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Abstract

Making inference in everyday life often requires people to
make inferences about low frequency events. In the most ex-
treme case, some types of object or event may have never been
previously observed. An experiment is presented in which par-
ticipants needed to infer the existence and number of unob-
served event types, based solely on the frequency distribution
of a set of observed events. Results indicate people’s infer-
ences are sensitive to the shape of the distribution over the ob-
served events, even when the number of observed events and
event types is held constant, and that people are able to infer
abstract rules that describe entire classes of event distributions.
Human inferences are shown to be similar to those made by a
hierarchical Bayesian model.

Keywords: inductive inference, Bayesian cognition, fre-
quency effects, concept learning

Imagine you are walking through the bushlands in a foreign
land. You are accompanied by a local guide, who comments
on the plant life around you. So far she has described 20
plants as alba, 20 plants as glabra and another 20 as eburnia.
On this basis it is tempting to think that albas, glabras and
eburnias are the only types of plants around, or at least the
only plant types that your guide is intending to label for you.
You could not be certain that this is the correct inference of
course, but it seems sensible.

Contrast this with a slightly different scenario, in which
your guide refers to 58 of the plants as albas, points to one
example of a glabra and one example of an eburnia. Again,
it is impossible to be sure what to believe, but it seems much
less reasonable to conclude that these are the only three plant
labels that your guide is ever going to use. Both scenarios
involve 60 plants and 3 category labels, yet they do not feel
equivalent.

The logic behind this intuition is relatively straightforward.
In the second example, you have evidence of the existence of
low-frequency types, whereas in the first example you do not.
The fact that some types are relatively rare suggests that there
may be other rare types that you have not yet seen. In other
words, the shape of the frequency distribution plays a power-
ful role in shaping our inductive inferences in this problem.
This is illustrated in Figure 1.

In essence, this is a category learning problem: the learner
has encountered a new kind of object (the foreign plants) and
is attempting to learn the extension of the category with re-
spect to a particular feature (the labels). Viewed as a cate-
gory learning problem, the different inferences drawn in the
two cases are an example of a frequency effect, though of a

rather different character than the usual exemplar frequency
effects. The key difference is that the effect does not pertain
to a specific exemplar, but instead is an effect that pertains to
the overall frequency distribution. In the first case, the learner
has evidence that the frequency distribution is homogeneous:
the observed exemplars have equal frequency. In the second
case, the evidence implies that the frequency distribution is
long-tailed, meaning that there are a small number of items
that are very common, but most observations are quite rare.

Frequency effects in categorization and choice

Exemplar frequency effects are well-established in the cate-
gorization literature: for instance, high-frequency exemplars
are classified more accurately, and are judged to be more typ-
ical of the category than are low-frequency items (Nosofsky,
1988). However, although the role of item frequency is well-
studied (Nosofsky, 1988; Barsalou, 1985; Barsalou, Hutten-
locher, & Lamberts, 1998), the inductive inference described
earlier is rather different to exemplar frequency effects as
they are traditionally conceived. In both examples the ob-
served frequency of blue, purple, white or any other color
flower is zero, yet they differ in terms of the expected sub-
jective frequency. That is, changing the distribution of the
same set of three types (albas, glabras, eburnias) alters the
expectations about the probabilities associated with as-yet-
unobserved types.

Frequency effects of a different kind arise in the judgment
and decision making literature. In this literature the focus
is on how much weight people place on low-frequency out-
comes when evaluating possible options, whereas the concept
learning literature tends to focus on the role of high-frequency
items. Although much of the early evidence (Kahneman &
Tversky, 1979; Tversky & Fox, 1995) suggested that people
tend to overweight low-frequency events, there is some evi-
dence indicating that this applies primarily to described fre-
quencies, and not to experienced ones (e.g. Barron & Erev,
2003; Hertwig, Barron, Weber, & Erev, 2004), though much
of this difference can be attributed to the different information
and feedback available to participants (e.g. Rakow, Demes, &
Newell, 2008; Camilleri & Newell, 2011). As with the cate-
gory learning literature, these studies have focused on events
whose observed frequency is at least one, rather than looking
at the inferences people make about never-observed events.
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Figure 1: Illustration of why the shape of the type-token distribution
matters. Suppose you had observed several observations of types A,
B, and C, all of which are equally frequent (panel a). In order to
believe that there are more hidden types D, E and F, one is required
to postulate that the true distribution looks like panel b. If, however,
the empirical frequencies observed were asymmetric (panel c), then
in order to believe in hidden types D, E and F, one is required only
to postulate a rank-frequency distribution like the one in panel d. To
the extent that the distribution in panel b feels less natural than those
in panels a, c and d, people should be expected to draw different in-
ferences about unobserved types when presented with uniform data
than when they are presented with asymmetric data.

Learning kinds of feature distribution

A recent topic of interest in the concept learning literature is
how people learn abstract rules1 that guide inductive infer-
ence in new situations (e.g. Kemp, Goodman, & Tenenbaum,
2010; Perfors & Tenenbaum, 2009). Applied to the current
context, the idea would be that people do not merely learn
that a single category shows a skewed frequency distribution
over object types. Instead, people can learn that “skewness”
is a property that is possessed by multiple categories. For
example, if we know that the distributions of flood and fire
severity are long-tailed (two categories of natural disaster for
which a reasonable of data are available to people), we might
also guess that the distribution of asteroid strikes (a category
of natural disaster largely unknown to people) has a similar
shape. One goal of the current work is to see whether people
are willing to draw abstract inferences about distributional
shape, and use these inferences to alter their guesses about
unobserved event types.

Overview

The goal of this paper is to investigate how people infer the
existence of unobserved event types, and whether people are

1Throughout this paper, the term “rules” is used informally, and
in this context refers to any regularity that people rely upon to guide
inference. It is not intended to imply that the regularities in question
correspond to explicitly represented, verbalizable rules.
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Figure 2: Sample stimulus in the pencil-and-paper version of the
task. This was the first trial in the skewed condition (lower left panel
in Figure 3). There are 10 tokens of the ℑ type, 1 token of the

√

type, and 1 token of the ∅ type. The computerized task was the
same, but types were differentiated by color as well as by symbol,
and the assignment of symbols was randomized.

sensitive to distributional form when doing so. The structure
of this paper is as follows. An experiment is described in
which participants were asked to guess how many types of
marbles exist in a bag that is only partially observed, where
the distribution of observations is manipulated. Human re-
sponses in this task are compared to the predictions of a hier-
archical Bayesian model that learns both the number of types
and the shape of the distribution over types. The implications
of the results for the black swan problem that motivated the
experiment are discussed.

Experiment

Method

Participants 101 participants (68% female) were recruited
from the University of Adelaide community: 33 were under-
graduates participating for course credit, 57 were recruited
through a paid participant list, and 11 were graduate students.
The 57 paid participants did a computerized version of the
task, while the other 44 participants completed a pencil and
paper version.

Materials & Procedure The task took the form of a guess-
ing game involving 7 trials. On each trial participants were
shown 6, 12 or 18 marbles, and told these had been drawn
from a bag containing 100 marbles in total. Each marble be-
longed to one of several types, indicated by a symbol dis-
played on the marbles surface, and the participant was asked
to guess how many types were represented in the full set of
100 marbles. No feedback was given as to the true number of
types. Figure 2 illustrates how a set of 12 marbles belonging
to 3 types was displayed.

Participants were randomly assigned into one of two con-
ditions, referred to as the “uniform data” condition and the
“skewed data” condition. The number of marbles observed
and the number of types they belonged to was identical across
conditions. For example, the first trial always showed 12
marbles (tokens) belonging to 3 types, and the second trial
always showed 18 tokens that represented 4 types of marble
regardless of condition. The conditions differed only in the
frequency distribution over types. In the uniform condition,
the tokens were evenly divided among types: on trial 1, for
instance, there were 4 marbles of each of the 3 types (i.e., a
4-4-4 split). In the skewed condition, the split was highly un-
even, with most marbles belonging to a single type: on trial
1, the split was 10-1-1. The complete set of frequency dis-



4 4 4

bag 1

10

1 1

bag 1

5 5
4 4

bag 2

15

1 1 1

bag 2

4 4 4
3 3

bag 3

14

1 1 1 1

bag 3

2 2 2

bag 4

4

1 1

bag 4

9 9

bag 5

16

2

bag 5

3 3

bag 6

5

1

bag 6

6

bag 7

6

bag 7

Figure 3: Experimental design. Each panel shows a rank-frequency plot of the marbles on a single trial. The top row shows the type-token
distribution for all 7 bags in the uniform condition. The bottom row shows the corresponding distributions for the skewed condition.

Table 1: Descriptive statistics. On the left is a summary of the ob-
servations shown to participants on each trial. The middle columns
show the 5% trimmed mean response broken down by bag number
and condition. The right columns show the proportion of “extrapola-
tive” responses, namely the proportion of responses that imply the
existence of at least one unobserved type.

Mean Extrapolation

Bag Tokens Types Unif. Skew. Unif. Skew.

1 12 3 4.35 6.38 0.34 0.47

2 18 4 4.40 7.64 0.18 0.47

3 18 5 5.75 10.54 0.34 0.63

4 6 3 4.58 8.64 0.45 0.70

5 18 2 2.42 2.79 0.14 0.30

6 6 2 3.02 4.13 0.43 0.49

7 6 1 1.32 1.77 0.25 0.47

tributions used in the experiment is shown in Figure 3. Note
that the final trial was identical in both conditions.

Exclusions Data from 7 participants were excluded either
because they gave impossibly large or impossibly small re-
sponses, indicating that they did not understand the task. An
8th participant was excluded for omitting responses. An ad-
ditional 6 participants gave sensible but qualitatively different
responses2 to the remaining 87. As such, the data from these
two groups should not be aggregated, but the minority group
is too small to analyze separately.

Results

Table 1 presents an overview of the data. For all seven tri-
als, the average number of types estimated by participants
was larger in the skewed distribution condition than in the
uniform distribution condition. Moreover, if we classify re-

2The responses for these 6 rose monotonically across trials. This
pattern makes sense if one assumes the bags are constrained to con-
tain the same set of types. One participant spontaneously reported
having made this assumption. This was not the intended interpreta-
tion of the task, but it is not an unreasonable one.

sponses into two categories – those “extrapolative” responses
in which participants inferred the existence of at least one
hidden type, and responses in which they did not – we ob-
serve the same pattern. Participants were more likely to infer
the existence of hidden types when the observed frequency
distribution was skewed.3

To determine if the tendency to estimate more types in the
skewed condition represents a significant effect, it is conve-
nient to code the responses in terms of the number of unob-
served types the participant predicted, rather than the total
number of types estimated for the bag. When coded in this
fashion, a response of “3 types” on the first trial is treated the
same as a “1 type” response on the last one, because in each
case the participant has indicated that he or she does not be-
lieve there are any hidden types. This has the advantage that
a “0 hidden types” response always represents “no extrapo-
lation”, and all other responses represent “the extent of the
extrapolation” from the sample shown to the participant.

Once the data are coded in this fashion, they can be an-
alyzed using linear mixed effects models, which are well-
suited for describing data with a repeated measures structure.
In addition to including a fixed effect of condition, the model
includes a random effect of bag for each participant in order to
capture individual differences in responding.4 Moreover, be-
cause the responses are skewed due to the presence of a floor
effect (i.e., “zero” hidden types is a natural lower bound on re-
sponses), a Poisson error distribution was used instead of as-
suming normality.5 The key result is that the Wald test for the

3One reviewer noted that the gap between skewed and uniform
does not increase across trials, and took this to imply that partici-
pants were not learning across trials. This is not correct: the trials
differ systematically in tems of the number of types and tokens, mak-
ing it difficult to draw any such inference. The key test of whether
cross-trial learning takes place is to look at bag 7: if no cross-trial
learning occurs, then responses should be identical for this bag in
both conditions, because this stimulus was identical in the two con-
ditions.

4Bag was coded as a categorical variable, and the random effect
of bag-by-subject subsumes the random effect of subject.

5Analyses were run in R version 2.15.2 using the lme4 pack-
age version 0.999999-0. Several other model specifications were
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Figure 4: Two different biases that the model can learn, for bags
containing k = 6 types. In panel (a), the type frequencies are highly
uniform (α = 100), and the expected rank-frequency plot is quite
flat (it becomes perfectly flat as α → ∞). In panel (b), the type
frequencies are highly variable (α = .5) and the expected rank-
frequency plot is very skewed.

main effect of condition was significant (z = 3.11, p = .002):
participants did in fact guess that more unobserved types ex-
isted in the skewed condition than in the uniform condition.

The previous analysis demonstrated that participants in the
skewed condition tended to estimate more hidden types than
participants in the uniform condition. In addition to showing
that this effect exists across the whole experiment, it is par-
ticularly useful to focus on bag 7, as this represents the purest
test of whether people were forming theories about bags in
general. A two sample Wilcoxon test6 applied to the bag 7
data revealed a significant difference (Z = −2.09, p = .037).
Despite the fact that the final bag was identical in both condi-
tions, participants estimated more unobserved types when the
preceding bags had revealed a skewed distributional shape.

A probabilistic model of the task

This section outlines a computational analysis of the induc-
tion problem used in the experiment. The analysis relies on
a probabilistic model of how bags of marbles are generated
and how observations are sampled from those bags. It is re-
lated to the Bayesian concept learning model used by Kemp,
Perfors, and Tenenbaum (2007), but differs in a key respect.
Kemp et al. (2007) assume the learner knows the true num-
ber of object types in advance, whereas the model used here
treats the number of types as an unknown quantity that must
be inferred. As with most computational analyses, the model
does not describe the processes people use to arrive at esti-
mates. Rather, it provides a sensible standard against which
human judgments in this task can be assessed.

Generative model for bags

Suppose that a bag contains k types of marbles, and let θi
denote the probability that a particular marble will be of the
i-th type. We may characterize the bag itself using a vector of

tried: none had lower BIC. Inspection of residuals suggests this
model provides a good fit to the data. Nevertheless, it is important
to note that the effect of condition is robust: it was significant in all
model specifications tried, including several that analyzed only the
binary version of the response variable (i.e., extrapolative vs non-
extrapolative).

6The coin package (version 1.0-21) in R was used to compute
an exact p value in the presence of ties.

Figure 5: Structure of the model. Shaded circles denote variables
that had been observed by participants on or before trial b of the
experiment. Unshaded circles denote variables whose values must
be inferred. The question asked of participants on trial b corresponds
to the value of kb.

type probabilities θ = (θ1, . . . , θk). A set of n observed mar-
bles from the bag x can be treated as a multinomial sample of
size n generated with probabilities θ. The unobserved mar-
bles can be viewed as a multinomial sample of size 100 − n
from the same distribution.7 This model implies that, in a
sample of size n, the learner should expect to see nθi exem-
plars of type i. As such, if n and θi are both small, it is quite
possible that zero exemplars of type i appear in the learner’s
observations; it therefore becomes an unobserved type.

This formalism can be extended to provide a generative
model for bags, which comes in two parts. First, the number
of types k is sampled from some distribution. This paper uses
a binomial distribution for this purpose, though this choice is
somewhat arbitrary. Second, once k is sampled, the vector
of type probabilities θ is generated. A convenient choice is a
Dirichlet distribution with symmetry parameter α. This dis-
tribution is widely used by Bayesian concept learning mod-
els (e.g. Anderson, 1991; Kemp et al., 2007), and allows
the learner to have strong beliefs about the shape of the fre-
quency distribution without knowing a priori which types are
more common. If α is small, the learner has a strong expec-
tation that some types of marble will be frequent (Figure 4b)
while others will be rare. In contrast, if α is large, the learner
possesses a strong expectation that all types of marble should
occur with approximately equal frequency (Figure 4a).

An important characteristic of this model is that it satisfies
the intuitive constraint illustrated in Figure 1. The uniform
distribution in panel a is the expected pattern when k = 3 and
α is large. The skewed distributions in panels c and d are the
expected patterns produced by small α values, with k = 3
and k = 6 respectively. In contrast, although the distribution
shown in panel b is possible within the model, it is not highly
likely under any choice of k and α.

Formally, the model is written as follows: if bags are gen-
erated with symmetry parameter α, then we obtain the fol-
lowing sampling model for the observations x:

k|λ ∼ Binomial(λ, n)

7Strictly speaking, the samples should be constrained such that
each type appears at least once among the n observed marbles or the
100−n unobserved ones. For simplicity I have avoided introducing
this additional constraint in this paper.



Figure 6: Schematic illustration of the inferences drawn by the
model when the observed data are uniform. Things marked “??”
refer to values that are inferred by the model rather than observed.

θ|k, α ∼ Dirichlet(α1(k))

x|θ ∼ Multinomial(θ, n)

where 1
(k) denotes a vector of length k that contains only

1s, and n is treated as a fixed property of the experiment and
is not part of the generative process over observations. The
prior over α is assumed to be a gamma distribution.

The structure of this model as a whole is illustrated graph-
ically in Figure 5. On trial b of the experiment, the learner
has access to the samples x1, x2, . . . , xb from the first b bags
(shaded circles). The task as stated is to estimate the the num-
ber of types in the b-th bag, kb, which is one of the several
unobserved variables (white circles) whose value is inferred
via Bayesian inference.

Learning abstract rules about bags

One of the important patterns in the empirical data is the fact
that participants give different responses to bag 7 in the two
conditions. The model reproduces this pattern because the
symmetry parameter α describes an abstract regularity that
attaches to all bags. As such, the model is able to learn the
value α across trials. If the model is shown several samples
with uniform distributions over observed types, the model
will gradually raise the value of α. The value of α tends to
decrease when the observed type frequencies are consistently
non-uniform.

The consequences of this learning are illustrated in Fig-
ures 6 and 7. In the bottom row of Figure 6, the observed sam-
ples are evenly split across types, so the model infers a large
value for α (top row). The most plausible way to have uni-
form distributions and remain consistent with the raw data is
to have no unobserved types (middle row). Contrast this with
the skewed-data scenario in Figure 7. Here the model infers a
small value for α and assumes that all of the frequency distri-
butions are also skewed (middle row). Skewed distributions
over types imply that at least some types are low probability,
so it is entirely plausible to believe that unobserved types ex-
ist. As a consequence, the model makes different predictions
about the final bag in Figure 7 than it does for the exact same
bag in Figure 6.

Figure 7: Schematic illustration of the inferences drawn by the
model when the observed data are skewed. Things marked “??” re-
fer to values that are inferred by the model rather than observed.

Model implementation

Although the model specifies many latent variables, the quan-
tity of interest for the b-th bag is P (kb|x1,x2, . . . ,xb), the
posterior probability that bag b contains kb types of marbles,
given all of the samples observed so far. This posterior proba-
bility cannot be computed analytically: given this, the model
was implemented in JAGS (version 3.1.0) and numerical es-
timates were obtained using Markov chain Monte Carlo. For
each bag b, samples were drawn from the joint posterior dis-
tribution over all latent variables, and these samples were
used to approximated the posterior probabilities of interest.

Because the data presented to participants is different on
each trial, fitting the model to the data requires 14 separate
model runs. Each of these 1750 model runs involved draw-
ing 1000 samples from the posterior distribution over k after
a burn in of 1000 samples. Moreover, because the model pre-
dictions depend on the choice of priors, a grid search using
125 different parameter sets was tried. The value of λ was
varied from .05 to .25, and the shape and scale parameters
for the prior over α were both varied from 1 to 5. The best
performing parameter values correspond to a prior over k that
is Binomial(0.15, 100) for all bags, and a prior over α that is
Gamma(4, 2).

Modeling human data

The model predictions are generally in close agreement with
human responses, but there are some differences. The main
one is that the model never generates extremely large esti-
mates: human participants occasionally guessed that a bag
contained more than 5-6 hidden types, whereas guesses of
this kind do not appear at all among the 1000 samples from
the model posterior. In other words, although the model pro-
duces a distribution over responses that is qualitatively in
agreement with human responses, it contains fewer very large
values. This difference appears to be due to the fact that the
model does not incorporate individual differences: it assumes
that all participants have the same priors and rely on the same
probabilistic assumptions about the task.8 Nevertheless, there

8In principle there is no reason why a model with individual dif-
ferences should be avoided: in practice, the computational difficul-
ties in estimating such a model are somewhat severe.
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Figure 8: Comparing the model fits against human responses. The
Pearson correlation between model and human is 0.89 (p < .001).

are individual differences in how people solve the task. There
are a few people who consistently estimate large numbers of
hidden types, but most do not. This makes it difficult to di-
rectly compare model estimate of k against the raw human
responses.

A simple solution to the problem is to compare the quali-
tatively important distinction in the task, namely whether or
not a particular response implies the existence of at least one
hidden type. That is, instead of fitting the model to the mean
number of types estimated by participants (middle columns
in Table 1), it is fit to the proportion of human responses in
which the number of estimated types was larger than the num-
ber of types revealed in the same (right columns in Table 1).
These responses are “extrapolative” in that they indicate that
the participant has extrapolated beyond the observed data and
guessed that there exists at least one hidden type.

Figure 8 plots model estimate of the probability that a bag
contains at least one hidden type against the proportion of
extrapolative responses in the empirical data. Circles denote
bags in the uniform condition, and diamonds represent bags
in the skewed condition, and the text denotes bag number.
The correlation between model predictions and human re-
sponses is 0.89 (p < .001) for the best fitting parameter val-
ues. However, the model fit is robust: the average correlation
across all 125 parameter sets was 0.84, never fell below 0.66,
and was significant at p < .01 in all cases.

Discussion

The close agreement between model predictions and human
responses implies that people are sensitive to the information
contained in the shape of the distribution of events they have
experiences when making inferences about types of events
they have never seen. Moreover, the fact that systematic
differences existed on the final trial of the experiment, and
that these differences are captured via a hierarchical Bayesian

model, implies that people are able to use the information
from one context (i.e., one bag) to inform the inferences they
draw in another one.

One potential extension to this work is to is to consider the
role of information search. In the current study, the number of
observations sampled from each bag was fixed by the experi-
menter. However, in many real world decision making prob-
lems, people have some degree of control over how much in-
formation they collect before making choices. It seems plau-
sible to think that, when the true event distribution is very un-
even, people will adopt a very different search strategy than if
the frequency distribution is uniform. As such, the constraint
that the number of types and tokens observed needed to be
matched across experimental conditions, although important
from a methodological perspective, may obscure one of the
key differences in how people make inferences and choices
more generally. In preliminary work investigating this ques-
tion, we have found some evidence that information search
process is indeed influenced by distributional shape, but this
is work in progress.
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