Paleolithic modern Homo sapiens ancestors, whereas for females it seems to be the opposite. In addition, the Late Upper Paleolithic European inhabitants were more robust. According to Frayer (1981) most of the long bone alterations obviously occurred between Pre-Würm and Würm period, not later at its transition to the Post-Würm time. During this second transition, males stabilize whereas females continued a non-significant decrease in long bone measurements. Jacobs (1985b) detected similar trends for the diaphyseal measurements. According to him, in males humeral robusticity increased, unlike femoral robusticity, from Pre-Würm to Late Würm times. Jacobs (1985b) found an opposite trend for these
two indices for the tranisition period from Late Würm to Post Würm times in males. Most of the robusticity indices for males increased between the Upper Paleolithic and Mesolithic period, which is not the case for females. For females, between Pre-Würm and Late Würm time there was an increase in humeral robusticity, up by more than $6 \%$, and a slight decrease in femoral robusticity, whereas from Late Würm to Post-Würm both robusticities decreased (Jacobs, 1985b). Jacobs (1985b) describes a decrease in individual male body size mostly within the Upper Paleolithic period and not at the transition to the Mesolithic time, whereas females showed a continuous reduction. Also body proportions changed during the transition period from Pre- to Post- Würm times in Europe with humerus relative to stature becoming smaller for either sex (Jacobs, 1985b). Limb proportions in Europe did not change according to Frayer (1981). General limb reduction was more prominent for males, explainable by the higher impact of altered hunting conditions, with an $8.8 \%$ decrease for male humerus, $7.5 \%$ for female humerus, $7.6 \%$ for male femur and $4.5 \%$ for female femur, respectively. General stature reduced towards Mesolithic with $5.5 \%$ for males and $3.4 \%$ for females. Only with the start of the Mesolithic, at least for males, the stature changed significantly, while being mostly stable for the major Paleolithic periods (Frayer, 1981). Jacobs (1985b) found no such expected decrease of upper limb robusticity, due to the introduction of the atl-atl and bow and arrow, between Late Upper Paleolithic and Mesolithic in males, but describes one in females. Thus, Jacobs (1985b) explains these skeletal alterations to be more linked to nutritional changes and climatic adaptations, possibly towards a colder environment, than resulting from technological changes only.

Sexual dimorphism is an important measure to evaluate the ongoing interactions between a particular environment and the body morphology. Frayer (1980) addressed in
depth the aspect of changing cranial and postcranial sexual dimorphism. He found for cranial, dental and postcranial morphologies a general trend towards gracilisation since the Late Pleistocene, as initially reported by Weidenreich (1945). For the first transition from the Late Upper Paleolithic towards Mesolithic, the sexual dimorphism decreased mostly due to male stature decrease, whereas for the time period from Mesolithic to Neolithic, it was supposed to be due to relative increase in female stature. The present day sexual dimorphism in stature is reported to be $7.3 \%$, mainly due to a little higher male stature increase (Frayer, 1980). Since modern females are minimally taller than their Late Upper Paleolithic counterparts, with males of these two epochs being roughly of the same stature, the sexual dimorphism in our days is slightly smaller than it was at Late Upper Paleolithic times (Frayer, 1980). Sexual dimorphism of humerus and femur length was highest for both sexes in the Pre-Würm period, followed by the Würm period with its lowest values for the Late Würm period (Jacobs, 1985b). Sexual dimorphism of humeral and femur robusticity was Jacobs, the highest for both in Post-Würm period, followed by the Late Würm, period in the case of the humeral robusticity, whereas the Pre-Würm period values were higher than the Late Würm period ones for the sexual dimorphism of the femur robusticity (Jacobs, 1985b). In general, sexual dimorphism was found to be more prominent in the Post-Würm period than in its Pre-Würm and Late Würm counterparts. Formicola (1983) describe in Bronze Age Italian samples a sexual dimorphism of approximately $7 \%$ in individual stature. He thinks that the sexual dimorphism at the Neolithic and Bronze Age in his samples was similar to modern one. Sexual dimorphism in the Upper Paleolithic and Mesolithic time could have been more strongly expressed (Formicola, 1983).

For the particular situation of Europe, since the Neolithic, it has been found that mostly decreasing levels of natural selection and further similarities of cultural environments, rather than migration and its linked gene exchange only, lead to an increased intra-group and decreased inter-group variability in morphological traits (Henneberg et al., 1978).

Microevolutionary changes, occurring in short well-defined historic time periods, have been shown for various anatomical characteristics e.g., the increase of incidence of the median artery of the forearm (Henneberg and George, 1995), the occurrence of hyperostosis frontalis interna (Hershkovitz et al., 1999; Rühli and Henneberg, 2002) or presence of non-osseous tarsal coalitions (Rühli et al., 2003). Microevolutionary trends as expressed in their significant morphological changes, within short periods of time even question the understanding of modern human origin such as the replacement hypothesis, or the validity of any taxonomic definition of modern humans in terms of objectively measurable characteristics (Henneberg, 2001a).

Surprisingly, microevolutionary changes of the spine seem to be a neglected research area (Jankauskas, 1994). Some possible secular trends in frequency of spinal pathologies have been reported, such as the increasing prevalence of spina bifida occulta (Henneberg and Henneberg, 1999) or the prevalence of spondylarthropathy in baboons (Rothschild and Rothschild, 1996). Larsen (1980; 1981; 1982) reported a significant decrease in degenerative spinal joint diseases linked to a cultural shift towards agricultural lifestyle in an American coastal region, whereas Minne et al. (1988) discuss in their X-ray based study the influence of the secular increase in body height in the last century and its impact on spinal morphometry. They describe an increase of vertebral
body height, for the last 110 years and for Th4 to L5 only, of 86 mm , with no alterations, at least relative to their standard vertebra at Th4.

Nevertheless, according to Jankauskas (1994), there is a lack of microevolutionary and inter-populational studies of the human vertebral column. Just very limited spinal microevolutionary approaches have been published so far. Secular trends of vertebral body size (Clark et al., 1985; Jankauskas, 1994) or neural canal dimensions (Piontek and Budzynska, 1972; Clark et al., 1985; Tatarek, 2001) have been so far investigated on limited samples only.

Furthermore, according to Jankauskas (1994), no clear definition of the human spinal osteometry and its variability exists. This is in particular striking since microevolutionary trends for other major body parts such as skull size (Henneberg, 1988; Henneberg and Steyn, 1993; Ross and Henneberg, 1995) or stature and postcranial skeletal dimensions (Schwidetzky, 1962; Frayer, 1980; Larsen, 1980; Larsen, 1981; Larsen, 1982; Formicola, 1983; Frayer, 1984; Jacobs, 1985a; Ruff, 1994; Formicola and Giannecchini, 1999) have already been addressed in a plethora of reports.

As other possible causes of recent secular trends, genetic factors or their products acting during early stages of ontogeny, most likely in utero, have been suggested (Henneberg, 2001b). Furthermore, Henneberg (2001b) names vaccines, or food containing chemical products interfering with individual growth as additional possible underlying origins of this secular trend in the most modern times.

To summarize, surprisingly no secular trend of the non-pathologic vertebral column has so far been widely studied. Hitherto, in the most similar studies, Tatarek (2001) focused just on the lumbar levels, while Jankauskas (1994) included not only a limited particular Eastern European area, but also choose temporally limited samples
from the $1^{\text {st }}$ and $2^{\text {nd }}$ millennium A.D. only. Both studies (Jankauskas, 1994; Tatarek, 2001) were, additionally, small in number of spinal measurements taken on each individual.

No investigation focusing on microevolutionary issues on all major levels of the human vertebral column and consisting of a sample dating back to European Late Pleistocene has been published so far. Furthermore, a combined anthropological and clinical perspective including the morphometric spinal variation as well as the influence of sex and individual age on it, in particular in such a historic sample, has never been fully explored before.

## Aim of the study

The aim of this study is to assess and interpret osteometric measures of a number of human spinal landmarks on all major vertebral levels that is cervical, thoracic and lumbar, in Central-Western European skeletal samples dating from the Late Pleistocene to most modern times. The data will be explored with a particular focus on the influence of sex and individual age as well as possible underlying secular and microevolutionary trends. Possible clinical implications will be addressed too.

## Hypothesis to be tested

The purpose of this study is to test the null hypothesis that there is no significant change in selected osteometric traits of the human spine in terms of sex and individual age as well as from the Late Pleistocene to modern times in Central-Western Europe.

## Material

Dry vertebrae of 348 individuals of both sexes have been included into the study; see also Table 3 for the list of selected individuals or samples, for the complete set of original data see appendix 2 and for a published abstract on the data of the present study see appendix 15. Selection criteria for samples were primarily being of Central-Western European origin and providing easy accessibility. A list of major samples represented could be found in Figure 3. The accessibility was usually achieved through personal consent from the collection curator, who also mostly supplied main references and the collection list, with recorded individual sex and estimated age of the chosen skeletons. Only unarticulated vertebral columns were used. In case of fragmented bones, only those whose reconstruction could be done without any apparent size or shape alterations have been selected.

All major historic time periods in Europe since Late Pleistocene are represented, with the exception of Iron Age and Roman period, when body cremation was the most popular burial practice in Europe (Schwidetzky, 1972; Schwidetzky and Rösing, 1976). Years before present (BP) were calculated from 2000 A.D. backwards. The whole sample (Figure 4) was divided for selected data analysis in three major time groups (Figure 5), Neolithic / Bronze Age, Medieval and Modern, respectively. By doing so, the single individuals from Paleolithic and Mesolithic times were neglected.

The major time periods for Central Europe background are assumed as follows, mostly according to Straus (1995):

Pleistocene

| Middle Paleolithic | $100,000-40,000$ B.C. |
| :--- | :--- |
| Late Paleolithic | $40,000-10,000$ B.C. |
| Early Upper Paleolithic | until 30,000 B.C. |


|  | Middle Upper Paleolithic | 30,000 B.C. $-20,000$ B.C. |
| :--- | :--- | :--- |
| Holocene | Mesolithic | 20,000 B.C. $-10,000$ B.C. |
|  | Neolithic | 10,000 B.C. -4500 B.C. |
|  | Bronze Age | $4500-2000$ B.C. |
|  | Old Iron Age (Hallstatt) | $2000-800$ B.C. |
|  | New Iron Age (La Tène) | $800-500$ B.C. |
|  | Roman | 500 B.C. -0 A.D. |
| Early Medieval | 0 A.D. -400 A.D. |  |
|  | Classic Medieval | $400-900$ A.D. |
|  | Late Medieval | $900-1100$ A.D. |
|  | $1100-1500$ A.D. |  |
| Modern Times | after 1500 A.D. |  |

Individual age was known for each skeleton of the "St. Johann" and "Geneva" samples. For the other samples, individual age was recorded based on the provided collection lists. For most of the data analysis individuals were categorized, according to their estimated core age range, into the three main age groups: adult (20-39 years of age), mature (40-59 years of age) and senile (60 years and older), respectively (Figure 6). If the core age range of an individual covered more than one major age group, the individual was fractioned into these groups according its likelihood to be within each age group. For example, an individual with the assumed core age of 20-50 years would be counted as 0.67 in the adult and 0.33 in the mature age group.

The geographic background of the selected samples was from Southern Germany, Switzerland, Austria and France. A geographic overview of the origin of the samples could be found in Figure 7.

## Table 3:

Individuals / samples included in the present study

| SAMPLE / SPECIMEN | $\begin{aligned} & \text { N - SEX } \\ & \text { (TOTAL: } \\ & \text { 179m, 169f) } \end{aligned}$ | YEARS BP | CURRENT LOCATION | SELECTED REFERENCES |
| :---: | :---: | :---: | :---: | :---: |
| La Ferrassie 1 (Homo sapiens neandertalensis) | 1-m | 30,000 | Musée de l'Homme, Paris (France) | (Oakley et al., 1971; Heim, 1976; Stringer et al., 1984) |
| La Chapelle-aux- <br> Saints 1 <br> (Homo sapiens neandertalensis) | 1-m | 30,000 | Musée de l'Homme, Paris | (Oakley et al., 1971; Stringer et al., 1984; Trinkaus, 1985) |
| Cro-Magnon 1, 2 | 1-m, $\mathbf{1 - f}$ | 25,000 | Musée de l'Homme, Paris | (Oakley et al., 1971; Stringer et al., 1984) |
| Abri Pataud 6 | 1-m | 18,250 | Musée de l'Homme, Paris | (Oakley et al., 1971; Stringer et al., 1984) |
| Neuessing | 1-m | 18,200 | Anthropologische Staatssammlung, München (Germany) | (Oakley et al., 1971; Schröter, 1977) |
| Veyrier | 1-m | 12,000 | Département d'Anthropologie, Université de Genève (Switzerland) | (Pittard and Sauter, 1945; Oakley et al., 1971) |
| Le Bichon | 1-m | 11,700 | Latènium, Hauterive (Switzerland) | (Sauter, 1956; <br> Oakley et al., 1971; <br> Morel, 1993) |
| Gramat 1 | 1-m | 8000 | Institut de la Paléontologie Humaine, Paris | (Newell et al., 1979; Boden et al., 1990) |
| Vaihingen / Enz | 4-m, 5 -f | 7200 | Anthropologisches Forschungsinstitut, Aesch (Switzerland) | - |
| Wandersleben | 15-m, 26-f | 7000 | Zentrum Anatomie, Georg-August-Universität, Göttingen (Germany) | (Carli-Thiele, 1996) |


| Hoëdic 8,9 | 1-m, 1 - f | 6600 | Institut de la Paléontologie Humaine, Paris | (Vallois and de <br> Félice, 1977; <br> Newell et al., 1979) |
| :---: | :---: | :---: | :---: | :---: |
| Téviec 1, 16 | $\mathbf{1 - m , 1 - f}$ | 6600 | Institut de la Paléontologie Humaine, Paris | (Newell et al., 1979; Boden et al., 1990) |
| Birsmatten | 1-f | 6300 | Kantonsmuseum Basel-Land, Liestal (Switzerland) | (Sedlmeier and Kaufmann, 1996) |
| Hainburg | 17-m, 23 - f | 3800-3500 | Naturhistorisches Museum, Wien (Austria) | (Ehgartner, 1959) |
| Straubing | 37-m, 44-f | 1500-1300 | Zentrum Anatomie, Georg-August-Universität, Göttingen | (Kreutz, 1997) |
| Aesch | 9-m, 5 -f | 1370-1300 | Anthropologisches Forschungsinstitut, Aesch | - |
| Barbing | 15-m, $12-\mathrm{f}$ | 1300 | Zentrum Anatomie, Georg-August-Universität, Göttingen | - |
| Winterthur | 23-m, $13-\mathrm{f}$ | 950-435 | Anthropologisches Institut, Universität Zürich (Switzerland) | (Jäggi et al., 1993) |
| Chur | 8-m, 7 - f | 750-550 | Anthropologisches Forschungsinstitut, Aesch | - |
| St. Johann | 20-m, 17-f | 228-163 | Naturhistorisches Museum, Basel (Switzerland) | (Etter, 1988; Etter and Lörcher, 1993) |
| "Geneva"* | 5-m, 4-f | 135-80 | Département d'Anthropologie, Université de Genève | - |
| "Geneva"* | 9-m, 4 - f | 133-80 | Département d'Anthropologie, Université de Genève | - |
| "Geneva"* | 5-m, 3 - f | 120-66 | Département d'Anthropologie, Université de Genève | - |
| "Geneva"* | 2-m, 2 - f | 106-85 | Département d'Anthropologie, Université de Genève | - |

## Major samples ( $\mathbf{N}>5$ )



Figure 3: Major samples examined


Figure 4: Historic age groups (time groups) represented in the whole sample


Figure 5: Major time groups represented in the whole sample


Figure 6: Age groups distribution in the whole sample

## Supplementary information on the samples

The La Ferrassie 1 individual is considered an adult male Neandertal of approximately 40-50 years of age. He was discovered in 1909 in Savignac du Bugue, 40 km southeast of Périgueux in the Dordogne Region of France and most likely dates to the Würm II period. A reference list of the suggested chronostratigraphic dates of the various Würm periods can be found elsewhere (Smith, 1984). His spine is of general high robusticity similar to the one of the La Chapelle-aux-Saints 1 Neandertal individual. It represents one of the most complete preserved Neandertal vertebral columns (Oakley et al., 1971; Heim, 1976; Stringer et al., 1984; Riel-Salvatore and Clark, 2001).

The La Chapelle-aux-Saints 1 individual, a holotype of the Homo chapellensis and supposed to be a Neandertal, was found in 1908 near Corrèze in Central-Southern France. The male adult individual of approximately 40-50 years of age is linked to the Würm II period. This individual was supposed to be 164 cm in height and of a body weight of 70 kg . The vertebral column of this individual drew attention in earlier times, but the view of his apparently primitive anthropoid-like neck is less supported nowadays; as it was in the times after its discovery (Stewart, 1962; Oakley et al., 1971; Stringer et al., 1984; Trinkaus, 1985; Ruff, 1994; Riel-Salvatore and Clark, 2001). Despite its arthritic changes of the cervical and thoracic spine (Trinkaus, 1985), this individual was included into this series due to its historic importance.

The Cro-Magnon individuals, anatomically modern Homo sapiens, were discovered in 1868 near the station Les Eyzies de Tayac, approximately 25 km northwest from Sarlat in the Dordogne Region in France and date to the Würm III
period. Cro-Magnon 1, also called "the Veillard", is the holotype of Homo spelaeus and was supposed to be a male of at least 45 years of age. Cro-Magnon 2 is believed to be an adult female of approximately 20-30 years (Oakley et al., 1971; Stringer et al., 1984; Riel-Salvatore and Clark, 2001).

The Abri Pataud 6 individual, apparently an adult male, was excavated in 1963 in Les Eyzies, 25 km north-west of Sarlat in the Dordogne Region in South-Western France (Oakley et al., 1971; Stringer et al., 1984).

The Neuessing 2 individual was found in 1913 in the Altmühl Valley, approximately 25 km southwest from Regensburg, Southern Germany. It was dated to the Weichselian-Würm period and is supposed to be an adult male individual, of approximately 30 years (Oakley et al., 1971).

The Late Paleolithic Magdalenian type, Late Würm period, Veyrier skeleton was discovered in 1916 in Veyrier in the Haute-Savoy region in France, next to the actual Swiss border. His living stature is estimated to be 169 cm , which makes him shorter than the average Cro-Magnon humans, but still larger than the Magdalenians and most European Mesolithic and Western European Neolithic people. Humeral and femoral robusticity are both small (Pittard and Sauter, 1945; Oakley et al., 1971).

The Le Bichon individual, which was found in a cave at an altitude of approximately 850 meters above sea level in 1956 next to La Chaux-de-Fonds, Western Switzerland, is the oldest preserved individual of nowadays Swiss geographic background and belongs to the Late Paleolithic Cro-Magnon type. His cause of death, as a side remark, was recently reconstructed to be a hunting accident (Morel, 1993).

Although that his stature could not have been completely reconstructed, the individual was apparently not very tall (Sauter, 1956; Oakley et al., 1971).

Hoëdic is a Mesolithic site of nine adult individual skeletons, excavated in the 1930's and located on a small island at the Bretagne, on the North West coast of France.

Téviec is a Mesolithic series, possibly slightly older than the Hoëdic site, consisting of 15 adult individuals situated in similar environment, and 32 km further in North East direction. This site was excavated primarily in the late 1920's. Both islands, Téviec and Hoëdic, were supposed to be even easier accessible today than in the Mesolithic, most likely by a dry walk from the mainland. The Hoëdic individuals seem to be not of massive robusticity, which is similar to the Téviec individuals. Apparently in one of the nine Hoëdic graves, an individual was found with six lumbar vertebrae. In addition, the Téviec sample contains one individual with such an increased number of vertebrae. The individuals from both Mesolithic samples are of small stature, at least in comparison with East Europeans of the Late Paleolithic, but they are comparable to other Mesolithic people of similar geographic background. Individual stature was for the Hoëdic males on average 160 cm and for the females 152 cm , whereas it was 159 cm for the Téviec males and 151 cm for females, respectively. The two samples were classified to be modern humans of the "Téviec-island" type (Vallois and de Félice, 1977).

In comparison, the Gramat male from mid-South-Central France was reconstructed to be of 165 cm height and of a remarkable femoral robusticity, but not of high humeral robusticity: He seems to be an exceptional human of the "Tévieccontinental" type (Vallois and de Félice, 1977). The Gramat male individual is a complete skeleton of the Holocene period discovered in 1928 in Le Cuzouln de Gramat,
approximately 55 km north-east of Cahors in the Dordogne region of France (Oakley et al., 1971). For a precise description of the distinctive skeletal characteristics of the two Mesolithic prototypes, "Téviec-continental" and "Téviec-island", see Vallois and de Félice (1977).

The Holocene Birsmatten individual, most likely to be a female according to new anthropological assessments, was found in 1944 in Nenzlingen (Northern Switzerland) and is the only Mesolithic body burial in nowadays Switzerland. The skeleton is of remarkable preservation for its historic age and individual stature was calculated to be of approximately 160 cm (Sedlmeier and Kaufmann, 1996).

Wandersleben is a Neolithic Linienbandkeramiker (linear pottery) - culture settlement, located between Gotha and Erfurt in present-day Germany. The whole sample consists of approximately 200 individuals, representing one of the largest known Central European classic settled agricultural lifestyle societies, but an archaeological report of this excavation is still not yet published (Carli-Thiele, 1996).

This situation is similar for the sample of Vaihingen, which is also a linear pottery settlement (Early Flomborn and Middle linear pottery phase) in nowadays Vaihingen an der Enz, in the Neckar Region next to Stuttgart (Baden-Württemberg, Southern Germany) of generally excellent preservation. A final report on this old Neolithic agricultural site with approximately 100 flexed burials has not yet been published; preliminary information could be found at the following internet-website: http://home.bawue.de/~wmwerner/grabung/vaih.html.

Hainburg is a burial ground of 253 skeletons from the Early Bronze Age Wieselburger - culture, excavated in the late 1920`s as well as in the late 1930`s. The
site lies 54 km east from Vienna at the banks of the river Danube. The anthropologic record showed mainly autochthonous inhabitants, also some foreigners, most likely from the further Western Neolithic Glockenbecher - culture, and some inhabitants of unclear geographic background. In general, beside unfortunate losses during World War II, the Hainburg material is of high preservation quality. Most of the individuals seem to be in the age group of 30-40 years. Average height for males was approximately 165 cm and for females approximately 153 cm , respectively (Ehgartner, 1959).

The Straubing sample, remains of a Bajuwar settlement located close to Regensburg in Southern Germany and next to the river Danube, seems to represent a mixture of Non-Francs Germanics and Romanic sub-groups. It was excavated in the early 1980's and consists of approximately 650 adult individuals, spanning a time range from the $5^{\text {th }}$ to the $7^{\text {th }}$ century A.D., the Early Medieval Merrovingian time (Kreutz, 1997).

The St. Johann individuals excavated in the late 1980's in downtown Basel, North-western Switzerland, with burial dates from 1845 until 1868, are part of a hospital cemetery representing an early modern urban society. Most individuals are known by name and age. Available death records list cause of death, local geographic origin as well as in some cases professions of the deceased. The majority of the recorded occupations were craftsmen and textile industrial workers for males, and maids or house wives for females. Listed causes of death for both sexes were mainly of non-osseous infectious nature, such as pulmonary tuberculosis or abdominal typhus (Etter, 1988; Etter and Lörcher, 1993).

The individuals from the samples of La Sarraz, Bex, Saint-Prex and Apples, all originate from modern Western Switzerland. These individuals also have records with
listed age at death, sex and profession. They lived in four Swiss villages with a mostly farming background, but some had a similar professional background e.g., craftsmen or light industrial workers, as the individuals of St. Johann sample.


Figure 7: Map of Central-Western Europe with sample origins:

1) La Ferrassie
2) Birsmatten
3) La Chapelle-aux-Saints
4) Cro-Magnon
5) Abri Pataud
6) Neuessing
7) Veyrier
8) Le Bichon
9) Gramat
10) Vaihingen / Enz
11) Wandersleben
12) Hoëdic
13) Hainburg
14) Straubing
15) Aesch
16) Barbing
17) Winterthur
18) Chur
19) St. Johann
20) La Sarraz
21) Bex
22) Saint-Prex
23) Apples

## Methods

## Measurements

Osteometric measurements were taken on the following vertebral levels (numbered as counted from cranial):

- $\mathbf{3}^{\text {rd }}$ (CERVICAL 3 vertebra in a normal spine with 24 pre-sacral vertebrae)
$-7^{\text {th }}$ (CERVICAL 7)
$-8^{\text {th }} \quad$ (THORACIC 1)
$-13^{\text {th }}$ (THORACIC 6)
$-17^{\text {th }}$ (THORACIC 10)
- $20^{\text {th }}$ (LUMBAR 1 )
$-24^{\text {th }}$ (LUMBAR 5)

The vertebral levels were selected for the following reasons:
C3 is the first cranial vertebra with a true vertebral body; therefore, it acts as a transition vertebra between the cranial base / upper cervical spine and the main cervical spine

C7 also called vertebra prominens due to its outstanding spinous process; it is the last vertebra of the cervical spine, therefore, acts as a transition vertebra between two of the major spine sections

Th1 is the first thoracic vertebra; transition vertebra between the cervical and thoracic spine

Th6 is the vertebra located at the level where the thoracic kyphosis is usually most strongly developed

Th10 is the most caudal thoracic vertebra that is still directly linked with the chest by a rib-sternum connection
$\mathbf{L 1}$ is the first lumbar vertebra; transition vertebra between the thoracic and lumbar spine

L5 is the last lumbar vertebra; transition vertebra between the lumbar spine and the os sacrum

All selected vertebral levels, except Th6, are part of one of the transition zones highlighted in the state-of-the-art studies on spinal morphometry by Panjabi et al. (1991a; 1991b; 1992) or Xu et al. (1995). The particular focus on these transition regions was chosen, since it was assumed for this study that any osteometric alteration of the spine would be more likely to be expressed in such transition zones than in vertebrae in the middle of a spine zone. The author personally determined the vertebral levels; in cases of any doubt about correct vertebral level, the individual was excluded. Thoracic versus lumbar vertebrae were identified e.g., by presence of rib articulations and the orientation of zygapohyses. If an additional vertebra was present, the one that serves the above-mentioned transitory functions e.g., L6 instead of L5, was chosen. This approach is similar to the one followed by Shapiro (1993) in a morphometric spinal study, where vertebrae were selected due to their function, rather than their anatomical position.

All measurements were done on original specimens only. One single observer took all vertebral measurements, so no inter-observer error occurred. All measurements were taken twice repeatedly. If the results showed a difference of more than 0.1 mm a third measurement was performed and the average of all assessments was later used for analysis. Any bones manifesting major gross morphological abnormalities e.g., severe arthritic changes on multiple levels or diffuse idiopathic skeletal hyperostosis, were excluded. If any bone was fractured, only the ones allowing perfect re-adaptations of the broken pieces were assessed. If one side of the transverse process was missing but the other side was preserved intact, overall transverse process width was estimated by multiplying by the factor of two the distance from the intact most lateral tip to the middle of the endplate at the posterior border of the vertebral body. Minor osteophytic alterations were not a reason for exclusion, as long as they were regarded as normal agerelated adaptations. Young adult individuals showing macroscopic signs of still ongoing vertebral growth were excluded.

To assess the suggested osteometric variation and possible microevolutionary trends of the human spine, a set of various measurements was performed at each chosen vertebral level; see also Table 4 and for all abbreviations used see appendix 1. In accordance with most of the earlier published major studies dealing with spinal morphometry, such as e.g., the ones by Jankauskas (1994) or Panjabi et al. (1991a; 1991b; 1992), dimensions of various anatomical parts of the selected vertebral levels were chosen. To determine potential alterations of the vertebral bodies, measurements of their height and main diameters were performed. To be able to detect likely alterations of the pedicles, the maximum pedicle height, was included as well. For the assessment of the osseous outline of neural pathways, the main diameters of the spinal
canal, the foramen magnum as well as the width of the intervertebral foramen were chosen to be measured.

Length and circumference of the femur and humerus were included for the assessment of individual stature as e.g., shown by Trotter and Gleser (1952) and robusticity, as already outlined e.g., by Martin (1928). One has to be aware that humerus maximum length and radius maximum length as well as femur bi-condylar length and tibia maximum length are strongly correlated not only in recent samples, but also in Neandertals and early anatomically modern humans (Trinkaus, 1981). Therefore, all findings in the measured long bones may also be generally true for the other related limb bones. Furthermore, Martin (1928) already defined the measurement of femoral head width and bi-iliac width, both indicators of individual body mass as e.g., applied by Ruff et al. (1997) for Pleistocene Homo and used in the study presented here as well.

Most of the selected measurements were performed according to the wellestablished osteometric definitions by Martin (1928). Martin (1928) did not define osteometric measurements for e.g., maximum transverse process width or spinous process length. The first one was done in the present study according to Hasebe (1913) and the latter one according to Schultz (1961). The maximum pedicle height was defined hereby similar as in the study by Shapiro (1993). Furthermore, a plethora of definitions for the measurement of the intervertebral foramen width and height, especially for cadaveric samples, has been defined so far; see also Figures 8 and 9 with unaltered or slightly adapted figures of earlier publications. In the present study, a measurement approach similar to the ones chosen by Amonoo-Kuofi (1985) or Ebraheim et al. (1997), was performed.

Table 4: $\quad$ Measurements used (M: numbering according to Martin 1928)

| Measurement | Abbreviation |
| :--- | :--- |
| Ventral cranio-caudal diameterं of vertebral body: | M1 |
| Dorsal cranio-caudal diameter of vertebral body: | M2 |
| Mean sagittal diameter of vertebral body: | M6 |
| Mean transverse diameter of vertebral body: | M9 |
| Maximum pedicle height; see also Figure 8: | PH (Shapiro, 1993) |
| Spinous process length: | SPL (Hasebe, 1913) |
| Transverse process width: | TPW (Schultz, 1961) |
| Cranial / caudal intervertebral foramen width; see also Figure 8/9: IFCR / IFCA |  |
|  | (Amonoo-Kuofi, 1985; |
|  | Ebraheim et al., 1997) |
| Sagittal diameter of vertebral foramen: | M10 |
| Transverse diameter of vertebral foramen: | M11 |
| Foramen magnum breadth: | FMM16 |
| Foramen magnum length (basion-opisthion): | FMM7 |
| Maximum length of humerus: | HLM1 |
| Minimal circumference of humerus: | HCM7 |
| Maximum length of femur: | FLM1 |
| Circumference at mid-femur: | FCM8 |
| Femoral head breadth: | FHM18 |
| Bi-iliac width: | BIWM2 |



Figure 8: Lateral views of measurement definitions of the intervertebral foramen

A and B) Stephens et al. (1991); Lateral radiograph - FW) foraminal width, FH) foraminal height
C) Ebraheim et al. (1996); Hf) maximum height of foramen, Wf) maximum width of foramen
D) Mayoux-Benhamou et al. (1989); a) foramen height between superior and inferior surface centred in the pedicle, b) width of the superior part of the foramen, c) width of the inferior part
E) Humphreys et al. (1998); d) superior foraminal width, e) middle foraminal width, f) inferior foraminal width, g ) foraminal height
F) Hasegawa et al. (1995); 1) anterior disc height, 2) mid-point disc height, 3) posterior disc height, 4) foraminal height, 5) superior foraminal width, 6) middle foraminal width, 7) inferior foraminal width, 8) horizontal width of ligamentum flavum, 9) posterior bulging of intervertebral disc, 10) width of posterior vertebral margin


Fig. 8 (cont.): Lateral views of measurement definitions of the intervertebral foramen
G) Panjabi et al. (1983); A) area of the notch, h) maximum vertical space, w) minimum width of the foramen
H) Ebraheim et al. (1996); DM) medial zone depth
I) Cinotti et al. (2002); 1) superior foraminal width, 2) minimum foraminal width, 3) pedicle length
J) Present study; 1) cranial intervertebral foramen width, 2) caudal intervertebral foramen width 3a) dorsal vertebral body height, 3b) maximum pedicle height; intervertebral foramen definitions similar e.g., to Amonoo-Kuofi (1985) or Ebraheim et al. (1997)


Figure 9: Cranial views of osteometric measurement definitions of the intervertebral foramen
A) Inufusa et al. (1996): 1) mid-sagittal diameter of vertebral canal, 2) sub-articular sagittal canal diameter, 3) ligamentum flavum thickness
B) Ebraheim et al. (1996): WM) medial zone width, WL) lateral zone width, D) distance from vertebral body midline to the anterior border of the medial zone, A) angle between the nerve groove axis and the mid-sagittal plane
C) Present study: 1) intervertebral foramen width (similar for cranial and caudal measurement)

Symmetrical structures, such as the intervertebral foramen, were measured bilaterally; since, according to Marchesi et al. (1988), at least some of the vertebral measurements show side-dependent values of unknown significance.

Long bones measures were taken preferably on the right side, if preservation allowed it. Martin (1928) stated that the right humerus is usually longer and more massive than its left counterpart is. Therefore, the right sided long bones were chosen in this study, despite the fact that some authors use the left side to assess postcranial dimensions (Larsen, 1981). The left femur is usually bigger than the right one, whereas it is the other way round for the humerus (Martin, 1928; Trotter and Gleser, 1952). According to Pfeiffer (1980), the long bones of the non-dominant side, which is usually the left one, are less susceptible to age dependent size and robusticity changes. Nevertheless, correlations between right and left side measurements of long bones are high. According to Trotter and Gleser (1952), in white males inter-correlation among lengths of right and left femur as well as humerus is for both long bones 0.98 , with mean absolute side differences for femur and humerus 0.6 mm and 0.5 mm respectively. Either long bone measurements were performed in the study presented here by the author himself, to the nearest 1 mm , or they were taken from collection references.

Paleolithic long bone and foramen magnum data were kindly provided by Holliday (T. Holliday, pers. comm.) or gained from other earlier published data (Martin, 1928; Trinkaus et al., 1994). Sex and age of Paleolithic and Mesolithic skeletons were, in addition to the listed main references, brought in accordance with various sources (Holliday, 1997; Formicola and Giannecchini, 1999; Holliday, 1999; Riel-Salvatore and

Clark, 2001). Individuals of the Hainburg sample were assed in terms of sex, based on new estimations (B. Auerbach, pers. comm.) or collection references (Ehgartner, 1959).

Furthermore, the measurements used for the sagittal and transverse vertebral body diameter taken at mid-height escape most of the degenerative lesions, since these pathologies appear preferably at the level of the superior or inferior endplates. On Th6 and Th10, no cranial intervertebral foramen width could be determined. With regard to the particular anatomy of the posterior surface of the vertebral body (Larsen, 1985), it is worth noting, that in this study the sagittal vertebral body diameter was measured according to Martin (1928). In the midline of the posterior surface, the bridge of the foraminae caused by the basivertebral veins was the posterior reference point for the diameter. This point does usually slightly differ from the most concave point within the posterior surface at least of the lumbar vertebrae (Larsen, 1985).

## Technical equipment

All measurements, except for long bone length, circumference and bi-iliac breadth, were taken with a sliding caliper to the nearest 0.1 mm .

Several authors (Krag et al., 1988; Scoles et al., 1988) pointed out that direct osteometric measurements are still the best method to determine spinal dimensions. To improve direct caliper based measurements, Ebraheim et al. (1996) e.g., even cut off the transverse process of the particular level. This would not be favoured for obvious reasons in historic specimens. Surprisingly, Yoo et al. (1992) state that a caliper-based assessment of the intervertebral foramen diameter is not accurate enough, mainly due to the measurement technique itself. Therefore, they used for their study of intervertebral
foramen size in fresh but frozen cervical cadaver spines a penetrating probe. Obviously, this would not useful for skeletal studies either.

## Estimation of intra- and inter-observer error

It is crucial to know a possible intra-observer error of osteometric measurements of the vertebral column. In average this my have an extent of approximately 0.25 mm per vertebra (Todd and Pyle, 1928a; Lanier, 1939). Larsen (1985) addressed the possible error caused by an uneven vertebral surface with a possible error of up to several tenth of a millimetre. Nissan and Gilad (1986) found in their caliper based roentgenogram study, that for osseous vertebral measurements, statistical errors are of higher importance than the measuring linked errors. Nissan and Gilad $(1984 ; 1986)$ observed the intra-observer error in defining skeletal landmarks in a radiological study to be of 0.5 mm or less. The average intra-observer error of measurement for a semi-automatic measurement of vertebral dimensions in conventional radiography was $1.4 \%$, and the inter-observer error was $2.1 \%$ (Diacinti et al., 1995). Kandziora et al. (2001) describe the error of osteometric measurements of the cervical spine to be $+/-0.08 \mathrm{~mm}$ in their study by using a digital ruler with a stated accuracy of 0.1 mm . They found an equal accuracy of the radiologic assessments. Hinck et al. (1966) describe the intra-observer error in an X-ray study of the interpediculate distance to be of 0.26 mm . Furthermore, Minne et al. (1988) report a low intra- and inter-observer error of measurement in their X-ray study on the normal spinal morphometry. Todd and Pyle (1928b) discussed the extent of errors between roentgenographic and wet spine morphology, as well as the intra-observer error of measurement on dry and wet spines (Todd and Pyle, 1928a). Roaf (1960) found an acceptable correlation between radiographic and post mortem F. J. Rühli - Osteometric Variation of the Human Spine
spinal measurements. Jacobs (1985b) lists an intra-observer error of $0.002 \%$ for lengths and $1.7 \%$ for other measurements. In comparison to earlier published data, his margin of error was $0.003 \%$ and $2.1 \%$ respectively. Therefore, Jacobs (1985b) concludes that by including published data in a personally acquired data sample, one does not significantly increase existing intra-observer errors of measurements. On the other hand, Porter et al. (1987) had in their ultrasound based study a mean repeatability in measuring the $15^{\circ}$ oblique lumbar spinal canal width of 0.5 mm . In another ultrasound based study of the oblique lumbar spinal canal dimension, Porter et al. (1978b) found an intra- and interobserver error of measurement of 0.2 mm . The intra-observer and inter-observer error of measurement were both 0.4 mm in another ultrasound study of the same structure (Hibbert et al., 1981a). For a similar study, Legg and Gibbs (1984) report an intraobserver error of measurement of less than 0.3 mm . Surprisingly, they had consistently different values obtained than earlier published ultrasonographic assessments of the spinal canal diameter (Porter et al., 1978a), explained by them to be most likely due to a systematic difference. The intra- and inter-observer coefficients of variation were approximately $2.5 \%$ and $5 \%$, respectively, in an X-ray based morphometric study by Hermann et al. (1993). Furthermore, they mention the possible error in different X-ray studies caused by the fact that average subcutaneous fat thickness in selected populations varies and, therefore, by having an altered magnification factor while obtaining the X-rays, the gained data may differ slightly as well. Additional technical factors relevant especially for radiographic studies of spinal morphology are also mentioned by Hermann et al. (1993). In their anatomic-biomechanical study on the cadaveric lumbar spine, Fujiwara et al. (2001) determined the intra-observer error for
the measurement of the intervertebral foramen width to be $0.3 \mathrm{~mm}-0.4 \mathrm{~mm}$ and for the intervertebral foramen height to be 0.2 mm . The inter-observer error is well known for spinal measurements in clinical imaging situations (Ullrich et al., 1980; Beers et al., 1985; Gallagher et al., 1988; Hermann et al., 1993; Wildermuth et al., 1998), but this does not apply for this study due to the fact that only one observer performed all measurements. Ullrich et al. (1980) list the inter-observer error for linear spinal measurements by CT to be of less than 3\%. Gallagher et al. (1988) examined the intraand inter-observer error of measurement in a radiographic study on female spines. They found variation coefficients to be of less than $3 \%$ or $4 \%$, respectively, for linear vertebral measurements.

The standard error of measurement for the pedicle length, as measured by Zindrick et al. (1987) in a radiographic measurement was for the thoracic and lumbar spine between 0.2 and 0.6 mm . For a slightly different way of osteometric measurements of the pedicle height, Marchesi et al. (1988) found standard errors of measurements between 0.2 mm and 0.4 mm ; for the osteometric assessment of the spinal canal dimensions errors of $0.2 \mathrm{~mm}-0.7 \mathrm{~mm}$, and for the anterior and posterior vertebral body height errors between 0.2 mm and 0.5 mm . Olsewski et al. (1990) mention an error of measurement for pedicle height and width of 0.1 mm . Kothe et al. (1996) found an accuracy for the digitised measurement of pedicle slices to be 0.06 mm . Misenhimer et al. (1989) describe the accuracy of CT measurements of the pedicle in comparison to osteometric data to be within a third of a millimetre. Panjabi et al. (1991a; 1992) list in their three-dimensional morphological studies, which are largely different from the one presented here, the overall error in computing vertebral
morphology to be less than $5 \%$, with the error in instrument location on a certain vertebral landmark to be $+/-0.5 \mathrm{~mm}$. The accuracy of caliper based osteometric spinal measurements was questioned by Huizinga et al. (1952). Due to the lack of precision, they recommend not to use data of a higher accuracy than 1 mm . Nevertheless, it seems reasonable to assess spinal morphology by caliper measurements, as long as one is aware that there are some underlying minor methodical errors.

To evaluate possible inter- and intra-observer error in the study presented here, a special sub-project was initiated. As part of a "Commonwealth Scientific and Industrial Research Organisation" Year 12 Student Research Scheme, three inexperienced students and the author of this work measured, according to the above outlined technique, selected spinal landmarks in a series of recent vertebrae from the collection of the Department of Anatomical Sciences, the University of Adelaide. Their measurements were tested for reliability and accuracy among intra- and inter-observer. The largest intra-observer error, as indicated by the technical error of measurement, was in the inexperienced group, as seen in Figure 10, but still even inexperienced observer can reach accuracy similar to the ones of an experienced investigator.

Furthermore, if one compares selected data available from the literature with the ones obtained in this study, it can be seen that all measurements are within a range of 0.9 mm ; see also Table 5. These particular measures are difficult to fully appreciate, since the study by Vallois and de Félice (1977) record the measurements to an accuracy of only 0.5 mm . The inter-observer error was for these particular measurements overall very low with just $0.05 \%$.


Figure 10: Technical error of measurement for selected spinal dimensions by experienced and inexperienced observers

Table 5: Inter-observer error of selected vertebral and long bone dimensions (mm) (measurements similar to Martin (1928) 1: ventral body height / maximum femur length; 2: dorsal vertebral body height; 10: sagittal diameter spinal canal; 11: transverse diameter spinal canal; 8: mid-femur circumference)

| Sample | 1 - <br> Th10 | $\begin{aligned} & 2- \\ & \text { Th10 } \end{aligned}$ | $\begin{aligned} & 10- \\ & \text { Th10 } \end{aligned}$ | $\begin{aligned} & 11- \\ & \text { Th10 } \end{aligned}$ | $\begin{aligned} & 1- \\ & \mathbf{L} 1 \\ & \hline \end{aligned}$ | $\begin{array}{r} 2- \\ \mathrm{L} 1 \\ \hline \end{array}$ | $\begin{aligned} & 10- \\ & \mathrm{L} 1 \\ & \hline \end{aligned}$ | $\begin{gathered} 1- \\ \mathrm{L} 5 \end{gathered}$ | $\begin{gathered} 2- \\ \text { L5 } \end{gathered}$ | 1femur | 8femur | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Veyrier (m) | 26 | 30 | 17 | 21 | 28 | 29 | 17 |  |  | 461 | 81 | Pittard and Sauter (1945) |
|  | 24.2 |  | 18.3 | 20.7 | 28.2 | 27.2 | 18.2 |  |  | 464 | 81 | Present study |
| Téviec 16 <br> (m) |  |  |  |  | 25 | 29 |  | 25 | 23 |  |  | Vallois and de Félice (1977) |
|  |  |  |  |  | 24.5 | 29.8 |  | 28.8 | 23.1 |  |  | Present study |
| Téviec 1 (f) |  |  |  |  | 21 | 25 |  | 21 | 21 |  |  | Vallois and de Félice |
|  |  |  |  |  | 20.1 | 24.8 |  | 20.7 | 21.8 |  |  | Present study |

## Examination permission

Collection accesses were approved in oral or written form by the responsible curators in advance.

## Data analysis

All original data were copied by the author himself into a Microsoft $®$ Excel 2000 (Microsoft Corporation, Redmond, WA, USA) spreadsheet. Data were checked twice for obvious mal-transcription errors. If any doubt about data persisted after double-checking with the original record sheet, the particular measurement was deleted.

It can be assumed, based on earlier reports (Minne et al., 1988; Black et al., 1991; Xu et al., 1995), that spinal morphometric ratios follow a normal or Gaussian distribution. Therefore, measurements before the final data analysis were trimmed by deleting all data outside the range of three standard deviations. Spinous process length on $\mathrm{C} 3(\mathrm{C} 3 \mathrm{~S} 1)$ and transverse process width on level $\mathrm{C} 7(\mathrm{C} 7 \mathrm{H} 1)$ were excluded in most data analyses due to their overall small sample size.

Statistical analyses were done by either using Microsoft ${ }^{\circledR}$ Excel 2000 or, primarily SPSS® 11.0 (SPSS Inc. Chicago, IL, USA) software. The skeletal sample was analysed separately for both sexes. The limits of two-tailed significance were estimated for $\mathrm{p}<0.05$, with Bonferroni's correction added for measurements on multiple vertebral levels. Morphometric values were listed including means and standard deviations as well as mode, median and minimum and maximum values. Standard deviations for Table 6 were calculated as sample standard deviations, whereas for the data sets in the appendices it was defined as population standard deviations. Sexual dimorphism of measurements was assessed as a percentage difference of mean values as well as by
paired t-test. Paired t-test was also applied for analysis of side differences of spinal measurements. Correlation of variables with individual age was tested primarily on the well-recorded modern samples. Furthermore, correlations of variables with major age groups, defined as adult, mature and senile, were tested for the non-modern samples, as well as for the three major time groups, defined as Neolithic / Bronze Age, Medieval and modern, respectively. Temporal trends were considered for the whole sample, including the single individuals from the Mesolithic and Paleolithic time period. To test for the best regression model, linear, quadratic, cubic, exponential, logarithmic and power functions were assessed. One-way analysis of variance (ANOVA) was used to test for significant alterations of mean values and standard deviations of variables between the three major time groups. Principal components analysis was done for the whole sample, separately for both sexes.

A list for all used abbreviations for the spinal variables could be found in appendix 1 .

## Critical sample size

The critical sample size to detect morphometric measurements depends on the level of significant mean difference $\left(\mathrm{E}_{\mathrm{x}}\right)$ between samples. It is

$$
\mathrm{E}_{\mathrm{x}}=\mathrm{SD} / \sqrt{ } \mathrm{N}
$$

with $2 \cdot \mathrm{E}_{\mathrm{x}}=$ mean critical difference, SD being the standard deviation, and N the number of individuals.

If a difference of $+/$ one SD is expected, the critical N should be 4. If a difference of a half of SD is expected a critical sample size of 16 and with a difference of a third of SD it is 36 and with a quarter SD it is 64 . A discrepancy of $+/$ - one SD is a
likely assumption of mean difference in spinal morphometry, since earlier studies found a decrease of human brain size, another part of the central nervous system, of one SD within the same explored time frame, the Holocene (Henneberg, 1988).

## Modern samples

The two most modern samples; see also Table 6, the St. Johann specimens, as well as the individuals from Apples, Bex, La Sarraz and St. Prex, subsequently summarily labelled as "Geneva" sample, were selected as reference data. These socalled "modern" samples are unique. All individuals are personally known with recorded sex, age at death and mostly with background information, such as occupation and cause of death. The two samples show no significant secular trend in stature, as estimated by individual femur length ( $\mathrm{p}<0.05$ : $\mathrm{r}=0.02$ ), nor did femoral robusticity ( $\mathrm{p}<0.05$ : $\mathrm{r}=0.21$ ) alter. Both sexes in the samples showed no significant difference in age at death between the two samples ( $\mathrm{p}<0.05 ; \mathrm{r}$-females $=0.05$, r -males $=0.03$ ). The samples were e.g., used to test for possible significant correlations of the variables with individual age.

Table 6: Composition of modern samples St. Johann and "Geneva", with individually known sex and age ( $\mathrm{N}=71$, Mean=49.4 yrs, $\mathrm{SD}=18.4 \mathrm{yrs}$ )

| Age group | $\cdots$ N males <br> $\left(\begin{array}{c}\text { Mean=51.9 yrs, } \\ \mathrm{SD}=18.6 \mathrm{yrs})\end{array}\right.$$\mathbf{N}$ females <br> (Mean=45.9 yrs, <br> $\mathrm{SD}=18.3 \mathrm{yrs})$ |  |
| :--- | ---: | ---: |
| $20-39 \mathrm{yrs}$ | 13 | 15 |
| $40-59 \mathrm{yrs}$ | 14 | 8 |
| $>60 \mathrm{yrs}$ | 14 | 7 |
| Total | 41 | 30 |

## Results

Sex and age composition of the samples
The average dating of the male sample ( $\mathrm{N}=179$ ) was approximately 2650 years BP and the one of the females ( $\mathrm{N}=169$ ) was approximately 2680 years BP. The largest subgroup for both sexes was the combined individuals of the Medieval Ages epoch. The major samples and their particular sex ratio are shown in Figure 3. The biggest single sample is the Early Medieval one from Straubing.

The skeletons were classified into three major age groups: adult (20-40 years), mature (40-60 years) and senile (older than 60 years). The distribution of the sexes in relation to these age groups can be found in Figure 6. On average, the percentage of females in the adult group is higher than for males, and the opposite can be found in the mature group. The mean of the female major age groups, as defined for adult being 1 , mature being 2 and senile being 3 , was 1.6 in comparison with 1.8 for males, but with the same standard deviation for both sexes.

## Descriptive statistics of the measurements

The vast majority of the measurements follow mostly a normal distribution. Major exceptions can be found in the transverse process width or spinous process length measurements on cervical and lumbar levels, which show often two major peaks in frequency; see also Figures 11 to 14 . The complete descriptive statistics of all measurements, separated by major time groups and sex, could be found in appendix 3 .


L1M6

Figure 11: Sagittal diameter of L1 (L1M6) vertebral body in females showing mostly a normal distribution


Figure 12: Transverse process width of L5 (L5TPW) in females showing a nonnormal distribution


L1M10
Figure 13: Transverse spinal canal diameters at L1 (L1M10) in males showing mostly a normal distribution

C3SPL


C3SPL

Figure 14: Spinous process lengths at C3 (C3SPL) in males showing a non-normal distribution

## Osteometric data of the whole sample

The basic osteometric data, consisting of mean, standard deviation and number of measurements of a particular variable, are presented for both sexes separately in Table 7. Also listed in Table 7 are the same measures for the subgroup of "modern" individuals. Graphs of the examined spinal variables are shown, for the modern subgroups only, in Figure 15. The range curves, beside mean graphs for both sexes, are shown. Since usually females have smaller values than males, the female "mean minus standard deviation" is smaller than the same limits in males; therefore, just the female curve is shown. On the other hand, males will have higher values for the "mean plus standard deviation" - curve; therefore, their curve is shown as upper limit of range. As the only exception, in case of intervertebral foramen width the maximum range is defined by female "mean plus standard deviation" and males "mean minus standard deviation". The osteometric pattern for the modern samples is as follows:

The ventral vertebral body height shows generally a consistent increase from C3 caudally to the last lumbar levels in both sexes. The dorsal vertebral body height increases caudally from C3 to L1 and decreases for the last lumbar level in both in sexes.

For the sagittal vertebral body diameter, there is a consistent increase caudally in both sexes. The transverse vertebral body diameter also displays in general an increase caudally, again consistent in both sexes, but with the single exception of Th6, which shows slightly smaller values than Th1.

Pedicle heights follow a similar pattern on both sides and are bigger in males than in females. The pedicle heights show an increase caudally from C3 to L1, with a decrease caudally in size for the last lumbar level.

The diameters of the osseous spinal canal show a different pattern. In both sexes there is a decrease in sagittal spinal canal size from C3 caudally with a subsequent increase in the upper thoracic spine to level Th6. Level Th10 shows slightly smaller values than Th6 in males, but increased means in females. Another increase caudally in the lumbar spine can be demonstrated and, finally, there is a decrease for the last lumbar level. The transverse diameter shows, again consistent for both sexes, an increase from level C3 to C7, followed by a decrease caudally till Th6, with a steady increase caudally; consistent in both sexes.

The spinous process length shows consistent in both sexes increase caudally from C3 to Th1, with a subsequent decrease until Th6 and another increase caudally. The last lumbar level finally shows a smaller spinous process than L1.

The transverse process width shows for both sexes an increase caudally in the cervical region, with a decrease for the thoracic levels and another increase in the lumbar region.

The cranial intervertebral foramen widths are bigger than the caudal ones on the same vertebra. The cranial intervertebral widths show consistent in both sexes similar values for most regions, except for level L1, which shows by far the biggest means.

The caudal intervertebral foramen widths increase in size from C3 caudally till Th10, again similar for both sexes. Whereas in females, L1 shows bigger values than Th10, in males the means of the first lumbar level are equal or even smaller than the ones to be found at Th10. Both sexes show a decrease in size for the last lumbar level.

The foramen magnum demonstrates bigger values in males than in females, with the sagittal diameter being larger than the transverse one. All long bone dimensions, including bi-iliac width, are bigger in males than in females.

Table 7: Mean, standard deviation (SD) and number of individuals measured ( N ) of all variables for whole sample and modern subgroups

| Variable | Mean(mm) | MalesSD |  | Malos (Modern) |  |  | Fomules |  |  | Famaloe (Modern) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $N$ | Mean (mm) | 80 | N | Mean (mm) | so | N |  |  |  |
| Agegroup: Adult (Agegroup1); Matur (2), Senill (3) | 1.8 | 0.7 | 179 |  |  |  | 1.6 | 0.7 | 169 |  |  |  |
| C3 dorrel wermbrel body haight dorsal | 14.0 | 12 | 130 | 14.6 | 1.3 | 39 | 12.4 | 1.1 | 129 | 12.8 | 1.3 | 26 |
| C3 ventral wermbral body hoight | 13.7 | 1.1 | 128 | 14.1 | 1.0 | 38 | 12.3 | 12 | 128 | 12.5 | 1.2 | 24 |
| C3 yermbral body eugitana ditumemr | 18.0 | 1.5 | 124 | 18.2 | 1.5 | 38 | 14.8 | 13 | 125 | 14.7 | 1.4 | 25 |
| C3 yerimbral body traneveree dilumator | 19.3 | 2.0 | 122 | 18.3 | 1.8 | 37 | 18.5 | 2.2 | 124 | 18.1 | 2.3 | 25 |
| C3 left pedicte haigh | . 0 | 1.0 | 121 | 7.3 | 1.1 | 35 | E 1 | 0.8 | 125 | 0.2 | 0.9 | 27 |
| C3 right pedilste height | E. 9 | 0.9 | 120 | 7.3 | 1.0 | 33 | 6.1 | 0.8 | 125 | 0.3 | 1.0 | 28 |
| C3 spinal carnul tagital diamoter | 15.3 | 1.5 | 119 | 15.8 | 1.4 | 34 | 14.9 | 1.3 | 102 | 15.4 | 1.4 | 24 |
| C3 splnaic canal transwaree dimmer | 24.9 | 1.8 | 124 | 24.6 | 1.7 | 38 | 23.1 | 1.4 | 124 | 23.9 | 1.6 | 26 |
| C3 spinous process lenght | 18.8 | 3.2 | 40 | 16.9 | 2.8 | 11 | 13.7 | 2.7 | 46 | 18.0 | 3.8 | 9 |
| C3 traneverse procose width | 54.8 | 4.1 | 75 | 36.1 | 3.7 | 22 | 50.0 | 3.7 | 71 | 51.0 | 3.8 | 17 |
| C3 loff cranizal literveribbral formmen width | 8.5 | 1.1 | 123 | 6.8 | 0.8 | 37 | 6.4 | 1.2 | 122 | 6.7 | 1.1 | 26 |
| C3 left cauded mimerverimbral forandine wddh | 7. | 1.4 | 121 | 8.2 | 1.3 | 35 | 7.9 | 1.6 | 124 | 8.3 | 1.2 | 27 |
| C3 right eranial intervertebral foremen width | 6.3 | 1.0 | 123 | 6.5 | 0.0 | 34 | 6.4 | 1.2 | 124 | 6.6 | 1.0 | 26 |
| C3 right eaudal intervartebraf foramen width | 7.7 | 1.4 | 124 | 0.2 | 1.3 | 35 | 7.8 | 1.5 | 124 | 8.1 | 1.3 | 26 |
| C7 dorsel wermbral body height | 14.9 | 1.1 | 133 | 15.2 | 1.3 | 38 | 136 | 1.1 | 129 | 13.8 | 1.4 | 26 |
| $\mathbf{C 7}$ ventrat vormbral hady height | 13.9 | 1.3 | 139 | 13.7 | 1.4 | 37 | 12.0 | 1.1 | 129 | 12.8 | 1.4 | 25 |
| C7\% wertibral hody nagithal dilamamr | 17.1 | 1.5 | 133 | 17.7 | 1.7 | 36 | 15.6 | 1.4 | 128 | 18.0 | 1.5 | 26 |
| C7 veriteral body tranaveree dilemefor | 28.5 | 2.3 | 131 | 25.6 | 2.2 | 36 | 24.8 | 2.1 | 128 | 24.4 | 1.8 | ${ }^{26}$ |
| C7 loft pedicle height | 7.3 | 0.9 | 127 | 7.5 | 0.9 | ${ }^{36}$ | 6.6 | 0.9 | 125 | 8. 5 | 0.8 | 28 |
| C7 right pedicie halght | 7.2 | 0.9 | 129 | 7.5 | 1.0 | 39 | 6.6 | 0.9 | 130 | 6.6 | 1.1 | 27 |
| C7 engital diarre tisa aplnal canal | 14.9 | 1.4 | 127 | 15.1 | 1.5 | 39 | 14.3 | 1.3 | 120 | 14.5 | 1.3 | 26 |
| C7 tranverse dilanelor apinal carnal | 25.2 | 2.1 | 135 | 2 ta | 1.7 | 38 | 24.4 | 1.8 | 123 | 25.7 | 1.7 | 27 |
| C7 spinoue porcose length | 30.1 | 4.3 | 80 | 31.5 | 4.2 | 23 | 26.2 | 3.3 | 69 | 28.1 | 2.8 | 14 |
| C7 trneverue proctes widit | 66.2 | 13.7 | 35 | 66.2 | 17.0 | 7 | 54.8 | 17.3 | 33 | 52.8 | 18.9 | 6 |
| C7 int eceminal inlorvortbbral foremen width | 8.1 | 1.0 | 127 | 6.3 | 0.9 | 35 | 0.3 | 0.8 | 119 | 6.6 | 0.8 | 26 |
| C7 left cuudal Intrevermbrel formmen width | 9. 8 | 1.4 | 126 | 10.1 | 15 | 38 | 0.8 | 1.3 | 116 | 10.0 | 1.3 | 26 |
| C7 ight eranial interverebral foransen width | 6.3 | 0.8 | 128 | 6. 6 | 0.7 | 35 | 6.4 | 0.9 | 120 | 0.8 | 0.8 | 25 |
| C7 right eaudal intervertibral forumen width | 9.8 | 1.3 | 128 | 10.1 | 12 | 37 | 0.5 | 1.2 | 115 | 9.8 | 1.1 | 24 |
| TH1 dorsat vertebree body holght | 17.2 | 1.3 | 139 | 17.3 | 1.4 | 40 | 15.6 | 1.2 | 128 | 15.7 | 1.4 | 28 |
| TH1 ventral verimbrel body helght | 18.0 | 1.4 | 135 | 18.0 | 1.3 | 38 | 14.6 | 12 | 125 | 14.5 | 1.4 | 27 |
| TH1 sugittal dilame me vertebral body | 17.3 | 1.6 | 128 | 17.8 | 1.9 | 34 | 15.8 | 1.4 | 121 | 18.0 | 1.0 | 27 |
| THY tranuveree diammer wermbral body | 28.5 | 2.8 | 136 | 28.9 | 2.7 | 38 | 28.2 | 2.4 | 125 | 20.1 | 2.0 | 28 |
| THi left pedicte height | 9.4 | 1.2 | 133 | 0.3 | 1.2 | 40 | 6.4 | 1.1 | 123 | 64 | 1.2 | ${ }^{28}$ |
| TH1 righ padicla helght | 9.2 | 1.2 | 133 | 9.1 | 1.3 | 39 | 4.4 | 1.1 | 128 | e. 3 | 1.1 | 28 |
| TH1 spinal camal cegitimid diame ior | 15.4 | 1.2 | 128 | 15.8 | 1.2 | 38 | 14.9 | 1.2 | 115 | 15.3 | 1.2 | ${ }^{28}$ |
| TH1 sphan canel tanaverse dimmeior | 22.4 | 2.0 | 130 | 23.3 | 1.8 | 40 | 21.3 | 1.8 | 122 | 22.2 | 1.7 | ${ }^{28}$ |
| TH1 eplinous process longht | 31.7 | 4.1 | 1 | 33.2 | 3.5 | 20 | 27.5 | 3.4 | 54 | 29.1 | 2.8 | 13 |
| TH1 traneveres procese width | 78.0 | 8.1 | 106 | 79.1 | 5.0 | 35 | 70.9 | 5.0 | 90 | 72.5 | 3.8 | 25 |
| TH1 beft cremial intervertiobral forsmen widith | 8.4 | 1.0 | 128 | 6.6 | 1.0 | 38 | 6.4 | 0.8 | 117 | $\mathrm{c}_{6} 8$ | 1.0 | ${ }^{28}$ |
| THil int caudel intervertubral formmen width | 10.3 | 15 | 929 | 10.9 | 1.5 | 39 | 10.2 | 1.4 | 115 | 10.3 | 1.3 | 27 |
|  | 6.3 | 0.8 | 121 | E. 5 | 0.9 | 35 | 0.4 | 0.8 | 120 | 6. | 0.9 | 28 |
| Thit right enudal in mevertbral foremen width | 10.2 | 1.3 | 125 | 12.6 | 1.4 | 39 | 10.1 | 1.4 | 118 | 10.4 | 1.5 | 27 |
| THE dorsal wertwbral body helght | 20.0 | 1.5 | 127 | 21.0 | 1.3 | 36 | 19.2 | 1.3 | 122 | 19.8 | 1.4 | ${ }^{26}$ |
| THe ventrell wertebral body helght | 19.0 | 1.4 | 123 | 48.0 | 1.6 | 35 | 17.5 | 1.2 | 123 | 17.7 | 1.2 | 27 |
| TH6s sugital diammer verimbral böly | 25.8 | 2.3 | 119 | 28.3 | 2.4 | 34 | 22.9 | 2.2 | 121 | 23.6 | 2.3 | 27 |
| TH6 tranaverse diameme vertubrel body | 27.8 | 2.1 | 124 | 27.8 | 22 | 36 | 24.8 | 1.7 | 125 | 24.6 | 1.9 | ${ }^{27}$ |
| THS ieft podicte holght | 12.0 | 12 | 121 | 12.2 | 1.1 | 35 | 10.4 | 0.9 | 119 | 10.5 | 1.2 | 27 |
| THE right pedices height | 12.2 | 1.3 | 124 | 12.8 | 1.0 | 36 | 10.5 | 0.8 | 120 | 108 | 12 | 27 |
|  | 16.3 | 1.2 | 111 | 16.7 | 1.2 | 34 | 15.9 | 1.1 | 108 | 18.2 | 1.0 | 28 |
| THe eptinal canel raneverse dimmetr | 17.3 | 15 | 123 | 17.7 | 4.4 | 36 | 18.6 | 1.8 | 119 | 18.6 | 1.7 | 27 |
| THE aphoue proeess length | 195 | 5.7 | 42 | 127 | 5.2 | 13 | 18.0 | 5.0 | 43 | 17.0 | 5.4 | 11 |
| THE tranoverse proceses widh | ¢5. 1 | 52 | 73 | 85.5 | 4.4 | 27 | 59.7 | 5.3 | 88 | 60.8 | 4.1 | 22 |
| THE iefl couded intorversbral formien width | 120 | 2.0 | 104 | 13.3 | 1.7 | 32 | 12.1 | 1.7 | 89 | 12.4 | 1.9 | 24 |
| THE right caudal inmervertmbreal foramen widh | 11.7 | 1.7 | 102 | 127 | 1.3 | 32 | 11.6 | 1.8 | 88 | 11.5 | 1.7 | 25 |
| THIO dorael y yrimbral body helght | 23.7 | 1.8 | 138 | ${ }^{23.0}$ | 1.4 | ${ }^{38}$ | 21.7 | 1.8 | 135 | 22.1 | 1.4 | 28 |
| TH10 ventrel wartibrel body holght | 22.2 | 1.5 | 133 | 22.2 | 1.5 | 34 | 20.8 | 1.6 | 132 | 21.4 | 1.7 | 28 |
| THYO worbbrea body sagiteal ditame in | 30.0 | 3.0 | 128 | 31.3 | 3.2 | 31 | 23.2 | 2.3 | 138 | 27.3 | 2.4 | ${ }^{26}$ |
|  | 34.2 | 3.1 | 139 | 34.7 | 3.3 | ${ }^{39}$ | 30.4 | 2.4 | 136 | 31.0 | 2.3 | 29 |
| THiO lett pedich halght | 15.5 | 1.4 | 136 | 15.7 | 1.4 | 40 | 13.8 | 1.4 | 131 | 14.3 | 1.7 | 28 |
| THio right podicle hoight | 15.4 | 1.3 | 134 | 15.8 | 1.2 | ${ }^{39}$ | 14.0 | 1.3 | 132 | 14.3 | 1.7 | 27 |
|  | 18.2 | 1.4 | 131 | 16.4 | 1.6 | ${ }^{39}$ | 15.7 | 1.5 | 124 | 10.4 | 13 | 27 |
| THiO aphnal ceand tanewerse diamater | 18.4 | 1.7 | 137 | 10.4 | 1.8 | 40 | 17.3 | 15 | 129 | 17.9 | 1.7 | 28 |
| TH10 appinous procese longht | 28.6 | 4.5 | 54 | 30.4 | 3.8 | 11 | 24.1 | 3.8 | 57 | 28.1 | 4.0 | 13 |
| TH10 tramevereo procate with | sa. 7 | 5.5 | 84 | 63.0 | 4.8 | 24 | 55.0 | 5.3 | 91 | 58.1 | 4.6 | 22 |
| TH1O arit coudal intervertibedd forramen width | 12.4 | 1.8 | 128 | 13.1 | 1.8 | 38 | 12.2 | 1.5 | 119 | 12.7 | 1.1 | 28 |
| TH10 right eaudel inlerver whral foramen widh | 12.1 | 1.9 | 128 | 12.9 | 1.0 | 37 | 11.8 | 15 | 120 | 12.6 | 1.1 | 27 |
| L1 doreel verimbral body helght | 28.0 | 1.8 | 153 | 27.0 | 1.6 | 38 | 26.3 | 1.8 | 141 | 26.4 | 2.0 | 27 |
| Li ventel vertwbral body holght | 25.6 | 2.0 | 145 | 25.5 | 2.1 | ${ }^{36}$ | 24.7 | 1.9 | 138 | 25.0 | 1.8 | 25 |
| LI vertibrel body sagitul dammolur | 31.7 | 2.9 | 137 | 32.9 | 2.8 | 33 | ${ }^{27.5}$ | 2.3 | 132 | 28.2 | 2.8 | 25 |
| Li verteraral body traneverse dilamelier | 403 | 3.2 | 151 | 41.0 | 3.3 | 37 | 35.5 | 3.0 | 138 | 35.9 | 2.8 | ${ }^{28}$ |
| L1 lift pedicie helght | 15.7 | 1.3 | 146 | 16.4 | 1.3 | 35 | 14.3 | 1.2 | 137 | 14.4 | 1.3 | ${ }^{27}$ |
| L1 right pealicle holight | 15.0 | 1.4 | 147 | 16.5 | 1.6 | ${ }^{36}$ | 14.5 | 1.4 | 142 | 14.8 | 15 | ${ }^{28}$ |
| L1 uplinel censil sagitisid dirmater | 17.8 | 1.5 | 135 | 18.2 | 1.7 | 34 | 17.7 | 1.5 | 126 | 18.4 | 15 | $\stackrel{\text { 28 }}{ }$ |
| L1 splinel cennel traneverse diemelar | 23.7 | 1.8 | 142 | 24.4 | 2.0 | 35 | 22.5 | 1.7 | 140 | 23.2 | 1.7 | ${ }^{28}$ |
| L1 splnoue procoes lenght | 30.1 | 4.2 | 55 | 32.3 | 5.7 | ${ }^{8}$ | 26.4 | 3.9 | 57 | 29.2 | 3.8 | 13 |
| L1 tensweres procese width | 73.0 | 10.2 | 52 | 75.1 | 11.1 | 16 | 64.6 | 7.7 | 58 | 50.3 | 6.3 | 15 |
| L1 loft erenial in inverembral tormmen width | 2. | 1.2 | 137 | 8.1 | 1.3 | 34 | 6.8 | 1.2 | 121 | 8.1 | 1.3 | $\stackrel{28}{28}$ |
| Li beft caudal inlorveritbral formmen width | 12.8 | 1.8 | 132 | 13.1 | 2.3 | 34 32 | 13.6 | 1.5 | 120 115 | 13.6 .0 .5 | 1.4 | ${ }_{27}^{27}$ |
|  | 14 | 1.1 | 131 | 13.9 | 1.3 | 32 | 8.9. | 1.2 | 115 122 | 13.4 | 1.3 1.3 | 27 27 |
| L1 right caudal Infervertb bral forsmina width | 12.8 | 1.7 | 129 | 13.0 | 2.0 | 34 | 12.9 | 1.4 | 122 | 13.4 | 1.3 | 27 |
| L5 dorsel wermbral body helght | 24.5 | 2.0 | 142 |  | 1.9 | 36 37 | 23.4 27.0 | 2.0 2.8 | 138 132 138 | 23.6 28.1 | 1.8 2.0 | 28 24 |
| L5 wentral vertbisel hody tolght | ${ }^{29.8}$ | 2.4 | 143 137 | 24.9 34.5 | 2.3 3.1 | 37 32 | 27.0 31.1 | 2.6 | 132 131 | 23.4 30.4 | 2.6 | 23 |
| L5 wortibersi body sugltul dlammer | ${ }^{33.18} 4$ | 3.1 | 137 148 | 34.5 47.7 | 5.15 | 32 38 | 34.1 4.1 | 2.7 3.6 | 131 <br> 142 <br> 18 | 30.4 42.6 | 2.6 3.2 | 23 27 |
| Ls left pedicie helght | 14.0 | 1.8 | 144 | 13.9 | 1.6 | 38 | 12.8 | 1.8 | 132 | 42.7 | 2.2 | ${ }^{28}$ |
| Ls right padele halght | 14.5 | 2.0 | 140 | 14.5 | 1.8 | 37 | 13.5 | 1.8 | 134 | 13.3 | 2.1 | ${ }^{26}$ |
| L5 spinal cenel cagithe diametor | 18.9 | 2.1 | 124 | 17.7 | 2.3 | 35 | 16.9 | 2.2 | 118 | 17.7 | 1.9 | 25 |
| LS uphnel comul tranoverse dilemetor | 28.2 | 25 | 138 | 28.3 | 3.0 | 38 | 28.0 | 2.7 | 130 | 20.5 | 2.9 | 27 |
| LS mphous processue lenght | 28.3 | 4.1 | 57 | 29.9 | 3.7 | 11 | 24.2 | 3.8 | 80 | 26.7 | 3.9 | 13 |
| LS taneveres procese whdth | 85.2 | 16.5 | 80 | 91.5 | 7.4 | 18 | 78.0 | 14.9 | 70 | 84.5 | 10.2 | 15 |
| L5 bit crundel filervortiberel forumen width | 6.0 | 1.0 | 139 | 6.5 | 1.0 | ${ }^{38}$ | 6.4 | 1.0 | 132 | 6.8 | 1.1 | 27 |
|  | 0.9 | 1:9 | 129 | 10.1 | 2.2 | 37 | 10.5 | 1.8 | 127 | 11.3 | 1.6 | 27 |
|  | 6.1 | 0.9 | 133 | E. 3 | 0.9 | 35 | 6.5 | 1.1 | 128 | 7.1 | 1.3 | 27 |
| LS ifght caudel intervertbreal foramen width | 9.8 | 1.7 | 125 | 9.8 | 1.7 | ${ }^{38}$ | 10.5 | 1.8 | 128 | 11.3 | 1.8 | 27 |
| forsmen magrum sagittal dilameibr | 37.2 | 2.8 | 59 | 37.3 | 2.5 | 28 | 35.8 | 2.8 | 52 | 35.8 | 3.4 | 21 |
| formmen magnum trasveree dlametor | 32.1 | 2.4 | 58 | 32.4 | 2.2 | 28 | 30.0 | 2.8 | 52 | 37.0 | 2.7 | 21 |
| humerus lenght | 320.6 | 18.1 | 134 | 325.5 | 14.3 | ${ }^{36}$ | 298.8 | 18.6 | 124 | 384.3 | 20.8 | 29 |
| hummerue efreumforenes | e5.6 | 4.9 | 163 | 67.3 | 5.5 | 40 | 57.2 | 4.1 | 151 | 58.7 | 4.9 | 30 |
| mmorel hand width | 48.3 | 3.4 | 180 | 4.4 | 3.1 | 39 | 42.6 | 2.7 | 159 | 43.9 | 3.1 | 29 |
| tmmus lenght | 455.4 | 27.3 | 138 | 453.4 | 24.9 | 36 | 422.8 | 25.7 | 132 | 426.5 | 24.8 | ${ }^{28}$ |
| tmur circumference | 89.4 | 8.8 | 162 | 39.4 | 6.8 | 39 | 79.7 | 5.8 | 154 | 42.7 | 6.0 | 29 |
| breriec with | 282.9 | 16.8 | ${ }_{8}$ | 289.E | 16.3 | 24 | 271.8 | 17.3 | 79 | 2822 | 15.4 | 25 |

F. J. Rühli - Osteometric Variation of the Human Spine


Ventral vertebral body height



Figure 15: Variables by vertebral levels with mean for males and females and maximum one standard deviation range (male mean + SD, female meanSD)


## Left pedicle height



Right pedicle height


Figure 15 (cont.): Variables by vertebral levels with mean for males and females and maximum one standard deviation range (male mean +SD , female mean-SD)

Sagittal diameter spinal canal


Transverse diameter spinal canal



Figure 15 (cont.): Variables by vertebral levels with mean for males and females and maximum one standard deviation range (male mean+SD, female mean-SD)



Right cranial intervertebral foramen width


Figure 15 (cont.): Variables by vertebral levels with mean for males and females and maximum one standard deviation range (maximum range is defined by female mean + SD, male mean-SD)

## Left caudal intervertebral foramen width



Right caudal intervertebral foramen width


Figure 15 (cont.): Variables by vertebral levels with mean for males and females and maximum one standard deviation range (male mean $+S D$, female mean-SD)

## Sexual dimorphism

As already mentioned above, for the vast majority of the explored variables of the whole sample, males show bigger values than females.

Female mean values were compared as percentages of male ones, with the latter ones assumed as being $100 \%$. Femur length was on average $7 \%$ bigger in males, while femur circumference was approximately $11 \%$ different. Similar sexual dimorphism pattern can be found for the two variables of the humerus. Furthermore, femoral head breadth shows a sex difference of almost $12 \%$. Females present in relation to femur length a larger bi-iliac width, which is on average just 4\% smaller than in males.

Females have absolutely bigger values for a large number of intervertebral foramen widths. These are the only variables examined, of which some are absolutely larger in females than males. Values absolutely bigger in males, but relative to percentage difference of femur length de facto larger in females, are additional intervertebral foramina and a lot of the neural canal measurements, especially the sagittal dimensions.

In relation to femur length differences, larger values can be found in males, especially for most of the spinous process lengths, as well as frequently for the pedicle heights. Furthermore, some values of sagittal and transverse vertebral body dimensions are also, relative to femur length sex differences, bigger in males. The foramen magnum dimensions are larger in males than in females, but the sexual dimorphism is for both diameters smaller than the average femur length sex-difference.

Significant sex differences in mean values, after application of Bonferroni's correction, were found among the modern samples with proven individuals' sex. For
most vertebral body dimensions such as height and diameters, for most transverse process widths as well as for pedicle height, there is a significant sexual dimorphism with males showing larger dimensions; whereas for the vast majority of the spinal canal diameters and intervertebral foramen widths, there is no significant difference in mean value between sexes. A complete list of all percentage- and $t$-values of sexual dimorphism could be found in appendix 4.

## Side differences of spinal measurements

Possible side difference was tested for the mean values of the bilaterally measured spinal dimensions, which are pedicle height and intervertebral foramen widths, in the modern samples. No significant side differences, for both males and females, have been found for these measures. The $t$-values, which are non-significant for any measurement at level $\mathrm{p}<0.05$, even before the application of Bonferroni's correction for multiple comparisons, could be found in appendix 5 .

## Inter-correlations of all measurements

The correlations of the osteometric variables with each other show consistent patterns, which are similar in both sexes. The complete list of all inter-correlations could be found in appendix 9 .

In general, comparable measurements of anatomically closer located vertebral levels tend to correlate to a higher degree with each other than the same ones located further apart. Additionally, even unrelated measurements, but still closely located in terms of neighbouring vertebral levels, correlate significantly with each other. Furthermore, similar measurements even in largely far apart locations correlate well
with each other. There is also a high correlation between the same measurements on both right and left side, as performed here in the cases of the pedicle heights and the intervertebral foramen widths. Typical examples of high vertebral inter-correlations, with a Pearson correlation coefficient of usually at least approximately 0.6 , are ventral versus dorsal vertebral body height, sagittal versus transverse vertebral body dimensions or transverse versus sagittal spinal canal diameters, as measured on the same vertebral level.

The foramen magnum shows primarily significant correlations between its sagittal dimension and the examined sagittal dimensions of the spinal canal. The long bone measurements demonstrate mostly high correlations with each other. Both, femur and humerus show a large number of medium level correlations, but still significant, with various vertebral measurements. The bi-iliac width shows fewer correlations than other non-vertebral measurements with the vertebral dimensions, but still it expresses a few mild ones, especially with the sagittal vertebral body dimension and the transverse spinal canal dimensions.

## Correlation of examined variables with individual age

The correlation of individual age with the selected spinal and long bone measurements has been tested on the two modern samples; see also Figure 16.

In males, after application of Bonferroni's correction, multiple variables show significant alterations in relation to individual age. At most levels, the sagittal diameter of the vertebral bodies and its transverse diameter show an increase with individual age. Additionally, the pedicle height shows an increase in size with age. This effect is more clearly visible on the right side than on the left, in the latter one the significance
vanishes on more levels after the application of Bonferroni's correction. Additional single variables increasing significantly with age are the transverse process width on Th1 and the left cranial intervertebral foramen width on L5. Furthermore, humerus minimal circumference and mid-femur circumference increase significantly with age in males. Only significant before the application of Bonferroni's correction were transverse process width on two levels as well as dorsal vertebral body height and transverse spinal canal dimension on C 3 and the sagittal vertebral body diameter on Th10. Not a single variable decreases significantly with age in males.

If one applies in males this analysis to the skeletal samples without any proven sexing and individual aging, which, basically, are all "pre-modern" time groups, a similar tendency can be found. Most of the variables, which were found to correlate with individual age in the modern samples, follow a similar pattern in the "pre-modern" samples. Beside all long bone measurements, the sagittal and transverse diameters of the vertebral bodies increase with age in these individuals. All skeletons have been assessed for this particular analysis using only the three major age groups.

In females just femur length showed a significant decrease with age; see also Figure 16. No other long bone or spinal measurement revealed, after Bonferroni's correction, a significant alteration with individual age. Without application of Bonferroni's correction, a significant decrease in transverse process width on C 3 and of ventral vertebral body height on L5, as well as an increase in sagittal dimension of the spinal canal and right maximum pedicle height on C7, can be found.

Again, if one applies this analysis to the skeletal samples without any proven sexing and individual aging, for females a different pattern emerges. The sagittal
dimensions of the vertebral bodies of the cranial half of the spine and femur circumference increase then with individual age.

Selected scattergrams of spinal and long bone measurements, significantly changing with individual age, are presented in Figure 16. The complete data set on correlation between the osteometric measurements and individual age at death or major age groups, respectively, could be found in the appendices 6-8.

If one divides the sample not only in the two sexes but also additionally into the three major time groups and then analyses the correlation between the measurements and individual age group, the trends found become weaker and less consistent, even within the same sex.


Figure 16: Selected variables with significant change with known individual age in modern samples

## L1 right pedicle height (males)



Minimal humerus circumference (males)


Figure 16 (cont.): Selected variables with significant change with known individual age in modern samples


Figure 16 (cont.): Selected variables with significant change with known individual age in modern samples

## Microevolutionary trends since the Late Pleistocene

All samples, including the single individuals from the Paleolithic and Mesolithic, were included to test for significant microevolutionary trends in spinal and long bone osteometry. The regression models with the highest significance, after application of Bonferroni's correction for multiple comparisons, for each of the examined variables are listed sex-matched in appendix 10 . Selected scattergrams of significant trends are shown in Figures 17 and 18.

In males, with the single exception of the transverse diameter of the vertebral body at level C3, all other significant microevolutionary changes of the examined variables show an increase since the Late Pleistocene. Most significant alterations are of logarithmic shape. All measurements show for at least one level a microevolutionary change, most of them for several levels. The foramen magnum dimensions do not show a significant microevolutionary change. All long bone measurements, the bi-iliac width and the age groups express a significant temporal increase as well.

In females, most of the significant microevolutionary alterations are of positive nature as well. Only a few such as e.g., femur length or several intervertebral foramen widths, decrease through time. The vast majority of the variables show an increase since the Late Pleistocene. Most of the variables, which show a significant microevolutionary alteration, follow a logarithmic pattern. Some of the non-spinal measurements, such as humerus length or bi-iliac width, increase through time in females as well. Again, as in males, the foramen magnum does not show a significant alteration. Finally, the age groups show also a positive microevolutionary trend.

T6 left caudal intervertebral foramen width (males)



## L1 vertebral body sagittal diameter (males)



Figure 17: Selected variables with significant microevolutionary trends in males


Figure 17 (cont.): $\quad$ Selected variables with significant microevolutionary trends in males


Figure 18: Selected variables with significant microevolutionary trends in females


Figure 18 (cont.): $\quad$ Selected variables with significant microevolutionary trends in females

## Secular changes of the intervertebral foramen in the modern samples

The intervertebral foramen was further assessed by linear regression in the modern samples; see also Tables 8 and 9 .

A positive secular trend of the slopes for nearly all selected levels of the maximum intervertebral foramen width, with females demonstrating mostly a stronger tendency, can be found. For females, on C3, left side only ( $\mathrm{r}=0.77$ ) and bilateral on L1 $\left(\mathrm{r}_{\text {nght }}=0.60, \mathrm{r}_{\text {left }}=0.61\right)$, the increase was significant, even after application of Bonferroni's correction for multiple comparisons. Other positive secular slope trends, significant only before application of Bonferroni's correction, were found in females on C7 bilateral $\left(\mathrm{r}_{\text {right }}=0.48, \mathrm{r}_{\text {left }}=0.45\right)$, Th1 bilateral $\left(\mathrm{r}_{\text {right }}=0.39, \mathrm{r}_{\text {left }}=0.52\right)$, Th6 right $(\mathrm{r}=0.46)$ and in males on C7 right ( $\mathrm{r}=0.37$ ), Th1 bilateral ( $\mathrm{r}_{\text {right }}=0.46, \mathrm{r}_{\text {left }}=0.33$ ) and L5 left ( $\mathrm{r}=0.42$ ).

Intervertebral foramen height, as calculated by subtracting pedicle height from posterior vertebral body height, showed mostly a mild negative secular trend in either sex, only significant before Bonferroni's correction, in females for C7 bilateral ( $\mathrm{r}_{\text {right }}=-$ $0.40, \mathrm{r}_{\text {ieff }}=-0.42$ ) and in males for C 7 on the right side only ( $\mathrm{r}=-0.35$ ). Intervertebral foramen heights on Th10 in females and Th10, L1 and L5, all on both sides, in males were the only ones demonstrating a positive, still insignificant, secular trend.

Table 8: Pearson correlation coefficients (r) of caudal intervertebral foramen width with birth year in modern samples ( N total $=71$, significant at $\mathrm{p}<0.05$ before* and after** application of Bonferroni's correction for multiple comparisons)

| Level / side | $\mathbf{r}$ - Females | $\mathbf{r}$ - Males |
| :--- | :--- | :--- |
| C3 / left | $0.77^{* *}$ | 0.24 |
| C3 / right | $0.54^{*}$ | 0.19 |
| C7 / left | $0.45^{*}$ | 0.09 |
| C7 / right | $0.48^{*}$ | $0.37^{*}$ |
| Th1 / left | $0.52^{*}$ | $0.33^{*}$ |
| Th1 / right | $0.39^{*}$ | $0.46^{*}$ |
| Th6 / left | 0.06 | 0.12 |
| Th6 / right | $0.46^{*}$ | -0.03 |
| Th10 / left | 0.27 | 0.24 |
| Th10 / right | 0.35 | 0.19 |
| L1 / left | $0.61^{* *}$ | 0.01 |
| L1 / right | $0.60^{* *}$ | 0.16 |
| L5 / left | 0.24 | $0.42^{*}$ |
| L5 / right | 0.21 | 0.20 |

Table 9: Pearson correlation coefficients (r) of intervertebral foramen height with birth year ( N total $=71$, significant at $\mathrm{p}<0.05$ before* and after** application of Bonferroni's correction for multiple comparisons)

| Level / side | r-Females | r - Males |
| :---: | :---: | :---: |
| C3 / left | -0.25 | -0.15 |
| C3 / right | -0.07 | -0.13 |
| C7/left | -0.42* | -0.30 |
| C7 / right | -0.40* | -0.35* |
| Th1 / left | -0.12 | -0.07 |
| Th1 / right | -0.14 | -0.08 |
| Th6 / left | -0.29 | -0.01 |
| Th6 / right | -0.36 | -0.06 |
| Th10 / left | 0.19 | 0.05 |
| Th10 / right | 0.29 | 0.03 |
| L1/ left | -0.16 | 0.31 |
| L1 / right | -0.17 | 0.29 |
| L5 / left | -0.20 | 0.02 |
| L5 / right | -0.03 | 0.14 |

An analysis of variance (ANOVA) was performed to test for significant influence of historical age. The various dates before present of the samples and individuals were divided into the three major time groups, with the Paleolithic and Mesolithic individuals neglected. Additionally, the ratios of sagittal divided by transverse vertebral body, foramen magnum or spinal canal diameters, as well as the robusticity indices of the long bones, were analysed too. A further subdivision of the samples, not only according to supposed sex but also within one of the main age groups, and then the application of an ANOVA, with applying Bonferroni's correction, expresses much less significant alterations and has not been further explored.

A complete data set of these examinations for both sexes can be found in appendix 11. A summarising graph showing the ANOVA results for means in graphic form could be seen in Figure 19, with borderline alterations being the ones, which are only significant before the application of Bonferroni's correction.

In males, the ANOVA shows, after Bonferroni's correction for multiple comparisons, a significant increase at most vertebral levels for the transverse width of the spinal canal. Furthermore, some levels of sagittal vertebral body diameters and caudal intervertebral foramen width show an increase as well. Additionally, all long bone measurements, foramen magnum length and bi-iliac width show a positive correlation. A significant negative alteration can be found only for the transverse diameter of the vertebral body at level C3. Of the calculated ratios, the majority of the vertebral body ratios and the humerus robusticity index show a significant positive change. Only significant before the application of Bonferroni's correction are some
levels of pedicle height, additional intervertebral foramen widths and especially selected levels of sagittal spinal canal and vertebral body diameters.

Furthermore, ANOVA was separately applied for the alterations between the three major time groups, Bronze Age / Neolithic, Medieval and modern times, respectively. As expected, some pairs of time groups show significant differences, but since the other pairs of the same variables do not, the overall change in means for this particular variable will not show a significant alteration with time at all, or it will just express one before the application of Bonferroni's correction. For example, there is a significant difference in age group mean between time group 1 and time group 3, but overall there is no such significant difference in males by applying ANOVA for this particular variable. The majority of the pairs showing significant differences in means are the Neolithic / Bronze Age time group 1 versus the modern time group 3. On the other hand, there are variables such as in males e.g., the dorsal height of the vertebral body at level C3 or sagittal diameter of the vertebral body at level Th6, which reveal differences between other pairs of time groups or between all of the time groups. In general, the least frequent significant differences can be found between time group 2 and 3 , with the majority of such alterations to be visible between time groups 1 and 3 . In males, both humerus measurements and femoral head breadth show significant differences between all time groups, whereas for the male femur variable, this is different. Only time group 1 and 2, which are the Neolithic / Bronze Age versus the Medieval samples, have significantly different femoral values. Furthermore, bi-iliac width in males does only express significant mean differences between time group 1 and time group 3.

In females, similar patterns emerge. The ANOVA shows, after application of Bonferroni's correction for multiple comparisons, significant difference in terms of time group for most of the transverse diameters of the spinal canal, as well as some of the intervertebral foramen widths. All these trends are of positive nature. Two levels of sagittal vertebral body diameters, Th6 and Th10, also show significant differences in females. Some vertebral variables, such as e.g., additional intervertebral foramen widths, or additional single diameters of the vertebral body or spinal canal, are only significant before the application of Bonferroni's correction. Two levels of transverse diameters of the vertebral body, C3 and L5, show a decrease in size, only significant before the application of Bonferroni's correction. None of the two foramen magnum dimensions expresses a significant alteration. With the exception of minimal humerus circumference, all other non-spinal variables express a significant positive alteration in females. The calculated spinal ratios and indices show just one with a positive significant trend, Th6 vertebral body dimensions, but also positive significant trends were found for both humeral and femoral robusticity. The foramen magnum dimension index shows a significant decrease in females. Some more ratios in females show significant alterations, only before the application of Bonferroni's correction. The further investigation of mean female variables, with respect to major time group pair differences, shows similar trends to males. Again, there are mean differences between single pairs of the major time groups, which disappear to be significant once all three major time groups are combined. In addition, most often significant differences can be found between time groups 1 and 3. Furthermore, the majority of the long bone measurements show significant differences between time groups 1 and 2 , and 1 and 3 , but not 2 and 3, respectively.

By comparing the trends in alteration of variable means between sexes, one finds that most of these significant trends are consistent for both sexes. This is in particular true for some intervertebral foramen widths, selected levels of spinal canal transverse diameters and sagittal diamèters of vertebral bodies. Some trends are only significant in one sex after Bonferroni's correction, but would be significant, without Bonferroni's adjustment, in the other sex too. More often trends are significant in males only but not in females, than the opposite. All trends are consistent in their positive or negative nature between the two sexes, except for some of calculated ratios.


Figure 19: Significant and borderline alterations of mean values between Neolithic / Bronze Age and modern samples

## Mean




Th1


## Analysis of variance: variable standard deviations with respect to time before present

The alterations in standard deviations were examined between the three major time groups by Fisher-test, by comparing differences between time group 1 and 3. A complete set of these analyses can be found for both sexes in appendix 12. A summarizing graph showing the significant and borderline alterations of the standard deviations, the latter changes ones only significant before the application of Bonferroni's correction, could be seen in Figure 20.

In males, after application of Bonferroni's correction for multiple comparisons, generally, a significant increase of standard deviations for some of the variables was found. Only the left cranial intervertebral foramen width at C3 and the transverse process width at level L5 show a significant decrease. A significant increase of standard deviations was found for a few measurements, such as e.g., ventral vertebral body height at level C7 or for transverse diameter of the vertebral body at level L1. Multiple levels of sagittal diameter of the vertebral body and of the spinal canal, as well as selected intervertebral foramen widths, show only significant alterations of standard deviations before Bonferroni's correction.

In females, a significant increase of standard deviations can be found for the age group classification. After Bonferroni's correction for multiple comparisons, only the right cranial intervertebral foramen width on level L5 shows a significant positive increase of standard deviations. Furthermore, all long bone measurements show a positive secular trend for the standard deviations in females. Without Bonferroni's correction, more intervertebral foramen widths at selected levels as well as few, mostly cervical, spinal measurements express an increase of standard deviations.

No variable shows in both sexes, after Bonferroni's correction, a significant alteration of the standard deviations. In general, more variables in males show significant changes in standard deviations, before or after Bonferroni's correction, than do in females. The ventral vertebral body height on level C7 and the transverse process width on level L5 show a significant increase or decrease, respectively, after Bonferroni's adjustment in males, with females showing a significant change for this particular structure only before Bonferroni's correction. The significant alterations in female dimensions e.g., the long bone measurements do not have significant male counterparts. Both, C 3 and C 7 dorsal vertebral body heights, show in males and females significant increases in standard deviations only before the Bonferroni correction.


Figure 20: Significant and borderline alterations of standard deviations values between Neolithic / Bronze Age and modern samples

## Standard Deviation



Figure 20 (cont.): Significant and borderline alterations of standard deviations values between Neolithic / Bronze Age and modern samples

## Principal components analysis of the spinal variables

Principal component analysis of the spinal measurements was done separately for each sex and for the first five components only. In males, these components accounted for approximately $49 \%$ of variation, whereas in females they influence approximately $57 \%$ of the spinal variation. In both sexes, the first components seem to be linked to size, with the second most influential one to be linked to the size of the neural pathways. As seen in Figures 21, the two major components, both in males and in females, do not show a clear trend. A complete data set for the principal components analysis could be found in appendix 14.


Figure 21: Principal components 1 and 2 of males in modern samples


Figure 21 (cont.): Principal components 1 and 2 of females in modern samples

## Discussion

## Osteometric knowledge of historic spines

The results of the present study allow a deeper insight into the osteometric variability of the human spine, not only based on sex and individual aging, but also in particular with a special focus on the possible implications of various historic time periods. The osteometric knowledge of historic spines has been elaborated, as could be seen in Table 1, but, surprisingly, a microevolutionary perspective of historic spines has been mostly neglected so far.

Until now, most measurements of historic human vertebral column had some limitations either of numerical (small sample size), geographical (just one major area covered) or methodological nature (different methods used or just radiological measurements). Furthermore, the majority of previous studies were undertaken with a direct clinical perspective; see also Table 2. For example, Huizinga et al. (1952) used $19^{\text {th }}$ century skeletons due to the lack of sufficient recent sources to explore the osseous dimensions of the lumbar spinal canal with a clinical aim. Scoles et al. (1988) also mention that the knowledge of vertebral morphology was still limited, therefore, they provided measurements gained on macerated thoraco-lumbar spine sections.

So far the most similar study on the spinal osteometry from a historic perspective has been conducted by Jankauskas (1994). He found that the variability of spinal measurements in historic Lithuanian populations displayed no microevolutionary trend. According to Jankauskas (1994) the known osteometric spinal data, with their lack of microevolutionary trends, postulate their restricted value for European interpopulational studies. Based on the findings of the study presented here, this statement
must be revised at least for some of the spinal osteometry. Jankauskas (1992), furthermore, did also not report any secular change in the occurrence of spinal pathologies. This was not an issue for the present study, but offers a glimpse of how further research could continue, by focusing on the microevolutionary trends of particular spinal pathologies as rarely done so far (Rothschild and Rothschild, 1996; Henneberg and Henneberg, 1999).

To summarize, it is striking to see that historic studies on large spinal samples and addressing morphometric variations are still rare, whereas for other main body parts, such studies have been conducted in abundant form and major secular trends are well known, as already highlighted above. The outline of the study presented here was to address this lack of knowledge by evaluating the impact of sex, individual age and historic time period on the morphometry of the human spine in Central Europe; this despite the awareness of a plethora of possible biases, which are unfortunately inevitable in such a historic skeletal study.

## Study limitations

Microevolutionary changes reconstructed from sometimes very incomplete fossil and skeletal records are full of pitfalls, such as differences between methods of weight and stature estimation or completeness of skeleton (De Miguel and Henneberg, 1999). The general osteological paradoxes that skeletons in fact represent the non-survivors in a certain population (Wood et al., 1992), have to be remembered while doing microevolutionary data interpretation as well. Osteological collections of historic populations may have an additional selection bias, since some specimens with highest quality preservation or the ones showing interesting pathologies, which might be
completely unlinked to the spine, could have been stored separately. Furthermore, the least preserved skeletons may not be included in any survey at all. For example, in a $10^{\text {th }}-12^{\text {tb }}$ century cemetery, only $82 \%$ of all vertebrae were preserved (Swedborg, 1974). These missing individuals might already have been in their lifetime the ones with the most gracile skeleton. Furthermore, usually a large number of the preserved skeletons show at least macroscopically detectable pathologies, not to mention the ones, which might have microscopic level alterations making them not to be representative for the normative healthy population. The ones with macroscopic defects at least were excluded in a study.

The variability of origin of the selected samples in the present study is another problem to be addressed. The cultural and geographical-genetical variation of the included samples might be a possible drawback for a generalization of the findings. Theoretically, such a study on changing morphology might show results that are more obvious by focusing on samples from a single location only, by avoiding influences such as major genetic polymorphism or different environment. Allbrook (1955) already stated medically important as well as unimportant variants of the spine could be resulting from genetical polymorphism. For example, Wetzel (1910) in his report on spinal osteometry highlighted the fact that the European inhabitants differ remarkably. However, even if there is a high morphological variation present, this may not be true for all parts of the human body. As Formicola and Franceschi (1996) reported on the estimated Neolithic body height in Europe, such a variability must not impact on individual height. They found low standard deviations of less than $4 \%$ for the total length of the vertebral column in a vast sample. It is not clear if in the present study the selected samples of different origin and, therefore, possibly morphological variability,
significantly cloud the examined underlying morphological alterations. To explore this, one must remeasure in a similar way an even more homogenous sample and would have to compare the found range of variability.

The fact that the here chosen sample could represent a biased population, may be highlighted by Martin (1928) saying, that the Swiss Neolithic and especially the Bajuwar sample, show exceptionally strong development of humeral muscle marks, a direct sign of individual muscular activity. Therefore, the here selected samples, mostly consisting of South German and Swiss populations, may bias the findings that would otherwise be even more obvious. Unlike earlier reports of microevolutionary trends in Central European modern Homo sapiens, especially the Swiss people, seem not to show a major shift in body size at least since the Late Roman Periods (Wurm, 1982). In the present study especially the tall stature of the Medieval Age samples, originating from Switzerland and Southern Germany, is astonishing. Wurm (1982) explains similar findings with a possible higher content of milk proteins in diet of people originating from the Alpine and Swiss area. According to him, in the Alps through most time of the modern history intensive stock farming was always present. The trends between levels of protein intake and adult stature, as shown by Wurm (1982), would be correct for most of Germany, but apparently not for the even more alpine Swiss area. Additionally, socio-economic factors may interfere with individual stature, and Wurm (1982) concludes, that for the highest social classes there might not have been any such impact on stature at all. Nevertheless, other reports on secular trends in stature did not find a strong dependence of it on socio-economic levels (Henneberg and Van den Berg, 1990; Henneberg, 2001b). Therefore, it is unclear whether and if so, in which way social
discrepancies between today geographically Swiss and German populations increased the suggested nutrition-based stature differences.

Additionally, any post-mortem alterations of the spinal column are affecting its morphology. How much the process of skeletonizing alters the spinal morphology has still to be fully explored. Any macerated bone does not precisely represent its size in vivo. For the femur, as an example, Martin and Saller (1957) list a post mortem shrinking of $2.3 \mathrm{~mm}-2.6 \mathrm{~mm}$, and for the humerus one of 1.3 mm . By including the cartilaginous part, this amount increases up to 7.1 mm for the femur and 4.1 mm for the humerus. Todd and Pyle (1928b) addressed the post mortem alterations of spinal morphology and provide absolute values for the intervertebral discs. Post mortem alterations of the spine have been discussed in the literature also in particular for the intervertebral disc (Jacobi, 1927; Adams et al., 1994). The lack of intervertebral disc and other soft tissue components such as ligamentum flavum cannot be overcome in osteometric studies. This is in particular true as for the study presented here, if one tries to establish links between found osteometric alterations and possible clinical symptoms usually crucially depending on soft-tissue processes. The effect of drying on the vertebral column seems to reach its final stage after a few weeks and contributes to a bit less than $3 \%$ of the total column length, which if far more than for other human bones (Todd and Pyle, 1928a). Furthermore, the extent of drying of the vertebral column seems to vary for all parts at least of the vertebral body. Todd and Pyle (1928a) found a lower relative shrinkage for the ventral aspects of the vertebral body and declare any shrinkage of the articular processes to be negliable. Therefore, osteometric measures do always slightly differ from in vivo dimensions.

Furthermore, intra vitam pathologies affect the spinal morphology. Minor osteophytic alterations were not a reason for exclusion of vertebral columns from the present study as long as they were regarded as common age-related adaptations and did not interfere with the selected measurements. To highlight this, one has to be aware of the high frequency of such alterations as already reported earlier (Bailey and Casamajor, 1911; Hurxthal, 1968; Hukuda et al., 2000). For example, Nathan (1962) stated that in a sample of 400 recent vertebral columns by an age in the forties all individuals showed at least early stage osteophytes on some of the vertebrae and, therefore, such mild changes can not be regarded as a pathology. Jankauskas (1992) found the onset of spinal degenerative changes to be in his archaeologic sample at around 25-30 years of age for osteophytes or even younger in cases of Schmorl's nodes. In studies of cadavers of various inter-populational origin, done by Eisenstein (1977; 1980), between $25 \%$ and $56 \%$ of the skeletons showed some form of osteophytes. Also Park (1980) lists that $95 \%$ of people aged 70 years of both sexes will show age-related degenerative spondylosis in the lower lumbar spine. In a clinical study involving individuals who did not show any neurological signs, Pallis et al. (1954) found on X-rays of the cervical spine in a sample after 50 years moderate or severe canal narrowing or foraminal narrowing in $76 \%$ and $72 \%$ respectively. Surprisingly, the prevalence and severity did not further increase in this sample after 50 years of age. Marginal osteophytes at the ventral border of the vertebral bodies were present in $82 \%$ of individuals. Based on all these reports, one may more easily approve the chosen approach in terms of minor age-related spinal alterations. Secondary degenerative changes, which involve osteophytes or soft tissue alteration, such as increased thickness of ligamentum flavum or bulging of the
intervertebral disc, are the main etiologies of most cases of spinal stenosis in modern clinical situations. These changes cannot be explored in such microevolutionary osteometric study including non-degenerative spinal columns only. Nevertheless, there are significant correlations between the osseous and soft tissue aspects of the spinal column described, such as between the posterior disc and intervertebral foramen height or between the cross-sectional areas of the foramen and the related nerve roots (Hasegawa et al., 1995). Thus, by obtaining osseous measures, to a limited extent only one may assess the living soft tissue involving conditions.

How far the osseous outline of the spinal canal and its major content, the spinal cord, are correlated, needs to be further evaluated. Preliminary results by Humphreys et al. (1998) show that the ratio of these two structures in the cervical spine changes during adulthood. If there were a consistent correlation of these two structures, this would help to draw conclusion on neural pathways by obtaining osseous measurements only.

The true size of the intervertebral foramen, as another example, can only roughly be assessed by its known osteometric diameters. Even plain radiography does not allow accurately enough to determine this crucially on the presence of soft tissue depending structure (Stephens et al., 1991). To assess the overall size of the intervertebral foramen it would be necessary to know the height of the intervertebral discs as well as their contribution to the height of the intervertebral foramen. Therefore, one has to rely for this on data gained from clinical or cadaveric studies (Jacobi, 1927; Yu et al., 1991; Humphreys et al., 1998; Tribus and Belanger, 2001).

Furthermore, the rather small sample sizes in historic spinal studies have statistical advantages and disadvantages. Type I-errors are limited, but the ability to find
real findings is more difficult, resulting in type II errors. The critical sample size, the extent, and the importance of possible errors of measurement have already been addressed above.

Beside genetic influences or individual age, clinical conditions, such as fractures, drug application or various bone diseases, influence the spinal morphometry. Without background information on historic skeletons, it may be hard to know if such an altering situation was present and the gained data can be regarded as normative at least for the time period and geographic background only.

Another issue is raised by the question how far osteometric findings on a particular vertebral level can be generalized for neighbouring levels or whole spinal regions. To address the interrelation between osteometric spinal measurements Jankauskas (1994) performed a cluster-analysis with both sexes pooled, since intersexual differences in correlation coefficient were minimal. He found two main clusters: one of longitudinal measurements and one of the transverse diameters. The inter-sexual differences are not negligible in the study presented here. Nevertheless, in the present study dimensions of vertebrae are most strongly correlated with each other at neighbouring levels, as already found in earlier studies (Hermann et al., 1993), as could also seen in Table 10. As also listed in appendix 9, similar measurements of different vertebral levels correlate generally better than non-related measurements. To conclude, based on the data provided by Herrmann et al. (1993) and by the present study, one may assume that by comparing selected vertebral levels a found trend can be mostly generalized for the whole vertebral column.

Table 10: Inter-correlation of anterior vertebral body height at various levels, measured on X-rays; *=significant at $\mathrm{p}<0.05$ (Hermann et al., 1993)

| Level | Males |  |  | Females |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ( $\mathrm{N}=43$ ) |  |  | ( $\mathrm{N}=70$ ) |  |  |
|  | Th6 | L1 | L5 | Th6 | L1 | L5 |
| Th10 | 0.29 | 0.56* | 0.29 | 0.52* | 0.45* | 0.45* |
| L1 | 0.28 | - | 0.53* | 0.35* | - | 0.45* |
| L5 | 0.23 | 0.29 | - | 0.51* | 0.45* | - |

## Comparative analysis of the results

It has been assumed and shown in previous work that spinal morphometric ratios follow a normal or Gaussian distribution (Minne et al., 1988; Black et al., 1991; Xu et al., 1995). This is the case, for most of the investigated spinal traits in the present study as well. Similar sample sizes for both sexes were chosen and both sexes show overall similar age distribution facilitating further the interpretation of the results.

The main vertebral body diameters were measured in the present study since they reflect major mechanical players of the spine, as already outlined above. Piontek (1973) found an increase of massiveness of the vertebral bodies caudally. This seems to be related to the increased load bearing. It is well known that such loading on the spine can be much higher, depending on the body position, than only the normally neutral up to $60 \%$ of total body weight in the lower lumbar spine. Silva et al. (1997) declared that trabecular anisotropy of the human bone is crucial in load distribution within the spinal column. Thus, it would be worth further investigation how trabecular anisotropy not only changes within individuals, but also if it shows any detectable microevolutionary trend. The reports of vertebral body dimensions with measurements comparable to the ones used in the present study, with means for the whole sample as well as the mean for the modern subgroups, are listed in Tables 11-15 and 17. One can see that the vast majority of the osteometric dimensions measured in the present study fall clearly within the range of earlier reports. Furthermore, one may notice the wide range of reported osteometric values, which might have been caused by the geographically and staturewise heterogenic samples. This will be further addressed below, with a particular focus on the influence of individual stature on vertebral dimensions for the present study.

Table 11: Vertebral body height ( mm ) of various samples; measurements similar to Martin (1928)

| Level / Sample | Ventral males | Dorsal males | Ventral females | Dorsal <br> females | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C3 |  |  |  |  |  |
| Shanidar 1 | 11.0 | 12.5 |  |  | Stewart (1962) |
| Skhul 1 |  | 10.5 |  |  | Ditto |
| La Ferrassie 1 | 12.5 |  |  |  | Heim (1976) |
| Predmosti 3 | 11.3 | 12.6 |  |  | Matiegka |
| Predmosti 14 | 13.0 | 13.0 |  |  | Ditto |
| Predmosti 4 |  |  | 10.4 | 13.0 | Ditto |
| Predmosti 10 |  |  | 11.4 |  | Ditto |
| $\begin{aligned} & \text { Lithuanian Paleopopulations }-\mathbf{1 0}^{11} / \mathbf{2}^{\text {ad }} \\ & \text { Millenium } \mathbf{A D}(\mathrm{N} \text { males }=159,160 ; \mathrm{N} \\ & \text { females }=109,113) \end{aligned}$ | 13.4 | 13.9 | 12.4 | 12.5 | Jankauskas (1994) |
| Early Medieval Polish (N males=48, N females $=25$ ) | 13.3 |  | 12.0 |  | Piontek (1973) |
| Polish 12th century ( $\mathrm{N}=1$ ) | 12 | 14 |  |  | Kaliszewska (1966) |
| Rural $12^{\text {d }}-14^{\text {th }}$ century Polish ( N males $=19, \mathrm{~N}$ females $=16$ ) | 13.4 | 15.2 | 12.7 | 14.3 | Piontek and Budzynska (1972) |
| $12^{\text {ti }}-18^{\text {ta }}$ century Polish ( N males $=25, \mathrm{~N}$ females=25) | 14.3 | 13.8 | 12.5 | 12.7 | Piontek and Zaborowski (1973) |
| Urban $14^{\text {th }}-18^{\text {th }}$ century Polish ( N males $=18$, N females=14) | 14.3 | 15.2 | 12.5 | 13.9 | Ditto |
| Germans ( N males $=10, \mathrm{~N}$ females=10, both sexes combined) | 15.3 | 15.4 |  |  | Kandziora et al. (2001) |
| Polish ( N males=56, N females=44) | 12.5 | 14.0 | 11.2 | 13.6 | Taflinska, cited by Piontek and Budzynska |
| Japanese ( N males=20, N females=10) | 14.4 | 15.2 | 12.8 | 14.2 | Hasebe (1913) |
| Bushmen ( N males=24, N females=15) | 11.4 | 13.7 | 10.8 | 13.3 | Duparc, cited by Piontek and Budzynska |
| Australians ( N males $=16, \mathrm{~N}$ females $=10$ ) | 11.5 | 14.2 | 10.0 | 13.3 | Kruczkiewicz, cited by Piontek and Budzynska |
| English (?, N both sexes $=+/-70$ ) | 12.9 |  |  |  | Cyriax (1920) |
| Recent Americans (?, N males $=4$, N females $=$ 2 , both sexes combined) | $\mathrm{s}=13.8$ | 14.2 |  |  | Tominaga et al. (1995) |
| Recent Europeans ( $\mathrm{N}=8$ ) |  |  | 11.9 | 12.1 | Aeby (1879) |


| Recent Europeans ( $\mathrm{N}=$ ? , both sexes?) | 12.4 |  |  |  | Anderson (1883) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| American Whites ( $\mathrm{N}=+/-96$ ) | 14.1 | 14.0 |  |  | Lanier (1939) |
| Modern French (N=? | 12.5 |  |  |  | Ditto |
| Recent Americans ( $\mathrm{N}=12$, both sexes) * |  | 11.6 |  |  | Panjabi et al. (1991a) |
| Recent Europeans ( $\mathrm{N}=3$, both sexes) | 13.7 | 13 |  |  | Thomson (1913) |
| Recent Bushman ( N males $=1$, N females $=1$ ) | 9 | 10 | 10 | 10.5 | Ditto |
| Range of global sample ( $\mathrm{N}=20$ ) | 11-17 | 10-15 |  |  | Stewart |
| Present study (whole sample) | 13.7 | 14.0 | 12.3 | 12.4 |  |
| Present study (modern subgroups) | 14.1 | 14.6 | 12.5 | 12.8 |  |
| C7 |  |  |  |  |  |
| Shanidar 1 | 13.0 | 14.0 |  |  | Stewart |
| Shanidar 2 | 13.0 | 14.0 |  |  | Ditto |
| La Chapelle-aux-Saints 1 | 10.6 |  |  |  | Trinkaus (1985) |
| La Chapelle-aux-Saints 1 | 13.4 |  |  |  | Heim |
| Predmosti 3 | 13.0 | 14.5 |  |  | Matiegka |
| Predmosti 9 | 13.0 | 14.0 |  |  | Ditto |
| Predmosti 14 |  | 16.0 |  |  | Ditto |
| Predmosti 4 |  |  | 11.0 | 12.3 | Ditto |
| Dolni Vestonice 15 |  |  | 14.7 | 15.3 | Trinkaus (pers. comm.) |
| Lithuanian Paleopopulations ( N males $=172$, 183; N females=118, 126) | 14.1 | 15.0 | 13.2 | 13.8 | Jankauskas |
| Early Medieval Polish (N males=50, N females=32) | 14.1 |  | 13.5 |  | Piontek |
| Polish 12th century | 14 | 14 |  |  | Kaliszewska |
| Rural $12^{\text {dr }}-14^{\text {da }}$ century Polish | 14.2 | 18.6 | 13.8 | 17.6 | Piontek and Budzynska |
| Urban $14^{\text {tid }}-18^{\text {th }}$ century Polish | 14.2 | 17.6 | 14.2 | 16.6 | Ditto |
| 12t-18 ${ }^{\text {th }}$ century Polish | 14.2 | 15.6 | 14.2 | 14.3 | Piontek and Zaborowski |
| Germans (both sexes) | 15.1 | 15.3 |  |  | Kandziora et al. |
| Polish | 13.2 | 16.8 | 13.0 | 15.3 | Taflinska |
| Japanese | 14.5 | 16.8 | 13.4 | 15.3 | Hasebe |
| Bushmen | 12.6 | 14.8 | 12.2 | 14.2 | Dupare |
| Australians | 12.6 | 14.9 | 11.8 | 13.8 | Kruczkiewicz |

[^0]| English (?, both sexes) | 13.4 |  |  |  | Cyriax |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Recent Americans (?, N males $=4, \mathrm{~N}$ females $=$ 2, both sexes combined) | 15.8 | 16.1 |  |  | Tominaga et al |
| Recent Europeans |  |  | 12.3 | 13.3 | Aeby |
| Recent Europeans (both sexes?) | 13.0 |  |  |  | Anderson |
| American Whites | 14.4 | 15.0 |  |  | Lanier |
| Modern French | 13.0 |  |  |  | Ditto |
| Recent Europeans (both sexes) | 13.5 | 14 |  |  | Thomson |
| Recent Americans (both sexes) |  | 12.8 |  |  | Panjabi et al. |
| Recent Bushman | 11 | 10.5 | 11 | 11.5 | Ditto |
| Range global sample | $\begin{aligned} & 11.5- \\ & 16.5 \end{aligned}$ | 12-16.5 |  |  | Stewart |
| Present study (whole sample) | 13.9 | 14.9 | 12.9 | 13.6 |  |
| Present study (modern subgroups) | 13.7 | 15.3 | 12.8 | 13.6 |  |
| Th1 |  |  |  |  |  |
| La Chapelle-aux-Saints 1 | 14.0 |  |  |  | Heim |
| Predmosti 3 |  | 17.5 |  |  | Matiegka |
| Predmosti 9 |  | 15.0 |  |  | Ditto |
| Predmosti 14 | 17.0 | 18.0 |  |  | Ditto |
| Predmosti 4 |  |  | 14.8 | 15.6 | Ditto |
| Dolni Vestonice 15 |  |  | 15.2 |  | Trinkaus |
| Lithuanian Paleopopulations ( N male $=169,184$; N females $=115,126$ ) | 16.0 | 17.4 | 15.1 | 16.1 | Jankauskas |
| Early Medieval Polish ( N males=48, N females $=38$ ) | 16.4 |  | 15.4 |  | Piontek |
| Polish 12th century | 16 | 17 |  |  | Kaliszewska |
| Rural 12 ${ }^{\text {d }}-14^{\text {th }}$ century Polish | 16.9 | 19.6 | 16.1 | 17.8 | Piontek and Budzynska |
| Urban $14^{\text {th }}-18^{\text {th }}$ century Polish | 16.5 | 18.1 | 14.2 | 17.1 | Ditto |
| Polish | 15.7 | 18.2 | 14.9 | 15.2 | Taflinska |
| English (?, both sexes) | 15.5 |  |  |  | Cyriax |
| Japanese | 15.7 | 16.8 | 14.8 | 15.4 | Hasebe |
| Bushmen | 14.4 | 14.9 | 13.4 | 13.8 | Duparc |
| Australians | 14.5 | 14.5 | 13.1 | 14.1 | Kruczkiewicz |


| Recent Germans ( $\mathrm{N}=102$, both sexes) | 15.2 | 15.7 |  |  | Jacobi (1927) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Recent Europeans |  | . | 14.3 | 15.3 | Aeby |
| Recent Europeans (both sexes?) | 14.8 | 15.9 |  |  | Anderson |
| American Whites $\sim \cdots$ | $=16.2$ | 17.3 |  |  | Lanier |
| American Whites ( $\mathrm{N}=43$ ) | 15.9 | 17.1 |  |  | Todd and Pyle (1928b) |
| Modern French | 14.5 |  |  |  | Ditto |
| Recent Europeans (both sexes) | 15.5 | 16 |  |  | Thomson |
| Recent Americans (both sexes) |  | 14.1 |  |  | Panjabi et al. (1991b) |
| Recent Bushman | 12 | 11.5 | 13 | 13.5 | Ditto |
| Present study (whole sample) | 16.0 | 17.2 | 14.6 | 15.6 |  |
| Present study (modern subgroups) | 16.0 | 17.3 | 14.5 | 15.7 |  |
| Th6 |  |  |  |  |  |
| Predmosti 4 |  |  |  | 17.3 | Matiegka |
| Lithuanian Paleopopulations ( N males $=152,170 ; \mathrm{N}$ females $=103,108$ ) | 19.1 | 21.0 | 17.8 | 19.6 | Jankauskas |
| Early Medieval Polish ( N males=50, N females=41) | 19.8 |  | 18.3 |  | Piontek |
| Polish 12th century | 19 | 19 |  |  | Kaliszewska |
| Rural $12^{\text {did }}-14^{\text {th }}$ century Polish | 20.1 | 27.7 | 19.2 | 23.6 | Piontek and Budzynska |
| Urban $14^{\text {tb }}-18^{\text {lh }}$ century Polish | 20.0 | 26.0 | 18.5 | 22.7 | Ditto |
| Swiss ( N males $=18, \mathrm{~N}$ females $=15$, both sexes and sides combined) | $\text { kes } 18.6$ | 20.8 |  |  | Marchesi et al. (1988) |
| Canadians (recent?, $\mathrm{N}=10$, both sexes?) | 17.5 |  |  |  | Cotterill et al. (1986) |
| English (?, both sexes) | 18.3 |  |  |  | Cyriax |
| Polish | 18.9 | 26.2 | 18.0 | 23.6 | Taflinska |
| Japanese | 19.0 | 23.9 | 17.0 | 21.2 | Hasebe |
| Bushmen | 17.3 | 20.4 | 16.4 | 20.0 | Duparc |
| Australians | 16.6 | 21.9 | 15.1 | 19.4 | Kruczkiewicz |
| Recent Germans (both sexes) | 17.1 | 19.0 |  |  | Jacobi |
| Recent Americans (both sexes) |  | 17.4 |  |  | Panjabi et al. |
| Recent Europeans |  |  | 16.9 | 19.5 | Aeby |
| Recent Europeans (both sexes?) | 18.1 | 19.9 |  |  | Anderson |


| American Whites | 19.0 | 20.8 |  |  | Lanier |
| :---: | :---: | :---: | :---: | :---: | :---: |
| American Whites | 18.7 | 20.6 |  |  | Todd and Pyle |
| Recent Europeans (both sexes) | 19 | 20.7 |  |  | Thomson |
| Bushman | - 17 | 18 | 17 | 16.5 | Ditto |
| Present study (whole sample) | 19.0 | 20.9 | 17.5 | 19.2 |  |
| Present study (modern subgroups) | 19.0 | 21.0 | 17.7 | 19.8 |  |
| Th10 |  |  |  |  |  |
| Predmosti 3 | 21.9 | 21.9 |  |  | Matiegka |
| Predmosti 14 | 22.4 |  |  |  | Ditto |
| Predmosti 4 |  |  | 17.5 | 18.2 | Ditto |
| Predmosti 10 |  |  |  | 22.4 | Ditto |
| Dolni Vestonice 15 |  |  | 23.2 |  | Trinkaus |
| Lithuanian Paleopopulations <br> ( N males $=152,160 ; \mathrm{N}$ females $=95,101$ ) | 21.4 | 23.6 | 20.3 | 21.9 | Jankauskas |
| Polish, 12th century | 21 | 22 |  |  | Kaliszewska |
| Rural 12 ${ }^{\text {d }}$-14 ${ }^{\text {th }}$ century Polish | 23.2 | 31.9 | 20.9 | 27.6 | Piontek and Budzynska |
| Urban 14 ${ }^{\text {dim }}$-18 ${ }^{\text {th }}$ century Polish | 22.9 | 31.3 | 21.9 | 27.3 | Ditto |
| Late $19^{\text {T }}$ century Dutch ( $\mathrm{N}=3$, sex?) | 22.7 |  |  |  | Rosenberg (1899) |
| Polish | 21.8 | 28.9 | 20.9 | 26.9 | Taflinska |
| Japanese | 21.5 | 28.2 | 19.2 | 24.5 | Hasebe |
| Swiss (both sexes and sides combined) | 21.1 | 23.2 |  |  | Marchesi et al. |
| English (?, both sexes) | 21.2 |  |  |  | Cyriax |
| Bushmen | 19.9 | 24.6 | 18.5 | 23.3 | Duparc |
| Australians | 20.1 | 24.5 | 18.6 | 22.2 | Kruczkiewicz |
| Recent Germans (both sexes) | 21.0 | 21.3 |  |  | Jacobi |
| Recent Europeans |  |  | 21.7 | 22.2 | Aeby |
| Recent Europeans (both sexes?) | 21.0 | 22.9 |  |  | Anderson |
| Recent Europeans (both sexes) | 21 | 22.3 |  |  | Thomson |
| Recent Bushman ( N males $=2, \mathrm{~N}$ females=1) | ) 20 | 19.8 | 19 | 19 | Ditto |
| Italians, premenopausal ( $\mathrm{N}=50$ ) |  |  | 28.2 | 28.7 | Diacinti et al. (1995) |
| Italians, postmenopausal ( $\mathrm{N}=76$ ) |  |  | 26.2 | 26.8 | Ditto |


| Recent Americans (both sexes) |  | 20.2 |  |  | Panjabi et al. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| American Whites | 22.3 | 23.7 |  |  | Lanier |
| American Whites | 21.5 | 23.1 |  |  | Todd and Pyle |
| Present study (whole sample) | 22.2 | 23.7 | 20.9 | 21.7 |  |
| Present study (modern subgroups) | 22.2 | 23.8 | 21.4 | 22.1 |  |
| L1 |  |  |  |  |  |
| Predmosti 10 |  |  | 25.0 |  | Matiegka |
| Dolni Vestonice 15 |  |  | 22.4 | 26.7 | Trinkaus |
| Téviec ( N males=3, N females=4) | 23.3 | 26.3 | 23 | 25.5 | Vallois (1977) |
| Lithuanian Paleopopulations $(\mathbb{N}$ males $=171,24.9$$180 ; \mathrm{N}$ females $=96,103)$ |  |  |  |  |  |
| Early Medieval Polish ( N males=50, N females=45) | 26.3 |  | 25.3 |  | Piontek |
| Polish 12th century | 22 | 27 |  |  | Kaliszewska |
| Rural $12^{\text {did }}-14^{\text {th }}$ century Polish | 26.1 | 34.4 | 25.5 | 29.5 | Piontek and Budzynska |
| Urban $14^{\text {did }}-18^{\text {th }}$ century Polish | 26.4 | 32.8 | 25.3 | 28.8 | Ditto |
| Late $19^{\text {L1 }}$ century Dutch (sex?) | 24 |  |  |  | Rosenberg |
| English (?, both sexes) | 24.4 |  |  |  | Cyriax |
| Polish | 24.9 | 30.4 | 24.5 | 29.5 | Taflinska |
| Swiss (both sexes and sides combined) | 25.9 | 27.2 |  |  | Marchesi et al. |
| Japanese | 23.2 | 25.9 | 23.8 | 26.7 | Hasebe |
| Bushmen | 22.1 | 27.3 | 22.7 | 24.6 | Duparc |
| Australians | 25.3 | 31.4 | 22.0 | 25.1 | Kruczkiewicz |
| Americans ( $\mathrm{N}=30$, both sexes) | 25.0 | 25.8 |  |  | Berry et al. (1987) |
| Recent Germans (both sexes) | 24.5 | 25.7 |  |  | Jacobi |
| Recent Americans (both sexes) |  | 23.8 |  |  | Panjabi et al. |
| Recent Europeans |  |  | 25.6 | 26.0 | Aeby |
| Recent Europeans (both sexes?) | 24.6 | 26.5 |  |  | Anderson |
| Italians, premenopausal |  |  | 33.1 | 33.3 | Diacinti et al. |
| Italians, postmenopausal |  |  | 29.4 | 31.4 | Ditto |
| American Whites | 26.2 | 28.3 |  |  | Lanier |
| American Whites | 25.7 | 27.3 |  |  | Todd and Pyle |


| Recent Europeans (both sexes) | 24.3 | 26.3 |  |  | Thomson |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Recent Bushman (N males=2, N females=1) | 22.3 | 23.8 | 21.5 | 22 | Ditto |
| Recent Europeans (N males =2; N females=2, <br> combined) | 28 |  |  | Boszczyk et al. (2001) |  |
| Present study (whole sample) | 25 | 25.8 | 28.0 | 24.7 | 26.3 |

L5

| Predmosti 3 | 29.4 | 23.0 |  |  | Matiegka |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Predmosti 14 |  | 20.5 |  |  | Ditto |
| Predmosti 4 |  |  | 27.0 | 20.6 | Ditto |
| Predmosti 10 |  |  |  | 23.5 | Ditto |
| Téviec ( N males=4, N females=3) | 24.5 | 20.5 | 22.2 | 22.5 | Vallois |
| Lithuanian Paleopopulations ( N males $=170$, 188 ; N females $=105,124$ ) | 28.0 | 23.4 | 26.2 | 22.2 | Jankauskas |
| Early Medieval Polish ( N males=48, N females= 41) | 29.4 |  | 27.7 |  | Piontek |
| Polish 12th century | 22 |  |  |  | Kaliszewska |
| Rural $12^{\text {bl }}-14^{\text {th }}$ century Polish | 29.3 | 35.7 | 28.1 | 32.6 | Ditto |
| Urban $14^{\text {l2 }}-18{ }^{\text {th }}$ century Polish | 29.4 | 34.3 | 28.2 | 32.9 | Piontek and Budzynska |
| Late $19{ }^{\text {d }}$ century Dutch (sex?) | 227.7 |  |  |  | Rosenberg |
| English (?, both sexes) | 27.8 |  |  |  | Cyriax |
| Polish | 28.7 | 34.7 | 26.9 | 32.4 | Taflinska |
| Swiss (both sexes and sides) | 28.9 | 24.7 |  |  | Marchesi et al. |
| Japanese | 27.5 | 34.6 | 25.6 | 31.8 | Hasebe |
| Bushmen | 24.4 | 30.5 | 24.8 | 30.1 | Duparc |
| Australians | 24.3 | 30.8 | 23.0 | 29.9 | Kruczkiewicz |
| Recent Americans (both sexes) |  | 22.9 |  |  | Panjabi et al |
| Americans (both sexes) | 28.7 | 23.1 |  |  | Berry et al. |
| Recent Europeans |  |  | 29.8 | 23.6 | Aeby |
| Recent Europeans (both sexes?) | 27.2 | 22.2 |  |  | Anderson |
| Italians, premenopausal |  |  | 35.3 | 32.5 | Diacinti et al. |
| Italians, postmenopausal |  |  | 34.1 | 30.6 | Ditto |


| American Whites | 28.9 | 29.1 |  | Lanier |  |
| :--- | :---: | :---: | :--- | :---: | :--- |
| American Whites | 28.1 | 23.7 |  |  | Todd and Pyle |
| Recent Europeans (both sexes) | 29 | 21 |  | Thomson |  |
| Recent Bushman (N males=2, N females=1) | 24.3 | 22 | 23 | 20 | Ditto |
| Recent Europeans (both sexes) |  | 23 |  | Boszczyk et al. |  |
| Present study (whole sample) | $\mathbf{2 8 . 6}$ | $\mathbf{2 4 . 5}$ | $\mathbf{2 7 . 0}$ | $\mathbf{2 3 . 4}$ |  |
| Present study (modern subgroup) | $\mathbf{2 8 . 9}$ | $\mathbf{2 4 . 1}$ | $\mathbf{2 8 . 1}$ | $\mathbf{2 3 . 6}$ |  |

Table 12: Vertebral body diameters (mm) of various samples, measurements similar to Martin (1928)

| Level / Sample | Sagittal males | Transverse males | Sagittal females | Transverse males | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C3 |  |  |  |  |  |
| Early Medieval Polish ( N males=48, N females $=25 / 26$ ) | 15.6 | 23.3 | 14.0 | 21.3 | Piontek (1973) |
| $12^{\text {th }}-18^{\text {th }}$ century Polish ( N males $=25, \mathrm{~N}$ females=25) | 16.0 | 20.0 | 14.2 | 18.6 | Piontek and (1973) |
| English (N both sexes $=+/-70$ ) |  | 20.9 |  |  | Cyriax (1920) |
| Europeans ( $\mathrm{N}=3$, both sexes) | 15.2 | 23.8 |  |  | Aeby (1879) |
| Europeans ( $\mathrm{N}=28$, both sexes?) | 15.2 |  |  |  | Anderson (1883) |
| Europeans ( N males=5, N females= ${ }^{\text {) }}$ | 15.0 | 23.1 | 13.3 | 21.0 | Thomson (1913) |
| Russians ( N males $=28$ ?, N females=10?) | 13 | 23.5 | 12 |  | Stefko (1926) |
| Bushman ( N males=1, N females=1) | 12.5 | 18 | 12 | 21 | Ditto |
| Present study (whole sample) | 16.0 | 19.3 | 14.8 | 18.5 |  |
| Present study (modern subgroups) | 16.2 | 19.3 | 14.7 | 18.1 |  |
| C7 |  |  |  |  |  |
| Early Medieval Polish ( N males=50, N females=32) | 18.3 | 29.4 | 16.8 | 27.5 | Piontek |
| $12^{\text {th }}-18^{\text {de }}$ century Polish | 16.9 | 27.0 | 16.2 | 25.6 | Piontek and |
|  |  |  |  |  | Zaborowski |
| Europeans | 16.2 | 28.5 | 15.6 | 26.2 | Aeby |
| Europeans (both sexes?) | 18.3 |  |  |  | Anderson |
| Europeans (both sexes) | 16 | 31.3 |  |  | Thomson |
| English (both sexes) |  | 29.2 |  |  | Cyriax |
| Russians ( N males=28?, N females=10?) | 16 | 30 | 14 |  | Stefko |
| Bushmen ( N males $=2, \mathrm{~N}$ females $=1$ ) | 14 | 27 | 12 | 26 | Thomson |
| Present study (whole sample) | 17.1 | 26.5 | 15.6 | 24.8 |  |
| Present study (modern subgroups) | 17.7 | 26.6 | 16.0 | 24.4 |  |

Th1

| Early Medieval Polish (N males=48, N females=36/38) | 27.5 | 31.1 | 24.2 | 28.1 | Piontek |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Americans ( N males $=25, \mathrm{~N}$ females $=25$ ) | 15.5 | 26.4 | 15.3 | 26.7 | Berry et al. (1987) |
| Europeans | 16.6 | 29.3 | 15.4 | 27.9 | Aeby |
| English (both sexes) |  | 30.4 |  |  | Cyriax |
| Europeans (both sexes?) | 17.3 |  |  |  | Anderson |
| Europeans (both sexes) | 16.3 | 28.3 |  |  | Thomson |
| Russians ( N males $=28$, N females=10?) | 17 | 30.5 | 1.5 |  | Stefko |
| Bushmen ( N males=1, N females $=1$ ) | 14 | 24 | 13 | 24 | Ditto |
| Present study (whole sample) | 17.8 | 28.5 | 15.8 | 26.2 |  |
| Present study (modern subgroups) | 17.8 | 28.9 | 16.0 | 26.1 |  |
| Th 6 |  |  |  |  |  |
| Early Medieval Polish (N males=50, N females=42/41) | 27.5 | 31.1 | 24.2 | 28.1 | Piontek |
| Canadians ( $\mathrm{N}=10$, both sexes?) | 21.8 | 25.1 |  |  | Cotterill et al. (1986) |
| Europeans | 25.9 | 29.9 | 24.5 | 26.9 | Aeby |
| Americans | 23.7 | 28.7 | 21.9 | 26.0 | Berry et al. (1987) |
| Europeans (both sexes?) | 25.6 |  |  |  | Anderson |
| Europeans (both sexes) | 24.3 | 25.7 |  |  | Thomson |
| Russians ( N males $=28$ ?, N females=10?) | 23 | 30.5 | 20 |  | Stefko |
| Bushmen ( N males=1, N females=1) | 18 | 21 | 19 | 20 | Ditto |
| Present study (whole sample) | 25.6 | 27.8 | 22.9 | 24.8 |  |
| Present study (modern subgroups) | 26.3 | 27.9 | 23.6 | 24.6 |  |

Th10

| Europeans | 30.5 | 36.2 | 29.0 | 33.1 | Aeby |
| :--- | :--- | :--- | :--- | :--- | :--- |
| English (both sexes) | 29.4 | 34.0 |  |  | Cyriax |
| Europeans (both sexes?) | 28.3 | 30.7 |  | Anderson |  |
| Europeans (both sexes) | 23 | 38 | 22 | Thomson |  |
| Russians (N males=28?, N females=10?) | 23.5 | 26 | 22 | 22 | Stefko |
| Bushmen (N males=2, N females=1) | 30.0 | 34.2 | 26.2 | 30.4 |  |
| Present study (whole sample) |  |  |  |  |  |

F. J. Rühli - Osteometric Variation of the Human Spine

| Present study (modern subgroups) | 31.3 | 34.7 | 27.3 | 31.0 | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| L1 |  |  |  |  |  |
| Early Medieval Polish (N males=50, N females=45) |  | 33.2 | 47.2 | 29.6 | 42 | Piontek |
| Americans ( $\mathrm{N}=30$, both sexes) | 28.9 | 39.5 |  |  | Berry et al. |
| English (both sexes) |  | 39.2 |  |  | Cyriax |
| Italians ( $\mathrm{N}=63$, both sexes) | 29.0 | 41.0 |  |  | Postacchini et al. (1983) |
| Indians ( $\mathrm{N}=58$, both sexes) | 25.0 | 36.0 |  |  | Ditto |
| Europeans | 32.7 | 46.0 | 29.3 | 41.3 | Aeby |
| Europeans (both sexes?) | 29.9 |  |  |  | Anderson |
| Europeans | 28.7 | 37.7 |  |  | Thomson |
| Russians ( N males=28?, N females $=10$ ?) | 28 | 48 | 28 |  | Stefko |
| Bushmen ( N males=2, N females=1) | 24 | 33 | 21 | 27 | Ditto |
| Americans | 29.5 | 44.3 | 26.7 | 38.8 | Scoles et al. (1988) |
| Nigerians ( N males $=79, \mathrm{~N}$ females $=43$ ) | 29.2 |  | 26.1 |  | Amonoo-Kuoti (1985) |
| Caucasoid ( N males $=78$, N females $=35$ ) | 31 | 39 | 27 | 34 | Eisenstein (1977) |
| Zulu Negroid ( N males= 108, N females=54) | 28 | 39 | 25 | 35 | Ditto |
| Sotho Negorid ( N males $=106$, N females $=62$ ) | 27 | 38 | 25 | 34 | Ditto |
| Present study (whole sample) | 31.7 | 40.3 | 27.6 | 35.5 |  |
| Present study (modern subgroups) | 32.9 | 41.0 | 28.2 | 35.9 |  |

L5

| Early Medieval Polish (N males=48, <br> females=41/43) | 35 | 55.2 | 32.5 | 50.3 | Piontek |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Europeans | 36.2 | 54.0 | 33.4 | 50.6 | Aeby |
| Italians (both sexes) | 33.0 | 49.0 |  | Postacchini et al. |  |
| Indians (both sexes) | 29.0 | 43.0 |  | Ditto |  |
| Americans (both sexes) | 32.4 | 46.1 | 31.5 | 48.6 | Berry et al. |
| Americans | 34.5 | 52.9 |  | Scoles et al. |  |
| English (both sexes) | 34.2 |  | 31.3 | Cyriax |  |
| Nigerians | 36.5 |  |  | Amonoo-Kuofi |  |
| Europeans (both sexes?) |  |  | Anderson |  |  |


| Europeans (both sexes) | 30.7 | 42 |  | Thomson |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Russians (N males=28?, N females=10?) | 25 | 54 | 25 | Stefko |  |
| Bushmen (N males=2, N females=1) | 29.5 | 38.5 | 25 | 34 | Ditto |
| Caucasoid | $\cdots$ | 33 | 46 | 30 | 42 |
| Zulu Negroid | 32 | 45 | 31 | 43 | Eisenstein |
| Sotho Negorid | 33 | 44 | 31 | 42 | Ditto |
| Present study (whole sample) | 33.6 | 47.8 | 31.1 | 44.1 |  |
| Present study (modern subgroups) | 34.5 | 47.7 | 30.4 | 42.6 |  |

The maximum pedicle height was also explored in the present study, since it could reflect any morphological alterations in particular as a bridging structure between the vertebral body, the laminaee and the transverse and spinal process. Pedicle robustness is linked to pedicle function in distribution of force and columnar stress (Shapiro, 1993; Sanders, 1998). Sanders (1998), who basically divided the human spinal column into just two force bearing pillars, already highlighted the extreme steady demand for the pedicles to support bending stress, due to their physiological positions between the two main force bearing pillars, the frontal vertebral bodies and intervertebral discs and the dorsal pillars, consisting of the laminae and the zygoapophyseal joints. Sanders (1998) also emphasizes the importance of the interaction with the ilio-lumbar ligament as another factor in developing typical human lower lumbar pedicle size. Therefore, any alterations of mechanical properties on the human spine would most likely be reflected on the pedicle size. If the increased pedicle area in humans links to the unique upright locomotion is still controversially debated (Davis, 1961; Shapiro, 1993) and was not an issue in the present study. For clinical purposes, Banta et al. (1989) recommended to list rather maximal values instead of the usual standard deviations for reports on the pedicle size. Nevertheless, the particular effective dimension of the pedicles they measured is not of real value for osteometric analysis.

The impact of individual stature on pedicle dimensions has been addressed equivocally so far. Scoles et al. (1988) found no clear link between pedicle dimensions and individual size, unlike for the correlation between vertebral body height and stature. On the other hand, Karaikovic et al. (1997) describe a correlation between pedicle
dimensions and individual body height, which was also mostly the case in the present study.

A listing of major earlier reports of pedicle height dimensions together with the means of the whole sample presented here as well as the modern sample could be found in Table 13.

Table 13: Maximum pedicle height (mm) of various samples

| Level / Sample | Pedicle height right | Pedicle height - left | Reference |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| C3 |  |  |  |
| Americans (both sexes, $\mathrm{N}=12$ ) | 7.6 | 7.2 | Panjabi et al. (1991a) |
| Recent Americans (?, N males $=4$, N females $=2$, both sexes combined, side?) | 7.5 |  | Tominaga et al. (1995) |
| Recent Americans (?, N males $=25, \mathrm{~N}$ females $=15$, both sides combined) | 6.8 (m)/4.7 (f)? |  | Ebraheim et al. (1997) |
| Germans ( N males $=10, \mathrm{~N}$ females $=10$, both sexes combined, side?) | 7.4 |  | Kandziora et al. (2001) |
| Present study (whole sample) | 6.9 (m) / 6.1 (f) | 7.0 (m) / 6.1 (f) |  |
| Present study (modern subgroups) | 7.3 (m)/6.3 (f) | 7.3 (m) / 6.2 (f) |  |
| C7 |  |  |  |
| Americans (both sexes) | 7.5 | 7.5 | Panjabi et al. |
| Americans ( N males $=32, \mathrm{~N}$ females $=24$, side? $)$ | 7.1 (m) / 7.0 (f) |  | Xuetal. (1995) |
| Recent Americans (?, N males $=4, \mathrm{~N}$ females $=2$, both sexes combined, side?) | 7.4 |  | Tominaga et al. |
| Germans (both sexes, sides?) | 8.5 |  | Kandziora et al. |
| Present study (whole sample) | 7.2 (m)/6.6 (f) | 7.3 (m) / 6.6 (f) |  |
| Presents study (modern subgroups) | 7.5 (m) / 6.6 (f) | 7.5 (m) / 6.5 (f) |  |
| Th1 |  |  |  |
| Americans (both sexes) | 9.3 | 9.9 | Panjabi et al. (1991b) |
| Americans ( N males=25, females=25; side?) | 9.2 (m) / 8.4 (f) |  | Scoles et al. (1988) |
| Present study (whole sample) | 9.2 (m) / 8.4 (f) | 9.4 (m) / 8.4 (f) |  |
| Present study (modern subgroups) | 9.1 (m)/8.3 (f) | 9.3 (m)/ 8.4 (f) |  |
| Th 6 |  |  |  |
| Americans / Asians ( N males $=8, \mathrm{~N}$ females $=9$, both sexes combined, side?) | 10.1 |  | Vaccaro et al. (1995) |
| F. J. Rühli-Osteometric Variation of the Human | an Spine |  | 202 |

Americans (both sexes)

Germans (?, $N=4$, both sexes?)
Americans
Present study (whole sample)
Present study (modern subgroups)

Th10
Americans (both sexes)
Chinese (N males=25, N female=15, side?)
Americans / Asians (both sexes, side?)
Present study (whole sample)
Present study (modern subgroups)
14.4 (m) / 14.2 (f)
14.1
15.4 (m) / 14.0 (f)
15.8 (m) / 14.3 (f)
15.5 (m) / 13.9 (f)
15.7 (m) / 14.3 (f)

Panjabi et al.

Hou et al. (1993)
Vaccaro et al.

Mitra et al. (2002)
Olsewski et al. (1990)
Hou et al.

Panjabi et al. (1992)

Scoles et al.

Berry et al. (1987)
16.0 (m) / 14.5 (f)
16.5 (m) / 14.6 (f)
16.4 (m) / 14.4 (f)

| $15.7(\mathrm{~m}) / 17.0(\mathrm{f})$ |  | Mitra et al. |
| :--- | :--- | :--- |
| $17.4(\mathrm{~m}) / 16.2(\mathrm{f})$ |  | Olsewski et al. |
| 18.0 | 19.2 | Panjabi et al. |
| $16.2(\mathrm{~m}) / 18.5(\mathrm{f})$ |  | Scoles et al. |


| Americans | 13.8 | 13.6 | Berry et al. |
| :---: | :---: | :---: | :---: |
| Chinese (side?) | 20.5 (m) / 18.7 (f) |  | Hou et al. |
| Present study (whole sample) | 14.6 (m)/ 13.5 (f) | 14.0 (m)/12.8 (f) |  |
| Present study (modern subgroups) | 14.5 (m)/13.3 (f) | 13.9 (m)/12.7 (f) |  |

The size of the neural canal is a crucial osteometric dimension. The relation between spinal cord and osseous spinal canal size may be important for clinical issues, as pointed out by Panjabi et al. (1991a) for the cervical spine. For example, they suggest a possible link between the decrease of the spinal canal / spinal cord ratio from C 6 to C 7 , and the subsequent high vulnerability to neural damage, and the high rate of spinal cord injuries at this level; as shown by Fife and Kraus (1986). Furthermore, in a young asymptomatic clinical sample, Schmid et al. (1999) found no body position dependent changes of the cross-sectional areas of the spinal canal when measured at the osseous level, whereas the same measurement on the disc level did change. This means for the present study that due to its independence of body positions, at least in asymptomatic individuals, the spinal canal dimensions at the vertebral body levels may be used for comparison between clinical and skeletal samples. The spinal canal dimensions at the disc level cannot be assessed in osteometric studies anyway.

One has to wonder, how far osseous spinal canal dimensions reflect its content. By having bigger spinal cords, more muscular individuals, may also need larger bony neural spaces; unless they show smaller reserve capacities, which then would predispose them for spinal pathologies. Surprisingly, there is a sexual dimension issue as well. Female and male mammals have similar size of neural nerve roots, as described by Dunn (1912), therefore, relative to body weight, female ones are even bigger than males in this report. In the case of the cervical nerve root, as examined by Dunn (1912), this cannot be due to a higher sex dependent visceral demand such as e.g., in the pelvic region, but must be linked to a higher periphery somato-motoric demand causing larger efferent branches. Nevertheless, in general the sensori-motor demand may be the same
in males and females because it depends on the number of muscle motor units rather than on the size of muscle fibres. One factor to remember, while interpreting osseous dimensions and the possible relation to their neural contents, is the fact that the cervical and lumbar enlargements may vary in level even within one species. Therefore, if one finds a different shape of the osseous spinal canal in a certain fossil or skeleton, any interpretation of its altered neural content must be formulated with caution.

To summarize, conclusions on the size and content of the spinal canal, based on the osseous dimensions only, should to be formulated very cautiously. A comparison of earlier published data of the osseous spinal canal and the measures of this study could be found in Table 14.

Table 14: Neural canal sizes (mm) of various samples, measurements similar to Martin (1928)

| Level / Sample | Sagittal males | Transverse males | Sagittal females | Transverse females | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C3 |  |  |  |  |  |
| Predmosti 3 | 15.6 | 24.0 |  |  | Matiegka (1938) |
| Predmosti 14 | 15.5 | 23.0 |  |  | Ditto |
| Predmosti 4 |  |  | 15.0 | 21.5 | Ditto |
| Predmosti 10 |  |  |  | 18.0 | Ditto |
| Early Medieval Polish ( N males=48, N females= 24/26) | 14.8 | 22.6 | 14.7 | 21.2 | Piontek (1973) |
| 12-18 ${ }^{\text {d }}$ century Polish ( N males=25, N females=25) | 15.3 | 20.0 | 15.0 | 21.5 | Piontek and Zaborowski (1973) |
| Recent Americans (?, N males $=4, \mathrm{~N}$ females $=2$, both sexes combined) | 16.2 | 24.4 |  |  | Tominaga et al. (1995) |
| Israelis ( $\mathrm{N}=54$, both sexes combined?) |  | 22.5 |  |  | Gepstein et al. (1991) |
| Japanese ( N males $=20, \mathrm{~N}$ females $=10$ ) | 13.5 | 21.5 | 12.7 | 21.2 | Hasebe (1913) |
| Europeans ( N males $=5, \mathrm{~N}$ females $=8$ ) | 16.7 | 23.9 | 15.4 | 23.4 | Aeby (1879) |
| White Americans ( N males $=100, \mathrm{~N}$ females $=27$ ) | 16.5 | 23.9 | 15.5 | 22.6 | Francis (1955) |
| Black Americans ( N males=100, N females=57) | 15.2 | 24.3 | 15.1 | 23.2 | Ditto |
| Germans ( N males $=10, \mathrm{~N}$ females $=10$; both sexes combined) | 16.5 | 24.6 |  |  | Kandziora et al. (2001) |
| Russians ( $\mathrm{N}=$ ? , both sexes) | 15 | 24 |  |  | Stefko (1926) |
| White Americans ( $\mathrm{N}=+/-96$ ) | 14.9 |  |  |  | Lanier (1939) |
| Recent Americans ( $\mathrm{N}=12$, both sexes) | 16.2 | 22.9 |  |  | Panjabi et al. (1991a) |
| Recent Europeans ( $\mathrm{N}=3$, both sexes) | 14.7 | 22.3 |  |  | Thomson (1913) |
| Recent Bushman (N males $=1$, N females=1) | 15 | 21 | 14 | 21 | Ditto |
| Present study (whole sample) | 15.3 | 24.1 | 14.9 | 23.1 |  |
| Present study (modern subgroups) | 15.9 | 24.5 | 15.4 | 23.9 |  |


| Shanidar 1 | 16.0 | 25.0 |  |  | Stewart (1962) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Predmosti 3 | 14.0 | 26.6 |  |  | Matiegka |
| Predmosti 9 | 12.0 | 22.0 |  |  | Ditto |
| Predmosti 14 | 14.4 | 27.0 |  |  | Ditto |
| Predmosti 4 |  |  | 13.5 | 22.5 | Ditto |
| Early Medieval Polish ( N males=50, N females= 33/35) | 14.5 | 23.3 | 14.2 | 22.5 | Piontek |
| $12^{\text {di }}-18^{\text {did }}$ century Polish | 14.6 | 23.8 | 15.2 | 22.9 | Piontek and Zaborowski |
| Recent Americans (?, N males $=4, \mathrm{~N}$ females $=2$, both sexes combined) | 15.2 | 26.3 |  |  | Tominaga et al |
| Israeli (both sexes?) |  | 23.7 |  |  | Gepstein et al. |
| Japanese | 13.8 | 23.3 | 12.9 | 22 | Hasebe |
| Europeans | 14.7 | 25.4 | 14.3 | 24.3 | Aeby |
| White Americans | 14.4 | 24.8 |  |  | Lanier |
| Germans (both sexes) | 15.9 | 24.6 |  |  | Kandziora et al. |
| Russians (both sexes) | 15.5 | 22 |  |  | Stefko |
| Recent Europeans (both sexes) | 14.7 | 25 |  |  | Thomson |
| Recent Bushman | 13 | 21 | 13 | 21 | Ditto |
| White Americans | 15.5 | 25.6 | 14.4 | 24.4 | Francis |
| Black Americans | 15.5 | 25.5 | 14.3 | 24.4 | Ditto |
| Recent Americans (both sexes) | 15.2 | 24.5 |  |  | Panjabi et al. |
| Global sample ( $\mathrm{N}=20$ ) | 12.5-17.5 | 20.0-26.0 |  |  | Stewart |
| Present study (whole sample) | 14.9 | 25.2 | 14.3 | 24.4 |  |
| Present study (modern subgroups) | 15.1 | 26.1 | 14.5 | 25.7 |  |
| Th1 |  |  |  |  |  |
| Predmosti 3 | 15.6 | 24.0 |  |  | Matiegka |
| Predmosti 9 | 11.4 | 21.4 |  |  | Ditto |
| Predmosti 14 | 14.0 | 23.3 |  |  | Ditto |


| Predmosti 4 |  |  | 14.6 | 20.4 | Ditto |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dolni Vestonice 15 |  |  |  | 22.3 | Trinkaus (pers. comm.) |
| Early Medieval Polish ( N males $=48$, N females=37/41) | 15.4 | 20.3 | 15 | 19.8 | Piontek |
| Japanese | 14.3 | 19.9 | 13.3 | 19 | Hasebe |
| Europeans | 15.5 | 23.3 | 15.1 | 21.4 | Aeby |
| White Americans | 14.9 | 21.6 |  |  | Lanier |
| South Africans ( $\mathrm{N}=6$, both sexes) | 14.3 | 20.7 |  |  | Dommisse (1974; 1975) |
| Americans, all races ( N males $=25, \mathrm{~N}$ females $=25$ ) | 15.2 | 21.2 | 14.2 | 20.5 | Scoles et al. (1988) |
| Russians (both sexes) | 16 | 21 |  |  | Stefko |
| Recent Europeans (both sexes) | 15 | 21.3 |  |  | Thomson |
| Recent Americans (both sexes) | 16.4 | 21.8 |  |  | Panjabi et al. (1991b) |
| Recent Bushman | 13 | 13 | 13 | 18 | Ditto |
| Present study (whole sample) | 15.4 | 22.4 | 14.9 | 21.3 |  |
| Present study (modern subgroups) | 15.8 | 23.3 | 15,3 | 22.2 |  |
| Th6 |  |  |  |  |  |
| Dolni Vestonice 15 |  |  |  | 15.8 | Trinkaus |
| Predmosti 3 |  | 17.0 |  |  | Matiegka |
| Predmosti 9 | 15.3 | 15.0 |  |  | Ditto |
| Predmosti 14 | 15.3 | 15.3 |  |  | Ditto |
| Predmosti 4 |  |  | 16.0 | 17.5 | Ditto |
| Early Medieval Polish (N males=50, N females=42) | 15.8 | 16.2 | 15.2 | 15.2 | Piontek |
| Recent Americans (both sexes) | 16.5 | 17.3 |  |  | Panjabi et al. |
| Japanese | 14.8 | 14.8 | 14.4 | 14.6 | Hasebe |
| Canadians ( $\mathrm{N}=10$, both sexes?) | 14.5 | 15.1 |  |  | Cotterill et al. (1986) |
| Swiss ( N males= $18, \mathrm{~N}$ females=15, both sexes and sides combined) | 16.4 | 17.0 |  |  | Marchesi et al. (1988) |
| Russians (both sexes) | 17 | 17 |  |  | Stefko |
| Europeans | 17.3 | 17.8 | 16.8 | 17.2 | Aeby |
| Americans | 15.7 | 16.5 | 15.2 | 15.5 | Scoles et al. |
| White Americans | 15.5 | 16.6 |  |  | Lanier |
| F. J. Rühli-Osteometric Variation of the Hum | man Sp |  |  |  | 209 |


| South Africans (both sexes) | 13.4 | 14.9 |  |  | Dommisse |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Recent Europeans (both sexes) | 15.7 | 16.3 |  |  | Thomson |
| Bushman | 14 | 15 | 14 | 15 | Ditto |
| Present study (whole sample) . | 16.3 | 17.3 | 15.9 | 16.6 |  |
| Present study (modern subgroups) | 16.7 | 17.7 | 16.2 | 16.9 |  |
| Th10 |  |  |  |  |  |
| Predmosti 3 | 15.5 | 17.3 |  |  | Trinkaus |
| Predmosti 4 |  |  | 16.0 | 17.4 | Matiegka |
| Predmosti 10 |  |  | 14.0 | 15.0 | Ditto |
| Japanese | 14.3 | 15.2 | 13.6 | 15.3 | Hasebe |
| Europeans | 17.3 | 18 | 16.4 | 17.5 | Aeby |
| Russians (both sexes) | 17 | 19 |  |  | Stefko |
| White Americans | 15.3 | 17.2 |  |  | Lanier |
| South Africans (both sexes) | 13.5 | 15.6 |  |  | Dommisse |
| Recent Americans (both sexes) | 15.5 | 18.2 |  |  | Panjabi et al. |
| Recent Europeans (both sexes) | 15.3 | 17.7 |  |  | Thomson |
| Recent Bushman | 15 | 16 | 15 | 17 | Ditto |
| Swiss ( N males $=18, \mathrm{~N}$ females $=15$, both sexes and sides combined) | 15.8 | 17.3 |  |  | Marchesi et al. |
| Present study (whole sample) | 16.2 | 18.4 | 15.7 | 17.3 |  |
| Present study (modern subgroups) | 16.4 | 18.6 | 16.4 | 17.9 |  |

L1

| Dolni Vestonice 15 |  |  |  | 22.7 | Trinkaus |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Predmosti 3 | 18.0 | 25.6 |  |  | Matiegka |
| Predmosti 14 | 16.0 | 22.3 |  |  | Ditto |
| Romano-British ( $\mathrm{N}=$ ? , both sexes) | 15.9 | 22.0 |  |  | Ditto |
| Anglo-Saxon ( $\mathrm{N}=$ ? , both sexes) | 15.2 | 21.3 |  |  | Porter and Pavitt (1987) |
| Early Medieval Polish ( N males=50, N females=45) | 17.6 | 22.3 | 17.1 | 21.1 | Piontek |
| $19^{\text {th }}$ century Netherlands ( $\mathrm{N}=51$, sex? ) | 18.0 | 23.4 |  |  | Huizinga et al. (1952) |


| Nigerians ( N males $=79, \mathrm{~N}$ females $=43$ ) | 16.6 |  | 15.8 |  | Amonoo-Kuofi (1985) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Japanese | 16.6 | 20.3 | 16 | 19.7 | Hasebe |
| Japanese ( N males $=59$, N females $=21$, both sexes combined) | 16.2 |  |  |  | Kikuchi et al. (1977) |
| Japanese ( $\mathrm{N}=$ ? , sex? ${ }^{\text {a }}$, | 14.3 |  |  |  | Takemitsu et al., cited by Kikuchi et al. |
| Japanese ( $\mathrm{N}=$ ? ) | 16.6 |  | 16.4 |  | Nagashima, cited by Kikuchi et al. |
| Japanese ( $\mathrm{N}=$ ? , sex? | 16.4 |  |  |  | Tsunematsu, cited by Kikuchi et al. |
| Japanese ( $\mathrm{N}=$ ? , sex? ${ }^{\text {a }}$ | 17.0 |  |  |  | Hibi, cited by Kikuchi et $a l$. |
| Japanese ( $\mathrm{N}=$ ? , sex? ${ }^{\text {a }}$ | 15.6 |  |  |  | Okamoto, cited by Kikuchi et al. |
| Israeli (both sexes combined?) |  | 20.8 |  |  | Gepstein et al. |
| Europeans | 18.5 | 23.9 | 18.9 | 22.8 | Aeby |
| Koreans ( N males $=63$, N females $=27$ ) | 15.4 | 21.5 | 15.5 | 20.5 | Lee et al. (1995) |
| Swiss ( N males $=18, \mathrm{~N}$ females $=15$, both sexes and sides combined) | 17.8 | 23.5 |  |  | Marchesi et al. |
| Russians (both sexes) | 20 | 23 |  |  | Stefko |
| White Americans | 17.2 | 23.2 |  |  | Lanier |
| Italians ( $\mathrm{N}=63$, both sexes) | 16.7 | 21.7 |  |  | Postacchini et al. (1983) |
| Indians ( $\mathrm{N}=58$, both sexes) | 15.0 | 19.1 |  |  | Ditto |
| Americans ( $\mathrm{N}=30$, both sexes) | 17.2 | 22.1 |  |  | Berry et al. (1987) |
| South Africans ( $\mathrm{N}=25$, both sexes) | 15.4 | 20.4 |  |  | Dommisse |
| Caucasoid ( N males $=78, \mathrm{~N}$ females=35) | 18.0 | 23.0 | 18.0 | 22.0 | Eisenstein (1977) |
| Zulu Negroid ( N males= 108, N females=54) | 16.0 | 21.0 | 17.0 | 20.0 | Ditto |
| Sotho Negorid ( N males $=106, \mathrm{~N}$ females $=62$ ) | 16.0 | 21.0 | 16.0 | 20.0 | Ditto |
| Americans | 17.6 | 22.2 | 17.7 | 21.2 | Scoles et al. |
| Recent Americans (both sexes) | 19.0 | 23.7 |  |  | Panjabi et al. (1992) |
| Recent Europeans (both sexes) | 15.7 | 21.3 |  |  | Thomson |
| Bushmen ( N males=2, N females=1) | 15.5 | 18 | 14 | 20 | Ditto |
| Present study (whole sample) | 17.8 | 23.7 | 17.7 | 22.5 |  |
| Present study (modern subgroups) | 18.2 | 24.4 | 18.4 | 23.2 |  |

F. J. Rühli - Osteometric Variation of the Human Spine

| Dolni Vestonice 15 |  |  |  | 23.1 | Trinkaus |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Predmosti 3 | 18.0 | 27.6 |  |  | Matiegka |
| Predmosti $9 \times$ | 15.6 | 24.3 |  |  | Ditto |
| Predmosti 14 | 17.4 | 29.9 |  |  | Ditto |
| Predmosti 4 |  |  | 18.5 |  | Ditto |
| Predmosti 10 |  |  | 13.0 | 26.3 | Ditto |
| Romano-British (both sexes) | 15.2 | 25.7 |  |  | Ditto |
| Anglo-Saxon (both sexes) | 14.6 | 25.6 |  |  | Porter and Pavitt |
| Early Medieval Polish ( N males $=48$, N females $=40 / 41$ ) | 17.3 | 24.9 | 16.5 | 24.1 | Piontek |
| $19^{\text {² }}$ century Netherlands ( $\mathrm{N}=51$, sex?) | 16.9 | 25.8 |  |  | Huizinga et al. |
| Israeli (both sexes combined?) |  | 30.0 |  |  | Gepstein et al. |
| Nigerians | 16.0 |  | 14.6 |  | Amonoo-Kuofi |
| Japanese | 16.9 | 26.4 | 15.6 | 25 | Hasebe |
| Japanese (both sexes combined) | 15.8 |  |  |  | Kikuchi et al. |
| Japanese (sex?) | 14.3 |  |  |  | Takemitsu et al. |
| Japanese | 18.3 |  | 16.8 |  | Nagashima |
| Japanese (sex?) | 16.3 |  |  |  | Tsunematsu |
| Japanese (sex?) | 18.0 |  |  |  | Hibi |
| Japanese (sex?) | 16.3 |  |  |  | Okamoto |
| Swiss ( N males $=18$, N females $=15$, both sexes and sides combined) | 17.7 | 27.0 |  |  | Marchesi et al. |
| Europeans | 19.1 | 27.5 | 19.2 | 25.6 | Aeby |
| Koreans | 14.6 | 25.9 | 14.1 | 25.3 | Lee et al. |
| Italians (both sexes) | 16.1 | 24.8 |  |  | Postacchini et al. |
| Indians (both sexes) | 14.0 | 22.8 |  |  | Ditto |
| Russians (both sexes) | 18 | 21 |  |  | Stefko |
| White Americans | 17.4 | 26.3 |  |  | Lanier |
| Americans | 17.6 | 25.9 | 16.8 | 26.0 | Scoles et al. |
| Americans | 17.3 | 26.0 |  |  | Berry et al. |

F. J. Rühli - Osteometric Variation of the Human Spine

|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Recent Americans | 19.7 | 27.1 |  |  | Panjabi et al. |
| South Africans (both sexes) | 15.5 | 24.1 |  |  | Dommisse |
| Caucasoid | 18.0 | 26.0 | 18.0 | 25.0 | Eisenstein |
| Zulu Negroid | 16.0 | 26.0 | 16.0 | 24.0 | Ditto |
| Sotho Negroid | 16.0 | 25.0 | 16.0 | 24.0 | Ditto |
| Recent Europeans (both sexes) | 14.3 | 22 |  |  | Thomson |
| Recent Bushmen | 14 | 20 | 16 | 22 | Ditto |
| Americans (?, both sexes?) | 12 |  |  |  | Magnuson (1944) |
| Present study (whole sample) | 16.9 | 26.2 | 16.9 | 26.0 |  |
| Present study (modern subgroups) | 17.7 | 26.3 | $\mathbf{1 7 . 7}$ | $\mathbf{2 6 . 5}$ |  |

The intervertebral foramen is an anatomical structure of important clinical value. This will be outlined in depth below as a separate chapter, since it may represent a field of common scientific interest for anthropologists, anatomists and cliniciancs. As already highlighted above, the osteometric assessment of this structure has its pitfalls. In the present study, the intervertebral foramen width was measured not only bilaterally, to explore any possible side difference, but also on the cranial and caudal surface of the particular vertebral body. Cinotti et al. (2002) conclude that the measurement of the superior and minimum intervertebral foramen width is a reliable method for the assessment of the intervertebral foramen dimensions, as it has been done for the present study. Additionally, Cinotti et al. (2002) state that the impact of the disc space narrowing on the foramen can be shown preferably on dried vertebra rather than wet spines, with smaller standard deviations to be found in the first ones. Therefore, by exploring the osseous intervertebral dimension, one can assume that the tendencies are similar for cadaver spine diameters and fresh wet spines too. Due to methodologic difficulties, which have been widely addressed already above, it is difficult to directly compare the intervertebral foramen values in the present study with the ones published earlier; see also Table 15.

Table 15: Intervertebral foramen width (mm) of various samples

| Level / Sample | Intervertebral foramen width (males) | Intervertebral foramen width (females) | Reference |
| :---: | :---: | :---: | :---: |
| C3 |  |  |  |
| $\begin{aligned} & \text { Americans (?, N males }=22, \mathrm{~N} \\ & \text { females=19) } \end{aligned}$ | 4.5 | 4.3 | Ebraheim et al. (1996) |
| Early $20^{\text {at }}$ century Americans | 5.9 | 6.7 | Karaikovic et al. (1997) |
| C7 |  |  |  |
| Americans | 4.4 | 4.9 | Ebraheim et al. |
| Early $20{ }^{\text {th }}$ century Americans | 7.0 | 8.4 | Karaikovic et al. |
| L1 |  |  |  |
| Europeans (N males $=2, \mathrm{~N}$ females $=2$ ) | 12 |  | Boszczyk et al. (2001) |
| $\begin{aligned} & \text { Nigerians }(\mathrm{N} \text { males }=79, \mathrm{~N} \\ & \text { females }=43) \end{aligned}$ | 8.8 | 8.1 | Amonoo-Kuofi (1985) |
| L5 |  |  |  |
| Italians ( $\mathrm{N}=63$, both sexes) | 6.2 |  | Postacchini et al. (1983) |
| Indians ( $\mathrm{N}=58$, both sexes) | 5.9 |  | Ditto |
| Europeans | 12 |  | Ditto |
| Nigerians | 7.0 | 7.3 | Amonoo-Kuofi |
| Americans (?, $\mathrm{N}=10, \operatorname{sex}$ ?) | 7 |  | Magnuson (1944) |

The foramen magnum is a major anatomical landmark of the skull base. In the present study, there was no correlation between the foramen magnum size and individual stature at all, as could be seen in Table 16. Already Röthig (1971) concluded that the foramen magnum breadth is just mildly related to individual stature. A list of earlier published measurements of the foramen magnum and of the measure of the present study could be found in Table 17.

Table 16: Correlation coefficient between individual stature (femur maximum length for present study) and foramen magnum breadth

| Sex | Röthig (1971) | Present study |
| :--- | :--- | :--- |
| Males | $0.41(\mathrm{~N}=560)$ | $\mathbf{0 . 0 5}(\mathbf{N}=\mathbf{4 8})$ |
| Females | $0.35(\mathrm{~N}=265)$ | $\mathbf{0 . 1 8}(\mathrm{N}=\mathbf{4 3})$ |

Table 17: Foramen magnum dimensions (mm) of various samples, measurements according to Martin (1928)


| Torguts | 36.2 | 30.5 |
| :---: | :---: | :---: |
| Malays m | 34 | 30.3 |
| Malays f | 32.6 | 28.5 |
| Australians m | 35.5 | 29.9 |
| Australians f | 34 | 29.3 |
| Paltacalos m | 32.8 | 29.3 |
| Paltacalos f | 35.9 | 28.5 |
| Nakashima (1986): |  |  |
| Middle Kyushuites m | 34.5 | 29.7 |
| Kantoites m | 35 | 29.8 |
| North Kyushuites m | 36.2 | 30.2 |
| Yoron-islanders m | 35.9 | 30.3 |
| Kikai-islanders m | 39.1 | 30.7 |
| Shilingol-Mongolians m | 37.6 | 30.2 |
| Fuschen-Chinese m | 35.9 | 30.3 |
| Germans m | 35.3 | 29.7 |
| Present study: |  |  |
| Whole sample m | 37.2 | 32.1 |
| Whole sample f | 35.8 | 30.0 |
| Modern subgroups m | 37.3 | 32.4 |
| Modern subgroups f | 35.8 | 31.0 |

The spinous processes, beside their function in limiting extensional forces (White and Hirsch, 1971), serve as bony lever arms for the back musculature such as multifidus and spinalis muscles in the lumbar region, whereas the transverse processes act as levers for muscles such as longissimus, psoas major or quadratus lumborum. Both anatomical structures have only rarely been investigated so far with an osteometric perspective, this is in particular true for the spinous process (Schultz, 1961; Cotterill et al., 1986). The transverse process has so far been addressed in limited reports too, all in modern samples only. Furthermore, in the present study the processes often suffered from post mortem damage. This resulted in overall small sample sizes, which led to the exclusion of some of these process measures from the final data analysis. All this makes it hard to validate the measured dimensions in the present study. A list of earlier published data could be found in Table 18 and 19.

Table 18: Length of spinous process as a percentage of the sagittal diameter of the vertebral body

| Level - Sex | Schultz:(1961) | Present study |
| :--- | :--- | :--- |
| C3-m | $98 \%(\mathrm{~N}=2)$ | $\mathbf{1 0 5 \% ( N = 3 7 )}$ |
| C3 - f | $103 \%(\mathrm{~N}=2)$ | $\mathbf{9 0 \% ( N = 4 4 )}$ |
| C7-m | $214 \%(\mathrm{~N}=2)$ | $\mathbf{1 7 3} \%(\mathbf{N}=\mathbf{7 2})$ |
| C7-f | $184 \%(\mathrm{~N}=2)$ | $\mathbf{1 6 7 \% ( N = 6 5 )}$ |

Table 19: Transverse process width (mm) of various samples


| Present study (modern subgroups) - males | 66.2 |  |
| :---: | :---: | :---: |
| Present study (modern subgroups) - females | 52.9 |  |
|  |  |  |
| Th1 $\cdots$ |  |  |
| Japanese - males | 74.8 | Hasebe |
| White Americans | 78 | Lanier |
| English (?) - both sexes | 74.7 | Cyriax |
| Recent Americans - both sexes | 75.3 | Panjabi et al. (1991b) |
| Japanese - females | 65.5 | Hasebe |
| Present study (whole sample) - males | 78.0 |  |
| Present study (whole sample) - females | 70.9 |  |
| Present study (modern subgroups) - males | 79.1 |  |
| Present study (modern subgroups) - females | 72.5 |  |
| Th6 |  |  |
| Japanese - males | 62 | Hasebe |
| Canadians - both sexes? ( $\mathrm{N}=10$ ) | 55.7 | Cotterill et al. (1986) |
| White Americans | 67 | Lanier |
| Recent Americans (both sexes) | 61.3 | Panjabi et al. |
| English (?) | 63.6 | Cyriax |
| Japanese - females | 54.1 | Hasebe |
| Present study (whole sample) - males | 65.1 |  |
| Present study (whole sample) - females | 59.7 |  |
| Present study (modern subgroups) - males | 65.5 |  |
| Present study (modern subgroups) - females | 60.9 |  |
| Th10 |  |  |
| Japanese - males | 56.3 | Hasebe |
| White Americans | 60.8 | Lanier |
| Recent Americans (both sexes) | 58.4 | Panjabi et al. |
| English (?) | 58.5 | Cyriax |


| Japanese - females | 49.4 | Hasebe |
| :---: | :---: | :---: |
| Present study (whole sample) - males | 60.7 |  |
| Present study (whole sample) - females | 55.0 |  |
| Present study (modern subgroups) - males | 63.0 |  |
| Present study (modern subgroups) - femiales | 58.1 |  |
| L1 |  |  |
| Japanese - males | 67 | Hasebe |
| White Americans | 73.1 | Lanier |
| Recent Americans (both sexes) | 71.2 | Panjabi et al. (1992) |
| English (?) | 72.6 | Cyriax |
| Japanese - females | 61 | Hasebe |
| Present study (whole sample) - males | 73.0 |  |
| Present study (whole sample) - females | 64.6 |  |
| Present study (modern subgroups) - males | 75.1 |  |
| Present study (modern subgroups) - females | 68.3 |  |
| L5 |  |  |
| Japanese - males | 88.8 | Hasebe |
| White Americans | 92.6 | Lanier |
| Recent Americans (both sexes) | 92.5 | Panjabi et al. |
| English (?) | 86.0 | Cyriax |
| Japanese - females | 82.4 | Hasebe |
| Present study (whole sample) - males | 85.2 |  |
| Present study (whole sample) - females | 78.0 |  |
| Present study (modern subgroups) - males | 91.5 |  |
| Present study (modern subgroups) - females | 84.5 |  |

Another factor to investigate while doing morphometric research is a possible intra-individual side difference. For example, no side difference could be found for the pedicle dimensions in the present study, which is consistent with most earlier reports (Marchesi et al., 1988; Banta et al., 1989; Xu et al., 1995; Kothe et al., 1996). As another exemplary measure, the vertebral body height did not show any side difference in the present study, unlike in the report by Anderson (1883), who linked the higher values of the right side of the vertebral body to the bigger weight of the internal organs on this side.

To summarize, if one compares the osteometric data of the present study of both, the whole sample as well as the selected modern samples, with earlier published measures, it can be seen that most of the measures of the present study fall within the wide range of spinal dimensions. Some exceptions are e.g., the transverse process widths at C 7 , which in this study are smaller than the measures published earlier. On the other hand, the pedicle dimensions at Th6 and Th10 are in this study larger than the ones published so far. Since the overall variability of the human spine, as e.g., seen in the above shown dimensions of a global sample, is quite large, these outliers of the present study may de facto just represent extremes of this variation or simply be caused by minor methodologic differences.

## Variation of spinal morphometry due to sex and age

Both, sex and individual age are key factors contributing to the variability in osteometric measurements, as already highlighted above, and, therefore, were major issues addressed in the present study. Both factors were elaborated specifically on the two modern samples with historically known individual sex and age.

In the study presented here, males show for most vertebral measurements significantly higher values such as vertebral body height or transverse process width. In the most similar microevolutionary study of the human vertebral column, Jankauskas (1994) estimated the overall influence of sex to be about $30 \%-40 \%$ of the variability of vertebral column, with age having an impact of just about $5 \%-8 \%$. Sex was a significant factor especially for transverse diameters. He reports for the cervical, thoracic and lumbar spine a significant sexual dimorphism for the vast majority of osteometric measurements, consistent with the findings of the present study. Sex was also not a major contributor towards the occurrence of spinal pathologies in the archaeologic sample examined by Jankauskas (1992). Nevertheless, males have e.g., a significantly longer thoraco-lumbar spine (Gozdziewski et al., 1976). These factors, due to restriction on selected vertebral levels and non-pathologic spines, could not have been explored in the study presented here. Despite the fact that Huizinga et al. (1952), surprisingly, do not consider possible age and sex estimations as further factors influencing their findings on lumbar spinal canal dimensions in historic skeletons, most authors agree that sex seems to influence the spinal morphometry (Piontek, 1973; Larsen and Smith, 1980a; Larsen and Smith, 1980b; Hermann et al., 1993). The results of the study presented here also support this view.

With respect to neural pathways of the spine, the results of the present study are notable. No significant sexual dimorphism can be found, basically, for the osseous outline of the neural pathways, unlike in the other spinal osteometric dimension such as e.g., the vertebral body height. This notable absence of larger neural dimensions in males has already been reported in similar way earlier (Eisenstein, 1977; Porter et al.,

1978b). For example, Porter et al. (1980) found, in an ultrasound based study, larger neural canals in females than males, especially in the subgroup of young adults. They mention a possible higher amount of epidural fat as one possible cause and the likely advantage in case of pregnancy-related mechanical stress to be responsible for this size difference. The lack of sexual dimorphism in neural canal dimensions does not mean there is no sexual difference in its shape, as earlier shown for a different prevalence of a trefoil shaped lumbar spinal canal (Eisenstein, 1980). Females show larger osseous and non-osseous spinal canal cross-section areas, but smaller neural tissue cross-section areas (Hasue et al., 1983; Kikuchi et al., 1984). This may make males, especially at L5 where the difference is most obvious, more vulnerable to any pathologic conditions (Hasue et al., 1983). Surprisingly, there is even one dimension in the present study, which is significantly bigger in females than in males, the right caudal intervertebral foramen width on level L5. This might have clinical implications as will be discussed in depth further below. Similar findings were also reported for the intervertebral foramen and spinal nerve root dimensions (Hasue et al., 1983; Kikuchi et al., 1984). Additionally, Hermann et al. (1993) could not find a difference of the subarachnoid space in relation to sex. With regard to nerve root size, one has to be aware that females have in absolute terms the same measures, which makes them relatively to body weight even bigger than in males, as shown by Dunn (1912) for rats at least.

The particular impact of aging has been explored in the study presented here as well. Based on the modern samples with historically recorded individual age, both sexes show alterations of spinal and long bone morphology with aging. In the study presented
here, aging was found to contribute significantly de facto only in males. This may be due to their larger sample size, especially in the modern sample.

In the present study, the neural pathways do not change significantly with aging; this is unlike earlier reports on age-related alterations of neural osteometric dimensions. Humphreys et al. (1998) describe an increase of the ratio of spinal cord diameter to spinal canal diameter in the early adult asymptomatic cervical spine. They also detected an increase of the $\mathrm{C} 6 / \mathrm{C} 7$ foraminal width in the age group of 20 to 30 years and a slight decrease followed by another increase later for the older below the age of 50 years category, unlike the steady decrease in symptomatic patients (Humphreys et al., 1998).

The osteometric dimensions unfortunately can give just a glimpse of the agerelated alterations of their neural content. For example, aging leads to a decreased number of myelinated fibres and an increase in connective tissue in the spinal nerve roots (Dunn, 1912; Corbin and Gardner, 1937). However, there seems to be no change in the dorsal root / ventral root ratio with age (Corbin and Gardner, 1937), but in growing rats the increase in nerve fibres was for a longer time and more intense in the dorsal nerve root (Dunn, 1912).

Furthermore, one has to be aware that the stable dimensions of the neural pathways in the present study de facto represent a relative decrease of these structures with age, since other neighbouring osseous structures, such as the pedicle height, apparently increase with age. Whether this may have clinical significance as well is doubtful. Weisz and Lee (1983) found that the spinal canal reserve capacity, which is the difference between the sagittal diameters of the osseous canal and of the spinal cord, decreases with age, making the elderly apparently even more vulnerable to decreases of
the spinal canal size. Nevertheless, it is still debated e.g., if lumbar neural canal in general were becoming bigger (Clark et al., 1985) or smaller (Porter et al., 1980; Lee et al., 1995; Tatarek, 2001) with aging and some reports could not find a clear link between spinal cord alterations and individual age (Elliott, 1945; Bailey, 1953; Legg and Gibbs, 1984). In a study by Lee et al. (1995) a significant influence of age on spinal morphometry, as shown for a decrease in lumbar mid-sagittal and transverse spinal canal diameters, occurred only after the age of 60 years. Therefore, this factor due to the average low mean age in archaeologic samples may not be that relevant. The average age in the historically recorded modern samples is in the present study even below 50 years.

In the present study, the found age-related trends of spinal morphometry, significant after Bonferroni's correction only in males, are some pedicle heights and sagittal and transverse vertebral body diameters. The last one is consistent with earlier reports (Jankauskas, 1992; Jankauskas, 1994), explained as a possible effect of degenerative changes (Jankauskas, 1994), but a decrease of anterior vertebral body height with age (Jankauskas, 1992) could not be found in the present study.

The increase of the vertebral body and pedicle diameters with individual age in the present study seems to be due to a general increase in robusticity in the elderly, a remodelling resulting in a surplus deposition of bone, which most likely does not affect the osseous outline of the neural pathways. The robusticity generally changes with age, most prominent for the measurements of the long bone shafts, as reported in the literature (Pfeiffer, 1980) and possibly as a physiological reaction to compensate for loss of stiffness due to a general decrease in bone mass, especially in women (Pfeiffer,
1980). In the present study, the long bones, as tested for the modern age-recorded samples, showed for males such an increase in robusticity, by expressing an increase in circumference but no significant change in length, but for females, only femur length decreased significantly.

## Inter-populational variations of spinal morphometry

The inter-populational variations of spinal morphometry, as already highlighted by various authors (Wetzel, 1910; Hasebe, 1913; Thomson, 1913; McCotter, 1916; Willis, 1923; Stefko, 1926; Martin, 1928; Stewart, 1932; Lassek and Rasmussen, 1938; Matiegka, 1938; Wood-Jones, 1938; Lanier, 1939; Francis, 1955; Bornstein and Peterson, 1966; Piontek and Budzynska, 1972; Ericksen, 1976; Eisenstein, 1977; Eisenstein, 1980; Tibbetts, 1981; Postacchini et al., 1983; Amonoo-Kuofi, 1985; Nakashima, 1986; Ross et al., 1991; Jason and Taylor, 1995; Lee et al., 1995; Tatarek, 2001) will hardly apply in the present study, since all selected samples belong to a Central-Western European group. Nevertheless, the more modern the European samples are, the more likely decreased the inter-group morphological variability, at least as shown for cranial characters (Henneberg et al., 1978). Whether this is the case for the spinal morphometry as well would also be worth to be further investigated.

## Relation of geography and society to spinal morphometry

Various environmental factors influence the morphometry of the human body. For example, the geographic latitude alters the expression of selected morphological traits in humans, such as bi-iliac breadth (Ruff, 1994) or the lateral internal thoracic
artery (Surtees et al., 1989a; Surtees et al., 1989b; Henneberg, 1992). In the present study, all individuals come from similar geographic latitudes, approximately $45^{\circ} \mathrm{N}-49^{\circ}$ N. This should rule out major influences of latitude on the spinal morphometry. Furthermore, the unique situation of the more alpine populations in Switzerland, as for example of the Chur sample, has already been highlighted above.

From a cultural point of view, the samples presented here reflect various historic transition periods, from prehistoric hunting and gathering populations, such as Upper Paleolithic, to a more sedentary agricultural dispersed life-style, such as Neolithic and Bronze Age, semi-urban and urban societies in Medieval times and, finally, postindustrialization communities.

The influence of changes in European life style and its effect on human growth, morphological characteristics, morbidity and mortality has been studied in numerous reports (Henneberg et al., 1978; Lewis, 2002). In general, two major morphologically distinguishable groups are known for the European Holocene; a Southern-Western European population type and Northern-Eastern series (Schwidetzky, 1967; Schwidetzky, 1972; Schwidetzky and Rösing, 1976; Rösing and Schwidetzky, 1977; Rösing and Schwidetzky, 1981; Schwidetzky and Rösing, 1984; Schwidetzky and Rösing, 1989). The geographical distribution and the inter-populational difference decreased during most time periods (Schwidetzky, 1967; Schwidetzky, 1972). For some dates regional differences became more apparent towards more modern times and Rösing and Schwidetzky (1981) name increased social differentiation in the form of religious or urban versus rural locations as possible factors. Furthermore, a remarkable closer similarity of the population subtypes within the Western samples than for the

Eastern series has been described (Rösing and Schwidetzky, 1977; Schwidetzky and Rösing, 1989). This is of interest since the selected series of this work, with the single exception of the Hainburg material, would most likely belong to the Western population clusters and small inter-populational differences help to analyse the various groups.

The vast majority of the selected individuals in this work originate from inland non-coastal ecozones. The only exception would be the French Mesolithic individuals. Changes in Upper Paleolithic to Mesolithic in Europe have been of socio-cultural and ecological nature, with an increased population density, with a decrease in nomadic lifestyle, an increased resource reliability and food abundance but also an increased technological sophistication, all factors contributing to an ecological framework relying on the interaction between resource-stress and humans (Hayden, 1981).

Body and especially limb morphology seem to be influenced by various factors such as gene flow, transmitted by a population movement from Sub-Saharan Africa towards Europe - and which resulted in altered metabolic demands and vasomotoric adaptation to a cold environment - or, finally, stress due to physical activity (Trinkaus, 1981; Holliday, 1996; Holliday, 1997; Holliday, 1999). The importance of these factors for the spinal column morphology in particular cannot conclusively be said at this stage. At least it is well known, that limb proportions changed in Europe from a more SubSaharan African type in Early Upper Paleolithic to a more modern European body shape in the Late Upper Paleolithic (Trinkaus, 1981; Holliday, 1996; Holliday, 1997; Holliday, 1999). Mathers and Henneberg (1996) suggested a changing of relative trunk size and lower limb proportions to be represented in the found different trends for hominid body height and weight within the last 4 millions of years. Since they found no such divergence of trends in Homo sapiens body weight and height for the last 32,000
years, they propose possible different microevolutionary trend acting in this time frame, which would be of particular interest for the present study; such microevolutionary trends will be elaborated separately further below.

The impact of physically demanding life-style on the vertebral column must be taken into account as well. The decrease in robusticity during such historic transition periods was most likely related to adaptations to physically less demanding life-style (Larsen, 1980; Larsen, 1981; Larsen, 1982). Nevertheless, one interpretation by Schwidetzky (1962) arguing that specific character and behavioural patterns, possibly linked with level of gracilisation, could have been selective in such changing environment, seems to stretch the case.

Another physical factor, the age of commencement of adult physical activities has so far been supported to a variable extent as an etiological factor of bone robusticity alterations (Bridges, 1993; Knüsel, 1993). Apparently, some agricultural societies show a higher bone robusticity but a lower prevalence of degenerative bone disease than their hunter-gatherer counterpart as a result of juvenile onset of heavy labour in the first lifestyle group (Knüsel, 1993). The early physical involvement of young members in a settled society would allow these individuals to have a higher skeletal robusticity and plasticity later in life and, therefore, less likely to be vulnerable to degenerative osseous alterations (Knüsel, 1993). This seems in particular reasonable for the morphometry of the vertebral column.

Not only the selection of a clinical or historic spinal sample, but also its geographical, environmental and ethnic background contributes to alterations in spinal morphology; therefore, normative data for spinal morphometrics are always applicable to a certain degree for a confined geographical area only (Ross et al., 1991; Hermann et
al., 1993). This is most likely also true for the present study. Further bio-socioarchaeological studies on the examined samples would reveal a deeper insight into their particular cultural situation, which are crucial to better assess its particular impact on the spinal osteometric values.

## Influence of stature and body size on spinal morphometry

If one investigates microevolutionary and secular trend of the spinal column, its individual dependence on stature needs to be assed as well. It is well known that the particular spinal morphology and length is a function of individual stature (Dwight, 1894; Hasebe, 1913; Fully and Pineau, 1960; Gozdziewski et al., 1976; Gallagher et al., 1988; Minne et al., 1988). A correlation between individual vertebral body height or pedicle height and stature has been described earlier (Fully and Pineau, 1960; Tibbetts, 1981; Gallagher et al., 1988; Scoles et al., 1988). Similar findings can be reported for the study presented here.

In the present study, most of the vertebral body height and main diameters in both sexes correlated with individual femur length; see also appendix 9. In males, selected transverse process widths and pedicle heights show such a significant correlation as well, whereas in females, selected intervertebral foramen dimensions and pedicle heights do.

To assess individual stature from spinal dimensions some of the earlier studies propose for accurate individual stature estimation an equation consisting of lower limb long bones such as femur or tibia and parts of the spine such as the lumbar region in case of just partial skeletal preservation (Fully and Pineau, 1960; Tibbetts, 1981).

Unfortunately, the reconstruction of trunk size and individual size based on partially preserved vertebral columns has never fully been explored, at least not for historic skeletal samples. Therefore, to assess in the present study individual stature based on the selected vertebrae measured does not seem to be reasonable.

With respect to a possible link between stature and size of spinal neural pathways, one has to remember that various parts of the spinal cord may be differently related to overall body size (MacLarnon, 1996b), or even unrelated (Elliott, 1945). This clouds the interpretation of altered osteometric measurements, even by taking body size into account in data analysis. In the present study, only spinal canal transverse diameter at C3 in both sexes correlated significantly with femur length. Earlier reports on a possible link between spinal cord size and individual stature or weight give an equivocal picture of such a morphometric relationship. Furthermore, as already discussed above, the size of the osseous spinal canal can only give a rough insight into its neural content anyway. It is still not apparent, how the spinal cord area is a function of the quantity of somatic afferent and efferent nerve fibres (Fox and Wilczynski, 1986). Furthermore, it is unlikely but theoretically possible, that the dimensions of the nerve fibres such as density and length may vary as a function of altered body size (Fox and Wilczynski, 1986). Apparently, spinal cord cross section dimensions, showing on selected levels high degree of inter-individual variability, and individual body weight do not correlate (Elliott, 1945). Additionally, just a tendency but no clear correlation between spinal cord length and individual stature or vertebral column length is known (McCotter, 1916). It is still debated if spinal cord cross-sectional areas or spinal cord weight correlate with body size in a surface to volume way (Fox and Wilczynski, 1986; MacLarnon, 1996b), since it may be rather linked to the somatic innervation of the body
surface. Since spinal cord weight, according to MacLarnon (1996b), does scale less with body weight than brain weight, earlier evolutionary explanations taking metabolic paradigm on changing brain size into account (Martin, 1981) may not apply in the case of the spinal cord. Furthermore, simple ratios such as brain size/spinal cord size will not be independent of body size (MacLarnon, 1996b). Finally, to test any correlation of spinal morphology and individual body weight one has to be aware that the accurate methodical reconstructing of the latter from individual height, especially in fossil material, is still debated (Henneberg et al., 1989). To summarize, based on the results of the present study and on the above outlined equivocal earlier reports, one should be careful in linking osseous dimensions of spinal neural pathways to individual stature or weight. Any such relationship, especially of its neural content, would most possibly not be of simple linear association and different from the known ones of other major neural parts such as e.g., the skull and brain size.

## Microevolutionary trends in body size and robusticity

Microevolutionary trends in body size, skeletal robusticity and neural tissue size may reflect on the osteometric spinal dimensions in humans, since bone remodels depending on the demanding normal and abnormal forces acting on it (Wolff, 1892). Furthermore, an alteration in living conditions, either of cultural or environmental background, may be reflected through adaptive mechanisms in the human skeleton. It is, therefore, crucial to be aware of these trends as far as relevant for the selected samples and time spans.

During hominid evolution body size increased from Pliocene to Late Pleistocene (Frayer, 1984; De Miguel and Henneberg, 1999) and decreased in the Holocene, at least
in Europe (Frayer, 1980; Frayer, 1981; Frayer, 1984; Jacobs, 1985b). Alterations, such as the reduction in masticatory and gastrointestinal tract as well as in the musculoskeletal system interfered with the supposed body shape changes (Henneberg, 2001a).

The natural selection of body size is influenced by long-term genetics, such as constant mutations, genetic interbreeding or gene pool drifts, and in short-term more by direct environmental factors. Frayer (1984) postulates smaller bodies being energetically more economical and, therefore, been naturally selected in times of lack of ressources. Gracilisation seems to be created by technological improvement during human evolution. Smaller bodies are more fit in terms of food efficiency under conditions of decreased demands for physical strength and robusticity (Frayer, 1981; Henneberg and Steyn, 1995).

Human skeletal morphology reflects its genetic and environemental influences, as already discussed above. The skeletal robusticity alterations seem to be rather dependent on long-term and repetitive mechanical forces, whereas degenerative changes more likely seem to be related to traumatic or intense but rare impacts (Bridges, 1991). The question, therefore, remains at least partially unsolved how far changes in life-style, as seen from a hunter-gatherer society towards an agricultural community, influence bone morphology or what other factors contribute as well.

Human postcranial robusticity is undergoing various changes (Ruff et al., 1993; Trinkaus, 1997). Alterations in biomechanical loading, hormonal or genetic adaptations control bone remodelling especially of the diaphyseal bone (Ruff et al., 1993; Trinkaus et al., 1994; Trinkaus, 1997). The humerus is an excellent long bone to show any
plasticity, because the humerus does not show any impact from locomotion and systematic influences such as nutrition will appear symmetrically (Trinkaus et al., 1994; Trinkaus, 1997). In the present study, the humeral changes are found to be consistent, in males and females, with the-femoral ones.

Gracilisation occurred as described above in Europe, Australia and East Asia (Brown, 1992), whereas in Africa and certain regions of Australia its extent is still debated (Henneberg and Steyn, 1993; Pretty et al., 1998). The extent and precise pattern of the European gracilisation is still debated, as widely outlined above. The general trend in decrease of robusticity, apparent from the Late Paleolithic to more modern times (Formicola and Giannecchini, 1999), is at least in some of the selected individuals originating from Central Europe not observable. Whereas the gracile Téviec-island type individuals, among others all of the selected Hoëdic and Téviec samples, in general follow the trend of postcranial gracilisation and decrease in individual stature, the more robust Téviec-continental types, among others the Gramat individual in the samples of the present study, do this to a lesser extent (Vallois and de Félice, 1977).

In general, the selected samples for the present study may not be representative enough to highlight in particular the microevolutionary alterations of long bone morphology, since this was not the main issue of this work. Tables $21-24$ list earlier reported humerus lengths, femur lengths femur head breadth, femur mid-shaft circumference and bi-iliac width, whereas Table 25 lists estimated statures of various historic European samples. A summary of these values could be found in Figures 22 25. Figure 26 shows the means of the measured long bones in the present study.

Table 20: Maximum humeral length (mm) of various samples

| Sample | Humeral length | Reference |
| :---: | :---: | :---: |
| $\cdots$ |  |  |
| European Upper Paleolithic - males ( $\mathrm{N}=19$ ) | 337 | Jacobs (1985b) |
| European Upper Paleolithic - females ( $\mathrm{N}=13$ ) | 304 | Ditto |
| European Upper Paleolithic - males ( $\mathrm{N}=14$ ) | 342 | Frayer (1981) |
| European Upper Paleolithic - females ( $\mathrm{N}=8$ ) | 308 | Ditto |
| European Neandertals ( $\mathrm{N}=9$, both sexes) | 307 | Trinkaus (1981) |
| European Early Upper Paleolithic ( $\mathrm{N}=15$, both sexes) | 341 | Ditto |
| European Late Upper Paleolithic ( $\mathrm{N}=10$, both sexes) | 305 | Ditto |
| European Mesolithic ( $\mathrm{N}=41$, both sexes?) | 298 | Various sources, cited by Trinkaus |
| European Mesolithic - males ( $\mathrm{N}=20$ ) | 317 | Jacobs |
| European Mesolithic - females ( $\mathrm{N}=11$ ) | 290 | Ditto |
| European Mesolithic - males ( $\mathrm{N}=11$ ) | 312 | Frayer |
| European Mesolithic - females ( $\mathrm{N}=9$ ) | 285 | Ditto |
| Pre-agricultural Americans ( $\mathbf{1 0 0 0} \mathbf{~ B C}-1150$ AD) - males ( $\mathrm{N}=14$ ) | 324 | Larsen (1981) |
| Pre-agricultural Americans ( $\mathbf{1 0 0 0} \mathbf{B C}$ - $\mathbf{1 1 5 0}$ AD ) - females ( $\mathrm{N}=25$ ) | 306 | Ditto |
| Agricultural Americans (after 1150 AD) - males ( $\mathrm{N}=42$ ) | 317 | Ditto |
| Agricultural Americans (after 1150 AD)- females $(\mathrm{N}=52)$ | 293 | Ditto |
| Euro-Americans ( $\mathrm{N}=39$ ) | 319 | Trinkaus et al. (1994) |
| Euro-Americans ( $\mathrm{N}=40$ ) - males | 326 | Trinkaus |
| Euro-Americans ( $\mathrm{N}=40$ ) - females | 302 | Ditto |
| White Americans ( $\mathrm{N}=63$ ) - males | 336 | Trotter and Gleser (1952) |
| White Americans - females | 304 | Ditto |
| F. J. Rühli - Osteometric Variation of the Human Spine |  |  |

Table 21: Femur length (mm) and femur head breadth (mm) of various samples

| Sample $\quad \because \quad$ F | Femur length males | Femur length females | Femur head breadth | Reference |
| :---: | :---: | :---: | :---: | :---: |
| Early Upper Paleolithic, modern $H$. sapiens ( $\mathrm{N}=11$, both sexes) | 461 |  | 48.1 | Ruff (1994) |
| La Chapelle-aux-Saints (m) | 433 |  |  | Ditto |
| Predmosti (m) | 455 |  |  | Ditto |
| European Neandertals (N=5, both sexes) |  |  | 51.7 | Ditto |
| Late Upper Paleolithic, modern $H$. sapiens ( $\mathrm{N}=4$, both sexes) | 434 |  | 46.7 | Ditto |
| European Upper Paleolithic (N males $=17, \mathrm{~N}$ females $=5$ ) | 471 | 422 |  | $\begin{aligned} & \text { Frayer } \\ & \text { (1981) } \end{aligned}$ |
| European Mesolithic (N males=20, N females=17) | 444 | 409 |  | $\begin{aligned} & \text { Jacobs } \\ & \text { (1985b) } \end{aligned}$ |
| European Mesolithic ( N males=16, N females $=13$ ) | 435 | 404 |  | Frayer (1981) |
| Pre-agricultural Americans ( $\mathbf{1 0 0 0}$ BC$1150 \mathbf{A D}$ ) ( N males $=9,14 ; \mathrm{N}$ females $=19$, 31) |  | 434 | $\begin{aligned} & 45.5(\mathrm{~m}) \\ & 41.1(\mathrm{f}) \end{aligned}$ | $\begin{aligned} & \text { Larsen } \\ & \text { (1981) } \end{aligned}$ |
| Agricultural Americans (after 1150 AD ) <br> ( N males $=47,58 ; \mathrm{N}$ females $=54,61$ ) |  | 416 | $\begin{aligned} & 43.8(\mathrm{~m}) \\ & 39.0(\mathrm{f}) \end{aligned}$ | Ditto |
| American Whites ( N males $=255$, N females $=63$ ) | 473 | 430 |  | Trotter and Gleser (1952) |

# Table 22: Femur mid-shaft circumference ( mm ) of various European samples (Jacobs, 1985b) 

## Sample

## Femur circumference

Upper Paleolithic - males ( $\mathrm{N}=16$ ) ..... 93
Upper Paleolithic - females ( $\mathrm{N}=8$ ) ..... 78
Mesolithic - males ( $\mathrm{N}=16$ ) ..... 94
Mesolithic - females ( $\mathrm{N}=15$ ) ..... 80

Table 23: Bi-iliac breadth ( mm ) of various European samples

| Sample | Bi-iliac breadth | Reference |
| :---: | :---: | :---: |
|  |  |  |
| La Chapelle-aux-Saints (male) | 295 | Ruff (1994) |
| Predmosti (sex?) | 268 | Ditto |
| Lithuanians ( $1^{\text {st }}$ Millennium AD, males) | 281 | Jankauskas (1994) |
| Lithuanians ( $1^{\text {t }}$ Millennium AD , females) | 267 | Ditto |
| Lithuanians ( $2^{\text {nd }}$ Millennium AD-rural, males) | 262 | Ditto |
| Lithuanians ( $2^{\text {nd }}$ Millennium AD - rural, females) | 262 | Ditto |
| Lithuanians ( $2^{\text {nd }}$ Millennium AD - urban, males) | 263 | Ditto |
| Lithuanians ( $2^{\text {nd }}$ Millennium AD - urban, females) | 260 | Ditto |
| Europeans (males) | 279 | Martin (1928) |
| Europeans (females) | 266 | Ditto |

Table 24: Estimated statures (cm) of various European samples

| Sample | Stature | Reference |
| :---: | :---: | :---: |
| Neandertals ( N males $=4$ ) $\quad \cdots=$ | 163 | Various studies, cited by Martin (1928) |
| La Chapelle-aux-Saints ( N male=1) | 164 | Ruff (1994) |
| Mean male archaic Homo sapiens | 167 | Ditto |
| Mean male early modern Homo sapiens | 177 | Ditto |
| Upper Paleolithic ( N males=20) | 174 | Frayer (1984) |
| Upper Paleolithic ( N females=9) | 159 | Ditto |
| Italian Upper Paleolithic ( N males= 12) | 164-178 | Formicola (1983) |
| Italian Upper Paleolithic ( N females=3) | 153-168 | Ditto |
| Early Upper Paleolithic ( N males=10) | 174 | Frayer (1981) |
| Early Upper Paleolithic (N females=5) | 161 | Ditto |
| Late Upper Paleolithic ( N males=10) | 174 | Ditto |
| Late Upper Paleolithic ( N females=4) | 157 | Ditto |
| Late Paleolithic - Veyrier ( N male=1) | 169 | Pittard and Sauter |
| Mesolithic ( N males=26) | 165 | Ditto |
| Mesolithic ( N females=15) | 154 | Ditto |
| Italian Mesolithic ( N males=10) | 162-172 | Formicola |
| Italian Mesolithic ( N females=4) | 150-151 | Ditto |
| Late Upper Palcolithic (Central Europe, N males=7) | 166 | Formicola and Giannecchini (1999) |
| Late Upper Paleolithic (Central Europe, N females=7) | 155 | Ditto |
| Mesolithic - Téviec ( N males=7) | 159-162 | Pittard and Sauter (1945) |
| Mesolithic - Téviec / Hoëdic ( N males=10) | 161 | Formicola and Giannecchini |
| Mesolithic - Téviec / Hoëdic ( N females=12) | 151 | Ditto |
| Mesolithic - Gramat ( N male=1? | 165-166 | Ditto |
| Mesolithic - Birsmatten ( N male=1) | 160 | Sedlmeier and Kaufmann (1996) |
| Mesolithic (Western Europe, N males=96) | 163 | Formicola and Giannecchini |


| Mesolithic (Western Europe, N females=72) | 151 | Ditto |
| :---: | :---: | :---: |
| Mesolithic ( N males=41) | 168 | Frayer (1984) |
| Mesolithic ( N females=26) | 156 | Ditto |
| Mesolithic ( N females=5) | 153 | Formicola and Franceschi |
| Neolithic ( N males=62) | 166 | Frayer (1984) |
| Neolithic ( N females=46) | 154 | Ditto |
| Neolithic - Italy ( N males $=24$ ) | 162 | Formicola |
| Neolithic - Italy ( N females=17) | 151 | Ditto |
| Neolithic - France and Belgium ( N males=127) | 163 | Pittard and Sauter |
| Neolithic - France and Belgium ( N females=53) | 151 | Ditto |
| Eneolithic / Bronze Age -Italian ( N males=14) | 164 | Formicola |
| Eneolithic / Bronze Age-Italian ( N females=14) | 153 | Ditto |
| Pompeiians - 79 A.D. ( N males=127) | 163-169 | Henneberg and Henneberg (2002) |
| Pompeiians - 79 A.D. ( N females=145) | 152-156 | Ditto |
| Bajuwars - 400-800 A.D. (both sexes) | 171-173 | Various studies, cited by Wurm (1982) |
| Francs - 500-800 A.D. ( N males=47) | 166 | Pittard and Sauter |
| Francs - 500-800 A.D. ( N females=16) | 152 | Ditto |
| Francs - 400-900 A.D. (both sexes) | 171-173 | Various studies, cited by Wurm |
| Alemanns - 400-800 A.D. (both sexes) | 170-174 | Various studies, cited by Wurm |
| Alemanns - 400-800 A.D. (Swiss, both sexes) | 172 | Ditto |
| Alemanns - Swiss ( N males=750) | 169 | Pittard and Sauter |
| Alemanns - Swiss ( N females $=455$ ) | 158 | Ditto |
| Alemanns - Swiss, 700-1200 A.D. (both sexes) | 165-170 | Ditto |
| French - 900-1100 A.D. ( N males=140) | 166 | Pittard and Sauter |
| French -900-1100 A.D. ( N females=46) | 156 | Ditto |
| French, Medieval Ages ( N males=294) | 166 | Ditto |
| French, Medieval Ages ( N females=101) | 156 | Ditto |
| Medieval ( N males=41) | 169 | Frayer (1984) |
| Medieval ( N females=46) | 156 | Ditto |


| Southern Germans, 1180-1400 A.D. | 166-168 | Various authors, cited by Wurm |
| :---: | :---: | :---: |
| Rural Polish, 1200-1400 A.D. (males) | 172 | Henneberg et al. (1984b) |
| Rural Polish, 1200-1400 A.D. (females) | 159 | Ditto |
| Rural Polish, 1400-1600 A.D. (males) | 170 | Ditto |
| Rural Polish, 1400-1600 A.D. (females) | 161 | Ditto |
| Rural Polish, 1600-1700 A.D. (males) | 171 | Ditto |
| Rural Polish, 1600-1700 A.D. (females) | 160 | Ditto |
| Rural Polish, 1700-1900 A.D. (males) | 171 | Ditto |
| Swiss conscripts, 1500-1650 A.D. | 164-168 | Various authors, cited by Wurm |
| Lithuanians, $1^{\text {u }}$ Millennium A.D. ( N males=24) | 174 | Jankauskas (1994) |
| Lithuanians, $\mathbf{1}^{\text {d }}$ Millennium A.D. ( N females=16) | 161 | Ditto |
| Rural Lithuanians, $2^{\text {ud }}$ Millennium A.D. ( N males $=$ 62) | 168 | Ditto |
| Rural Lithuanians, $2^{\text {nd }}$ Millennium A.D. ( N females=29) | 157 | Ditto |
| Urban Lithuanians, $2^{\text {nd }}$ Millennium A.D. ( N males=205) | 167 | Ditto |
| Urban Lithuanians, $2^{\text {nd }}$ Millennium A.D. ( N females $=180$ ) | 156 | Ditto |
| Modern (females) | 170 | Frayer (1984), with data from Eveleth and Tanner (1976) |
| Modern (males) | 174 | Ditto |
| Modern South Africans of European extraction (males) | 179 | Henneberg and van den Berg (1990) |
| Modern South Africans of European extraction (females) | 165 | Ditto |

## Humerus length (males)



Humerus length (females)

Figure 22: Mean humerus length of various historic and modern samples, for complete reference see Table 20.


Figure 23: Mean femur length of various historic and modern samples, for complete reference see Table 21.


Figure 24: Estimated male statures of various historic and modern samples, for complete references see Table 24.

1) Early Upper Paleolithic
2) Mean male archaic Homo sapiens
3) Mean male early modern Homo sapiens
4) Neandertals
5) La Chapelle-aux-Saints
6) Upper Paleolithic
7) Italian Upper Paleolithic
8) Late Upper Paleolithic
9) Late Upper Paleolithic
10) Late Upper Paleolithic
11) Mesolithic
12) Italian Mesolithic
13) Téviec
14) Téviec / Hoëdic
15) Gramat
16) Birsmatten
17) Veyrier
18) Mesolithic
19) Mesolithic
20) Neolithic
21) Neolithic - Italy
22) Neolithic - France and Belgium
23) Encolithic / Bronze Age -Italian
24) Pompeiians - 79 A.D.
25) Francs $-500-800$ A.D.
26) Alemanns - Swiss
27) Lithuanians, 1" Millennium A.D.
28) French - $900-1100$ A.D.
29) French - Medieval Ages
30) Medieval
31) Rural Polish 1200-1400 A.D.
32) Rural Polish $1400-1600$ A.D.
33) Rural Polish 1600-1700 A.D.
34) Rural Polish 1700-1900 A.D.
35) Rural Lithuanians, $2^{\text {nd }}$ Millennium A.D.
36) Urban Lithuanians, $2^{\text {nd }}$ Millennium A.D.
37) Modern
38) Modern South Africans of European extraction


Figure 25: Estimated female statures of various historic and modern samples, for complete references see Table 24.

1) Early Upper Paleolithic
2) Upper Paleolithic
3) Italian Upper Paleolithic
4) Late Upper Paleolithic
5) Late Upper Paleolithic
6) Mesolithic
7) Italian Mesolithic
8) Téviec / Hoëdic
9) Mesolithic
10) Mesolithic
11) Mesolithic
12) Neolithic
13) Neolithic - Italy
14) Neolithic - France and Belgium
15) Eneolithic / Bronze Age-Italian
16) Pompeiians - 79 A.D.
17) Francs - $500-800$ A.D.
18) Alemanns - Swiss
19) French - $900-1100$ A.D.
20) French, Medieval Ages
21) Medieval
22) Lithuanians, 1st Millennium A.D.
23) Rural Polish 1200-1400 A.D.
24) Rural Polish 1400-1600 A.D.
25) Rural Polish $1600-1700$ A.D.
26) Rural Lithuanians, $2^{\text {nd }}$ Millennium A.D.
27) Modern
28) Modern South Africans of European extraction


Figure 26: Means of measured long bones by time periods in the present study (1=Paleolithic, 2=Mesolithic, 3=Neolithic, 4=Bronze Age, 5=Early Medieval, 6=Late Medieval, 7=Modern)
A) Humerus length (males),
B) Humerus length (females)
C) Femur length (males),
D) Femur length (females)

In the samples presented here, the femur length changed differently for both sexes. Males show in general a significant secular increase, whereas females express a decrease with time. In males, also an increase in bi-iliac width and arm dimensions could be found. The femur length decreased from the Paleolithic to Mesolithic from 446 mm to 437 mm , with subsequently stable means until the Late Medieval samples with 467 mm . The two last modern samples show again a slightly smaller male femur length of 458 mm and 453 mm respectively. In general, femur circumference altered slightly less than femur length. In females, femur length decreased from the Mesolithic (419 mm ) to the Bronze Age with an increase to the Late Medieval Ages from 402 mm up to 435 mm , and another decrease for the two most modern samples. Limits for femur size (Martin Nr 2 ) are supposed to be between 340 mm and 536 mm , with a sex difference of 44 mm in Swiss Alemanns and in German samples 46 mm , with in general a remarkable variability (Martin and Saller, 1957). The absolute humerus length varies from 260 mm to 380 mm , also with a notable sex difference (Martin and Saller, 1957). In the present study, femur and humerus length, as measured, fall within these reported limits.

Apparently, the samples of the present study exhibit different patterns for males and females, but in general, it can be seen, based on the limited sample, that there is a decrease in stature from the Paleolithic to the Bronze Age and a subsequent increase with astonishingly high values for the medieval sample, especially if one compares with the selected earlier reports on femur dimensions and statures of historic populations.

How far the samples in the present study are part of a uniform historic European trend has to be addressed too. No regional difference have been reported for the Early Upper Paleolithic, before the Last Glacial maximum, whereas in the Late Upper Paleolithic till the Pleistocene-Holocene transition, there was apparently a noticeable
demarcation between Western and Eastern European samples (Formicola and Giannecchini, 1999). From a cultural point of view the Upper Paleolithic should not be regarded as a simple uniform pan-European period (Straus, 1995). In terms of skeletal records, this may be different. However, a conclusion, based on the samples included in this study, cannot be reached. The limitation in the current sample to Central and Western European origin avoids some possible problems, though the findings will be only applicable to the Western European region. Nevertheless, there is an obvious need of further studies to focus on a possible inter-regional difference of the spinal morphology. No major intra-regional differences in stature within the Western European Late Upper Paleolithic and Mesolithic samples have been reported, with in general lower stature values for the Western group than for their Eastern European counterparts (Formicola and Giannecchini, 1999). The large stature of the Early Upper Paleolithic Europeans could be explained by various factors (Formicola and Giannecchini, 1999). Funerary behaviour could indicate a bias towards socially higher and possibly male individuals (Frayer, 1981), but this seems to be rather unlikely.

Climatic adaptations reflected in the found high values of the Early Upper Paleolithic individuals, as also found in the present study, are even more controversial. According to the ecologic-adaptive rules by Bergmann (1847) and Allen (1877), stating that individuals living in cold climate have on average shorter limbs in relation to their trunk and have larger body mass, the Ice Age maximum would favour more bulky individuals. For example, the Neandertals seem to be on the average 10 cm shorter, but 3.5 kg heavier than their early anatomically modern human counterparts (Ruff, 1994), which has been interpreted as a left-over of ancient climatic condition (Formicola and Giannecchini, 1999). Some interpret the alterations of European body shape and limb
proportions, in particular since the Early Upper Paleolithic, as being related to environmental and genetical influences (Trinkaus, 1981; Holliday, 1997; Holliday, 1999), while others argue that the importance of the climate for the morphologic alterations described for the European Paleolithic-Mesolithic transitions period to be of lesser significance (Frayer, 1981). Nevertheless, in this study all samples come from a temperate Central European climate and from similar latitude, as already outlined above, so climatic changes would have been most likely similar for the various samples and of known Central-Westem European type.

Evolution of hunting technique, such as the use of spears and, later most likely in Mesolithic times, of the bow, together with the disappearance of the megafauna, could have had an impact of body morphology, such as skeletal robusticity and individual stature from the Late Pleistocene onwards. The increased hunter-game killing distance by using more developed techniques lowers apparently the human need for high robusticity and long upper limbs (Frayer, 1981). Furthermore, the particular importance of the prey size on the development of sexual dimorphism in terms of individual stature has been mentioned as well (Frayer, 1980).

Changes in nutrition, such as decreased protein intake due to increased population density, and natural selection favouring longer limbs could be additional interfering factors (Wurm, 1982; Formicola and Giannecchini, 1999). The possible particular nutritional situation of the selected samples in the present study, mostly from Southern Germany and Switzerland has already been addressed above, based on the important study on the impact of the protein intake on human morphology (Wurm, 1982). Nutritional influences were also controversially discussed as possible etiologies of human morphology by various authors (Frayer, 1981; Larsen, 1981; Trinkaus, 1981).

Formicola and Giannecchini (1999) link the apparent stature transformation in the Late Paleolithic mainly to low protein diet and inbreeding effects resulting from denser settlement. Mesolithic individuals were most likely less subject to nutritional stress, such as protein-calorie resources (Frayer, 1981), and, therefore, should not be selected to be smaller as found in the data. Some explain the low femur length sexual dimorphism in the Late Würm period as a condition linked to higher nutritional stress, which favours reduced sexual dimorphism due to higher vulnerability of the males to such hardship (Jacobs, 1985b). Furthermore, the high female robusticity in the Late Würm period is proposed to be a result of increased musculo-skeletal stress (Jacobs, 1985b).

Sexual dimorphism is a reflection of human social behaviour in terms of physical activities. In the present study, the sexual dimorphism with regard to the postcranial non-spinal measurements was significant, with males having all values bigger than females. Only bi-iliac width showed no significant sexual dimorphism in the examined samples. In general the sexual dimorphism was approximately $7 \%$ for the femur length and even higher for the femur circumference with approximately $11 \%$, both being quite big in comparison to the mentioned earlier reports. Surprisingly, no relationship between skeletal robusticity changes and sexual dimorphism in various European time periods exists (Frayer, 1980; Frayer, 1984). Also there is a reported in general a decrease in sexual dimorphism, in terms of stature, from the Late Upper Paleolithic till the Neolithic and afterwards no change at all, unlike the increase in the individual stature for the same time span (Frayer, 1980). This shows that the degree of sexual dimorphism is apparently independent of overall body size. Beside the general cultural changes, sex specific modifications may be explained by adaptations of labour
duties between males and females. Changes in physical stress will be due to new repetitive tasks, such as planting and harvesting instead of hunting food, which have, if applied even only intermittently for a short daily time, a higher impact in general on bone mass that just statical forces (Lanyon and Rubin, 1984). Biomechanically this labour may be physically more demanding explaining the sometimes-found higher skeletal robusticity in settled human societies.

Additional environmental factors such as migration patterns as well as changes in infectious disease load and its possibly linked nutritional status influence cloud the interpretation of the bony picture as well (Trinkaus, 1981; Jacobs, 1985a; Ruff, 1994; Holliday, 1996; Holliday, 1997). Furthermore, subclinical microtrauma leading in the long term to degenerative joint disease will be barely visible initially in the skeletal records.

To summarize, the well-known decrease in skeletal robusticity and individual stature in the European Paleolithic-Mesolithic transition period to be rather a result of selective forces favouring smaller bodies with reduced metabolic demands and of the weapon sophistication, no longer favouring taller body stature and bony robusticity, than climate or nutritional stress (Frayer, 1981). The decrease of postcranial diaphyseal robusticity as seen in early modern Homo as well as in living humans was supposed to be due to a decrease of mechanical loading (Ruff et al., 1993; Trinkaus, 1997). These findings could be linked to varying susceptibility of the different long bone parts in different periods of ontogeny, such as adolescence versus adulthood (Ruff et al., 1994). Whether these assumptions on the importance of environmental factors are also true for the spinal morphometry would be crucial to know and would need further evaluation.

## Alterations of brain and skull morphometry as models for the spinal microevolution

If one discusses changes of spinal morphometry, it is necessary to be aware of evolutionary trends acting on the other major part of the human nervous system, the brain, too. At least for the brain size such trends have been widely explored.

The evolution of the brain size is supposed to differ from the one of the spinal cord (MacLarnon, 1996a). Relative to body size spinal cord size varies less than brain size in living species (MacLarnon, 1996b). Since the Late Pleistocene human brain size seems to have decreased by approximately $10 \%$ (Wiercinski, 1979; Henneberg, 1988; Henneberg and Steyn, 1993; Ruff et al., 1997). This reduction of absolute brain size over the past 35,000 years appears to be paralleled by a decrease in average body size (Ruff et al., 1997). It is assumed that brain size in mammals is a representation of metabolic rate and not primarily body surface area (Martin, 1981). Brain size may be related to lean body mass and body height rather than to body weight (Holloway, 1980), which includes in humans to a highly variable degree the metabolically mostly inert fat tissue (Henneberg, 1998). How close the relation between metabolic rate and brain size or neural tissue size in general might be, could be questioned, since its relation seems to be much more diverse than just a representative of a trade off between gut and brain (Henneberg, 1998). Nevertheless, the human brain / body size ratio is postulated to be induced by structural and functional reduction of the gastrointestinal tract (Aiello and Wheeler, 1995) or as a "structural reduction" of the musculo-skeletal support, respectively (Henneberg, 1995). A total of approximately $40 \%$ of the gastrointestinal and masticatory complex size seem to be lost as a secondary adaptation, which, to summarize, can be linked to changes in overall body size of about one third (Aiello and

Wheeler, 1995; Henneberg, 1998). The gut size reduction appears to be related to richer meat-based diets and improved extra-oral food processing, which is supported by increased mental abilities. Since brain size correlates well with muscle mass (Rogers, 1992), the brain size decrease in the Holocene with its structural body alterations does not surprise. Brain size and intelligence or mental capacity are weakly or not correlated at all (Willerman et al., 1991; Henneberg, 1992), therefore, the brain size reduction may be based more on structural reorganization and increase of neuronal efficiency than just represent a loss of neuron numbers. The decrease in brain size, with miniaturization of its neuronal cells, has been explained to be a result of ecosenitive influences in a form of a decreased meat consumption, not a general decrease in nutritional supply (Wiercinski, 1979). In general, the alterations of brain size in recent human evolution show the plasticity of the central nervous system in humans and, therefore, raise expectations of similar trends for the size of the vertebral column.

In general, the size of neural structures might not reflect in a simple evolutionary way its function and, in particular, the extent of its demand. For example, it is still debated, if humans, due to the increased demand for motor control and bipedialism, require greater mass of motor cells and, therefore, show larger neural canal dimensions than their extant hominoid relatives (Sanders, 1991). In rats, there is apparently a link between the size of the innervated tissue and the calibre of the cervical nerve roots (Dunn, 1912). Furthermore, one has to be aware that the number of somatic afferent and efferent nerves must not correlate with the body surface area (Fox and Wilczynski, 1986). Differences in various sensory modality systems or density of body surface innervation, depending on body size, may account at least partially for such inconsistencies (Fox and Wilczynski, 1986). In addition, Agduhr (1917) already found
an increase in size of these parts of the spinal cord, which were object of forced training, as shown for growing cats.

The increase of brachycephalisation, another example of microevolution in humans, has been found in Central Europe to be much more common nowadays than it was in earlier times (Henneberg, 1976); however, not all areas in the world show such an ongoing brachycephalisation trend (Henneberg and Steyn, 1993; Kouchi, 2000). As one possible interpretation of the selective pressure acting on skull form, a differential morbidity of brachycephalic individuals caused by childhood diseases has been mentioned earlier (Henneberg, 1976; Henneberg et al., 1984a). As outlined above, there are some links between spinal morphometry and the occurrence of pathologies, such as lower back pain, but its evolutionary impact appears doubtful. Additionally, climatic influences such as temperature and humidity ecozones have been linked to head form (Beals, 1972), following the rules of Allen (1877) and Bergmann (1847). In general, this would most likely affect the spinal morphology as well. Finally, nutritional effects (Lasker, 1946; Wiercinski, 1979; Moishezon-Blank, 1992), migration patterns, parental environmental background or genetic influences, such as exogamy or endogamy, the latter interacting with age and social factors, might reflect on the head shape (Palsson and Schwidetzky, 1973; Billy, 1975; Kobylinasky, 1983). Again, it seems reasonable to assume that these factors have at least a partial impact on the evolving spinal morphometry as well.

## Microevolution and secular trends of the spine and their possible etiologies

Evolutionary forces can be either of directional or more random-like, nondirectional type (Wright, 1968). The first one is usually caused by mutations or natural
selection, whereas the second one generally is influenced by factors such as migration or inbreeding. Both main evolutionary forces may alter the human spinal column. In the present study, the overall changes of life-style and environment seem to suggest a relaxation of natural selection, a phenomenon already proposed in earlier studies (Henneberg, 1976; Henneberg et al., 1978; Stephan and Henneberg, 2001). The second main evolutionary force could be in the present work migration patterns involving large parts of central Europe during the covered time span. How far each of the two main forces contributes to the above-presented alterations of human spinal morphometry is difficult to assess at this stage. More comparative data would be crucial to improve any conclusive judgement.

In the present study, various alterations of the spinal morphology with time were found, which can be classified as microevolutionary or secular trends. A range of variables changes significantly with historic time period either in linear, cubic, quadratic, exponential, logarithmic or power function forms. Most of the diameters show an increase towards more modern times, while some e.g., female femur length, showed a decrease through time. As shown in Figures 19 and 20, there are in both sexes consistent alterations of mean values, but there are also changes in standard deviations of various parts of the spinal column.

The changes in mean, as well as in standard deviations, represent two ways of relaxation of selective forces. The shift of means in any direction is a representation of a microevolutionary or secular trend, in the present study presented generally by increasing values. Therefore, this would be a positive directional selection, similar to the above-discussed example of trends towards brachycephalisation in Europe. The change in standard deviations reflects an alteration of the overall variability. Since most of the
changes in standard deviations show an increase as well, this indicates that the diversity of the spinal column increased between the Neolithic / Bronze Age samples and the modern ones in the present study. Again, this part would be a disruptive, non-stabilising relaxation of natural selection. Non-stabilising forces will support the expression of diversity and lead to a higher variability of specific morphological traits.

So far, few reports have addressed secular and microevolutionary trends in the human spine. Jankauskas (1994) found no significant influence of secular factor on anatomical spinal landmarks, except for the middle vertebral body breadth of cervical vertebrae. However, Stefko (1926) described a decrease in spinal height in Russian samples from "before 1912" and "from 1923 to 1928", which might reflect the historic influence of starvation. Additionally, Tatarek (2001) reported briefly significant variation of the lumbar neural canal in relation to ancestry of the sample as well as in relation to geographic origin. Furthermore, Minne et al. (1988) highlighted the impact of a secular increase in stature in the last century on the spinal morphometry. By comparing the comparative data of Minne et al. (1988), one sees that there may be a slight secular trend since the end of the $19^{\text {th }}$ century; see also Figure 27. Nevertheless, one has to be aware that the represented samples have different methodical origin, being either cadaveric and osteometric or radiological clinical studies; this may bias the reported trend.

If one analyses the few historic reports on spinal morphometry available, which are comparable in terms of measurements with the present study, one finds equivocal results. No consistent and clear secular trend is e.g., visible in the L5 ventral vertebral body height in the two sexes; see also Figure 28. While in females there seem to be an
overall increase with time, no such trend can be found in males. The samples might be too dispersed in historic and geographic terms to be comparable. Additionally, interobserver errors apply. Furthermore, as shown above, individual stature is at least partially reflected in the spinal measures.

In the present study, a large number of variables correlate with individual stature and show microevolutionary or secular trends. To exclude the influence of stature in these trends, the variables should be divided by femur length, assuming a linear dependence on each other. After doing so, and after Bonferroni's correction for multiple comparisons, some vertebral dimensions in the present study still show a significant trend through time, as could be seen in appendix 13; selected variables are also shown in Figures 29 and 30. Furthermore, one could e.g., test a possible independence of the vertebral dimensions at C 7 , the neural level that innervates part of the upper limb, from humeral robusticity. No variable at C7 expressed after Bonferroni's correction a significant microevolutionary trend independent of humeral robusticity; see also appendix 13.

To summarize, in the present study selected vertebral dimensions show a significant microevolutionary increase, with one case of a significant decrease, independent of any femur length alterations. Unfortunately, only by having historical and recent vertebral data of earlier studies with listed individual femur length, which is not the case, one could draw a bigger picture of microevolutionary and secular trends of the human spine.


Figure 27: Secular trends of male and female spinal dimensions, with vertebrae Th4 - L5 included for earlier studies and Th6 / Th10 / L1 / L5 in the present study (Figure modified after Minne et al. (1988), for listed references see there. The data by Hurxthal and Minne are obtained from radiological measurements, with all others resulting from osteometric studies).

L5 ventral vertebral body height (males)


L5 ventral vertebral body height (females)


Figure 28: Microevolutionary trends of selected vertebral measurements, based on reference samples listed in Table 11.


Figure 29: Selected variables in males with significant alterations (whole sample; $\mathrm{p}<$ 0.05 ; after Bonferroni's correction for multiple comparisons) with time before present (years BP) and independent of maximum femur length (FLM1): C3 ventral vertebral body height (C3M1) and Th 10 sagittal body transverse diameter (Th10M6) shown with linear regression plane.



Figure 30: Selected variables in females with significant alterations (whole sample; $\mathrm{p}<0.05$; after Bonferroni's correction for multiple comparisons) with time before present (years BP) and independent of maximum femur length (FLM1): C3 left cranial intervertebral foramen width (C3IFLCR) and L5 vertebral body transverse diameter (L5M9) shown with linear regression plane.

The human body is influenced by a continuously changing environment and tries to adapt to an energetic optimum. At the same time, these alterations have an impact on the environment. This self-amplifying feedback between humans during evolution and their living conditions (Bielicki, 1969) will certainly affect the human spinal morphometry. Environment, social organization, technology and human biological characteristics form a self-amplifying feedback regulator system through human evolution as well as in microevolutionary and secular adaptations. As mentioned above,, any alterations of natural selection influence the variability of human morphological traits (Henneberg et al., 1978). Various "cultural" and "non-cultural" mechanisms act in such a positive ecological framework (Bielicki, 1969).

In general, natural selection acts through differential mortality and morbidity as expressed by various levels of reproductive success, all of them hard to be replicable in terms of specific spinal morphometry. Modifications in gene pools are usually slower than adaptations to a changing environment. The latter one can be of various forms, as the example of the coincidence of introduction of a feudal social system in Poland and the spread of brachycephalisation shows (Henneberg, 1976). It seems worth to be further investigated whether similar socio-cultural events would explain spinal osteometric alterations.

Possible etiologies of secular and microevolutionary trends could be of various origin: Decrease of premature mortality, birth-planning masking natural fertility, improved prenatal care, early childhood vaccination programs, improved medical technology, psychosomatic stresses, physical activity, changes from nomadic to settled ways of life, dietary changes - such as decreased protein consumption or the influence of modern nutrition additives - greater mobility of people and, therefore, higher exchange
of less related gene pools, climate, and alterations of growth rate or socio-economic status have been mentioned so far (Lasker, 1946; Beals, 1972; Palsson and Schwidetzky, 1973; Billy, 1975; Wiercinski, 1979; Bielicki and Welon, 1982; Wurm, 1982; Kobylinasky, 1983; Jacobs, 1985a; Henneberg, 1992; Moishezon-Blank, 1992; Ruff, 1994; Henneberg and George, 1995; Henneberg and Steyn, 1995; Henneberg, 1997; Trinkaus, 1997; Henneberg and Louw, 1998; Hukuda et al., 2000; Kouchi, 2000). As one anecdotal example, even the influence of changes in baby sleeping positions as a possible factor of microevolutionary trends of cranial shape has been discussed, but ruled out as etiological factor (Kouchi, 2000). Nevertheless, it would be worth to be further investigated how a change in subadult behaviour actually influences adult spinal morphology.

Furthermore, one spinal variation, the incidence of spina bifida occulta in various historical and geographical samples (Henneberg and Henneberg, 1999), could be explained by several factors such as the level of fluoride in the drinking water (Gupta et al., 1995), variation between so called civilized versus non-civilized populations (Post, 1966), better living conditions, improved diet and vitamin B6 and B12 supplementation (Elmazar et al., 1992) or by interbreeding and genetic isolation (Macchiarelli, 1989). Another anatomical variant of the spine, the occurrence of a foramen transversarium bi-partitum, shows a secular increase mostly between the Late Roman Period and the Medieval Ages (Susa and Varga, 1981). Furthermore, Porter and Pavitt (1987) showed a possible influence of juvenile stress on the spinal canal dimension, based on two archaeologic samples. Their study is of high value, because it is a rare attempt to link historic environmental factors, possibly even acting in utero,
with clinically relevant alterations of the spinal morphology. Some of the factors influencing the occurrence of spinal variants could be important for the alteration of the non-pathologic spinal morphology as well.

Hormonal influence on microevolutionary trends, such as decreased skull size, has been postulated earlier (Henneberg and Steyn, 1995). A change in a few or even just in one allele is needed to alter significantly a hormone, its receptors or its physiological response. Clinical syndromes such as e.g., achondroplasia, which involve the skeletal morphology, depend on just a single point mutation. Any alteration of hormonal levels and activities during human evolution seems to be quite likely (Rühli and Henneberg, 2002). Hormones and similar acting substances under genetic or environmental control have an important influence on growth and functional adaptation of a whole variety of human tissues. Earlier reports already postulated a hormonal-based microevolution of a cranial variation as well as possible microevolution of a selected part of the postcranial skeleton (Rühli and Henneberg, 2001; Rühli and Henneberg, 2002; Rühli et al., 2003), therefore, this seems quite likely for the vertebral column too.

Nutritional factors have already been related to secular and microevolutionary trends in humans (Frayer, 1984). A low animal- / high vegetable-protein diet and rice eating was proposed as possible etiology for the altered prevalence of cervical spine pathologies in historic Japanese samples, rather than genetic or repetitive mechanical factors in form of the traditional salutative bowing (Hukuda et al., 2000). The general intake of proteins, but also alterations in baby feeding practices in form of shortened breast feeding time and early onset of artificial protein rich diet, were related to changes in individual stature in various historic time periods in Germany (Wurm, 1982). Milk
protein seems to have the biggest impact on skeletal growth, with animal protein and vegetable protein being of less importance (Wurm, 1982). At last the high stature of the Medieval samples in the present study could be related to the specific nutritional conditions in the samples origin.

Various authors addressed the fact that changes in lifestyle such as the transition from a hunter-gatherer to a more settled agriculturalist way of life cause adaptations in the postcranial skeleton morphometry (Larsen, 1980; Larsen, 1981; Larsen, 1982; Bridges, 1989), as already discussed above. Apparently, it is more likely that decreased mechanical load rather than reduced protein intake has caused the changes in postcranial skeletal dimensions (Larsen, 1981). Beside socio-cultural and technological ecological changes, a climatic shift from a Pre-Würm maximum towards the present Inter-Glacial state has been mentioned too (Jacobs, 1985b). The short-term stature alterations seem to be rather linked to nutritional influences, whereas long-term effects as for example changes in body breadth, expressed by bi-iliac breadth, may be genetic adaptations to influences such as climate (Ruff, 1994). For example, this could explain some of the differences found in body proportions in Europe between Neandertals and modern Homo sapiens. Genetic drift and gene flow, due to the lack of genetic group isolation for the first phenomenon and due to continuous population migration in early European history, has been ruled out for the found alterations in stature, cranial shape, tooth size and general robusticity (Frayer, 1984). Furthermore, due to the parallel decrease in tooth size and tooth variation, "relaxed natural selection" has not been regarded as accountable for these trends, but rather directional selection has been proposed to be responsible (Frayer, 1984). However, both, natural selection and the "probable mutation effect" were suggested to cause the human dental changes (Brace, 1963; Calcagno and F. J. Rühli - Osteometric Variation of the Human Spine

Gibson, 1988). The true genetic factors causing such alterations are not known; this is in particular factual for the spinal morphometry.

Furthermore, the morphometry of the human spine may be altered by various factors such as degenerative changes, aging or injuries and diseases. In an unaffected vertebral column, as selected in the present study, these factors would not be relevant, except for the normal age-related influences, as discussed above.

As another etiology, a difference in life style between males and females was suggested to be at least partially responsible for secular changes, as seen in selected parts of the postcranium (Rühli et al., 2003). Such a difference in life style between males and females would most likely influence the spinal morphology too. To summarize, as already Frayer (1984) admitted, the underlying factors of the altered human morphological characteristics are difficult to explore.

Additionally, it is difficult to point out how specific factors influence various body elements, as can be seen exemplified by the selective impact of poor socioeconomic conditions in children (Henneberg et al., 1998). Apparently, the general living environment finds a different response on various parts of the human body, with the trunk length, as a representation of the vertebral column in the living, usually to be less dependent on these specific conditions than other body parts, such as the long bones (Henneberg et al., 1998).

The influence of environmental stress on the spinal morphology has been highlighted earlier (Porter and Pavitt, 1987). Again, the precise acting factors and the most vulnerable period of the human spine growth are unknown, but possibly an early involvement of stress factors on the human spine development results in later higher risk
of clinical conditions (Porter and Pavitt, 1987). The importance of growth disruption on adult spinal canal dimensions is well known (Clark et al., 1985). It is notable that most of the canal dimensions of the human spine are acquired intrauterine, which makes them more vulnerable to influencing factors at this early stage of individual development (Clark et al., 1985). However, the lumbar spine, for example, shows a greater variability after birth than the other parts of the human vertebral column (Schultz, 1961). Therefore, any microevolution of an environmental factor will interfere with the vertebral column growth to various extents at different times of an individual's life.

The various factors influencing human spinal growth must be taken into account too (Roaf, 1960), since at least some of them may also be relevant in the present study. One can differentiate between intrinsic and extrinsic factors, such as infectious or hormonal influences (Roaf, 1960). For most spinal disorders, it is not well known which of the altered osseous or soft tissue factors actually is of primary and which is of secondary nature, and the various elements of the human spine have an independent growth pattern interacting with each other (Roaf, 1960). One can now assume that misbalance acting even on just one of these structures could have an influence of the appearances of all spinal structures. Apparently, every vertebra shows a different growth property; in general the thoracic and lumbar spine shows an almost exponential growth during childhood and adolescence (Roaf, 1960). Any growth disturbance of the vertebral bodies have the highest impact on the surrounding structures of all major spinal parts (Roaf, 1960). It is not possible to assess the relative impact of intrinsic embryologic and extrinsic mostly mechanical factors on the growth of the human lumbar vertebrae (Larsen, 1985). Its own growth pattern and the one of the surrounding
tissues influence the morphologic appearance of the human spine too. For example, Huizinga et al. (1952) linked the narrowing of the lumbar spinal canal to a possible early growth arrest effect.

Other well-known features influencing human skeletal growth are infection and psychogenic factors. Both are difficult to assess in skeletal remains and their magnitude depends on the type and timing of onset. Spinal morphometry and general health status, as expressed by number of specific disease episodes and general practitioner attendances, are known to partially correlate (Porter et al., 1987). People with a narrow sagittal lumbar spinal canal have e.g., more episodes of childhood infections. Furthermore, epigenetic and intrauterine environmental influences seem to have a higher importance than genetic factors in developing the sagittal spinal canal dimensions (Porter et al., 1987). Enzymatic events, acting between the eight to the $16^{\mathrm{ti}}$ week in utero, the most size-accelerating period, rather than maternal malnutrition, appear to be likely responsible for such spinal morphometric developments (Porter et al., 1987). However, any spinal growth retardation must not necessarily be linked with general growth retardation (Porter et al., 1987). Nevertheless, there seem also to be an association between educational performance and spinal morphometry, as shown by the relationship between schoolchildren test scores and lumbar sagittal spinal canal diameter. Whether this correlation is due to increased sickness-related school absence in the sample with the narrower canal or whether there is a real link between impaired neural canal diameters and early childhood neural development could not be said (Porter et al., 1987).

Based on all these etiological reports on human microevolutionary and secular trends, it is difficult to end up with a convincing hypothesis to explain the found trends of alterations in spinal morphology in the present study. More research would be necessary to focus specifically on selected factors. It is most likely, however, that spinal dimensions are related to body size while reflecting complex demands of biomechanics and protection of nerve pathways. While some of these factors seem to be less likely, such as gene flow, others such as locally different nutrition e.g., in the Medieval Age samples with apparent tall individual stature, could explain at least some of the morphologic alterations.

## Importance and functional implications of osteometric spinal data

The important value of spinal morphometric studies for various research fields such as anatomy, orthopaedics e.g., for the precise manufacture of surgical implants or screw insertion depth and direction, biomechanical studies e.g., the use of vertebral body replica in anthropometric-ergonomic studies or comparison with established models of animal spines has already been shown (Saillant, 1976; Kikuchi et al., 1977; Nissan and Gilad, 1984; Nissan and Gilad, 1986; Zindrick et al., 1987; Krag et al., 1988; Marchesi et al., 1988; Banta et al., 1989; Misenhimer et al., 1989; Olsewski et al., 1990; Weinstein et al., 1992; Hou et al., 1993; Vaccaro et al., 1995; Xu et al., 1995; Kothe et al., 1996; Ebraheim et al., 1997; Karaikovic et al., 1997; Kandziora et al., 2001; Mitra et al., 2002). Macerated spines in particular have an enormous potential for the study of their pathologies (Swedborg, 1974) or their normative data and their variability can be used for assessing developmental pathologies of the spine (Piontek and Zaborowski, 1973). Surprisingly, there is still an apparent lack of sufficient
clinically relevant osteometric data of the human spine (Krag et al.; 1988). Computerbased simulation in biomechanical studies on the human normal and abnormal spine, as done earlier (Schultz et al., 1972), would benefit from a databank of normal osteometric reference values too. Additionally, osteometric data are useful since they match well with CT scan data (Berry et al., 1987). Furthermore, osteometric reference data of the spine can be used to detect vertebral crush fractures in individuals who do not show established patterns of spinal morphometry (Minne et al., 1988). Finally, osteometric data could also be helpful for studies in forensic anthropology and paleoanthropology (Jankauskas, 1994). One has to be aware that some osseous dimensions exist, which are of even higher clinical value e.g., the effective pedicle diameter (Banta et al., 1989), than the established osteometric measurements. However, this particular measurement could not be assessed in a non-destructive analysis of historic spines. Nevertheless, osteometric data gained from historic non-pathologic spines still have their real value such as e.g., by exploring historic dimensions of spine pathologies.

Spinal morphology has been linked to important clinical pathologies such as lower back pain, in form of e.g., a link between the circular shape of the vertebral endplate and the occurrence of a disc herniation (Harrington et al., 2001), a correlation between the presence of sacralisation of the most lumbar vertebra and sacral pain (Willis, 1924; Willis, 1929; Philipp, 1932; Gill and White, 1955) or the size of the transverse process at L5 and the occurrence of lower lumbar degeneration (MacGibbon and Farfan, 1979). Genetic or mechanical factors influence the spinal morphology and may be responsible for the interaction between stature, general muscular and regional fat build-up and the prevalence of lumbar herniated discs (Heliövaara, 1987). In skeletal
studies, at least the estimated height could give a hint about the individual risk for the occurrence of lower back pain. One has also to be cautious in linking the presence of congenital malformations or anatomical variations of the vertebral column to the occurrence of spinal pathologies (Willis, 1924; Willis, 1929; Giles, 1931; Philipp, 1932; Gill and White, 1955). Nevertheless, by knowing the above mentioned skeletal morphologies, one could assume cautiously, by having similar etiological links in ancient times, the extent and value of degeneration and its subsequent clinical symptomatology in a particular historic individual. In general, humans have large vertebral body surface areas, especially in relation to their body size (Shapiro, 1993). This may be one reason while humans tend to have frequent lower back problems, since the ratio between vertebral body size and its surrounding neural pathways is different from the other most closely related species.

## Osteometric dimensions and their possible clinical value: the intervertebral foramen

One example of a possible value of osteometric data not only for anthropological or anatomical purposes but also for clinical issues is the intervertebral foramen size. The osteometric assessment of the intervertebral foramen is just an approximate estimation of its in vivo size, which crucially depends on soft tissue and dynamic components (Bailey and Casamajor, 1911; Swanberg, 1915; Larmon, 1944; Magnuson, 1944; Epstein et al., 1962; Jones and Thomson, 1968; Crock, 1981; Panjabi et al., 1983; Vital et al., 1983; Bose and Balasubramaniam, 1984; Vanderlinden, 1984; Lee et al., 1988; Hoyland et al., 1989; Mayoux-Benhamou et al., 1989; Stephens et al., 1991; Yoo et al., 1992; Yoshida et al., 1992; Hasegawa et al., 1995; Inufusa et al., 1996; Nowicki et al.,

1996; Schmid et al., 1999; Chung et al., 2000; Lu et al., 2000; Fujiwara et al., 2001; Cinotti et al., 2002). No precise measurements of intervertebral foramina exist that signify the switch from asymptomatic to symptomatic, but it was earlier found that foramina heights and widths are larger in asymptomatic patients than in symptomatic patients (Humphreys et al., 1998). Various critical dimensions of the intervertebral foramen have been proposed so far (Lee et al., 1978; Ciric et al., 1980), despite the fact that even plain radiography seems not to correlate well with the real size of it (Stephens et al., 1991). Furthermore, one has to remember that its size varies depending on axial loading and also during the day (Fujiwara et al., 2001) Additionally, the lateral recess height displays a wide inter-individual variability and shows at least a partial independence of other osseous spinal canal dimensions (Kikuchi et al., 1977). As measured in the present study, the size of the intervertebral foramen would mostly correspond to the size of the mid-zone region of the spinal canal as defined for the lumbar section by Lee et al. (1988). Average sizes of adult non-pathologic intervertebral discs are known (Jacobi, 1927; Frobin et al., 1997, Kandizora et al., 2001; Tribus and Belanger, 2001). These data would have to be added to the osseous estimations of the intervertebral foramen size, to compensate for the absence of the disc. However, this still does not represent the real in vivo situation, particularly due to post mortem alterations of the bony morphometry and other missing soft-tissue components. Nevertheless, the chosen approach in the present study allows reliable comparative temporal studies of the non-pathologic macerated intervertebral foramen size. Earlier reports (Clark et al., 1985) detected no secular trend of the intervertebral foramen size by focusing on influences of prehistoric life-style changes. In contrast, the samples of
industrialized modern societies in the present study demonstrate a mild secular alteration of the intervertebral foramen, even without an apparent major shift in culture. Surprisingly, in the present samples there was also no correlation between osseous intervertebral foramen dimensions and stature or age at death, unlike in previous clinical reports (Humphreys et al., 1998).

Changes in general bony robusticity, as expressed by femoral robusticity, rather than stature, could at least partially explain any secular alterations of the intervertebral foramen size. This is not the case in the modern samples of the present study, which show an insignificant positive increase in robusticity. A positive increase of robusticity would quite likely oppose a secular enlargement of the mostly bony enclosed foramen space.

The stronger expressed secular trends in intervertebral foramen size in females, in the modern samples of the present study, lack an evident interpretation and would need further exploration; especially, since in recent samples intervertebral foramen and spinal canal size show mostly no significant sexual dimorphism (Lee et al., 1995; Ebraheim et al., 1996).

The results from the present study proclaim a secular narrowing of the intervertebral foramen diameters, as a possible microevolutionary pre-condition of radiculopathy or general spinal stenosis, to be unlikely. The mild secular trend of the intervertebral foramen diameters may not correlate with alterations in clinical presentation, since earlier studies focusing on possible links between altered spinal neural pathways and clinical symptoms showed inconsistent results (Boden et al., 1990; Hasegawa et al., 1995; Humphreys et al., 1998). For example, an astonishingly high
number of approximately $30 \%$ abnormal lumbar spinal MRI scans, such as spinal stenosis, has been reported in a series of asymptomatic individuals (Boden et al., 1990). Similar results have also been-mentioned for CT scans (Wiesel et al., 1984). Therefore, a link between pathologic appearances in the spine, at least in imaging situations but most likely also in skeletal remains, and clinical symptoms must not be regarded as being absolute.

## Conclusions

In the present study, it has been shown that the normal human vertebral column displays a certain degree of plasticity. For example, with individual age not only the vertebrae themselves become bigger, as seen statistically significant for males, but also pedicle height increases. Since no such clear trend is visible for the neural pathways, which represent some sort of negative of the bony outline or an empty space, respectively, this may be explained by a general increase in the bony framework. Apparently, despite the well-known loss of bony strength with age, the aging vertebral column shows bone remodelling, increased robusticity and degenerative bone apposition, with the latter one not relevant for the present study due to the exclusion of any pathologic skeletons. Since some altered osseous dimensions are linked with clinical symptoms (Porter et al., 1978a; Porter et al., 1980; Macdonald et al., 1984) the knowledge of osteometric data, even from historic populations, allows to speculate about its possible clinical implications. However, the question remains still unsolved whether the high prevalence of lower back disorders in modern humans is a result of inadequate spinal or body morphology (Heliövaara, 1987; Harrington et al., 2001) or rather caused by our inappropriate life-style (Boszczyk et al., 2001).

Any microevolutionary or secular spinal trend may represent so called "relaxed natural selection", which is particularly visible in developed countries and may decrease the ability of humans to survive and reproduce without medico-technological help (Stephan and Henneberg, 2001). The selection forces acting particularly on the human spinal column are still mostly unknown. For example, humans, despite having a much larger relative brain weight, do not have a bigger spinal cord weight in comparison with other primate and mammal species (MacLarnon, 1996b). Therefore, one can assume that the selective powers influencing the spinal morphology must be different from the ones interfering with the other central nerve system part, the human brain. Possible etiologies of the findings in the present study may be, as pointed out in earlier microevolutionary studies (Wiercinski, 1979; Wurm, 1982; Henneberg and George, 1995; Rothschild and Rothschild, 1996; Henneberg and Henneberg, 1999; Hukuda et al., 2000), based on genetic e.g., changing allele frequencies, or environmental influences e.g., nutrition. In general, the microevolutionary and secular trends in the present sample show that there is ongoing influence, mostly balanced between environmental and genetic factors, which acts on the human spinal column.

The challenging results, as presented above, will hopefully stimulate the debate, which assesses spinal morphology changes by using a historic perspective (Clark et al., 1985; Porter and Pavitt, 1987; Jankauskas, 1992; 1994; Henneberg and Henneberg, 1999; Hukuda et al., 2000; Boszczyk et al., 2001; Tatarek, 2001; Rühli et al., 2002). It builds a bridge between anthropological approaches and clinical research, and it should help to improve our still limited knowledge on the ongoing evolution and the osteometric variation of the human vertebral column.

## References

Adams MA, McNally DS, Chinn H, and Dolan P (1994) Posture and the compressive strength of the lumbar spine. Clin Biomech 9:5-14.

Aeby C (1879) Die Altersverschiedenheiten der menschlichen Wirbelsäule. Arch Anat Ent Gesch:77-138.

Agduhr E (1917) Träningens inverkan pa den morfologiska bilden av det motoriska nervsystemet. Hygiea 79:801-828.

Aiello LC, and Wheeler P (1995) The expensive-tissue hypothesis - the brain and the digestive- system in human and primate evolution. Curr Anthropol 36:199-221.

Aiello LC, and Wood BA (1994) Cranial variables as predictors of Hominine body mass. Am J Phys Anthropol 95:409-426.

Al Faraj S, and Al Mutairi K (2003) Vitamin d deficiency and chronic low back pain in Aaudi Arabia. Spine 28:177-179.

Allbrook DB (1955) The East African vertebral column. Am J Phys Anthropol 13:489511.

Allen JA (1877) The influence of physical conditions in the genesis of species. Radical

Amonoo-Kuofi HS (1985) The sagittal diameter of the lumbar vertebral canal in normal adult Nigerians. J Anat 140:69-78.

An HS, and Glover JM (1994) Lumbar spinal stenosis: Historical perspectives, classification, and pathoanatomy. Sem Spine Surgery 6:69-77.

Anderson RJ (1883) Observations on the diameters of human vertebrae in different regions. J Anat Physiol 17:341-344.

Argot C (2003) Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsurpials Mayulestes ferox and Pucadelphya andinus. J Morphol 255:279-300.

Arnoldi CC, Brodsky AE, Cauchoix J, Crock HV, Dommisse GF, Edgar MA, Gargano FP, Jacobson RE, Kirkaldy-Willis WH, Kurihara A, Langenskiold A, Macnab I, McIvor GW, Newman PH, Paine KW, Russin LA, Sheldon J, Tile M, Urist MR, Wilson WE, and Wiltse LL (1976) Lumbar spinal stenosis and nerve root entrapment syndromes. Definition and classification. Clin Orthop 115:4-5.

Avrahami E, Frishman E, Fridman Z, and Azor M (1994) Spina bifida occulta of S1 is not an innocent finding. Spine 19:12-15.

Bailey AA (1953) Changes with age in the spinal cord. Arch Neurol Psych 70:299-309.

Bailey P, and Casamajor L (1911) Osteo-arthritis of the spine as a cause of compression of the spinal cord and its roots. J Nerv Ment Dis 38:588-609.

Banta CJ, 2nd, King AG, Dabezies EJ, and Liljeberg RL (1989) Measurement of effective pedicle diameter in the human spine. Orthopedics 12:939-942.

Beals KL (1972) Head form and climatic stress. Am J Phys Anthropol 37:85-92.

Beals KL, Smith CL, and Dodd SM (1984) Brain size, cranial morphology, climate, and time machines. Curr Anthropol 25:301-330.

Beers GJ, Carter AP, Leiter BE, Tilak SP, and Shah RR (1985) Interobserver discrepancies in distance measurements from lumbar spine CT scans. AJR Am J Roentgenol 144:395-398.

Bergmann C (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 8:595-708.

Berry JL, Moran JM, Berg WS, and Steffee AD (1987) A morphometric study of human lumbar and selected thoracic vertebrae. Spine 12:362-367.

Bielicki T (1969) Niektore zwiazki zwrotne w procesie ewolucji Hominidae. Materialy i

Bielicki T, and Welon Z (1982) Growth data as indicators of social inequalities: The case of Poland. Yrbk Phys Anthropol 25:153-167.

Billy G (1975) Anthropometric evidence of exogamy related to secular changes in present-day populations. J Hum Evol 4:517-520.

Black DM, Cummings SR, Stone K, Hudes E, Palermo L, and Steiger P (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6:883-892.

Blumensaat C, and Clasing C (1932) Anatomie und Klinik der lumbosacralen Übergangswirbel (Sakralisation und Lumbalisation). Ergeb Chir Orthop 25:1-59.

Boden SD, Davis DO, Dina TS, Patronas NJ, and Wiesel SW (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72:403-408.

Bohart WH (1929) Anatomic variations and anomalies of the spine. JAMA 92:698-701.

Bolender NF, Schonstrom NS, and Spengler DM (1985) Role of computed tomography and myelography in the diagnosis of central spinal stenosis. J Bone Joint Surg Am 67:240-246.

Bornstein PE, and Peterson RR (1966) Numerical variation of the presacral vertebral F. J. Rühli - Osteometric Variation of the Human Spine 283
column in three population groups in North America. Am J Phys Anthropol 25:139-146.

Bose K, and Balasubramaniam P (1984) Nerve root canals of the lumbar spine. Spine 9:16-18.

Boszczyk BM, Boszczyk AA, and Putz R (2001) Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec 264:157-168.

Brace CL (1963) Structural reduction in evolution. Am Nat 97:39-49.

Brain WR (1948) Discussion on rupture of the intervertebral disc in the cervical region. Proc R Soc Med 41:509-511.

Bridges PS (1989) Changes in activities with the shift to agriculture in the Southeastern United States. Curr Anthropol 30:385-394.

Bridges PS (1991) Degenerative joint disease in hunter-gatherers and agriculturalists from the Southeastern United States. Am J Phys Anthropol 85:379-391.

Bridges PS (1993) Reply to Dr Knüsel. Am J Phys Anthropol 91:526-527.

Brown JR (1975) Factors contributing to the development of low back pain in industrial workers. Amer Indust Hyg Assoc J 36:26-31.

Brown P (1992) Recent human evolution in East Asia and Australasia. Phil Trans R Soc Lond B 337:235-242.

Burrows EH (1963) The sagittal diameter of the spinal canal in cervical spondylosis. Clin Radiol 14:77-86.

Calcagno JM, and Gibson KR (1988) Human dental reduction: Natural selection or the probable mutation effect. Am J Phys Anthropol 77:505-517.

Carli-Thiele $P$ (1996) Spuren von Mangelerkrankungen an steinzeitlichen Kinderskeleten. Göttingen: Erich Goltze.

Chung SS, Lee CS, Kim SH, Chung MW, and Ahn JM (2000) Effect of low back posture on the morphology of the spinal canal. Skeletal Radiol 29:217-223.

Churchill SE (1996) Neandertal scapular axillary border morphology revisited. Am J Phys Anthropol Suppl. 22:85.

Cinotti G, De Santis P, Nofroni I, and Postacchini F (2002) Stenosis of lumbar intervertebral foramen. Spine 27:223-229.

Ciric I, Mikhael MA, Tarkington JA, and Vick NA (1980) The lateral recess syndrome. A variant of spinal stenosis. J Neurosurg 53:433-443.

Clark GA, Panjabi MM, and Wetzel FT (1985) Can infant malnutrition cause adult
vertebral stenosis? Spine 10:165-170.

Cook DC, Buikstra JE, DeRousseau CJ, and Johanson DC (1983) Vertebral pathology in the Afar Australopithecines. Am J Phys Anthropol 60:83-101.

Corbin KB, and Gardner ED (1937) Decrease in number of myelinated fibres in human spinal roots with age. Anat Rec 1937:63-74.

Cotterill PC, Kostuik JP, D'Angelo G, Fernie GR, and Maki BE (1986) An anatomical comparison of the human and bovine thoracolumbar spine. J Orthop Res 4:298303.

Crock HV (1981) Normal and pathological anatomy of the lumbar spinal nerve root canals. J Bone Joint Surg Br 63B:487-490.

Cushway BC, and Maier RJ (1929) Routine examination of the spine for industrial employees. JAMA 92:701-705.

Cwirko-Godycki M, and Swedborg I (1977) Ludnosc pochowana na cmentarzysku ostrowa lednickiego pod wzgledem metrycznym z uwzglednieniem zmiennosci cech oraz objawow patologicznych na kosciach czesc i. Przeglad Antropol 43:336.

Cyriax EF (1920) On certain absolute and relative measurements of human vertebrae. J

Darwin C (1859) On the origin of species (reprinted1952). Chicago: Encyclopaedia Britannica.

Davies KM, Recker RR, and Heaney RP (1989) Normal vertebral dimensions and normal variation in serial measurements of vertebrae. J Bone Miner Res 4:341349.

Davis PR (1961) Human lower lumbar vertebrae: Some mechanical and osteological considerations. J Anat 95:337-344.

De Miguel C, and Henneberg M (1999) Variation in hominid body size estimates: Do we know how big our ancestors were? Persp Hum Biol 4:65-80.

Diacinti D, Acca M, D'Erasmo E, Tomei E, and Mazzuoli GF (1995) Aging changes in vertebral morphometry. Calcif Tissue Int 57:426-429.

Dommisse GF (1974) The blood supply of the spinal cord. A critical vascular zone in spinal surgery. J Bone Joint Surg Br 56:225-235.

Dommisse GF (1975) Morphological aspects of the lumbar spine and lumbosacral region. Orthop Clin North Am 6: 163-175.

Donaldson HH, and Davis DJ (1903) A description of charts showing the areas of the
cross sections of the human spinal cord at the level of each spinal nerve. J Comp Neurol 13:19-40.

Dorwart RH, Vogler JB, and Helms CA (1983) Spinal stenosis. Radiol Clin North Am 21:301-325.

Drinkall JN, Porter RW, and Evans C (1984) Value of ultrasonic measurement of spinal canal diameter in general practice. Br Med J 288:121-122.

Dunn EH (1912) The influence of age, sex, weight and relationship upon the number of medullated nerve fibres and on the size of the largest fibres in the ventral root of the second cervical nerve of the albino rat. J Comp Neurol 22:131-157.

Dvorak J, Panjabi MM, Grob D, Novotny JE, and Antinnes JA (1993) Clinical validation of functional flexion/extension radiographs of the cervical spine. Spine 18:120-127.

Dwight T (1894) Methods of estimating the height from parts of the skeleton. Med Rec 46:293-296.

Dwight T (1901) Description of the human spine showing numerical variation in the Warren Museum of the Harvard Medical School. Anat Anz 19:321-332.

Dyck P (1984) Lumbar nerve root: The enigmatic eponyms. Spine 9:3-6.

Ebraheim NA, An HS, Xu R, Ahmad M, and Yeasting RA (1996) The quantitative anatomy of the cervical nerve root groove and the intervertebral foramen. Spine 21:1619-1623.

Ebraheim NA, Xu R, Knight T, and Yeasting RA (1997) Morphometric evaluation of lower cervical pedicle and its projection. Spine 22:1-6.

Edmondston SJ, Singer KP, Price RI, Day RE, and Breidahl PD (1994) The relationship between bone mineral density, vertebral body shape and spinal curvature in the elderly thoracolumbar spine: An in vitro study. Br J Radiol 67:969-975.

Ehgartner W (1959) Die Schädel aus dem frühbronzezeitlichen Gräberfeld von Hainburg, Niederösterreich. Mitteil Anthropol Gesell Wien 88/89:8-90.

Eisenstein S (1977) The morphometry and pathological anatomy of the lumbar spine in South African Negroes and Caucasoids with specific reference to spinal stenosis. J Bone Joint Surg Br 59:173-180.

Eisenstein S (1980) The trefoil configuration of the lumbar vertebral canal. J Bone Joint Surg Br 62:73-77.

Elliott HC (1945) Cross-sectional diameters and areas of the human spinal cord. Anat Rec 93:287-293.

Elmazar MMA, Thiel R, and Nau H (1992) Effects of supplementation with folinic acid, vitamin $b-6$, and vitamin $b-12$ on valproic acid-induced teratogenesis in mice. Fundam Appl Toxicol 18:389-394.

Elsberg CA, and Dyke CG (1934) The diagnosis and localization of tumors of the spinal cord by means of mesurements made on the X-ray films of the vertebrae, and the correlation of clinical and X-ray findings. Bull Neurol Inst NY 3:359-394.

Epstein BS, Epstein JA, and Lavine L (1964) The effect of anatomic variations in the lumbar vertebrae and spinal canal on cauda equina and nerve root syndromes. AJR 91:1055-1063.

Epstein JA, Epstein BS, and Lavine L (1962) Nerve root compression associated with narrowing of the lumbar spinal canal. J Neurol Neurosurg Psychiat 25:165-176.

Ericksen MF (1976) Some aspects of aging in the lumbar spine. Am J Phys Anthropol 45:575-580.

Etter HF (1988) Der äussere St. Johann Gottesacker in Basel. Was ein Spitalfriedhof des 19. Jahrhunderts verrät. CH-Forschung 11:23-28.

Etter HF, and Lörcher M (1993) Armut, Krankheit, Tod im frühindustriellen Basel. Basel: Cratander.

Eveleth PB, and Tanner JM (1976) Worldwide variation in human growth. Cambridge: Cambridge University.

Farfan HF (1978) The biomechanical advantage of lordosis and hip extension for upright activity. Man as compared with other Anthropoids. Spine 3:336-342.

Fife D, and Kraus J (1986) Anatomic location of spinal cord injury. Relationship to the cause of injury. Spine 11:2-5.

Formicola V (1983) Stature in Italian prehistoric samples, with particular reference to methodological problems. Homo 34:33-47.

Formicola V, and Franceschi M (1996) Regression equations for estimating stature from long bones of early Holocene European samples. Am J Phys Anthropol 100:8388.

Formicola V, and Giannecchini M (1999) Evolutionary trends of stature in Upper Paleolithic and Mesolithic Europe. J Hum Evol 36:319-333.

Fox JH, and Wilczynski W (1986) Allometry of major cns divisions: Towards a reevaluation of somatic brain-body scaling. Brain Behav Evol 28:157-169.

Francis CC (1955) Dimensions of the cervical vertebrae. Anat Rec 122:603-609.

Frayer DW (1980) Sexual dimorphism and cultural evolution in the Late Pleistocene
and Holocene of Europe. J Hum Evol 9:399-415.

Frayer DW (1981) Body size, weapon use, and natural selection in the European Upper Paleolithic and Mesolithic. Am Anthropol 83:57-73.

Frayer DW (1984) Biological and cultural change in the European Late Pleistocene and early Holocene. In F Smith and F Spencer (eds.): The origins of modern Humans: A world survey of the fossil evidence. New York: Alan R. Liss, pp. 211-250.

Frey H (1929) Untersuchungen über das Rumpfskelett. Gegenb Morphol Jahrb 62:355463.

Frobin W, Brinckmann P, and Biggemann M (1997) Objektive Messung der Höhe lumbaler Bandscheiben aus seitlichen Röntgen-Übersichtsaufnahmen. Z Orthop Grenzgeb 135:394-402.

Fujiwara A, An HS, Lim TH, and Haughton VM (2001) Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: An in vitro anatomic and biomechanical study. Spine 26:876-882.

Fully G, and Pineau H (1960) Détermination de la stature au moyen du squelette. Ann Méd Légale 40:145-154.

Gallagher JC, Hedlund LR, Stoner S, and Meeger C (1988) Vertebral morphometry: Normative data. Bone Miner 4:189-196.

Gaskill MF, Lukin R, and Wiot JG (1991) Lumbar disc disease and stenosis. Radiol Clin North Am 29:753-764.

Gepstein R, Folmann Y, Sagiv P, Ben David Y, and Hallel T (1991) Does the anteroposterior diameter of the bony spinal canal reflect its size? An anatomical study. Surg Radiol Anat 13:289-291.

Gilad I, and Nissan M (1986) A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine 11:154-157.

Giles RG (1931) Vertebral anomalies. Radiology 17:1262-1266.

Gill GG, and White HL (1955) Mechanisms of nerve-root compression and irritation in backache. Clin Orthop 5:66-81.

Gozdziewski S, Bujacz E, and Marek J (1976) Kregoslup piersiowo-ledzwiowy w swietle roznych metod pomiarowych oraz jego zwiazek z wysokoscia ciala. Przeglad Antropol 42:265-271.

Group M, and Stanton-Hicks M (1991) Neuroanatomy and pathophysiology of pain related to spinal disorders. Radiol Clin North Am 29:665-673.

Gupta SK, Gupta RC, Seth AK, and Chaturvedi CS (1995) Increased incidence of spina bifida occulta in fluorosis prone areas. Acta Paediatr Jpn 37:503-506.

Hansson T, and Roos B (1980) The influence of age, height, and weight on the bone mineral content of lumbar vertebrae. Spine 5:545-551.

Harrington J, Jr., Sungarian A, Rogg J, Makker VJ, and Epstein MH (2001) The relation between vertebral endplate shape and lumbar disc herniations. Spine 26:21332138.

Hartvigsen J, Bakketeig LS, Leboeuf-Yde C, Engberg M, and Lauritzen T (2001) The association between physical workload and low back pain clouded by the "healthy worker" effect: Population-based cross-sectional and 5-year prospective questionnaire study. Spine 26:1788-1793.

Hasebe K (1913) Die Wirbelsäule der Japaner. Z Morphol Anthropol 15:259-380.

Hasegawa T, An HS, Haughton VM, and Nowicki BH (1995) Lumbar foraminal stenosis: Critical heights of the intervertebral discs and foramina. A cryomicrotome study in cadavera. J Bone Joint Surg Am 77:32-38.

Hasue M, Kikuchi S, Sakuyama Y, and Ito T (1983) Anatomic study of the interrelation between lumbosacral nerve roots and their surrounding tissues. Spine 8:50-58.

Hasue M, Kunogi J, Konno S, and Kikuchi S (1989) Classification by position of dorsal root ganglia in the lumbosacral region. Spine 14:1261-1264.

Hayden B (1981) Research and development in the Stone Age: Technological transitions among hunter-gatherers. Curr Anthropol 22:519-548.

Hedlund LR, and Gallagher JC (1988) Vertebral morphometry in diagnosis of spinal fractures. Bone Miner 5:59-67.

Heim JL (1976) Les hommes fossiles de la Ferrassie. Paris: Masson.

Heliövaara M (1987) Body height, obesity, and risk of herniated lumbar intervertebral disc. Spine 12:469-472.

Henneberg M (1976) The influence of natural selection on brachycephalization in Poland. Studies Phys Anthropol 2:3-19.

Henneberg M (1988) Decrease of human skull size in the Holocene. Hum Biol 60:395405.

Henneberg M (1990) Brain size / body weight variability in Homo sapiens: Consequences for interpreting Hominid evolution. Homo 39:121-130.

Henneberg M (1992) Continuing human evolution: Bodies, brains and the role of

Henneberg M (1995) Comments. Curr Anthropol 36:212-213.

Henneberg M (1997) Human evolution today: Which way next? Persp Hum Biol 3:112.

Henneberg M (1998) Evolution of the human brain: Is bigger better? Clin Exp Pharmacol Physiol 25:745-749.

Henneberg M (2000) Possible causes of secular trends in body size - lessons from the Southern hemisphere. Homo - unsere Herkunft und Zukunft, pp. 234-237.

Henneberg M (2001a) The gradual eurytopic evolution of Humans: Not from africa alone. In E Indiriati (ed.): A scientific life. Yogyakarta: Bigraf, pp. 41-52.

Henneberg M (2001b) Secular trends in body height - indicator of general improvement in living conditions or of a change in specific factors? In P Dasgupta and $R$ Hauspie (eds.): Perspectives in human growth, development and maturation. Boston / Dordrecht / London: Kluwer Academic Publishers, pp. 159-167.

Henneberg M, Budnik A, Pezacka M, and Puch AE (1984a) The mechanism of brachicephalization: Differential susceptibility to infection diseases during childhood. A preliminary report. Przeglad Antropol:332-333.

Henneberg M, and George BJ (1995) Possible secular trend in the incidence of an anatomical variant: Median artery of the forearm. Am J Phys Anthropol 96:329334.

Henneberg M, Harrison GA, and Brush G (1998) The small child: Anthropometric and physical performance characteristics of short-for-age children growing in good and poor socio-economic conditions. Eur J Clin Nutr 52:286-291.

Henneberg M, and Henneberg RJ (2002) Reconstructing medical knowledge in Ancient Pompeii from the hard evidence of bones and teeth. In J Renn and G Castagnetti (eds.): Homo faber: Studies on nature, technology, and science at the time of Pompeii. Roma: L'Erma di Bretschneider, pp. 169-187.

Henneberg M, Hugg J, and J TE (1989) Body weight/height relationship: Exponential solution. Am J Hum Biol 1:483-491.

Henneberg M, and Louw GJ (1998) Cross-sectional survey of growth of urban and rural "Cape coloured" schoolchildren: Anthropometry and functional tests. Am J Hum Biol 10:73-85.

Henneberg M, Piontek J, and Strzatko J (1978) Natural selection and morphological variability: The case of Europe from Neolithic to modern times. Curr Anthropol 19:67-82.

Henneberg M, and Steyn M (1993) Trends in cranial capacity and cranial index in Subsaharan Africa during the Holocene. Am J Hum Biol 5:473-479.

Henneberg M, and Steyn M (1995) Diachronic variation of cranial size and shape in the Holocene: A manifestation of hormonal evolution? Rivista di Antropologia (Roma) 73:159-164.

Henneberg M, and Van den Berg ER (1990) Test of socioeconomic causation of secular trend: Stature changes among favored and oppressed South Africans are parallel. Am J Phys Anthropol 83:459-465.

Henneberg M, Wrzesinska A, and Brodnicka J (1984b) Materialy szkieletowe z cmentarzyska (xiii-xviii w.) przy kosciele sw. Leonarda w lubiniu, gmina krzywin. Przeglad Antropol 50:365-379.

Henneberg RJ, and Henneberg M (1999) Variation in the closure of the sacral canal in the skeletal sample from Pompeii, Italy, 79 A.D. Persp Hum Biol 4:177-188.

Hermann AP, Brixen K, Andresen J, and Mosekilde L (1993) Reference values for vertebral heights in scandinavian females and males. Acta Radiol 34:48-52.

Hershkovitz I, Greenwald C, Rothschild BM, Latimer B, Dutour O, Jellema LM, and Wish-Baratz S (1999) Hyperostosis frontalis interna: An anthropological
perspective. Am J Phys Anthropol 109:303-325.

Hibbert CS, Delaygue C, McGlen B, and Porter RW (1981a) Measurement of the lumbar spinal canal by diagnostic ultrasound. Br J Radiol 54:905-907.

Hibbert CS, Porter RW, and Delaygue C (1981b) Relationship between the spinal canal and other skeletal measurements in a Romano-British population. Ann R Coll Surg Engl 63:437.

Hinck VC, Clark WM, Jr., and Hopkins CE (1966) Normal interpediculate distances (minimum and maximum) in children and adults. Am J Roentgenol Radium Ther Nucl Med 97:141-153.

Holliday TW (1996) Postcranial evidence of cold adaptation in European Neandertals. Am J Phys Anthropol Suppl. 22:127.

Holliday TW (1997) Body proportions in Late Pleistocene Europe and modern human origins. J Hum Evol 32:423-448.

Holliday TW (1999) Brachial and crural indices of European Late Upper Paleolithic and Mesolithic Humans. J Hum Evol 36:549-566.

Holloway RL (1980) Within-species brain-body weight variability: A reexamination of the Danish data and other Primate species. Am J Phys Anthropol 53:109-121.

Horner F (1854) Ueber die normale Krümmung der Wirbelsäule. Arch Anat Phys Wiss Med: 478-508.

Horwitz MT (1939) The anatomy of (a) the lumbosacral nerve plexus - its relation to variations of vertberal segmentation, and (b) the posterior sacral nerve plexus. Anat Rec 74:91-107.

Hoshovski E (1996) Epigenetic variations and pathologic changes in the cervical vertebrae of the protoneolithic population in Panonia. Srp Arh Celok Lek 124:610.

Hou S, Hu R, and Shi Y (1993) Pedicle morphology of the lower thoracic and lumbar spine in a Chinese population. Spine 18:1850-1855.

Hoyland JA, Freemont AJ, and Jayson MI (1989) Intervertebral foramen venous obstruction. A cause of periradicular fibrosis? Spine 14:558-568.

Huizinga J, Van der Heiden JA, and Vinken PJJG (1952) The human lumbar vertebral canal: A biometric study. Koninkliijke Nederlandse Akademie van Wetenschappen Series C 55:22-33.

Hukuda S, Inoue K, Nakai M, and Katayama K (2000) Did ossification of the posterior longitudinal ligament of the spine evolve in the modern period? A paleopathologic study of Ancient human skeletons in Japan. J Rheumatol

Humphreys SC, Hodges SD, Patwardhan A, Eck JC, Covington LA, and Sartori M (1998) The natural history of the cervical foramen in symptomatic and asymptomatic individuals aged 20-60 years as measured by magnetic resonance imaging. A descriptive approach. Spine 23:2180-2184.

Hurxthal LM (1968) Measurement of anterior vertebral compressions and biconcav vertebrae. AJR 103:635-644.

Inufusa A, An HS, Lim TH, Hasegawa T, Haughton VM, and Nowicki BH (1996) Anatomic changes of the spinal canal and intervertebral foramen associated with flexion-extension movement. Spine 21:2412-2420.

Iwamoto H, Kuwahara H, Matsuda H, Noriage A, and Yamano Y (1995) Production of chronic compression of the cauda equina in rats for use in studies of lumbar spinal canal stenosis. Spine 20:2750-2757.

Jacobi H (1927) Messungen der Brust- und oberen Lendenwirbelsäule unter Berücksichtigung der Veränderungen an Bandscheiben und Wirbelkörpern. Beitr Pathol Anat 78:303-314.

Jacobs KH (1985a) Climate and the Hominid postcranial skeleton in Würm and early

Jacobs KH (1985b) Evolution in the postcranial skeleton of Late Glacial and early Postglacial European Hominids. Z Morphol Anthropol 75:307-326.

Jäggi C, Meier HR, Windler R, and Illi M (1993) Die Stadtkirche St. Laurentius in Winterthur. Zürich / Egg: Fotorotar.

Jankauskas R (1992) Degenerative changes of the vertebral column in Lithuanian paleoosteological material. Anthropologie 30:109-119.

Jankauskas R (1994) Variability of vertebral column measurements in Lithuanian paleopopulation. Int J Anthropol 9:137-151.

Jason DR, and Taylor K (1995) Estimation of stature from the length of the cervical, thoracic, and lumbar segments of the spine in American Whites and Blacks. J Forensic Sci 40:59-62.

Jeanneret B, and Jeanneret C (2002) Der enge Spinalkanal der LWS. Schweiz Med Forum 39:922-928.

Jones RA, and Thomson JL (1968) The narrow lumbar canal. A clinical and radiological review. J Bone Joint Surg Br 50:595-605.

Jungers WL (1984) Aspects of size and scaling in primate biology with special
reference to the locomotor skeleton. Yrbk Phys Anthropol 27:73-97.

Junghanns H (1933) Die anatomischen Besonderheiten des fünften Lendenwirbels und der letzten Lendenbandscheibe. Arch Orthop Unfallchir 33:260-278.

Kaliszewska MD (1966) Wczesnosredniowieczny szkielet ze starego drawska pow. Szczecinek. Przeglad Antropol 32:205-208.

Kameyama T, Hashizume Y, Ando T, and Takahashi A (1992) Morphometry of the normal cadaveric cervical spinal cord. Rinsho Shinkeigaku 32:1203-1207.

Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schroder R, and Mittlmeier T (2001) Comparison between sheep and human cervical spines: An anatomic, radiographic, bone mineral density, and biomechanical study. Spine 26:1028-1037.

Karaikovic EE, Daubs MD, Madsen RW, and Gaines RW, Jr. (1997) Morphologic characteristics of human cervical pedicles. Spine 22:493-500.

Katz PR, Reynolds HM, Foust DR, and Baum JK (1975) Mid-sagittal dimensions of cervical vertebral bodies. Am J Phys Anthropol 43:319-326.

Keith AK (1902) The extent to which the posterior segments of the body have been transmuted and suppressed in the evolution of Man and allied primates. J Anat

Kelsey JL, and White AA (1980) Epidemiology and impact of low-back pain. Spine 5:133-142.

Kikuchi S, Hasue M, Furukawa K, and Nakamura T (1977) A biometric study of lumbar spinal canal measurements of Japanese adult skeletons. J Jap Orthop Ass 51:263-275.

Kikuchi S, Hasue M, Nishiyama K, and Ito T (1984) Anatomic and clinical studies of radicular symptoms. Spine 9:23-30.

Kirkaldy-Willis WH, Wedge JH, Yong-Hing K, Tchang S, de Korompay V, and Shannon R (1982) Lumbar spinal nerve lateral entrapment. Clin Orthop:171178.

Knüsel CJ (1993) On the biomechanical and osteoarthritic differences between huntergatherers and agriculturists. Am J Phys Anthropol 91:523-525.

Kobylinasky E (1983) Changes in cephalic morphology of Israelis due to migration. J Hum Evol 12:779-786.

Kothe R, O'Holleran JD, Liu W, and Panjabi MM (1996) Internal architecture of the thoracic pedicle. An anatomic study. Spine 21:264-270.

Kouchi M (2000) Brachycephalization in Japan has ceased. Am J Phys Anthropol 112:339-347.

Krag MH, Weaver DL, Beynnon BD, and Haugh LD (1988) Morphometry of the thoracic and lumbar spine related to transpedicular screw placement for surgical spinal fixation. Spine 13:27-32.

Kreutz K (1997) Aetiologie und Epidemiologie von Erkrankungen des Kindesalters bei der bajuwarischen Population von Straubing (Niederbayern). Göttingen: Cuvillier.

Lanier RR (1939) The presacral vertebrae of American White and Negro males. Am J Phys Anthropol 25:341-419.

Lanyon LE, and Rubin CT (1984) Static vs. Dynamic loads as an influence on bone remodelling. J Biomech 17:897-905.

Larmon WA (1944) An anatomic study of the lumbosacral region in relation to low back pain and sciatica. Ann Surg 119:892-896.

Larsen CS (1980) Skeletal responses to mechanical stress associated with change in dietary adaptation on the prehistoric Georgia coast. Am J Phys Anthropol 52:246.

Larsen CS (1981) Functional implications of postcranial size reduction on the prehistoric Georgia coast, U.S.A. J Hum Evol 10:489-502.

Larsen CS (1982) The anthropology of St.Catherines island 3. Prehistoric human biological adaptation. Anthropol Papers Am Mus Nat Hist 57:157-276.

Larsen JL (1985) The posterior surface of the lumbar vertebral bodies. Part I. Spine 10:50-58.

Larsen JL, and Smith D (1980a) Size of the subarachnoid space in stenosis of the lumbar canal. Acta Radiol Diagn 21:627-632.

Larsen JL, and Smith D (1980b) Vertebral body size in lumbar spinal canal stenosis. Acta Radiol Diagn 21:785-788.

Lasker GW (1946) Migration and physical differentiation. Am J Phys Anthropol 4:273300.

Lassek AM, and Rasmussen GL (1938) A quantitative study of the newborn and adult spinal cords of Man. J Comp Neurol 69:371-379.

Latimer HB (1950) The weights of the brain and of its parts and the weight and length of the spinal cord in the adult male Guinea pig. J Comp Neurol 93:37-51.

Leboeuf-Yde C, Lauritsen JM, and Lauritzen T (1997) Why has the search for causes of
low back pain largely been nonconclusive? Spine 22:877-881.

Lee BCP, Kazam E, and Newman AD (1978) Computed tomography of the spine and spinal cord. Radiology 128:95-102.

Lee CK, Rauschning W, and Glenn W (1988) Lateral lumbar spinal canal stenosis: Classification, pathologic anatomy and surgical decompression. Spine 13:313320.

Lee HM, Kim NH, Kim HJ, and Chung IH (1995) Morphometric study of the lumbar spinal canal in the Korean population. Spine 20:1679-1684.

Legg SJ (1982) Ultrasound measurement of the spinal canal in spinal stenosis. Br Med J 285:1276-1277.

Legg SJ, and Gibbs V (1984) Measurement of the lumbar spinal canal by echo ultrasound. Spine 9:79-82.

Lewis ME (2002) Impact of industrialization: Comparative study of child health in four sites from medieval and postmedieval England (A.D. 850-1859). Am J Phys Anthropol 119:211-223.

Liyang D, Yinkan X, Wenming Z, and Zhihua Z (1989) The effect of flexion-extension motion of the lumbar spine on the capacity of the spinal canal: An experimental
study. Spine 14:523-525.

Louis R (1985) Spinal stability as defined by the three-column spine concept. Anat Clin 7:33-42.

Lu J, Ebraheim NA, Huntoon M, and Haman SP (2000) Cervical intervertebral disc space narrowing and size of intervertebral foramina. Clin Orthop 370:259-264.

Macchiarelli R (1989) Prehistoric "fish-eaters" along the Eastern Arabian coasts: Dental variation, morphology, and oral health in the Ra's al-Hamra community (Qurum, Sultanate of Oman, 5th-4th Millennia BC). Am J Phys Anthropol 78:575-594.

Macdonald EB, Porter R, Hibbert C, and Hart J (1984) The relationship between spinal canal diameter and back pain in coal miners. Ultrasonic measurement as a screening test? J Occup Med 26:23-28.

MacGibbon B, and Farfan H (1979) A radiologic survey of various configurations of the lumbar spine. Spine 4:258-266.

MacLarnon A (1995) The distribution of spinal cord tissues and locomotor adaptation in primates. J Hum Evol 29:463-482.

MacLarnon A (1996a) The evolution of the spinal - cord in primates: Evidence from the foramen magnum and the vertebral canal. J Hum Evol 30:121-138.

MacLarnon A (1996b) The scaling of gross dimensions of the spinal cord in primates and other species. J Hum Evol 30:71-87.

Magnuson PB (1944) Differential diagnosis of causes of pain in the lower back accompanied by sciatic pain. Ann Surg 119:878-891.

Maniadakis N, and Gray A (2000) The economic burden of back pain in the UK. Pain 84:95-103.

Marchesi D, Schneider E, Glauser P, and Aebi M (1988) Morphometric analysis of the thoracolumbar and lumbar pedicles, anatomo-radiologic study. Surg Radiol Anat 10:317-322.

Marshall J (1892) On the relation between the weight of the brain and its parts and the stature and mass of the body in Man. J Anat Physiol 26:445-500.

Martelli SA, and Schmid $P$ (2000) Functional anatomy of the lumbar vertebral column in modern Homo sapiens, great apes and Australopithecines. Am J Phys Anthropol Suppl. 30:221.

Martin R (1928) Lehrbuch der Anthropologie. Jena: Gustav Fischer.

Martin R, and Saller K (1957) Lehrbuch der Anthropologie. Stuttgart: Gustav Fischer.

Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates.

Mathers K, and Henneberg M (1996) Were we ever that big? Gradual increase in Hominid body size over time. Homo 46:141-173.

Matiegka J (1938) Homo predmostensis. Prague: Nakladem Ceske Akademie Ved A Umeni.

Mayoux-Benhamou MA, Revel M, Aaron C, Chomette G, and Amor B (1989) A morphometric study of the lumbar foramen. Influence of flexion- extension movements and of isolated disc collapse. Surg Radiol Anat 11:97-102.

McCotter RE (1916) Regarding the length and extent of the human medulla spinalis. Anat Rec 10:559-564.

Mehler WB (1969) Some neurological species differences - a posteriori. Ann NY Acad Sci 167:424-468.

Minne HW, Leidig G, Wuster C, Siromachkostov L, Baldauf G, Bickel R, Sauer P, Lojen M, and Ziegler R (1988) A newly developed spine deformity index (SDI) to quantitate vertebral crush fractures in patients with osteoporosis. Bone Miner 3:335-349.

Misenhimer GR, Peek RD, Wiltse LL, Rothman SL, and Widell EH, Jr. (1989)

Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size. Spine 14:367-372.

Mitra SR, Datir SP, and Jadhav SO (2002) Morphometric study of the lumbar pedicle in the Indian population as related to pedicular screw fixation. Spine 27:453-459.

Mixter WJ, and Barr JS (1934) Rupture of the intervertebral disc with involvement of the spinal canal. New Engl J Med 211:210-215.

Moishezon-Blank N (1992) Commentary on the possible effect of hormones in food on human growth. Med Hypotheses 38:273-277.

Morel P (1993) Une chasse a l'ours brun il y a $12^{\prime} 000$ ans: Nouvelle découverte à la grotte du Bichon (La-Chaux-de-Fonds). Archäologie der Schweiz 16:110-117.

Murrie VL, Dixon AK, Hollingworth W, Wilson H, and Doyle TAC (2003) Lumbar lordosis: Study of patients with and without low back pain. Clin Anat 16:144147.

Nachemson A (1966) The load on lumbar disks in different positions of the body. Clin Orthop 45:107-122.

Nachemson AL, Schultz AB, and Berkson MH (1979) Mechanical properties of human lumbar spine motion segments. Influences of age, sex, disc level, and

Nakashima T (1986) A morphological comparison of the foramen magnum of the male middle Kyushuites with that of other ethnological groups. J Uoeh 8:405-410.

Nathan H (1962) Osteophytes of the vertebral column. J Bone Joint Surg Am 44:243268.

Nathan H, Alkalaj I, and Aviad I (1960) Spondylosis in the aged. Geriatrics 15:187-196.

Nathan H, Weinberg H, C RG, and Aronson HB (1964) A simple method of inducing erect posture in baboons. Am J Phys Anthropol 22:321-328.

Newell RR, Constandse-Westermann TS, and Meiklejohn C (1979) The skeletal remains of Mesolithic Man in Western Europe: An evaluative catalogue. J Hum Evol 8:1-228.

Niedner F (1932) Zur Kenntnis der normalen und pathologischen Anatomie der Wirbelkörperrandleiste. Fortschr Röntgenstr 46:628-662.

Nissan M, and Gilad I (1984) The cervical and lumbar vertebrae - an anthropometric model. Engin Med 13:111-115.

Nissan M, and Gilad I (1986) Dimensions of human lumbar vertebrae in the sagittal
plane. J Biomech 19:1986.

Nowicki BH, Haughton VM, Schmidt T, Lim TH, An HS, Riley III LH, Yu L, and Hong JW (1996) Occult lumbar lateral spinal stenosis in neural foramina subjected to physiologic loading. Am J Neuroradiol 17:1605-1614.

Oakley KP, Campell BG, and I MT (1971) Catalogue of fossil hominids part II: Europe. London: Trustees of the British Museum (Natural History).

Ogino H, Tada K, Okada K, Yonenobu K, Yamamoto T, Ono K, and Namiki H (1983) Canal diameter, anteroposterior compression ratio, and spondylotic myelopathy of the cervical spine. Spine 8:1-15.

Olsewski JM, Simmons EH, Kallen FC, Mendel FC, Severin CM, and Berens DL (1990) Morphometry of the lumbar spine: Anatomical perspectives related to transpedicular fixation. J Bone Joint Surg Am 72:541-549.

Pakkenberg H, and Voigt J (1964) Brain weight of the Danes. Acta Anat 56:297-307.

Pallis C, Jones AM, and Spillane JD (1954) Cervical spondylosis. Incidence and implications. Brain 77:274-289.

Palsson J, and Schwidetzky I (1973) Die Variabilität anthropologischer Merkmale in Island nach Endogamie/Exogamie, Altersklassen und Sozialgruppen. Homo

Panjabi MM, Brand RA, Jr., and White AA, 3rd (1976) Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 58:642-652.

Panjabi MM, Duranceau J, Goel V, Oxland T, and Takata K (1991a) Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions. Spine 16:861-869.

Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, and Price M (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine 17:299-306.

Panjabi MM, Takata K, Goel V, Federico D, Oxland T, Duranceau J, and Krag M (1991b) Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16:888-901.

Panjabi MM, Takata K, and Goel VK (1983) Kinematics of lumbar intervertebral foramen. Spine 8:348-357.

Park WM (1980) The place of radiology in the investigation of low back pain. Clin Rheum Dis 6:93-132.

Parke WW, Whalen JL, Van Demark RE, and Kambin P (1994) The infra-aortic arteries of the spine: Their variability and clinical significance. Spine 19:1-5.

Pfeiffer S (1980) Age changes in the external dimensions of adult bone. Am J Phys Anthropol 52:529-532.

Philipp E (1932) Röntgenologische und anatomische Untersuchungen zum Kapitel des Kreuzschmerzes mit besonderer Berücksichtigung der Sakralisation. Z Geburtsh Gynäk 102:233-261.

Piera V, Rodriguez A, Cobos A, Hernandez R, and Cobos P (1988) Morphology of the lumbar vertebral canal. Acta Anat 131:35-40.

Piontek J (1973) Problem morfoloske differencijacije i determinacije nezavisnosti osobina u strukturi kicmenog stuba coveka. Glasnik Antropoloskog Drustva Jugoslavije 10:13-20.

Piontek J, and Budzynska J (1972) Zmiennose cech metrycznych kregoslupa. Przeglad Antropol 38:17-26.

Piontek J, and Zaborowski Z (1973) Problem zroznicowania budowy morfologicznej szyjnego odcinka kregoslupa czlowieka, z uwzglednieniem badan radiometrycznych. Przeglad Antropol 39:71-79.

Pittard E, and Sauter MR (1945) Un squelette magdalénien provenant de la Station des Grenouilles (Veyrier, Haute-Savoie). Archives suisses d'Anthropologie générale 11:149-200.

Porter RW, Drinkall JN, Porter DE, and Thorp L (1987) The vertebral canal: II. Health and academic status, a clinical study. Spine 12:907-911.

Porter RW, Hibbert C, and Wellman P (1980) Backache and the lumbar spinal canal. Spine 5:99-105.

Porter RW, Hibbert CS, and Wicks M (1978a) The spinal canal in symptomatic lumbar disc lesions. J Bone Joint Surg Br 60-B:485-487.

Porter RW, and Pavitt D (1987) The vertebral canal: I. Nutrition and development, an archaeological study. Spine 12:901-906.

Porter RW, Wicks M, and Ottewell D (1978b) Measurement of the spinal canal by diagnostic ultrasound. J Bone Joint Surg Br 60:481-484.

Post R (1966) Pilot study: Population differences in the frequency of spina bifida occulta. Eugen Quart 13:341-352.

Postacchini F, Ripani M, and Carpano S (1983) Morphometry of the lumbar vertebrae. An anatomic study in two Caucasoid ethnic groups. Clin Orthop:296-303.

Pretty GL, Henneberg M, Lambert KM, and Prokopec M (1998) Trends in stature in the South Australian Aboriginal Murraylands. Am J Phys Anthropol 106:505-514.

Pun WK, Luk KD, and Leong JC (1987) Influence of the erect posture on the development of the lumbosacral region. A comparative study on the lumbosacral junction of the monkey, dog, rabbit and rat. Surg Radiol Anat 9:69-73.

Putti V (1927) Lady jones lecture on new conceptions in the pathogenesis of sciatic pain. Lancet 2:53-60.

Putz R (1981) Funktionelle Anatomie der Wirbelgelenke. Stuttgart, New York: Georg Thieme.

Putz RL, and Müller-Gerbl M (1996) The vertebral column--a phylogenetic failure? A theory explaining the function and vulnerability of the human spine. Clin Anat 9:205-212.

Ramani PS (1976) Variations in size of the bony lumbar canal in patients with prolapse of lumbar intervertebral discs. Clin Radiol 27:301-307.

Rauschning W (1987) Normal and pathologic anatomy of the lumbar root canals. Spine 12:1008-1019.

Ravenel M (1877) Die Maassverhältnisse der Wirbelsäule und des Rückenmarkes beim

## Menschen. Z Anat Entw Gesch 2:334-345.

Resnick D (1985) Degenerative diseases of the vertebral column. Radiology 156:3-14.

Riegerova J (1979) Materialy kostne z cmentarzyska ludnosci zydowskiej z brzescia kujawskiego. Szkielet pozaczaszkowy. Przeglad Antropol 45:65-73.

Riel-Salvatore J, and Clark GA (2001) Grave markers. Middle and early Upper Paleolithic burials and the use of chronotypology in contemporary Paleolithic research. Curr Anthropol 42:449-479.

Riepert T, Rittner C, Ulmcke D, Ogbuihi S, and Schweden F (1995) Identification of an unknown corpse by means of Computed Tomography (CT) of the lumbar spine. J Forensic Sci 40: 126-127.

Roaf R (1960) Vertebral growth and its mechanical control. J Bone Joint Surg Br 42:4059.

Rogers AW (1992) A textbook of anatomy. Edinburgh: Churchill Livingstone.

Rosenberg E (1899) Über eine primitive Form der Wirbelsäule des Menschen. Morphologisches Jahrbuch 27:1-118.

Rösing FW, and Schwidetzky I (1977) Vergleichend-statistische Untersuchungen zur

Anthropologie des frühen Mittelalters (500-1000 n. d. Z.). Homo 28:65-115.

Rösing FW, and Schwidetzky I (1981) Vergleichend-statistische Untersuchungen zur Anthropologie des Hochmittelalters (1000-1500 n. d. Z.). Homo 32:211-251.

Ross C, and Henneberg M (1995) Basicranial flexion, relative brain size, and facial kyphosis in Homo sapiens and some fossil Hominids. Am J Phys Anthropol 98:575-593.

Ross PD, Wasnich RD, Davis JW, and Vogel JM (1991) Vertebral dimension differences between caucasian populations, and between Caucasians and Japanese. Bone 12:107-112.

Röthig W (1971) Die Beziehungen zwischen der Körperlänge und dem Querdurchmesser des Foramen occipitale magnum beim erwachsenen Menschen. Anthropol Anz 33:48-51.

Rothschild BM, and Rothschild C (1996) Is there an epidemic/epizootic of spondyloarthropathy in baboons? J Med Primatol 25:69-70.

Ruff CB (1994) Morphological adaptation to climate in modern and fossil Hominids. Yrbk Phys Anthropol 37:65-107.

Ruff CB, Trinkaus E, and Holliday TW (1997) Body mass and encephalization in

Pleistocene Homo. Nature 387:173-176.

Ruff CB, Trinkaus E, Walker A, and Larsen CS (1993) Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation. Am J Phys Anthropol 91:2153.

Ruff CB, Walker A, and Trinkaus E (1994) Postcranial robusticity in homo. III: Ontogeny. Am J Phys Anthropol 93:35-54.

Rühli FJ, and Henneberg M (2001) Eine Hypothese zur hormonellen Beeinflussung menschlicher Microevolution: Leptin und Hyperostosis frontalis interna. Bull Soc Suisse d'Anthropol 7:39-45.

Rühli FJ, and Henneberg M (2002) Are hyperostosis frontalis interna and leptin linked? A hypothetical approach about hormonal influence on human microevolution. Med Hypotheses 58:378-381.

Rühli FJ, Schultz M, and Henneberg M (2002) Microevolution of the Central European human vertebral column since the Neolithic: Preliminary osteometric assessment and interpretations. Am J Phys Anthropol Suppl. 34:134-135.

Rühli FJ, Solomon LB, and Henneberg M (2003) High prevalence of tarsal coalitions and tarsal joint variants in a recent cadaver sample and its possible significance.

Rüttimann B (1990) Historischer Zugang zur Diskushernie. Schweiz Rundsch Med Prax 79:791-796.

Rydevik B, Brown MD, and Lundborg G (1984) Pathoanatomy and pathophysiology of nerve root compression. Spine 9:7-15.

Saillant G (1976) Etudes anatomique des pédicules vertébraux. Revue Chir orthopéd 62:151-160.

Salamon G, Louis R, and Guerinel G (1966) Le fourreau dural lombo-sacré. Acta Radiol Diagn 7:1107-1123.

Samuel M (1932) Ueber die Kreuzschmerzen der Frau. Münch Med Wochenschr 79:667-671.

Sanders WJ (1991) Comparative study of Hominid lumbar neural canal dimensions. Am J Phys Anthropol 12:157.

Sanders WJ (1998) Comparative morphometric study of the Australopithecine vertebral series Stw-H8/H41. J Hum Evol 34:249-302.

Sauter MR (1956) Le squelette préhistorique de la grotte du Bichon. Archives des

Sciences 9:330-335.

Schaefer MS (1999) Brief communication: Foramen magnum-carotid foramina relationship: Is it useful for species designation? Am J Phys Anthropol 110:467471.

Schmid MR, Stucki G, Duewell S, Wildermuth S, Romanowski B, and Hodler J (1999) Changes in cross-sectional measurements of the spinal canal and intervertebral foramina as a function of body position: In vivo studies on an openconfiguration mr system. AJR 172:1095-1102.

Schmorl G, and Junghanns H (1968) Die gesunde und kranke Wirbelsäule in Röntgenbild und Klinik. Stuttgart: Georg Thieme.

Schröter P (1977) 75 Jahre Anthropologische Staatssammlung 1902-1977. München: Staatssammlung München.

Schultz AB, Larocca H, Galante JO, and Andriacchi TP (1972) A study of geometrical relationships in scoliotic spines. J Biomech 5:409-420.

Schultz AH (1961) Vertebral column and thorax. Basel: S. Karger AG.

Schwidetzky I (1962) Das Grazilisierungsproblem. Homo 13:188-195.

Schwidetzky I (1967) Vergleichend-statische Untersuchungen zur Anthropologie des

Neolithikums. Ergebnisse der Penrose-Analyse: Das Gesamtmaterial. Homo 18:174-198.

Schwidetzky I (1969) Grazilisation und Degrazilisation. Homo 20:160-174.

Schwidetzky I (1972) Vergleichend-statistische Untersuchungen zur Anthropologie der Eisenzeit (letztes Jahrtausend v. d. Z.). Homo 23:245-272.

Schwidetzky I, and Rösing FW (1976) Vergleichend-statistische Untersuchungen zur Anthropologie der Römerzeit (0-500 n. d. Z.). Homo 26:193-218.

Schwidetzky I, and Rösing FW (1984) Vergleichend-statistische Untersuchungen zur Anthropologie der Neuzeit (nach 1500). Homo 35:1-49.

Schwidetzky I, and Rösing FW (1989) Vergleichend-statistische Untersuchungen zur Anthropologie von Neolithikum und Bronzezeit. Homo 40:4-45.

Scoles PV, Linton AE, Latimer B, Levy ME, and Digiovanni BF (1988) Vertebral body and posterior element morphology: The normal spine in middle life. Spine 13:1082-1086.

Sedlmeier J, and Kaufmann B (1996) Die mesolithische Bestattung in der BirsmattenBasisgrotte (Nenzlingen BL). Archäologie der Schweiz 19:140-145.

Shapiro L (1993) Evaluation of "unique" aspects of human vertebral bodies and pedicles
with a consideration of Australopithecus Africanus. J Hum Evol 25:433-470.

Shapiro L (1995) Functional morphology of indrid lumbar vertebrae. Am J Phys Anthropol 98:323-342.

Silva MJ, Keaveny TM, and Hayes WC (1997) Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22:140-150.

Simmonds M (1903) Über Spondylitis deformans und ankylosierende Spondylitis. Fortschr Röntgenstr 7:51-62.

Smith FH (1984) Fossil Hominids from the Upper Pleistocene of Central Europe and the origin of modern Europeans. In F Smith and F Spencer (eds.): The origins of modern humans: A world survey of the fossil evidence. New York: Alan R. Liss, pp. 137-209.

Stebler R, Putzi R, and Michel BA (2001) Lumbale Rückenschmerzen - Diagnostik. Schweiz Med Forum 9:205-208.

Stefko WH (1926) Zur Anthropologie der Wirbelsäule bei Südrussen. Der Einfluss der Unterernährung auf die Form und Struktur der Wirbel. Zeitschr f Konst 12:416425.

Stephan CN, and Henneberg M (2001) Medicine may be reducing the human capacity to
survive. Med Hypotheses 57:633-637.

Stephens MM, Evans JH, and O'Brien JP (1991) Lumbar intervertebral foramens. An in vitro study of their shape in relation to intervertebral disc pathology. Spine 16:525-529.

Stewart TD (1932) The vertebral column of the Eskimo. Am J Phys Anthropol 17:123136.

Stewart TD (1962) Neanderthal cervical vertebrae: Bibliotheca primatologica. Basel / New York: Karger, pp. 130-154.

Stockdale HR, and Finlay D (1980) Use of diagnostic ultrasound to measure the lumbar spinal canal. Br J Radiol 53:1101-1102.

Straus LG (1995) The Upper Paleolithic of Europe: An overview. Evol Anthropol 4:416.

Stringer CB, Hublin JJ, and Vandermeersch B (1984) The origin of anatomically modern humans in Western Europe. In F Smith and F Spencer (eds.): The origins of modern humans: A world survey of the fossil evidence. New York: Alan R. Liss, pp. 51-135.

Sunderland S, and Bradley KC (1961) Stress-strain phenomena in human spinal nerve
roots. Brain 84:120-124.

Surtees LC, Henneberg M, Warton CMR, Khan K, and Broodryk M (1989a) The lateral internal thoracic artery: An hypothesis relating occurence of the variant vessel to body form. South Afr J Sci 85:466.

Surtees LC, Henneberg M, Warton CMR, Khan K, and Broodryk M (1989b) The lateral internal thoracic artery; an hypothesis relating occurence of the variant vessel to body form. Newsl Anat Soc South Afr 20:14.

Susa E, and Varga T (1981) Die Variationen des Foramen transversicum. Homo 32:8996.

Swanberg H (1915) The intervertebral foramina in Man. Med Rec 87:176-180.

Swedborg I (1974) Degenerative changes of the human spine - a study on dried macerated skeletons. Stockholm: Akademisk Avhandling.

Tatarek NE (2001) Variation in the lumbar neural canal. Am J Phys Anthropol Suppl 32:147.

Thomson RB (1913) Note on the vertebral column of the Bushman race of South Africa. Trans Roy Soc S Afr 3:365-378.

Tibbetts GL (1981) Estimation of stature from the vertebral column in American

Todd TW, and Pyle SI (1928a) Effects of maceration and drying upon the vertebral column. Am J Phys Anthropol 12:303-319.

Todd TW, and Pyle SI (1928b) A quantitative study of the vertebral column by direct and roentgenoscopic methods. Am J Phys Anthropol 12:321-338.

Tominaga T, Dickman CA, Sonntag VK, and Coons S (1995) Comparative anatomy of the baboon and the human cervical spine. Spine 20:131-137.

Towe AL (1973) Relative numbers of pyramidal tract neurons in mammals of different sizes. Brain Behav Evol 7:1-17.

Tribus CB, and Belanger T (2001) The vascular anatomy anterior to the L5-S1 disk space. Spine 26:1205-1208.

Trinkaus E (1981) Neanderthal limb proportions and cold adaptation. In CB Stringer (ed.): Aspects of human evolution. London: Taylor and Francis Ltd, pp. 187224.

Trinkaus E (1985) Pathology and the posture of the la Chapelle-aux-Saints Neandertal. Am J Phys Anthropol 67:19-41.

Trinkaus E (1997) Appendicular robusticity and the paleobiology of modern human
emergence. Proć Natl Acad Sci U S A 94:13367-13373.

Trinkaus E, Churchill SE, and Ruff CB (1994) Postcranial robusticity in Homo. II: Humeral bilateral asymmetry and bone plasticity. Am J Phys Anthropol 93:1-34.

Trotter M, and Gleser GC (1952) Estimation of stature from long bones of American Whites and Negroes. Am J Phys Anthropol 10:463-514.

Trotter M, and Hixon BB (1974) Sequential changes in weight, density, and percentage ash weight of human skeletons from an early fetal period through old age. Anat Rec 179:1-18.

Ullrich CG, Binet EF, Sanecki MG, and Kieffer SA (1980) Quantitative assessment of the lumbar spinal canal by computed tomography. Radiology 134:137-143.

Vaccaro AR, Rizzolo SJ, Allardyce TJ, Ramsey M, Salvo J, Balderston RA, and Cotler JM (1995) Placement of pedicle screws in the thoracic spine. Part I: Morphometric analysis of the thoracic vertebrae. J Bone Joint Surg Am 77:1193-1199.

Vallois HV, and de Félice S (1977) Les mésolithiques de France. Paris: Masson.
van Schaik JJ, Verbiest H, and van Schaik FD (1985) Morphometry of lower lumbar vertebrae as seen on CT scans: Newly recognized characteristics. AJR 145:327-

Vanderlinden RG (1984) Subarticular entrapment of the dorsal root ganglion as a cause of sciatic pain. Spine 9:19-22.

Varki A (2001) Loss of n-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for Hominid evolution. Am J Phys Anthropol Suppl 33:54-69.

Veleanu C (1972) Remarques sur les caractéristiques morphologiques des vertèbres cervicales. Acta Anat 81:148-157.

Veleanu C (1975) Contributions to the anatomy of the cervical spine. Acta Anat 92:467480.

Verbiest H (1954) A radicular syndrome from developmental narrowing of the lumbar vertebral canal. J Bone Joint Surg Br 36:230-237.

Vital JM, Lavignolle B, Grenier N, Rouais F, Malgat R, and Senegas J (1983) Anatomy of the lumbar radicular canal. Anat Clin 5:141-151.

Weidenreich F (1945) The brachycephalization of recent mankind. Southwest J Anthropol 1:1-54.

Weinstein J (1986) Report of the 1985 ISSLS traveling fellowship. Mechanisms of
spinal pain. The dorsal root ganglion and its role as a mediator of low-back pain. Spine 11:999-1001.

Weinstein JN, Rydevik BL, and Rauschning W (1992) Anatomic and technical considerations of pedicle screw fixation. Clin Orthop 284:34-46.

Weisz GM, and Lee P (1983) Spinal canal stenosis. Concept of spinal reserve capacity: Radiologic measurements and clinical applications. Clin Orthop 179:134-140.

Wetzel G (1910) Die Wirbelsäule der Australier. Erste Mitteilung: Das Volumen der knöchernen Wirbelsäule und ihrer Abschnitte. Z Morphol Anthropol 12:313340.

White AA, 3rd, and Hirsch C (1971) The significance of the vertebral posterior elements in the mechanics of the thoracic spine. Clin Orthop 81:2-14.

Wiercinski A (1979) Has the brain size decreased since the Upper Paleolithic period? Bull Mém Soc d'Anthrop Paris 6:419-427.

Wiesel SW, Tsourmas N, Feffer HL, Citrin CM, and Patronas N (1984) A study of computer-assisted tomography. I. The incidence of positive CAT scans in an asymptomatic group of patients. Spine 9:549-551.

Wildermuth S, Zanetti M, Duewell S, Schmid MR, Romanowski B, Benini A, Böni T,
and Hodler J (1998) Lumbar spine: Quantitative and qualitative assessment of positional (upright flexion and extension) mr imaging and myelography. Radiology 207:391-398.

Willerman L, Schultz R, Rutledge JN, and Bigler ED (1991) In vivo brain size and intelligence. Intelligence 15:223-228.

Williams RM (1975) The narrow lumbar spinal canal. Austral Radiol 19:356-360.

Willis TA (1923) The thoracicolumbar column in White and Negro stocks. Anat Rec 26:31-40.

Willis TA (1924) Backache from vertebral anomaly. Surg Gyn Obst 38:658-665.

Willis TA (1929) An analysis of vertebral anomalies. Am J Surg 6:163-168.

Wiltse LL (1991) The history of spinal disorders. In JW Frymoyer (ed.): The adult spine: Principles and practice. New York: Raven, pp. 3-41.

Wolf BS, Khilnani M, and Malis L (1956) The sagittal diameter of the bony cervical spinal canal and its significance in cervical spondylosis. J Mt Sinai Hosp 23:283-292.

Wolff J (1892) Das Gesetz der Transformation der Knochen. Berlin: Hirschwald.

Wood JW, Milner GR, C HH, and Weiss KM (1992) The osteological paradox, problems of inferring prehistoric health from skeletal samples. Curr Anthropol 33:343-370.

Wood-Jones F (1938) The cervical vertebrae of the Australian native. J Anat 72:411415.

Wright S (1968) Evolution and the genetics of populations. Chicago: The University of Chicago.

Wurm H (1982) Über die Schwankungen der durchschnittlichen Körperhöhe im Verlauf der deutschen Geschichte und die Einflüsse des Eiweissanteils der Kost. Homo 33:21-42.

Xu R, Ebraheim NA, Yeasting R, Wong F, and Jackson WT (1995) Anatomy of C7 lateral mass and projection of pedicle axis on its posterior aspect. J Spinal Disord 8:116-120.

Yettram AL, and Jackman MJ (1982) Structural analysis for the forces in the human spinal column and its musculature. J Biomed Eng 4:118-124.

Yoo JU, Zou D, Edwards WT, Bayley J, and Yuan HA (1992) Effect of cervical spine motion on the neuroforaminal dimensions of human cervical spine. Spine

Yoshida M, Shima K, Taniguchi Y, Tamaki T, and Tanaka T (1992) Hypertrophied ligamentum flavum in lumbar spinal canal stenosis. Pathogenesis and morphologic and immunohistochemical observation. Spine 17:1353-1360.

Yu S, Haughton VM, and Rosenbaum AE (1991) Magnetic resonance imaging and anatomy of the spine. Radiol Clin North Am 29:691-710.

Zindrick MR, Wiltse LL, Doornik A, Widell EH, Knight GW, Patwardhan AG, Thomas JC, Rothman SL, and Fields BT (1987) Analysis of the morphometric characteristics of the thoracic and lumbar pedicles. Spine 12:160-166.

## Appendix

1. List of abbreviations for measurements used ..... 335
2. Complete original data ..... 337
3. Complete statistics of variables of major time groups ..... 349
4. Sexual dimorphism of all variables in modern samples (means of modern samples, percentage-difference, $t$-values) ..... 373
5. Side differences of variables in modern samples (means, $t$-values) ..... 375
6. Correlations of variables with individual age in modern samples ..... 376
7. Correlations of variables with major age groups in non-modern samples ..... 380
8. Correlations of variables with major age groups separately for major timegroups384
9. Inter-correlations of variables ..... 396
10. Significant microevolutionary regressions ..... 420
11. ANOVA of variables with major time groups ..... 422
12. Alterations of standard deviation of variables with time group 1 versus 3 ( F - values) ..... 430
13. Partial correlation coefficients of variables with time before present and selectedlong bone measurements (variables with significant correlation with the selectedlong bone measurements only; whole sample)434
14. Principal component analysis ..... 435
15. Abstract on PhD data (Rühli et al., 2002) ..... 439

## 1. List of abbreviations for measurements used

| Abbreviation | Variable |
| :---: | :---: |
| BP | year of birth before 2000 A.D. |
| Agegroup | Adult (Agegroup1); Matur (2), Senil (3) |
| C3M2 | C3 dopsal vertebral body height |
| C3M1 | C3 ventral vertebral body height |
| C3M6 | C3 sagittal diameter vertebral body |
| C3M9 | C3 transverse diameter vertebral body |
| C3PHI | C3 left pedicle height |
| $\mathrm{C} 3 \mathrm{PHr}^{\text {r }}$ | C3 right pedicle height |
| C3M10 | C3 sagittal diameter spinal canal |
| C3M11 | C3 transverse diameter spinal canal |
| C3SPL | C3 spinous process length |
| C3TPW | C3 transverse process width |
| C3IFlcr | C3 left cranial intervertebral foramen width |
| C3IFIca | C3 left caudal intervertebral foramen width |
| C3IFrcr | C3 right cranial intervertebral foramen width |
| C3IFrca | C3 right caudal intervertebral foramen width |
| C7M2 | C7 dorsal vertebral body height |
| C7M1 | C7 ventral vertebral body height |
| C7M6 | C7 sagittal diameter vertebral body |
| C7M9 | C7 transverse diameter vertebral body |
| C7PH | C7 left pedicle height |
| C7PHr | C7 right pedicle height |
| C7M10 | C7 sagittal diameter spinal canal |
| C7M11 | C7 transverse diameter spinal canal |
| C7SPL | C7 spinous process length |
| C7TPW | C7 transverse process width |
| C7IFIcr | C7 left cranial intervertebral foramen width |
| C7IFIca | C7 left caudal intervertebral foramen width |
| C7IFrcr | C7 right cranial intervertebral foramen width |
| C7IFrca | C7 right caudal intervertebral foramen width |
| T1M2 | Th1 dorsal vertebral body height |
| T1M1 | Th1 ventral vertebral body height |
| T1M6 | Th1 sagittal diameter vertebral body |
| T1M9 | Th1 transverse diameter vertebral body |
| T1PHI | Th1 left pedicle height |
| T1TPHr | Th1 righ pedicle height |
| T1M10 | Th1 sagittal diameter spinal canal |
| T1M11 | Th1 transverse diameter spinal canal |
| T1SPL | Th1 spinous process length |
| T1TPW | Th1 transverse process width |
| T1IFIcr | Th1 left cranial intervertebral foramen width |
| T1IFIca | Th1 left caudal intervertebral foramen width |
| T1IFrcr | Th1 right cranial intervertebral foramen width |
| T1IFrca | Th1 right caudal intervertebral foramen width |
| T6M2 | Th6 dorsal vertebral body height |
| T6M1 | Th6 ventral vertebral body height |
| T6M6 | Th6 sagittal diameter vertebral body |
| T6M9 | Th6 transverse diameter vertebral body |
| T6PHI | Th6 left pedicle height |
| T6PHr | Th6 right pedicle height |
| T6M10 | Th6 sagittal diameter spinal canal |
| T6M11 | Th6 transverse diameter spinal canal |


| T6SPL | Th6 spinous process length |
| :---: | :---: |
| T6TPW | Th6 transverse process width |
| T6IFIca | Th6 left caudal intervertebral foramen width |
| T6IFrca | Th6 right caudal intervertebral foramen width |
| T10M2 | Th10 dorsal vertebral body height |
| T10M1 | Th10 ventral vertebral body height |
| T10M6 | Th10 sagittal diameter vertebral body |
| T10M9 | Th10 transverse diameter vertebral body |
| T10PHI | Th10 left pedicle height |
| T10PHr | Th10 right pedicle height |
| T10M10 | Th10 sagittal diameter spinal canal |
| T10M11 | Th10 transverse diameter spinal canal |
| T10SPL | Th10 spinous process length |
| T10TPW | Th10 transverse process width |
| T10IFIca | Th10 left caudal intervertebral foramen |
| T10IFrca | Th10 right caudal intervertebral for |
| L1M2 | L1 dorsal vertebral body height |
| L1M1 | L1 ventral vertebral body height |
| L1M6 | L1 sagittal diameter vertebral body |
| L1M9 | L1 transverse diameter vertebral body |
| L1PHI | L1 left pedicle height |
| L1PHr | L1 right pedicle height |
| L1M10 | L1 sagittal diameter spinal canal |
| L1M11 | L1 transverse diameter spinal cana |
| L1SPL | L. 1 spinous process length |
| L1TPW | L1 transverse process width |
| L1IFIcr | L1 left cranial intervertebral foramen width |
| L1IFlca | L1 left caudal intervertebral fora |
| L1IFrcr | L1 right cranial intervertebral foramen width |
| L1IFrca | L1 right caudal intervertebral foramen widt |
| L5M2 | L5 dorsal vertebral body height |
| L5M1 | L5 ventral vertebral body height |
| L5M6 | L5 sagittal diameter vertebral body |
| L5M9 | L5 transverse diameter vertebral body |
| L5PHI | L5 left pedicle height |
| L5PHr | L5 right pedicle height |
| L5M10 | L5 sagittal diameter spinal canal |
| L5M11 | L5 transverse diameter spinal canal |
| L5SPL | L5 spinous processus length |
| L5TPW | L5 transverse process width |
| L5IFlcr | L5 left cranial intervertebral foramen width |
| L5IFIca | L5 left caudal intervertebral foramen wid |
| L5IFrcr | L5 right cranial intervertebral foramen widh |
| L5IFrca | L5 right caudal intervertebral foramen width |
| FMM16 | sagittal diameter foramen magnum |
| FMM7 | transverse diameter foramen magnum |
| HLM1 | maximum humerus length |
| HCM7 | humerus minimal circumference |
| FHM18 | femoral head width |
| FLM1 | maximum femur length |
| FCM8 | mid-femur circumference |
| BIWM2 | bi-iliac width |


\＆્ષ્ષ

| ambeairseme | numat | 8 | sprus | ava | cul | Ens | $\mathrm{OH}_{3}$ | 析 |  | cura | cami | － | arm | caso | cricia | caiter | cisia | cous | Cwi | cuis | ， | cial | crai | crus | cur | ， | H0w |  |  |  | crutios | Tive | пи\％ | тия | Tu\％ | nam | ntat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Noch | ${ }_{4}^{48}$ | ${ }_{\substack{13355 \\ 1395}}$ |  | ${ }^{29} 9$ | 15 | ${ }^{18} 1$ | 208 | 7 | ${ }^{2}$ | ${ }^{138}$ | ${ }^{26,4}$ |  | 514 | 62 | 71 | 81 | 1.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{179}$ | 17 | ${ }^{18}$ | 262 | ${ }^{53}$ | 8.3 |
| Earchang | ${ }_{-1355}^{1354}$ | ${ }_{-1300}^{1300}$ | \％ | ${ }^{192}$ | ${ }^{128}$ |  |  | ${ }_{7} 6$ | ${ }_{89}^{58}$ |  | ${ }_{245}^{24.4}$ |  |  | ${ }_{5}^{62}$ |  | ${ }_{5}^{48}$ |  | ${ }^{4.52}$ | ${ }_{15}^{139}$ | ${ }_{7}^{195}$ |  | 65 | ${ }^{68}$ |  | ${ }_{25}^{261}$ |  |  |  |  |  | \％ | ${ }_{7}^{17,4}$ | 174 | ${ }_{195}^{195}$ | ${ }_{29}^{314}$ | 104 | ${ }_{103}^{102}$ |
| ，ersing | － | $\xrightarrow{13300}$ | ？ | $\stackrel{15}{151}$ | ${ }_{168}^{158}$ | ${ }_{188}^{178}$ | ${ }_{91}^{183}$ | ${ }_{7}^{78}$ | ${ }_{83}^{8}$ | ${ }_{118}^{118}$ |  |  |  | ${ }^{54}$ | ${ }^{83}$ | 588 | ${ }^{58} 7$ | ${ }^{152}$ | ${ }^{15}$ | ${ }_{\substack{185 \\ 161}}^{1615}$ | ${ }_{21}^{27}$ | ${ }^{62}$ | ${ }_{85}^{76}$ | ${ }_{\text {c }}^{157}$ | ${ }_{22}^{22}$ | ${ }^{29}$ | 812 | ${ }_{53}^{55}$ | ${ }_{8}$ | 54 62 | ${ }_{64}^{66}$ | $\xrightarrow{79.5}$ | 12.4 |  |  | ${ }_{12}^{12}$ | ${ }^{10.9}$ |
| ，Earting | ${ }^{1393}$ | ${ }^{13300}$ | ， | 4187 | $\cdots$ | 157 | 146 | ${ }_{8}$ | ${ }_{8}$ | 14.4 | ${ }_{23}^{24}$ | ${ }_{22}{ }^{26}$ | ${ }_{526}$ | ${ }_{59}$ | ${ }_{75}$ | ${ }_{62} 5$ | 84 | ${ }^{56}$ | 155 | ${ }_{184} 18$ | ${ }^{271}$ | 77 | 78 | 141 | ${ }^{232}$ | ${ }^{378}$ |  | ${ }^{65}$ | 105 | 58 | 105 | ${ }_{192}^{195}$ | ${ }^{1785}$ | 171 | 325 | 4 | ${ }^{9,1} 9$ |
| ，Embling | ${ }_{\substack{1330 \\ 1328}}$ | ${ }_{1300}^{1330}$ | ， | ：22 | 123 | 1.5 | 166 | 64 | 57 |  |  |  |  | ${ }^{69}$ | $\stackrel{3}{ }$ |  |  | －1598 | ${ }_{115}^{15}$ | ${ }^{17} 17$ | ${ }_{2}^{278}$ | ${ }^{57}$ | ${ }_{67}^{66}$ | ${ }_{\text {l }}^{151}$ | ${ }_{241}^{248}$ |  |  | ${ }_{6}^{52}$ | ${ }_{95}^{8.8}$ | ${ }_{\text {c }}^{58}$ | 87 | 19 | $\underset{1}{161} 1$ | ${ }^{173}$ | 3， 31 | ${ }_{76}^{10}$ | ${ }_{84}^{8.8}$ |
| ，ersting | ${ }_{1279}^{1929}$ | ${ }_{1300}^{1300}$ | 2 | ${ }_{15}$ | 155 | 49 | ${ }_{18}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{178}^{18}$ | ${ }_{18}$ | ${ }_{2}$ | 8．s |  |
|  | ${ }_{12751}^{1325}$ | ${ }_{13300}^{1330}$ | \％ | 145 | 15 | 173 |  |  |  |  |  |  |  |  |  |  |  | $\xrightarrow{151} 1$ | $\stackrel{138}{128}$ | 196 | ${ }_{2}^{258}$ | ${ }_{\substack{86 \\ 59}}^{\text {en }}$ | ${ }_{6}^{18}$ | ${ }_{15}^{14}$ | ${ }_{26}^{283}$ | ${ }_{234}^{398}$ | ${ }_{84}^{946}$ | ${ }_{5}^{6}$ | ${ }_{8}^{92}$ | ${ }_{59}^{62}$ | ${ }_{8}^{68}$ | ${ }_{165}^{17}$ | ${ }_{18,9} 8.1$ | 198 | ${ }_{324}^{312}$ | ${ }^{103}$ | ${ }_{87}^{89}$ |
|  | ${ }^{19355}$ | $\xrightarrow{13300}$ | ？ | ${ }_{1}^{151}$ | ${ }_{92}^{198}$ | ${ }_{\substack{188 \\ 176}}$ | ${ }^{193}$ | ${ }_{6}^{65}$ | ${ }_{6}^{73}$ | ${ }_{19}^{192}$ | ${ }_{24}^{24.5}$ |  | ${ }_{873}^{578}$ | ${ }_{5}^{59}$ | ${ }_{50}^{74}$ | ${ }_{88}^{88}$ | 7.2 | ${ }_{194}^{19}$ | ${ }^{192}$ | 192 | ${ }_{205}^{205}$ | ${ }_{8}^{75}$ | ${ }_{75}^{6,3}$ | ${ }_{11}^{137}$ | ${ }_{25}^{245}$ |  |  | ${ }_{5}^{51}$ | ${ }_{88}^{8.5}$ |  | ${ }_{77}$ | ${ }_{17}^{71.5}$ | ${ }_{185}^{16,}$ | ${ }_{175}^{178}$ | ${ }_{3}^{34}$ |  | ${ }_{92}^{96}$ |
|  | ${ }_{1279}^{1297}$ | ${ }_{13300}^{1350}$ | ； | ${ }_{15}^{15}$ | ${ }_{129}^{115}$ | ${ }_{159}^{159}$ | ${ }_{20}^{198}$ | ${ }_{7}^{6.8}$ | ${ }_{6.5}^{6.5}$ |  | ${ }_{24}^{255}$ |  |  | ${ }_{85}^{89}$ | $\begin{aligned} & 58 \\ & 78 \\ & 7.6 \end{aligned}$ | ${ }_{8}^{89}$ | ${ }_{81}^{73}$ | $\underset{154}{19}$ | ${ }_{14}^{14}$ | ${ }^{1768}$ | ${ }_{\text {24，}}^{29}$ | ${ }^{75}$ | 75 |  | ${ }_{298}^{256}$ |  |  | ${ }_{\substack{5.6 \\ 81}}$ |  | ${ }_{69}^{68}$ |  | ${ }_{7}^{7} 77$ | ${ }_{16,4}^{16.9}$ | ${ }_{\substack{185 \\ 186}}$ | ${ }_{338}^{306}$ | ${ }_{121}^{91}$ | ${ }_{11}^{86}$ |
| Wmoshur | ${ }_{1}^{6}$ | 850 | $\frac{1}{2}$ | 193 | 191 | 157 | 196 | ${ }^{5}$ | ${ }_{5}$ | 175 | 23.7 | 11.4 |  | 74 | ${ }_{87}$ | 34 | 84 |  | 144 | 155 | 255 | ${ }_{6}$ | 2.2 | 148 | 253 |  |  | ${ }^{5} 5$ | 11.7 | ${ }_{64}$ | 115 | 177 | 155 |  | 283 | ${ }_{54}^{124}$ | 105 |
| ${ }_{\text {chur }}^{\text {chur }}$ | \％68 | ${ }_{\text {ctic }}^{505}$ | ？ | 197 |  |  |  | $6^{69}$ | 72 |  |  | 111 |  |  |  |  |  | 1745 | ${ }_{\substack{14.4 \\ 148}}^{18}$ | ${ }_{158}^{175}$ | ${ }_{258}^{258}$ | ${ }^{76}$ | ${ }_{65}^{8}$ | ${ }_{195}^{195}$ | ${ }_{265}^{295}$ | ${ }_{225}^{27}$ | 701 | ${ }_{\substack{85 \\ 56}}$ | ${ }_{89}^{114}$ | ${ }_{6}^{65}$ | ${ }_{7}^{103}$ | $\stackrel{197}{164}$ | ${ }_{155}^{165}$ | $\stackrel{184}{164}$ | ${ }^{309}$ | ${ }_{86}^{91}$ | ${ }_{80}^{8 .}$ |
| ${ }_{\text {cher }}^{\text {chur }}$ | ${ }^{69}$ | ${ }_{650}^{650}$ | ？ | 115 | ${ }_{121}^{142}$ | ${ }_{165}^{155}$ | ${ }_{204}^{204}$ | 6 | 69 | 153 |  |  | 596 | ${ }_{6}^{88}$ | $\begin{aligned} & \text { 808 } \\ & \text { ge } \end{aligned}$ | $\begin{aligned} & 71 \\ & 68 \end{aligned}$ | $\frac{77}{78}$ | ${ }_{19}^{148}$ |  | ${ }_{9}^{20.1}$ |  |  | $6$ | $\begin{aligned} & 122 \\ & 126 \end{aligned}$ | $\begin{aligned} & 273 \\ & 254 \\ & \hline 254 \end{aligned}$ |  | ${ }_{\substack{401 \\ n \rightarrow 4}}$ | ${ }_{5}^{52}$ | ${ }_{70,1}^{90,5}$ | ${ }_{6}^{51}$ |  | ${ }_{1}^{158}$ | ${ }_{\substack{159 \\ 125}}$ | ${ }_{185}^{19}$ | ${ }_{228}^{298}$ | ${ }_{82}^{92}$ | ${ }^{\text {明 }}$ |
| ${ }_{\text {chur }}^{\text {chur }}$ | ${ }_{90} 9$ | ${ }_{650}^{650}$ | ＋ | 126 |  |  |  | 61 | 6. | 153 | 238 |  |  | 51 | 72 | 61 | 7 | 14 |  |  |  | 73 | 67 | ${ }_{19}$ | 232 |  |  | 5 | 95 | 52 | 107 | 15 |  |  | 235 | ${ }^{\text {в }}$ | 75 |
| ${ }_{\text {chur }}^{\text {chur }}$ | \％ | ${ }_{650}^{650}$ | \％ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Wersernur | ${ }_{24}^{84}$ | 800 | $\frac{1}{2}$ | 152 | 153 | 155 | 202 | 65 | 62 | 15. | 26.6 | 201 |  | 55 | ${ }^{86}$ | 65 | ${ }^{3}$ | 178 |  | ${ }^{161}$ | 30 |  |  | 58 | 19 | 325 | 762 | 75 | ${ }^{123}$ | ${ }^{7.3}$ | 11.9 | ${ }_{16,9}^{19}$ | ${ }_{158}^{194}$ | 1988 | ${ }_{268}^{298}$ | ${ }^{89}$ | 日 2 |
| Wminembur | ${ }_{51}$ | ${ }_{800}^{600}$ | $\frac{1}{1}$ | ${ }_{1}^{142}$ | ${ }_{126}^{19}$ | ${ }_{173}^{149}$ | ${ }_{205}^{195}$ | 7 | ${ }_{87}^{687}$ | 15.4 | ${ }_{\text {cke }}^{\substack{26,8}}$ | 2,7 | ${ }_{572}^{558}$ | ${ }_{48}^{78}$ | ${ }^{8.8}$ | ${ }_{56}^{69}$ | ${ }^{89}$ |  |  | 173 | ${ }_{26}^{266}$ |  |  | ${ }_{4}^{185}$ | ${ }^{189}$ |  | ${ }_{79}{ }^{59}$ |  | 1119 | ${ }_{56}^{69}$ | ${ }_{31}^{113}$ | ${ }_{173}^{179}$ | ${ }_{158}^{152}$ | ${ }_{188}^{188}$ | ${ }_{26}^{27}$ |  | ${ }_{108}^{7,1}$ |
| wnombur | ${ }_{80}^{78}$ | 800 | \％ | ${ }^{193}$ | ${ }^{194}$ | ${ }_{14}^{153}$ | ${ }^{176}$ | ${ }_{6.6}^{6.5}$ | －${ }_{\text {58 }}^{68}$ | $\xrightarrow{162}$ | ${ }_{225}^{229}$ | ${ }_{121}^{178}$ |  | ${ }_{5}^{66}$ | ${ }^{65}$ | ${ }_{59}^{59}$ | ${ }_{75}^{59}$ | ${ }_{151}^{142}$ | ${ }^{124}$ | ${ }_{196}^{192}$ | ${ }_{255}^{256}$ | ${ }_{76}^{85}$ | ${ }_{7}^{78}$ | ${ }_{4}^{185}$ | ${ }_{24}^{204}$ | 283 |  | ${ }_{\substack{54 \\ 83}}$ | 8，${ }_{8}$ | ${ }_{6}^{68}$ | \％ | $\underset{1788}{178}$ | 1148 | $\underset{\substack{17.4 \\ 15}}{ }$ | ${ }_{268}^{268}$ | ${ }_{10}^{81}$ | ${ }_{98}^{98}$ |
| monomur | ${ }_{76}$ | 500 | ； | ${ }_{13}^{138}$ | ${ }_{128}^{122}$ | ${ }^{191}$ | ${ }_{29}^{181}$ | ${ }_{5}^{6.5}$ | 72 67 67 | ${ }_{753}{ }^{195}$ | ${ }_{\text {cer }}^{29}$ | $\underset{137}{19}$ | 594 | ${ }_{78}^{48}$ | ${ }_{78}^{54}$ | ${ }^{44}$ | ${ }_{8}^{5}$ |  |  |  |  |  | 56 |  | 219 | 345 | 69 |  |  |  |  | 179 | 149 | ${ }^{17}$ |  |  |  |
| Wminnt | ${ }_{85}^{86}$ | ${ }_{\text {E }}^{500}$ | 2 | 191 | 115 |  |  |  | ${ }^{6.1}$ | 121 | ${ }^{242}$ |  |  |  |  | ${ }_{9}^{55}$ | ${ }^{51}$ | ${ }_{15} 5$ | 1215 | 17.7 | ${ }_{305}^{27}$ |  | ${ }_{8}^{65}$ | 143 | 258 | 206 |  | 5 | 10.6 | 53 | ${ }^{10} 9$ | 171 | 159 | 175 | 29. | ${ }^{8}$ | ${ }^{0.4}$ |
| 隹 | ${ }_{18}^{14}$ |  |  | ${ }_{13}$ | 135 | 159 | 179 | $\stackrel{5}{5}$ | 62 | 132 | ${ }_{24}^{24}$ | 151 | 512 | ${ }_{64}$ | 8.2 | 62 | ${ }_{8}$ | $\underset{15}{138}$ | ${ }_{\substack{3, 385}}$ | 179 | ${ }_{281}^{274}$ | ${ }_{7.1}^{7.1}$ | 17 | ${ }_{115}^{125}$ | ${ }_{254}^{237}$ | ${ }_{305}^{292}$ | ${ }^{6}$ | ${ }_{4}^{56}$ | $\stackrel{8}{77}$ | ${ }_{53}^{49}$ | ${ }_{89}^{88}$ | ${ }_{168}$ | ${ }_{15}^{15}$ | ${ }_{174}^{178}$ | ${ }_{329}^{276}$ | ${ }_{83}^{93}$ | ${ }_{8.2}^{10}$ |
| mmantur | 为 | 800 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| wimarinur | ${ }_{30}$ | 600 | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| winuernue | ${ }_{\text {¢3 }}$ | 600 |  |  |  |  |  |  |  |  |  | ${ }^{138}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Minmortur | $\stackrel{18}{5}$ | ${ }_{\text {600 }}^{600}$ | ？ | ${ }_{1755}^{195}$ | ${ }_{\substack{196 \\ 136}}$ | ${ }_{193}^{164}$ | ${ }_{184}^{198}$ | ${ }_{\substack{58 \\ 88}}$ | ${ }_{56}^{62}$ | ${ }_{176}^{17}$ | ${ }_{23}^{241}$ |  |  | 56 | ${ }_{5}^{10,4}$ | ${ }_{61}^{78}$ | ${ }_{64}^{87}$ | ${ }_{14}^{14}$ | ${ }_{1 / 4}^{4 .}$ | ${ }^{176}$ |  |  | ${ }_{75}^{65}$ | ${ }_{15}^{159}$ | ${ }_{259}^{244}$ | ${ }_{30}^{299}$ |  | ${ }^{7.9}$ | ${ }_{9}^{129}$ | ${ }_{5}^{62}$ | ${ }_{83}^{112}$ | ${ }_{162}^{77}$ | ${ }_{163}^{17}$ |  | 295 | 77.6 | ${ }_{71}^{106}$ |
| Mnnornur | 7 | \％60 | \％ | ${ }_{31}$ | 129 |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{15} 8$ |  |  | ${ }_{25}^{25}$ |  | ${ }_{56}$ |  |  | ${ }_{30} 8$ | ${ }^{36}$ | 7.2 |  | 72 | 102 |  |  |  |  |  |  |
| Se．lersmen | 218 108 | ${ }_{2,7}^{2,1}$ | ， | ${ }_{18}^{138}$ | ${ }_{135}^{139}$ | 157 | 197 | 8 | 71 | ${ }^{1968}$ | ${ }_{256}^{25}$ | ${ }^{168}$ | ${ }_{\text {cos }}^{50}$ | ${ }_{6}$ | ${ }_{81}$ | 66 | ${ }^{97}$ | ${ }_{14}^{148}$ | ${ }_{\substack{412 \\ 138}}$ | ${ }_{7}^{77}$ | ${ }_{266}^{236}$ | ${ }_{\text {e．}}^{8.8}$ | ${ }_{78}^{86}$ | ${ }_{158}^{16}$ |  | 365 |  | ${ }_{52}^{7}$ | 172 | ${ }_{5}^{78}$ | ${ }^{\text {8，}}$ | ${ }^{199}$ | ${ }_{169}^{157}$ |  | ${ }_{\substack{257 \\ 307}}$ |  | ${ }_{8,8}^{10}$ |
|  | ${ }_{80}^{724}$ |  | ${ }_{2}$ |  |  |  |  |  |  | ${ }_{13}$ |  |  |  |  |  |  |  | ${ }_{19}^{196}$ | ${ }_{132}^{152}$ | 178 |  |  | ${ }_{59}^{88}$ | ${ }_{183}^{183}$ |  |  | 12 |  |  | ¢68 | ${ }^{108}$ | 16.1 | ${ }_{152}^{15}$ | ${ }_{17}^{203}$ | ${ }_{28}^{319}$ | ${ }_{73}^{106}$ | ${ }_{78}^{89}$ |
| 9．uhtrenn | ${ }_{597}^{597}$ | 207 | 3 | ${ }^{129}$ | ${ }^{128}$ | ${ }^{153}$ | ${ }^{197}$ | ${ }_{5}^{55}$ | ${ }_{5}^{57}$ |  | 23 |  | 555 | 55 | 星 |  | ${ }_{32}$ | 4 | ${ }^{118}$ | 177 | ${ }_{285}^{236}$ | 6， | ${ }_{66}$ | ${ }^{13}$ | ${ }_{23}^{223}$ |  |  | 7 | ${ }^{98}$ | ${ }^{69}$ | 92 | 15 | 114 | ${ }^{196}$ |  | ${ }^{78}$ | ${ }^{76}$ |
| S．L．lotamn | － 238 | ${ }_{197}^{198}$ | $\frac{3}{3}$ | ${ }_{199}^{132}$ | ${ }_{14}^{14}$ | ${ }_{14}^{192}$ | ${ }_{218}^{172}$ | ${ }_{69}^{62}$ | ${ }_{8}^{68}$ | ${ }_{162}^{15}$ | ${ }_{26}^{218}$ |  |  | ${ }_{5}^{59}$ | ${ }^{89}$ | ${ }_{\substack{68 \\ 58}}^{\text {¢ }}$ | ${ }_{8.8}^{72}$ | ${ }^{1725}$ | ${ }_{153}^{12}$ | 187\％ | ${ }_{25}^{296}$ | ¢ | ${ }_{85}^{83}$ | ${ }_{14}^{193}$ | ${ }_{242}^{232}$ | ${ }^{308}$ |  | ${ }_{57}^{59}$ | ${ }_{9,1}^{9.6}$ | ${ }_{55}^{56}$ | ${ }_{6}$ | ${ }_{159}^{159}$ | ${ }^{112}$ | 171 | $\underbrace{288}_{298}$ | ${ }_{80}^{20,}$ | ${ }_{7.6}$ |
| siluthme | ${ }^{395}$ | ${ }_{195}^{195}$ | 2 | $\underset{139}{131}$ | $\underbrace{193}_{138}$ | ${ }_{156}^{154}$ | ${ }_{198}^{174}$ | ${ }_{6}^{68}$ | ${ }_{56}^{69}$ | ${ }_{18}^{17}$ | ${ }_{246}^{198}$ | 127 | ${ }_{556}^{47}$ | ${ }_{\text {c }}^{5}$ | ${ }_{6}^{68}$ | ¢ | 82 |  | ${ }_{195}^{12}$ | ${ }_{7}^{153}$ |  |  |  |  | ${ }^{272}$ | ${ }^{33}$ |  |  |  |  |  | 166 | 118 |  | ${ }^{30} 6$ |  | 68 |
| $\xrightarrow{\text { Suluman }}$ | ${ }_{210}^{89}$ | － | 2 | ${ }_{193}^{191}$ | ${ }_{128}^{135}$ | ${ }_{\substack{155 \\ 138}}$ | ${ }_{19}^{20.3}$ | ${ }_{6}^{69}$ | ${ }^{72}$ | 1985 | ${ }_{24}^{25}$ |  | $\underset{512}{53}$ | ${ }_{7}^{74}$ | ${ }_{91}^{77}$ | ${ }_{5}^{58}$ |  | ${ }_{13}^{13}$ | ${ }_{13}^{19}$ | 148 | ${ }_{25}^{28}$ |  | ${ }_{69}^{6.9}$ |  | ${ }_{25}^{28}$ | ${ }_{2}^{23}$ | 692 | ${ }_{7}^{58}$ | ${ }_{94}^{93}$ |  | ${ }^{85}$ | $\underset{167}{168}$ | 151 | 165 | ${ }^{395}$ | ${ }_{85}^{75}$ | ${ }^{76}$ |
| ， | ${ }_{34}^{4}$ |  | ； | ${ }_{19}^{195}$ | ${ }_{\substack{198 \\ 19}}^{19}$ | 152 159 | ${ }^{172}$ | ${ }_{64}$ | ¢ ${ }^{65}$ | 153 | ${ }_{\substack{238 \\ 298 \\ \hline 18}}$ |  |  | ${ }_{9}^{66}$ | $\underset{61}{71}$ | ${ }_{5}^{62}$ | ${ }_{61}^{81}$ | 148 145 158 | ${ }_{152}^{142}$ | $\xrightarrow{169}$ | ${ }^{255}$ | ${ }^{78}$ | ${ }_{7}^{8}$ | － $\begin{array}{r}192 \\ 129\end{array}$ | ${ }_{22,5}^{298}$ |  |  |  | ${ }_{9}^{98}$ | ${ }_{\substack{68 \\ 61}}^{\text {¢ }}$ | E， | ${ }_{77}^{77}$ | ${ }_{\text {¢ }}^{\substack{158 \\ 163}}$ | ${ }_{176}^{176}$ | ${ }^{256}$ | ${ }_{8,2}^{8,2}$ | ${ }_{88}^{88}$ |
| subunen | ${ }_{9}^{345}$ | ${ }_{\substack{186}}^{186}$ | ， |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{142}^{145}$ | ${ }_{192}^{192}$ | ${ }_{195}^{195}$ | 222 | ${ }_{8}^{87}$ | ${ }^{\text {8日 }}$ | ${ }_{157}^{157}$ | ${ }_{28}^{28}$ |  |  | ${ }_{59}^{59}$ | ${ }^{\text {日a }}$ | 64 |  | $\stackrel{16.8}{16.8}$ | 14．5 |  | ${ }_{231}^{322}$ | ${ }_{89}^{88}$ | 8 |
| Guluthen | ${ }_{17}^{17}$ | 189 | ， | 4 | 4 | ${ }_{1 / 8}$ | ${ }^{178}$ | ${ }_{63}$ | ${ }_{63}$ | ${ }^{17}$ | 237 | 132 |  | ${ }^{71}$ | ${ }_{8}$ | 71 | ${ }_{8}^{81}$ | 152 | 13.5 | ${ }_{154} 1$ | ${ }^{21}$ | ${ }_{6.8}^{\text {e．}}$ | 8 | 171 | ${ }_{256} 26$ | ${ }^{28}$ |  | 71 | 102 | ${ }_{66}$ | $8{ }^{18}$ | $7{ }^{7}$ | ${ }_{15} 5$ | ${ }_{126}^{17}$ | 23， | E．a | $\stackrel{18}{18}$ |
| Şature | 278 | ${ }^{775}$ |  | ${ }^{196}$ | ${ }^{129}$ | 158 | 17 | ${ }_{6}^{65}$ | ${ }_{5}^{86}$ | 149 | ${ }^{214}$ |  | 53 | ${ }_{78}^{59}$ | ${ }_{68}^{68}$ | ${ }_{77}^{51}$ | $7_{8}^{73}$ | ${ }_{128}^{122}$ | ${ }_{125}^{101}$ | ${ }_{15}^{174}$ | ${ }_{297}^{295}$ |  |  |  | ${ }_{508}^{254}$ |  |  |  |  | 55 |  |  |  |  |  |  | ${ }^{78}$ |
| Suchern | ${ }_{2}^{432}$ | 173 |  | －105 | ${ }^{11} 18$ | 199 | 201 20 | ${ }_{7}^{65}$ | ${ }_{6}^{6}$ |  | 22， |  | 592 |  |  |  |  | 122 | ${ }_{\text {c }}^{192}$ |  |  | ${ }_{\substack{8.2 \\ 68}}^{\substack{\text { c，}}}$ | ${ }_{60}^{68}$ | ${ }_{1}^{194}$ | ${ }_{274}^{23.4}$ | 302 |  |  |  |  |  |  | $\begin{aligned} & 132 \\ & 182 \end{aligned}$ | ${ }_{22}^{168}$ | 226 |  | ${ }_{75}^{715}$ |
| ${ }^{-c}$ | 18 26 28 |  |  | ${ }_{15}^{15}$ | ${ }_{10}^{184}$ | ${ }_{175}^{195}$ | ${ }_{215}^{225}$ | ${ }_{\substack{78 \\ 89}}$ | ${ }_{77}^{88}$ | －${ }_{159} 159$ |  |  | 644 | $\underset{78}{78}$ | ${ }_{86}^{98}$ | ${ }_{\substack{86 \\ 885}}^{8.85}$ |  | 157 | ${ }^{14.4}$ | ${ }^{29}$ |  |  |  | 145 | 265 |  |  | ${ }_{5}^{69}$ | 929 | ${ }_{68}$ | 109 | ${ }_{161}^{181}$ | ${ }_{\substack{182 \\ 182}}^{1}$ | ${ }_{178}^{128}$ |  |  | ${ }^{710}$ |
| －cmave | ${ }_{6}$ |  |  | 197 | ${ }^{195}$ | ${ }^{106}$ | ${ }_{202}^{202}$ | ${ }_{85}^{95}$ | ${ }_{86}$ | 15 | ${ }_{27}^{285}$ | 2.4 |  | ${ }^{76}$ | 67 | 54 | 5.87 | ${ }_{15}^{155}$ | 197 | 193 | ${ }_{275}^{275}$ | 55 |  |  |  | ${ }_{329}^{329}$ |  | ${ }_{6}^{6} 5$ | ${ }_{24}^{28}$ | ${ }_{6} 6$ | ${ }_{101}^{119}$ | $\underset{198}{188}$ | ${ }_{165}^{185}$ | 212 | ¢ 215 |  | ${ }_{\text {9，}}^{89}$ |
| Come | $3_{12}$ |  |  | －1939 | ${ }_{\text {a }}^{14}$ | ${ }_{185}^{189}$ | －1982 | ${ }_{8}^{7}$ |  | 159 | ${ }^{238}$ |  | ${ }_{59}^{58}$ | ${ }_{56}^{56}$ | 53 | ${ }^{42}$ | ${ }_{4}{ }^{5}$ | 14.5 | ${ }^{138}$ | 187 | ${ }^{271}$ | ${ }^{78}$ | ${ }^{8}$ | － 1136 | ${ }^{258}$ | ${ }_{\substack{268 \\ 428}}^{\text {a }}$ |  | 54 | \％ | 59 | ${ }^{\text {日 }}$ | 166 | ${ }^{156}$ | ${ }^{208}$ | ${ }_{29}^{295}$ | ${ }^{108}$ | ${ }^{10.9}$ |
| ${ }^{\text {Gancow }}$ | 12 |  |  | － | ${ }^{148}$ | ${ }_{183}^{188}$ | ${ }^{298}$ | ${ }^{83}$ |  | ${ }_{162}^{153}$ | ${ }^{23,9}$ | 146 |  | ${ }_{76}{ }^{68}$ | ${ }_{118}^{714}$ | ${ }_{81}^{51}$ | ${ }^{10.8}$ | ${ }_{15}^{159}$ | ${ }_{182}^{198}$ | ${ }_{17,1}^{203}$ | ${ }_{296}^{392}$ | ${ }^{85}$ |  | ${ }^{1176}$ | ${ }_{29}^{298}$ | ${ }_{\substack{322}}^{338}$ |  |  |  |  |  | ${ }^{19.5}$ |  |  |  | ${ }_{95}^{108}$ | ${ }_{88}^{88}$ |
| －Gomever | $3_{3}^{3}$ |  |  | ${ }^{159}$ | ${ }_{1}^{196}$ | ${ }^{185}$ | ${ }_{198}^{178}$ | ${ }_{83}^{52}$ | ${ }_{8}^{184}$ |  | ${ }_{232}^{24.5}$ |  |  | －74 | ${ }_{9.2}^{8.8}$ | ${ }_{63}^{71}$ | ${ }_{8.2}^{8.6}$ |  | ${ }^{197}$ | 165 | 254 | ${ }_{76}^{76}$ | ${ }_{8.6}^{72}$ | ${ }^{13} 8$ | ${ }_{24}^{254}$ | ${ }^{39,2}$ |  | ${ }_{56}^{65}$ | ${ }_{11} 1$ | ${ }^{69}$ | ${ }^{10.2}$ | $\stackrel{187}{178}$ | ${ }^{178}$ | 16 | ${ }_{28}^{282}$ | 10.5 | ${ }^{108}$ |
|  | $\stackrel{2}{5}$ |  |  |  | ${ }_{24}^{24}$ | ${ }^{165}$ | ${ }^{184}$ |  |  | ${ }^{19,1}$ | ${ }_{258}^{24.6}$ | $\underset{194}{198}$ |  |  | ${ }_{77}$ |  | ${ }_{83}^{74}$ | $\stackrel{15}{167}$ | ${ }_{1}^{183}$ | ${ }_{\substack{2,7 \\ 1,1}}^{2.3}$ | ${ }_{25,5}^{296}$ |  | \％ | ${ }^{1565}$ | ${ }_{264}^{258}$ | ${ }_{353}^{23,}$ |  |  | ${ }_{118}^{\text {19，}}$ | ${ }_{63}^{62}$ |  | ${ }_{\text {l }}^{17.5}$ | ${ }^{16,3}$ |  | ${ }_{282}^{31.6}$ | ${ }^{201}$ | ${ }_{118}^{18}$ |
| ${ }^{\text {comoune }}$ | $\frac{17}{6}$ |  |  | －1968 | ${ }_{168}^{196}$ | ${ }_{1}^{161}$ | ${ }_{198}^{198}$ | ${ }_{8}^{74}$ |  | ${ }_{157}^{159}$ | ${ }_{24}^{24.4}$ |  | 597 | $7_{7}^{72}$ | ${ }_{90,1}^{89}$ | ${ }_{\substack{58 \\ 71}}$ | ${ }_{91}$ | 178 |  | ${ }_{18,7}^{18,4}$ | ${ }_{24}^{26,2}$ | ${ }^{78}$ |  | －154 | ${ }_{227}^{295}$ | ${ }_{37}^{39}$ | ${ }^{22} 2$ |  | 1118 |  |  | $\underset{194}{188}$ | ${ }_{18}^{17.9}$ |  | ${ }_{29}^{22,5}$ | ${ }^{9.3}$ | ${ }_{9,2}^{9,1}$ |
|  | ${ }_{19}$ |  |  | ${ }_{4}^{143}$ | ${ }_{158}^{198}$ | ${ }_{185}^{17}$ | ${ }_{206}^{20}$ | ${ }_{8,3}^{6.3}$ | ${ }^{73}$ | ${ }_{15}^{15.4}$ | ${ }_{2818}^{28,8}$ | 152 |  | ${ }^{76}$ | ${ }_{76}^{81}$ |  | 74 | ¢ $\begin{aligned} & 15.3 \\ & 187\end{aligned}$ |  | 20 |  |  |  | ${ }_{11}^{14}$ | ${ }_{27}^{278}$ | ${ }_{\substack{33,5 \\ 30 \%}}$ |  |  | ${ }_{88}^{73}$ | ${ }^{68}$ | 105 |  |  |  | ${ }_{312}^{312}$ |  | ${ }_{98}^{91}$ |
| －comove： | ${ }_{6}^{6}$ |  |  | ${ }_{10}^{19}$ | ${ }_{1}^{19} 18$ | ${ }_{168}^{189}$ | 1919 | ${ }_{85}^{89}$ | ${ }_{7}^{86}$ | ${ }_{\substack{11.4 \\ 1.62}}$ | ${ }_{2}^{2465}$ | 195 |  | （ | ${ }_{83}^{98}$ | ${ }_{84}^{68}$ | ${ }_{8,5}^{9,9}$ | $\underset{\substack{152 \\ 152}}{152}$ | ${ }_{15}^{14}$ | ${ }_{158}^{171}$ | ${ }_{22}^{225}$ | ${ }^{79}$ | ${ }_{6}^{57}$ | ${ }^{159}$ | ${ }_{26}^{27}$ | ${ }_{34}^{26}$ | $\xrightarrow{298}$ | ${ }_{5}^{53}$ | ${ }_{8,4}^{8,4}$ |  | ${ }^{36}$ | $\stackrel{198}{19}$ | ${ }_{187}^{197}$ | 17.4 | ${ }_{22,5}^{227}$ |  | 989 |
| ${ }^{\text {comen }}$ | ${ }^{13}$ |  |  | 152 | 11.5 | 14 | ${ }_{182}$ | 28 | 75 | 172 | 2， 21 |  | ${ }_{556} 5$ | ${ }_{7}$ | ${ }^{108}$ | ${ }_{89}$ | 10， | $\underset{\substack{16.6 \\ 16.5}}{ }$ |  | ${ }_{16,8}^{16,5}$ | 20．8 | ${ }^{86}$ | ${ }^{88}$ | ${ }_{155}^{155}$ | $\underset{\substack{297}}{298}$ |  |  | ${ }_{63}$ | $\underset{\substack{105 \\ 106}}{ }$ | \％ 7 | ${ }_{112}^{11}$ | $\underset{\substack{192 \\ 198}}{198}$ | ${ }^{165}$ | ${ }_{158} 18$ | ${ }_{30} 30$ | ${ }_{4}^{105}$ | ${ }^{96}$ |
| Somer | ${ }^{14}$ |  | ， | ${ }_{14}^{148}$ | ${ }_{13} 7$ | 149 | 77．1 | 8 | ${ }_{7}$ | 177 | ${ }_{2,4}^{20.4}$ |  |  | ${ }_{73}$ | 78 | ${ }_{51}$ | ${ }_{85}$ |  |  | 159 |  | 75 |  |  |  |  |  |  | 8.8 | 72 | ${ }_{19}$ | －82 |  | 150 |  | ${ }_{9} 9$ | 101 |




$$
{ }_{351}^{\infty}
$$

$$
759.4
$$

$$
\begin{array}{lll}
\text { 4 } & 13 \\
59 & 104 \\
18 & 80 \\
42 & 8 & \\
42 & 74 & \\
42 &
\end{array}
$$



$$
18
$$

















 ${ }^{277} \underset{\substack{672 \\ 514}}{\substack{62}}$









䍐






 143
142
191
14
14
15
147
148
121


 7.2
8.3
5.7
6.2
5.5
5.5
5.6
5.2
5.2
5.2
5.
$\qquad$

 52
57
44
51
59
51
59
59
41


## 





 ごロロースペ 58
8.
8.
9.9
8.4
8.8

8.5 | 8.5 |
| :--- |
| $\substack{8.4 \\ 0.4 \\ 8.6 \\ 8.5 \\ 8.5 \\ 8.5}$ |
| 8 | 8.5

8.1
10.8
8.5
8.9.
9.5
9.4 ：
$\begin{array}{ll}122 & 118 \\ 125 & 135\end{array}$
$\qquad$
7.2
7.8
9.5
7.8
8.8







亭


$$
\begin{array}{ll}
8.3 & 121 \\
\substack{12, 3.6 \\
196 \\
106}
\end{array}
$$



| ${ }_{18} 8$ | 148 | 15, | 298 | 10 ： | ${ }^{13}$ | ${ }^{5} 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 135 | 1.7 | 153 |  |  |  |  |
| 145 | ${ }^{139}$ | 157 | 248 | ${ }^{78}$ |  | ${ }^{*}$ |
| 16.5 | 14.5 | 194 | ${ }^{238}$ | ${ }^{87}$ | ${ }^{\text {9，}}$ | ${ }^{156}$ |
|  | （139 | ${ }_{\substack{10,5 \\ 17.5 \\ 17.5}}$ | ${ }_{\substack{258 \\ 298}}^{28}$ | ${ }_{7}^{18}$ | 8：8 |  |
| ${ }^{\text {з }}$ | ${ }_{13} 7$ | 15.7 | 293 | 7 | ${ }^{6} .5$ | 142 |
| ${ }_{152}$ | 14.5 | 158 | ${ }^{24}$ | \％ | 78 | $\cdots$ |
| ${ }_{16}^{15}$ | 15 | 138 | ${ }_{26}^{27}$ | ${ }_{76}^{98}$ | ${ }_{8}^{55}$ | ${ }_{429}^{4.2}$ |
| ${ }^{15,5}$ | ${ }_{10.5}^{19.5}$ | 18.5 | 229 | 77 | 76 | 15.1 |
| ${ }_{\substack{\text { a }}}^{18,2}$ | 18， | ${ }_{15,5}^{12,5}$ | ${ }_{\text {che }}^{28.5}$ | ${ }_{78}^{78}$ | ${ }_{7.5}^{8 .}$ | ${ }_{194}^{15}$ |
| ${ }_{8}^{182}$ | ${ }_{14}^{154}$ | $\underset{\substack{158 \\ 15.6}}{ }$ | ${ }_{265}^{263}$ | ${ }_{8}^{8.4}$ | ${ }_{8}^{8.7}$ | （1485 |
|  |  | ${ }^{173}$ | 262 | ${ }_{8}^{8.7}$ | ${ }_{8.5}^{8.5}$ | 15.1 |
| ${ }^{148}$ | 129 | 175 | 21. |  | ${ }_{92}$ | 13 |
| 132 | ${ }^{13.6}$ | ${ }^{158}$ |  | ${ }^{93}$ |  | 14.7 |
| 16.3 | 158 | 154 | ${ }^{272}$ | 日． | 10.2 | 18.1 |
| 159 156 | ${ }_{131}^{124}$ | ${ }_{172}^{198}$ | 2254 | ${ }_{7.6}^{55}$ | 588 | ${ }_{1}^{194}$ |
| 154 | 165 | ${ }^{128}$ | 247 | 0．${ }^{\text {a }}$ | 8 | \％ |
| $\stackrel{\text { 1s，}}{1 \times 1}$ | ${ }_{13}^{19}$ | ${ }_{\substack{195 \\ 158}}^{18}$ | ${ }_{2 \times, 5}^{27}$ | ${ }^{92}$ | ${ }_{98}^{8}$ | ${ }_{143}^{148}$ |
| ， | $\underset{\substack{19.4 \\ 17.4}}{19 .}$ | $\underset{\substack{158 \\ 18}}{\substack{18 \\ \hline}}$ | ${ }_{\substack{20.5 \\ 20.4}}^{2.8}$ | 79 | $7{ }^{7}$ |  |
|  | ${ }_{\text {18，}}^{19.9}$ | 19.1 | ${ }^{23,7}$ | ${ }_{8}^{8.8}$ | ${ }_{8.8}^{8.8}$ | $\underset{14 .}{14.2}$ |
|  |  |  |  |  |  |  |
| ${ }_{16 .}^{16 .}$ | 158 157 | ${ }^{198}$ | ${ }_{29}^{27}$ | ${ }_{8}^{87}$ | ${ }_{81}^{205}$ | $\underset{135}{125}$ |
| 161 | 15 | 155 | ${ }^{26}$ | ${ }^{8}$ | 8 | 153 |
| 148 | 145 | ${ }_{158}^{158}$ | ${ }_{27}^{251}$ | ${ }^{14}$ | ${ }_{8}^{78}$ | ${ }_{\substack{485 \\ 485}}^{185}$ |
| （1988 | ${ }_{121}^{193}$ | ${ }_{\substack{195 \\ 185}}^{150}$ | ${ }_{\substack{318 \\ 372}}^{27}$ |  | $\underset{\substack{7,6 \\ 7,0}}{7.3}$ |  |
| ${ }_{158}$ | 129 | ${ }_{158}^{158}$ | ${ }_{28}^{288}$ | ${ }^{81}$ | 86 |  |
| 194 | ${ }_{142}^{142}$ | ${ }_{198}^{198}$ | ${ }_{26,28}^{28.2}$ | ${ }_{8.8}^{8.6}$ | ${ }_{6}^{76}$ | －${ }_{161}^{168}$ |
| 198 <br> 154 <br> 154 <br> 1 | ${ }_{145}^{143}$ | ${ }_{185}^{185}$ | ${ }_{27.4}^{20.6}$ | ${ }_{7.1}^{78}$ | ${ }_{76}^{81}$ | ${ }_{4}^{4,4}$ |
| 183 |  | ${ }^{152}$ | 26.1 | 10.1 | 7.6 | ${ }^{156}$ |
| $\underset{\substack{178 \\ 15.2 \\ 1.2}}{ }$ | ${ }_{151}^{15.5}$ |  | $\underbrace{20,9}_{2,28}$ | ${ }^{10.7}$ | ${ }^{10.1}$ |  |
|  | 边 | ${ }_{\text {cose }}^{16.5}$ |  | ¢ | ${ }_{8,1}$ | ${ }_{185}^{385}$ |
| ${ }_{15}{ }^{15}$ | ${ }^{128}$ |  | ${ }_{22}^{22}$ | 8，4 | ${ }^{7} 8$ | ${ }^{1125}$ |
| ， 1,4 | ， 114 | ${ }_{\text {18，}}^{18}$ | ${ }^{24,4}$ | 9，1 | ${ }_{98}^{98}$ | ${ }_{19,2}^{19,2}$ |
| ${ }_{19}^{19.8}$ |  | ${ }_{\substack{19,3 \\ 155}}^{195}$ | ， | ${ }_{8}^{101}$ | ${ }_{8}^{102}$ | ${ }_{198}^{198}$ |
| $\xrightarrow{15,5}$ | 1，4， | ${ }_{15}$ | 239 | ${ }_{85}$ | ${ }_{3} 9$ | ${ }^{17,5}$ |



|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| amathe | ${ }_{\substack{\text { 20，}}}^{\text {cid }}$ |  |  |  |  |  |  |  | 1.2 |  |  |  |  |  | ${ }_{131}^{131}$ | ${ }_{13}^{127}$ | ${ }_{15}^{152}$ | ${ }_{236}^{304}$ | ${ }^{68}$ |  | 148 |  | ${ }^{232}$ | 67 | 72 |  | ${ }^{6.3}$ | ${ }^{11}$ |  |  |  |  |  |  |  |
| satuen | ${ }_{298}^{716}$ | ${ }_{18,2}^{128}$ | 125 <br> 129 <br> 198 <br> 198 | ${ }_{163}^{223}$ | ${ }_{6.1}^{5.8}$ | ${ }_{71}^{89}$ | 15.2 | ${ }_{231}^{25}$ |  | 62 | ${ }_{7}^{78}$ | ${ }^{98} 19$ | ${ }^{58}$ | ${ }_{89}^{12.1}$ | ${ }_{1}^{15,2}$ | ${ }^{13,5}$ | ${ }_{17}^{18,6}$ | ${ }_{268}^{29}$ | ${ }_{71}$ | ${ }_{73}^{88}$ | 15.7 | ${ }_{22,}^{22.9}$ | ${ }^{25}$ |  |  | ${ }_{122}^{11}$ | ${ }_{5}^{7.5}$ | 10.9 | ${ }_{154} 17$ | ${ }_{15}$ | ${ }_{176}^{175}$ | ${ }_{276}^{323}$ | ${ }_{88}^{108}$ | 92 | ${ }_{17}^{178}$ |
| grubln |  | 156 |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{195}^{12.4}$ | ${ }_{112}^{112}$ | 13.9 | ${ }_{242}^{256}$ | $\stackrel{81}{71}$ | 7 | 136 | ${ }_{2,5}^{2.3}$ |  |  | ${ }_{61}^{66}$ | ${ }^{112}$ | ${ }_{66}^{62}$ | 8.5 | ${ }_{16}^{14,}$ | ${ }_{15}^{14}$ | 175 | ${ }_{21}^{212}$ |  | ${ }_{88}^{69}$ | ${ }^{148}$ |
|  | ${ }_{\substack{359 \\ 689}}$ | 1196 | $\begin{array}{lll}123 \\ 125 & 193 \\ 142 \\ 148\end{array}$ | ${ }_{169}^{179}$ | ${ }_{5}^{54}$ | ${ }_{\substack{58 \\ 48}}^{\text {c }}$ | ${ }_{162}^{156}$ | ${ }_{224}^{224}$ | ${ }_{138}^{138}$ | 132 | 67 | ${ }_{9}^{11}$ | ${ }_{\substack{76 \\ 98}}$ | 7.4 | 135 | ${ }_{12,6}^{12,}$ | ${ }_{15}^{15}$ | ${ }_{268}^{28,}$ | 57 | 58 | ${ }_{129}^{129}$ | $\stackrel{\substack{289 \\ 283 \\ \hline \\ \hline}}{ }$ | ${ }_{225}^{285}$ |  | 55 | ${ }^{86}$ | ${ }_{5}^{64}$ | ${ }^{10.108}$ | ${ }^{161}$ | ${ }_{15}^{14,3}$ | 159 | ${ }_{26}^{276}$ | ${ }_{86}^{68}$ | ${ }^{78}$ | － |
| Strubli | T4 ${ }^{10400}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{102}^{13.6}$ | ${ }_{132}^{13,5}$ | ${ }_{19,7}^{19,}$ | ${ }_{242}^{245}$ | ${ }_{5}^{67}$ | ${ }_{68}^{62}$ |  |  |  |  | ${ }_{89}^{88}$ |  |  |  | ${ }_{151}^{154}$ | 158 | ${ }_{128}^{123}$ |  |  | ${ }_{8}^{8.5}$ |  |
| $\stackrel{\substack{\text { graul } \\ \text { graut }}}{ }$ | ${ }_{\substack{685 \\ 898}}^{\substack{1000 \\ 1000}}$ | ${ }_{128}^{128}$ | ${ }^{129} 8188$ | 175 | ¢ | ${ }_{6}^{65}$ | 127 | ${ }_{225}^{221}$ |  | 46. | \％ | ${ }^{81}$ | ${ }^{68}$ | ${ }_{88}^{82}$ | ${ }_{138}^{128}$ | ${ }_{13}^{13,5}$ | ${ }^{146}$ | ${ }_{2}^{242}$ | ${ }_{62}$ | ${ }_{5}^{55}$ | 129 | ${ }_{2125}^{2125}$ | 295 |  | 63 | 99 | ¢5 | 102 | 156 159 | ${ }_{142}^{14}$ | ${ }_{162}^{158}$ | ${ }_{268}^{258}$ | ${ }_{89}$ | ${ }_{98}^{79}$ |  |
| Smut | $\underbrace{711}_{\text {lia }}$ | 122 <br> 125 <br> 1 |  | ${ }^{16} 9$ |  | ${ }^{69}$ | ${ }^{142}$ | ${ }^{216}$ |  | ${ }_{48,}^{485}$ | \％ | ${ }_{108}^{108}$ | ${ }_{8}^{78}$ | ${ }^{88}$ | ${ }_{1}^{13,5}$ | ${ }^{12.6}$ | cis | cint | ${ }_{6}^{66}$ | ${ }_{86}$ | ${ }^{129}$ | ${ }^{236}$ |  |  | ${ }^{59}$ | ${ }_{96}^{98}$ | ${ }_{8}^{7}$ | ${ }_{107}^{199}$ | $\underset{175}{175}$ | ${ }_{155} 15$ | ${ }_{158}^{158}$ | ${ }_{253}^{295}$ | ${ }_{78}^{8,1}$ | ${ }_{81}^{102}$ |  |
| smut |  | 1118 | 122141 | ${ }^{16}$ | ${ }_{6}^{6.1}$ | ${ }_{5}^{65}$ | 1159 | ${ }_{215}^{22,5}$ |  | ${ }_{81}^{8181}$ | ${ }^{65}$ | ${ }^{985}$ | ${ }_{6}^{69}$ | ${ }_{85}$ | ${ }_{131} 1$ | 131 | 153 | 217 |  | ${ }_{86}^{76}$ |  | ${ }_{237}^{293}$ | ${ }_{21} 21$ | ${ }_{81}^{68}$ | ${ }_{6}$ | 103 | 67 | ${ }^{112}$ |  | 15\％ | ${ }_{151}^{163}$ | ${ }_{30}^{29}$ |  | ${ }_{96}$ | 145 |
| dinctich | 1335 | 2 | ${ }^{25} 5^{146}$ | ${ }_{21}$ | ${ }_{6.5}^{56}$ | 61 |  | ${ }_{24}^{24}$ |  |  | \％ | ${ }_{85}^{85}$ | ${ }_{5}^{12}$ | ${ }_{5}^{58}$ | ${ }_{153}^{13,}$ | 12.4 | ${ }_{15}^{17}$ | 253 | 61 | 62 | 16. | 247 |  |  | 54 | ${ }^{88}$ | ${ }_{42}^{62}$ | ${ }_{8,}^{8.3}$ | 179 | 174 | 168 | 297 | ${ }^{98}$ | 10.6 |  |
|  | 1535 | 132 | 191467 | 196 |  |  | 153 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noch | 1395 | 146 | 168 178 |  | 61 | 72 |  | 24. |  |  | 5.7 | 58 | 65 | 76 | 14.2 | 149 | 152 | ${ }^{286}$ | 2.3 | 72 | 18 | 27.4 |  |  | 6 | ${ }^{86}$ | 5 | 9 | 172 |  |  | 31. | 108 | 95 | 19,4 |
| Selthn | $\underset{\text { cise }}{61395}$ | ${ }_{148}$ | 177 | ${ }^{238}$ | 7.9 | ${ }^{6}$ |  | 21.9 | 163 | 48, 805 805 |  | ${ }_{8}^{8.2}$ | 53 5 5 5 | 8.9 | ${ }_{\substack{114 \\ 13 \\ 13}}$ | ${ }_{13}^{13}$ | ${ }_{18}^{18}$ | ${ }_{279}^{263}$ | ${ }_{88}^{86}$ | ${ }_{7}^{64}$ | ${ }_{13}^{106}$ | ${ }_{2}^{20.5}$ | ${ }^{264}$ | 267 | ${ }_{4}^{54}$ | ${ }_{9.8}^{7.8}$ | $\stackrel{\text { che }}{5 \times}$ | ${ }^{81}$ | 163 145 | 11. | ${ }_{161}^{198}$ | ${ }_{265}^{26}$ |  | ${ }_{79}^{8.6}$ | ${ }_{11}^{11.9}$ |
| Entur | ${ }_{1293} 129$ | 122 | $\begin{array}{lll}122 & 159\end{array}$ | 172 | ${ }_{6} 5$ | ${ }_{6} 6$ | ${ }_{193}$ | 22.6 |  | 487 | ${ }_{6}$ | \％ 1. | 6.7 | 8.1 |  |  |  |  |  |  |  |  |  |  | 6.1 |  |  | 77 | 48 | 13 | 15 | ${ }_{273}^{246}$ | ${ }_{96}^{64}$ | ${ }_{85}^{86}$ | 11.2 |
|  | 135511300 | $\underset{125}{125}$ | $\begin{array}{lll}19.6 & 109 \\ 12 & 105\end{array}$ | ${ }_{156}^{168}$ | ${ }_{5}^{88}$ | ${ }_{86}^{65}$ | $1{ }_{14}^{121}$ | ${ }_{22}^{245}$ | 196 | ${ }_{4}^{51.1}$ | \％ 6 | ${ }_{88}^{8.3}$ | ${ }_{6}^{64}$ | ${ }_{83}^{88}$ | $\underset{145}{142}$ | ${ }_{13}^{12.5}$ | \％ 17.8 | ${ }_{212}^{292}$ | ${ }_{58}^{67}$ | ${ }_{5}^{75}$ | ${ }_{14}^{145}$ | ${ }_{2}^{265}$ | 186 | 102 | ${ }_{6} 6$ | ${ }^{78}$ | ${ }^{53}$ | ${ }^{77}$ | － | 152 | ${ }_{16}^{15}$ | ${ }_{27}^{27}$ | ${ }_{86}^{99}$ | ${ }_{89}^{89}$ | ${ }_{15,2}^{14,2}$ |
|  | ${ }_{\substack{1295 \\ 1285}}^{18500}$ | ${ }^{119}$ | 114155 |  | 57 | 5.6 |  |  |  |  |  |  |  |  | ${ }_{149}^{132}$ | ${ }_{1 / 25}^{17}$ | ${ }_{159}^{15}$ | ${ }_{2}^{2.6}$ | ${ }_{\text {¢ }}^{68}$ | ${ }^{8.5}$ | 153 | ${ }_{20}^{22}$ |  |  | ${ }_{65}^{56}$ | 818， | ${ }_{6}^{55}$ | 122 | 17.6 | 17 | ${ }^{158}$ | 292 | ${ }^{8 B}$ | 109 | 156 |
|  |  | $\frac{115}{}$ | 125158 | 154 | 4.5 | ¢ |  | 245 |  | 5 | ． 4 | 8 | 73 | 8． | $\underset{136}{19.5}$ | 115 | ${ }_{16,5}^{15}$ | 245 | ${ }_{75}^{6,8}$ | ${ }_{\text {cief }}^{\text {c．e．}}$ | ${ }_{151}^{13}$ | ${ }_{258}^{236}$ |  | ${ }_{4} 46$ | ${ }_{8}^{52}$ | 8， | ${ }_{66}^{55}$ |  |  |  |  |  |  |  |  |
|  |  | 5 | 125 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62 | ${ }_{61}$ |  |  |  |  |  | 8 |  | ${ }_{84}^{63}$ | ${ }_{159}^{16}$ | ${ }^{116}$ |  | ${ }_{29}^{29,}$ | ${ }_{86}^{87}$ | ${ }_{74}^{98}$ |  |
| mome | ${ }_{1397}^{1395}$ | 10. | 105142 | 149 | ¢ | 55 | 14 | 20.1 |  | 510 | 6.3 | 86 | 56 | 6． 3 | $\underset{1268}{126}$ | 125 | ${ }_{164}^{138}$ | ${ }_{29}^{29}$ | ${ }_{78}^{59}$ | ${ }_{68}^{6}$ | ${ }_{153}^{126}$ | ${ }_{265}^{206}$ | 254 | ${ }_{20}^{218}$ | ${ }^{59}$ | ${ }_{10.5}^{604}$ | ${ }_{79}^{52}$ | ${ }_{\substack{68 \\ 98}}^{\text {g }}$ | ${ }_{169} 15$ | $1{ }^{198}$ | 171 | ${ }_{263}^{293}$ | \％ |  | 138 158 |
|  | ${ }_{525}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\xrightarrow{\text { chur }}$ chur |  | ${ }^{135}$ |  | ciri | ${ }^{\text {8 }}$ | $\stackrel{48}{72}$ | （1948 | ${ }_{\substack{2,6 \\ 26 \\ 2.6}}$ | ${ }_{126}^{107}$ | 517 | 5 | 88 74 7 |  | 6.2 |  | $\begin{aligned} & 0.96 \\ & \begin{array}{c} 315 \\ \hline 119 \end{array} \end{aligned}$ | （178 | $\begin{aligned} & 2824 \\ & 28.2 \\ & 227 \end{aligned}$ | ${ }^{52}$ | $\begin{gathered} 5.56 \\ 78 \\ 72 \end{gathered}$ | ${ }_{128}$ | ${ }_{25}^{25}$ | 274 | 71. | 5 | 7.2 |  | 73 | ${ }_{13,5}^{15.5}$ | ${ }_{13}^{154}$ | ${ }_{153}^{185}$ | ${ }_{223}^{228}$ | 93 | ${ }_{73}^{89}$ | ${ }_{12}^{128} 1$ |
| $\substack{\text { chur } \\ \text { chur } \\ \text { chur }}$ | （650 | 年 |  | ${ }_{172}^{17}$ | ${ }_{6}^{6}$ | ${ }_{69}^{65}$ | （18） | ${ }_{212}^{221}$ | 115 | ${ }_{524}^{45}$ | ${ }^{4}$ | ${ }_{\text {c．}}^{5.9}$ | ${ }^{3}$ | ${ }_{7.6}^{5.6}$ | $\xrightarrow[193]{19}$ |  | 14. |  |  | 74 |  | ${ }^{238}$ |  |  |  |  |  |  | ${ }_{15.9}^{168}$ | 1.19 | ${ }_{165}^{158}$ | 222 |  | ${ }_{88}^{88}$ |  |
| cour | \％ |  |  |  |  |  |  |  |  |  |  |  |  |  | 197 | ${ }_{1}^{175}$ | ${ }_{15}^{15}$ | ${ }_{29}^{25}$ | ${ }_{6}^{79}$ | 79 | ${ }_{198}^{129}$ | 263 | ${ }_{23}^{23.6}$ | 206 | 589 | \％ |  |  | ${ }_{15}^{155}$ | ${ }^{10.7}$ | ${ }_{151}^{15}$ | ${ }_{292}^{25}$ | 78 | ${ }_{78}^{89}$ | ${ }_{198}^{193}$ |
|  | 600 | ${ }_{128}^{128}$ | ${ }^{1116}{ }^{115}$ | 16.8 | 75 | ${ }_{6} 9$ | 194 | 291 | 15 |  | ${ }^{59}$ | ${ }^{192}$ | ${ }^{58}$ | ${ }_{\substack{84 \\ 78}}$ |  |  |  |  |  |  |  |  |  | 65 ¢ |  |  |  |  | 16 | ${ }_{\substack{189 \\ 155}}$ | 15 | ${ }_{228}^{228}$ | ${ }_{88}^{72}$ | ${ }_{85}^{89}$ | 14.4 159 |
| Win | ${ }_{73}^{175}$ | 1129 |  | 175 | ${ }_{55}$ | ${ }_{5.5}$ | ${ }_{1}^{164}$ | ${ }_{24}^{24.3}$ | 1．6 | ${ }_{5}^{512}$ | ${ }_{7}$ | 9.1 | 7 | ${ }^{96}$ | ${ }_{125}^{12,5}$ | 123 | ${ }^{196}$ | ${ }_{25}^{255}$ | ${ }_{8}^{8}$ | ${ }^{61}$ | ${ }^{19} 19$ | ${ }_{244}^{234}$ | ${ }_{267}^{277}$ |  | ${ }_{65}$ | 82 | ${ }_{5}$ | घ． 9 | ${ }_{15,1}^{151}$ | ${ }_{131}^{14}$ | ${ }_{\substack{196 \\ 128}}$ | ${ }_{268}^{288}$ | ${ }_{81}^{92}$ | ${ }_{85}^{8}$ | ${ }_{14}^{154}$ |
| ¢immonn | ${ }_{29}{ }_{29}{ }^{8}$ | ${ }_{124}^{124}$ | ${ }_{115}^{11}$ | ${ }_{18}^{192}$ | ${ }_{5}^{52}$ | ${ }_{58}^{58}$ | ${ }_{15,5}^{18,5}$ | ${ }_{29}^{23}$ |  | ${ }_{50}$ | ${ }_{5}$ | ${ }_{68}$ | \％ | $\underset{\sim}{7}$ | ${ }^{13}$ | ${ }^{128}$ | 185 | ${ }_{28}^{29}$ | ${ }_{\substack{56 \\ 58}}$ | ${ }_{69}^{7}$ | 159 152 15 | ${ }_{23}^{258}$ | ${ }_{25}^{27}$ |  |  | ${ }_{11}^{195}$ | ${ }_{6}^{72}$ | ${ }_{98}^{9.9}$ | ${ }_{1}^{14,5}$ | 12.6 |  |  |  | ${ }_{7}^{86}$ | 267 |
| winu | ${ }_{26}$ | 1.4 | 115 | 72 | 52 | 6 | 163 | 228 | 115 | 411 | 57 | ${ }^{14}$ | 5.2 | ${ }^{89}$ | $\underset{\substack{18.5 \\ 11.8}}{ }$ | $\xrightarrow{128} 1$ | 1188 <br> 158 <br> 1 | ${ }_{28}^{25}$ | ${ }_{59}$ | 65 | 152 |  | 24.5 |  | ${ }_{68}$ | 107 |  | 101 | $\underset{\substack{159 \\ 159}}{\substack{18}}$ | ${ }_{14}^{15}$ | ${ }_{15,7}$ | $22^{6}$ | ${ }_{8}{ }^{5}$ | ${ }_{82}^{88}$ |  |
| Wine | ${ }_{52}^{87}$ | ${ }_{19}^{19} 7$ | ${ }_{21}^{128}$ | 71 | 4 | $5)$ | 152 | 241 | 15.5 | 492 | 75 | ${ }^{96}$ | 7.8 | ${ }^{83}$ | 15.9 |  |  | ${ }_{205}^{229}$ | ${ }_{5}^{79}$ | －${ }_{5}^{67}$ | ${ }_{155}^{158}$ | ${ }_{26}^{21}$ | ${ }_{203}^{208}$ | ${ }^{682}$ |  |  |  |  | $\underset{138}{13.6}$ |  | ${ }_{16.8}^{11.6}$ | ${ }_{25,8}^{22}$ | ${ }_{5}^{59}$ |  | ${ }^{51}$ |
| Whioe | ${ }_{21}$ |  | 127 196 |  |  | 5.2 | 156 | ${ }^{226}$ | 148 | ${ }^{49} 8$ |  |  |  |  |  | 129 | 124 | 228 | 5 | 538 | 143 | ${ }_{25}^{23}$ |  | 232 | ¢ 5. | ${ }_{92}^{10.2}$ | \％ 8 | ${ }_{104}^{10.5}$ | $\xrightarrow{161}$ | ${ }_{116}^{19.6}$ | ${ }_{18}^{15}$ | ${ }_{29}^{2.3}$ | $\underset{7}{7.1}$ | ${ }^{78}$ | 153 153 |
| ${ }_{\text {che }}^{\text {S．Johana }}$ | ${ }_{240}^{293}$ | ${ }_{118}^{119}$ | ${ }_{128}^{77}$ | 17 | ${ }_{5}{ }^{9}$ | ${ }_{5}^{46}$ | ${ }^{1965}$ | ${ }_{24}^{21}$ |  | $\underset{\substack{482 \\ 423}}{4.6}$ | $\begin{gathered} \frac{8}{7,5} \\ 7,5 \end{gathered}$ | ${ }_{\text {c }}^{78}$ | ${ }_{\text {¢ }}^{58}$ | ${ }_{9.6}^{9.6}$ | 107 | 106 | ${ }_{\text {is }}$ | ${ }_{208}^{20}$ | 55 | ${ }_{4}$ | 146 | 264 |  |  | 4 | ${ }_{93}$ | 56 | 3 | 132 | 122 | 122 | 272 | ${ }_{73}^{87}$ |  | ${ }_{14}^{114}$ |
| $\stackrel{\text { siden }}{\text { sidenenn }}$ | $\underbrace{\substack{196 \\ 198}}_{\substack{300 \\ 1,04}}$ | ${ }_{114}^{193}$ |  | 182 | ${ }_{5}^{7}$ | ${ }^{7.1}$ | ${ }^{13,3}$ | ${ }_{214}^{25,3}$ |  | 53.3 |  | ${ }_{62}$ | ${ }_{5}$ | ${ }_{6.2}$ | ${ }^{128}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | 141 | 132 | ${ }^{158}$ | 288 |  | 88 | ${ }_{151}{ }^{151}$ |
| （a）enem |  | 121 | 124155 |  | ${ }^{6} 6$ | 5.3 | 158 | ${ }^{228}$ | $13 \times$ | 78 | 53 | өs | ${ }^{78}$ | ${ }^{18}$ | ${ }^{1384}$ | ${ }_{191}^{122}$ | ${ }_{15}^{15,9}$ | ${ }_{\substack{258 \\ 58}}$ | ${ }_{65}$ | \％ | 168 | ${ }^{278}$ |  |  | ${ }_{6.7}^{5.7}$ | ${ }^{108}$ | ${ }_{7,5}^{8,5}$ | 85 | ${ }_{168}^{196}$ | ${ }_{13} 13$. | 157 | 226 | ${ }^{\text {b9 }}$ |  | 年 |
| ¢，¢， | ${ }_{41}^{104}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{132}^{128}$ | ${ }_{122}^{112}$ | 196 | ${ }^{238}$ |  | 8 | 146 | 22.1 | ${ }^{296}$ |  |  |  |  |  | 152 | ${ }_{1}^{1194}$ | ${ }^{168}$ | ${ }_{22}^{265}$ | ${ }_{75}^{88}$ |  |  |
| ${ }_{\text {Sld }}^{\text {S．J }}$ |  | ${ }_{128}^{12}$ | ${ }_{124}^{124} 4$ | ${ }_{17}^{17}$ | ${ }_{5}^{68}$ | ${ }_{4}^{10}$ | 192 | ${ }_{20,}^{22,}$ |  | 121 |  | ${ }_{83}^{85}$ | \％ | ${ }_{6}$ | $\begin{aligned} & 118 \\ & \hline 197 \\ & \hline 10 \end{aligned}$ | 125 | 197 | ${ }^{212}$ | ${ }^{56}$ | ${ }_{5}$ | 124 | ${ }_{2}^{22}$ |  | ${ }_{62}^{30}$ | 65 | 9 | ${ }_{6}^{6.6}$ | ${ }^{9,1}$ | 13. | ${ }_{131}^{14}$ | $\begin{gathered} 15.5 \\ 165 \\ 165 \end{gathered}$ | ${ }_{2,5}^{2,4}$ | ${ }_{6}^{86}$ | ${ }_{54}^{78}$ | －${ }_{\text {128 }}^{128}$ |
|  | ${ }_{\substack{16 \\ 276}}$ | ${ }^{1189}$ | ${ }^{128}$ | 179 | ${ }^{47}$ |  | ${ }^{152}$ | 23， | 123 | $\stackrel{53}{593}$ | ${ }^{\text {\％}}$ | ${ }^{\text {888 }}$ |  | $\underset{78}{18}$ | 119．9 | ${ }^{114}$ | ${ }_{\substack{16,5 \\ 168}}^{146}$ | ${ }_{\text {ck }}^{\substack{29 \\ 198}}$ | ${ }^{81}$ | ${ }_{5}^{59}$ | 14 | ${ }_{\substack{251 \\ 268}}^{2.8}$ |  | ${ }_{608}$ | ¢ | 103 | － 72 | 118 | $\underset{\substack{166 \\ 157}}{157}$ | ${ }^{153}$ | ${ }_{15}^{156}$ | ${ }_{22}^{262}$ | ${ }_{88}^{88}$ | ${ }_{8}$ | ${ }_{151}$ |
| ssuoh |  | 117 | ${ }_{129}^{124} 8$ | ${ }_{15}^{15}$ | ${ }_{46}^{5.5}$ | ${ }_{88}$ | $\underset{435}{135}$ | 22， |  | 50.8 | ${ }_{\text {¢ }}^{\substack{\text { g日 }}}$ |  | ${ }_{4}^{6}$ | ${ }_{85}^{88}$ | ${ }_{128}^{18}$ | ${ }_{112}^{128}$ | ${ }_{198}^{196}$ | ${ }_{2} 29$ | 57 | $\stackrel{59}{59}$ | 19 |  | 273 |  | 5 | 83 |  |  |  | 11.3 | ${ }_{132}$ | ${ }_{27}^{24}$ | $\stackrel{71}{78}$ | ${ }_{9}^{7}$ | ${ }^{198}$ |
| ${ }^{\text {Sidubu }}$ | ${ }^{1710}$ 175 | 148 | $19 \quad 172$ | 212 |  |  | 13.9 | 241 | ${ }^{131}$ | 536 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Stiser | 163 | ${ }_{114}^{108}$ | 12  <br> 12 181 <br> 159  | 202 | 5 5 |  |  |  |  | 521 |  |  |  |  |  |  |  |  |  |  |  |  | 252 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 15 |  | 113 12 ${ }^{12}$ | 242 | ${ }^{6.5}$ | ${ }_{80}^{7.3}$ | ${ }^{177}$ | ${ }_{22}^{24 .}$ | 25.5 |  | ， | ${ }^{88}$ | ${ }_{\text {73 }}$ |  | 142 | 141 | 185 | ${ }_{2}^{254}$ | S | － | ${ }_{157}^{158}$ | ${ }_{26}^{264}$ | 228 |  |  | ${ }^{19.9}$ | ${ }_{75}$ | 104 | 153 | ${ }_{\substack{1192 \\ 138 \\ 138}}$ | $\begin{gathered} 178 \\ \hline 168 \\ 1689 \end{gathered}$ | 25 | － 10.1 | 102 <br> 8.5 <br> 0 | ${ }_{\substack{167 \\ 161}}^{181}$ |
|  | $\stackrel{2}{19}$ | ${ }_{157}^{125}$ | ${ }_{1.45}^{104} \quad 165$ | ${ }_{198}^{21}$ | ${ }_{69}$ | ${ }_{64}^{19}$ | ${ }_{2184}^{124}$ | ${ }_{24,}^{24}$ |  |  | ${ }_{7}$ |  |  | ${ }_{8}$ | 146 | 194 | 154 | 242 | 8 | 65 | 156 | ${ }^{26}$ | ${ }^{30} 7$ | ${ }^{62}$ | ${ }_{68}^{65}$ | ${ }^{98}$ |  |  | 17. | 158 | ${ }_{10}^{155}$ | ${ }_{2 c}^{262}$ | ${ }_{93}^{68}$ | ${ }_{10}^{71}$ | ${ }^{194}$ |
| －6 | $i n$ | ${ }_{138}^{138}$ | ${ }_{12}^{28} \quad 185$ | ${ }_{17}^{17}$ | ${ }_{67}^{65}$ | ${ }_{\text {E．}}$ | －155 | ${ }_{238}^{23,}$ | ${ }_{172}^{179}$ |  | ${ }_{69}$ | ${ }_{95}^{99}$ | ${ }_{73}$ | ${ }_{27}^{82}$ |  |  | 148 | ${ }_{251}^{25}$ | ${ }_{6}$ | ， | 15 | ${ }_{244}^{24}$ | 227 |  | ${ }_{6}$ | ${ }^{13.1}$ | 7 | 10.5 | 163 |  |  | 27. | 日．${ }^{\text {a }}$ | 85 | ${ }^{159}$ |
|  | $\frac{5}{7}$ | ${ }_{188}^{128}$ | （155 | ${ }_{162}^{16}$ | ${ }^{81} 8$ | ${ }_{68}^{88}$ | ${ }_{159}^{159}$ | ${ }_{23}^{23}$ |  | ${ }_{515}^{52}$ | ${ }^{6}$ | ${ }^{3}$ | ${ }_{7}^{8.8}$ | ${ }_{7}^{78}$ | ${ }_{14}^{14.4}$ |  | ${ }_{168}^{158}$ | ${ }_{22}^{234}$ | ${ }^{8}$ |  | ${ }_{148}^{14.5}$ | ${ }_{24}^{24}$ | ${ }_{2}^{275}$ |  | ${ }_{82}$ | ${ }^{9.1}$ | ${ }_{8}^{67}$ | ${ }^{980}$ | 1665 | ${ }_{151}^{158}$ | 165 | ${ }_{24}^{22,5}$ | 921 | ${ }_{32}$ | ${ }_{153}$ |
|  | 16 | 132 |  | ${ }^{20.4}$ | ${ }^{68}$ | 6.5 | ${ }^{16}$ | ${ }^{258}$ | 185 |  | ${ }_{1}$ | ${ }^{\text {日7 }}$ |  | ${ }^{79}$ |  |  |  |  | ${ }_{5}^{71}$ | ${ }_{5}^{68}$ | ${ }_{162}^{15}$ | ${ }_{29}^{27}$ |  |  | ${ }_{75}^{89}$ | 10.6 | 76 | 10.8 | ${ }_{168}^{17}$ | ${ }_{125}^{165}$ | $12{ }^{124}$ | 2.1 | $\stackrel{1}{8,}$ | 时 | ${ }_{17}^{168}$ |
| max |  |  |  |  |  |  | ${ }^{155}$ | ${ }_{27}^{27,8}$ |  |  |  | 95 | ${ }_{74}^{73}$ |  | ${ }_{168}^{168}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{15}$ |



出


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 122 | ${ }^{762}$ | ${ }^{6} 3$ | 17.2 | 5 |  |  |  |  |  | 12 | 108 | ${ }^{75}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {S }}^{\text {Srauting }}$ |  | 16 | ${ }_{218}^{219}$ |  |  | ${ }^{8}$ | 10.4 | ${ }_{95}^{191}$ |  | 278 | ${ }_{22}^{226}$ | ${ }_{5}^{326}$ | $\begin{aligned} & \text { as } \\ & \text { an } \\ & 517 \end{aligned}$ | ${ }_{19}^{14}$ | ${ }_{14}^{132}$ | 15 | ${ }^{313}$ |  |  |  | 126 |  |  |  |  |  |  | ${ }_{4}^{47}{ }_{4}^{47}$ |  | ${ }^{\text {搨 }}$ | 258 |
| Stame |  | ${ }_{196}^{196}$ | ${ }_{248}^{24}$ | ， |  | ${ }_{119}^{119}$ | ${ }_{1 / 4}^{16}$ | ${ }_{120}^{110}$ | －151 |  |  |  |  |  |  | 124 |  |  |  |  | 72 |  |  | ${ }^{346}$ | ${ }^{298}$ |  |  | ${ }^{43,3}$ | ${ }_{\substack{48 \\ 103 \\ 185}}$ |  |  |
| ${ }_{\text {graum }}$ | ${ }_{369} 09$ | ${ }_{178}^{188}$ | ${ }_{20}^{20}$ | 293 | 644 | ${ }_{10}^{97}$ | ${ }_{138}^{138}$ | ${ }^{9} 9.6$ | ${ }_{128}^{128}$ | ${ }_{24}^{24}$ | ${ }_{275}^{24}$ | ${ }_{5}^{\frac{322}{59}}$ | ${ }_{\text {c }}^{418}$ | ${ }^{19.4}$ | ${ }_{12}^{13}$ | 148 | ${ }^{225}$ | ${ }^{33}$ |  |  |  |  | \％ |  |  |  |  | ${ }^{832}$ | ${ }_{456}$ | ${ }_{75}$ |  |
| Struuln | 687 | 175 | ${ }^{238}$ | 276 | 659 | ${ }_{83}^{87}$ | ${ }_{12}^{125}$ | ${ }^{87}$ | ${ }_{113}^{122}$ | ${ }_{29}^{24}$ | ${ }_{258}^{258}$ | ${ }_{8}^{336}$ | ${ }_{4}^{428}$ | ${ }_{117}^{138}$ | ${ }_{128}^{195}$ | ${ }_{185}^{738}$ | 27.5 | 242 | ${ }^{87}$ | ${ }_{5} 8$ | \％ | 79 | 102 | 414 | 321 | ${ }_{205}^{295}$ | － | ${ }_{432}$ | 408 | ${ }_{75}$ | ${ }^{255}$ |
| Statioun | ${ }_{\substack{768 \\ 888}}$ | ${ }_{17}^{17}$ | 275 | 257 | ${ }_{6}$ | ${ }_{8}$ | ${ }_{127}^{127}$ | ${ }^{8.6}$ | ${ }_{12}^{12}$ | ${ }_{22}^{25}$ | ${ }_{278}^{228}$ | ${ }^{39}$ | ${ }^{418}$ | $\xrightarrow{121}$ | ${ }_{12}^{19}$ | $\xrightarrow{15.4}$ | ${ }_{2}^{23}$ | ${ }^{23}$ | ${ }_{876}^{806}$ | ${ }_{7}^{59}$ | ${ }_{76}^{9}$ | ${ }_{6}^{69}$ | ${ }_{8}^{8}$ | ${ }^{364}$ |  | ${ }_{\substack{294 \\ 884}}^{294}$ | S | ${ }_{235}^{232}$ | ${ }_{3}^{192}$ | 79 | $\underset{\substack{289 \\ 288}}{2}$ |
| Somau | ¢10 | 169 | ${ }_{225}$ | 22. | 61 | ${ }_{9}$ | ${ }_{13} 1$ | 101 | ${ }^{124}$ | ${ }_{2}^{2,2}$ | 269 | ${ }^{292}$ | ${ }_{4}^{49}$ | 13 | ${ }_{18}^{18}$ | ${ }^{517} 1$ | ${ }^{28}$ | ${ }^{238}$ |  | ${ }_{88}^{88}$ | ${ }_{103}^{126}$ |  | ${ }_{106}^{11}$ |  |  |  | \％ | ${ }_{465}^{45}$ | ${ }_{885}^{48}$ | ${ }_{95}^{93}$ |  |
|  | ${ }_{268}^{688}$ | 161 | ${ }^{238}$ |  |  | 78 | 12.2 | ${ }^{\text {5 }}$ | ${ }^{123}$ |  | ${ }^{271}$ | ${ }_{5}^{322}$ | ${ }^{82}$ | －128 <br> 145 <br> 185 | ${ }_{158}^{19}$ | $\stackrel{19}{193}$ | 2.4 285 285 |  | ${ }^{85} 8$ | ${ }_{63} 8$ | ${ }^{88} 8$ | ${ }_{6}^{63}$ | ${ }_{9.5}^{908}$ | ${ }^{33} 3$ | 294 | 311 |  |  |  |  | 270 |
|  |  | ${ }_{205}^{162}$ |  |  | 7 | 93 |  | 8．1 |  | ${ }_{23}^{28,}$ | ${ }_{30}^{209}$ | ${ }^{122}$ | ＂ |  | 5 |  | 212 |  |  | ${ }_{5}^{82}$ | ${ }^{13}$ | 81 |  |  |  | 317 | ¢ | ${ }_{468}^{42}$ | ${ }_{459}$ |  |  |
| L | ${ }_{5}^{40}$ |  | 207 |  |  |  | 119 |  |  |  |  |  |  |  | 158 |  |  |  |  |  |  | S | 1 | 39 | 32 | ${ }^{551}$ | ${ }_{61}^{62}$ | ${ }_{475}^{47}$ | 166 | ${ }_{85}^{80}$ | 275 |
| neach | ${ }_{5}^{18}$ | 199 | 24. |  |  | 78 |  | 77 | ${ }^{3} 6$ | 256 | 307 | 731.3 | 495 | 171 | ${ }^{296}$ |  | 293 |  |  | ${ }^{58}$ |  |  |  | 3 |  |  |  | ${ }^{465}$ | ， | ${ }_{98}^{98}$ |  |
| mach | 6， | 18 | ${ }^{248}$ |  |  | ${ }^{8}$ |  | 74 | 13 | 23.7 | 283 | 332 B | 394 | 143 | 157 | 159 | 302 |  |  | ${ }^{9}$ | ${ }^{85}$ | 53 |  |  |  | ${ }^{305}$ |  | $4{ }^{163}$ | 29 | ${ }^{3}$ |  |
| come | ， | ${ }_{19}^{193}$ | ${ }^{2285}$ |  |  | 85 | ${ }_{151}^{215}$ | ？ | 13.4 | 25 | ${ }_{29}^{39}$ | ${ }_{8}^{815}$ | ${ }^{495}$ | ${ }_{725}^{762}$ | 191 | 188 <br> 225 | ${ }_{261}^{265}$ | ： 8 | 942 | 65 | ${ }^{10.4}$ | ${ }_{8}^{5}$ | － 818 |  |  | － | ${ }_{\substack{58 \\ 58}}^{56}$ | 退 48 | 0 | ${ }_{\substack{79 \\ 79}}$ | ${ }_{275}^{278}$ |
| bartic | $\xrightarrow{12356}$ | ${ }_{193}^{19}$ | ${ }^{2}$ | 292 | 516 | ${ }_{84}^{73}$ | － 12.1 |  | $1{ }_{1}^{19}$ | ${ }_{295}^{24}$ | ${ }_{29}^{279}$ | ${ }_{4}{ }_{8}^{312}$ | ${ }_{8}^{82}$ | ${ }_{199}$ | ${ }_{151}^{151}$ | ${ }_{182}^{152}$ | ${ }_{26}^{245}$ |  | ${ }^{672}$ | 57 | ${ }^{96}$ | 62 | ${ }_{70,5}^{7.6}$ |  |  | ${ }_{\substack{264 \\ 314}}^{26}$ | ${ }_{\substack{55 \\ 55}}$ | ${ }^{3137}$ | ${ }_{\substack{410 \\ 3 \times 2}}$ | ${ }_{75}^{79}$ | $\underbrace{\substack{276}}_{\substack{237 \\ 2765}}$ |
| baribl | ${ }^{12885}$ | ${ }^{17} 7$ | 222 |  | ${ }^{719}$ | ${ }_{85}^{89}$ | －122 | ${ }_{78}^{7.9}$ | ${ }_{124}^{124}$ | ${ }_{27}^{222}$ | ${ }_{268}^{255}$ | $5_{827} 93$ | ${ }_{4}^{428}$ | ${ }_{172}^{136}$ | 151 | 195 | ${ }_{276}^{272}$ |  | ${ }_{89}^{8,4}$ | 5 | ${ }^{981}$ | ${ }_{8}^{89}$ |  |  |  | ${ }_{\substack{274 \\ 327}}^{27}$ | 5 | ${ }_{8,58}^{426}$ | ${ }^{367}$ | ${ }_{79}^{72}$ |  |
| emarti | ${ }^{12859}$ | ${ }^{179}$ | ${ }_{232}^{235}$ | 29 |  |  |  |  |  | 2.5 | ${ }_{26}^{265}$ | ${ }_{6}^{255}$ | 588 |  | － 182 | ${ }_{\substack{19.4 \\ 181}}^{1}$ | ${ }_{\substack{266 \\ 285}}^{296}$ |  | ${ }^{882}$ | 8 | ${ }_{108}$ | 59 | ${ }^{9.95}$ |  |  | ${ }_{305}^{202}$ | ${ }_{58}^{59}$ | ${ }_{48,2}^{48}$ |  | ${ }^{89}$ |  |
| earb | ${ }_{1289}^{1288}$ | ${ }_{77}^{199}$ | ${ }_{245}^{25}$ | 218 | ${ }^{665}$ | ${ }_{\text {8，}}^{8.1}$ | ${ }_{125}^{126}$ | ${ }_{89}^{88}$ | 197 | ${ }_{25}^{24}$ | ${ }_{512}^{24}$ | ${ }_{2}^{2} 8$ | ${ }^{\text {cos }}$ | ${ }^{185}$ | 152 | 185 | ${ }_{29}^{29}$ |  | 84 | 87 | ${ }_{78}$ | 4 | 75 |  |  |  |  | ${ }_{83}^{89}$ | ${ }_{\substack{488 \\ 429}}$ | ${ }_{79}^{85}$ | 279 |
| amile | ${ }_{189}^{189}$ |  | ${ }_{2}^{24.4}$ | 208 | ${ }_{624}^{362}$ | ${ }_{6}^{94}$ | 11.3 |  | ${ }_{112}^{112}$ | 226 | ze2 | 2275 | 517 | ${ }^{119}$ | 19.2 | ${ }^{15}$ | ${ }_{23,}^{23,}$ | 239 | 873 | 52 | ${ }_{102}^{102}$ | ${ }_{73}{ }^{5}$ | ${ }_{126}^{96}$ |  |  | 268 <br> 285 <br> 28 | ${ }_{59}^{89}$ | ${ }_{392}^{397}$ | ${ }^{427}$ | ${ }_{70}^{70}$ | ${ }_{268}^{255}$ |
| Whor | ${ }_{5}^{195}$ | 206 | ${ }_{229}^{298}$ |  | $\stackrel{821}{74}$ | ${ }_{88}^{8.8}$ | 149 | 9.9 | м | ${ }_{29}^{25,}$ | ${ }_{\text {32 }}^{32}$ | ${ }_{\substack{303 \\ 376}}^{37}$ | 退 412 | ${ }_{12}^{15}$ | 192 125 128 | ${ }_{18}^{206}$ | $\underset{\substack{256 \\ 25 \\ 25}}{ }$ | 238 |  | 54 | $\underset{122}{121}$ | ${ }_{5}^{54}$ | ${ }_{2}^{29}$ |  |  |  |  | ${ }_{44} 3$ | ${ }_{3}^{469}$ | ${ }_{76}^{82}$ | ${ }_{265}^{278}$ |
| Cour | ces | ${ }^{19}$ | ${ }^{239}$ |  |  | ${ }^{78}$ | 118 |  | 115 | ${ }_{209}^{195}$ | 252 | 2115 | ${ }_{5}{ }_{85}^{22}$ |  | ${ }_{135}^{112}$ |  |  |  |  | ${ }_{59}^{59}$ |  |  |  |  |  | ${ }_{26}^{238}$ | ${ }_{58}^{58}$ | 005 | 209 | so |  |
| chur | 48 |  |  |  |  |  |  |  |  | 19 | 237 | 7 | ${ }^{41}$ |  | 128 |  | 25. |  |  |  |  | 5 |  |  |  |  |  |  |  |  |  |
| chur $\substack{\text { chur } \\ \text { chur }}$ | ${ }_{\substack{297 \\ 587}}$ | ${ }^{168}$ | ${ }_{219}^{219}$ | ${ }^{23} 4$ |  | ${ }_{76}^{81}$ | 114 | ${ }_{81}^{75}$ | 09 | ${ }_{22}^{29}$ | ${ }_{8}^{879}$ | ${ }_{2}^{9} \quad \begin{aligned} & \frac{326}{32} \\ & 34\end{aligned}$ | ${ }_{3}^{6} 48$ | ¢ $\begin{aligned} & 116 \\ & 132\end{aligned}$ | ${ }^{12}$ ， |  |  |  |  | ${ }_{55}^{55}$ | 11.4 |  |  | 341 | 268 | ${ }_{292}^{298}$ | ${ }_{55}$ | ail | $\underbrace{\substack{17 \\ \hline 18}}_{\substack{498 \\ 937}}$ | ${ }^{80}$ |  |
| Wmin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 351 | 295 |  |  | ${ }_{8}{ }^{1}$ | 81 | ${ }^{85}$ |  |
| Winent | ${ }_{115}^{13}$ | $\underset{\substack{162 \\ 175}}{185}$ | ${ }_{28}^{21}$ | ${ }^{265}$ | ${ }_{6}^{6814}$ | ${ }_{88}^{8}$ | 121 | ${ }_{81}$ | ，15 | ${ }_{29}^{29} 9$ | ${ }_{292}^{292}$ | $2{ }_{2}{ }^{319}$ | 6 |  | ${ }_{142}^{15}$ | ${ }^{175}$ | ${ }_{24}^{268}$ | ${ }_{25}^{274}$ |  |  | ${ }_{92}^{127}$ | ${ }^{87}$ | ${ }^{195}$ |  |  | cin | ${ }_{55}^{82}$ | $\xrightarrow{458}$ | ${ }_{4}^{246}$ | ${ }_{79}^{81}$ | ${ }^{273}$ |
| \％Wnornh | ${ }^{73}$ | ${ }^{204} 8$ | 223 |  | ${ }_{65}^{69}$ | 边 | ${ }_{188}^{162}$ | ${ }_{\substack{98 \\ 98}}^{\text {9，}}$ | ${ }_{193}^{193}$ | $\substack{206 \\ 206}$ | ${ }_{5}^{294}$ |  |  | ${ }_{\text {日 }}^{\substack{19 \\ 10 . \\ 102}}$ | ${ }_{\substack{159 \\ 197}}$ | ${ }_{719} 19$ |  | 25 | 866 | ¢ | ${ }_{125}$ | \％ 78 | 1105 | 401 | 315 | $\underset{\substack{281 \\ 315}}{21}$ |  |  | － 311 | ${ }_{85}^{7}$ |  |
| Weniven | ${ }_{99}^{29}$ | ${ }_{18}^{177}$ | ${ }_{20}^{20.9}$ |  |  | ${ }^{82}$ | ${ }^{12} \mathrm{~B}$ | ${ }_{82}^{77}$ | ${ }_{138} 11$ | ${ }_{195}^{293}$ | ${ }_{5}^{258}$ | －${ }^{89}$ | ${ }_{3}{ }_{39}^{404}$ | ${ }^{\text {a }}{ }_{127}^{122}$ | ${ }_{195}^{195}$ | 198 | ${ }_{253}^{256}$ |  |  |  |  |  | ${ }_{81} 10.5$ |  |  |  |  | 412 | 110 | ${ }_{79}$ | 255 |
| wim | ${ }_{87}^{28}$ | 163 | 19.7 | 291 |  | ${ }^{6}$ | ＂8 | 88 | 198 | 222 | 259 | 831.1 | 1429 | ${ }^{\text {9 }} 118$ | 173 | 158 | 231 |  |  |  |  |  |  |  |  |  |  |  | $\xrightarrow[4]{405}$ |  | ${ }_{225}^{295}$ |
| Win | ${ }_{8}^{52}$ | 187 | ${ }_{83}^{23}$ | ${ }^{29} 1$ |  | $8{ }^{98}$ | ${ }^{148}$ |  | 143 | $\underset{\substack{202 \\ 220}}{ }$ |  | ${ }^{\text {a }}$（297 | ${ }^{7}{ }^{379} 4$ | ${ }^{1109}$ | 125 | 177 |  | 301 |  | ${ }_{68}^{56}$ | ${ }_{88}^{8.8}$ |  | ${ }^{1046}$ | 3 |  |  | \％ | 54 |  |  |  |
| mmeritur | ${ }_{228}^{21}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{125}^{198}$ | \％ 189 | ${ }_{236}^{223}$ | ${ }^{268}$ | ${ }^{81}$ |  | 131 |  | 105 | 339 | 265 |  | 4 | ， | ${ }_{3}^{33}$ |  | ${ }^{270}$ |
| 8 | ${ }^{200}$ | 167 | 223 |  | ${ }_{79} 8$ | ${ }^{73}$ | 114 | $\stackrel{3}{8}$ | 118 | ${ }_{228}^{209}$ | ${ }^{9}{ }^{258}$ | ${ }^{5} 8{ }_{8}^{85}$ | $5{ }_{5}^{3785}$ | ${ }_{2}^{5}{ }_{2}^{122}$ | 121 | ${ }_{17}^{186}$ | ${ }_{252}^{239}$ |  | ${ }_{818}^{811}$ | $\stackrel{59}{53}$ | ${ }_{78}^{103}$ | ${ }_{55}^{53}$ | 9 |  |  |  | \％ | 25 | \％e6 |  | ${ }_{29}^{295}$ |
| Sid |  | 172 174 | ${ }^{2+1}$ | ${ }_{255}^{295}$ |  | ${ }_{8}^{78}$ | $\underset{124}{128}$ | $\xrightarrow{78}$ | ${ }_{128} 18$ | ${ }_{228}^{25}$ | －${ }^{29} 29$ | ${ }_{3}^{13191}$ | ${ }_{9}^{1} 8$ | ${ }_{7}^{7}{ }_{1}{ }_{5}^{102}$ | 117 | ${ }_{176}^{15}$ | ${ }_{31}^{23}$ | ${ }_{216}^{326}$ | ${ }_{35} 9$ | ${ }_{7}^{51}$ | 1127 | $\stackrel{59}{72}$ | 1124 | $\begin{gathered} 398 \\ 3094 \\ 304 \end{gathered}$ | 293 |  |  | ${ }_{4.38}^{4.48}$ | ${ }_{\text {dis }}^{685}$ |  | ${ }_{318}^{298}$ |
| s． | ${ }_{917}^{193}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 328 |  |  | ${ }_{5}^{45}$ | 475 |  | ${ }^{296}$ |
|  | ${ }_{4}^{1104}$ | ${ }_{168}^{17}$ | ${ }_{235}^{245}$ |  | ${ }_{718}^{51.8}$ | ${ }_{103}^{98}$ | ${ }_{128}^{12}$ | 9，2 | ${ }_{125}^{125}$ | ${ }_{23}^{232}$ | ${ }_{7}{ }_{316}^{27}$ | 6328 | $8{ }^{471}$ | ${ }_{1}^{5}$ | 137 | ${ }_{159}$ | ${ }_{24}^{27}$ | 299 | 824 |  | 31 | 61 |  |  | ${ }_{308}^{298}$ |  |  | ${ }^{464}$ |  |  |  |
| SL．un |  | ${ }^{16}$ | ${ }_{20}^{20 .}$ |  | 628 | ${ }_{8}^{85}$ | $\underset{152}{129}$ |  |  | ${ }_{228}^{228}$ | 873 278 | ${ }_{3}^{3}{ }_{3}^{293}$ | 392 <br> 489 |  |  | ${ }_{148}^{192}$ | ${ }_{24}^{24}$ | 236 | ${ }_{89}^{82,}$ |  |  |  |  | ${ }^{30.4}$ | 293 |  | \％ |  |  |  |  |
| S， | ${ }_{276}$ | ${ }_{18}^{168}$ | ${ }_{21}$ | 20 |  | 7 | ${ }^{196}$ | 79 | ${ }^{128}$ | 258 | （e） | \％ 229 | $1{ }^{1}$ | ${ }^{9} 118$ | 10.4 | 159 | ${ }_{\text {21，}}^{221}$ |  | 794 |  | 1117 | ${ }_{86}^{66}$ | 14. | ${ }^{310.1}$ | ${ }^{293} 8$ |  |  | ${ }_{4}^{122}$ | ${ }^{1026}$ |  | ${ }_{272}^{258}$ |
| Siluoh | ${ }_{\substack{266 \\ 1320}}$ | $\underset{\substack{206 \\ 187}}{ }$ | ${ }_{218}^{298}$ | 254 | ${ }^{69} 6$ | ${ }_{176}^{96}$ | 148 | ${ }_{92}^{9}$ |  | ${ }_{\substack{229 \\ 220}}^{\substack{29}}$ | \％ | ${ }^{256}$ | $6{ }^{5} 8$ |  | 1122 | ${ }_{20}^{16}$ | ${ }_{3}^{24.2}$ | ${ }_{236}$ |  |  | 17 |  |  | ${ }_{33}^{319}$ | 27， |  |  | ${ }^{398}$ | ${ }_{8}^{86}$ |  |  |
| 8，oun | ${ }^{1781}$ | ${ }_{192}^{191}$ | ${ }_{22}^{275}$ | $\stackrel{338}{398}$ | ${ }_{64}^{79}$ | ${ }_{9}^{72}$ | ${ }_{14}^{103}$ | ${ }_{8}^{8}$ | ${ }_{1789}{ }^{17}$ | ${ }_{223}^{224}$ |  | ${ }_{5}^{2} 809$ | ${ }^{(141}$ | 23 | 125 | ${ }_{165}^{206}$ | ${ }_{281}^{281}$ |  | ${ }^{\text {888 }}$ |  | 105 | ${ }^{83}$ | ${ }^{121}$ | ${ }^{34} 4$ | 286 |  |  | ${ }_{45}^{48}$ | ${ }_{9} 96$ |  | ${ }_{275}^{278}$ |
| Stion | ${ }_{5}^{527}$ | ${ }^{17} 9$ | ${ }_{228}^{228}$ |  |  | $9_{9}^{67}$ | ${ }_{18}^{13}$ | ${ }_{92}^{72}$ | 178 17 | ${ }_{19}^{298}$ | ${ }_{8}^{88}$ | ${ }^{3}{ }_{3}^{29.2}$ |  |  | ${ }_{34}^{17}$ | 193 | ${ }_{29}^{22}$ | ${ }_{268}^{25}$ |  |  | 128 |  | 13 | ${ }^{338}$ | ${ }_{3}^{318}$ |  |  | ${ }_{4}^{46}$ | ${ }^{235}$ |  | ${ }_{255}^{270}$ |
| － | 15 | 20.4 | ${ }_{29}^{27}$ |  |  | ${ }_{83}^{109}$ | ${ }_{124}^{152}$ |  | ${ }_{13}^{167}$ | ${ }_{25}^{24 .}$ | ${ }_{\text {¢ }} 292$ | ${ }_{2} 3_{316}$ | $6{ }_{487}^{48}$ |  | ${ }_{135}^{14}$ | ${ }_{19}^{29}$ | ${ }_{25}^{228}$ |  |  |  |  |  | 123 |  |  |  |  | ${ }_{45}^{4} 5$ | ${ }^{372}$ |  | $\underset{ }{270}$ |
| － |  | ${ }_{201}^{198}$ | ${ }_{235}^{234}$ | ${ }^{324}$ | 702 | 1098 | ${ }_{198}^{198}$ | ${ }_{12}^{11.9}$ | ${ }_{19}^{1,9}$ | ${ }_{23}^{224}$ | ${ }_{5}^{48 .} \begin{aligned} & 28.5 \\ & 28.5\end{aligned}$ | ${ }_{5}^{1} 5$ | ${ }_{6}^{88} 8$ | ${ }_{3}^{5} 141$ | 197 | $1{ }^{165}$ | ${ }_{248}^{225}$ |  |  |  | 11.5 |  | 134 |  |  |  |  | ${ }_{458}^{48}$ |  |  |  |
| －6emer | 17 | ${ }_{199}$ | 2，9 |  |  | 111 | 139 | 118 | ${ }^{138}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 析 | ${ }^{126}$ | 420 |  |  |
| －Genever | ${ }^{11}$ | 1792 | ${ }_{22}^{22} 4$ | 225 | 等 | ${ }_{86}^{106}$ | 1.3 | 103 | 11 | 22， | $2{ }^{258}$ | （e） | 5 |  | 15．18 | 193 | ${ }_{4}^{25,5}$ | 312 |  |  | ${ }_{188}^{73}$ |  |  | ${ }_{3}^{30.14}$ | ${ }_{312}^{27}$ |  |  | ${ }^{4985}$ |  |  | ${ }^{2890}$ |
|  | $\stackrel{7}{16}$ | ${ }_{20}^{179}$ | ${ }_{226}^{223}$ | ${ }_{27.1}^{332}$ |  | ${ }_{67}^{102}$ | ${ }_{\text {la }}^{19}$ | 77 | ${ }_{142}^{14}$ | ${ }_{23}^{23}$ | ${ }^{20.6}$ | ．6． 32.2 | 2427 | ${ }^{1} 13$ | 16.2 | 123 | ${ }_{274}^{265}$ |  | 623 |  |  |  |  |  |  |  |  | ${ }^{15}$ |  |  |  |
| －atmen | ！ | ${ }_{818}^{2185}$ | ${ }_{22.1}^{28 .}$ | ${ }_{332}^{302}$ | 27.6 | ${ }_{8,}^{113}$ | $\underset{1}{165}$ | ${ }^{716}$ | ${ }_{151}^{158}$ | ${ }_{258}^{278}$ | 888 | $8{ }^{306}$ | ${ }^{186}$ |  | 12.6 |  |  | 23. | ${ }^{22} 5$ | ${ }_{97}^{66}$ | 1124 | ${ }_{83}^{63}$ | ${ }^{10,5}$ | ${ }_{403}^{33}$ | ${ }_{39}^{288}$ | ${ }_{\substack{306 \\ 301}}$ | \％ | ${ }^{828}$ | ${ }_{487}^{431}$ |  | ${ }_{\text {cied }}^{278}$ |
|  | 10 |  |  |  |  | $9 \%$ |  |  |  |  |  | $3{ }^{36}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



|  |
| :---: |
|  |  |
|  |




Females - Neolithic / Bronze Age

|  |  | AgEGROUP | C3M2 | C3M1 | Сзм6 | сам9 | C3PHL | C3PHR | C3M10 | С3M11 | C3SPL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 54 | 39 | 37 | 38 | 37 | 34 | 35 | 27 | $3 \varepsilon$ | 14 |
| Mean |  | 1.39 | 12.17 | 12.15 | 14.97 | 19.38 | 6.21 | 6.09 | 14.65 | 22.28 | 13.00 |
| Median |  | 1.00 | 12.20 | 12.40 | 14.80 | 19.30 | 6.10 | 5.90 | 14.70 | 22.45 | 12.90 |
| Mode |  | 1.00 | 12.20 | 12.60 | $14.20^{\circ}$ | 20.80 | $5.50^{\text {a }}$ | 5.80 | $15.20^{\text {a }}$ | $21.00^{\text {a }}$ | 11.20 |
| Std. Deviation |  | 63 | 91 | 1.13 | 133 | 2.34 | . 94 | .78 | 1.03 | 1.18 | 2.37 |
| Minimum |  | 1.00 | 10.20 | 10.00 | 12.50 | 14.90 | 4.20 | 4.80 | 12.10 | 19.20 | 9.40 |
| Maximum |  | 300 | 15.40 | 14.30 | 19.80 | 2520 | 830 | 8.20 | 16.80 | 24.40 | 1 A 00 |


|  |  | C3TPW | C3FLCR | C3IFLCA | C31FACR | C3IFRCA | C7M2 | C7M1 | C7M6 | C7M9 | C7PHL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 17 | 34 | 35 | 36 | 36 | ${ }^{35}$ | 35 | ${ }^{34}$ | ${ }^{35}$ | ${ }^{3}$ |
| Mean |  | 48.68 | 5.73 | 7.02 | 6.04 | 7.34 | 13.32 | 12.95 | 15.09 | 25.06 | 6.54 |
| Median |  | 48.80 | 5.70 | 7.30 | 620 | 740 | 13.30 | 13.00 | 15.05 | 25.20 | 6.50 |
| Mode |  | $48.80^{\text {a }}$ | $5.70^{\text {a }}$ | $7.30^{\text {a }}$ | $3.80{ }^{\text {a }}$ | 9,40 | 13.30 | $13.20^{\text {a }}$ | $13.60^{\text {a }}$ | 25,30 | 6.80 |
| Std. Deviation |  | 2.44 | 1.31 | 1.61 | 1.51 | 1.71 | .97 | 1.02 | 1.19 | 2.12 | .88 |
| Minimum |  | 44.20 | 3.60 | ${ }^{3.80}$ | 3.30 | 3.90 | 11.50 | 10.60 | 12.50 | 19.60 | 4.80 |
| Maximun |  | 5320 | 8.50 | 1040 | 940 | 1030 | 15.20 | 15.10 | 1720 | 30.80 | 870 |


|  |  | C7PHR | C7M10 | C7M11 | C7SPL | C7TPW | C7IFLCA | C7IFLCA | C7IFPCA | C7IFRCA | T1M2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 33 | 33 | 32 | 20 | 10 | ${ }^{33}$ | 31 | 34 | 31 | 29 |
| Mean |  | 6.36 | 14.01 | 23.10 | 27.32 | 48.24 | 6.20 | 9.14 | 6.22 | 8.98 | 15.36 |
| Median |  | 6.50 | 14.30 | 22.95 | 28.10 | 46,15 | 6.20 | 9.10 | 6.15 | 9.20 | 15.30 |
| Mode |  | $530^{\text {a }}$ | $13.90^{\text {a }}$ | $22.80^{7}$ | $27.80^{\text {a }}$ | $34.30^{\text {a }}$ | 6.40 | 9.00 | 5,80 | 10.00 | 15,10 |
| Sid. Devialion |  | 92 | 1.00 | 1.49 | 4.14 | 14.64 | 82 | 1.18 | . 83 | 1.11 | 1.21 |
| Mirimum |  | 4.90 | 11.40 | 18.30 | 15.90 | 34.30 | 4.40 | 5.80 | 4.50 | 6.50 | 13.30 |
| Maximum |  | 880 | 15.30 | 2550 | $37 \times 10$ | 8810 | 830 | 10.0 | 700 | 1080 | 17 An |



|  |  | T10PHR | T10M10 | T10M11 | T10SPL | T10TPW | T10IFLCA | T101FRCA | L1M2 | L1M1 | L1M6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 38 | 37 | 36 | 22 | 26 | ${ }^{35}$ | 37 | 41 | 39 | 39 |
| Mean |  | 14.04 | 15.28 | 1679 | 23.30 | 52.57 | 11.38 | 11.15 | 26.68 | 24,99 | ${ }_{27} 45$ |
| Median |  | 14.30 | 15.40 | 16,70 | 23.20 | 5270 | 11.20 | 11.40 | 26.60 | 24.80 | 27.50 |
| Mode |  | 14.80 | $14.60^{\text {a }}$ | 1620 | $22.60^{\text {a }}$ | $47.60^{\text {a }}$ | 12.00 | 12.50 | 27.50 | 24.40 | $27.30^{\text {a }}$ |
| Sld Deviation |  | 1.43 | 1.39 | 1.54 | 4.30 | 5.01 | 1.67 | 1.38 | 2.04 | 1.88 | 2.07 |
| Minimum |  | 10.90 | 10,80 | 13.50 | 18.20 | 44,40 | 790 | 8.80 | 23.40 | 21.30 | 2290 |
| Morimum |  | 1560 | 1720 | 20.50 | 3770 | 6580 | 1480 | 1380 | 3220 | 29.10 | 31.80 |


|  |  | L1M9 | LIPHL | L.1PHR | L1M10 | L1M11 | LTSPL | LITPW | L1/FLCA | L11FLCA | L11FACA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Vatio | 39 | 42 | 41 | 39 | ${ }^{41}$ | 21 | 19 | 34 | 39 | 30 |
| Mean |  | 35.08 | 14.40 | 14.70 | 17.32 | 21.99 | 25.93 | 62.06 | ${ }^{8.59}$ | 12.83 | 9.10 |
| Median |  | 35.10 | 14.40 | 15.00 | 17.20 | 22.10 | 25.70 | 54.00 | 8.60 | 12,90 | 9.05 |
| Mode |  | $32.80^{\text {a }}$ | 14.10 | $14.10^{\text {a }}$ | 16.80 | $20.90^{\text {a }}$ | 2720 | $59.40^{\text {a }}$ | 8.50 | 13.70 | $8.30{ }^{\text {a }}$ |
| Std Deviation |  | 2.92 | 1.23 | 1,38 | 122 | 1.55 | 3,30 | 7.01 | 1.15 | 1.55 | 1.12 |
| Minimum |  | 29.20 | 11.10 | 11.80 | 15.10 | 18.20 | 18.80 | 44.20 | 6.00 | 9.10 | 6.80 |
| Maximum |  | 4310 | 1720 | 1800 | 1980 | 2500 | 32020 | 7100 | 10 品 | 1530 | 11.40 |


|  |  | L11FACA | L5M2 | L.5M1 | L5M6 | L5M9 | L.5PHL | L5PHR | L5M10 | LSM11 | L5SPL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 38 | 42 | 44 | 44 | 46 | 41 | 42 | 35 | 40 | 22 |
| Mean |  | 12.61 | 23,48 | 26.67 | 31.29 | 44.77 | 13.07 | 13.62 | 16.40 | 2538 | 22.90 |
| Median |  | 12.50 | 23.40 | 26.45 | 31.50 | 44.60 | 13.00 | 13.45 | 16.30 | 25.35 | 22.00 |
| Mode |  | 11,80 ${ }^{\text {a }}$ | $23.70^{\text {a }}$ | $24.40^{\text {a }}$ | 31,00 ${ }^{\text {a }}$ | $45.70^{3}$ | $11.20^{\text {a }}$ | 12,40 | 17.20 | 26.50 | $20.70^{\circ}$ |
| Sld Devialion |  | 1.31 | 2.24 | 2.54 | 2.66 | ${ }^{3.11}$ | 187 | 1.77 | 2.38 | 2.75 | 321 |
| Minimum |  | 10.10 | 17.70 | 21.70 | 23.10 | 37,30 | 9.50 | 10.30 | 11.90 | 19.80 | 17.90 |
| Maximum |  | 1560 | 27.00 | 3230 | 35.90 | 5210 | 1770 | 1780 | 2300 | 3100 | 3 ana |


|  |  | L5TPW | L5IFLCR | L5IFLCA | L5IFRCA | L5IFFACA | FMM16 | FMM7 | HLM 1 | HCM7 | FHBM18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 24 | 39 | 39 | 39 | 40 | 12 | 13 | 38 | 43 | 52 |
| Mean |  | 75.13 | 6.16 | 9.74 | 6.25 | 10.08 | 35.55 | 29.36 | 291.45 | 57.47 | 41.30 |
| Median |  | 81.25 | 6.10 | 9.80 | 6.10 | 10.25 | 34.95 | 29.20 | 28800 | 57.00 | 41,10 |
| Mode |  | $81.20^{\text {a }}$ | 6.10 | 9.80 | $6.10^{\text {a }}$ | 7.80 | 38.40 | $25.00^{\text {a }}$ | $283.00^{3}$ | $55.00^{\text {a }}$ | 43.20 |
| SId, Deviation |  | 16.72 | . 84 | 1,82 | 71 | 1.88 | 2.74 | 3.00 | 17.29 | 4.14 | 2.34 |
| Minimum |  | 40.00 | 4.50 | 5.10 | 4.80 | 6.30 | 31.90 | 25.00 | 260,00 | 48.00 | 36.50 |
| Maximum |  | -9340 | 8.50 | 12.80 | 800 | 13.80 | 3910 | 33.00 | 35700 | 7100 | 4930 |


|  |  | FLM1 | FСм 8 | BIWM2 |
| :---: | :---: | :---: | :---: | :---: |
| N | Valid | 40 | 45 | 19 |
| Mean |  | 409.05 | 76.16 | 259.95 |
| Median |  | 402.00 | 76.00 | 260.00 |
| Mode |  | 397.00 | 75.00 | 267.00 |
| Std. Deviation |  | 23.37 | 5.46 | 17.17 |
| Minimum |  | 381.00 | 65.00 | 23400 |
| Naximm |  | 40200 | a800 | 20200 |

a. Muliple modes exist. The smallest value is shown




|  |  | LsTPW | L5IFLCR | LsifLCA | Lsiffar | L5IFACA | FMM16 | FMM7 | HLM1 | HCM7 | FHBM1B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | Valid | ${ }^{29}$ | ${ }^{67}$ | 59 | 67 | 58 | 18 | 17 | 66 | 85 | 80 |
| Mean |  | 83.75 | 5.88 | 9.98 | 6.05 | 9.90 | 37.23 | 32.19 | 33426 | 65.93 | 48.99 |
| Median |  | 89.90 | 5.80 | 9.80 | 6.20 | 9.85 | 37.00 | 31.50 | 331.00 | 65.00 | 48.80 |
| Mode |  | 96.00 | 5.00 | $7.00^{3}$ | 6.20 | 9.80 | $35.70^{\text {a }}$ | 30.90 | 328.00 | 65.00 | 48.00 |
| Std Deviation |  | 18.79 | . 87 | 1.85 | . 95 | 1.68 | 2.46 | 2.55 | 17.93 | 4.18 | 3.03 |
| Minimum |  | 44.80 | 4.00 | 6.40 | 4.00 | 6.40 | 32.20 | 27.90 | 294,00 | 57.00 | 41.20 |
| Maximum |  | $102+0$ | 860 | 14.20 | 200 | 1380 | 4120 | 3890 | 36900 | 7800 | 58.40 |


|  |  | FLM1 | FCM8 | Biwm2 |
| :---: | :---: | :---: | :---: | :---: |
| N | Valid | 68 | ${ }^{83}$ | 27 |
| Mean |  | 464.40 | 90.90 | 282.15 |
| Median |  | 464.00 | 91.00 | 283.00 |
| Mode |  | 455.00 | $85.00^{3}$ | $280.00^{\text {a }}$ |
| Std. Deviation |  | 27.66 | 6.43 | 17.49 |
| Minimum |  | 376.00 | 75.00 | 230.00 |
| Maximum |  | 52200 | 10800 | 317.00 |

a. Mutiple nodes exist. The smallest value is shown



|  |  | T10PHR | T10M40 | TioM11 | T10SPL | T10TPW | T10IFLCA | T10ifRCA | LiM2 | L1M1 | LiM ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 65 | 58 | 63 | 22 | 41 | 55 | 55 | 71 | 70 | 66 |
| Mean |  | 13.84 | 15.61 | 17.44 | 23.65 | 54.87 | 12.59 | 12.09 | 26.06 | 24.59 | 27.53 |
| Median |  | 13.80 | 15.65 | 17.40 | 24.45 | 55.00 | 12.60 | 12.00 | 26.20 | 24.50 | 27.40 |
| Mode |  | 13.80 | 15.90 | $17.30^{\text {a }}$ | $24.80^{\text {a }}$ | $53.60^{\text {a }}$ | 13.20 | $11.30^{\text {a }}$ | 26.50 | $24.50^{\text {a }}$ | 26.20 |
| SId．Deviation |  | 1.09 | 1.41 | 1.32 | 2.88 | 5.25 | 1.40 | 1.61 | 1.67 | 1.81 | 2.34 |
| Minimum |  | 10.20 | 11.90 | 14.50 | 15.10 | 42，10 | 8.70 | 7.80 | 22.00 | 19.20 | 21.70 |
| Marimum |  | 16.20 | 12.50 | 21.30 | 2 P 70 | 6540 | 15.80 | 15.10 | 3010 | 2 Sm | ${ }^{32} \mathrm{Ra}$ |
|  |  |  |  |  |  |  |  |  |  |  | ＊ |
|  |  | Lim9 | L1PML | LIPME | L1M10 | L1M11 | L1SPL | LiTPW | LIIFLCA | L1IFLCA | L11FRCA |
| N | Valid | 69 | 66 | 71 | 58 | 69 | 22 | ${ }^{23}$ | 58 | 53 | 57 |
| Mean |  | 35.76 | 14.25 | 14.39 | 17.73 | 22.62 | 25.33 | 64.09 | 8.71 | 1298 | 8.54 |
| Median |  | 36.00 | 14.10 | 14.50 | 17.70 | 22.50 | 25.25 | 65.60 | 8.50 | 12.80 | 8.60 |
| Mode |  | 38.40 | 15.30 | 15.10 | $18.00^{\text {a }}$ | 24.10 | $14.80{ }^{\text {a }}$ | $36.20^{\text {a }}$ | 8.50 | 12.20 | $8.30^{\text {a }}$ |
| Sld，Deviation |  | 2.99 | 123 | 1.40 | 1.47 | 175 | 3.86 | 8.45 | 1.17 | 1.36 | 1,14 |
| Mininum |  | 26.60 | 11.40 | 10.70 | 15.00 | 18.00 | 14．80 | 36.20 | 6.20 | 10.00 | 6.30 |
| Maximm |  | 4320 | 17.40 | 18.10 | 2110 | 2710 | 32808 | 77.40 | 1100 | 1609 | 1140 |


|  |  | L11FACA | L5M2 | L5M1 | L5M6 | L5M9 | L5PHL | L5PHR | L5M10 | L5M11 | L5SPL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 56 | 68 | 62 | 62 | 67 | 63 | 64 | 57 | 61 | ${ }^{24}$ |
| Mean |  | 12.89 | 23.42 | 26.85 | 31.21 | 44.23 | 12.77 | 13.62 | 16.94 | 26.16 | 24.20 |
| Madian |  | 13.00 | 23.85 | 26.70 | 31.30 | 43.20 | 12，80 | 13.25 | 16.70 | 25.90 | 24.00 |
| Mode |  | 12.40 | 25.30 | $25.50^{3}$ | $32.20^{\text {a }}$ | 41， $80^{\text {a }}$ | $1220{ }^{\text {a }}$ | 12.80 | $15.20^{\text {a }}$ | $25.30^{3}$ | $25.00^{\text {a }}$ |
| SId．Deviation |  | 1.36 | 1.99 | 2.65 | 2.73 | 3.88 | 1.87 | 1.67 | 2.14 | 2.53 | 3.72 |
| Minimum |  | 10.00 | 19.00 | 21.50 | 24.10 | 35.00 | ${ }^{8.60}$ | 9.50 | 12.40 | 21.20 | 17.70 |
| Mavirum |  | 15.50 | 2780 | 2260 | $\underline{3900}$ | 54 日成 | $\underline{1730}$ | $\pm 8 \mathrm{tan}$ | 2250 | 3930 | 3398 |


|  |  | L5TPW | L5IFLCA | LSIFLCA | L5IFRCR | L5IFRCA | FMM16 | FMM7 | HLM1 | HCM7 | FHBM18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | ${ }^{31}$ | 64 | 59 | 61 | 58 | 17 | 17 | 54 | 75 | 74 |
| Mean |  | 76.99 | 6.27 | 10.60 | 6.46 | 10.44 | 35.90 | 29.18 | 303.89 | 56.57 | 43.26 |
| Median |  | 81.10 | 6.30 | 10.50 | 6.30 | 10,60 | 95,80 | 28.80 | 305.00 | 56.00 | 43.20 |
| Mode |  | 87.50 | 6.80 | 10.40 | $6.20^{\circ}$ | 11.80 | 36.00 | 28.20 | 292.00 | 55.00 | 43.20 |
| Std, Deviation |  | 15.01 | 1,00 | 1.51 | 1.10 | 1.71 | 2.28 | 1.86 | 19.11 | ${ }^{3.56}$ | 223 |
| Minimum |  | 41.40 | 4.20 | 7.20 | 4.30 | 5.80 | 33.10 | 2620 | 261.00 | 49.00 | 38.00 |
| Maximum |  | 9720 | 020 | 14.10 | 920 | 13.90 | 4140 | 32.10 | 35100 | ¢ลก0 | 4780 |


|  |  | FLM 1 | FCM9 | BIWM2 |
| :---: | :---: | :---: | :---: | :---: |
| N | Valid | 64 | 77 | 33 |
| Mean |  | 429.63 | 80.60 | 271.79 |
| Median |  | 435.50 | 80.00 | 270.00 |
| Mode |  | 442.00 | 79.00 | $258.00^{\text {a }}$ |
| SId Devialion |  | 24.88 | 5.09 | 13.44 |
| Minimum |  | 379.00 | 70.00 | 243.00 |
| Maximum |  | 47800 | 9500 | 30300 |

a. Mition modes exist. The smerles! value is show?



|  |  | T10PHR | T10M10 | T10911 | T10SPL | T10TPW | T10IFLCA | T101FRCA | L1M2 | L1M1 | L1M6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 38 | 38 | 40 | 11 | ${ }^{24}$ | 38 | ${ }^{37}$ | ${ }^{36}$ | 36 | ${ }^{3}$ |
| Mean |  | 15.84 | 16.44 | 18.80 | 30.41 | 63.04 | 13.06 | 12.94 | 27.92 | 2545 | 29 |
| Median |  | 15.95 | 16.30 | 18.50 | 29.70 | 63.80 | 13.05 | 12.70 | 28.20 | 2560 | 30 |
| Mode |  | ${ }^{16.10}{ }^{\text {a }}$ | 16.30 | 18.00 | 26.60 | 65.20 | 13.00 | 12.50 | $28.10^{\text {a }}$ | $23.90^{\text {a }}$ | ${ }_{27.60}{ }^{\text {a }}$ |
| Std. Deviation |  | 122 | 1,58 | 1.80 | 3.74 | 4.86 | 1.81 | 1.96 | 1.61 | 2,6 | \% |
| Minimum |  | 13.40 | 13.20 | 14.10 | 26.40 | 48.00 | в. 60 | 9.10 | 22.70 | 19 во | 2760 |
| Maximum |  | 18.00 | 1990 | 22.80 | 37.00 | 69.40 | 1540 | 1630 | 31.60 | 2960 | 3770 |
|  |  | L1M9 | L1PML | L1PHR | L1M10 | Lim11 | L1SPL | L1TPW | L1IFLCR | L1IFLCA | L1\|FRCA |
| N | Valid | 37 | 35 | 36 | 34 | 35 | 8 | 16 | 34 | 34 | 32 |
| Mean |  | 40.99 | 16.36 | 16.46 | 18.25 | 24.37 | 32.29 | 75.07 | 8.58 | 13.06 | 8.92 |
| Median |  | 41.00 | 16.40 | 16.45 | 18.75 | 24.20 | 32.10 | 76.60 | 8.55 | 13.00 | 8.90 |
| Mode |  | 39.80 | $15.20^{\text {a }}$ | $16.10^{\text {a }}$ | $18.80^{\text {a }}$ | 21.90 | $22.10^{\text {a }}$ | 76.60 | 8.90 | 15.20 | $8.60{ }^{\text {a }}$ |
| SId Deviation |  | ээя | 1.34 | 1.63 | 1.71 | 2.02 | 6.11 | 11.45 | 130 | 232 | 1.29 |
| Minimum |  | 3230 | 14.10 | 12,00 | 14.50 | 20.00 | 22.10 | 40.20 | 5.30 | 8.00 | 6,30 |
| Maximum |  | 4540 | 1930 | 1970 | 21.80 | 2850 | 41.50 | 9230 | 1180 | 17.40 |  |
|  |  | L1IFRCA | L5M2 | L5M1 | L5M6 | L5M9 | L5PHL | LSPHiR | L5M10 | L5M11 | L.5SPL |
| N | Valid | 34 | ${ }^{36}$ | 37 | 32 | ${ }^{88}$ | ${ }^{\text {эв }}$ | 37 | 35 | 38 | ${ }_{11}$ |
| Mean |  | 12.99 | 24.09 | 28.92 | 34.53 | 47.73 | 13.92 | 14.55 | 17.73 | 26.27 | 29.93 |
| Median |  | 12.95 | 24.30 | 29.10 | 34.90 | 47.70 | 13.80 | 14.50 | 17.70 | 26.65 | 30.60 |
| Mode |  | 11.10 | 22.60 | 29.10 | $33.20^{\text {a }}$ | 43.60 | 13.80 | 14.80 | $16.20^{\text {a }}$ | 23.20 | 24.60 |
| Std Devialion |  | 1.99 | 1.93 | 2.31 | 3.10 | 5.10 | 1.62 | 1.85 | 2.29 | 3.04 | 9.89 |
| Minimum |  | 8.30 | 20.10 | 20.50 | 28.20 | 34.70 | 10,40 | 10.90 | 12.60 | 2020 | 24.60 |
| Maximum |  | 16.80 | 2780 | 3300 | 4120 | 5720 | 1830 | 10 80 | 22.20 | 3270 | 3630 |




|  |  | C7PHA | C7M10 | C7M 11 | C7SPL | C7TPW | C71FLCR | C7IFLCA | C71FRCA | C7IFRCA | T1M2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 27 | 26 | 27 | 14 | 6 | ${ }^{26}$ | ${ }^{26}$ | 25 | 24 | ${ }^{28}$ |
| Mean |  | 6.62 | 14.51 | 25.74 | 26.11 | 52.88 | 6.61 | 9.96 | 6.76 | 9.81 | 574 |
| Median |  | 6.50 | 14.60 | 25,60 | 26.35 | ${ }^{61.60}$ | 6.60 | 10.15 | 6.90 | 9.95 | .65 |
| Mode |  | $6.20^{\text {a }}$ | 14.60 | $24.10^{\text {a }}$ | $20.90^{\text { }}$ | $22.20^{3}$ | $6.50^{\text {a }}$ | 930 | 720 | 10.40 | $14.90^{\text {a }}$ |
| Sld, Devialion |  | 1.08 | 1.34 | 1.78 | 2.86 | 21.79 | . 85 | 1.31 | 84 | 1.17 | 1,38 |
| Minimum |  | 4.80 | 11.40 | 22,20 | 20.90 | 22.20 | 4.40 | 6.10 | 5.20 | 7.00 | 13,70 |
| Maximum |  | 940 | 16.00 | 20.50 | 3070 | 78.80 | 820 | 11.80 | 820 |  |  |


|  |  | T6M11 | T6SPL | T6TPW | TEIFLCA | Tilfaca | T10M2 | T10M1 | T10M6 | Т10M9 | T10PHL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Valid | 27 | 11 | 22 | ${ }^{24}$ | 25 | 28 | 28 | 26 | 29 | 28 |
| Mean |  | 16.88 | 17.01 | 60.93 | 12.42 | 11,47 | 22.05 | 21.45 | 27.28 | 30.98 | 14.27 |
| Median |  | 17.10 | 16.30 | 61.25 | 12.35 | 12.00 | 21.95 | 21.15 | 26.80 | 3070 | - 14.25 |
| Mode |  | $15.10^{\text {a }}$ | $780{ }^{\text {a }}$ | 62.60 | $10.50^{\text {a }}$ | $8.50^{\text {a }}$ | $19.60^{\text {a }}$ | 20.60 | $25.10^{\text {a }}$ | 30.00 ${ }^{\text {a }}$ | 12,40 ${ }^{\text {a }}$ |
| Std. Deviation |  | 1.75 | 5.64 | 4.23 | 1.97 | 1.69 | ${ }^{1.45}$ | 1.75 | 2.47 | 2.35 | 1.70 |
| Minimum |  | 13.80 | 7.80 | 54.20 | 7.70 | 8.30 | 19.60 | 16.40 | 22.90 | 26.10 | 11.20 |
| Maximum |  | 2080 | 26.30 | 70.10 | 1680 | 14.80 | 2480 | 25.50 | 3280 | 38.50 | 18.70 |



| $\mathrm{N} \quad$ Vata | ${ }_{15}$ | LsIFLCA | L.5IFLCA | LSIFRCR | Lsifaca | FMM16 | FMM7 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean | 15 | 27 | 27 | 27 | 27 | ${ }^{21}$ | fuv7 | HLM | HCM7 | FHEM18 |
| Median | 84.48 | 6.95 | 11.31 | 7.13 | 11.28 | 35.84 | ${ }^{21}$ | 29 | 30 | 29 |
| Mode | 82.40 | 6.90 | 11.20 | 7.20 | 11.20 | 35.84 | 31.05 | 304.28 | 58.67 | 43.85 |
| SId. Deviation | 82,40 | 5.80 | 11.00 | 5,30 | 10.50 | 3830 | 30.90 | 305.00 | 58.00 | 43.80 |
| Sİ. Devialion | 10.56 | 1.14 | 1.64 | 1.28 | 58 | 38,30 | $28.30{ }^{\text {a }}$ | 308.00 | 59.00 | $43.60^{\text {a }}$ |
| Minimum | 62.30 | 5.30 | 7.30 | 440 | 1.58 | 9.49 | 2.76 | 21.16 | 5.01 | 317 |
| Maximum | 10010 | 8.90 |  | 440 | 8.70 | 30.10 | 27.00 | 266.00 |  | 17 |
|  |  |  | 1480 | 800 | 1510 | 4070 | 37.50 | 3580 | 50.00 | 37.20 |


|  |  | FLM1 | FCM8 | Biwm2 |
| :---: | :---: | :---: | :---: | :---: |
| N | Vald | 26 | 29 | 25 |
| Меап |  | 426.54 | 82.66 | 25 |
| Median |  | 429.50 | 83.00 | 28.100 |
| Moda |  | 436.00 | 85.00 | 27000 |
| SId, Devlation |  | 25.27 | 6.09 | 27.00 |
| Minimum |  | 373.00 | 7100 | 15.69 |
| Maximum |  | 47700 | 9500 | 248.00 |

- Mutiple modes exist. The smallest value is shown

4. Sexual dimorphism of all variables in modern samples (means of modern samples, percentage-difference, t -values)

| Variable | Mean males | Mean females | males > females (\%) | t |
| :---: | :---: | :---: | :---: | :---: |
| C3 dorsal vertebral bady height dorsal | 14.6 | 12.8 | 11.03 | 5.31 |
| C3 ventral vertebral body height | 14.1 | 12.5 | 10.62 | 5.57 |
| C3 vertebral body sagittal diameter | 16.2 | 14.7 | 7.44 | 4.01 |
| C3 vertebral body transverse diameter | 19.3 | 18.1 | 3.97 | 2.14 |
| C3 left pedicle height | 7.3 | 6.2 | 13.68 | 4.33 |
| C3 right pedicle height | 7.3 | 6.3 | 12.08 | 3.90 |
| C3 spinal canal sagittal diameter | 15.9 | 15.4 | 2.35 | 1.28 |
| C3 spinal canal transverse diameter | 24.5 | 23.9 | 4.20 | 1.66 |
| C3 spinous process lengtt | 16.9 | 16.0 | 17.74 | 0.60 |
| C3 transverse process width | 56.1 | 51.9 | 8.81 | 3.51 |
| C3 left cranial intervertebral loramen width | 6.8 | 6.7 | 1.15 | 0.61 |
| C3 left caudal interverlebral foramen width | 8.2 | 8.3 | -0.90 | 0.18 |
| C3 right cranial intervertebral foramen width | 6.5 | 6.6 | -1.76 | 0.48 |
| C3 right caudal intervertebral foramen width | 8.2 | 8.1 | -2.48 | 0.21 " |
| C 7 dorsal vertebral body height | 15.2 | 13.6 | 8.69 | 4.48 |
| C7 ventral vertebral body height | 13.7 | 12.8 | 7.29 | 2,65 |
| C7 vertebral body sagitial diameter | 17.7 | 16.0 | 9.14 | 4.17 |
| C7 vertebral body transverse diameter | 26.6 | 24.4 | 6,33 | 4.25 |
| C7 left pedicle height | 7.5 | 6.5 | 8.73 | 4.29 |
| C7 right pedicle height | 7.5 | 6.6 | 8.30 | 3.57 |
| C7 sagittal diameter spinal canal | 15.1 | 14.5 | 3.80 | 1.65 |
| C7 transverse diameter spinal canal | 26.1 | 25.7 | 3.09 | 0.93 |
| C7 spinous process length | 31.5 | 26.1 | 13.04 | 4.72 |
| C7 transverse process width | 66.2 | 52.9 | 17.64 | 1.29 |
| C7 left cranial intervertebral foramen width | 6.3 | 6.6 | -3.30 | 1.35 |
| C7 left caudal intervertebral foramen width | 10.1 | 10.0 | 1.87 | 0.26 |
| C7 right cranial intervertebral foramen width | 6.6 | 6.8 | -0.90 | 0.99 * |
| C7 right caudal intervertebral loramen width | 10.1 | 9.8 | 3.18 | 0.96 |
| TH1 dorsal vertebral body height | 17.3 | 15.7 | 8.97 | 4.59 |
| TH1 ventral veriebral body height | 16.0 | 14.5 | 9.11 | 4.67 |
| TH1 sagittal diameter vertebral body | 17.8 | 16.0 | 8.75 | 3.90 |
| TH1 Iransverse diameter vertebral body | 28.9 | 26.1 | 7.96 | 4.83 |
| TH1 left pedicle height | 9.3 | 8.4 | 10.20 | 3.06 |
| TH1 right pedicle height | 9.1 | 8.3 | 9.22 | 3.00 |
| TH1 spinal canal sagittal diameter | 15.8 | 15.3 | 3.27 | 1.52 |
| TH1 spinal canal transverse diameter | 23.3 | 22.2 | 5.16 13.01 | 2.50 3.65 |
| TH1 spinous process length | 33.2 | 29.1 | 13.01 | 3.66 |
| TH1 transverse process width | 79.1 | 72.5 | 9.07 | 5.72 |
| TH1 left cranial intervertebral foramen width | 6.6 | 6.6 | 0.42 | 1. 59 |
| TH1 left caudal intervertebral foramen width | 10.9 | 10.3 | 0.94 | 1.53 * |
| TH1 right cranial intervertebral foramen width | 6.5 | 6.7 | -0.70 | $0.97 \times$ |
| TH1 right caudal intervertebral foramen width | 10.6 | 10.4 | 0.76 | 0.38 |
| TH6 darsal verebral body height | 21.0 | 19.8 | 8.44 | 3.35 |
| TH6 ventral vertebral body height | 19.0 | 17.7 | 7.79 | 3.56 |
| TH6 sagittal diameter vertebral body | 26.3 | 23.6 | 10.59 | 4.46 |
| TH6 transverse diameter vertebral body | 27.9 | 24.6 | 10.98 | 6.34 |
| THE left pedicle height | 12.2 | 10.5 | 13.22 | 5.33 |
| TH6 right pedicle height | 12.6 | 10.8 | 13.86 | 5.19 |
| TH6 spinal canal sagittal diameter | 16.7 | 16.2 | 2.45 | 1.76 |
| TH6 spinal canal transverse dlameter | 17.7 | 16.9 | 4.33 | 1.89 |
| TH6 spinous process length | 18.7 | 17.0 | 17.81 | 0.78 |
| TH6 transverse process width | 65.5 | 60.9 | 8.28 | 3.74 |
| TH6 left caudal intervertebral foramen width | 13.3 | 12.4 | -0.81 | 1.85 |
| TH6 right caudal intervertebral foramen width | 12.7 | 11.5 | 0.71 | 3.01 |
| TH10 darsal vertebral body height | 23.8 | 22.1 | 8.20 | 5.01 |
| TH10 ventral vertebral body height | 22.2 | 21.4 | 5.96 | 1.92 |
| TH10 vertebral body sagittal diameter | 31.3 | 27.3 | 12.42 | 5.31 |
| TH10 vertebral body transverse diameter | 34.7 | 31.0 | 11.07 | 5.39 |
| TH10 left pedicle height | 15.7 | 14.3 | 10.09 | 3.77 |
| TH10 right pedicle height | 15.8 | 14.3 | 9.32 | 4.01 |
| TH10 spinal canal sagittal diameter | 16.4 | 16.4 | 2.91 | 0.01 |
| TH10 spinal canal transverse diameter | 18.6 | 17.9 | 5.67 | 2.73 |
| TH1O spinous process length | 30.4 | 26.1 | 9.68 | 2.83 |
| TH10 transverse process width | 63.0 | 58.1 | 9.33 | 3.59 |
| TH10 lett caudal intervertebral foramen width | 13.1 | 12.7 | 0.87 | 1.10 |
| TH10 right caudal intervertebral foramen width | 12.9 | 12.6 | 1.32 | 0.83 |
| L1 dorsal vertebral body height | 27.9 | 26.4 | 6.08 | 3.16 |
| L1 ventral vertebral body height | 25.5 | 25.0 | 4.03 | 0.94 |
| L1 vertebral body sagittal diameter | 32.9 | 28.2 | 12.85 | 6.64 |
| L1 vertebral body transverse diameter | 41.0 | 35.9 | 11.84 | 6.70 |
| L1 left pedicle height | 16.4 | 14.4 | 8.75 | 5.89 |
| L1 right pedicle height | 16.5 | 14.6 | 9.22 | 4.68 * |
| L1 spinal canal sagittal diameter | 18.2 | 18.4 | 0.33 | 0.42 * |
| Lt spinal canal transverse diameter | 24.4 | 23.2 | 4.96 | 2.55 |
| L1 spinous process length | 32.3 | 29.2 | 12,32 | 1.34 |

Li transverse process width
L1 left cranial intervertebral foramen width
L1 left caudal inlervertebral foramen width
L1 right cranial inlervertebral foramen width
L1 right caudal intervertebral foramen width
L5 dorsal vertebral body height
L5 ventral vertebral body height
L5 vertebral body sagittal diameter
L5 vertebral body transverse diameter
L5 lett pedicle height
L5 right pedicle height
L5 spinal canal sagiltal diameter
L5 spinal canal transverse diameter
L5 spinous processus length
L5 lransverse process width
L5 left cranial intervertebral foramen width
L5 left caudal intervertebral foramen width
L5 right cranial intervertebral foramen width
L5 right caudal intervertebral foramen width
foramen magnum sagittal diameter
foramen magnum transverse diameter
humerus length
humerus circumference
femoral head width
femur length
fermur circurnierence
bi-iliac width
*: bigger mean value in females than males
italic: significant (p<0,05) before Bonferroni's correction
Bold: significant (p<0.05) alter Bonlerfoni's correction

| Variable | Males <br> Mean $(\mathbf{m m})$ |  |  | Females <br> Mean (mm) |  | $\mathbf{t}$ |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: |
|  |  |  |  |  |  |  |
| C3 left pedicle height | 7.3 |  | 6.2 |  |  |  |
| C3 right pedicle height | 7.3 | 0.27 | 6.3 | 0.12 |  |  |
| C3 left cranial intervertebral foramen width | 6.8 |  | 6.7 |  |  |  |
| C3 right cranial intervertebral foramen width | 6.5 | 1.58 | 6.6 | 0.20 |  |  |
| C3 left caudal intervertebral foramen width | 8.2 |  | 8.3 |  |  |  |
| C3 right caudal intervertebral foramen width | 8.2 | 0.04 | 8.1 | 0.40 |  |  |
| C7 left pedicle height | 7.5 |  | 6.5 |  |  |  |
| C7 right pedicle height | 7.5 | 0.01 | 6.6 | 0.43 |  |  |
| C7 left cranial intervertebral foramen width | 6.3 |  | 6.6 |  |  |  |
| C7 right cranial intervertebral foramen width | 6.6 | 1.28 | 6.8 | 0.64 |  |  |
| C7 left caudal intervertebral foramen width | 10.1 |  | 10.0 |  |  |  |
| C7 right caudal intervertebral foramen width | 10.1 | 0.15 | 9.8 | 0.45 |  |  |
| TH1 left pedicle height | 9.3 |  | 8.4 |  |  |  |
| TH1 righ pedicle height | 9.1 | 0.68 | 8.3 | 0.34 |  |  |
| TH1 left cranial intervertebral foramen width | 6.6 |  | 6.6 |  |  |  |
| TH1 right cranial intervertebral foramen width | 6.5 | 0.28 | 6.7 | 0.45 |  |  |
| TH1 left caudal intervertebral foramen width | 10.9 |  | 10.3 |  |  |  |
| TH1 right caudal intervertebral foramen width | 10.6 | 0.93 | 10.4 | 0.22 |  |  |
| TH6 left pedicle height | 12.2 |  | 10.5 |  |  |  |
| TH6 right pedicle height | 12.6 | 1.60 | 10.8 | 0.77 |  |  |
| TH6 left caudal intervertebral foramen width | 13.3 |  | 12.4 |  |  |  |
| TH6 right caudal intervertebral foramen width | 12.7 | 1.79 | 11.5 | 1.85 |  |  |
| TH10 left pedicle height | 15.7 |  | 14.3 |  |  |  |
| TH10 right pedicle height | 15.8 | 0.39 | 14.3 | 0.17 |  |  |
| TH10 left caudal intervertebral foramen width | 13.1 |  | 12.7 |  |  |  |
| TH10 right caudal intervertebral foramen width | 12.9 | 0.28 | 12.6 | 0.15 |  |  |
| L1 left pedicle height | 16.4 |  | 14.4 |  |  |  |
| L1 right pedicle height | 16.5 | 0.27 | 14.6 | 0.70 |  |  |
| L1 left cranial intervertebral foramen width | 8.6 |  | 9.1 |  |  |  |
| L1 right cranial intervertebral foramen width | 8.9 | 1.08 | 9.5 | 1.02 |  |  |
| L1 left caudal intervertebral foramen width | 13.1 |  | 13.6 |  |  |  |
| L1 right caudal intervertebral foramen width | 13.0 | 0.12 | 13.4 | 0.33 |  |  |
| L5 left pedicle height | 13.9 |  | 12.7 |  |  |  |
| L5 right pedicle height | 14.5 | 1.58 | 13.3 | 1.08 |  |  |
| L5 left cranial intervertebral foramen width | 6.5 |  | 6.9 |  |  |  |
| L5 right cranial intervertebral foramen width | 6.3 | 0.85 | 7.1 | 0.55 |  |  |
| L5 left caudal intervertebral foramen width |  |  | 11.3 |  |  |  |
| L5 right caudal intervertebral foramen width |  |  | 11.3 | 0.07 |  |  |
|  |  |  |  |  |  |  |

## 6. Correlations of variables with individual age in modern samples

Modern - males

|  |  | AGE - |
| :---: | :---: | :---: |
| C3M2 | Pearson Correlation | . $341 *$ |
|  | N | 38 |
| C3M1 | Pearson Comelation | 285 |
|  | N | 38 |
| С3 ${ }^{\text {M6 }}$ | Pearson Correlation | 682** |
|  | N | 36 |
| C3M9 | Pearson Correlation | . $623^{* *}$ |
|  | N | 37 |
| C3PHL | Pearson Correlation | .5004* |
|  | N | 35 |
| C3PHR | Pearson Correlation | .539** |
|  | N | 33 |
| C3M10 | Pearson Correlation | -127 |
|  | $N$ | 34 |
| C3M11 | Pearson Correlation | ,345* |
|  | N | 38 |
| C3SPL | Pearson Correlation | . 584 |
|  | N | 11 |
| C3TPW | Pearson Correlation | -442* |
|  | N | 22 |
| C3IFLCR | Pearson Correlation | -219 |
|  | N | 37 |
| C3IFLCA | Pearson Correlation | -. 037 |
|  | N | 35 |
| C3IFRCR | Pearson Correlation | - 122 |
|  | N | 34 |
| CJIFRCA | Pearson Comelation |  |
|  | N | - 35 |
| C7M2 | Pearson Correlation | 227 |
|  | N | 38 |
| c7m1 | Pearson Correlation | 242 |
|  | N | 37 |
| С7М6 | Pearson Correlation | .627** |
|  | N | 36 |
| $\mathrm{C7M9}$ | Pearson Correlation | .451** |
|  | N | 36 |
| C7PHL | Pearson Correlation |  |
|  | N | 36 |
| C7PHR | Pearson Correlation | 231 |
|  | N | 38 |
| C7M10 | Pearson Correlation | . 004 |
|  | N | 98 |
| C7M11 | Pearson Correlation | -021 |
|  | N | 38 |
| C7SPL | Pearson Correlation | . 150 |
|  | N | 23 |
| C7TPW | Pearson Correlation | .837* |
|  | N | 7 |
| C7FFCR | Pearson Correlation | -251 |
|  | N | 35 |
| C7IFLCA | Pearson Correlation | . 158 |
|  | N | 38 |
| C7FFRCR | Pearson Correlation | -262 |
|  | N | 35 |
| C7IFRCA | Pearson Comelalion | .136 |
|  | $\mathrm{N}$ | 17 |


|  |  | AGE |
| :---: | :---: | :---: |
| T1M2 | Pearson Correlation | 221 |
|  | N | 40 |
| TIML | Pearson Correlation | . 139 |
|  | N | 38 |
| TIM6 | Pearson Correlation | .708** |
|  | N | 34 |
| TIM ${ }^{\text {a }}$ | Pearson Correlation | .435** |
|  | N | 38 |
| TIPHL | Pearson Correlation | .393* |
|  | N | 40 |
| TIPHR | Pearson Correlation | .438** |
|  | N | 39 |
| TiM10 | Pearson Correlalion | 206 |
|  | N | 38 |
| T1M11 | Pearson Correlation | . 302 |
|  | N | 40 |
| TISPL | Pearson Correlation | 093 |
|  | N | 20 |
| TITPW | Pearson Correlalion | .527** |
|  | $N$ | 35 |
| T1FFLCR | Pearson Correlation | -083 |
|  | N | 38 |
| TIFLCA | Pearson Comelation | 118 |
|  | N | 39 |
| T1IFRCR | Pearson Correlation | -051 |
|  | N | 35 |
| TIIFRCA | Pearson Correlation | .163 |
|  | N | 39 |
| T6M2 | Pearson Correlation | . 288 |
|  | N | 36 |
| T6M1 | Pearson Correlation | . 133 |
|  | N | 35 |
| T6M6 | Pearson Correlation | .483** |
|  | N | 34 |
| T6M9 | Pearson Correlation | . 253 |
|  | N | 36 |
| T6PHL | Pearson Correlation | 424* |
|  | N | 35 |
| T6PHR | Pearson Contelation | .508*** |
|  | N | 36 |
| T6M10 | Pearson Correlation | . 189 |
|  | N | 34 |
| T6MII | Pearson Comelation | -061 |
|  | N | 36 |
| T6SPL | Pearson Correlation | -. 404 |
|  | N | 13 |
| T6TPW | Pearson Correlation | . 250 |
|  | N | 27 |
| T6IFLCA | Pearson Comelation | . 160 |
|  | N | 32 |
| T6FrRCA | Pearson Correlalion | . 108 |
|  | N | 32 |
| T10M2 | Pearson Correlation | 216 |
|  | N | 38 |
| TIOMI | Pearson Correlation | . 056 |
|  | N | 14 |


|  |  | AGE |
| :---: | :---: | :---: |
| TIOM6 | Pearson Correlation | 371* |
|  | N | 31 |
| T10M9 | Pearson Correlation | . $555 \times 4$ |
|  | N | 39 |
| TIOPHL | Pearson Correlation | . 160 |
|  | N | . 40 |
| TIOPHR | Pearson Correlation | - .220 |
|  | N | 38 |
| T10M10 | Pearson Correlation | 267 |
|  | N | 38 |
| T10M11 | Pearson Correlation | . 077 |
|  | N | 40 |
| TIOSPL | Pearson Correlation | 318 |
|  | N | 11 |
| TIOTPW | Pearson Correlation | . 288 |
|  | N | 24 |
| TIOIFLCA | Pearson Correlation | . 031 |
|  | N | 38 |
| TIOFRCA | Pearson Correlation | -013 |
|  | N | 37 |
| LIM2 | Pearson Correlation | . 157 |
|  | N | 36 |
| LIMI | Pearson Correlation | . 305 |
|  | N | 36 |
| L1M6 | Pearson Correlation | . 189 |
|  | N | 33 |
| LIM9 | Pearson Corretalion | .435** |
|  | $N$ | 37 |
| LIPHL | Pearson Correlation | . $340{ }^{*}$ |
|  | N | 35 |
| LIPHR | Pearson Correlation | . $470^{* *}$ |
|  | N | 36 |
| LIM10 | Pearson Correlution | . 087 |
|  | N | 34 |
| LiM11 | Pearson Correlation | . 090 |
|  | N | 35 |
| LISPL | Pearson Comelation |  |
|  | N | 8 |
| LITPW | Pearson Correlation |  |
|  | N | 16 |
| LIFLCR | Pearson Correlation |  |
|  | N | 34 |
| LIFLCA | Pearson Correlation | . 074 |
|  | N | 34 |
| LIFRCR | Pearson Correlation | . 120 |
|  | N | 32 |
| L1IFRCA | Pearson Correlation | . 218 |
|  | N | 34 |
| L. M2 | Pearson Correlation | . 206 |
|  | N | 36 |
| L5M1 | Pearson Correlation | . 181 |
|  | $\mathrm{N}$ | 37 |
| LSM6 | Pearson Comelation | .452** |
|  | N | 32 |
| LSm9 | Pearson Correlation | 616** |
|  | N | 18. |


|  |  | AGE |
| :---: | :---: | :---: |
| LSPHL | Pearson Correlation | . 250 |
|  | N | 38 |
| LSPHR | Pearson Correlalion | .325* |
|  | N | 37 |
| LSMIO | Pearson Correlation | -083 |
|  | N | 35 |
| LSMII | Pearson Comelation | . 162 |
|  | N | 38 |
| L5SPL | Pearson Correlation | .453 |
|  | N | 11 |
| LSTPW | Pearson Correlation | 248 |
|  | N | 18 |
| LSFLCR | Pearson Correlation | 446** |
|  | N | 38 |
| LSFFLCA | Pearson Correlation | ,088 |
|  | N | 37 |
| LSFRCR | Pearson Correlation | . 262 |
|  | N | 35 |
| LSIPRCA | Pearson Correlation | -149 |
|  | N | 36 |
| FMMIt 6 | Pearson Correlation | 259 |
|  | N | 28 |
| FMM7 | Pearson Correlation | -070 |
|  | N | 28 |
| HLMI | Pearson Correlation | . 227 |
|  | N | 36 |
| HCM7 | Pearson Correlation | .524** |
|  | N | 40 |


|  |  |  |
| :--- | :--- | ---: |
|  |  | AGE |
| FHM18 | Pearson Correlation | .271 |
|  | N | 39 |
| FLM1 | Pearson Correlation | .121 |
|  | N | 36 |
| FCM | Pearson Correlation | $.421^{* \prime}$ |
|  | N | 39 |
| BIWM2 | Pearson Correlation | .307 |
|  | N | 24 |

* Correlation is sigrificant at the 0.05 level (2-tailed)
** Corelation is siguificant at the 0.01 level (2-tailed)

Modern - females

|  |  | AGE |
| :---: | :---: | :---: |
| C3M2 | Pearson Correlation | -.064 |
|  | N | 26 |
| C3M1 | Pearson Correlation | -287 |
|  | N | 24 |
| С3M6 | Pearson Correlation | . 293 |
|  | N | 25 |
| с9M9 | Pearson Correlation | .397* |
|  | N | 25 |
| C3PHL | Pearson Correlation | . 165 |
|  | $N$ | 27 |
| C3PHR | Pearson Correlation | . 171 |
|  | N | 26 |
| C3M10 | Pearson Correlation | . 074 |
|  | N | 24 |
| C3M11 | Pearson Correlation | $-.167$ |
|  | N | 26 |
| C3SPL | Pearson Correlation | . 645 |
|  | N | 9 |
| C3TPW | Pearson Correlation |  |
|  | N | 17 |
| C3IFLCR | Pearson Correlation | . 126 |
|  | N | 26 |
| CaIFLCA | Pearson Correlation | . 046 |
|  | N | 27 |
| CaIFRCR | Pearson Correlation | -.008 |
|  | N | 26 |
| CaIFRCA | Pearson Correlation | . 017 |
|  | N | 26 |
| 67M2 | Pearson Correlation | $\because 106$ |
|  | N | 26 |
| C7M1 | Pearson Correlation | -206 |
|  | N | 25 |
| C7M6 | Pearson Correlation |  |
|  | N | 26 |
| C7M9 | Pearson Correlation |  |
|  | N | 26 |
| C7PHL | Pearson Correlation | .132 |
|  | N | 26 |
| C7PHR | Pearson Correlation | .399* |
|  | N | 27 |
| C7M10 | Pearson Correlation | . 322 |
|  | N | 26 |
| 67M11 | Paarson Correlation | -044 |
|  | N | 27. |
| C7SPL | Pearson Correlation | -. 397 |
|  | $\mathrm{N}$ | 14 |
| C7TPW | Pearson Correlation | . 575 |
|  | N | 6 |
| C71FLCR | Pearson Correlation | -224 |
|  | N | 26 |
| C7IFLCA | Pearson Correlation | . 299 |
|  | N | 26 |
| C7IFRCR | Pearson Correlation | . 105 |
|  | N | 25 |
| G7IFACA | Pearson Correlation N | $\begin{array}{r} 243 \\ 24 \\ \hline \hline \end{array}$ |


|  |  | AgE |
| :---: | :---: | :---: |
| T1M2 | Pearson Correlation | $\cdot 148$ |
|  | N | 28 |
| T1M1 | Pearson Correlation | -. 236 |
|  | N | 27 |
| T1M6 | Pearson Correalation | .013 |
|  | $N$ | 27 |
| T1M9 | Pearson Correlation | . 092 |
|  | N | 29 |
| T1PHL | Pearson Correlation | . 137 |
|  | N | 28 |
| T1TPHR | Pearson Correlation | . 209 |
|  | N | 28 |
| T1M10 | Pearson Correlation |  |
|  | N | 28 |
| T1M11 | Pearson Correlation | . 214 |
|  | N | 28 |
| TISPL | Pearson Correlation |  |
|  | N | 13 |
| T1TPW | Pearson Correlation | . 077 |
|  | N | 25 |
| T1IFLCR | Pearson Correlation |  |
|  | N | 28 |
| T11FLCA | Pearson Correlation | , 194 |
|  | N | 27 |
| T1IFRCR | Pearson Correlation | . 027 |
|  | N | 28 |
| TIIFRCA | Pearson Correlation | . 306 |
|  | N | 27 |
| T6M2 | Pearson Correlation | . 037 |
|  | N | 26 |
| T6M1 | Pearson Correlation | -036 |
|  | N | 27 |
| T6M6 | Pearson Correlation | . 176 |
|  | N | 27 |
| T6M9 | Pearson Correlation |  |
|  | N | 28 |
| TEPHL | Pearson Correlalion |  |
|  | N | 27 |
| T6PHR | Pearson Correlation | . 065 |
|  | N | 27 |
| T6M10 | Pearson Correlation | . 382 |
|  | N | 28 |
| T6M11 | Pearson Correlation | .132 |
|  | N | 27 |
| T6SPL | Pearson Correlation | . 389 |
|  | N | 11 |
| T6TPW | Pearson Correlalion | .237 |
|  | $N$ | 22 |
| T6IFLCA | Pearson Correlation | . 108 |
|  | $\mathrm{N}$ | 24 |
| T6IFRCA | Pearson Correlation | . 145 |
|  | N | 25 |
| T10M2 | Pearson Correalion | -230 |
|  | N | 28 |
| T10M1 | Pearson Correlation N | $\begin{array}{r}-244 \\ \hline 20 \\ \hline\end{array}$ |


|  |  | AGE |
| :---: | :---: | :---: |
| T10M6 | Pearson Correlation |  |
|  | N | 26 |
| T10M9 | Pearson Correlation | -066 |
|  | N | 29 |
| T10PHL | Pearson Correlation | * , 250 |
|  | N | 28 |
| T10PHR | Pearson Correlation | . 129 |
|  | N | 27 |
| T10M10 | Pearson Correlation | . 288 |
|  | N | 27 |
| T10M11 | Pearson Correlation | . 066 |
|  | N | 28 |
| T10SPL | Pearson Correlation | -. 074 |
|  | N | 13 |
| T10TPW | Pearson Correlation | . 186 |
|  | N | 22 |
| T10IFLCA | Pearson Correlalion | . 117 |
|  | N | 28 |
| T10IFRCA | Pearson Correation | . 187 |
|  | N | 27 |
| L1M2 | Pearson Correlation |  |
|  | N | 27 |
| L1M1 | Pearson Correlation |  |
|  | N | 25 |
| L1M6 | Pearson Correlation |  |
|  | $N$ | 25 |
| L1M9 | Pearson Correlation | -.096 |
|  | N | 28 |
| LIPHL | Pearson Correlation | . 240 |
|  | N | 27 |
| L1PHA | Pearson Correlation | . 223 |
|  | N | 28 |
| L1M10 | Pearson Correlation | . 031 |
|  | N | 28 |
| L1M11 | Pearson Correlation |  |
|  | N | 28 |
| L1SPL | Pearson Correlation |  |
|  | N | 13 |
| L1TPW | Pearson Correlation | -.060 |
|  | N | 15 |
| L1IFLCR | Pearson Correlation | . 172 |
|  | N | 28 |
| L1IFLCA | Pearson Correlation | -050 |
|  | N | 27 |
| L1IFRCR | Pearson Correlation | . 281 |
|  | $\mathrm{N}$ | 27 |
| L1IFRCA | Pearson Correlation | . 130 |
|  | N | 27 |
| L5M2 | Pearson Correlallon | -204 |
|  | N | 26 |
| L5M1 | Pearson Correlation | -.479* |
|  | N | 24 |
| L5M6 | Pearson Correlation | . 071 |
|  | N | 23 |
| L5M9 | Pearson Correlation | . 378 |
|  | $\xrightarrow{+}$ | 27 |


|  |  | AGE |
| :---: | :---: | :---: |
| L5PHL | Pearson Correlation | . 228 |
|  | N | 26 |
| L5PHR | Pearson Correlation | , 165 |
|  | N | 26 |
| L5M10 | Pearson Correlation | . 086 |
|  | N | 25 |
| L5M19 | Pearson Correlation | . 129 |
|  | N | 27 |
| L5SPL | Pearson Correlation | -. 043 |
|  | N | 13 |
| L5TPW | Pearson Correlation | -.153 |
|  | N | 15 |
| L5IFLCR | Pearson Correlation | . 168 |
|  | N | 27 |
| LSIFLCA | Pearson Correlation | . 214 |
|  | N | 27 |
| L5IFRCA | Pearson Correlation | . 037 |
|  | $N$ | 27 |
| L5IFRCA | Pearson Correlation | . 135 |
|  | N | 27 |
| FMM16 | Pearson Correlation | . 090 |
|  | N | 21 |
| FMM7 | Pearson Correlation | . 138 |
|  | N | 21 |
| HLM1 | Pearson Correlalion | -. 343 |
|  | N | 29 |
| HCM7 | Pearson Correlation | -. 346 |
|  | N | 30 |
| FHM19 | Pearson Correlation |  |
|  | N | 29 |
|  |  | age |
| FLMI | Peurson Correlation | -.474* |
|  | N | 26 |
| FCM8 | Pearson Conclation | -359 |
|  | N | 29 |
| BrWM2 | Pearson Comelation | 141 |
|  | N | 25 |

*. Correlation is siguificant at the 0.05 level (2-tailed)
7. Correlations of variables with major age groups in non-modern samples

Non-modern - males


|  |  | AGEGROUP |
| :---: | :---: | :---: |
| T10M6 | Pearson Correlation | 468" |
|  | N | 93 |
| T10M9 | Pearson Correlation | .366** |
|  | N | 96 |
| T10PHL | Pearson Correlation | . 185 |
|  | N | 92 |
| T10PHR | Pearson Correlation | .255 |
|  | N | 92 |
| T10M10 | Pearson Correlation | -.004 |
|  | N | 89 |
| T10Mi1 | Pearson Correlation | . 037 |
|  | N | 93 |
| TIOSPL | Pearson Correlation | . 258 |
|  | N | 42 |
| T10TPW | Pearson Corralation | . 231 |
|  | N | 57 |
| T10IFLCA | Pearson Correlation | - 163 |
|  | N | 86 |
| T101FRCA | Pearson Correlation |  |
|  | N | 87 |
| L1M2 | Pearson Correlation | . 118 |
|  | N | 111 |
| L1M1 | Paarson Correlation | . 150 |
|  | N | 105 |
| LiM6 | Pearson Correlation | .319** |
|  | N | 99 |
| L1M9 | Pearson Correlation | 299** |
|  | $N$ | 110 |
| L1PHL | Pearson Correlation | . 191 |
|  | N | 106 |
| L1PHA | Pearson Correlation | . 140 |
|  | N | 107 |
| L1M10 | Pearson Correlalion | . 060 |
|  | N | 96 |
| L1M11 | Pearson Correialion | 208* |
|  | N | 102 |
| L1SPL | Pearson Correlation | . 103 |
|  | N | 46 |
| L.1TPW | Pearson Correlation | . 293 |
|  | N | 36 |
| L1IFLCR | Pearson Correlation | . 079 |
|  | N | 99 |
| L1IFLCA | Pearson Correlation | -012 |
|  | N | 93 |
| LIIFRCR | Pearson Correlation | -. 051 |
|  | N | 85 |
| L1IFRCA | Pearson Correlalion | . 081 |
|  | N | 92 |
| L5M2 | Pearson Correlation | . 186 |
|  | N | 100 |
| L5M1 | Pearson Correlalion | $240^{\circ}$ |
|  | N | 102 |
| L5M6 | Pearson Correlation | .252* |
|  | N | 100 |
| L5M9 | Pearson Correlation | 277** |
|  |  | 105 |


|  |  | AgEgroup |
| :---: | :---: | :---: |
| LSPHL | Pearson Correlation | .198* |
|  | N | 101 |
| L5PHR | Pearson Correlation | .221* |
|  | N | 98 |
| L5M10 | Pearson Correlation | . 133 |
|  | N | 86 |
| L5M11 | Pearson Correlation | . 170 |
|  | N | 92 |
| L5SPL | Pearson Correlation | -.311* |
|  | N | 44 |
| L5TPW | Pearson Correlalion | . 051 |
|  | N | 40 |
| L5IFLCR | Pearson Correlation | - 137 |
|  | N | 97 |
| L5IFLCA | Pearson Correlation | -075 |
|  | N | 87 |
| LSIFRCR | Pearson Correlation | . 018 |
|  | N | 93 |
| L5IFRCA | Pearson Correlation | -. 023 |
|  | N | 84 |
| FMM16 | Pearson Correlation | 231 |
|  | N | 28 |
| FMM 7 | Pearson Correlation | . 017 |
|  | N | 25 |
| HLM | Pearson Correlation | .292** |
|  | $N$ | 90 |
| HCM 7 | Pearson Correlation | .219* |
|  | N | 117 |
| FHBM18 | Pearson Correlalion | . $376{ }^{\circ}{ }^{\prime}$ |
|  | N | 115 |
|  |  | AGEGROUP |
| FLMI | Pearson Correlation | .329** |
|  | N | 94 |
| FCM8 | Pearson Correlation | .275** |
|  | N | 117 |
| BIWM2 | Pearson Correlation | . 165 |
|  | N | 39 |

Non-modern - females

|  |  | AGEGROUP |
| :---: | :---: | :---: |
| C3M2 | Pearson Correlation | . 079 |
|  | N | 102 |
| C3M1 | Pearson Correlation | . 153 |
|  | N | 101 |
| C3M6 | Pearson Correation | 421** |
|  | $N$ | 99 |
| C3M9 | Pearson Correation | -.026 |
|  | N | 98 |
| C3PHL | Pearson Correlalion | . 148 |
|  | N | 97 |
| CaPHR | Pearson Correlation | .292** |
|  | N | 98 |
| C3M10 | Pearson Comelation | -. 215 |
|  | N | 77 |
| C3M11 | Pearson Correlation | . 035 |
|  | N | 97 |
| Caspl | Pearson Correlation | .374* |
|  | N | 36 |
| C3TPW | Pearson Correlation | . 081 |
|  | N | 53 |
| CaIFLCR | Pearson Correlation |  |
|  | N | 95 |
| C3IFLCA | Pearson Correlation |  |
|  | N | 96 |
| C3IFACR | Pearson Correlation |  |
|  | N | 97 |
| C3IFRCA | Pearson Correlation |  |
|  | N | 97 |
| C7M2 | Pearson Correlation | . 075 |
|  | N | 100 |
| C7M1 | Pearson Correlation | -. 045 |
|  | N | 101 |
| C7M6 | Pearson Correlation | .422** |
|  | N | 99 |
| C7M9 | Pearson Correalation | .198* |
|  | N | 99 |
| C7PHL | Pearson Correlation | . 116 |
|  | N | 97 |
| C7PHR | Pearson Correlation | . 113 |
|  | N | 101 |
| C7M10 | Pearson Correlation | . 026 |
|  | N | 93 |
| C7M11 | - Pearson Correlation | . 069 |
|  | N | 95 |
| C7SPL | Pearson Correlation | - 199 |
|  | N | 55 |
| C7TPW | Pearson Correlaton | 247 |
|  | N | 27 |
| C7IFLCR | Paarson Correlation | -.331** |
|  | N | 91 |
| C7IFLCA | Pearson Correlation | . 072 |
|  | N | 88 |
| C7IFRCR | Pearson Correlalion | -232* |
|  | N | 93 |
| C7IFRCA | Pearson Correlation N | $\begin{array}{r}-226^{\circ} \\ 89 \\ \hline\end{array}$ |


|  |  | AGEGROUP |
| :---: | :---: | :---: |
| T1M2 | Pearson Correlation | . 172 |
|  | N | 98 |
| T1M1 | Pearson Correalion | -.029 |
|  | N | 96 |
| T1M6 | Pearson Correlation | .354** |
|  | N | S2 |
| T1M9 | Pearson Correlation | . $240{ }^{*}$ |
|  | N | 95 |
| T1PHL | Pearson Correlation | . 174 |
|  | N | 93 |
| T1PHR | Pearson Correlation | . 120 |
|  | N | 98 |
| T1M10 | Pearson Correlation | . 094 |
|  | N | 85 |
| T1M11 | Pearson Correlation | . 179 |
|  | N | 92 |
| T1SPL | Pearson Correlation | -. 217 |
|  | N | 40 |
| T1TPW | Pearson Correlation | . 022 |
|  | N | 64 |
| T1IFLCR | Pearson Correlation |  |
|  | N | 88 |
| T1IFLCA | Pearson Correlation |  |
|  | N | 86 |
| T1IFRCR | Pearson Correlation |  |
|  | N | 90 |
| TilfrRCA | Pearson Correlation | -.036 |
|  | N | 87 |
| T6M2 | Pearson Correlation | . 071 |
|  | N | 95 |
| T6M1 | Pearson Correlation | -030 |
|  | N | 95 |
| T6M6 | Pearson Correlation | . 399 |
|  | N | 93 |
| T6M9 | Pearson Correlation | . 153 |
|  | N | 96 |
| T6PHL | Pearson Correlation | . 156 |
|  | N | 91 |
| T6PHR | Pearson Correlation | . 150 |
|  | N | 92 |
| T6M10 | Parson Correlation | -051 |
|  | N | 82 |
| T6M11 | Pearson Correlation | . 102 |
|  | N | 91 |
| T6SPL | Pearson Correlation | -239 |
|  | N | 32 |
| T6TPW | Pearson Correation | 241 |
|  | N | 65 |
| T6IFLCA | Pearson Correlation | . 016 |
|  | N | 74 |
| T6IFRCA | Pearson Correlation | . 015 |
|  | $\mathrm{N}$ | 72 |
| T10M2 | Pearson Correlation | . 060 |
|  | N | 105 |
| T10M1 | Pearson Correlation | \%014 |
|  | N | $102$ |


|  |  | AgEgroup |
| :---: | :---: | :---: |
| T10M6 | Pearson Correlation | . 092 |
|  | N | 104 |
| T10M9 | Pearson Correlation | . 159 |
|  | N | 105 |
| T10PHL | Pearson Correlation | . 127 |
|  | N | 101 |
| T10PHR | Pearson Correlation | . 039 |
|  | N | 103 |
| T10M10 | Peatson Correlation | . 052 |
|  | N | 95 |
| T10M11 | Pearson Correlation | . 036 |
|  | N | 99 |
| T10SPL | Pearson Correlation | . 100 |
|  | N | 44 |
| T10TPW | Pearson Correlation | . 053 |
|  | N | 67 |
| T1OIFLGA | Pearson Correlation | . 155 |
|  | N | 90 |
| T101FRCA | Pearson Correlation | . 083 |
|  | N | 92 |
| L1M2 | Pearson Correlation | -. 127 |
|  | N | 112 |
| L1M1 | Pearson Correlation | -041 |
|  | N | 109 |
| L1M6 | Pearson Correlation | . 030 |
|  | N | 105 |
| L1M9 | Pearson Correlation | . 087 |
|  | N | 108 |
| L1PHL | Pearson Correlation | . 058 |
|  | N | 108 |
| LIPHR | Pearson Correlation | . 052 |
|  | N | 112 |
| L1M10 | Pearson Correlation | . 045 |
|  | N | 97 |
| L1M11 | Pearson Correlation | . 187 |
|  | N | 110 |
| L1SPL | Pearson Correlation | . 154 |
|  | N | 43 |
| LITPW | Pearson Correlation | -284 |
|  | N | 42 |
| L1IFLCA | Pearson Correlation | . 063 |
|  | N | 92 |
| L.1IFLCA | Pearson Correlation | . 022 |
|  | N | 02 |
| L1/FRCR | Pearson Correlation | . 035 |
|  | N | 87 |
| LIIFRCA | Pearson Correlation | . 069 |
|  | N | 94 |
| L5M2 | Pearson Correlation | .110 |
|  | N | 110 |
| L5M1 | Pearson Correlation | . 000 |
|  | N | 106 |
| L5M6 | Pearson Correlation | . 036 |
|  | N | 106 |
| L5M9 | Pearson Correlation | . $230^{\circ}$ |
|  | $\mathrm{N}$ | 113 |


|  |  | AGEGROUP |
| :---: | :---: | :---: |
| L5PHL | Pearson Correlation | . 079 |
|  | N | 104 |
| L5PHR | Pearson Correlation | - 034 |
|  | N | 106 |
| L5M10 | Pearson Correlation | -019 |
|  | N | 92 |
| L5M11 | Pearson Correlation | . 117 |
|  | N | 101 |
| L5SPL | Pearson Correlalion |  |
|  | N | 46 |
| L5TPW | Pearson Correlalion | . 008 |
|  | N | 55 |
| L5IFLCA | Pearson Correlation | -022 |
|  | N | 103 |
| L5IFLCA | Pearson Correlation |  |
|  | N | 98 |
| L5IFRCR | Pearson Correlation | - 110 |
|  | N | 100 |
| L5IFRCA | Pearson Correlation |  |
|  | N | 98 |
| FMM16 | Pearson Correlation |  |
|  | N | 29 |
| FMM7 | Pearson Correlation | --063 |
|  | N | 30 |
| HLM1 | Pearson Correlation | -042 |
|  | N | 92 |
| HCM7 | Pearson Correlation | . 006 |
|  | N | 118 |
| FHEM18 | Pearson Correlation | . 153 |
|  | N | 120 |
|  |  | AGEGROUP |
| FLM1 | Pearson Correlation | -. 064 |
|  | $\mathrm{N}$ | 104 |
| FCM8 | Pearson Correlation | .220* |
|  | N | 122 |
| BIWM2 | Pearson Correlation | . 158 |
|  | N | 52 |

*. Correlation is significanl at the 0,01 level ( 2 -tailed).

- Correlation is significant at the 0.05 level (2-lailed).

8. Correlations of variables with major age groups separately for major time groups

Neolithic / Bronze Age - males


|  |  | AGEGROUP |
| :---: | :---: | :---: |
| T1M6 | Pearson Correlation | .459* |
|  | $N$ | 22 |
| T1M9 | Pearson Correlation | -074 |
|  | N | 23 |
| T1PHL | Pearson Correlation | 412 |
|  | N | 22 |
| T1PHR | Pearson Correlation | . 157 |
|  | N | 22 |
| TIM10 | Pearson Correlation | -. 407 |
|  | N | 23 |
| T1M11 | Pearson Correlation | *476* |
|  | N | 23 |
| T1SPL | Pearson Correlation | 214 |
|  | N | 19 |
| T1TPW | Pearson Correlation | . 098 |
|  | N | 15 |
| T1IFLCR | Pearson Correlation | -689** |
|  | N | 21 |
| T1IFLGA | Pearson Correlation |  |
|  | N | 22 |
| TIIFRCR | Pearson Correlation |  |
|  | N | 21 |
| THIFRCA | Pearson Correlation | -.571** |
|  | N | 22 |
| T6M2 | Pearson Correlalion | , 318 |
|  | N | 24 |
| T6M1 | Pearson Correlalion | . 311 |
|  | N | 22 |
| T6M6 | Pearson Correlation | 542** |
|  |  | 22 |
| T6M9 | Pearson Correlation | . 195 |
|  | N | 23 |
| T6PHL | Pearson Correlation | .119 |
|  | N | 24 |
| T6PHA | Pearson Correlation | . 193 |
|  | N | 24 |
| T6M10 | Pearson Correlation | -.415* |
|  | N | 23 |
| T6M11 | Pearson Correlation | -. 345 |
|  | N | 24 |
| T6SPL | Pearson Correlallon | - 304 |
|  | N | 13 |
| TGTPW | Pearson Correlation | . 208 |
|  | N | 13 |
| TBIFLCA | Pearson Correlation | . 140 |
|  | N | 23 |
| TGIFRCA | Pearson Correlation | -011 |
|  | $\mathrm{N} \quad$ | 21 |
| T10M2 | Pearson Correlation | . 123 |
|  | N | 26 |
| T10M1 | Pearson Correlation | . 179 |
|  | N | 25 |
| T10M6 | Pearson Correlation | . 320 |
|  | N | 24 |
| T10M9 | Pearson Correlalion | . 088 |
|  | N | 20 |

F. J. Rühli-Osteometric Variation of the Human Spine


|  |  | UP |
| :---: | :---: | :---: |
| L5M10 | Pearson Correlation | -. 109 |
|  | N | 27 |
| L5M11 | Pearson Correlation | -. 183 |
|  | N | 28 |
| L5SPL | Pearson Correlation | -.471 |
|  | N | 14 |
| L5TPW | Pearson Correlation | -310 |
|  | $N$ | 12 |
| L5IFLCR | Pearson Correlation | -.403* |
|  | N | 30 |
| L5IFLCA | Pearson Correialion | --533** |
|  | N | 28 |
| L5IFACR | Pearson Correlalion | -.179 |
|  | N | 26 |
| LSIFRCA | Pearson Correlation | -480* |
|  | N | 26 |
| FMM16 | Pearson Correlation | .739** |
|  | N | 10 |
| FMM7 | Pearson Correlation | . 700 |
|  | N | 8 |
| HLM1 | Pearson Correlation | $\cdots 101$ |
|  | N | 24 |
| HCM7 | Pearson Correlation | --069 |
|  | N | 32 |
| FHBM18 | Pearson Correlation | . 304 |
|  | N | 35 |
| FLM1 | Pearson Correlation | . 129 |
|  | N | 26 |
| FGM | Pearson Correlation | . 113 |
|  | N | 34. |

- Correlation is significant at the 0.05 level (2-lailed).
* Correlation is significant at the 0.01 level (2-lailed),

Neolithic / Bronze Age - females


|  |  | AGEGROUP |
| :---: | :---: | :---: |
| T1M6 | Pearson Correlation | . 263 |
|  | N | 28 |
| T1M9 | Pearson Correataion | . 273 |
|  | N | 29 |
| T1PHL | Pearson Correlation | . 062 |
|  | N | 30 |
| T1PHR | Pearson Correlation | . 021 |
|  | N | 29 |
| T1M10 | Pearson Correlation | . 023 |
|  | N | 29 |
| T1M11 | Pearson Correlation | -,112 |
|  | N | 27 |
| T1SPL | Pearson Correlalion | . 176 |
|  | N | 15 |
| T1TPW | Pearson Correlation | . 253 |
|  | N | 17 |
| T1IFLCR | Pearson Correlation | -382* |
|  | N | 27 |
| T1IFLCA | Pearson Correlation | -261 |
|  | N | 27 |
| TIIFACR | Pearson Correlation | -357 |
|  | N | 25 |
| TIIFRCA | Pearson Correlation | -038 |
|  | N | 27 |
| T6M2 | Pearson Correlation | . 275 |
|  | N | 28 |
| T6M1 | Pearson Correlation | . 156 |
|  | N | 29 |
| T6M6 | Pearson Correlation |  |
|  | N | 28 |
| T6M9 | Pearson Correlation | . 085 |
|  | N | 29 |
| T6FHL | Pearson Correlation |  |
|  | N | 29 |
| T6PHA | Pearson Correlation | . 252 |
|  | N | 29 |
| T6M10 | Pearson Correlation | -.097 |
|  | N | 28 |
| T6M11 | Pearson Correlalion | -229 |
|  | N | 29 |
| T6SPL | Pearson Correlation | -389 |
|  | N | 14 |
| T6TPW | Pearson Correlation | . 232 |
|  | N | 24 |
| TGIFLCA | Pearson Correlation | - $451^{*}$ |
|  | N | 24 |
| T61FRCA | Pearson Correlation | -. 372 |
|  | N | 25 |
| T10M2 | Pearson Correlalion | . 056 |
|  | N | 38 |
| T10M1 | Pearson Correlation | . 101 |
|  | N | 36 |
| T10M6 | Pearson Correlalion | . 106 |
|  | N | 37 |
| T10M9 | Pearson Correlation | -089 |
|  | N | 37 |


|  | Agegroup |  | AGEGROUP |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T10PHL | Pearson Correlation | . 011 | L5M10 | Pearson Correlation | -.017 |
|  | N | ${ }^{38}$ |  | N | 35 |
| T10PHR | Pearson Correlation | . 057 | L5M11 | Pearson Correalation | $\bigcirc$ |
|  | N | 38 |  | N | 40 |
| T10M10 | Pearson Correlation | . 048 | LSSPL | Paarson Correlation | $\cdot .215$ |
|  | N | 37 |  | N | 22 |
| T10M11 | Pearson Correlalion | -351* | L5TPW | Pearson Correlation | . 079 |
|  | N | 36 |  | N | 24 |
| T10SPL | Pearson Correlation | . 148 | L5:FLCR | Pearson Correlalion | . 198 |
|  | N | 22 |  | N | 39 |
| T10TPW | Pearson Correlation | . 057 | L5IFLCA | Pearson Correlation | -287 |
|  | N | 26 |  | N | 39 |
| T10IFLCA | Pearson Correlation | - 226 | LSIFRCR | Pearson Correlation | . 150 |
|  | N | 35 |  | N | 39 |
| T101FRCA | Pearson Correlation | - 149 | L5IFRCA | Pearson Corelation | -256 |
|  | N | 37 |  | N | 40 |
| L1M2 | Pearson Correlation | . 032 | FMM16 | Pearson Correlation |  |
|  | N | 41 |  | N | 12 |
| L1M1 | Pearson Correlation | . 097 | FMM7 | Pearson Correlation | $\cdot 128$ |
|  | N | 39 |  | N | 13 |
| L1Mg | Pearson Correlation | -. 009 | HLM1 | Paarson Correlation | $\cdot .110$ |
|  | N | 39 |  | N | 38 |
| L1M9 | Pearson Correlation | $\sim 140$ | HCM7 | Pearson Correlation | . 057 |
|  | N | 39 |  | N | 43 |
| L1PHL | Pearson Correlation | . 150 | FHEM18 | Paarson Correlalion | . 118 |
|  | N | 42 |  | N | 52 |
| L1PHR | Pearson Correlation | . 175 | FLM1 | Parson Correlation | -086 |
|  | N | 41 |  | N | 40 |
| L1M10 | Pearson Correlation | . 138 | FCM ${ }^{\text {d }}$ | Pearson Correlation | . 304 |
|  | N | 39 |  | $\mathrm{N}$ |  |
| L1M11 | Pearson Correation | . 012 | $\because$ Corr | is signiilicant at the 0.0 |  |
|  | N | 41 | - Corre | is sigrilicant at the 0.05 |  |
| LISPL | Pearson Correlation | - 2110 | a. Cann | computed because at le | iables is |
|  | N | 21 |  |  |  |
| LITPW | Pearson Correlation | 272 |  |  |  |
|  | N | 19 |  |  |  |
| LIIFLCR | Pearson Correlation | -233 |  |  |  |
|  | N | 34 |  |  |  |
| LIIFLCA | Pearson Correlation | -. 012 |  |  |  |
|  | N | 39 |  |  |  |
| L1IFRCR | Pearson Correlation | - 162 |  |  |  |
|  | N | 30 |  |  |  |
| L1IFRCA | Pearson Correlation | . 030 |  |  |  |
|  | N | 38 |  |  |  |
| L5M2 | Pearson Conelation | . 192 |  |  |  |
|  | N. | 42 |  |  |  |
| L5M1 | Pearson Correlation | -095 |  |  |  |
|  | N | 44 |  |  |  |
| L5M6 | Pearson Correlalion | -048 |  |  |  |
|  | N | 44 |  |  |  |
| L5M9 | Pearson Correlation | . 005 |  |  |  |
|  | N | 46 |  |  |  |
| LSPHL | Pearson Correlation | . 161 |  |  |  |
|  | N | 41 |  |  |  |
| L5PHR | Pearson Correlation | -040 |  |  |  |
|  | N | 42 |  |  |  |

Medieval - males

|  |  | GEGROUP |
| :---: | :---: | :---: |
| C3M2 | Pearson Correlation | . 134 |
|  | N | 63 |
| С3м1 | Pearson Correlation | . 156 |
|  | N | 62 |
| C3M6 | Parson Correlalion | . 394 ** |
|  | N | 59 |
| Сзм9 | Pearson Correialion | . 077 |
|  | N | 57 |
| C3PHL | Pearson Correlation | . $265^{\circ}$ |
|  | N | 60 |
| C3FHA | Pearson Correlalion | .287* |
|  | N | 62 |
| Сзмıо | Pearson Correlalion | -068 |
|  | N | 53 |
| C3M11 | Pearson Correlation | -094 |
|  | N | 60 |
| C3TPW | Pearson Correlation | . 167 |
|  | N | 35 |
| C3IFLCA | Pearson Correlation | -. 045 |
|  | N | 60 |
| C3IFLCA | Pearson Correlation | . 024 |
|  | N | 60 |
| C3IFRCR | Pearson Correlation | $\therefore 096$ |
|  | N | 63 |
| C3IFRCA | Pearson Corralation | . 051 |
|  | N | 62 |
| C7M2 | Pearson Correlation | -. 087 |
|  | N | 68 |
| C7M1 | Pearson Correlation | . 004 |
|  | N | 67 |
| C7M6 | Pearson Correlation | .574** |
|  | N | 68 |
| C7M9 | Pearson Correlalion | .$^{246}{ }^{\circ}$ |
|  | N | 86 |
| C7PHL | Pearson Correlation | . 035 |
|  | N | 64 |
| C7PHR | Pearson Correlation | . 141 |
|  | N | 63 |
| C7M10 | Pearson Correlalion | -.035 |
|  | N | ${ }^{6}$ |
| C7M11 | Pearson Correlation | . 204 |
|  | N | 68 |
| C7SPL | Pearson Correlallon | ,088 |
|  | N | 37 |
| C7IFLCA | Pearson Correlation | -.006 |
|  | N | 64 |
| C71FLCA | Pearson Correlalion | -. 101 |
|  | N | 61 |
| C7IFRCA | Pearson Correlallon | $\cdot 212$ |
|  | N | 65 |
| C7IFACA | Pearbon Correlation | -072 |
|  | N | 64 |
| T1M2 | Pearson Correalaion | . 091 |
|  | N | 70 |
| Timi | Pearson Correlation | 203 |
|  | N | 70 |


|  |  | AGEGROUP |
| :---: | :---: | :---: |
| T1M6 | Pearson Correlalion | 437** |
|  | N | 68 |
| T1M9 | Pearson Correlation | . $336{ }^{* *}$ |
|  | N | 70 |
| T1PHL | Pearson Correlation | 227 |
|  | N | 66 |
| T1PHR | Pearson Correlation | . $251{ }^{\circ}$ |
|  | $N$ | 67 |
| T1M10 | Pearson Correlation | . 120 |
|  | N | 61 |
| T1M11 | Pearson Correlation | . 163 |
|  | N | 62 |
| T1SPL | Pearson Correlation | . 198 |
|  | $N$ | 38 |
| T1TPW | Pearson Correlation | .285* |
|  | N | 52 |
| T1IFLCR | Pearson Correlation |  |
|  | $N$ | 65 |
| TIIFLCA | Pearson Correlation | . 102 |
|  | N | 63 |
| TIIFRCA | Pearson Cornelation | - 108 |
|  | N | 61 |
| T91FRCA | Pearson Correlation | . 012 |
|  | N | 60 |
| T6M2 | Pearson Correlation | .345*" |
|  | N | 64 |
| T6M1 | Pearson Correlation | . 145 |
|  | N | 63 |
| T6M6 | Pearson Correlation | .362"* |
|  | N | 60 |
| T6M9 | Pearson Correlation | .337** |
|  | N | 62 |
| T6PHL | Pearson Correlation | . 213 |
|  | N | 59 |
| T6PHR | Pearson Correlation | 212 |
|  | N | 61 |
| T6M10 | Pearson Correlation | . 181 |
|  | N | 51 |
| T6M11 | Paarson Correlation | .283* |
|  | N | 60 |
| T6SPL | Pearson Correlation | . 046 |
|  | N | 14 |
| TGTPW | Pearson Correlation | .407* |
|  | N | 30 |
| T6IFLCA | Pearson Correlation | . 059 |
|  | N | 46 |
| TEIFRCA | Pearson Correlation | -278 |
|  | N | 48 |
| T10M2 | Pearson Correlation | . 091 |
|  | N | 71 |
| T10M1 | Pearson Correlation | . 077 |
|  | N | 70 |
| T10M9 | Pearson Correlation | .413** |
|  | N | 69 |
| T10M9 | Pearson Correlallon | .412** |
|  | $\mathrm{N}$ | $70$ |


|  |  | Agegroup |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T10PHL | Pearson Correlation | .273' | L5M10 | Pearson Correlation | 204 |
|  | N | 67 |  | $N$ | 59 |
| T10PHR | Pearson Correlation | . 341 " | L5M11 | Pearson Correlation | .255* |
|  | N | - 67 |  | N | 64 |
| T10M10 | Pearson Correlation | . 033 | LSSPL | Pearson Correlalion | $\cdots .170$ |
|  | N | 64 |  | N | 30 |
| T10M11 | Pearson Correlation | . 136 | L5TPW | Pearson Correlation | . 256 |
|  | N | 67 |  | N | 28 |
| T10SPL | Pearson Correlalion | . 314 | L5IFLCA | Pearson Correlation | . 021 |
|  | N | 24 |  | $N$ | 67 |
| T10TPW | Pearson Correlation | . 234 | L5IFLCA | Pearson Correlation | . 076 |
|  | N | 40 |  | N | 59 |
| T10IFLCA | Pearson Conelation | -210 | LsIFACR | Paarson Correlation | . 087 |
|  | N | 60 |  | N | 67 |
| T101FRCA | Pearson Correlation | - 173 | LsIFRCA | Pearson Correlation | . 188 |
|  | N | 81 |  | N | 58 |
| L1M2 | Pearson Correlation | . 060 | FMM16 | Pearson Correlation | - 117 |
|  | N | 82 |  | N | 18 |
| L1M1 | Pearson Correlation | . 169 | FMM7 | Pearson Correlation | -. 336 |
|  | N | 77 |  | N | 17 |
| L1M6 | Pearson Correlation | .319** | HLM1 | Pearson Correlaillon | .320* |
|  | N | 72 |  | N | 66 |
| L.1M9 | Pearson Correlation | .278* | HCM7 | Pearson Correlation | .286" |
|  | N | 81 |  | N | 85 |
| L1FHL | Pearson Correlation | . 182 | FH8M18 | Pearson Correlation | " |
|  | N | 77 |  | N | 80 |
| LIPHA | Pearson Correlalion | . 114 | FLM 1 | Pearson Correlation | 3* |
|  | N | 78 |  | N | 68 |
| Limio | Pearson Correlation | -. 001 | FCM9 | Paarson Correlalion | $0^{\circ}$ |
|  | N | 69 |  | N | R3 |
| LTM11 | Pearson Correlation | . 215 | - . Correlation is algnificant at the 0.01 level ( 2 -tailed). <br> *. Correlation is signilicant al the 0.05 level ( 2 -tailed). |  |  |
|  | N | 74 |  |  |  |
| L1SPL | Pearson Correalaion | . 228 |  |  |  |
|  | N | 27 |  |  |  |
| LITPW | Pearson Correation | . 308 |  |  |  |
|  | N | 27 |  |  |  |
| LIIFLCA | Pearson Correlation | . 081 |  |  |  |
|  | N | 71 |  |  |  |
| LTIFLCA | Pearson Correalalion | . 052 |  |  |  |
|  | N | ${ }^{68}$ |  |  |  |
| LIIFACR | Pearson Correlation | $\cdot 115$ |  |  |  |
|  | N | 68 |  |  |  |
| LIIFAGA | Pearson Correlation | . 121 |  |  |  |
|  | N | 66 |  |  |  |
| L5M2 | Pearson Correlalion | . 225 |  |  |  |
|  | N | 73 |  |  |  |
| L5M1 | Pearson Correlation | .236* |  |  |  |
|  | N | 71 |  |  |  |
| L5M6 | Pearson Correlation | . 183 |  |  |  |
|  | N | 69 |  |  |  |
| L5M9 | Pearson Correlation | .378** |  |  |  |
|  | N | 73 |  |  |  |
| L5PHL | Pearson Correlalion | .322** |  |  |  |
|  | N | 71 |  |  |  |
| L5PHP | Pearson Correlation | .296* |  |  |  |
|  | N | 71 |  |  |  |

## Medieval - females

|  |  | agegrour |  |  | OUP |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C3M2 | Pearson Correlation | 061 | TIMG | Pearson Correlation | .369** |
|  |  | - 6 |  | N | 64 |
|  | N | 63 |  | N |  |
| C3MI | Pearson Correlation | . 140 | T1M | Pearson Correlation | .247* |
|  |  | 64 |  | N | 66 |
|  | Pearson Correlation N |  | TIPHL | Pearson Correlation | . 196 |
| C3M6 |  |  | THL | N | 63 |
|  |  | 61 |  |  |  |
| C3M9 | Pearson Corcelation | 004 | TIPHR | Pearson Correlation | .158 |
|  |  | 61 |  | N | 69 |
| C3PHL | Pearson Corvelation N | 174 | TIM10 | Pearson Correlation | . 069 |
|  |  |  |  | N | 56 |
|  |  | 63 |  |  |  |
| C3PHR | Pearson Correlation N | . 169 | TIM 1 | Pearson Correlation | 138 |
|  |  | 63 |  | N | 65 |
| C3M10 | Pearson Correlation <br> N | -213 | TISPL | Pearson Correlation | -374 |
|  |  | 50 |  | N | 25 |
|  |  | so |  | Pearson Comelation | - 100 |
| C3M11 | Pearson Correlation <br> N | . 034 | TITPW |  | 47 |
|  |  | 61 |  | N |  |
| C3TPW | Pearson Correlation N | -014 | TIIPLCR | Pearson Correlation | -115 |
|  |  | 36 |  | N | 61 |
| C3IFLCR | Pearson Correlation N | -200 | TIFLCA | Pearson Correlation | -067 |
|  |  | 61 |  | N | 59 |
|  |  | 61 |  |  | 02 |
| C3IFLCA | Pearson Correlation N | -244 | TIFRCR | Pearson Correlation |  |
|  |  | 61 |  | N | 65 |
| C3IFRCR | Pearson Correlation | . 029 | TIIFRCA | Pearson Correlation | -058 |
|  |  | 61 |  | N | 60 |
|  | N | 6. |  |  | -007 |
| C3IFRCA | Pearson Correlation <br> N | $\checkmark 138$ | T6M2 | Pearson Comeation |  |
|  |  | 61 |  | N | 67 |
| C7M2 | Pearson Correlation <br> N | . 104 | T6MI | Pearson Comelation | -034 |
|  |  | 65 |  | N | 66 |
|  |  |  | T6M6 | Pearson Correlation | 339+* |
| C7M1 | Pearson Correjation <br> N | .049 | T\%M6 |  | 65 |
|  |  | 66 : |  | N |  |
| C7M6 | Pearson Correlation <br> N | .437** | T6M9 | Pearson Correiation | .141 |
|  |  | 65 |  | N | 67 |
| C7M9 |  |  | T6PHIL | Pearson Correlation | . 170 |
|  | Pearson Correlation N | .311* |  |  | 62 |
|  |  | 64 |  |  |  |
| C7PHL | Pearson Correlation <br> N | .114 | T6PHR | Pearson Correlation | . 101 |
|  |  | 64 |  | N | 63 |
|  | Pearson Correlation <br> N |  | 'T6M10 | Pearson Correlation | . 075 |
| C7PHR |  | .011 68 |  | N | 54 |
|  |  | 68 |  |  |  |
| C7M10 | Pearson Correlation N | . 025. | T6M1I | Pearson Correlation |  |
|  |  | 60 |  | N | 62 |
| C7M11 | Pearson Correlation <br> N |  | T6SPL | Pearson Correlation | -143 |
|  |  |  |  | N | 18 |
|  |  | 63 |  |  |  |
| C7SPL | Pearson Correlation | - 125 | T6TPW | Pearson Correlation | ,235 |
|  | N | 35 |  | N | 41 |
|  |  |  | T6FIFCA | Pearson Correation | . 102 |
| C7FLCR | Pearson Correlation | -313 58 |  | N | 50 |
|  | N | 58 |  | N |  |
| C7IFLCA | Pearson Correlation | -.096 | T6IFRCA | Pearson Correalion |  |
|  | N | 57 |  | N | 47 |
|  | N |  | T10M2 | Pearson Correlation | . 066 |
| C7IFRCR | Pearson Correlation | -234 |  | N | 67 |
|  | N | 59 |  | N |  |
| C7IFRCA | Pearson Correlation | -256 | T10M1 | Pearson Correlation | -067 |
|  | N | 58 |  | N | 66 |
|  |  |  | TI0M6 | Pearson Correlation | . 019 |
| T1M2 | Pearson Correlation | 170 | Tomb | N | 67 |
|  | N | 69 |  | N |  |
|  |  |  | T10M9 | Pearson Correlation | 242* |
| TIM1 | Pearson Comelation |  |  | N |  |
|  | N | 68 |  |  |  |


F. J. Rühli - Osteometric Variation of the Human Spine

Modern - males


|  |  | AGEGROUP |
| :---: | :---: | :---: |
| T10PHL | Pearson Correlation | . 105 |
|  | N | 40 |
| T10PHR | Pearson Correlation | . 182 |
|  | N | 38 |
| T10M10 | Pearson Correlalion | 229 |
|  | N | 38 |
| T10M11 | Pearson Correlation | . 016 |
|  | N | 40 |
| T10SPL | Pearson Correlation | 236 |
|  | N | 11 |
| T10TPW | Pearson Correlalion | . 118 |
|  | N | 24 |
| T10IFLCA | Pearson Correlation | -. 006 |
|  | N | 38 |
| T101FRCA | Pearson Correlation | -.086 |
|  | N | 37 |
| L1M2 | Paarson Correlation | . 063 |
|  | N | 36 |
| L1M1 | Pearson Correlation | . 329 |
|  | $N$ | 36 |
| L1M6 | Pearson Correlation | . 091 |
|  | $N$ | 33 |
| L1M9 | Pearson Correlation | . $359^{*}$ |
|  | $N$ | 37 |
| L1PHL | Pearson Correlation | . 295 |
|  | $N$ | 35 |
| L1PHR | Pearson Correlation | .396* |
|  | N | 36 |
| L1M10 | Pearson Correlation | . 143 |
|  | N | 34 |
| L.1M11 | Pearson Correlation | . 042 |
|  | N | 35 |
| L1SPL | Pearson Correlation | . 535 |
|  | N | 8 |
| L1TPW | Pearson Correlation | . 029 |
|  | N | 16 |
| LIIFLCR | Pearson Correlation | -. 028 |
|  | N | 34 |
| L1IFLCA | Pearson Correlalion | .111 |
|  | N | 34 |
| L1IFRCR | Pearson Correlation | . 164 |
|  | N | 32 |
| L1IFRGA | Pearson Correlation | . 285 |
|  | N | 34 |
| L5M2 | Pearson Correlation | . 141 |
|  | N | 36 |
| L5M1 | Pearson Correlation | . 095 |
|  | N | 37 |
| L5M6 | Pearson Correlalion | .433* |
|  | N | 32 |
| L5M9 | Pearson Correlation | .588** |
|  | $N$ | 38 |
| L5PHL | Pearson Correlation | . 225 |
|  | N | 38 |
| L5PHA | Pearson Correlation | . 286 |
|  | N | 37 |


|  |  | AgEGROUP |
| :---: | :---: | :---: |
| L5M10 | Pearson Correlation | -.076 |
|  | N | 35 |
| L5M11 | Pearson Correlation | . 120 |
|  | N | 38 |
| L5SPL | Pearson Correlation | . 572 |
|  | N | 11 |
| L5TPW | Pearson Correlation | . 193 |
|  | N | 18 |
| LSIFLCR | Pearson Correlation | .437** |
|  | N | 38 |
| L5IFLCA | Pearson Correlation | . 068 |
|  | N | 37 |
| L5IFRCR | Pearson Correlaton | . 261 |
|  | N | 35 |
| L5IFRCA | Pearson Correlation | -068 |
|  | N | 36 |
| FMM16 | Pearson Correlation | . 252 |
|  | N | 28 |
| FMM7 | Pearson Corelation |  |
|  | N | 28 |
| HLM1 | Pearson Correlation | . 205 |
|  | N | 36 |
| HCM7 | Paarson Correlation | 433** |
|  | N | 40 |
| FHBM18 | Pearson Correlation | 207 |
|  | N | 39 |
| FLM1 | Pearson Correlation | -. 119 |
|  | N | 36 |
| FCM | Pearson Correlation | . 275 |
|  | $\mathrm{N}$ | 39 |

Modern - females




|  | с3м2 | cam 1 | сам6 | сзм 9 | C3PHL | СзРНА | с3м10 | c3M11 | C3TPW | C3IFLCR | c3.FLCA | C3FRCA | C3IFRCA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Penrsen Cortiation | $\begin{gathered} \text { Pbalisof } \\ \text { Corretalion } \end{gathered}$ | $\begin{aligned} & \text { Pomrwon } \\ & \text { Corratilion } \end{aligned}$ | Pearson Corrinilion | Pemreon Correlallon | Poderson Cortalation | Pearson Contidation | $\begin{aligned} & \text { Pearson } \\ & \text { Correlation } \end{aligned}$ | $\begin{aligned} & \text { Pamesen } \\ & \text { Corradatlon } \end{aligned}$ | $\begin{aligned} & \text { Parson } \\ & \text { Correlation } \end{aligned}$ | $\begin{aligned} & \text { Pearsen } \\ & \text { Corralation } \end{aligned}$ | $\begin{aligned} & \text { Parargon } \\ & \text { Correlailon } \end{aligned}$ | $\begin{aligned} & \text { Pearson } \\ & \text { Correlallon } \end{aligned}$ |
| TIIFLCF | . 197 | . 090 | .151 | . 174 | -0,42 | -.087 | .390- | .324* | . 042 | .392- | .386** | A79* | .342- |
| turica | . 088 | -166 | -180 | -.030 | -199 | -160 | .9970 | -37\% | .as3 | . $396{ }^{-}$ | .507" | .465." | .525** |
| TIffrch | . 146 | .006 | -073 | . 130 | -.085 | -.070 | .564* | 380** | . 165 | .353\% | .320-7 | .473* | .423* |
| turrca | . 128 | -107 | -.039 | .060 | -115 | -019 | . $456 \times$ | .376* | .013 | . 38.4 | .354* | . 499 | -94** |
| TsM2 | .597- | .403- | 2220 | .147 | ${ }^{299}$ | .386* | . 2310 | . 197 | .357- | . 122 | . 125 | -.070 | .123 |
| тemt | .466" | .315* | .097 | . 172 | $235^{\circ}$ | 294- | .124 | . 181 | .336" | -. 067 | .019 | -150 | .a4 |
| тьм6 | . $370 \times$ | . 195 | -323- | . 859 | 278 | .383* | $243 \cdot$ | .092 | .118 | . 846 | .0s8 | -.063 | -.005 |
| тємя | .328- | . 187 | $246^{\circ}$ | $234{ }^{\circ}$ | $290-$ | $28{ }^{\circ}$ | .014 | 228* | . $330 \times$ | .029 | . 109 | .aso | . 335 |
| TGEHL | 378- | .148 | 252* | 248 | .386** | .470 | .127 | $226^{\circ}$ | .372* | .127 | . 019 | . 104 | -.00s |
| т6Ph | .291* | .778 | 215 | 233- | .300-* | .809* | .178 | 227 | 2000 | . 106 | .123 | . 074 | .03s |
| тьм10 | -.107 | -268* | -.049 | $230^{\circ}$ | -108 | -.088 | 290. | .3750 | -.098 | . 146 | . 137 | 81919 | . 197 |
| T6M11 | . 152 | -.006 | -.087 | . 191 | . 067 | . 072 | 229 | 588** | . 005 | .194 | . 196 | .163 | .178 |
| TSSPL | .168 | .067 | .013 | -227 | . 378 | .008 | -116 | -205 | . 191 | -.091 | . 186 | . 129 | . 155 |
| tetpw | .078 | -.041 | 221 | . 159 | 298. | 257 | .88 | . 087 | 268 | -00s | -.029 | -.005 | -.ass |
| tancica | $230^{\circ}$ | .a37 | .058 | . 932 | -170 | -068 | .070 | 290 | 299 | .359* | $229{ }^{\circ}$ | .291* | .308- |
| tifraca | . 143 | . 001 | -06s | .084 | -113 | - 102 | 248 | $252^{\circ}$ | . 088 | .390" | . $35 \times$ | .324- | .365" |
| tromz | . 507 | .47* | . 08 | .079 | .18s | 2794 | $212^{\circ}$ | 247 | . 097 | -001 | $222^{\circ}$ | .027 | .156 |
| том | .380 | $2 \pi$ | .078 | .084 | . 162 | . 193 | . 148 | . 176 | . 184 | .062 | .117 | . 08 | -012 |
| томи | .374- | . 377 | 270 | .178 | . 186 | .299* | . 102 | $243{ }^{\circ}$ | . 127 | .078 | .100 | . 094 | . 067 |
| томм | .366" | s180 | 275 | .150 | 265 | $295 *$ | -.022 | .300" | . 353 | . 051 | .156 | -167 | .230* |
| tiophi | .361* | 238- | . 094 | . 124 | . 353 | .420** | 223. | 270 | .193 | . 031 | .196 | .005 | . 098 |
| T10PHR | 3790 | .305* | . 062 | $275^{\circ}$ | .319* | .401- | 259 | $2722^{-}$ | 210 | . 052 | . 187 | .078 | . 097 |
| томто | -.064 | -113 | -.038 | . 011 | -148 | . 141 | .3650 | .500" | 243 | 200 | $270^{\circ}$ | .788 | $235^{\circ}$ |
| 710M11 | ${ }^{256 *}$ | . 073 | -.079 | . 139 | -149 | .073 | . 395 | . $468{ }^{-7}$ | . $344{ }^{-}$ | .44i* | $274{ }^{*}$ | .387* | .319*- |
| TT10SPL | .409** | . 097 | . 120 | -116 | .382- | . $415{ }^{\circ}$ | . 102 | .326" | -400* | .173 | 209 | 271 | -183 |
| tiotrw | . 150 | .022 | .039 | -.aso | 233 | 211 | 233 | . 176 | 261 | . 093 | . 079 | .063 | .0as |
| troirca | . 030 | -.067 | -235*******) | -121 | $-286{ }^{\circ}$ | $-240^{\circ}$ | 221 | A20* | -.033 | .505* | .463* | -990- | .519* |
| tiourfica | . 053 | -138 | -163 | -039 | -204 | -.019 | $286^{*}$ | A76** | -.026 | . $358 \times$ | .505** | .392* | 419* |
| Lim2 | .500* | د93* | . 127 | . 150 | .320" | 246. | 266. | .096 | -. 012 | . 041 | . 097 | .033 | . 029 |
| Limit | .460- | .379 | . 100 | . 121 | $233^{\circ}$ | .158 | $258^{*}$ | .095 | .184 | .100 | .az8 | -.020 | -.012 |
| Lime | 24. | . 176 | $292{ }^{\text {20 }}$ | 317\% | 225 | $210^{\circ}$ | $222^{\circ}$ | . 127 | .369\% | . 013 | .068 | -.034 | . 030 |
| Lтm | .332* | $236{ }^{\text {- }}$ | .313*******) | $269^{+}$ | 2480 | $289{ }^{-1}$ | -.006 | $253^{\circ}$ | .502" | . 021 | . 051 | -.053 | . 067 |
| LTPML | .382* | 278** | .88 | 226* | .456" | .365* | 229 * | .0a4 | . 162 | . 043 | . 110 | .000 | .020 |
| LTPh\% | .400-- | . 352 -* | $24{ }^{+}$ | . 131 | .855 | . $38{ }^{-}$ | .170 | . 012 | .067 | .073 | . 122 | .048 | .019 |
| Lтм10 | .108 | . 027 | -.028 | . 194 | -.000 | . 075 | .374" | . $5844^{-}$ | . $380 \cdot$ | .304- | . 184 | $270{ }^{\circ}$ | - 152 |
| timen | .asa | 221. | 107 | OLS | 3000 | O, | nam | Nos. | 219 | 167 | a7a | m | II |


|  | сзм2 | сзм1 | самь | сзм 9 | ${ }_{\text {c3PHL }}$ | сзРн | сзмто | с3M11 | c3TPW | caiflch | C3IFLCA | Culaba | calfaca |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pemrson Corristallon | Pegrman Correlation | Purimon Corteration | Pasroon Corromation | $\begin{gathered} \text { Parroon } \\ \text { Corratilion } \end{gathered}$ | $\begin{aligned} & \text { Pesimon } \\ & \text { Corralation } \end{aligned}$ | Correlalion | $\begin{aligned} & \text { Powpon } \\ & \text { cormelation } \end{aligned}$ | $\begin{gathered} \text { Pasarson } \\ \text { Cormalition } \end{gathered}$ | $\begin{gathered} \text { Ponison } \\ \text { Corriolation } \end{gathered}$ | $\begin{gathered} \text { Parrsonn } \\ \text { Corrsalition } \end{gathered}$ | $\begin{gathered} \text { Parsynn } \\ \text { Corseletion } \end{gathered}$ | Paurson Correatition |
| LISPL | .$^{437}$ | $3.300^{\circ}$ | 251 | 237 | . 197 | -320 | . 151 | ${ }^{.350}$ | 247 | .032 | . 156 | . 068 | .084 |
| LITPW | 315 | . 107 | 243 | .076 | 262 | .335 | 215 | 272 | -335 | . 045 | 151 | . 033 | .085 |
| lufich | . 127 | ,066 | -071 | . 080 | $-260^{\circ}$ | -74 | .261* | . $100{ }^{\circ}$ | 80 | .345* | 331 | 351* | 3314 |
| Liflea | . 048 | -133 | $-249^{*}$ | .093 | $-256{ }^{*}$ | -. 136 | -410 | .552" | 207 | 506 | .435* | .505* | . $144^{-}$ |
| Luffch | 297 | .106 | -.036 | .061 | -.034 | .038 | 231 | $27^{\circ}$ | .141 | $235^{\circ}$ | $254 *$ | .364* | $229 *$ |
| Lifraca | .123 | -.046 | -191 | . 197 | -188 | . 002 | . $453 \times$ | .522" | . 175 | .376" | . 336 | . $412 \times$ | . 3 155 |
| L5M2 | A14- | .170* | .070 | . 121 | .329* | $266^{\circ}$ | . 996 | . 104 | $280^{\circ}$ | . 041 | . 084 | . 10 | . 155 |
| L" 1 | $222^{\circ}$ | $282^{*}$ | -.052 | .099 | . 128 | .119 | . 108 | $210{ }^{\circ}$ | .350" | -059 | . 068 | -.037 | . 05 |
| LsM6 | 297* | . 197 | $286{ }^{\circ}$ | 247 | $257^{\circ}$ | 290* | 203 | . 124 | . 136 | -ror | . 092 | .041 | . 094 |
| L5m9 | $26.4{ }^{-1}$ | . 100 | .320* | .466" | $258 \times$ | .321* | . 155 | $227^{*}$ | $264{ }^{\circ}$ | . 088 | -.031 | . 130 | .170 |
| LSPHL | 207 | . 173 | . 176 | 279* | .406* | .336* | . 183 | . 127 | . 178 | .008 | .050 | .07a | .083 |
| ${ }_{15 P H 8}$ | $206{ }^{\circ}$ | . 181 | . 197 | $221^{\circ}$ | .390* | 31* | .118 | . 154 | . 172 | . 022 | . 054 | .065 | .054 |
| Lsmio | .000 | -.053 | . 037 | . 095 | -.013 | . 108 | .154 | $231^{*}$ | .096 | -041 | -.004 | .043 | . 091 |
| LsM17 | .066 | -. 037 | $220{ }^{\circ}$ | . 039 | . 075 | -135 | $280^{*}$ | .451* | 243 | 248 | 334 | $20 \%$ | 277 |
| LS5PL | .168 | . 146 | .073 | . 055 | . 014 | .139 | 270 | 304* | .624** | . 162 | 208 | -019 | . 140 |
| LTPW | . 155 | . 14 | . 063 | -. 137 | . 016 | . 067 | . 154 | . 001 | . 112 | . 035 | .133 | . 054 | .097 |
| LIIFLCR | $214 *$ | .096 | .ass | .198 | . 015 | -.008 | .08** | 279* | -.078 | . 148 | $273 *$ | .254* | $240^{\circ}$ |
| Lstrica | -. 024 | -.005 | -.027 | -. 725 | - 125 | -155 | .183 | . 195 | . 030 | -170 | . 072 | $246^{\circ}$ | . 134 |
| LITrer | .117 | .000 | .043 | . 109 | -.026 | -.037 | . 368 - | 367 | .086 | $212^{\circ}$ | 294* | 305* | .299-* |
| $151 /$ FFCA | . 014 | -110 | . 012 | . 013 | . 010 | -.085 | $224{ }^{-}$ | $236{ }^{\circ}$ | . 075 | . 146 | .118 | . 175 | 11 |
| ғмм16 | -.062 | -252 | .053 | 228 | -.024 | -.074 | .300 | .350* | -077 | .333* | 251 | 295 | 020 |
| नмму | -.097 | -117 | -.085 | -.055 | -040 | -.060 | 228 | .482** | 207 | $385{ }^{\circ}$ | 220 | . 169 | . 115 |
| HLMI | .414" | 247 | . 012 | . 132 | . 131 | . 187 | $243 *$ | .448** | 260 | $264^{*}$ | .309** | $267 *$ | 294** |
| нсмт | . 415 | .264* | 224 | . 156 | .426" | .429* | . 022 | . 070 | .329** | -106 | -.009 | -155 | .049 |
| friemis | A26" | 228. | . 096 | . 172 | 219 | $288^{\square}$ | .389* | .145** | . $435{ }^{4}$ | $233{ }^{\circ}$ | .299** | $216{ }^{\circ}$ | $272{ }^{*}$ |
| fum | .354* | . 174 | -.085 | .088 | . 027 | . 085 | . 164 | 3870 | 264 | $288^{-1}$ | $295{ }^{-}$ | $200^{\circ}$ | $22{ }^{\circ}$ |
| гсмя | . $340{ }^{-}$ | .77 | $265^{*}$ | .083 | 278 | .30- | .088 | .310* | $299^{\circ}$ | -069 | . 012 | -098 | .006 |
| anson | 221 | th | 18 | 120 | 122 |  | 038 | cas | 500 | 306. | 205 | , |  |



|  | C7M2 | c7M | c7M6 | стм9 | C7PHL | C7PHR | стмно | C7M11 | c7sPL | CTIFLCA | CAFLCA | C77FFCR | C7IFRCA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Paarson corretaltion | Penryon Correlallon | Perarian Cortalallon | Pamrson Corralation | $\begin{aligned} & \text { Pearsonn } \\ & \text { Corrafation } \end{aligned}$ | $\begin{aligned} & \text { Pearson } \\ & \text { Correlation } \end{aligned}$ | Pasrson | $\begin{aligned} & \text { Porrson } \\ & \text { Corrotation } \end{aligned}$ | Pearnon | Pearsan | Plemron Correfalion | Pearson | $\begin{gathered} \text { Poarson } \\ \text { Corratalion } \end{gathered}$ |
| LISPL | .388- | .393" | .$^{.359^{\circ}}$ | . 189 | 278 | . 195 | -.015 | 271 | . 054 | . 087 | . 128 | . 105 | . 097 |
| Litpw | . 135 | .170 | .166 | -.096 | .109 | . 197 | . 188 | . 108 | .338 | . 164 | . 163 | . 042 | 293 |
| LIIFLCA | .087 | . 012 | $220^{\circ}$ | .167 | -131 | -.055 | .31\% | $247^{\circ}$ | $296{ }^{\circ}$ | .547* | .550* | A77\% | .465* |
| Lhrcea | . 143 | . 044 | .104 | .082 | -. 022 | -106 | 423* | .3470 | 232 | . $512{ }^{\text {+* }}$ | . $566^{-}$ | .569* | .460* |
| L11FFCR | . 072 | .018 | -.004 | .180 | -134 | -.090 | $213 *$ | . 102 | .780 | .374* | . 404. | .330* | .369** |
| LIIfrica | . 189 | .067 | . 138 | .168 | -.036 | -108 | .446* | .362* | 362" | . $462^{-}$ | $529-$ | .578** | ${ }^{398}$ |
| Lsme | .507* | .427- | . 152 | .029 | .154 | . 085 | . 012 | .050 | -.054 | .062 | -031 | .049 | -.006 |
| Lsmit | .405* | $350 \times$ | $278{ }^{\circ}$ | -a44 | . 187 | .112 | . 104 | . 170 | . 931 | .078 | -.026 | . 142 | -035 |
| Lsug | 298 | 279* | 272* | . 125 | . 186 | $272{ }^{-}$ | -.043 | .073 | . 038 | . 33 | -.886 | . 154 | -054 |
| Lsus | 278** | 278 | .379\% | .898* | 225 | $253-$ | . 134 | . 031 | . 073 | . 037 | . 173 | . 133 | . 059 |
| LSPHL | -34- | . $400-$ | .766 | .oss | .504- | $298{ }^{\circ}$ | $218^{*}$ | . 104 | -126 | .093 | . 115 | . 010 | . 043 |
| LSPHR | .3150 | .3170 | . 107 | . 022 | $255{ }^{\circ}$ | $250{ }^{\circ}$ | .386* | -150 | . 108 | -143 | . 019 | . 096 | . 063 |
| LSMT0 | . 98 | -.0s7 | . 136 | . 042 | . 127 | -012 | 265 | $322^{\prime \prime}$ | -.032 | . 145 | . 147 | .304- | . 136 |
| LSM17 | $23^{\circ}$ | .oss | . $387 \times$ | $224{ }^{4}$ | .083 | . 107 | .309* | .344- | -0,04 | .320- | . $467^{+}$ | 240 | . 358. |
| LSSPL | 200 | 230 | .aso | . 049 | . 140 | .143 | -.030 | -.007 | .064 | -132 | -129 | .003 | -. 332 |
| LTTPW | .123 | .077 | .088 | -.039 | . 135 | -. 164 | .093 | . 115 | -.098 | -.009 | -.070 | .074 | -. 195 |
| LSIFLCA | 253. | .108 | . 181 | .098 | ..s3 | .037 | .285- | .322** | . 040 | .335" | .443* | .386* | .465* |
| litca | .033 | -028 | .43 | .003 | . 030 | .007 | $232^{\circ}$ | . 58.4 | -. 078 | 206 | 265 | 354 | .304** |
| LSIffach | . 142 | . 098 | .097 | .080 | -.047 | .015 | .409* | .455* | . 0.02 | .505* | . 562 \% | .544********) | .617- |
| LIIfrrca | . 35 | .178 | .150 | . 131 | . 009 | -.028 | $244^{\circ}$ | .424" | .008 | .331" | $263^{*}$ | 433* | A05" |
| FuM16 | . 015 | -.012 | .199 | .188 | -201 | -.759 | .355* | .3870 | . 169 | 253 | .326* | 227 | .336- |
| fum | -014 | -140 | . 040 | -.083 | $-3.309$ | -292 | .326 | .386- | . 467 | .507** | . 305 | . $467{ }^{\circ}$ | .359 |
| HLM, | . $345^{\circ}$ | 222* | .331* | . 045 | . 089 | .100 | 268* | .327\% | . 084 | .373* | 3410 | .403" | .325* |
| нсм' | 270** | 227 | 2700 | . 19 | .324* | 226* | . 05 | . 14 | -.062 | -013 | -.050 | . 005 | -.038 |
| пнвмтя | .484* | .325* | .371" | . 147 | . 153 | 255 | $268{ }^{\circ}$ | .420* | -.007 | .234* | 23. | .188* | $234^{\circ}$ |
| flat | .332-- | 266 | $220^{\circ}$ | . 018 | . 067 | . 107 | . 102 | $321{ }^{+}$ | -135 | $293 *$ | .203* | .183 | $215^{\circ}$ |
| гсмя | .300" | $214{ }^{\text {- }}$ | 3650 | .111 | . 177 | $236{ }^{\circ}$ | .184 | .395m | -117 | . 00 | .085 | -. 036 | -006 |
| ппмо | 2090 | ,10. | $186{ }^{\circ}$ | 111 | 14. | $25^{\circ}$ | non | un. | -an | ars | 219 | 110 | 121 |


|  | T1M2 | TiM1 | тімб | тіM9 | TIPHL | TIPH/ | T1M10 | T1M11 | T1spL | TITPW | TMFLCR | TUFLCA | TIIfRCA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pasaran <br> Corralation | Panaronn Correlation | Pearson Correlation | $\begin{aligned} & \text { Pasaraon } \\ & \text { Corralation } \end{aligned}$ | $\begin{gathered} \text { Porartion } \\ \text { Corrabetion } \end{gathered}$ | $\begin{aligned} & \text { Pesrson } \\ & \text { Corralatlot } \end{aligned}$ | Corralation | $\begin{gathered} \text { Peaptan } \\ \text { Corrialation } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Paarson } \\ & \text { Corralatlon } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Pearion } \\ \text { Corratillon } \end{gathered}$ | $\begin{gathered} \text { Parsion } \\ \text { Coratalion } \end{gathered}$ | $\begin{gathered} \text { Pancion } \\ \text { Cortalition } \end{gathered}$ | Pbarson Corralatlon |
| сзм2 | . $550^{\circ}$ | .617** | . $323 \times$ | .340" | .300- | .300** | . 157 | .214* | 510" | .423** | . 331 | . 170 | . 034 |
| сам $11^{\text {a }}$ | .459* | .501- | 305. | .210 | .227* | .227* | .092 | .253* | .453" | .373* | . 078 | . 103 | -.014 |
| сзмя | . 185 | .135 | .874* | .233 ${ }^{\text {b }}$ | 3030 | .326** | -045 | . 107 | .178 | . 190 | -295** | -.093 | - 113 |
| сзм9 | . 097 | . 101 | .323* | .14** | .24* | . 161 | .078 | . 4 | . 174 | .292** | . 063 | . 029 | . 121 |
| $\mathrm{C}_{3} \mathrm{PHL}$ | .400* | .355* | .333* | 251. | .543" | A88** | .088 | -.004 | . 668 | .431* | -123 | . 094 | -016 |
| C3PHA | . 110 | .391* | .300* | .299** | .478- | . $420{ }^{-}$ | . 011 | -020 | .319* | .437* | -.056 | . 116 | 33 |
| сзм ${ }_{\text {¢ }}$ | . 04 | . 075 | . 023 | -110 | - 140 | -.054 | .563* | .352* | . 150 | .118 | . 450.4 | . 406. | .420" |
| c3M11 | .279* | .274* | . 173 | .241* | -.071 | . 038 | A79* | .485* | 203 | ${ }_{356}{ }^{-}$ | 297** | 347 | $215{ }^{\text {* }}$ |
| c3TPW | .266 ${ }^{\circ}$ | .293* | 251 | . 241 | -017 | . 132 | .359** | .310* | .431* | .47" | . 185 | .250 | . 15 |
| C3ILCH | . 105 | . 061 | - 121 | . 140 | -.096 | -.015 | $336 *$ | .247* | -. 017 | . 059 | 800** | .426** | .369* |
| camica | , 142 | . 121 | -063 | . 024 | . 074 | .087 | . $436{ }^{*}$ | . 080 | 157 | . 205 | .360** | A22" | .2530 |
| cafrach | . 125 | . 106 | - 190 | 013 | -072 | -.064 | .420** | . 181 | . 046 | . 139 | 480" | .462** | .338** |
| c3iffca | . 089 | . 065 | . 181 | . 185 | .086 | 039 | A37* | . 159 | .150 | . 125 | .580 | $462^{*}$ | .410" |
| C7M2 | .723* | 802.- | .200 | .242" | .477 | .68** | 265** | 050 | .330* | 424* | .237* | .275.* | . 195 |
| C7M1 | .704* | . $610^{י}$ | . 092 | . 141 | .523- | . $452 \cdot$ | . 130 | - 106 | 243" | .475** | . 170 | ${ }^{222}$ | .090 |
| с7M | -002 | . 108 | .751** | .297* | . 045 | . 102 | . 026 | 254* | . 17 | . 193 | -210* | . 013 | -0,939 |
| с7м9 | . 135 | . 124 | 35\% | .426- | 293** | $23{ }^{\circ}$ | . 104 | . 019 | .362-* | $244^{\circ}$ | -.236 | -024 | -.026 |
| $\mathrm{CTPHL}^{\text {chen }}$ | 363• | .320- | D84 | .018 | .424-* | .424* | -026 | 0.45 | . $301{ }^{\circ}$ | . 112 | . 132 | 001 | . 032 |
| с7рнн | .333" | .270** | .188 | 114 |  | .484* | . 030 | .063 | 187 | ${ }^{266 *}$ | . 073 | . 010 | . 049 |
| cтMto | .281* | .24* | . 021 | -.032 | .000 | . 051 | .751* | .335** | .030 | .233* | 559* | 548** | .603" |
| C7M11 | . 045 | . 056 | .154 | .224 | -198* | . 151 | .352" | .732" | .025 | $221^{\circ}$ | .234. | .264" | .220* |
| C7SPL | .233* | 3300 | . 183 | .788 | .366." | .110 | . 203 | -073 | .694-* | . 352 " | . 062 | . 136 | . 207 |
| cIfLCh | . 172 | . 094 | -087 | -071 | -.07 | . 055 | .359* | .008 | -.057 | -029 | .574* | .42** | .371* |
| CIFLCA | .231* | .160 | . 033 | -.064 | .038 | . 140 | .562" | . 143 | . 124 | 299* | .613" | .815** | .40** |
| слғнся | . 172 | . 102 | -.176 | -094 | -.180 | - 143 | .438* | . 111 | -125 | -07 | A68" | .336-* | .348" |
| CTIFRCA | $225{ }^{\circ}$ | .235* | . 083 | . 249 | . 079 | . 175 | .535* | ${ }^{226}{ }^{\prime}$ | . 126 | 284* | .545- | .639" | .585* |
| тim |  | 723 | . 163 | .264* | .539* | .514-* | .337* | - 139 | .400\% | .418* | 196* | .253* | . 174 |
| timi | .651** |  | $255^{\circ}$ | . 151 | . $481{ }^{1 \times}$ | . $436 \times$ | .234* | -.131 | .387** | .446* | . 076 | .229* | 048 |
| Tims | . 141 | .os\% |  |  | .297* | 280* | . 135 | .180 | .139 | .356" | -.192* | . 059 | -.055 |
| \% | .300-* | 207 | . 121 |  |  | .246- | .096 | . 103 | . 178 | .346* | . 030 | . 035 | . 107 |
| Tro | . $153^{+}$ | 512" | .292* | $276{ }^{*}$ |  | 763 | . 075 | -344* | 228** | .396.* | -115 | 121 | -025 |
| TIPHL | 570 | . $511^{*}$ | $225{ }^{\circ}$ | $276{ }^{\prime}$ | 7890* |  |  | -.251* | $249{ }^{\circ}$ | .354* | -.095 | . 142 | -.032 |
|  | $250-$ | . 047 | -.053 | .999 | . 128 | 125 |  | 2910 | . 193 | 488" | 524* | .606** | .563* |
| тми\% | . 107 | -.046 | . 065 | . 134 | -.179 | -223* | ${ }^{460^{\circ}}$ |  |  | . 189 | .306* | 276" | ${ }^{269 *}$ |
|  | . 175 | . 054 | . 101 | -.039 | .070 | .049 | -.003 | -.062 |  | 40. | .097 | . 175 | . 120 |
| TSPL | 200. | 093 | 211 | IV | nen | .ass | 128 | (n). | 364. |  | 122 | 280. | 159 |


|  | TIM2 | timi | тімб | timg | TIPML | TIPHR | тім:о | тimi1 | TISPL | TiTpW | THIFLCA | TIIFLCA | Tiffach |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Paurson | Parrson | Panson | Pearson | Paurson | Perrson | Pourson Corratallon | Penrson <br> Cortolation | Perrsoh Corredallon | Person Carrelallan | $\begin{aligned} & \text { Pasarson } \\ & \text { Corratation } \end{aligned}$ | $\begin{aligned} & \text { Poarson } \\ & \text { Correlatlon } \end{aligned}$ | Pearsont Corrofalion |
|  | Corroation | ${ }_{\text {corrdation }}$ | $\frac{\text { Corrasalion }}{.001}$ |  | ${ }_{-143}$ | -.084 | . 377 | $215^{\circ}$ | . 098 | .009 | ' | .5827* | . 699 |
|  | . 170 | . 097 | . 068 | .058 | . 048 | . 055 | .504* | . 159 | -.092 | -153 | 592\% | 1 | .593* |
| TUICCA | .170 .138 | .091 .135 | . 158 | .ass | -0.035 | -027 | .456" | .334* | 243 | . 057 | .699\% | .593* | ${ }^{1}$ |
| turaca | . 181 | .128 | . 098 | . 065 | .0so | . 135 | .521* | $223{ }^{\circ}$ | -102 | .083 | .502* | .788** | .623** |
| temm | .566* | .13* | . 158 | . 169 | $296{ }^{*}$ | $23^{\circ}$ | . 189 | $230^{\circ}$ | 2920 | 3430 | . 072 | . 011 | .100 |
| тем9 | A5s.* | .330- | ת18. | . 135 | $206{ }^{\circ}$ | . 183 | . 148 | -156 | 288 | $246^{\circ}$ | -.042 | -.095 | . 032 |
| т6m6 | $296 *$ | .149 | .57\% | 20.4 | 293* | $212^{\circ}$ | . 035 | .074 | .173 | 319******) | . 022 | .67 | 27908 |
| тбмм | .325* | .172 | .351* | .495** | $333{ }^{\text {+ }}$ | 232" | .059 | .068 | .153 | 218 | -235* | -156 | .088 |
| TGPML | 370* |  | $266^{\circ}$ | . 088 | .380 | 292- | $233^{\circ}$ | .188 | -128" | $293{ }^{\circ}$ | . 149 | -120 | . 142 |
| TGPHR | 2970 | .817 | $274{ }^{40}$ | . 124 | .374* | ${ }^{236}{ }^{*}$ | $226^{\circ}$ | $227^{\circ}$ | 270 | 297 | . 26. |  | . $368{ }^{\text {a }}$ |
| тем10 | -.070 | . 128 | .003 | . 045 | -159 | -186 | .548** | . $432^{-}$ | . 108 | .109 | \% | .a | \% |
| teml | .194 | .096 | -.008 | $245^{\circ}$ | -.02a | . 102 | .339+4 | . $488{ }^{\circ}$ | - 124 | -.093 | . 167 | . 988 | . 197 |
| TSSPL | .07s | . 175 | . 165 | -281 | .126 | 213 | -151 | -189 | . 38 | -141 | -131 | --132 | . 121 |
| totpw | .998 | . 022 | 210 | .195 | -138 | .177 | . 186 | . 139 | . 327 | -223 | . 188 | .193 | . 094 |
| tirica | .015 | -.009 | .066 | . 105 | -.070 | .000 | .064 | .088 | 22r | -123 | 213 | .303** | $223 \cdot$ |
| тыfrica | . 127 | .183 | . 330 | -025 | .062 | . 051 | . 123 | 2470 | .o78 | $243{ }^{\circ}$ | .094 | .096 | . 143 |
| tiomz | .469* | .09\% | .777 | ${ }^{098}$ | . 090 | . 140 | $233^{\circ}$ | 247 | .08 | $250^{\circ}$ | -.033 | $\therefore 136$ | . 071 |
| ттомт | . $354 \times$ | .390 | .ast | . 059 | . 187 | .174 | .077 | 208 | \% | 327\% | . 199 | . 155 | .308** |
| томя | 269- | $258{ }^{-}$ | 455- | .119 | . 190 | . 085 | . 137 | . 098 | 267 | 276* | -133 | -.017 | . 046 |
| томм | $248 \times$ | . 138 | .407* | .456" | .312* | $245 *$ | .064 | .121 | OSA | $241^{\circ}$ | . 045 | -.073 | . 087 |
| TIOPHL | .328** | .367" | .185* | . 182 | .362** | $281{ }^{10}$ | $283 \cdot$ | .38\% | .068 | 211 | . 191 | -028 | -182 |
| TIOPHP | 262" | .412* | 247 | . 136 | .348" | $298 *$ | $244^{\circ}$ | 203 | .rn | , |  | 3930 | 325-* |
| томто | .170 | -.030 | -.002 | . 074 | -.054 | . 038 | .660** | .566** | .118 | . 146 | $248^{\circ}$ | .as | 373* |
| томит | $238{ }^{\circ}$ | . 038 | . 15 | $236^{\circ}$ | . 021 | . 053 | .504- | 4737 | . 034 | .009 |  | - | 288 |
| TITSPL | . 338. | . $306{ }^{\text {. }}$ | 237 | . 184 | 251 | 272 | . 194 | ${.326{ }^{\circ}}$ | .155" | . $445^{\circ}$ | .12a | -20 |  |
| trotpw | . 108 | . 036 | .17 | -005 | . 072 | .118 | 209 | $2488^{\circ}$ | .550" | . |  | - | $50^{\circ}$ |
| traflica | . 097 | -003 | -015 | . 014 | -138 | .098 | .351" | $236^{\circ}$ | -072 | -024 | . | .578 | $250^{\circ}$ |
| tiofraca | . 152 | -104 | . 110 | -014 | -.064 | . 015 | .419** | .306" | . 012 | .08s | .354* | . 62 | . $354{ }^{4}$ |
| Limz | .562* | .830* | . 188 | .043 | .185 | .198* | -. 040 | .085 | 253 | 337 | . 046 | -.0s | .097 |
| Limi | . 57 | .512* | 297 | .087 | $254 *$ | $280^{*}$ | -.092 | . 002 | 317 | . 136 | . 102 |  | , |
| LıM | $261^{\circ}$ | .123 | A19* | . 088 | .773 | .097 | . 010 | -.026 | 3310 | $275^{\circ}$ | . 026 | . 13 | .080 |
| Lim9 | .370* | .188 | .18** | .369** | $266^{\circ}$ | . 185 | -.002 | $210^{\circ}$ | -129 | .327* | -247 | -154 | -.072 |
| LTPHL | .435** | A89** | 217 | $273{ }^{\circ}$ | -839 | .426* | .063 | \% | . 170 | . 190 | . 007 | -198 | . 025 |
| LIPHR | A78* | .479 | 237 | $223{ }^{\circ}$ | .521* | .8870 | . 020 | . 068 | . 067 | 209 | -127 | -180 | -093 |
| L1M\% | . 81 | . 151 | .005 | -020 | -.010 | -018 | .532" | .568" | . 17 | .188 | .339** | .322* | 373* |
| , | cos | 028 | 255 | ,a) | mos | ato | Nou- | stan | . 155 | 13 | $\stackrel{1}{0}$ | 305. | 24. |


|  | TiM2 | timi | tims | т1M9 | TIPHL | TIPHR | T1M70 | T1M17 | TISPL | jitpw | tufler | THFLCA | TIFPRCA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Parson Carratalion | $\begin{aligned} & \text { Paurson } \\ & \text { Correhation } \end{aligned}$ | $\begin{gathered} \text { Parran } \\ \text { Corratition } \end{gathered}$ | $\begin{aligned} & \text { Peurson } \\ & \text { Corralation } \end{aligned}$ | $\begin{aligned} & \text { Pearson } \\ & \text { Corrolation } \end{aligned}$ | $\begin{aligned} & \text { Pearsan } \\ & \text { Corrwiflen } \end{aligned}$ | $\begin{gathered} \text { Parson } \\ \text { Corration } \end{gathered}$ | $\begin{gathered} \text { Poarson } \\ \text { Corralation } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Perrson } \\ \text { Correlation } \end{gathered}$ | $\begin{gathered} \text { Pemreon } \\ \text { Corralation } \end{gathered}$ | $\begin{gathered} \text { Poarson } \\ \text { CorrathNon } \end{gathered}$ | $\begin{gathered} \text { Paarsan } \\ \text { Corratilion } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Peargon } \\ \text { Corrolalion } \end{gathered}$ |
| LISPL | .3974 | $33^{39^{*}}$ | ${ }^{.312}$ | . 198 | ${ }^{3166^{*}}$ | . 107 | -0.56 | .334* | ${ }^{267}$ | ${ }^{3964}{ }^{*}$ | -.026 | . 015 | . 104 |
| ${ }_{\text {LTTPW }}$ | .128 | . 194 | .076 | -07 | 293 | .236 | . 201 | .087 | . 782 | .359* | . 086 | . 097 | . 305 |
| lurca | -.088 | -.044. | .3070 | . 012 | -039 | -.940 | . $306{ }^{\text {c* }}$ | 204. | -.072 | -.028 | .573" | .573* | .198* |
| limea | .071 | . 19 | .0s5 | -095 | -. 164 | -.087 | .499** | .378- | . 040 | . 331 | .503* | .55" | .504** |
| liffer | -.070 | .063 | .149 | -.056 | -.056 | -.066 | 208 | $231^{\circ}$ | -.039 | -.075 | . $498 \times$ | .532" | .127* |
| Lurfaca | . 08 | . 813 | .149 | -.096 | -.083 | -.063 | . 336 | .993* | . 146 | .023 | 509** | .510 | .884- |
| L5M2 | .5s3- | . $445^{-}$ | . 180 | $209{ }^{\circ}$ | $228{ }^{\text {. }}$ | .146' | .084 | .188 | . 074 | 280* | .027 | .061 | . 993 |
| L5w1 | .414" | . 357 | . 188 | . 281 | . 080 | . 121 | .143 | $285^{*}$ | .502- | . $304 \times$ | .018 | -.088 | 204 |
| L5м | $238{ }^{\circ}$ | . $370^{+}$ | 205 | 253* | .327** | .189 | -.093 | . 010 | .086 | .788 | .080 | -. 034 | . 132 |
| เธмя | 342" | 203 * | . 3 s- | .488* | .342" | .2510 | .786 | -020 | . 029 | . 122 | -.034 | . 070 | .127 |
| Lsphil | . 396 | S470 | . 175 | .106 | .355" | .321* | $234 *$ | . 055 | . 010 | .08s | -000 | . 016 | . 014 |
| LSPHR | . $37 \pi$ | .332* | . 145 | .039 | $26{ }^{10}$ | $205^{*}$ | $298{ }^{+}$ | .050 | . 168 | 200 | .030 | . 030 | .108 |
| L5M10 | .035 | -.ass | . 146 | .248 | -.044 | -.033 | . 148 | $343 \times$ | . $5600^{\circ}$ | $282^{\circ}$ | . 115 | -010 | $229 *$ |
| L5M91 | $293 *$ | .074 | .382- | 255 | . 989 | .17 | .31* | 248. | -. 179 | .ass | 227 | .4970 | $210{ }^{-}$ |
| LsPL | . 139 | . 87 | . 044 | -.058 | . 087 | -160 | . 008 | 270 | .118 | 249 | $-339^{\circ}$ | $-121$ | -907 |
| LTPW | 204 | .070 | . 040 | -017 | -067 | . 101 | -.008 | . 027 | -.072 | .392* | -. 039 | -004 | -011 |
| Ifflca | 215 | .ass | $288{ }^{\circ}$ | . 37 | . 041 | .056 | $264 *$ | $244^{\circ}$ | .077 | . 059 | . $356^{* *}$ | .427* | .359* |
| lirca | -.002 | -072 | . 184 | . 015 | .023 | .002 | $255 *$ | $284{ }^{\circ}$ | .099 | . 186 | 2077 | 277 | 319 |
| Lsffrch | . 172 | :009 | 242* | .074 | . 062 | . 081 | .9870 | 3150 | .228 | . 123 | $562{ }^{* *}$ | .556** | .442- |
| Lafrat | .078 | . 176 | $234 *$ | . 059 | . 060 | . 022 | 209 | 270- | 257 | . 779 | $224{ }^{\circ}$ | .264* | $286 *$ |
| FмM16 | .183 | -.097 | . 176 | . 116 | -.092 | . 045 | .404* | . 996 | -. 037 | $351 *$ | 297 | 349 | .172 |
| ${ }_{\text {FMM }}$ | .097 | -.039 | . 065 | . 004 | -267 | -. 131 | 207 | . $424 \times$ | . 125 | . 162 | $376{ }^{\circ}$ | 277 | .300* |
| hlmi | .320** | . 139 | $384{ }^{-\cdots}$ | -187 | . 157 | . 134 | -3130 | .303- | . $334^{\circ}$ | . $424{ }^{-*}$ | . 744 | 207 | 297** |
| нсм' | -19+ | 260" | .335* | $265^{-}$ | . 305 | . 187 | .035 | .116 | . 161 | -306** | -232* | -123 | -024 |
| fhbmia | .891- | $299^{\circ}$ | . $354 \times$ | 289 | .335* | $254 *$ | .356* | .391- | . 196 | .007* | . 138 | . 160 | .310** |
| flm | 355 | $233^{\circ}$ | $254 *$ | .171 | $241^{\circ}$ | $278{ }^{\circ}$ | . 124 | $233^{\circ}$ | 292 | $290^{\circ}$ | . 069 | -003 | . 170 |
| FCM8 | .356" | .188. | .324* | .186* | .306" | .180* | 227 | . 359 | . 185 | .4410 | - 134 | --080 | . 019 |
| arown | -0\% | , 017 | 200. | $380 \cdot$ | nen | nss | 20. | us** | $\ldots$ | Now. | \%2\% | tos | 20 |



|  | TIIFRCA | TEM2 | T6M1 | тем6 | тем9 | T6PHL | T6FHh | твм10 | TEM11 | TfSPL | TGTPW | Tifleca | Tilfrca |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\substack{\text { Purraon } \\ \text { Correation }}}{ }$ | Poarson Corrolation | Paarson Corrolailan | Pearson Correlation | Puarson Correlation | Paortron Corralation | $\begin{gathered} \text { Paation } \\ \text { Corralation } \end{gathered}$ | Pearson Corralatlon | Penrsan Cortalalion | Pearson Correlation | Pearson Correlatlon | Pasaran Corraialion | Paorson Correlation |
| TIIFLCA | ${ }^{554}{ }^{\text {a }}$ | . 034 | -.130 | -. 044 | -128 | -.060 | -062 | . 137 | .249* | -116 | -122 | 42 | Das |
| TuIFLCA | .791* | . 147 | -. 001 | . 178 | . 089 | 085 | .088 | .307* | 24.1 | -.089 | .078 | 276* | . 190 |
|  | 544 | . 085 | 018 | -.032 | -.060 | . 013 | . 043 | 242* | 224* | -. 151 | -.050 | $219{ }^{\circ}$ | . 152 |
| tirna |  |  | -.002 | .099 | 048 | . 089 | . 074 | .34" | 263** | . 030 | 072 | .273* | .224* |
| tome | . 102 |  | ${ }_{728{ }^{\text {²}}}$ | . $116^{+}$ | .436* | .582" | .572* | .240 | . 181 | . 025 | 400** | .068 | -021 |
| tsmi | -019 | .739 |  | 155 | .320* | .375* | 381•* | .222* | .188* | . 141 | 298* | . 110 | . 127 |
| темв | ${ }^{245{ }^{*}}$ | .35\% | $223 *$ |  | ${ }^{\text {c/ }}$ | . 332 | .371* | .031 | . 062 | . 018 | .365** | . 158 | . 109 |
| темя | - 126 | . 17 | $216^{\circ}$ | .404** |  | on* | 313* | . 032 | . 37 | . 103 | .267 | .081 | -007 |
| TGPril | -.001 | .484** | .360" | $214{ }^{\circ}$ | .234* |  | 432\% | .083 | -.099 | . 045 | . $334 \times$ | . 162 | .124 |
| T6PHP | .045 | .335- | 252* | $266^{\circ}$ | . 31 | .710 |  | 137 | -. 040 | -028 | ${ }^{321 \times}$ | . 106 | . 073 |
| темто | .474-- | .079 | -.022 | -0.057 | -096 | -.023 | -032 |  | 30.- | -.234 | .293 | .188 | .210* |
| твmit | $218{ }^{\circ}$ | .006 | -012 | -.050 | .190* | -.032 | -023 | .360" |  |  | . | - |  |
| TGSPL | -. 120 | -174 | -.as3 | -174 | -.067 | -113 | - 181 | -262 | . 044 |  |  | .037 | .006 |
| Tstraw | . 032 | . 166 | . 15 | 297 | $266^{\circ}$ | 286" | . 097 | .070 | 257 | . 163 |  |  |  |
| thifla | . 122 | 110. | . 051 | -.729 | -040 | -.033 | -.083 | .124 | $278{ }^{\circ}$ | . 023 | -.087 |  | - |
| Tefrfica | 259* | . 105 | . 091 | -.003 | -. 062 | -.033 | .113 | -026 | .128 | -090 | -.035 | .575* | 1 |
| том2 | .156 | .595* | .629* | 265" | $212^{\circ}$ | $28^{* *}$ | . 136 | .066 | . 137 | -.063 | -.060 | . 122 | . 013 |
| tomi | .080 | .595* | .598- | .191- | . 167 | $402{ }^{\prime \prime}$ | $267^{\prime \prime}$ | .069 | .065 | . 094 | . 145 | . 045 | . 092 |
| томм | $226^{\circ}$ | .365* | . 185 | .627* | .353" | 245 | $25{ }^{\circ}$ | . 101 | -075 | . 087 | .312" | .024 | . 036 |
| томя | .000 | . 71 | $236{ }^{\circ}$ | .408* | . 73. | $227 *$ | . 145 | -.051 | . 180 | . 094 | $228{ }^{\circ}$ | . 119 | -.003 |
| Tropht | .000 | 470- | .474- | 2800 | $273 *$ | . 548 - | . $594 *$ | .007 | 888 | . 032 | .095 | .007 | . 134 |
| торнн | . 030 | .451* | .442** | .309\% | . 17 | .512** | 545" | -.004 | $200-$ | .029 | .078 | .039 | .177 |
| томто | .365" | $237^{\circ}$ | .154 | . 040 | . 017 | . 154 | .163 | .634* | .500** | - 196 | . 125 | .058 | -.001 |
| томит | .333* | $246{ }^{\text {. }}$ | .139 | .097 | $262^{\circ}$ | . 150 | . 101 | .415** | .744** | -131 | $274{ }^{\circ}$ | .3387 | $220{ }^{\circ}$ |
| TIOSPL | . 007 | 210 | . 147 | -045 | . 137 | .406** | .114 | . 108 | .337 | .530* | .537* | .139 | .045 |
| TIotpw | -.027 | 147 | . 116 | .397* | .118 | 208 | .13a | .a38 | .088 | .342* | .514** | -.174 | -.092 |
| tiorrca | . 4670 | . 016 | -.049 | . 100 | -149 | -164 | -.002 | .305* | 237 | -.056 | . 065 | -304** | .384** |
| T10/fRCA | .54** | . 044 | -010 | $205^{\circ}$ | -.066 | . 0775 | . 142 | .386* | $210^{\circ}$ | -143 | -108 | . 104 | .224* |
| Limm | -117 | .6470 | .609* | $243^{\circ}$ | . 136 | .303** | . 189 | -.050 | . 006 | -224 | . 091 | .019 | .093 |
| L1м | -.706 | . 501 m | .591- | .339* | $316{ }^{\circ}$ | $298{ }^{\circ}$ | $204 *$ | $\bigcirc 069$ | -.007 | .049 | . 125 | . 104 | . 170 |
| Limg | -.007 | .399\% | .335** | .544- | .450" | 168 | . 149 | -077 | -072 | -.060 | $2 \pi$ | . 121 | -183 |
| Limg | -. 156 | 2870 | $220^{\circ}$ | .418* | 539* | $248^{\circ}$ | . 184 | -.052 | .049 | . 059 | 272 | .179 | -015 |
| $\mathrm{LIPHL}^{\text {P }}$ | -.033 | .189 | .386" | $245^{*}$ | $248{ }^{-9}$ | .370* | .384** | -.044 | . 154 | . 042 | . 130 | . 003 | 202 |
| L,P4月 | -.072 | 363- | 260" | 273* | 313 | .332" | $238^{\circ}$ | -175 | -a33 | .174 | . 058 | -083 | .094 |
| เıмио | .354* | $215{ }^{\circ}$ | . 140 | .033 | . 284 | . 134 | . 124 | .53** | .449 | .007 | .115 | 037 | . 017 |
| He: | soc. | 156 | ars | 325. | 12 | 150 | $\cdots$ | *u* | 125. | -217 | 23. | -ata | 117 |


|  |  | TSM2 | Tent | T6M6 | тem9 | TGPML | T6PHR | твM10 | TSM17 | TGSPL | T6TPW | TGFLCA | TGFFACA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Pamson | Paurson | Pearson | Paarson | Parrson | Pearson |
|  | Partion Correlatlon | Pemreon Corrolabon | Parsoh Cortalatimh | (earration | $\underset{\substack{\text { Parrson } \\ \text { corretition }}}{ }$ | Correation | corroation |  |  | $\frac{\text { Corroazlion }}{} \mathbf{3 7 9}$ | $\frac{.399}{}$ | ${ }_{\text {corran }} .122$ | 075 |
| LISPL | . 003 | 3044 | 214 | ${ }^{364} 4^{\circ}$ | . $388^{-0}$ | 220 | 297 | ${ }^{-196}$ | 221 .192 | .384 | -017 | . 133 | -133 |
| Litpw | 211 | -181 | -. 031 | .023 | -.049 | .143 | 230 | 292** | 204* | .028 | . 009 | 206 | .127 |
| LIIFLCR | 430* | -139 | -.098 | $200 \%$ | -117 | -.114 | -050 | 20.1 | 354* | . 010 | . 081 | . 126 | 209 |
| LIIFLCA | .45\% | . 047 | . 042 | . 048 | -. 123 | .036 | -.025 |  | . 141 | . 174 | . 059 | $224^{\circ}$ | .150 |
| LIIFACA | .41" | . 033 | .020 | . 072 | 26 | .047 | -019 | . $31{ }^{\circ}{ }^{\circ}$ | .360"* | -. 041 | . 136 | . 126 | . 198 |
| LIJFACA | ${ }^{\text {A34- }}$ | 113 | . 166 | . 106 | -0, |  | .108 | -078 | -. 051 | -111 | .150 | -.026 | . 059 |
| L5m2 | .092 | .487- | .379* | .334** | .189* | 250. | . 075 | .144 | .039 | . 095 | .150 | -.02a | . 017 |
| LSMT | .078 | . $433 \times$ | .507 | $252^{*}$ | 232* | . 250 | . 1 \%a | -.058 | . 072 | . 150 | .028 | . 175 | 223* |
| ${ }^{15 m}$ | .a13 | $288^{\circ}$ | .264* | .322* | S51.0. | . $198{ }^{\circ}$ | .190 | . 058 | . 131 | -265 | $276^{\circ}$ | .044 | .096 |
| Lsms | . 047 | 215 | 274** | .397* | .45\% | -380******) | 290* | . 104 | $215^{\circ}$ | -.149 | . 125 | . 034 | $228{ }^{\circ}$ |
| LSPHL | . 007 | 2970 | .253* | 226* | $279 \times$ | .389********) | 236. | . 035 | . 077 | . 134 | 206 | . 07 | .098 |
| LSPHR | .aso | .356" | .344- | . 168 | 207 | -210 | . 163 | .401* | . 104 | -. 139 | . 029 | . 032 | . 019 |
| เรм10 | .065 | . 055 | .098 | .010 | -028 | 210 | .064 | . 317 | .430** | -259 | . 105 | . 17 | . 160 |
| Lsmı | .313" | -101 | . 016 | $232^{*}$ | 268 | 248 | . 152 | . 081 | -0,43 | -154 | .490 | .07 | -07 |
| 155PL | -. 156 | .45\% | .309* | 206 | .122 | 1 | -170 | .118 | .085 | . 089 | . 091 | .078 | . 132 |
| LTTPW | . 170 | . 076 | -.027 | -128 | .005 | -146 | \% | $269^{\circ+}$ | $284{ }^{4}$ | . 008 | .106 | . 172 | $288{ }^{-8}$ |
| LSIFLCA | 409" | 126 | -.006 | . 155 | .093 | -015 | . 584 | 271 | . 010 | -.005 | . 070 | . 015 | . 168 |
| Lsflca | .199 | .078 | -.004 | . 013 | .023 | . 054 | , | 309- | $23{ }^{\circ}$ | -143 | .055 | . 182 | $272^{*}$ |
| $\underline{L s i f n c h ~}$ | A99\% | .123 | .047 | .133 | -038 | .062 | 214 | . 310 | . 023 | . 019 | . 034 | -016 | . 132 |
| LIIfrca | $278^{\circ}$ | . 167 | 150 | . 038 | .003 | .07 | . 080 | . 198 | 228 | -291 | . 097 | . 178 | . 062 |
| FмM16 | . 169 | -.037 | -238 | . 305 | . 08 | .050 | . 065 | . $316^{\circ}$ | 27 | -.415 | . 129 | . 077 | -.085 |
| гим7 | .178 | .08s | - 124 | 251 | -074 | . 281. | . 196 | . 095 | . 988 | .027 | $245^{\circ}$ | . 009 | . 054 |
| нlmı | . 175 | .327" | .778 | .530* | .326* | $28{ }^{\prime \prime}$ | ,198 | . 08 | -.003 | 270 | $259 *$ | -.062 | -.099 |
| нсмт | .078 | .332" | . $317 \times$ | .392-* | .476- | $3{ }^{3}$ | 2 | . 075 | .243* | - 164 | .332" | .099 | . 171 |
| ғивмтя | . 162 | .430* | .399* | .564" | .500** | .314* | $3_{18}$ | . | 12 | -. 094 | 151 | . 018 | . 105 |
| flm | -.007 | A57 | .314 | 394* | .351* | .356** | $228^{\circ}$ | 54 | . 121 | . 03 | $233^{\circ}$ | . 024 | -.003 |
| f.Ms | -.008 | .382* | $203 \cdot$ | . $159 \times$ | .399*********) | .378" | 300* | . 075 |  | 157 | N02\% | \% |  |
| emaio | ar | 13 | . 01 | - | -304. |  |  |  |  |  |  |  |  |


|  | T10M2 | T10M1 | T10м9 | т1ом9 | T10PHL | T10PHR | т10M10 | TioM11 | T10SPL | T10TPW | T101FLCA | T101FPCA | L1M2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pearson | Pasarson Correlatlon | Paafaon Corralation | Poarson Corrvilallon | $\begin{gathered} \text { Pasrson } \\ \text { Corralation } \end{gathered}$ | $\begin{gathered} \text { Parsion } \\ \text { Corralation } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Paneron } \\ \text { Carsilation } \end{gathered}$ | $\begin{aligned} & \text { Piarbon } \\ & \text { Correletion } \end{aligned}$ | $\begin{aligned} & \text { Peapten } \\ & \text { Corrulathon } \end{aligned}$ | $\begin{gathered} \text { Paoraon } \\ \text { Carratition } \end{gathered}$ | $\begin{gathered} \text { Poarson } \\ \text { Corralalion } \end{gathered}$ | $\begin{gathered} \text { Pantron } \\ \text { Corralation } \end{gathered}$ | $\begin{gathered} \text { Parrson } \\ \text { Correlation } \end{gathered}$ |
| c3m2 | ${ }_{478 \times}$ | .97* | A41* | .450** | .346" | . 14. | . $267{ }^{-1}$ | . 164 | .483** | .281* | . 147 | . 034 | .511** |
| сзм | .375** | $283{ }^{\text {2- }}$ | .373 | .399- | .335** | .382* | -180 | . 039 | 263 | . 196 | . 145 | . 062 | .362" |
| сзм | .223* | . 117 | .460* | .400* | .227 | .315** | . 064 | -. 002 | .366* | .236 | - 1116 | -.050 | . 103 |
| сзмя | -015 | -.018 | . 141 | .282* | . 050 | . 17 | . 155 | . 072 | .008 | . 024 | .076 | .056 | .238* |
| ${ }^{\text {C3PML }}$ | . 120 | . 085 | .218* | .278* | 203* | .233* | .048 | -117 | .336. | . 137 | -.036 | -090 | .306** |
| сзРнн | . 108 | . 038 | A32** | .279* | .259** | .283* | . 238 | - 112 | .323* | . 149 | . 039 | . 037 | .312** |
| сзм10 | . 048 | -.065 | -.018 | -. 039 | .036 | .077 | A81* | .335** | - 107 | .286* | .400* | .302* | -063 |
| сзм 11 | .352** | .231* | . 144 | .33** | 1161 | . 187 | .599* | .518" | 1273 | 371* | .339* | 256 | ${ }^{285}$ - |
| C3TPW | . 135 | .099 | . $289^{*}$ | . 271 - | . 081 | . 128 | .236 | . 229 | . 346 | . $543 \times$ | .312- | .357* | . $371 \times$ |
| capler | -.071 | -.008 | . 107 | - 124 | -.060 | -.080 | .219 | . 176 | . 134 | .255* | .320. | 379* | -.081 |
| c3ifca | .059 | -013 | . 179 | . 077 | . 084 | . 168 | . 144 | .207* | 250 | .308* | .367\% | A17* | . 033 |
| calfaca | -.033 | . 001 | -.030 | .068 | . 028 | -.025 | . 185 | . 142 | -.020 | . 188 | .336* | ${ }^{269}$ | . 035 |
| calfaca | . 001 | -103 | .068 | . 044 | . 027 | . 132 | . 146 | . 184 | .008 | 232 | 344* | .362\% | . 021 |
| с7м2 | .486" | .334* | 34" | .281* | ${ }^{328{ }^{* *}}$ | .359* | . 160 | .190- | . $374{ }^{\circ}$ | . 107 | . $301 \times$ | .158 | A70* |
| c7M1 | . $431 \times$ | 261- | .278** | 283** | .273* | 285. | . 154 | . 114 | . 165 | -025 | .180 | . 032 | ${ }^{388}{ }^{\text {P }}$ |
| стм | . 17 | .194. | .53** | . $418^{\circ+}$ | .183 | . 187 | . 123 | . 775 | .527* | .352* | $\bigcirc 036$ | -007 | . 072 |
| с7M9 | .191 | . 110 | .297* | .382** | .268" | . 34.4 | . 141 | . 111 | . 265 | -.033 | -078 | -031 | . 147 |
| ctphil | .200 | .207* | 182 | .098 | .273* | . 183 | .005 | . 40 | 123* | -.013 | .160 | . 087 | . 186 |
| c7PhR | . 157 | . 114 | .198* | . 112 | . 185 | . 154 | . 015 | . 014 | .296 | . 092 | . 174 | . 139 | . 152 |
| C7M10 | 2096 | . 035 | . 070 | . 066 | . 030 | . 164 | .560* | .389* | -. 134 | . 125 | .442** | .349** | 093 |
| C7M11 | . 159 | . 001 | .086 | .210* | . 128 | -028 | .423* | ${ }^{442^{-}}$ | -.056 | .169 | .325** | .207* | . 027 |
| cispl | . 207 | 210 | 213 | .341* | 214 | .313* | . 192 | . 109 | $355 *$ | . 251 | . 154 | . 073 | .266" |
| C7IFLCH | -.031 | . 120 | -003 | -171 | -. 100 | -059 | . 098 | . 152 | . 016 | -019 | . 077 | . 090 | -.086 |
| cTAFLCA | . 153 | .068 | . 118 | .030 | -.052 | .057 | .205* | ${ }^{325}$ | -006 | . 126 | A14* | 101* | . 100 |
| C7IFFGch | . 099 | . 146 | -.024 | $-209{ }^{\text {a }}$ | -. 035 | -.050 | .271" | . 102 | -. 021 | . 004 | . 178 | . 173 | -.009 |
| citrrca | . 111 | . 015 | .149 | .020 | -023 | . 016 | 3170 | ${ }^{316 *}$ | . 156 | . 092 | .509* | A32" | . 116 |
| т1M2 | . $510 \cdot$ | ${ }^{376}{ }^{\text {² }}$ | . $104 \cdot$ | $293{ }^{\text {2 }}$ | .342* | .351" | . 058 | -.028 | . 264 | -. 034 | . 025 | -. 134 | ${ }^{66} 8^{\circ}$ |
| т1M1 | . 21* $^{1}$ | .3870 | .328* | . 317 | .315" | .307- | -127 | . 044 | .312 | . 113 | . 140 | -.022 | .$^{19}{ }^{19}$ |
| т1мя | .128 | .070 | .590* | .461- | .198* | . 159 | . 031 | .067 | $380^{\circ}$ | .32* | -015 | -026 | 067 |
| тim9 | . 170 | .080 | .374- | .392* | . 138 | $204{ }^{\circ}$ | -. 091 | . 025 | . 033 | . 092 | -093 | -139 | .118 |
| TIPHL | .173 | . 063 | .24* | . $38 \times$ | .380- | .475* | -.033 | $-217^{\circ}$ | . 159 | -189 | . 021 | -.086 | $222^{*}$ |
| tiphr | .199* | . 064 | .213 | .284" | .407\% | .405** | . 008 | -157 | 263 | -141 | - 110 | --145 | . 102 |
| т1M10 | .237 | .057 | .274* | . 130 | . 155 | $240^{\circ}$ | .55\% | .400* | . 017 | . $319 \times$ | .448* | $285 *$ | .080 |
| тוM11 | .20r | .028 | 0.47 | $203^{\circ}$ | .097 | . 044 | . $112^{*}$ | -492-' | 010 | $283{ }^{*}$ | $351 *$ | 234. | . 051 |
| Tispl | .260* | 263' | 392" | .459** | .409** | .335* | . 186 | . 149 | . 284 | . 022 | . 014 | -.078 | .250* |
| turaw | -4*. | 171 | ssi. | sta. | 20.0 | Nan. | 210. | 14 | 315 | 290 | $214{ }^{\circ}$ | am | Nes. |



|  | T10м2 | томм | том | томм | T1OPHL | TIOP凩 | T10M10 | т10м11 | TrosPL | TIOTPW | TIOFLCA | T101FRCA | Limz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pammon carrelation | Paarson Correlation | Paseoon Correfallon | $\begin{gathered} \text { Parson } \\ \text { Comatition } \end{gathered}$ | $\begin{gathered} \text { Parramen } \\ \text { Corratition } \end{gathered}$ | $\begin{aligned} & \text { Paarson } \\ & \text { Corralatlon } \end{aligned}$ | $\begin{aligned} & \text { Parsan } \\ & \text { Corratallon } \end{aligned}$ | $\begin{gathered} \text { Parson } \\ \text { Corralation } \end{gathered}$ | $\begin{gathered} \text { Penrson } \\ \text { Corredition } \end{gathered}$ | $\begin{gathered} \text { perreon } \\ \text { corretalion } \end{gathered}$ | $\begin{aligned} & \text { Povrson } \\ & \text { Correlallon } \end{aligned}$ | $\begin{gathered} \text { Pastron } \\ \text { Corroillian } \end{gathered}$ | $\begin{gathered} \text { Parrspn } \\ \text { Corratition } \end{gathered}$ |
| LTSPL | ${ }^{330}{ }^{\circ}$ | . 175 | . $366{ }^{\text {\% }}$ | .397* | .353. | .264 | . 042 | .143 | . $528{ }^{\text {-4, }}$ | . 148 | .093 | . 055 | ${ }^{292}$ |
| Lttpw | -.080 | .042 | .422" | . 007 | -.064 | 274 | . $362^{\circ}$ | 265 | . 307 | 25 | 304. | .435- | . 127 |
| liflen | . 127 | -008 | . 15 | . 33 | . 008 | . 966 | $287 \%$ | .309** | .012 | -037 | . 340.0 | . $150 \times$ | . 012 |
| luflca | $214{ }^{\text {a }}$ | . 057 | .129 | . 38 | .112 | .188* | .966* | .400" | .025 | .078 | .509.* | . 506 " | . 059 |
| LIffach | . 185 | . 069 | . 022 | . 88 | 278 | .333- | $212^{*}$ | $234 *$ | .159 | -171 | $242^{\circ}$ | .335* | . 071 |
| Lufraca | $270 \cdot$ | . 162 | . 152 | .150 | $219{ }^{\circ}$ | .309* | .475 ${ }^{\text {²}}$ | .423* | . 156 | . 016 | .367* | .991** | . 176 |
| Lsmz | . $118{ }^{\circ}$ | $280^{\circ}$ | . $304 \times$ | . 175 | 266** | $224{ }^{\circ}$ | -.069 | . 012 | . 105 | .119 | -089 | -.086 | 564** |
| Lsm | .463* | .521" | .362- | 267 - | $229^{\circ}$ | .178 | .174 | . 121 | 243 | . 99 | -07 | . 049 | .523* |
| Lsw | $240{ }^{\circ}$ | $284{ }^{\text {- }}$ | .33\% | .365* | $262{ }^{*}$ | . $325^{-}$ | .037 | . 155 | .092 | .115 | . 018 | -100 | .333" |
| L5u9 | .192* | . 30 | $261-$ | -66** | $232 \cdot$ | . 170 | .083 | $24{ }^{-1}$ | . 011 | . 086 | .0ry | . 050 | .3370 |
| LSPHL | $256{ }^{\text {2 }}$ | .195* | . 207 | .259* | .303- | 299 | . 134 | .066 | .173 | . 040 | -.036 | -753 \% | .352* |
| LPHR | $200^{\circ}$ | $26{ }^{\circ}$ | .310" | $264{ }^{4}$ | 370 | . $360^{\circ+}$ | . 070 | . 154 | 223 | .175 | -2064 | -247 | 270 |
| lsmio | . 446 | . 054 | . 109 | . 038 | . 149 | .042 | . $31 \times$ | . 185 | 227 | . 068 | .017 | . 189 | .015 |
| LSM11 | . $132^{\circ}$ | . 038 | 293* | .375* | . 159 | . 167 | .3570 | .A95* | . 199 | -.069 | 278* | .461* | . 106 |
| Lsspl | . 035 | 327 | 220 | .083 | . 144 | .028 | . 389 | .061 | 263 | . 2080 | . 134 | -0,44 | .230 |
| LTPW | . 183 | . 125 | -173 | . 174 | -. 156 | -780 | . 182 | 202 | . 309 | -.039 | . 124 | . 136 | .100 |
| LIIfCR | .036 | . 020 | . $198 \cdot$ | .052 | . 073 | .079 | .300* | .301* | .068 | . 164 | 2310 | .397\% | . 150 |
| circa | . 110 | -.014 | . 126 | . 136 | . 189 | .059 | 247 | . 163 | . 128 | .023 | .229* | $212^{*}$ | .029 |
| LSiffer | .050 | -as | . 137 | -.002 | . 062 | -.006 | 384* | 235 | -026 | . 098 | .321* | .459** | . 080 |
| Lsfrca | .147 | .028 | . 114 | .067 | . 173 | . 094 | $280{ }^{\circ}$ | . 155 | . 113 | .119 | 268** | .352** | .194* |
| fим16 | .066 | -016 | .195 | -.059 | -.010 | . 010 | 230 | 278 | -172 | . 346 | 259 | 297 | . 197 |
| fmı ${ }^{\text {a }}$ | -006 | . 0.07 | .162 | . 146 | . 936 | . 20.5 | .5080 | .425* | -014 | .496* | 201 | . 303 | . 058 |
| HLM1 | .393.0 | .190 | .495- | s99\% | $232{ }^{*}$ | $225 *$ | 207 | -404" | 260 | $305 *$ | $211^{\circ}$ | $244^{*}$ | .370" |
| HCMT | .374* | 261* | .384* | .479- | 294** | .262** | -001 | . 113 | $294{ }^{\circ}$ | . 208 | -.077 | -044 | $280^{* *}$ |
| Fнвmı | .8850 | .315* | .541- | .473* | . 3088 | .322- | $28^{\prime \prime}$ | $351{ }^{\prime \prime}$ | .312* | $310{ }^{+}$ | .208* | $287^{\circ}$ | .392" |
| flM1 | . $356 \times$ | .334* | . $364{ }^{\prime \prime}$ | .31+ | $294 *$ | .311* | . 181 | 2550 | $353{ }^{\circ}$ | 219 | . 124 | . 145 | .414- |
| FCMs | 296- | 275** | . $468{ }^{-}$ | .403* | .331* | 304* | 227 | 2540 | .449** | .255* | . 091 | . 149 | $226^{*}$ |
| amoz | 07 | 150 | she. | H26. | 197 | 200 | 199 | 295. | 238 | *59. | 180 | 250 | 120 |


|  | LiM1 | LiM6 | Lім9 | LiPHL | L1PHR | L1M10 | L1M13 | L1SPL | LiTPW | L1IFLCR | LIFLCA | LIIFRCR | LIIFRCA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Payation Correlation | Paerson Corralation | Pamrean Corralalkn | Paerson Correlation | Perrson Corrulation | Pourcon Corralalion | $\begin{gathered} \text { Paiarson } \\ \text { Corralatlon } \end{gathered}$ | $\begin{gathered} \text { Pearson } \\ \text { Correlation } \end{gathered}$ | $\begin{aligned} & \text { Pererton } \\ & \text { Correlation } \end{aligned}$ | $\begin{gathered} \text { Pesrson } \\ \text { Carrelstion } \end{gathered}$ | $\begin{aligned} & \text { Pabren } \\ & \text { Corralallon } \end{aligned}$ | $\begin{aligned} & \text { Paurson } \\ & \text { Corralation } \end{aligned}$ | $\begin{gathered} \text { Paarson } \\ \text { Corsolalion } \end{gathered}$ |
| с3м2 | .396* | ${ }^{176}{ }^{*}$ | .293* | 185" | .471** | 2004 | .216 ${ }^{\circ}$ | . 198 | . 225 | . 087 | . 125 | ${ }^{280}{ }^{\circ}$ | ${ }^{234}$ |
| сз31 | 34** | A45" | .245* | .422* | .355* | . 102 | 212* | $298{ }^{-}$ | . 162 | 017 | . 162 | 1897 | .242* |
| сзм6 | . 042 | .435*: | . $515 \times$ | .tas | .222* | . 020 | . 086 | 278 | 47.1 | - 192 | -. 140 | -.099 | 068 |
| сзм | . 136 | . 138 | .213 | .228* | .35\%* | . 033 | -.027 | 234 | -217 | - 128 | . 004 | -.005 | . 000 |
| c3PHL | . 113 | .479* | .285* | .379* | .47** | .003 | -. 002 | $315^{\circ}$ | 247 | -183 | . 006 | 093 | . 106 |
| сзРН¢ | . 120 | A88* | $222^{\circ}$ | .320- | .431* | . 029 | . 015 | .227 | . 156 | - 17 | 014 | . 050 | . 105 |
| сзм 10 | . 049 | . 066 | - 118 | . 056 | -007 | A29** | 413* | . 116 | . 031 | A27** | .358** | $270^{\circ}$ | .295** |
| сзм11 | .215* | . 165 | 312* | .143 | .231* | .54" | .380* | . 001 | . 065 | .393* | .313** | $311 \times$ | .253* |
| с3TPW | .250* | .287* | ${ }^{228}$ | .312* | . $124^{* *}$ | .415* | .067 | .288 | .128 | . 204 | $374 \times$ | 226 | .363** |
| caiflef | . 04 | . 050 | -.078 | -.07 | . 012 | .377" | . 124 | . 039 | -008 | 288** | .268** | .160 | .295" |
| caiclea | $220{ }^{\circ}$ | .087 | . 185 | . 026 | .006 | .233י | . 148 | -.05s | . 252 | .225 | ${ }^{230}$ | 124 | .209* |
| c3Iffich | .138 | -2070 | -.0es | -012 | . 020 | $316{ }^{*}$ | . 094 | -.081 | -. 153 | .232* | .300** | -124 | .329*- |
| с3FFCA | .076 | . 050 | . 085 | . 053 | -.027 | 24. | . 148 | -.058 | .000 | .265** | $220^{\circ}$ | .094 | 184 |
| C7M2 | 370** | .297* | .323* | .314* | .272* | . 201 | $244 *$ | .218 | -.044 | . 042 | .217* | . 159 | .124 |
| c7M1 | .309** | .247* | .259* | $228{ }^{\circ}$ | .350" | -082 | . 114 | 300 | -.013 | 024 | . $196{ }^{\circ}$ | . 048 | .147 |
| стм | .021 | .455* | .381" | .312- | .284* | . 052 | .318* | 269 | . 252 | . 055 | .009 | .194 | . 181 |
| стм9 | . 115 | .383" | .473* | $248 \cdots$ | ${ }^{229}{ }^{*}$ | .085 | . 075 | -078 | . 107 | - 108 | ${ }^{036}$ | .097 | . 071 |
| C7PHL | . 115 | .251* | 228 ${ }^{\circ}$ | .184 | . 171 | . 007 | . 120 | . 288 | . 124 | -234* | -.092 | 062 | -111 |
| С7PHR | .202* | .323* | .266" | . $232^{\circ}$ | .265* | . 009 | . 159 | .471" | . 111 | - 121 | . 137 | . 173 | 092 |
| стм10 | . 124 | -102 | . 011 | -.004 | - 125 | .5880 | .318* | . 128 | .063 | .354* | .389* | $251{ }^{\circ}$ | 380" |
| C7M11 | -115 | 026 | . 129 | . 15 | . 079 | .379** | .287" | -. 173 | .068 | .201 | .193* | .123 | . 189 |
| c7spl | .254 | .409- | .348- | . 148 | . 135 | -007 | -084 | .569** | 189** | . 021 | . 062 | . 124 | 193 |
| ctiflcr | -.063 | . 013 | -142 | -107 | . 081 | .110 | 129 | - 122 | -.94 | 212* | . 102 | -.026 | . 142 |
| CIIFLCA | . 065 | -.030 | . 072 | . 067 | 037 | .368* | . 172 | 081 | .048 | . $398 \times$ | .427* | .263" | ${ }^{381 *}$ |
| ciffach | -.058 | . 077 | -. 151 | - 117 | -.004 | .261* | . 153 | -351* | -019 | $216{ }^{*}$ | . 039 | . 032 | . 091 |
| ctifrca | .141 | -.062 | .085 | . 041 | . 084 | . $366^{*}$ | . 130 | . 116 | . 140 | .342" | .420* | .241. | A22** |
| T1M2 | .358* | .370* | .277- | 215 | $245{ }^{\text {P }}$ | . 152 | . 161 | . 230 | . 186 | -314 | . 069 | .069 | . 155 |
| T1M1 | . $511 \times$ | .214 | .233* | $211{ }^{\circ}$ | .266** | . $217^{+}$ | . 158 | .278 | ${ }^{303}{ }^{*}$ | . 103 | .198* | . 180 | . 163 |
| т1м | . 086 | .475* | .478." | $283{ }^{*}$ | .280** | . 017 | $280^{\circ}$ | . 281 | . 181 | 020 | .118 | . 13 | $210{ }^{*}$ |
| тim9 | . 074 | .281* | .285** | 2990 | .245** | . 018 | . 079 | -084 | . 142 | .028 | 137 | . 103 | .178 |
| T1PHL | 253* | 217 | .295* | $270 \times$ | .299** | - 128 | -.092 | . 338. | . 154 | -188 | 039 | .048 | . 010 |
| т1Phค | . 170 | . 152 | .224* | .188* | 2246- | .035 | . 002 | 267 | . 113 | -145 | .048 | .043 | 071 |
| тмм10 | . 034 | .138 | .168 | . 060 | . 05 | .521" | $340 \cdot$ | . 071 | .156 | .27** | A52** | .329** | .428" |
| тім11 | -.010 | . 057 | . 149 | $200{ }^{\circ}$ | . 100 | 431* | .338* | -034 | -159 | .232* | .251" | $213{ }^{\circ}$ | .237 |
| TISPL | . 148 | .372* | . 224 | .254* | . 121 | . 081 | . 113 | 281 | . $450^{\circ}$ | . 046 | . 017 | . 157 | . 072 |
| trpaw |  | $27{ }^{\circ}$ | 137 | 291. | 1254. | 15\%. | 14 | w2 | 154 | 199 | , $47 \times$ | 399. | 30. |


|  | LıM | Lim6 | Lim9 | LIPML | LIPHR | L1M10 | LIM19 | L15PL | L1TPW | LIIFLCA | LIIFLCA | LIFFRCR | LIIFPCA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\substack{\text { Paurson } \\ \text { Camalition }}}{ }$ | Pearsan | Patareon <br> Corralation | Pasrion Corralakion | Paarson Corralation | Pearson Carralation | Pearson Corrulation | $\begin{gathered} \text { Pearson } \\ \text { Corralation } \end{gathered}$ | $\begin{gathered} \text { Paurion } \\ \text { Corralation } \end{gathered}$ | $\begin{aligned} & \text { Pearson } \\ & \text { Corralation } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Pearsoln } \\ \text { Corrolation } \end{gathered}$ | $\begin{aligned} & \text { Pearson } \\ & \text { Correlation } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Panarson } \\ & \text { Corralatlon } \end{aligned}$ |
| LISPL | . $3622^{-}$ | . 196 | . $490{ }^{\text {a }}$ | 34** | . 5 ge- | . 131 | . 127 | 1 | - $4.47{ }^{\circ}$ | -159 | . 013 | -.053 | . 126 |
| LITPW | .153 | 247 | -.ass | -.048 | . 34 | . 181 | 222 | ${ }^{224}$ |  | 1 | -.056 | 86 | 222 |
| LIfLCh | . 017 | . 234 | -.011 | -.354 | -.167 | .380- | . 379 | . 052 | . 187 |  |  | .808" | .571.0. |
| Liflea | . 131 | .008 | - 107 | -.013 | -070 | . $592^{\prime \prime}$ | .374" | .168 | $277^{\circ}$ | . $566^{* *}$ | 1 |  | 46. |
| Lifficr | .086 | . 38 | -018 | -.a35 | -.027 | .350* | $258 \cdot$ | . 168 | . 110 | . $760^{+}$ | .522" | 1 | 5 |
| Liffaca | .184* | .145 | -.058 | -.007 | -072 | .647" | .474" | . 147 | 208 | 597" | .809** | .587" | 1 |
|  | $504{ }^{-4}$ | .388- | 227 | .354* | .354* | . 079 | . 022 | 217 | -.003 | -.039 | . 076 | .074 | .190* |
| Lsmi | 580* | .392* | . $396{ }^{\circ}$ | .303* | $210{ }^{\circ}$ | .308* | .733 | . $199^{\circ}$ | .cse | -009 | . 064 | -.026 | 155 |
| Lऽм $^{\text {c }}$ | $250 \times$ | . $288^{-}$ | 2480 | 250 | $248{ }^{-1}$ | -.070 | . 008 | .083 | .an1 | -020 | -.030 | -.014 | .054 |
| L5M9 | .3470 | . 45 a - | .507* | .347 | 3030 | . 883 | 275* | . 118 | -17 | . 175 | .064 | .oss | $213^{\circ}$ |
| $L_{\text {LPHL }}$ | $318{ }^{-*}$ | .383******) | 235 | .332* | .48** | .112 | . 081 | .353* | . 066 | -118 | .a35 | -. 297 | .178 |
| LSPHR | $246-$ | 34,0 | $289{ }^{+}$ | . $3433^{*}$ | .34- | . 15 | . 052 | .380* | 236 | -.058 | .013 | -.052 | .068 |
| Lsmı0 | .033 | -.083 | . 075 | . 106 | -.023 | .391* | .366* | 227 | . 264 | . 150 | $248^{\circ}$ | -. 015 | .322** |
| LsMrt | .17 | 201 | $252^{+}$ | .188* | . 109 | .427\% | .552* | 298. | $234 *$ | $305^{\circ}$ | $396{ }^{*}$ | $265{ }^{-}$ | .467* |
| L5SPL | .192 | .393* | 300* | .058 | 200 | . 022 | -045 | .463* | 218 | -. 162 | -014 | . 02 | . 004 |
| LsTPW | .oss | .087 | -021 | -070 | -063 | .070 | . 097 | . 038 | . 108 | . 112 | . 230 | .113 | 226 |
| biflea | .053 | .058 | .070 | . 109 | . 079 | .380-4 | .300\% | .396" | . 066 | .407" | .474* | A170 | .500** |
| lisirca | .06s | -079 | .0s5 | -.033 | .007 | .327* | .354" | 267 | -.001 | ${ }^{278 \times}$ | .351" | $218{ }^{\circ}$ | .374* |
| LSIFFACR | .073 | . 012 | . 041 | -128 | -054 | 421* | $280^{\circ}$ | .316* | -.099 | .430* | .534** | .322" | .4710 |
| Lsifaca | . 187 | -017 | .191* | . 059 | .056 | .345* | .397\% | 228 | . 172 | .334** | .324* | .300\% | .352* |
| Fим15 | -904 | .156 | . 0 se | . 057 | .028 | 245 | 231 | -.088 | .184 | 254 | .303 | . 065 | . 150 |
| ғмм\% | -111 | . 057 | -.005 | -.133 | -274 | .459* | .330* | . 088 | . 186 | .362* | .506** | . 179 | . 37 |
| нlmi | .363* | .334* | .478 | 257 | $250{ }^{\prime \prime}$ | $298 *$ | .308" | 200 | 257 | $225^{\circ}$ | .138 | .044 | .179 |
| нсмт | .404** | .303- | . $400^{\circ}$ | $248{ }^{\circ}$ | .346** | . 124 | .172* | . $456{ }^{+}$ | . 130 | . 042 | -.083 | . 015 | . 017 |
| fhemis | A19** | Asa* | .504** | 298 | 25 | .334- | .382* | .3670 | .304* | .17 | . 172 | -.026 | $230{ }^{\circ}$ |
| FMm | .475" | 276** | ${ }_{356}{ }^{-}$ | $264{ }^{\circ}$ | $223^{\circ}$ | 255** | $239 *$ | . 124 | . 307 | $200^{\circ}$ | . 141 | . 014 | .150. |
| FCMs | 279- | 305 | งт7* | .19** | $233{ }^{\circ}$ | 299** | 257 | . $466^{* \prime}$ | $274 *$ | . 062 | . 026 | -072 | . 083 |
| nowe | aid | nos* | $\ldots$ | nes | 220. | 29 | 2 cr | 364. | 523- | 26.10 | 202 | 195 | 250 |


|  |  | Lus | 時 | LPPrL | LIPHR | L1M10 | L1M11 | L1SPL | Litpw | LIIFLCA | LIIFLCA | LIIFACR | LIIFRCA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LiM1 |  |  |  |  |  |  |  | Paurson | Pagrson | Pautron | Poorson | Parson |
|  | Paprson Correlathon | Patrsan Corralation | Parreon Correlation | Pearmon Corralation | Coarran | $\underset{\substack{\text { Poration } \\ \text { Corolation }}}{ }$ | Corrotation | Corroitilon | Corrsiation |  | $\frac{\text { Corrolation }}{.240^{\circ}}$ | $\frac{.}{\text { Corraiation }}$ | ${ }_{\text {Corraman }}{ }^{269}$ |
| THFLCA | -.089 | -.076 | -228* | - 160 | , 151 | .360* | ${ }^{181}$ | -035 | . 182 | . 2932 | ${ }^{2451}$ | 278* | .385- |
| TIIFLCA | -092 | . 015 | . 007 | . 042 | ${ }^{068}$ | .382** | . 126 | . 015 | . 182 | . 23 | ${ }^{237}{ }^{\circ}$ | . 168 | .313* |
| Tıfefch | -199 | -.045 | -.139 | -.036 | -045 | 270" | . 029 | . 022 | ${ }^{03}$ | . |  | 209** | . $109{ }^{\text {P }}$ |
| turaca | . 018 | .034 | . 066 | -.002 | 000 | .404* | . 125 | -021 | . 202 | 224 | 348 | .127 | . 107 |
| therca |  | . 436. | .423* | .393** | .20* | .188 ${ }^{\circ}$ | .159 | .272 | .218 | -101 | 084 | .127 | . 107 |
| TEM2 | .354* | . 436 | , | .303* | $243^{-}$ | .068 | . 085 | . 007 | . 02 | -. 117 | . 015 | . 082 | -. 024 |
| Tsm1 | . 146 | .308** | .268* | - | . 182 | . 101 | .198* | .393* | . $432^{*}$ | . 038 | .113 | . 088 | -143 |
| темя | .123 | .582" | .522" | .306* | -182 | . 024 | . 091 | 330\% | .462* | -168 | -.095 | 024 | -. 044 |
| твмя | .366" | .517* | . 8 ¢2* | . 19 | 262 | . 138 | . 067 | 214 | . 191 | -.122 | . 004 | .163 | -.005 |
| TBPHL | .144* | .350** | . 12" $^{\text {² }}$ | .410** | .397\% | .093 | . 094 | 243 | .178 | -.138 | -.019 | .086 | -034 |
| TеPHR | . 153 | .328** | .398*' | 174** | .127 | .083 | 365. | . 240 | -. 079 | .159 | .286* | . 162 | . 137 |
| тsm10 | .043 | ${ }^{111}$ | 225* | . 180 | ${ }^{231}{ }^{\circ}$ | 326 | \%2. | .034 | -.079 | .205* | .168 | .080 | . 103 |
| T6M11 | . 052 | . 05 | .278* | -.001 | -041 | .370* | 821 | . 100 | -148 | -. 158 | -.170 | -.017 | . 010 |
| Tespl | . 193 | .023 | . 079 | -097 | -472 | -017 | 195 | 260 | . 008 | . 108 | .323* | .269* | .387** |
| Titpw | . 140 | $362^{\prime \prime}$ | . $410^{-}$ | .397* | $241^{\circ}$ | .188 | \%60. | . 012 | -.064 | . 148 | 138 | . 195 | . 120 |
| thilca | -.079 | $238-$ | . 171 | . 205 | . 169 | .222 | $260^{\circ}$ | . 085 | -028 | 101 | . 064 | . 125 | . 050 |
| tafrca | -097 | . 107 | 201 | $0^{13}$ | .050 | . 132 | 21 | . | 292. | 034 | . 123 | . 095 | . 099 |
| T10M2 | A17"* | 282* | 315* | $241{ }^{\circ}$ | .150 | .305" | $285 *$ | 23 | . 178 | . 120 | .095 | . 114 | . 107 |
| том9 | .306" | 205 | $201{ }^{\circ}$ | $230^{\circ}$ | 245** | . 181 | 271. | 302\% | .356* | -.050 | . 053 | . 135 | 203* |
| томм | . 160 | .720** | .523** | . $115^{*}$ | 288" | .11* | . 14 | .403* | .369* | .069 | .014 | 089 | . 005 |
| тіом9 | . $338 \cdot$ | 447* | 820" | .310* | 147 | . 145 | . 14 | . 175 | .23a | -216* | -019 | -.040 | .016 |
| TIOPHL | .190- | .230 | .338* | .320* | .192* | . |  |  | .318* | -105 | .000 | . 020 | . 011 |
| т10Рнн | 271* | .233* | .360* | .315" | .199* | .129 | . 092 | . | -. 107 | .368* | .353* | .307* | .275* |
| том910 | . 126 | -. 004 | . 152 | . 057 | . 102 | .565* | Sos. |  | . 112 | .386" | .290. | .194* | . 149 |
| T10M11 | . 103 | . 022 | .224* | . 080 | -.018 | .372* | .695* | .26 | . 376 | . 058 | -. 185 | . 106 | -. 026 |
| Trospl | A05** | .382" | .337* | 64 | . 124 | . 148 | .280 | 222 | 191 | .409** | . $312^{-\cdots}$ | .443* | .394" |
| TIOTPW | .088 | .251* | . 073 | . 116 | 219 | $276{ }^{\circ}$ | . 199 | . 22 | . 059 | . $348^{\circ \prime}$ | *92** | .397* | .353* |
| tioflca | -888 | -.,050 | -006 | . 105 | 082 | .310- | .276 | 7 | -011 | .245* | ${ }^{382}{ }^{2}$ | $214{ }^{\circ}$ | .281- |
| tiolfrica | . 067 | -.074 | -.017 | . 038 | . 021 | .317* | . 158 | 027 | - | . 083 | 125 | .188* | . 108 |
| LıM2 | .603* | .113 | . 140 | .352* | A28* | $201{ }^{\circ}$ | . 021 | 25 | . 146 | . 054 | .187* | .19 | . 170 |
| Limı |  |  | 2380 | 230\% | .230* | 265** | . 087 | 518. | .373* | -133 | . 08 | -.009 | . 042 |
| Lims | .402- |  |  |  | .306* | -17 | .176 | 25 | .314* | -193* | . 043 | -.018 | .093 |
| ¢ıм9 | . $163 \times$ | .376** |  |  | 237** |  | .25** | 34 | . 115 | . 074 | . 145 | . 145 | .123 |
| L1PHL | .4700 | 299*- | $248{ }^{-}$ |  |  | . 017 | . 086 | .17 | .17 |  | 088 | . 162 | . 111 |
| LIPHR | .499* | $222^{\circ}$ |  | .790* |  |  | .029 | 240 | .097 |  |  | 3** | .564** |
| LIma | . 129 | -.072 | . 103 | . 19 | -. 027 |  |  | -.010 | . 004 | . 535 | .603 |  |  |
| LTM70 | . 129 |  | . | m | coas |  |  | - | 072 | 37\% | 19 | 220 | , |


|  | L5M2 | LsM1 | LsM6 | L5M9 | LSPHL | LSPHR | L5M10 | L5M11 | L5SPL | LTPW | LSIFLCA | Lisflca | Lsifach |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Poorson | Patrion |  | Poerson | Pearson Corrolation | Paserzon Correlation | Puerson Correlation | Pearzon Corralation | $\begin{aligned} & \text { Paaraon } \\ & \text { Correlation } \end{aligned}$ | Correlation | Pearson Cortelation | Pearaon Cortalation | $\begin{gathered} \text { Parsion } \\ \text { corration } \end{gathered}$ |
| come | ${ }_{393}$ | $\underbrace{3655^{\prime}}$ | S503* | A19* | .262* | 230* | . 014 | . 131 | 370 | ${ }^{405}$ | .032 | -091 | -083 |
| came | 27.1 | 433 | .270* | 3730 | ม\%* | 286** | .034 | .150 | .200 | 297 | . 088 | .073 | . 111 |
| cami | 118 | . 072 | As7\% | .524* | 214 | 258. | .088 | . 107 | . 072 | .023 | -.005 | -035 | -143 |
| camb | 14 | . 188 | $235^{\circ}$ | 430** | .oss | . 011 | .106 | .4*2 | 310 | .156 | . 100 | -019 | . 006 |
| COPP4L | 346 | . 180 | AT\% | .364* | 3100 | 279* | .024 | -.063 | .120 | .080 | .002 | .207* | -010 |
| сзрня | 229** | .198 | .201* | A84* | 2970 | 274* | .067 | .010 | .ass | .176 | .14 | -109 | .079 |
| самя | -164 | . 152 | .005 | -208 | ,048 | -103 | 346 | .300" | 256 | .421* | $24{ }^{\circ}$ | 399* | 236* |
| csmı | . 181 | 274* | .250* | A13* | . 054 | -.002 | 142 | .37\% | .212 | A10" | . 175 | ,116 | . 046 |
| cospw | 320 | 228 | . 202 | .393* | . 027 | .012 | cse* | $207{ }^{\circ}$ | ${ }^{23}$ | . 304 | $267^{\circ}$ | .033 | 246 24. |
| cuafer | S 121 | .000 | . 059 | .092 | -220* | -230 | 34. | .772 | OS4 | . 107 | 215* | 28. | $244^{\circ}$ |
| caflea | -033 | . 050 | .480 | 099 | -.005 | -.005 | 219. | 227 | .076 | 212 | 107 | -20.0. | 209. |
| campra | -0,4 | , .00 | -0, 01 | ,020 | -.066 | -122 | 147 | .07 | 222 | .108 | $26 \%$ | 20. | 2208 |
| caifaca | - 193 | -05s | 0.02 | .054 | -109 | .056 | 231* | 235 | .980 | 539 | 293 | 20. | . 2001 |
| cmm | A07* | 3s50. | $27 \cdots$ | .376* | 336" | ${ }^{23} 3^{*}$ | . 010 | .188 | 240 | 23* | . 052 | O,4 | 5001 |
| сти1 | 396* | 3s3* | .37 | 28** | 308\% | 2004* | c.as7 | . 135 | . 041 | 367 | . 078 | \%os | one |
| спиe | . 035 | .183 | 290** | 13510 | . 487 | . 162 | . 150 | 2710 | . 298 | ,129 | .003 | $\cdots$ | ,017 |
| стм9 | . 085 | 225* | 215* | 350** | . 121 | 154 | . 141 | 2380 | .39 | .303 | -028 | -0, 02 | .017 |
| CTPHL | 225 | .100 | .22* | . 87 | .192* | 255 | 215 | .042 | 153 | 182 | . 288 | -000 | . 058 |
|  | .1910 | 163 | 28** | . 185 | 213 | 257 | . 187 | .091 | 257 | 278 | .150 | , en | . 086 |
| Стрит | .oss | (13) | .072 | . 102 | .052 | .ons | , 818 | 292* | 317 | .199 | 202* | 373 | $3 \times 4$ |
| стм10 | oses | .039 | . 077 | . 130 | . 050 | . 027 | . 122 | .23* | . 04 | 256 | .59* | 272* | . 100 |
| C7M11 | .088 | . 108 | A10" | 285 | .as | 218 | -.022 | .45 | 275 | .022 | .012 | S 904 | . 011 |
| crspl | . 087 | -017 | -004 | -175 | -238* | (15) | -064 | . 057 | . 147 | .204 | 229 | 335* | . 774 |
| Cnflch | -115 | 0,017 | .0en | .107 | -115 | . 014 | -.007 | 240 | 0.048 | A15* | 350* | 086 | 275** |
| cmilca | . 101 | . 052 | . $\times 1$ | . 107 | 115 | . 014 | . 031 | .039 | ous | 227 | $222{ }^{\circ}$ | ${ }^{283} \cdot$ | .159 |
| crifach | -057 | 137 | . 098 | 2144 | $\checkmark 138$ | -100 |  | 239. | \% | 232 | 397\% | $33 \cdot$ | , $322^{*}$ |
| ctifrca | 225 | . 039 | .ase | .100 | . 029 | -033 | . 040 |  | .082 | 11020 | . 028 | -086 | . 000 |
| timz | .384* | NT* | 392* | 330* | 250\% | 410** | -003 | 15 | ,ats |  | 01 | $\infty$ | -.017 |
| тім | *31* | 203 | 280 | .271* | .380* | , 864 | .006 | 201 | 136 | , 52 | . 01 |  |  |
| тім6 | .196* | .162 | .386" | 105" | . 35 | 161 | .000 | $262^{*}$ | cos7 | 159 | 137 | .038 | *022 |
| тims | 2530 | . 168 | .300* | $286{ }^{\circ}$ | $255^{\circ}$ | 368* | . 014 | 190* | .778 | 224 | .037 | ,065 | cos |
| TTPHL | 246" | .13 | .12* | 207* | .380" | $148{ }^{*}$ | .033 | . 287 | .108 | 202 | -.048 | 410 | ,032 |
| TiPHA | 230 | -0, | . 55 | 286** | 560" | $125^{*}$ | ,002 | .100 | , 013 | .163 | .2020 | . 030 |  |
| тім10 | .125 | .tar | .108 | .104 | . 061 | . 150 | .45 | $276^{*}$ | $33^{\circ}$ | 270 | A25* | 270. | 230 |
| TIM11 | .056 | . 155 | .059 | 17 | -021 | ,120 | . 174 | 291* | $225{ }^{\circ}$ | . 161 | 289** |  |  |
| TISPL | .124 | .351* | .027. | 200* | $268{ }^{\circ}$ | $260{ }^{\circ}$ | . 166 | $27{ }^{\circ}$ | .323 | 245 | , 131 | (14) | 0.079 |
|  |  | +0.0 | Cso.0 | 190.0 | 52.. | แe. | 155 | 2 m . | 250 | (1) | 102 | 001 | M |


|  |  |  | LSN5 | L5M9 | 1.5 FHL | LSPHR | L5M10 | L5M11 | LSPL | LTPPW | L5IFLCA | LIFILCA | LIIPRCR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LSM2 |  |  |  |  |  | Paurson | Pourron | Paorson | ${ }_{\text {Peatron }}$ | Pearson | Paertan <br> Correlatlo | Parmon Cortelation |
|  | Pastson Corrimiation | Parrson Corraition |  | $\underset{\text { corrolation }}{\text { Pata }}$ | Corratalion | Corrsatalen | Corrolation | $\frac{\text { Cenreialtan }}{\text { 275** }}$ | $\frac{\text { Correlation }}{\text {. }}$ |  | 211 | 234* | .349 ${ }^{-7}$ |
| TUFLCR | -.003 | -061 | -. 195 | - 131 | -220 | -0,03 | . 148 | ${ }^{27} \mathrm{~T}^{\circ}$ | . 103 | 188 | .415** | 280** | .431* |
| tuflca | .060 | -012 | -. 029 | .110 | -004 | .40 | . 085 | . 166 | 248 | -.245 | .314* | .242* | A23* |
| turfce | .077 | .052 | . 035 | 553 | - 147 | -.028 | .065 | . $414 \times$ | . 183 | . 209 | .398* | .342* | .408" |
| T11FRCA | . 015 | -005 | -028 | .178 | -073 | .116 | . 151 | .171 | .129 | .365* | .023 | -.086 | 007 |
| TEM2 | .436* | .501" | .360\% | ${ }^{377}{ }^{\circ}$ | .188 | .196. | . 041 | . 013 | . 156 | . 226 | .aso | -.027 | . 119 |
| T6M1 | .305** | .447* | . 126 | . 136 | 117 | , | 027 | . $361^{+}$ | -015 | . 184 | -. 025 | - 174 | -.056 |
| темь | $218{ }^{\circ}$ | 270* | .522* | .42" | 204 | 18 | 27 | 172 | . 041 | .306 ${ }$ | -. 100 | -. 178 | -194 |
| твм9 | 325** | .372* | A02* | .395- | .270* | .005" | -076 | 23. | . 154 | .306" | .085 | -. 112 | . 007 |
| TBPHL | .387- | 225* | .364* | .302** | ${ }^{323}$ | ,233.0 | . 17 | .148 | . 144 | .346 ${ }^{\circ}$ | . 010 | -. 164 | -.028 |
| TGPHF | .307* | 300 | .387" | .318- | .250* |  | 210. | . 187 | .$^{.388}$ | .319 | .182 | . 185 | . 147 |
| Tem10 | . 48 | .243- | . 105 | 304" | . 074 | -.088 |  | 301" | . 053 | .310 | . 053 | .083 | . 049 |
| Tsmı11 | . 045 | 293* | . 167 | 294* | .083 | . 053 | .123 | -. 153 | . 098 | . 052 | -.092 | -.004 | .o8s |
| tespl | $380 \cdot$ | . 24 | -304 | 046 | .093 | . 25. | - | .294 | 080 | .336 | .118 | -.027 | . 079 |
| tetpw | .255* | 295* | A06** | .367" | .338** | . $265{ }^{\circ}$ | 105 | 167 | .343* | . 023 | .336* | . 128 | 279* |
| thiflea | . 0.55 | . 095 | . 071 | . 158 | -.060 | . 075 | one | . 061 | .154 | . 042 | .326** | . 065 | .198 |
| тыffrca | -.132 | . 015 | -.035 | . 02 | -170 | -.095 | 015 | 285** | .180 | 296* | -.060 | -0,03 | -.066 |
| тTome | .329* | 439- | .363" | ${ }^{278 .}$ | .286* | $366^{\prime \prime}$ | 031 | . 152 | . 196 | .138 | -.058 | -.009 | -012 |
| TIOM1 | .262** | 399** | .299* | 2014 | . 121 | .268* | . 11 | 135 | . 118 | .303 ${ }^{\text {+ }}$ | . 026 | -.067 | -. 128 |
| t1096 | $238^{\circ}$ | .365* | . $115^{-0}$ | 332* | .148 | ${ }^{320}$ | . |  | . 156 | . 255 | -. 025 | -.079 | -146 |
| т10м9 | $210^{*}$ | 294* | 438** | .465* | .274* | .318** | -006 | .382 | . 21 | . 128 | -.066 | . 045 | -.087 |
| T10PHL | .235* | A17* | $235 \cdot$ | 250 | .361* | 3410 | . 059 | .374- | 311* | .372* | -.099 | . 055 | -. 095 |
| T10PH | .128 | .431* | .254" | .225* | .376** | A12" | . 032 | 3 |  | 34. | .220* | .288** | .293** |
| T10M10 | 005 | .278* | . 103 | .287" | . 144 | . 058 | . 185 | .366* | . 402. | 4170 | .233" | . 179 | .198* |
| т10м11 | -.032 | .210 ${ }^{\circ}$ | กая | $246{ }^{\circ}$ | -.054 | ..096 | . 147 | .398 | 2 | 023 | . 112 | -.039 | . 170 |
| tiospl | 25 | . 192 | $320^{\circ}$ | . 395 " | .084 | -0,03 | . 131 | . 087 | .219 | 174 | .224 | . 135 | . 175 |
| trotpw | .183 | . 166 | . 092 | .090 | 105 | . 035 | . 199 | .a7 | . | . 175 | .470* | . 219 | .429* |
|  | . 187 | . 139 | -.022 | . 058 | - 104 | 001 | . 108 | .194* | .320 | .75 |  |  | 353" |
| Tlaflea | .187 | . 055 | -.092 | -.015 | -210* | . 156 | . 152 | 272" | 271 | . 025 | .398** | 265 |  |
| tiafrica | . 086 | .065 |  |  | $235 \cdot$ | . $310 \times$ | . 100 | .168 | . 226 | . $248{ }^{\circ}$ | -.089 | -179* | -. 061 |
| Limz | .435* | 507- | .238" | .273 |  | 275. | . 085 | . 113 | .224* | . $352^{*}$ | -.091 | -. 020 | -. 115 |
| LاMı | .393* | .440" | .220 | .243** | .210 | .275 | .098 | 128 | -073 | $302^{*}$ | .058 | -.152 | $-200{ }^{\circ}$ |
| LıM6 | . 148 | 281* | .334* | .293* | .068 | .$^{22}{ }^{\circ}$ | .098 | .203. | . 003 | .372.* | . 064 | -148 | -. 112 |
| LıMs | 144 | .323- | A00** | .433" | 3"" | .265 |  | 063 | .427* | A28* | . 090 | -.117 | . 032 |
| L1PHL | .249* | .382" | .35** | 278** | $255 *$ | .223** |  | . 017 | . $435^{*}$ | .406* | . 046 | -. 194 | . 027 |
| LIPhe | .313* | .324* | 388* | 298* | .388** | $230 \times$ | 371. | .329* | . 230 | .190 | .224* | 371* | .270** |
| Lмм10 | . 142 | .231* | . 119 | 2218 ${ }^{\text {+ }}$ | -042 | -011 | 37 |  | 159 | (17\% | 190. | 217. | IK |


|  |  |  | 15 M 6 | L5M9 | L5PHL | L.5PH | L5M10 | L5M11 | L5SpL | LTPW | LSFLCA | LsIFLCA | LSIFACA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L.5M2 | LSM1 |  |  |  |  |  | Paurson | Pasaron | Paerson | Pourson | Pearsan | Pearsan Corralation |
|  | Peareon Corralation | Pantoon |  |  | Corroatation | Correlation | Corrasition | Correlaten | $\underbrace{\text { a }}_{\text {Corroletion }}$ | $\underset{-033}{\text { Corrsation }}$ | $\xrightarrow{-0.45}$ | -103 | -157 |
| LispL | . 232 | . 198 | .320 | .$^{276}$ | . 046 | . 060 | . 190 | .133. | -103 | .070 | -.146 | -. 072 | -.083 |
| Litpw | -. 140 | -. 072 | .376* | .095 | . 110 | $22^{2}$ | .032 | ${ }^{35} 5$ | . 041 | .384" | .329* | .313** | $332 \times$ |
| LIIFLCA | -.057 | .063 | -032 | . 025 | -075 | -007 | .147 | . $255{ }^{\circ}$. | . 133 | .313* | .367"* | . 354 | A20-* |
| LIIfLCA | .198' | . 182 | . 003 | . 071 | -007 | . 178 | . 020 | . 092 | . $295{ }^{\circ}$ | .34* | .463* | . 162 | $385 *$ |
| LIIfach | .214* | . 026 | .034 | . 043 | . 007 | . 170 | .285** | .294* | -.033 | .178 | .399** | .493* | 41 |
| LIIfaca | . 109 | . 136 | . 027 | . 141 | . 007 | .187. | - 172 | -.128 | 181 | 044 | . 028 | - 120 | -031 |
| L5M2 |  |  | $115{ }^{\circ}$ | . 126 | .325******* | .301* | . 156 | . 095 | .409* | A18** | . 140 | -143 | . 150 |
| 15 Mm | .437******* |  |  | 219 | 248.0 | .287* | -. 040 | . 106 | . 240 | . 013 | -.040 | -284** | -1920 |
| Lэm6 | .320** | . 158 |  |  | 30.4 | $213^{\circ}$ | . 094 | .290** | . 083 | 280 ${ }^{\circ}$ | . 032 | -125 | . 026 |
| เธм9 | $352^{*}$ | 141 | .147" |  |  |  | -054 | . 887 | 240 | . 130 | -111 | -037 | . 04 |
| LsPML | .432* | 275* | 2974 | . $37 \times$ |  |  |  | . 107 | . 191 | . 146 | . 027 | -041 | .177 |
| LSPHR | .258* | .317* | 272" | 282" | .449* |  |  | $34 . \times$ | -.072 | . 176 | . 104 | .320" | .191* |
| Lsw10 | -.022 | $265^{\circ}$ | -074 | .007 | .032 | .096 |  |  | .127 | $270^{\circ}$ | . 15 | .339- | 224 |
| LSMIT | -.052 | . 075 | .087 | .339\% | $225^{\circ}$ | $237^{\circ}$ | . |  |  | cos | . 137 | .048 | . 060 |
| LSSPL | .323* | . 136 | .090 | . 105 | . 040 | . 126 | -161 | 267 |  |  |  | 020 | . 065 |
| LTTPW | -.039 | 205 | -026 | . 017 | . 05 | -027 | . 15 | .180 | . 19 |  |  | 362 | .740** |
| LsILCR | . 046 | . 139 | -.asa | .076 | . 033 | -.075 | 295* | .395- |  |  | . $421{ }^{+}$ |  | A18" |
| lisiza | -.043 | . 123 | -149 | -.050 | . 013 | . 053 | -463* | 315 | -149 | . | .997** | . $770 \cdot$ |  |
| LIfrach | .017 | .141 | -102 | . 079 | .00s | . 021 | . $360{ }^{-1}$ | .05* | - | ara | 471* | .747" | .523** |
| LIIffaca | -.020 | $208{ }^{\circ}$ | -.062 | . 064 | -024 | -.060 | .14**** | -360 | . 131 | 200 | 217 | . 134 | .276 |
| FMM16 | . 001 | -111 | 212 | 229 | .177 | 206 | .156 | .400" | \% | -1as | 234 | . 205 | A16- |
| fиM7 | .006 | -.042 | . 044 | .071 | -.061 | .153 | . 245 | 374 | 5 | -.093 | . 137 | . 146 | $245^{\circ}$ |
| HLM1 | .339- | .334* | .313* | .352** | .167 | 2510 | $213^{\circ}$ | 217 | 286. | -.020 | . 010 | . 027 | . 008 |
| нсм7 | .323* | .300* | .194* | $300{ }^{-}$ | .184* | 208* | . 106 | .no | 49** | -074 | . $180^{\circ}$ | . 145 | .195* |
| ғнвмтя | .664** | .990* | .370** | .432** | .366" | .312" | .163 | $3{ }^{3}$ | . 157 | -047 | . 056 | . 131 | .117 |
| FLM1 | .401- | .359** | $281{ }^{\circ}$ | $27{ }^{2}$ | ${ }^{263}$ | $200^{\circ}$ | .193 | 28. |  | -. 091 | . 145 | .119 | .182 |
| fсms | .331* | 253\% | 228* | $200^{*}$ | .189* | $22{ }^{*}$ | . 165 | 238 |  |  | , | 132 | and |
|  |  |  | 08 | 14 | ar | 150 | 101 |  |  |  |  |  |  |


|  | LIFPRCA | FMM16 | FMM7 | HLM1 | HCM7 | FHBM18 | FLM1 | FCMB | віพм2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Powrson Corrolation | Pasrson Correlation | Pepracn Cortalation | Pearson Corralatlon | $\begin{aligned} & \text { Pourson } \\ & \text { Coratation } \end{aligned}$ | $\begin{aligned} & \text { Paserson } \\ & \text { Corralation } \end{aligned}$ | $\begin{aligned} & \text { Puarson } \\ & \text { Corrivlation } \end{aligned}$ | $\begin{aligned} & \text { Pierman } \\ & \text { Corralallon } \end{aligned}$ | $\begin{gathered} \begin{array}{c} \text { Paarson } \\ \text { Corrstalion } \end{array} \\ \hline \end{gathered}$ |
| сзм2 | -.141 | .305* | . 215 | .300** | 437* | . $480^{-}$ | 291* | $362{ }^{\text {2 }}$ | ${ }^{357 \%}$ |
| сзм1 | -100 | . 117 | . 281 | $3^{303}$ | 284* | . 4000 | .303* | .322- | . 199 |
| сзмв | -219* | . 217 | . 015 | . 082 | .591* | .322* | . 083 | .397* | . 051 |
| сзм | -170 | .347* | -.070 | -.025 | $341-$ | $233^{\circ}$ | -.001 | .299** | . 058 |
| $\mathrm{CrPML}^{\text {a }}$ | -.197 | . 190 | . 084 | . 142 | .523* | .388* | . 117 | 3300' | .233 |
| C3PHR | -182 | . 183 | . 242 | . 180 | .436** | .285* | . 198 | .278* | .000 |
| сзмто | .299* | 245 | .339* | . 138 | -078 | . 087 | 079 | -119 | .228 |
| сзм11 | -.078 | 32 r | .361* | .469* | 2800* | . 8000 | .303* | .301- | 4540 |
| c3Tpw | .044 | . 321 | . 001 | .314* | .410** | .439*- | 334" | .325* | -.009 |
| caflch | $240{ }^{\circ}$ | -039 | -.005 | . 073 | -063 | . 04 | -.089 | -.031 | . 048 |
| caflea | .088 | -.018 | -072 | .244 | nss | -018 | . 042 | . 081 | .286* |
| c3IFACR | .220* | -.019 | . 050 | . 100 | -.009 | 005 | .028 | . 057 | 214 |
| calfrca | 202 | . 161 | .088 | 211. | . 067 | -.068 | 66 | -.036 | .382** |
| C7m2 | -108 | . 204 | . 151 | 239* | .289** | .280" | . 156 | .325* | .178 |
| C7M1 | -.056 | .188 | . 079 | .213* | $226{ }^{\circ}$ | .243** | $228{ }^{\circ}$ | .280** | -089 |
| crm | -.004 | . 246 | . 097 | $238{ }^{\circ}$ | .300* | . $137{ }^{\text {" }}$ | .231* | .313** | ${ }^{224}$ |
| с7ms | -. 161 | .118 | -014 | . 145 | 279" | . 3480 | . 145 | .336* | 279* |
| c7p+L | -.074 | . 092 | . 182 | . 115 | .195* | .201* | . 139 | .133 | . 164 |
| C7PHR | -040 | -.001 | -090 | . 079 | $180^{\circ}$ | .255* | . 053 | .154 | .056 |
| c7m10 | .14 | .108* | $282^{\circ}$ | . 103 | . 075 | . 109 | . 106 | . 074 | $288^{\circ}$ |
| c7M11 | . 154 | . 204 | .371* | .238* | . 105 | 287* | . 187 | . 180 | 247 |
| crspl | -.085 | .239 | . 086 | . 011 | .32\% | . 219 | .008 | . 155 | $490 \cdot$ |
| cлflcr | $238^{\circ}$ | .093 | ${ }^{276}$ | . 114 | . 058 | -071 | . 0.050 | . 034 | . 108 |
| c7iflca | 025 | 206 | -021 | . 186 | 154 | . 053 | . 028 | 093 | 256 |
| ctifach | . 151 | . 103 | .374* | -013 | -082 | -088 | -.060 | -.078 | .298* |
| спғяса | 17 | .300* | -013 | $203{ }^{\circ}$ | . 155 | . 109 | . 077 | . 05 | .134 |
| timz | - $192{ }^{\text {* }}$ | . 173 | . 204 | $248{ }^{-8}$ | 289" | $350{ }^{\circ}$ | .320* | .350* | . 228 |
| T1M1 | . 0058 | . 169 | .182 | .276" | 210 ${ }^{\circ}$ | .382** | .230** | .281- | . 197 |
| т1M6 | -.065 | .372-* | . 088 | .163 | . $359{ }^{\circ}$ | A15** | . 133 | .399* | . 142 |
| тims | -. 050 | . 093 | -. 153 | . 186 | $245{ }^{\circ}$ | .334* | 272** | .227* | .38 |
| riphl | - 134 | . 132 | -0.037 | .098 | .261- | ${ }^{264 *}$ | ${ }^{\text {080 }}$ | 287* | -024 |
| т1PH/ | -. 074 | . 127 | -.078 | .128 | $251-$ | ${ }^{235 *}$ | .148 | .275** | -.097 |
| T1M10 | . 138 | .223 | . 203 | . 207 | -185* | . 150 | . 38 | .084 | .290* |
| timil | . 125 | 217 | . 262 | . 118 | . 078 | . 147 | . 013 | . 153 | .167 |
| TISPL | -235 | . 184 | .164 | . 083 | $378 \cdot$ | .358** | . 248 | .375" | . $346{ }^{*}$ |
| terow | 017 | Wr | 030 | 469** | Mas. | Sen.* | 188. |  |  |


|  | LSIIFRCA | FMM16 | FMM7 | HLM1 | HCM7 | FHEM 19 | FLM1 | FС，${ }^{\text {B }}$ | BIWM2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Panraon } \\ & \text { Corralation } \end{aligned}$ | Pearson Corralation | Pearcon Corrialation | $\begin{gathered} \text { Poarson } \\ \text { Corratition } \end{gathered}$ | $\begin{aligned} & \text { Pearson } \\ & \text { Cortalelion } \end{aligned}$ | $\begin{gathered} \text { Panfion } \\ \text { Corstation } \end{gathered}$ | $\begin{gathered} \text { Pabreon } \\ \text { Correlalion } \end{gathered}$ | $\begin{gathered} \text { Panarigon } \\ \text { Cortalation } \end{gathered}$ | $\begin{aligned} & \text { Paarnon } \\ & \text { Correlatton } \\ & \hline \end{aligned}$ |
| THFLCR | ． $248^{\circ}$ | ．348＊ | ． 272 | ． 112 | －．087 | －048 | －．033 | －073 | ． 151 |
| riflea | ． 180 | 231 | ． 132 | ． 100 | ． 129 | ． 029 | －．059 | ． 115 | ． 226 |
| TIIFFCh | ． 153 | ．39＊ | ． 124 | －．002 | ． 38 | －．087 | －043 | ． 075 | 136 |
| tuifaca | ．220－ | ． 149 | ． 146 | ．158 | ．090 | ． 047 | ． 048 | ． 081 | 297 |
| твm² | －．031 | ． 172 | ． 105 | ．284＊＊ | ．499＊ | ．462＊ | ．470＊ | ．488＊ | ．168 |
| твм | ． 03 | －．071 | ． 082 | ． 116 | $214{ }^{\circ}$ | ．305＊＊ | ．307＊ | ．351＊ | ． 103 |
| темя | －203 | 281 | －．013 | 309＊－ | ．4570 | ．531＊ | 3374 | ．398＊＊ | ． 159 |
| тємя | －183 | ． 110 | ．085 | 293＊ | ＊808＊ | ．491－ | $210{ }^{\circ}$ | ．534＊ | 267 |
| TBPHL | －． 135 | 248 | ． 104 | 297＊ | ．554＊ | ．400 | ．276＊＊ | ．48＊＊ | ．138 |
| TGPHA | －． 168 | ．384＊ | ． 214 | ．355＊ | ．556＊＊ | ．536＊＊ | 395＊＊ | ．44＊＊ | ． 165 |
| TEM10 | ． 0 ¢ | ．093 | ． 127 | ． 129 | ． 140 | ． 182 | ．217 | ． 171 | ． 008 |
| тем11 | －023 | 223 | ．45＊－ | ． 140 | －014 | ．228＊ | ．075 | ． 112 | ． 256 |
| Taspl | －．011 | －．368 | －．036 | ．092 | － 122 | ． 017 | － 180 | ． 004 | －． 021 |
| Tetpw | － 123 | ． 002 | －084 | ． 359 | ．442．＊ | ．34＊＊ | ．480＊＊ | ． 369 | ． 094 |
| tiflica | ． 010 | ．018 | ．005 | ．080 | ． 107 | $246{ }^{\circ}$ | ． 032 | ．048 | ．297 |
| tifraca | ． 075 | －．063 | ． 165 | －025 | ． 059 | －083 | －047 | ． 028 | 337 |
| tiomz | －075 | ．118 | 270 | ． $422^{-}$ | ． 007 | ． 480 | ． $382 \times$ | ．395－＊ | ．313＊ |
| т1091 | －．039 | －．124 | ．208 | ．238 | ． 094 | ．305＊ | ． 175 | $298{ }^{\circ}$ | ．287＊ |
| т10м9 | －． 147 | ． 251 | ．093 | ． 34. | ．511＊ | $486^{*}$ | ． 3600 | ．468＊＊ | ${ }^{284}{ }^{\circ}$ |
| томм | －155 | ． 266 | ． 180 | 295．＊ | ．454＊ | ． $113^{*}$ | ．272＂ | ．477＂ | 204 |
| T10PML | －． 029 | －．054 | ． 119 | ．183＊ | ${ }^{285}{ }^{\text {c／}}$ | ．317＂ | ${ }^{188}$ | ．321＊ | ． 114 |
| TTIOPH | －051 | ． 030 | ． 103 | ．232＊ | ． $363 \times$ | ．291＊ | ． 154 | 299 | ． 170 |
| tiomio | ． 139 | 323＊ | ．328 ${ }^{\circ}$ | ．273－ | ． 201 － | ．214＊ | $207^{\circ}$ | ． 182 | ．275＊ |
| T10411 | ． 077 | ． 316 | ．345＊ | ．224＊ | ． 115 | ． 106 | ． 248 | ． 115 | ． 210 |
| TIOSPL | － 136 | 207 | 401 | ．310＊ | ．524＂ | ．320＊ | ． 122 | ．468＊＊ | ． 166 |
| T⿴囗TPW | ．063 | ． 274 | ． 014 | ．312＊ | ．364＊＊ | ． 144 | ． 235 | ．231＊ | 248 |
| tharca | ． 171 | ． 164 | ． 090 | ． 216 | ． 048 | ． 161 | ． 111 | ． 839 | ．317 |
| tıofaca | ． 193 | 003 | －． 151 | ． 167 | ．065 | ． 086 | ． 072 | ． 003 | 091 |
| LıM2 | － 117 | ． 217 | ． 000 | 362\％ | 289＊＊ | ．322＊ | ．370＊＊ | ．429＊＊ | ．323＊ |
| LıM1 | ．018 | ． 074 | －． 109 | 231 | ． 074 | ．214＊ | ． 184 | 252＊＊ | ． 134 |
| LıMв | －179 | ．035 | ． 072 | 314＊ | ．440＂ | ．422＊ | $258^{* *}$ | ．434＊ | 247 |
| Lıм | －． 139 | ．073 | ． 027 | ．233－ | ＊40＊＊ | ．439＊ | 252＇－ | ．429－ | ．309＊ |
| LIPhL | －028 | ．119 | ． 202 | ． 148 | ．31＊＊ | ．434＊ | 201 | ．396＊＊ | ． 075 |
| L1PHP | －0，47 | ． 038 | －．198 | ． 140 | ．33．＊ | ．407＊ | ． 134 | ．275＊＊ | ． 070 |
| L1m10 | ．255＊ | ．335 | ．300＇ | ．232＊ | ． 038 | ． $216^{\circ}$ | ${ }^{237}$ | ．183＊ | ． $300^{*}$ |
| （1）11 | nen | $\underline{243}$ | 307. | 299\％ | －65 | 1909 | 119 | 118 | $3360^{\circ}$ |


|  | LSIFFRCA | FMM16 | Fm, | HLM1 | нсм9 | FHBM1B | FLMI | FCM | Biwuz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Psarimen Correletion | Pagarson Correlallon | Panrzan Corralation | Pagrion Corralation | $\begin{gathered} \text { Parreon } \\ \text { Corralation } \end{gathered}$ | $\begin{gathered} \text { Pacracon } \\ \text { Corralation } \end{gathered}$ | $\begin{aligned} & \text { Pbelrson } \\ & \text { Corralalion } \end{aligned}$ | $\begin{aligned} & \text { Pearson } \\ & \text { Corrolation } \end{aligned}$ | $\begin{aligned} & \text { Pawson } \\ & \text { Corralation } \\ & \hline \end{aligned}$ |
| $\underline{L 15 p L}$ | . 022 | . 458 | . 051 | .125 | .322* | .408** | . 043 | . 174 | -.232 |
| LTTPW | . 094 | . 0.91 | -.096 | . 272 | .221 | . 199 | . 101 | . 128 | . 175 |
| LIIFLCH | .296** | . 352 | .088 | .280* | -.004 | .005 | . 142 | . 074 | 80* |
| LIIFLCA | .352" | . 143 | -. 087 | 223* | . 020 | . 157 | .198* | . 085 | . 030 |
| LIIFRCA | .195* | -.037 | -.05a | . 110 | . 037 | . 118 | . 100 | . 082 | .323 |
| LIIFRCA | . 4360 | .069 | . 07 | .219* | . 038 | . 171 | . 182 | . 136 | . 106 |
| L.5M2 | -134 | . 136 | -035 | .317* | .235* | .320- | 27" | $281{ }^{-1}$ | .030 |
| Lsmı | -17 | . 206 | . 017 | .35** | .261* | .882* | .366-- | .$^{408 *}$ | ** |
| LsM6 | . $356^{-}$ | . 241 | -043 | . $343 \times$ | .417* | .528** | .433* | .380** | .372** |
| Lsm9 | -. 172 | .338* | .095 | .373* | .502- | 401" | 278* | .40" | -.012 |
| LSPHL | -.085 | -318 | .211 | .263* | .253** | .317* | $215{ }^{\circ}$ | $233^{*}$ | -.003 |
| LSPHR | -. 071 | -163 | - 193 | .266** | .204* | 350" | 247* | .300* | . 199 |
| $15 \mathrm{M10}$ | .300.- | . 132 | . 115 | . 025 | .05 | . $202 \cdot$ | . 127 | . 141 | . 006 |
| LsM11 | .248** | .337* | .136 | .276** | .134 | .221 | .290** | 2390 | . 152 |
| LSSPL | -.087 | - 190 | - 146 | .04 | . 211 | .286* | -021 | .080 | . $453{ }^{*}$ |
| LTTPW | . 075 | S45* | 279 | ${ }^{326}{ }^{\text {- }}$ | . 219 | .302* | .330* | .297 | . 318 |
| LSIFLCA | .328- | .063 | -.067 | -033 | . 073 | -.005 | - 140 | . 50 | $27 \%$ |
| biflea | .795* | . 062 | . 159 | -.016 | -150 | -150 | - 180 | -an | .099 |
| Lsiffich | 143. | . 181 | -047 | 035 | . 029 | -.001 | -.011 | . 010 | . 130 |
| LsIfaca |  | - 6 | 000 | -07 | -231* | $-148$ | .000 | -19 | -.151 |
| ғим16 | 242 |  |  | . 243 | $3188^{+}$ | . 337 | . 153 | 246 | . 037 |
| fmı7 | 227 | . 550 - |  |  | -049 | -.043 | . 051 | .561.* | .42- |
| HLM\% | $233^{*}$ | 264 | .170 |  |  |  | . $416{ }^{*}$ | . 604. | .372* |
| нсм7 | . 132 | -216 | -178 | $509{ }^{*}$ |  |  |  | 624** | 372** |
| fhamis | 259** | .183 | 240 | .703* | . $45 \times$ |  |  |  |  |
| fwi | 210 | .178 | . 77 | .787 | 244" | .675******* |  |  |  |
| FCMs | . 112 | .ass | . 047 | 500\% | .55a* | . $568^{\circ}$ | .598** |  |  |
| ampos | 115 | as. | 288 | ! | 100 |  | come | , |  |

10. Significant microevolutionary regressions

Variable (males)
Method
Log

| Log | 0.77 | 0.00 |
| :---: | :---: | :---: |
| Log | 0.45 | 0.00 |
| Qua | 0.44 | 0.00 |
| Qua | 0.43 | 0.00 |
| Log | 0.42 | 0.00 |
| Qua | 0.42 | 0.00 |
| Qua | 0.40 | 0.00 |
| Qua | 0.39 | 0.00 |
| Exp | 0.39 | 0.00 |
| Exp | 0.39 | 0.00 |
| Pow | 0.38 | 0.00 |
| Exp | 0.37 | 0.00 |


| Log 0.36 | 0.01 |
| :--- | :--- | :--- |


| Exp | 0.36 | 0.00 |
| :--- | :--- | :--- |
| Qua | 0.36 | 0.00 |


| Log 0.35 | 0.00 |
| :--- | :--- | :--- |


| Pow | 0.35 | 0.00 |
| :---: | :---: | :---: |
| $\operatorname{Exp}$ | 0.34 | 0.00 |


| $\log$ | 0.34 | 0.00 |
| :--- | :--- | :--- |


| Pow | 0.33 | 0.00 |
| :--- | :--- | :--- |
| Pow | 0.33 | 0.00 |


| Log | 0.32 | 0.00 |
| :--- | :--- | :--- |
| Pow | 0.31 | 0.00 |


| Pow | 0.31 | 0.00 |
| :--- | :--- | :--- |
| Log | 0.31 | 0.00 |


| Log | 0.31 | 0.00 |
| :--- | :--- | :--- |
| Log | 0.30 | 0.00 |


| Pow 0.30 | 0.00 |
| :--- | :--- | :--- |


| Exp | 0.30 | 0.00 |
| :--- | :--- | :--- |
| Qua | 0.30 | 0.00 |


| Lin | 0.29 | 0.00 |
| :--- | :--- | :--- |


| Qua | 0.29 | 0.00 |
| :--- | :--- | :--- |
|  | 0.29 | 0.00 |


| Log | 0.29 | 0.00 |
| :--- | :--- | :--- |
| Pow | 0.29 | 0.00 |


| Exp | 0.28 | 0.00 |
| :--- | :--- | :--- |
| Log | 0.28 | 0.00 |


| Log | 0.28 | 0.00 |
| :--- | :--- | :--- |


| Exp | 0.28 | 0.00 |
| :--- | :--- | :--- |
| Log | 0.27 | 0.00 |

Pow $0.27 \quad 0.00$

| $\log$ | 0.27 | 0.00 |
| :--- | :--- | :--- |
| $\log$ | 0.27 | 0.00 |


| Log | 0.27 | 0.00 |
| :--- | :--- | :--- |
| Log | 0.26 | 0.00 |

Pow $0.25 \quad 0.00$
Pow $0.25 \quad 0.00$
Pow $0.25 \quad 0.01$

| Log | 0.25 | 0.01 |
| :--- | :--- | :--- |
|  | 0.24 | 0.01 |

Log $0.24 \quad 0.01$
$\operatorname{Exp} 0.24 \quad 0.01$

| Lin | 0.23 | 0.01 |
| :--- | :--- | :--- |
| Lin | 0.20 | 0.01 |


| Qua | -0.33 | 0.00 |
| :--- | :--- | :--- |

[^1]| Variable (females) | Method | r | Significance |
| :--- | :---: | ---: | ---: |
|  |  |  |  |
| bi-iliac width | Cub | 0.55 | 0.00 |
| C7 transverse diameter spinal canal | Cub | 0.51 | 0.00 |
| C3 right cranial intervertebral foramen width | Cub | 0.49 | 0.00 |
| TH1 spinal canal transverse diameter | Cub | 0.47 | 0.00 |
| L5 spinous processus length | Log | 0.45 | 0.00 |
| C3 spinal canal transverse diameter | Exp | 0.43 | 0.00 |
| femur circumference | Cub | 0.43 | 0.00 |
| femoral head width | Cub | 0.42 | 0.00 |
| L1 spinous process length | Log | 0.39 | 0.00 |
| TH10 transverse process width | Log | 0.38 | 0.00 |
| TH10 right caudal intervertebral foramen width | Qua | 0.35 | 0.00 |
| humerus length | Exp | 0.35 | 0.00 |
| L1 right cranial intervertebral foramen width | Cub | 0.34 | 0.00 |
| TH10 spinal canal sagittal diameter | Cub | 0.33 | 0.00 |
| L5 left caudal intervertebral foramen width | Log | 0.33 | 0.00 |
| TH10 vertebral body sagittal diameter | Log | 0.32 | 0.00 |
| TH6 sagittal diameter vertebral body | Exp | 0.31 | 0.00 |
| TH10 spinal canal transverse diameter | Exp | 0.30 | 0.00 |
| L5 right cranial intervertebral foramen width | Log | 0.30 | 0.00 |
| L1 spinal canal sagittal diameter | Log | 0.30 | 0.00 |
| C7 left caudal intervertebral foramen width | Lin | 0.30 | 0.00 |
| C7 right caudal intervertebral foramen width | Lin | 0.29 | 0.00 |
| TH1 transverse process width | Log | 0.29 | 0.01 |
| C3 spinal canal sagittal diameter | Log | 0.29 | 0.00 |
| C7 right cranial intervertebral foramen width | Log | 0.28 | 0.00 |
| L5 left cranial intervertebral foramen width | Log | 0.27 | 0.00 |
| L1 right caudal intervertebral foramina width | Log | 0.26 | 0.00 |
| TH10 vertebral body transverse diameter | Exp | 0.26 | 0.00 |
| TH1 right cranial intervertebral foramen width | Log | 0.26 | 0.00 |
| L5 right caudal intervertebral foramen width | Log | 0.26 | 0.00 |
| TH6 dorsal vertebral body height | Log | 0.26 | 0.00 |
| TH1 spinal canal sagittal diameter | Log | 0.26 | 0.01 |
| L5 spinal canal sagittal diameter | Pow | 0.25 | 0.01 |
| L1 left caudal intervertebral foramen width | Log | 0.24 | 0.01 |
| L1 spinal canal transverse diameter | Log | 0.24 | 0.01 |
| agegroup | Log | -0.15 | 0.04 |
| L5 ventral vertebral body height | Pow | -0.26 | 0.00 |
| L5 vertebral body transverse diameter | Qua | -0.28 | 0.00 |
| TH6 right caudal intervertebral foramen width | Qua | -0.37 | 0.00 |
| femur length | -0.39 | 0.00 |  |
| C3 right caudal intervertebral foramen width left cranial intervertebral foramen width | -0.45 | 0.00 |  |
| C3 left caudal intervertebral foramen width | Qua | -0.00 |  |
| C3 la | 0.00 |  |  |

11. ANOVA of variables with major time groups (Non-Bonferroni tables: bold= significant; italic: decrease)


Females

|  | F\% | Sig. |
| :---: | :---: | :---: |
| AGEGROUP | 2.90 | . 058 |
| C3M2 | 2.28 | . 109 |
| C3M1 | . 65 | . 526 |
| C3M6 | . 66 | . 518 |
| C3M9 | 4,66 | . 011 |
| C3PHL | 1.64 | . 199 |
| C3PHR | . 73 | . 482 |
| C3M10 | 2.69 | . 073 |
| C3M11 | 11.60 | . 000 |
| C3SPL | 5.00 | . 011 |
| C3TPW | 3.56 | . 034 |
| C3IFLCR | 8.10 | . 001 |
| c3iflca | 7.72 | . 001 |
| CaifRCA | 2.10 | . 127 |
| CaIFRCA | 3.89 | . 023 |
| G7M2 | 1.68 | . 191 |
| C7M1 | . 20 | 820 |
| C7M6 | 3.35 | . 038 |
| C7M9 | . 83 | . 440 |
| C7PHL | . 87 | . 423 |
| C7PHR | 1.35 | . 263 |
| C7M10 | 1.54 | . 218 |
| C7M11 | 18.78 | .000 |
| C7SPL | 1.75 | . 182 |
| C7TPW | 1.20 | 315 |
| C7IFLCR | 1.57 | . 212 |
| C7IFLCA | 3.39 | . 037 |
| C7IFRCR | 2.94 | . 057 |
| C7IFRCA | 3.68 | . 028 |
| T1M2 | . 93 | . 399 |
| T1M1 | . 24 | . 785 |
| T1M6 | . 80 | .453 |
| T1M9 | . 10 | . 906 |
| T1PHL | . 25 | . 782 |
| T1PHR | . 13 | . 874 |
| T1M10 | 3.33 | . 039 |
| T1M11 | 14.67 | . 000 |
| T1SPL | 2.27 | 114 |
| T1TPW | 3.93 | . 023 |
| T1IFLCR | 1.45 | . 240 |
| T1IFLCA | . 55 | . 577 |
| T1IFACR | 254 | . 083 |
| T1IFRCA | 1.06 | 350 |
| T6M2 | 4.76 | . 010 |
| T6M1 | 1.09 | . 341 |
| T6M8 | 7.27 | . 001 |
| t6M9 | . 71 | .493 |
| T6PHL | . 98 | . 380 |
| T6PHR | 1.87 | . 159 |
| T6M10 | 1.55 | . 217 |
| T6M11 | . 87 | . 420 |
| T6SPL | . 87 | . 428 |
| TETPW | . 96 | . 388 |
| TGIFLCA | 1.28 | 289 |
| T6IFRCA | 3.55 | . 039 |
| T10M2 | . 61 | . 545 |
| T10M1 | $\cdots$ | 163 |


|  | F | Sig. |
| :---: | :---: | :---: |
| T10M6 | 6.23 | . 003 |
| T10M9 | 1.71 | . 185 |
| T10PHL | 1.06 | . 350 |
| T10PHR | 1.41 | . 249 |
| T10M10 | 578 | . 004 |
| T10M11 | 4.28 | . 016 |
| T10SPL | 2.39 | . 101 |
| T10TPW | 7.09 | . 001 |
| T10IFLCA | 9.14 | . 000 |
| TiOIFRCA | 8.76 | . 000 |
| L1M2 | 1.55 | . 217 |
| L1M1 | . 79 | . 454 |
| L1M6 | . 85 | . 431 |
| L1 M9 | . 88 | . 417 |
| LIPHL | . 22 | . 802 |
| L1PHR | . 70 | . 496 |
| L1M10 | 4.89 | . 009 |
| L1M11 | 4.24 | . 016 |
| L1SPL | 492 | . 011 |
| L.1TPW | 2.95 | . 061 |
| L11FLCR | 1.58 | 210 |
| L1FLCA | 2.15 | . 121 |
| L11FRCA | 6.32 | . 003 |
| L1IFRGA | 2.98 | . 055 |
| L5M2 | . 07 | . 933 |
| L5M1 | 2.85 | . 061 |
| L5M6 | . 97 | . 381 |
| L5M9 | 3.43 | . 035 |
| L5PHL | . 45 | . 636 |
| L5PHR | . 35 | . 703 |
| L5M10 | 266 | . 074 |
| L5M11 | 1.68 | . 190 |
| L5SPL | 4.62 | . 014 |
| L5TPW | 1.95 | . 150 |
| L5IFLCA | 5.87 | . 004 |
| L5IFLCA | 7.13 | . 001 |
| L5IFRCR | 6.05 | . 003 |
| LjERCA | 9.92 | 022 |
| FMM16 | . 054 | . 947 |
| FMM7 | ${ }^{\text {3.033 }}$ | . 057 |
| HLM1 | 5.666 | . 004 |
| HCM7 | 2,931 | . 057 |
| FHBM18 | 13.548 | . 000 |
| FLM1 | 9,083 | . 000 |
| FCMB | 15.072 | . 000 |
| BlwM2 | 11624 | 000 |
|  |  |  |
|  | F | Sig. |
| СЗм6/M9 | 2.745 | . 068 |
| C3M10/M11 | . 483 | . 618 |
| С7М6/М9 | 4.581 | . 012 |
| C7M10/MIT | 4.728 | . 011 |
| T1M6/M9 | . 694 | . 502 |
| T1M10/M11 | 4.544 | . 013 |
| т6M6/M9 | 6.327 | . 002 |
| T6M10/M11 | . 053 | . 948 |
| T10M6/M9 | 1.356 | . 262 |
| T10M10/M11 | . 999 | . 371 |
| LiM6/M9 | . 636 | . 531 |
| L1M10/M11 | . 724 | . 487 |
| L5M6/M9 | 1.062 | . 349 |
| L5M10/M11 | 1.044 | . 356 |
| FMM7/M16 | 3.801 | . 036 |
| HM7/M1 | 13.053 | . 000 |
| EmaiM1 | . 3390 | $\underline{037}$ |

## Multiple Comparisons - males

Bonferron

| Dependent Variable | (I) Time group | (J) Time group | Mean Difference ( $1-\mathrm{d}$ ) | Sig | Dependent Variable | (I) Time group | (J) Time group | Mcan Difference (l-J) | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AgEGRROUP | 1 | 2 | - 30 | . 07 | C7M9 | 2 | 3 | --17 | 1.00 |
|  |  | 3 | -. $50^{\circ}$ | . 00 | C7PHL | 1 | 2 | -06 | 1.00 |
|  | 2 | 3 | -. 20 | . 34 |  |  | 3 | -40 | . 33 |
| C3M2 | 1 | 2 | , \% -06 | 1.00 |  | 2 | 3 | -34 | . 22 |
|  |  | 3 | - $.87^{*}$ | . 01 | C7PHP | 1 | 2 | . 05 | 1.00 |
|  | 2 | 3 | * $81{ }^{\circ}$ | . 00 |  |  | 3 | -40 | . 27 |
| C3M1 | 1 | 2 | -. 38 | . 47 |  | 2 | 3 | - $46^{\circ}$ | . 04 |
|  |  | 3 | -81* | . 02 | 67M10 | 1 | 2 | -.36 | . 91 |
|  | 2 | 3 | -.43 | . 18 |  |  | 3 | -. 52 | . 52 |
| C3M6 | 1 | 2 | -28 | 1.00 |  | 2 | 3 | -. 15 | 1.00 |
|  |  | 3 | -.55 | . 48 | C7M11 | 1 | 2 | -1,11 |  |
|  | 2 | 3 | -27 | 1.00 |  |  | 3 | -2.14* | . 00 |
| C9M9 | 1 | 2 | 1,85* | . 00 |  | 2 | 3 | -1.03* | . 04 |
|  |  | 3 | 1,16 | . 06 | C7SPL | 1 | 2 | . 70 | 1.00 |
|  | 2 | 3 | -.69 | . 24 |  |  | 3 | -1.79 | . 59 |
| C3PHL | 1 | 2 | . 55 | . 09 |  | 2 | 3 | -2.48 | . 08 |
|  |  | 3 | -02 | 1.00 | C7TPW | 1 | 2 | -14.90 |  |
|  | 2 | 3 | - $56{ }^{\circ}$ | . 03 |  |  | 3 | -12.74 | 47 |
| C3PHR | 1 | 2 | 21 | 1.00 |  | 2 | 3 | 2.16 | 1.00 |
|  |  | 3 | - 28 | . 83 | C7IFLCR | 1 | 2 | -21 | 1.00 |
|  | 2 | 3 | $-49^{\circ}$ | . 04 |  |  | 3 | -35 | . 50 |
| C3M10 | 1 | 2 | - 60 | . 37 |  | 2 | 3 | $\cdot 14$ | 1.00 |
|  |  | 3 | -1,32* | . 01 | C71FLCA | 1 | 2 | -79 | . 06 |
|  | 2 | 3 | - 72 | . 09 |  |  | 3 | -96* | , 02 |
| C3M11 | 1 | 2 | -1.24* | . 00 |  | 2 | 3 | -. 17 | 1.00 |
|  |  | 3 | -1.47* | . 00 | C7IFRCR | 1 | 2 | -. 03 | 1.00 |
|  | 2 | 3 | -23 | 1.00 |  |  | 3 | --31 | . 46 |
| C3SPL | 1 | 2 | -63 | 1.00 |  | 2 | 3 | -27 | . 30 |
|  |  | 3 | -. 91 | 1.00 | C71FRCA | 1 | 2 | -,89* | . 02 |
|  | 2 | 3 | -. 28 | 1.00 |  |  | 3 | -1.14* | . 00 |
| C3TPW | 1 | 2 | -2.19 | . 24 |  | 2 | 3 | -25 | 1.00 |
|  |  | 3 | -3.36* | . 04 | T1M2 | 1 | 2 | -23 | 1.00 |
|  | 2 | 3 | -1.16 | . 86 |  |  | 3 | -27 | 1.00 |
| C3IFLCR | 1 | 2 | -48 | . 26 |  | 2 | 3 | -.05 | 1.00 |
|  |  | 3 | - $88{ }^{\circ}$ | . 01 | TiM1 | 1 | 2 | -23 | 4.00 |
|  | 2 | 3 | -. 41 | . 23 |  |  | 3 | -. 15 | 1.00 |
| C3IFLCA | 1 | 2 | -88* | . 04 |  | 2 | 3 | . 08 | 1.00 |
|  |  | 3 | -1.23* | . 00 | T1M6 | 1 | 2 | -. 63 | . 31 |
|  | 2 | 3 | -. 37 | . 58 |  |  | 3 | -1.07* | . 04 |
| C3IFRCR | 1 | 2 | -31 | . 60 |  | 2 | 3 | -44 | . 56 |
|  |  | 3 | - 50 | .18 | T1M9 | 1 | 2 | . 36 | 1.00 |
|  | 2 | 3 | - 19 | 1.00 |  |  | 3 | -25 | 1.00 |
| C3IFRCA | 1 | 2 | -.85* | . 03 |  | 2 | 3 | -.61 | . 86 |
|  |  | 3 | -1.31* | . 00 | T1PHL | 1 | 2 |  | . 19 |
|  | 2 | 3 | -45 | . 31 |  |  | 3 | . 56 | 25 |
| c7M2 | 1 | 2 | -32 | . 67 |  | 2 | 3 | . 00 | 1.00 |
|  | - | 3 | -53 | . 20 | T1PHR | 1 | 2 | -.05 | 1.00 |
|  | 2 | 3 | -21 | 1.00 |  |  | 3 | .18 | 1.00 |
| 67M1 | 1 | 2 | -. 14 | 1.00 |  | 2 | 3 | . 23 | 1.00 |
|  |  | 3 | . 22 | 1.00 | T1M10 | 1 | 2 | -60 | . 10 |
|  | 2 | 3 | 36 | . 54 |  |  | 3 | -94* | . 01 |
| C7M8 | 1 | 2 | -1.01* | . 01 |  | 2 | 3 | -34 | . 46 |
|  |  | 3 | -1.47* | . 00 | T1M11 | 1 | 2 | -85 | . 19 |
|  | 2 | 3 | -. 48 | . 40 |  |  | 3 | -1.03* | . 00 |
| C7M9 | 1 | 2 | -15 | 1.00 |  | 2 | 3 | -97\% |  |
|  |  | 3 | $\underline{-32}$ | $\underline{1}$ |  |  |  |  |  |




Multiple Comparisons - females


| Dependent <br> Variable | (!) Time group | (J) Time group | $\begin{gathered} \text { Mean } \\ \text { Ditterence } \\ (1-J) \\ \hline \end{gathered}$ | Sig. | Dependent Variable | (1) Time group | (J) Time group | Mean Difference ( $1 \cdot \sqrt{3})$ | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1SPL | 1 | 2 | . 83 | 1.00 | T10M2 | 3 | 2 | . 38 | . 88 |
|  |  | 3 | -1.61 | . 63 | T10M1 | 1 | 23 | . 11 |  |
|  | 3 | 2 | 2.44 | . 11 |  |  |  | . 74 | . 24 |
| T1TPW | 1 | 2 | -2.80 | . 13 |  | 3 | 2 | . 63 | . 28 |
|  |  | 3 | $5.4 .25 *$ | . 02 | T10M6 | 1 | 2 | -1.05 |  |
|  | 3 | 2 | 1.45 | . 69 |  |  |  | -1,93* | . 00 |
| T1IFLCR | 1 | 2 | -.09 | 1.00 |  | 3 | 2 | . 88 | . 25 |
|  |  | 3 | -.36 | 35 | T10M9 | 1 | 2 | -. 63 | $.58$ |
|  | 3 | 2 | . 27 | . 48 |  |  | 3 | -1.06 | . 22 |
| T1JFLCA | 1 | 2 | -31 | 1.00 |  | 3 | 2 | . 43 | 1.00 |
|  |  | 3 | - 38 | 1,00 | TioPHL | 1 | 2 | -. 03 | $\begin{array}{r} 1.00 \\ .60 \end{array}$ |
|  | 3 | 2 | . 07 | 1.00 |  |  | 3 | -.45 | . 60 |
| T1IFRCR | 1 | 2 | -. 02 | 1.00 |  | 3 | 2 | .41 | . 56 |
|  |  | 3 | -. 45 | . 21 | T10PHR | 1 | 23 | 21 | $1.00$ |
|  | 3 | 2 | . 43 | . 11 |  |  |  | -30 | 1.00 |
| T1IFRCA | 1 | 2 | -24 | 1.00 |  | 3 | 2 | . 51 | . 30 |
|  |  | 3 | -. 57 | .45 | T10M10 | 1 | 23 | -.33 | $\begin{aligned} & .77 \\ & .00 \end{aligned}$ |
|  | 3 | 2 | . 33 | . 98 |  |  |  | -1,17* |  |
| T6M2 | 1 | 2 | -. 24 | 1.00 |  | 3 | 2 | .83* | . 03 |
|  |  | 3 | -1.03' | . 01 | T10M11 | 1 | 2 | -64 | $.12$ |
|  | 3 | 2 | .79* | . 03 |  |  |  | $-1.06{ }^{\text {\% }}$ | . 02 |
| T6M1 | 1 | 2 | . 32 | . 72 |  | 3 | 2 | . 41 | . 66 |
|  |  | 3 | -01 | 1.00 | T10SPL | 1 | 23 | $-.35$ | $\begin{array}{r} 1.00 \\ .13 \end{array}$ |
|  | 3 | 2 | . 33 | . 70 |  |  |  | -2.75 |  |
| T6M6 | 1 | 2 | -1.55* | . 00 |  | 3 | 2 | 2.40 | 22 |
|  |  | 3 | -1.96* | . 00 | T10TPW | 1 | 23 | -2.30 | $\begin{aligned} & .22 \\ & .00 \end{aligned}$ |
|  | 3 | 2 | . 40 | 1.00 |  |  |  | -5.51* |  |
| T6M9 | 1 | 2 | -40 | . 92 |  | 3 | 2 | 3.20 | . 06 |
|  |  | 3 | . 05 | 1.00 | TiolfLCA | 1 | 2 | $-1.20^{-}$ | .00.00 |
|  | 3 | 2 | -35 | 1.00 |  |  | 3 |  |  |
| T6PHL | 1 | 2 | . 21 | 1.00 |  | 3 | 2 | . 08 | 9.00 |
|  |  | 3 | -. 07 | 1.00 | TiolfRCA | 1 | 23 | $-.94^{\circ}$ | $\begin{aligned} & .01 \\ & .00 \end{aligned}$ |
|  | 3 | 2 | . 28 | . 63 |  |  |  | -1.47* |  |
| T6PHR | 1 | 2 | -. 17 | 1.00 |  | 3 | 2 | . 53 | . 37 |
|  |  | 3 | -.48 | . 18 | L1M2 | 1 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | . 62 | $\begin{array}{r} .27 \\ 1.00 \\ \hline \end{array}$ |
|  | 3 | 2 | . 31 | . 46 |  |  |  | . 24 |  |
| T6M10 | 1 | 2 | $\cdot 24$ | 1.00 |  | 3 | 2 | . 38 | 1.00 |
|  |  | 9 | --53 | . 25 | L1M1 | 1 | 2 | . 41 | . 80 |
|  | 3 | 2 | . 29 | . 81 |  |  | 3 | . 02 | 1.00 |
| T6M11 | 1 | 2 | - 13 | 1.00 | L1M6 | 3 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | . 39 | 1,00 |
|  |  | 3 | -53 | . 64 |  | 1 |  | -08 | $\begin{array}{r} 1.00 \\ .69 \end{array}$ |
|  | 3 | 2 | . 40 | , 89 |  |  |  | . 72 |  |
| T6SPL | 1 | 2 | 1.95 | . 87 |  | 3 | 2 | . 64 | $\begin{aligned} & .76 \\ & .74 \end{aligned}$ |
|  |  | 3 | $\rightarrow .25$ | 1.00 | L1M9 | 1 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | -68 |  |
|  | 3 | 2 | 2.20 | . 79 |  |  |  | -84 |  |
| T6TPW | 1 | 2 | -. 90 | 1.00 |  | 3 | 2 | . 17 | 1.00 |
|  |  | 3 | -2.16 | . 52 | L1PHL | 1 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | . 16 | 1.00 |
|  | 3 | 2 | 1.26 | 1,00 |  |  |  | . 05 | 1.00 |
| TGIFLCA | 1 | 2 | --52 | . 69 |  | 3 | 2 | 31 | 1.00 |
|  |  | 3 | -.78 | . 38 | L1PHR | 1 | 2 |  | $\begin{array}{r} 81 \\ 1.00 \end{array}$ |
|  | 3 | 2 | . 25 | 1.00 |  |  | 3 | . 07 |  |
| TGIFRCA | 1 | 2 | -1.03* | . 03 |  | 3 | 2 | . 24 | . 52 |
|  |  | 3 | -44 | 1.00 | L1M10 | 1 | 2 | -40 |  |
|  | 3 | 2 | -. 60 | 41 |  |  | 3 | -1,09* | . 01 |
| T10M2 | 1 | 2 | . 02 | 1.00 | - | 3 | 2 | 69 | 11 |
|  |  | 3 | $\underline{-37}$ | $\underline{100}$ |  |  |  |  |  |


12. Alterations of standard deviation of variables with time group 1 versus 3 ( F -values) Variable (SD) - males F (Time group 1 versus 3) SD - Time group 1 SD - Time group 3




[^2]
13. Partial correlation coefficients of variables with time before present and selected long bone measurements (variables with significant correlation with the selected long bone measurements only; whole sample)

Maximum femur length:

| Variable - males | $r$ | Variable - females | $r$ |
| :---: | :---: | :---: | :---: |
| C3M2 | 0.22 * | C3M2 | 0.16 |
| C3M1 | 0.29 ** | C3M11 | 0.30 ** |
| C3M11 | 0.27 ** | C3IFLCR | 0.38 ** |
| C3TPW | 0.15 | C3IFLCA | 0.33 ** |
| T1M2 | 0.14 | C7M2 | 0.05 |
| T1M1 | 0.03 | C7M1 | -0.14 |
| T1M9 | 0.15 | C7M11 | 0.37 ** |
| T1TPW | 0.11 | C7IFLCR | 0.06 |
| T6M2 | 0.04 | T1M2 | 0.00 |
| T6M1 | -0.04 | T6M2 | 0.01 |
| T6M6 | 0.37 ** | T6M1 | -0.11 |
| T6PHL | 0.08 | T6M6 | 0.26 |
| T6PHR | 0.09 | T6M9 | 0.01 |
| T6TPW | -0.06 | T6PHL | -0.18 |
| T10M2 | 0.26 ** | T10M2 | -0.11 |
| T10M6 | 0.38 ** | T10M1 | -0.02 |
| T10M9 | 0.19 * | T10M6 | 0.19 * |
| L1M2 | -0.14 | T10M9 | 0.22 * |
| L1M6 | 0.24 * | T10PHL | -0.07 |
| L1M9 | 0.23 * | T10PHR | -0.16 |
| L5M2 | -0.05 | T10M11 | 0.14 |
| L5M1 | 0.14 | L1M2 | -0.21* |
| L5M9 | -0.06 | L1M1 | -0.11 |
| L5M6 | 0.15 | L1M6 | 0.04 |
| L5PHR | 0.09 | L1M9 | 0.01 |
| L5M11 | 0.11 | L1PHL | -0.09 |
| L5TPW | 0.15 | L1M10 | 0.09 |
|  |  | L1M11 | 0.09 |
|  |  | L5M2 | -0.14 |
|  |  | L5M1 | 0.05 |
|  |  | L5M6 | -0.10 |
|  |  | L5M9 | -0.28 ** |
|  |  | L5PHL | -0.24 * |

Humerus minimal circumference:

| Variable - males | $\mathbf{r}$ | Variable - females | $\mathbf{r}$ |
| :--- | ---: | :--- | ---: |
|  |  |  |  |
| C7M2 | 0.13 | C7M2 | 0.14 |
| C7M6 | 0.14 | C7M6 | 0.22 |
| C7M9 | -0.16 | C7PHL | 0.01 |
| C7SPL | 0.11 |  |  |

* $=$ significant before Bonferroni's correction ( $p<0.05$ )
** $=$ significant after Bonferroni's correction ( $p<0.05$ )
Bold: increase (significants only)
italic: decrease (significants only)

14. Principal component analysis

Males
Total Variance Explained

|  | Extraction Sums of Squared Loadings |  |  |  |
| :--- | ---: | ---: | ---: | :---: |
| Component | Total | $\%$ of Variance | Cumulative $\%$ |  |
| 1 | 19.100 | 20.538 | 20.538 |  |
| 2 | 11.479 | 12.343 | 32.881 |  |
| 3 | 5.558 | 5.976 | 38.857 |  |
| 4 | 4.756 | 5.114 | 43.971 |  |
| 5 | 4.292 | 4.616 | 48.587 |  |

Extraction Method: Principal Component Analysis.

Component Matrixa

|  | Component |  |
| :--- | ---: | ---: |
|  | 1 | 2 |
| C7M2 | .741 | $-2.569 \mathrm{E}-02$ |
| C3M1 | .737 | -.141 |
| T1TPW | .690 | -.118 |
| C3M2 | .681 | -.138 |
| C3PHR | .673 | -.399 |
| C7M1 | .673 | -.119 |
| T1PHL | .655 | -.397 |
| T6M2 | .648 | -.210 |
| T1M10 | .643 | .425 |
| C3PHL | .641 | -.347 |
| C3M11 | .632 | .315 |
| T6PHR | .630 | -.508 |
| T1M2 | .621 | -.171 |
| C7IFRCA | .601 | .369 |
| T1PHR | .600 | -.226 |
| T10M9 | .600 | -.244 |
| T6PHL | .599 | -.427 |
| L5M9 | .598 | -.124 |
| T6M6 | .591 | -.355 |
| C7PHL | .585 | -.211 |
| L5IFRCR | .578 | .345 |
| T10M10 | .573 | .453 |
| L5PHR | .561 | -.294 |
| T1IFRCA | .550 | .435 |
| L5IFLCR | .543 | .140 |
| T1IFLCA | .533 | .328 |
| C7PHR | .531 | -.158 |
| C3TPW | .524 | $2.211 \mathrm{E}-02$ |
| T10PHR | .521 | $-1.043 \mathrm{E}-02$ |
| L5M6 | .513 | -.457 |
| T6TPW | .512 | $-4.289 \mathrm{E}-02$ |

F. J. Rühli-Osteometric Variation of the Human Spine

|  | Component |  |
| :---: | :---: | :---: |
|  | 1 | 2 |
| T10M2 | . 512 | -2.884E-03 |
| T10IFLCA | . 511 | . 395 |
| T1M1 | . 510 | -. 255 |
| T6M9 | . 506 | -. 476 |
| T1IFRCR | . 479 | . 428 |
| L5PHL | . 477 | -. 315 |
| C3M9 | . 473 | $1.548 \mathrm{E}-02$ |
| T1M11 | . 472 | . 260 |
| L1PHL | . 471 | -. 355 |
| L1M2 | . 453 | -1.163E-03 |
| T10PHL | . 453 | -. 143 |
| L5TPW | . 441 | -7.968E-02 |
| T1M6 | . 407 | -. 398 |
| L1IFRCR | . 406 | . 147 |
| C3IFLCA | . 384 | . 379 |
| T10TPW | . 330 | -3.407E-02 |
| L1M1 | . 292 | -6.021E-02 |
| L1M10 | . 450 | . 633 |
| C7M10 | . 532 | . 602 |
| L1IFLCR | . 201 | . 583 |
| T1IFLCR | . 336 | . 582 |
| T10M11 | . 424 | . 561 |
| C3IFRCR | . 251 | . 549 |
| C3M10 | . 268 | . 545 |
| T6M11 | . 268 | . 537 |
| C7IFLCR | -6.648E-02 | . 524 |
| L5M2 | . 381 | -. 519 |
| L5M11 | . 470 | . 508 |
| C7IFRCR | $8.430 \mathrm{E}-02$ | . 497 |
| C3IFRCA | . 374 | . 475 |
| C3IFLCR | . 207 | . 472 |
| C7IFLCA | . 391 | . 469 |
| T10IFRCA | . 356 | . 469 |
| L1M9 | . 430 | -. 464 |
| T10M6 | . 411 | -. 456 |
| L1PHR | . 448 | -. 452 |
| L1M6 | . 265 | -. 441 |
| C3M6 | . 424 | -. 433 |
| L1IFLCA | . 348 | . 427 |
| C7M11 | . 328 | . 404 |
| L1M11 | . 305 | . 404 |
| L5M10 | $6.931 \mathrm{E}-02$ | . 385 |
| C3SPL | . 178 | -. 344 |
| L5SPL | -5.713E-02 | -. 110 |
| T6M10 | . 182 | . 242 |


|  | Component |  |
| :--- | ---: | ---: |
|  | 1 | 2 |
| T1M9 | .345 | -.371 |
| T6SPL | .143 | $-7.169 \mathrm{E}-02$ |
| T6IFLCA | .217 | $8.506 \mathrm{E}-02$ |
| C7M9 | .377 | -.226 |
| C7M6 | .389 | -.390 |
| T6IFRCA | $9.026 \mathrm{E}-02$ | $2.973 \mathrm{E}-02$ |
| T6M1 | .283 | -.360 |
| L5M1 | .346 | $-4.212 \mathrm{E}-02$ |
| T10M1 | .171 | $9.265 \mathrm{E}-02$ |
| L1IFRCA | .384 | .424 |
| L1TPW | $-8.837 \mathrm{E}-02$ | $-1.991 \mathrm{E}-02$ |
| C7SPL | .271 | $6.763 \mathrm{E}-02$ |
| L1SPL | $-4.656 \mathrm{E}-02$ | $-8.793 \mathrm{E}-02$ |
| L5IFLCA | .297 | .396 |
| L5IFRCA | .138 | .395 |
| T1SPL | .203 | .217 |
| T10SPL | $3.798 \mathrm{E}-02$ | -.155 |

Extraction Method: Principal Component Analysis.
a. 5 components extracted.

Females
Total Variance Explained

| Component | Extraction Sums of Squared Loadings |  |  |
| :--- | ---: | ---: | ---: |
|  | Total | $\%$ of Variance | Cumulative \% |
|  | 25.096 | 26.985 | 26.985 |
| 2 | 11.282 | 12.131 | 39.115 |
| 3 | 6.276 | 6.749 | 45.864 |
| 4 | 5.140 | 5.527 | 51.391 |
| 5 | 4.967 | 5.340 | 56.731 |

Extraction Method: Principal Component Analysis.

Component Matrix ${ }^{\text {a }}$

|  | Component |  |
| :--- | ---: | ---: |
|  | 1 | 2 |
| C3M2 | .746 | -.397 |
| C3M1 | .354 | -.493 |
| C3M6 | .274 | -.361 |
| C3M9 | .548 | $-7.784 \mathrm{E}-02$ |
| C3PHL | .684 | -.352 |
| C3PHR | .763 | -.355 |
| C3M10 | .636 | .321 |
| C3M11 | .647 | .203 |
| C3SPL | .157 | $6.055 \mathrm{E}-02$ |
| C3TPW | .499 | -.251 |
| C3IFLCR | .538 | .329 |
| C3IFLCA | .626 | .444 |
| C3IFRCR | .504 | .510 |
| C3IFRCA | .381 | .384 |
| C7M2 | .808 | -.253 |
| C7M1 | .724 | -.213 |
| C7M6 | .547 | -.325 |
| C7M9 | .372 | -.373 |
| C7PHL | .503 | -.262 |
| C7PHR | .551 | -.249 |
| C7M10 | .634 | .425 |
| C7M11 | .447 | .333 |
| C7SPL | $6.012 \mathrm{E}-02$ | .277 |
| C7IFLCR | .629 | .249 |
| C7IFLCA | .454 | .626 |
| C7IFRCR | .637 | .488 |
| C7IFRCA | .429 | .614 |
| T1M2 | .801 | -.249 |
| T1M1 | .648 | -.250 |
| T1M6 | .492 | -.229 |
| T1M9 | .149 | -.450 |

F. J. Rühli - Osteometric Variation of the Human Spine

Component Matrix ${ }^{\text {a }}$

|  | Component |  |
| :---: | :---: | :---: |
|  | 1 | 2 |
| T1PHL | . 575 | -. 253 |
| T1PHR | . 676 | 9.149E-03 |
| T1M10 | . 664 | . 400 |
| T1M11 | . 487 | . 170 |
| T1SPL | . 348 | -. 185 |
| T1TPW | . 410 | -. 112 |
| T1IFLCR | . 572 | . 612 |
| T1IFLCA | . 498 | . 633 |
| T1IFRCR | . 623 | . 428 |
| T1IFRCA | . 440 | . 496 |
| T6M2 | . 556 | -. 454 |
| T6M1 | . 346 | -. 529 |
| T6M6 | . 470 | -6.339E-02 |
| T6M9 | . 456 | -. 525 |
| T6PHL | . 630 | -. 246 |
| T6PHR | . 673 | -. 103 |
| T6M10 | . 294 | . 212 |
| T6M11 | . 570 | $2.183 \mathrm{E}-03$ |
| T6SPL | . 186 | 2.837E-02 |
| T6TPW | . 510 | -4.962E-02 |
| T6IFLCA | . 144 | -. 144 |
| T6IFRCA | . 406 | $8.234 \mathrm{E}-02$ |
| T10M2 | . 499 | -. 319 |
| T10M1 | . 216 | -. 443 |
| T10M6 | . 511 | -. 235 |
| T10M9 | . 440 | -. 482 |
| T10PHL | . 588 | -9.590E-02 |
| T10PHR | . 654 | -. 248 |
| T10M10 | . 559 | . 396 |
| T10M11 | . 719 | -5.214E-02 |
| T10SPL | . 274 | -. 317 |
| T10TPW | . 427 | . 122 |
| T10IFLCA | . 202 | . 423 |
| T10IFRCA | . 289 | . 566 |
| L1M2 | . 507 | -. 124 |
| L1M1 | . 488 | -. 482 |
| L1M6 | . 529 | -. 240 |
| L.1M9 | . 556 | -. 512 |
| L1PHL | . 653 | -8.866E-04 |
| L1PHR | . 581 | -. 255 |
| L1M10 | . 754 | . 231 |
| L1M11 | . 576 | -. 187 |
| L1SPL. | . 383 | -. 328 |
| L1TPW | . 189 | -. 406 |
| LIIFLCR | . 350 | . 397 |


|  | Component |  |
| :--- | ---: | ---: |
|  | 1 | 2 |
| LIIFLCA | .473 | .637 |
| L1IFRCR | .416 | .245 |
| L1IFRCA | .562 | .500 |
| L5M2 | .406 | -.193 |
| L5M1 | .448 | -.137 |
| L5M6 | .668 | -.217 |
| L5M9 | .669 | -.117 |
| L5PHL | .751 | $-5.708 \mathrm{E}-02$ |
| L5PHR | .817 | -.157 |
| L5M10 | .373 | .120 |
| L5M11 | .607 | .143 |
| L5SPL | $7.559 \mathrm{E}-02$ | -.462 |
| L5TPW | $5.843 E-02$ | $6.868 \mathrm{E}-02$ |
| L5IFLCR | .478 | .484 |
| L5IFLCA | .165 | .539 |
| L5IFRCR | .419 | .658 |
| L5IFRCA | .268 | .446 |

Extraction Method: Principal Component Analysis.
a. 5 components extracted.

Rühli, F.J., Schultz, M., and Henneberg, M., (2002) Microevolution of the central European human vertebral column since the Neolithic: preliminary osteometric assessment and interpretations.
American Journal of Physical Anthropology, suppl. 34, pp. 134-135.

## NOTE:

This publication is included on page 439 in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:
http://dx.doi.org/10.1002/ajpa. 20014


[^0]:    F. J. Rühli - Osteometric Variation of the Human Spine

[^1]:    F. J. Rühli-Osteometric Variation of the Human Spine

[^2]:    F. J. Rühli - Osteometric Variation of the Human Spine

