
PUBLISHED VERSION 

 

Fruzangohar, Mario; Kroeger, Trent Anthony; Adelson, David Louis  
Improved part-of-speech prediction in suffix analysis, PLoS One, 2013; 8(10):e76042. 
 
 
© 2013 Fruzangohar et al. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/81013 

PERMISSIONS 

http://www.plosone.org/static/license  

Open-Access License 

 

No Permission Required 

PLOS applies the Creative Commons Attribution License (CCAL) to all works we publish (read the 
human-readable summary or the full license legal code). Under the CCAL, authors retain ownership of 
the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, 
and/or copy articles in PLOS journals, so long as the original authors and source are cited. No 
permission is required from the authors or the publishers. 

In most cases, appropriate attribution can be provided by simply citing the original article (e.g., 
Kaltenbach LS et al. (2007) Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration. 
PLOS Genet 3(5): e82. doi:10.1371/journal.pgen.0030082). If the item you plan to reuse is not part of a 
published article (e.g., a featured issue image), then please indicate the originator of the work, and the 
volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a 
work, you must also make clear the license terms under which the work was published. 

This broad license was developed to facilitate open access to, and free use of, original works of all 
types. Applying this standard license to your own work will ensure your right to make your work freely 
and openly available. Learn more about open access. For queries about the license, please contact us. 

 

 

4th December 2013 

http://hdl.handle.net/2440/81013
http://www.plosone.org/static/license
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/legalcode
http://www.plos.org/oa/
http://www.ploscompbiol.org/static/contact
http://creativecommons.org/licenses/by/2.5/


Improved Part-of-Speech Prediction in Suffix Analysis
Mario Fruzangohar1, Trent A. Kroeger2, David L. Adelson1*

1 School of Molecular & Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia, 2 School of Computer Science, University of Adelaide, Adelaide,

South Australia, Australia

Abstract

Motivation: Predicting the part of speech (POS) tag of an unknown word in a sentence is a significant challenge. This is
particularly difficult in biomedicine, where POS tags serve as an input to training sophisticated literature summarization
techniques, such as those based on Hidden Markov Models (HMM). Different approaches have been taken to deal with the
POS tagger challenge, but with one exception – the TnT POS tagger - previous publications on POS tagging have omitted
details of the suffix analysis used for handling unknown words. The suffix of an English word is a strong predictor of a POS
tag for that word. As a pre-requisite for an accurate HMM POS tagger for biomedical publications, we present an efficient
suffix prediction method for integration into a POS tagger.

Results: We have implemented a fully functional HMM POS tagger using experimentally optimised suffix based prediction.
Our simple suffix analysis method, significantly outperformed the probability interpolation based TnT method. We have also
shown how important suffix analysis can be for probability estimation of a known word (in the training corpus) with an
unseen POS tag; a common scenario with a small training corpus. We then integrated this simple method in our POS tagger
and determined an optimised parameter set for both methods, which can help developers to optimise their current
algorithm, based on our results. We also introduce the concept of counting methods in maximum likelihood estimation for
the first time and show how counting methods can affect the prediction result. Finally, we describe how machine-learning
techniques were applied to identify words, for which prediction of POS tags were always incorrect and propose a method to
handle words of this type.

Availability and Implementation: Java source code, binaries and setup instructions are freely available at http://genomes.
sapac.edu.au/text_mining/pos_tagger.zip.

Citation: Fruzangohar M, Kroeger TA, Adelson DL (2013) Improved Part-of-Speech Prediction in Suffix Analysis. PLoS ONE 8(10): e76042. doi:10.1371/
journal.pone.0076042

Editor: Jérémie Bourdon, Université de Nantes, France

Received June 7, 2012; Accepted August 26, 2013; Published October 4, 2013

Copyright: � 2013 Fruzangohar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: david.adelson@adelaide.edu.au

Introduction

Hidden Markov Models (HMM) have been used in Part-Of-

Speech (POS) tagging of text for 30 years. HMM and, more

recently, Conditional Random Field (CRF) models [1] have been

shown to be more accurate compared to other rule based methods

such as [2], according to [3].

In the process of tagging articles, one always comes across new

words. When training corpora are limited, this problem becomes

more acute. Biology in particular, with its proliferation of new

words and new gene ontology terms, requires a POS tagger with

an efficient method to handle new words. The existence of special

characters (capitals, numbers, hyphens or symbols) is the first

characteristic used to predict a word tag. If a new word does not

contain any special characters, particularly when that word is

made of all alphabetic lower case characters, the best method to

predict a word tag is to examine the lexical structure of the word,

such as the suffix and postfix. In English and some other

languages, the suffix is a strong predictive feature for word

tagging. In this study we first implemented the TnT POS tagger as

a standard machine learning tagger. We then used TnT’s suffix

analysis method to handle new words. Subsequent testing of TnT

system gave an unsatisfactory result for suffix analysis, prompting

us to design and implement a novel method, which increased

accuracy from 66 to 95 percent.

The problem of handling new words has previously been

addressed by manually extending the lexicon by adding new words

and all of their possible tags to existing lexicon, as in [4], and while

this method seems to be simple and accurate, it requires ongoing

effort to identify new biological words and add them to the lexicon.

This is particularly problematic in the field of biology, where new

chemical, biochemical and genetic terms are emerging in papers

every day. So, for this study, we did not consider a lexicon-based

method to be appropriate for POS tagging of new biological

words. Instead, we focused on improving machine learning

techniques for POS tagging, using word lexical features such as

special characters and suffixes [5], [6]. We will show how we can

achieve better performance by mixing this approach with our

proposed machine leaning method.

Hidden Markov Model Theory of POS Tagging
If a sentence of length N, contains words w1, w2…,wN, and POS

tags for them are t1, t2…, tN, then according to the topology of the

HMM the joint probability of this combination will be:

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e76042



p(t1:::N ,w1:::N )~ P
N

i~1
p(ti Dti{1,ti{2)p(wi Dti) ð1Þ

The first term is p(ti|ti21,ti22), and suggests that each word tag

depends on 2 previous tags. This is known as a 3-gram HMM and

has been chosen because it has been previously shown that 3-

gramsare more accurate than 4-grams [7]. We can estimate this

term by counting 3-gram frequencies, and for zero frequency 3-

grams we use a previously described efficient smoothing algorithm

[8].

The second term is p(wi | ti), which determines the word

probability distribution given a POS tag, and we refer to it from

now on as the word conditional probability. This conditional

probability shows that the probability of one observation (word)

only depends on its current state (tag), not on previous or

subsequent states.

To estimate this term, we needed first to process our training

corpus. We calculated the frequency with which each word occurs

in the corpus and built a lexicon database table to store those

frequencies. For simplicity we show the lexicon database table with

its fields defined below:

lexicon½word,tag,freq� ð2Þ

Subsequently, for each word in our lexicon we determined the

maximum likelihood estimation (MLE):

pmle(wi Dti)~
frequency(wi,ti)

frequency(ti)
ð3Þ

Where the numerator is the number of times word wi had tag ti in

our ontology database table and the denominator is the number of

times that tag ti was assigned to a word. Both of these were

determined using lexicon database table.

Of course, our training corpus only contained a limited number

of words, whereas our HMM system must be able to deal with text

containing many words that do not exist in our lexicon database

table (unseen words). Thus for unseen words, the Pmle will be zero

and not applicable for equation 1.

In this situation, the most predictive features of a word’s tag in

English and some other languages are its suffix and special

characters. For example a word ending in ‘_ing’ can have tags

VVG, VVJG and VVNG (see Table S1). In this paper we propose

a solution to estimate the probability of a word with a particular

suffix, having a particular tag. For example, we estimate

p(Suffix = ing | Tag=VVG). In other words:

p(suffixlm{iz1:::lmDtag) ð4Þ

Then we propose a comprehensive character feature analysis

and a method to interpolate suffix and character feature

probabilities into a single probability to be used in equation (1).

Wherever a word does not exist in our lexicon, Pmle(word|tag) is

zero. We have also used suffix analysis to determine the

conditional probabilities of our lexicon words for unseen tags,

and we show how efficient suffix information can be used to

smooth word probabilities associated with all possible tags,

particularly where the conditional probability of a word is based

on sparse or unseen POS tags.

In this study, we first explain the previously published TnT

method and describe its shortcomings, which led us to propose a

simple method for estimating a word’s conditional probability. We

have evaluated both approaches using real data, and can

demonstrate that our method provides a significant improvement

in accuracy. We also report optimal parameter settings for both

methods.

We have also compared our POS tagger with another state-of-

the-art POS tagger that is very well trained based on corpora from

different fields including technical terms and these results confirm

our POS tagger’s efficiency in tagging biological terms such as

genes and protein names.

Suffix Prediction Methods
1 TnT/Probability interpolation [7]. The central concept

in this method was first used in the original TnT POS-tagger, but

some parameters are discussed in [7]. Here we explain these

parameters and will show how to set them in our experiments.

If a word of length m ends with a suffix of length i, shown as lm-

i+1…lm, then that word also ends in a suffix of length i21, lm-

i+2…lm, until the suffix length is 0.We therefore need to interpolate

probabilities between suffix lengths i and i21, to be able to derive

the probability to be used in (4). First we estimated:

p(tagDsuffixlm{iz1:::lm) ð5Þ

To estimate (5), we first determined the frequency of each suffix

in our lexicon. In order to do this, we examined all words in lexicon

database table, and counted the occurrences of each suffix. Finally

we made a new database table for suffixes containing suffix, tag

and frequency:

suffix½suffix,tag,freq1,freqn� ð6Þ

Here we used two counting methods and stored the results of

both (freq_1 and freq_n) in suffix database table. freq_1 is the raw

frequency, in that we do not multiply the frequency of the suffix by

the frequency of the word itself in lexicon database table. For freq_n,

we multiply the suffix frequency by the word frequency in lexicon

database table. We know that for each suffix-tag pair:

freq n(suffix,tag)§freq 1(suffix,tag)

The counting method can affect the accuracy of different

probability interpolation methods, and we demonstrate this below

when applied to real datasets. In fact, our study is the first study to

examine the effect of multiplier in counting for MLE estimations

of suffix.

It is clear that we can re-state pmle in (5) as:

pmle(tagDsuffixlm{iz1:::lm)~
frequency(tag,lm{iz1:::lm)

frequency(lm{iz1:::lm)
ð7Þ

pmle can then be estimated using data from suffix database table.

This probability is a proportion, because, pmle(tag =VVJ |

suffix = ‘ing’) is equivalent to the proportion of words with suffix

‘ing’ that are tagged as VVJ, and we know that:

Improved POS Tagger

PLOS ONE | www.plosone.org 2 October 2013 | Volume 8 | Issue 10 | e76042



XK

j~1

p(tag~tj Dsuffixlm{iz1:::lm)~1 ð8Þ

Where k is the maximum number of POS tags (in Table S1, k equals

60).

So for probability interpolation we can state:

pint(tagDlm{iz1:::lm)~l1pmle(tagDlm{iz1:::lm)

zl2pint(tagDlm{iz2:::lm)
ð9Þ

Where

l1zl2~1

Equation 9 is recursive and starts from p(tag), meaning that the

probability for a suffix with length 1 is interpolated with p(tag).As

an initial condition, we assume:

pint(tag)~pmle(tag)

We continue interpolating until maximum length 5. [7] has

proposed a maximum length of 10, but [4] have argued that well

known English suffixes are not more than 4 characters in length

and they have proposed using a maximum length of 4. Therefore

we concluded that for English, 5 was a reasonable maximum

length.

In the TnT/probability interpolation method, the estimation of

coefficients l1 and l2 is based on the standard deviation of

pmle(tag) for all tags, which usually yields values between 0.03 and

0.10.

h~
1

k{1

Xk

j~1

½pmle(tj){p�2 ð10Þ

Where k is the number of POS tags, and in the example presented

in Table S1 is 60.

l1~
1

1zh
,l2~

h

1zh
ð11Þ

In the TnT method, h is calculated regardless of context, meaning

that coefficients are fixed for all suffixes and tags. In addition, two

parameters are not specified. The first parameter is the counting

method, the values for which were stored in database table suffix,

and referred to as freq_1 and freq_n. The second parameter is the

interpolation method, and is how suffixes are interpolated in 9. We

propose 3 different interpolation methods, which reflect the degree

or depth of interpolation. To illustrate these different methods we

used a 2 dimensional array to store all of the MLE probabilities

needed. For example in the word ‘tubulointerstitial’, we started

from suffix ‘l’ up to suffix ‘itial’, we estimated the MLE probability

and marked the array cells below if we had an entry for that suffix-

tag pair in the ‘suffix’ table:

For each column in Table 1 we can interpolate three ways:

1) We interpolate up to the maximum suffix length that has an

entry in the suffix database table. In this example the suffix is

‘tial’ which has a length of 4, so depending on the entries in

the Table 1, it could be any value from 1 to 5, in this example

the maximum value is in column ‘JJ’.

2) We interpolate up to 5 levels regardless of the existence of a

corresponding entry in the suffix database table.

3) We interpolate until we have an entry for that tag in the suffix

database table. For example for column tag ‘VVI’, we

interpolate for 2 levels.

After estimating the interpolated probability for each column of

Table 1, we used the following Bayesian rule to estimate (4):

p(suffixDtag)~
p(suffix)

p(tag)
p(tagDsuffix) ð12Þ

For p(tag), we used the sum of the frequencies of all the rows in

the suffix database table for that tag. For p(suffix), we used the sum

of frequencies of all the rows with a suffix of length 1 (the choice of

length is arbitrary because it is the relative value for each tag that is

important in equation 1). Suffixes of length 1 represent the

maximum suffix frequency because suffix counts are cumulative.

Therefore, in our example for the word ‘tubulointerstitial’, to

calculate the probability ratio in (12), for a tag ‘NN’ we would use

the following value:

p(suffix)

p(tag)
~

P
rows{with{suffix~itial

freq

P
rows{with{tag~NN

freq
ð13Þ

This allowed us to calculate the joint probability in (1) using the

Viterbi algorithm [9].

2 Maximum Suffix Length (MSL) method. This method

differs from the suffix probability interpolation approach because

it only requires the probability of the maximum length suffix for

each tag. For this, we created a 2-dimensional array based on

Table 1 as previous method. For example to estimate p(‘tubulo-

interstitial’| tag= JJ), we used Table 1, and for example it was

apparent from column JJ that the best option was to use the suffix

‘tial’, which we were able to estimate using the suffix database table

as shown below:

p(0tubulonterstitial 0Dtag~JJ)~
P

rows{with{suffix~0tial0and{tag~JJ

freq

P
rows{with{tag~JJ

freq

ð14Þ

By estimating (14), we were able to use it directly in (2) by

applying the Viterbi algorithm [9]. In the following sections we

demonstrate the increased efficiency of MSL over the TnT

probability interpolation method.

Materials and Experimental Design
1 Implementing POS tagger. We implemented a trigram

HMM and used a linear interpolation method between unigram

and bigram [7,10–12] for smoothing. We trained our HMM using

Improved POS Tagger

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e76042



a tagged corpus available from NCBI [4], using maximum

likelihood training for better performance [13].

We built our lexicon and suffix database tables based on

frequencies acquired from the training corpus. Our database

tables contained 20,662 lexicon word-tags (18,416 distinct words)

and 16,004 suffix database table suffix-tag pairs. We used the set of

POS tags defined in Table S1. We performed our suffix analyses to

estimate the smoothed probability of all known words in our

lexicon for unseen POS tags (as opposed to using the suffix

analyser for unseen words), and updated lexicon database table for

newly detected tags and their conditional probabilities.

We then analysed all the words in lexicon database table, for the

occurrence of special characters (punctuation, Greek letters, digits,

symbols, etc…) and lower/upper case letters. In order to do this,

we assigned a feature string to each word, representing the type

and order of characters used in that word. We then estimated the

maximum likelihood probability for each feature string and stored

that information in char_ feature database table, as we did for suffix

database table:

char feature(feature string,tag,freq) ð15Þ

To estimate Pmle(word|tag), we first looked up each word in

lexicon database table, for each match we used all the smoothed tag

probabilities. If we couldn’t find a match, we retrieved the word’s

character feature conditional probability pchar_feature using char_fea-

ture database table. This probability was informative if the word

contained upper case letters or numbers or other non-letter

characters. But if the word was all lower case, it was not very

helpful, so for this situation we used the suffix conditional

probability psuffix from suffix database table. Once this process

was complete, we had a value for Pmle(word|tag), that might have

originated from lexicon, suffix or char_feature database tables, for use

in equation (1). Finally, used the Viterbi algorithm [9] to tag the

whole sentence.

2 Experiment 1; suffix analysis comparison. In order to

compare the MSL method to the probability interpolation

method, we designed the following experiment. First, we applied

the interpolation method with different values for two parameters:

Counting Method and Interpolation Method, where Counting Method

values 1 and 2 stand for freq_1 and freq_n and Interpolation Method has

values 1, 2 and 3 as defined in section 2.1. This resulted in 263

different parameter combinations.

For the MSL method, only the Counting Method parameter

changes the tagging result. We used Counting Method with values of

1 and 2, resulting in a total of 8 different parameter sets.

To prepare testing data, we downloaded biological articles from

the NCBI website [14]. We randomly selected 450 articles from

different biological journals, utilising the Viterbi algorithm [9] to

tag sentences in these articles.

To determine which words should be tagged based on their

suffixes we used the following method. First we checked words in a

case independent fashion in the lexicon database table. If we found

no match, we tested the word for known patterns, such as

numbers, number ranges, ordered numbers, etc… We selected

lowercase non-matching words that failed to contain known

patterns for suffix analysis. We carried out the suffix analysis with

our 8 different parameter sets for the two methods. We only

recorded POS tag results that were discordant as a function of

parameter or method, as we were interested in the relative

performance of the two methods.

3 Experiment 2; state-of-art stanford maxent tagger

comparison. In the second experiment we compared the

overall performance of our POS tagger, with a popular and

mature POS tagger. We selected the Maxent POS tagger [5] for 2

reasons: first, this POS tagger has reported a higher accuracy in

tagging unknown words and second, this POS tagger has been

developed using Java, like our POS tagger. This POS tagger is

based on a second order conditioning model and maximum

entropy classifiers [6], and uses a cyclic dependency network. This

POS tagger comes with different models and we selected the most

complete and accurate model called ‘english-bidirectional-distsim’,

which was trained based on Wall Street Journal (WSJ) data, extra

English data and technical English data.

MaxentTagger uses The University of Pennsylvania (Penn)

Treebank tag-set which consists of 45 POS tags, while our tag-set

consists of 60 POS tags (see Table S1). These 2 tag sets have nearly

the same POS categories but with different notations and our POS

tags are more specific with respect to verbal forms. In order to

make a fair comparison, we made a table that maps each tag from

one tag-set to its equivalent in another tag-set. We then selected 20

randomly selected articles from NCBI (experiment 1), extracted

sentences, and tagged them with both POS taggers.

The first difference we observed was related to the way the two

taggers tokenized sentences. Our tokeniser was more accurate in

detecting numbers, signs and complex biological names, particu-

larly where a biological name contained special characters like a

hyphen, parenthesis, slash, dot or other symbol. In many cases,

MaxentTagger tended to split those words, and in some cases

combined punctuation characters with the actual word, which led

to incorrect results.

We excluded all the tokens that were tokenised differently by the

two taggers and only compared the POS tags of similar words. We

disregarded words with concordant tags and only logged words

with discordant tags (using the mapping table connecting the two

tag-sets), as we were interested in the relative performance of the

two methods.

Table 1. suffix versus tags for each suffix in suffix database table.

Suffix POS tags

DB VVI II CS VM NN RR NNP PND JJ VVB DD

l freq(DB,l) freq(VVI,l) freq(CS,l) freq(CS,l) freq(VM,l) freq(NN,l) freq(RR,l) freq(NNP,l) freq(PND,l) freq(JJ, l) freq(VVB,l) freq(DD,l)

al freq(VVI,al) freq(NN,al) freq(RR,al) freq(JJ,al) freq(VVB,al)

ial freq(NN,ial) freq(JJ,ial)

tial freq(NN,tial) freq(JJ,tial)

itial

doi:10.1371/journal.pone.0076042.t001

Improved POS Tagger

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e76042



Results

1 Experiment 1
After processing 450 biological articles, we tagged a total of

79,791 words based on suffix analysis, of those, 28,895 words with

discordant POS tags were identified. We randomly selected a total

of 1,500 words in 156100 word samples, and manually corrected

them, (Table S2) with a summary of the results shown in Table 2.

We found that 88.86% of the discordant POS tags were

correctly assigned using the maximum length method, compared

to7.2% using the interpolation method. Overall (concordant plus

discordant), the MSL method was nearly 50% (95.82% vs.

66.39%) more accurate than the interpolation method for suffix

prediction. We have shown that the accuracy of suffix based POS

tagging can be greater than 95.96% according to line 2 of Table 2.

2 Experiment 2
After processing 20 articles, we found 246 differentially tagged

words where MaxentTagger was correct 48% of the time and our

tagger was correct 52% of the time. MaxentTagger was better at

detecting proper nouns (NNP) like city names, countries and

persons, not surprising considering its comprehensive corpus, but

our POS tagger was more accurate in tagging biological names. In

many cases MaxentTagger incorrectly tagged biological names

and symbols as FW (Foreign Word).

Considering the fact that our training corpus was significantly

smaller and limited to biological texts, but that it still out

performed MaxentTagger, we conclude our POS tagger was more

efficient at tagging biological texts.

Discussion

We have shown that the MSL method is much more accurate

than the probability interpolation method for POS tagging

biological words based on suffix analysis. The MSL method is

relatively insensitive to the Counting Method parameter, but the

freq_n multiplier method gave a slightly better result. We also have

the optimum parameter selection for the interpolation method

where Counting Method 1 (multiplier 1) and interpolation method 3,

yielded the best result.

In addition to superior accuracy, the MSL method is much

faster than the interpolation method, this is because it not only

performs fewer calculations in equation (9), but also obviates the

need for calculations required by equation 12. Because we stored

our lexicon and suffix tables in a database, the MSL method

required significantly less time for database access. Both methods

exhibit linear time complexity, so they do not differ in that regard.

It should be mentioned that some words were incorrectly POS

tagged in all 8 parameter sets. This shows that all machine

learning methods failed to POS tag some unknown words.

Surprisingly, these words are all common English words and

none of them are specifically biological words. Fortunately they

account for a very low percentage of all unknown words in

biological articles (less than 1% in our experiment). These errors

occurred because these common English words were similar to

known suffixes in our lexicon. In Table 3, we have listed the

problematic words we detected in our dataset.

These unknown common English words are not actually

unknown, but they were unknown to our lexicon, that was

constructed based on our training corpus, so it makes sense to

manually add them along with their POS tags to our lexicon as

suggested in [4]. The work required to add new common English

words is significantly less than for new biological words, since

unknown common English words accounted only one percent of

all of the unknown words encountered. For example in the case of

irregular verbs (that don’t exist in the lexicon database table), of

which there are about 190, we could simply add them to the lexicon

database table. However, according to our results, predicting the

POS tag of a new biological word is fairly accurate (more than

95.96% based on our results) using our machine learning method.

An alternative and more complicated machine learning method

would be to use noun and verb phrases, based on grammar rules.

For example, we could try to parse our sentences based on tags,

allowing us to detect phrases that violate grammar rules, based on

incorrect POS tags. We could then replace incorrect tags with

more appropriate ones. This method is non-trivial and needs more

research, but one possible approach might bet to use dynamic

CRF [15] with tag and phrase information to train the CRF based

Table 2. Statistics in all 15 samples for each parameter set.

Main Method
Counting
Method

Interpolation
Method

Samples Mean
(number of correct tags)

Total
correct tags

Overall
Accuracy

MSL method Freq_1 N.A. 88.46 1327 95.82%

MSL method Freq_n N.A. 88.86 1333 95.96%

Probability Interpolation Method Freq_1 Method 1 3.4 51 65%

Probability Interpolation Method Freq_1 Method 2 3.33 50 64.99%

Probability Interpolation Method Freq_1 Method 3 7.2 108 66.39%

Probability Interpolation Method Freq_n Method 1 2.66 40 64.74%

Probability Interpolation Method Freq_n Method 2 2.4 36 64.65%

Probability Interpolation Method Freq_n Method 3 5.14 77 65.64%

doi:10.1371/journal.pone.0076042.t002

Table 3. Words incorrectly tagged with all methods.

Word Wrong Tag Correct Tag

breathe DD VVI

comply RR VVI

kept II VVN

obese DD JJ

bring VVG VVI

kits PNG NNS

doi:10.1371/journal.pone.0076042.t003

Improved POS Tagger

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e76042



on 2 features. We expect we could further reduce the number of

POS tag errors significantly in this fashion.

Based on comparison of our POS tagger with MaxentTagger,

we conclude that our tokenising method tokenised sentences much

better than MaxentTagger’s tokeniser. Even though MaxentTag-

ger was more accurate tagging common English words and proper

nouns, our tagger was better at unknown biological names and

gene ontology, due to combined MSL suffix and character feature

analysis. Finally, we also showed the importance of suffix

probabilities for smoothing the conditional probabilities of unseen

POS tags based on known words from our lexicon.

Supporting Information

Table S1 Table of POS tags used in our experiment.

(DOC)

Table S2 Table of 15 manually corrected word samples.

(DOC)

Author Contributions

Conceived and designed the experiments: MF TK DLA. Performed the

experiments: MF. Analyzed the data: MF TK DLA. Contributed reagents/

materials/analysis tools: MF. Wrote the paper: MF DLA.

References

1. Lafferty JD, McCallum A, Pereira FCN (2001) Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. Proceedings

of the Eighteenth International Conference on Machine Learning: Morgan

Kaufmann Publishers Inc. 282–289.

2. Brill E (1992) A simple rule-based part of speech tagger. Proceedings of the third

conference on Applied natural language processing. Trento, Italy: Association

for Computational Linguistics. 152–155.

3. Hahn U, Wermter J (2004) Tagging medical documents with high accuracy.

PRICAI 2004: Trends in Artificial Intelligence: 852–861.

4. Smith LH, Rindflesch TC, Wilbur WJ (2006) The importance of the lexicon in

tagging biological text. Natural Language Engineering 12: 335–351.

5. Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-rich part-of-

speech tagging with a cyclic dependency network. Proceedings of the 2003

Conference of the North American Chapter of the Association for Computa-

tional Linguistics on Human Language Technology-Volume 1. Edmonton,

Canada: Association for Computational Linguistics. 173–180.

6. Ratnaparkhi A (1996) A maximum entropy model for part-of-speech tagging.

Proceedings of the conference on empirical methods in natural language

processing. 133–142.

7. Brants T (2000) TnT: a statistical part-of-speech tagger. Proceedings of the Sixth
Conference on Applied Natural Language Processing. Seattle, Washington,

USA: Association for Computational Linguistics. 224–231.

8. Chen SF, Goodman J (1999) An empirical study of smoothing techniques for
language modeling. Computer Speech & Language 13: 359–393.

9. Forney Jr GD (1973) The viterbi algorithm. Proceedings of the IEEE 61: 268–
278.

10. Cutting D, Kupiec J, Pedersen J, Sibun P (1992) A practical part-of-speech

tagger. Association for Computational Linguistics. 133–140.
11. Padró M, Padró L (2004) Developing competitive HMM PoS taggers using small

training corpora. Advances in Natural Language Processing: 127–136.
12. Dimitris G, Evangelos D (2004) Part-of-speech tagging in molecular biology

scientific abstracts using morphological and contextual statistical information.

Methods and Applications of Artificial Intelligence: 371–380.
13. Merialdo B (1994) Tagging English text with a probabilistic model.

Computational linguistics 20: 155–171.
14. NCBI (2011) PUBMED Journals. NCBI. pp. ftp://ftp.ncbi.nlm.nih.gov/pub/

pmc/articles.tar.gz. Accessed Jan. 4 2012.
15. Sutton C, Rohanimanesh K, McCallum A (2004) Dynamic conditional random

fields: Factorized probabilistic models for labeling and segmenting sequence

data. ACM. 99.

Improved POS Tagger

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e76042


