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Abstract— This paper is concerned with the problem of fault
detection filter for vehicle active suspension systems. The aim
of this paper is to design a fault detection filter in finite-
frequency domain. A sufficient condition for residual system
with the prescribed H∞ performance index is derived based
on the generalized Kalman-Yakubovich-Popov (KYP) lemma.
In view of the obtained condition, the fault detection filter is
designed in middle-frequency domain. Simulation results show
the effectiveness and potential of the proposed results.

Index Terms— Finite-frequency domain. Fault detection. Fil-
ter design. Vehicle active suspension systems. H∞ performance
index.

I. INTRODUCTION

For many years, a hot research topic on vehicle sus-
pensions has appeared because vehicle suspensions play an
important role in ride comfort, vehicle safety, road damage
minimization and the overall vehicle performance. Vehicle
suspension system is mainly composed of wishbone, spring,
shock absorber to transmit and filter all forces between
body and road. To satisfy these requirements, many types
of suspension systems have currently considered, such as
passive [2], semi-active [3], [4], active suspensions [5], [6].
It has been well known that active suspensions have a
great potential in meeting the tight performance requirements
demanded by users.

Most of the approaches are considered in the full frequency
domain. Active suspension systems, however, may belong
to certain frequency band and ride comfort is known to
be frequency sensitive. In the vertical direction, the human
body is much sensitive to vibrations of 4 − 8Hz from the
ISO2631. Hence, it has more practical values to enhance the
vehicle suspension performance in finite frequency. For vehi-
cle active suspension systems, the problem of multi-objective
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control [7] has been proposed via designing load-dependent
controllers. Finite frequency H∞ control of vehicle active
suspension systems [8] has been dealt with. In [9], active
fault-tolerant control for vehicle active suspension systems
has been solved. H∞ control problem of time-delay active
vehicle suspensions [10] is investigated.

The approach for finite frequency domain is to generalize
the fundamental machinery, the KYP lemma. The KYP
lemma shows the equivalence between a frequency domain
inequality for a transfer function and a linear matrix in-
equality associated with its state-space realization. Recently,
Iwasaki and Hara have made a very significant development
about the generalized KYP lemma [11]. The equivalence is
established between a frequency domain property and a LMI
in a finite frequency range. The generalized KYP lemma is
used to solve the analysis and synthesis problems in practical
applications. In [12], fuzzy filter design for nonlinear systems
in finite-frequency domain has been considered. The problem
of feedback control synthesis for multiple frequency domains
[13] has been solved. For continuous-time T-S fuzzy systems
[14], H∞ state feedback controller has been designed in finite
frequency domain. H∞ filtering for uncertain 2-D systems
and LPV systems with sensor faults has been given in [15]
and [16], respectively.

In a wide range of industrial processes, there have been in-
tensive research results on fault detection and isolation algo-
rithms and their applications. Many scholars keep a watchful
eye on the fault detection. The source of false alarm is mainly
unknown inputs, uncertainties, faults, disturbances and so on
in any industrial systems. The most common method is that a
residual signal is constructed and compared with a predefined
threshold by designing a state observer or filter. The approach
is named as the model-based approach. When the residual
evaluation function is larger than the threshold, an alarm is
produced. The filter has been designed to solve the fault
detection problem of networked control systems modeled
[17], Markovian jump singular systems with intermittent
measurements [18], discrete-time switched singular time-



delay systems [19], and fuzzy jump systems [20]. However,
by using the generalized KYP Lemma, many results of fault
detection have been shown. The problem of fault detection
for sampled-data systems [21] has been solved. For T-S fuzzy
discrete systems [22], fault detection filter has been designed.
In [23], the fault detection filter problem of networked control
systems with missing measurements has been considered.
The fault detection observer design problem for linear delta
operator system, linear continuous-time systems have been
proposed in [24], [25], respectively. However, to the best of
the authors’ knowledge, the problem of fault detection for
vehicle active suspension systems in finite-frequency domain
has not yet been fully investigated, which motivates the
research in this paper.

In this paper, the problem of fault detection filter for
vehicle active suspension systems in finite-frequency domain
is studied. The objective of this paper is to design a fault
detection filter. A sufficient condition of residual system
with the prescribed H∞ performance is derived in term of
the generalized Kalman-Yakubovich-Popov (KYP) lemma.
By means of the obtained condition, the form of the fault
detection filter is given in middle-frequency domain. Simu-
lation results illustrate the effectiveness and potential of the
proposed results.

II. PROBLEM FORMULATION AND PRELIMINARIES

This paper is concerned with the quarter car model [7],
[8], [9] shown in Fig. 1.

Fig. 1. The quarter car model

We can obtained the ideal dynamic equations of the sprung
and unsprung masses as follows:

msz̈s(t) + cs[żs(t)− żµ(t)] + ks[zs(t)− zµ(t)] = µ(t)

mµz̈µ(t) + cs[żµ(t)− żs(t)] + ks[zµ(t)− zs(t)]

+kt[zµ(t)− zr(t)] + ct[żµ(t)− żr(t)] = −µ(t)

where ms notates the sprung mass; mµ notates the unsprung
mass; cs and ks are damping and stiffness, respectively. kt
and ct mean compressibility and damping of the pneumatic
tyre, respectively; zs and zu notate the displacements of the
sprung and unsprung masses, respectively; zr is the road
displacement input; µ is the active input of the suspension
system.

Set

x1(t) = zs(t)− zµ(t), x3(t) = żs(t)

x2(t) = zµ(t)− zr(t), x4(t) = żu(t)

where x1(t) is the suspension deflection, x2(t) denotes the
tire deflection, x3(t) denotes the sprung mass speed and x4(t)
is the unsprung mass speed.

Define the disturbance inputs is d(t) = żr(t) and the
control output

z(t) = z̈s(t), y(t) =
[

zs(t)−zµ(t)
zmax

kt(zµ(t)−zr(t))
(ms+mµ)g

]T
where zs(t) − zµ(t) ≤ zmax means the structural features
of the vehicle also constrain the amount of suspension
deflection, with zmax is the maximum suspension deflection.

Based on the dynamic characteristic of the active sus-
pension system, the vehicle suspension control model is
described as follow:

ẋ(t) = A1x(t) +B1µ(t) +D1d(t)
y(t) = A2x(t)
z(t) = A3x(t) +B3µ(t)

(1)

where

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
A1 =


0 0 1 −1
0 0 0 1

− ks

ms
0 − cs

ms

cs
ms

ks

mu
− kµ

mu

cs
mµ

− cs+ct
mµ



B1 =


0
0
1
ms

− 1
mµ

 , D1 =


0
−1
0
ct
mµ


A2 =

[
− ks

ms
0 − cs

ms

cs
ms

]
A3 =

[
1

zmax
0 0 0

0 kt

(ms+mµ)g
0 0

]
B3 =

[
1
ms

]
If the fault occurs, (1) becomes the following form:

ẋ(t) = A1x(t) +B1µ(t) +D1d(t) + F1f(t)
y(t) = A2x(t)
z(t) = A3x(t) +B3µ(t) + F3f(t)

(2)



For system (2), construct the fault detection filter as
follows:

˙̂x(t) = Af x̂(t) +Bfy(t)
r(t) = Cf x̂(t) +Dfy(t)

(3)

For system (2), our aim is to construct a fault detec-
tion filter in order to get the residual generation. For a
given stable weighting matrix Wf (s), the weighted fault
f̂(s) =Wf (s)f(s) is introduced to enhance the performance.
Supposed that Wf (s) ’s minimal realization is as follows

ẋf (t) = Awxf (t) +Bwf(t)
rf (t) = Cwxf (t) +Dwf(t)

(4)

Define xe(t) =
[
x(t)T x̂(t)T xf (t)

T
]T

and e(t) =
r(t)− rf (t)− z(t), and then the residual system is obtained
that

ẋe(t) = Aexe(t) +Beν(t)
e(t) = Cexf (t) +Deν(t)

(5)

where

Ae =

 A1 0 0
BfA2 Af 0
0 0 Aw


Be =

 B1 D1 F1

0 0 0
0 0 Bw


Ce =

[
DfA3 −A3 Cf −Cw

]
De =

[
−B3 0 −Dw − F3

]
ν(t) =

[
µ(t)T d(t)T f(t)T

]
Lemma 2.1: (Projection Lemma) Given a symmetric ma-

trix ψ and two matrix Γ and Λ, the problem

ψ + ΓχΛT + ΛχTΓ < 0

is solvable with respect to the decision matrix χ if and only
if

Γ⊥ψΓ⊥T < 0 and Λ⊥ψΛ⊥T < 0
Lemma 2.2: (Finsler’s Lemma) Letting η ∈ Rn, P =

PT ∈ Rn×n, H ∈ Rm×n such that rank(H)=r¡n the following
statements are equivalent:

1) ηTPη < 0 for all η ̸= 0, Hη = 0;
2) ∃X ∈ Rn×m such that P +XH +HTXT < 0.
Lemma 2.3: (Generalized KYP Lemma) Consider the fol-

lowing system:

ẋ(t) = Ax(t) +Bµ(t)
y(t) = Cx(t) +Dµ(t)

(6)

with transfer function matrix G(s) = C(sI − A)−1B + D.
Let a symmetric matrix Π is given, the following statements
are equivalent:

• The finite frequency inequality[
G(jω)
I

]T
Π

[
G(jω)
I

]
< 0, ϖ1 ≤ ω ≤ ϖ2 (7)

• Hermitian matrix P and Q, Q > 0, then[
A B
I 0

]T
Θ

[
A B
I 0

]
+

[
C D
0 I

]T
Π

[
C D
0 I

]
< 0 (8)

where

Θ =

[
−Q P + jϖcQ

P − jϖcQ −ϖ1ϖ2Q

]
with ϖc = (ϖ1 +ϖ2)/2.

Definition 2.1: Consider system (2), given a scalar γ > 0,
the fault detection filter (3) is designed such that the following
conditions hold:

(i)Residual system (5) with ν(t) = 0 is asymptotically
stable.

(ii)Under zero initial condition, residual system (5) satisfies

H∞ , sup
ω
σmax(Geν) < γ

III. MAIN RESULTS

A. Fault Detection Filter Design

Theorem 3.1: Consider system (2). For the given scalar
γ > 0 and the middle-frequency rang ϖ1 ≤ |ω| ≤ ϖ2,
system (5) is asymptotically stable and satisfies H∞ perfor-
mance index if there exist symmetric matrices P and Q > 0,
matrices X , scalars q, p satisfying qp+ pq < 0 such that the
following inequalities holds:[

−Xq − qXT P +Xp+ qXTAe

∗ −AT
e Xp− pXTAe

]
< 0 (9)

−Q P + jϖcQ+M 0 0
∗ −ϖ1ϖ2Q−AT

eM −MTAe −MTBe CT
e

∗ ∗ −γ2I DT
e

∗ ∗ ∗ −I

 < 0

(10)
Proof: First of all, it is shown that system (5) is

asymptotically stable.
Consider the following Lyapunov functional:

V (t) = XT
e (t)PXe(t) (11)

Taking the derivatives of V (t) along the trajectory system
(11), we can have that

V̇ (t) = AT
e P + PAe (12)

There exists

AT
e P + PAe < 0 (13)



such that V̇ (t) < 0. Form (13), it is easy to obtain that[
AT

e I
] [ 0 P

P 0

] [
Ae

I

]
< 0 (14)

Since that
[

qI
−pI

]⊥
=

[
pI qI

]
and qp + pq < 0, we

can have that[
pI qI

] [ 0 P
P 0

] [
pI
qI

]
= (qp+ pq)P < 0 (15)

Notice that
[
AT

e I
]⊥

=

[
−I
AT

e

]
. According to Projec-

tion Lemma, we can have[
0 P
P 0

]
+

[
−I
AT

e

]
X

[
qI
−pI

]T
+

[
qI
−pI

]
XT

[
−I
AT

e

]T
< 0 (16)

after some matrix manipulation, it is proven that (9) holds.
Next, we can show that system (5) satisfies the H∞ index

bound γ.

Let Π =

[
I 0
0 −γ2I

]
, (7) of Lemma 2.3 is rewritten

GT (jω)G(jω) < γ2I (17)

that is, sup σmax(G(jω)) < γ.
Hence, (17) holds if and only if there exist P , Q such that[
Ae Be

I 0

]T [
−Q P + jϖcQ

P − jϖcQ −ϖ1ϖ2Q

] [
Ae Be

I 0

]
+

[
Ce De

0 I

]T [
I 0
0 −γ2I

] [
Ce De

0 I

]
< 0 (18)

then (18) have the following form

ΥT
1 (Υ

T
2 ΘΥ2 +ΥT

4 ΠΥ4)Υ1 < 0 (19)

where

Υ1 =

 Ae Be

I 0
0 I

 ,Υ2 =

[
I 0 0
0 I 0

]

Υ4 =

[
0 Ce De

0 0 I

]

Let Γ⊥ = ΥT
1 =

[
AT

e I 0
BT

e 0 I

]
, then

Γ =
[
I −Ae −Be

]T (20)

By using Projection Lemma, (19) holds if the following
inequality holds:

ΥT
2 ΘΥ2 +ΥT

4 ΠΥ4 < ΓMφT + φMTΓT (21)

Define

φT =
[
0 −I 0

]
(22)

and substituting (20) and (22) into (21), then by some matrix
manipulations and Schur complement, it is obtained that (10)
holds. The proof is finished.

In the following, Theorem 3.2 is shown to obtain the
parameters of filter (3).

Theorem 3.2: Consider system (2). For the given scalar
γ > 0 , system (5) is asymptotically stable and satisfies
H∞ performance index in the middle-frequency rang ϖ1 ≤
|ω| ≤ ϖ2 if there exist scalars q, p satisfying qp + pq < 0,
matrices X1, X2, X3, M1, M2, M3, M4, Af0, Bf0, Cf0,
Df0, symmetric matrices

P =

 P1 P2 P3

∗ P4 P5

∗ ∗ P6

 , Q =

 Q1 Q2 Q3

∗ Q4 Q5

∗ ∗ Q6

 > 0

such that (24) and (24) hold.
−q(X1 +XT

1 ) −q(MT
2 +X2) 0

∗ −q(M2 +MT
2 ) 0

∗ ∗ −q(X3 +XT
3 )

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Ψ14 Ψ15 P3

Ψ24 Ψ25 P5

PT
3 PT

5 P6 + pX3 + qXT
3 Aw

Ψ44 Ψ45 0
∗ −p(AT

f0 +Af0) 0

∗ ∗ −p(XT
3 Aw +AT

wX3)

 < 0(23)



−Q1 −Q2 −Q3 Ξ14 Ξ15 Ξ16

∗ −Q4 −Q5 Ξ24 Ξ25 Ξ26

∗ ∗ −Q6 Ξ34 Ξ35 Ξ36

∗ ∗ ∗ Ξ44 Ξ45 −ϖ1ϖ2Q3

∗ ∗ ∗ ∗ Ξ55 −ϖ1ϖ2Q5

∗ ∗ ∗ ∗ ∗ Ξ66

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0
0 0 0 0
0 0 0 0

−MT
1 B1 −MT

1 D1 −MT
1 F1 Ξ410

−MT
3 B1 −MT

3 D1 −MT
3 F1 CT

f0

0 0 −MT
4 Bw −CT

w

−γ2I 0 0 −BT
3

∗ −γ2I 0 0
∗ ∗ −γ2I Ξ410

∗ ∗ ∗ −I


< 0 (24)

where

Ψ14 = P1 + pX1 + qXT
1 A1 + qBf0A2

Ψ15 = P2 + pX2 + qAf0



Ψ24 = PT
2 + pM2 + qXT

2 A1 + qBf0A2

Ψ25 = P4 + pM2 + qAf0

Ψ44 = −p(XT
1 A1 +Bf0A2)− p(XT

1 A1 +Bf0A2)
T

Ψ45 = −pAf0 − p(XT
2 A1 +Bf0A2)

T

Ξ14 = P1 +M1 + jϖcQ1,Ξ15 = P2 +M3 + jϖcQ2

Ξ24 = PT
2 +M2 + jϖcQ

T
2 ,Ξ25 = P4 +M2 + jϖcQ4

Ξ16 = P3 + jϖcQ3,Ξ26 = P5 + jϖcQ5

Ξ34 = PT
3 + jϖcQ

T
3 ,Ξ35 = PT

5 + jϖcQ
T
5

Ξ36 = P6 +M2 + jϖcQ6

Ξ44 = −ϖ1ϖ2Q1 − (AT
1M1 +AT

2 B
T
f0)

−(AT
1M1 +AT

2 B
T
f0)

T

Ξ45 = −ϖ1ϖ2Q2 − (AT
1M3 +AT

2 B
T
f0 +Af0)

Ξ55 = −ϖ1ϖ2Q4 − (Af0 +AT
f0)

Ξ66 = −ϖ1ϖ2Q6 − (AT
wM4 +MT

4 Aw)

Ξ410 = (Df0A2 −A3)
T ,Ξ910 = −FT

3 −DT
w

Moreover, if (24) and (24) are feasible, then a suitable filter
satisfies

Af =M−T
2 Af0, Cf = Cf0

Bf =M−T
2 Bf0, Df = Df0

(25)

Proof: Define

X =

 X1 X2 0
M2 M2 0
0 0 X3

 ,M =

 M1 M3 0
M2 M2 0
0 0 M4


substituting P , Q, X , Ae, Be, Ce, De into (9), let

AT
f = AT

f0M
−1
2 , Cf = Cf0

BT
f = BT

f0M
−1
2 , Df = Df0

(26)

we can obtain (24) holds.
Similar, substituting P , Q, M , Ae, Be, Ce, De into (10)

and considering (26), we can obtain (24) holds. The proof is
finished.

B. Threshold Design

In order to detect the faults, the widely adopted approach
is to choose an appropriate threshold Jth and determine the
evaluation function J(r). That is, a threshold Jth and a
residual evaluation function J(t) can be chosen:

J(r) = ∥r(t)∥2,τ =
√∫ τ

0
rT (t)r(t)dt

Jth = supµ(t),d(t)∈L2,f(t)=0J(r)
(27)

where τ is the evaluation time window.
Based on this, the occurrence of the sensor faults can be

detected via the following logic rule:

Jr(t) < Jth ⇒ No Faults

Jr(t) ≥ Jth ⇒ Faults⇒ Alarm

which means that the faults are detected by comparing the
residual evolution function and the predefined threshold.

Remark 3.1: In this paper, we show a bridge between
fault detection and vehicle active suspension systems. By
designing a filter , the problem of fault detection for vehicle
active suspension systems can be solved. Some comparison
results are given in TABLE I.

TABLE I
COMPARISONS OF THE EXISTING RESULTS

Reference Contribution
[8] Finite Frequency H∞ control
[9] Active fault-tolerant controller design
This paper Fault detection filter design

IV. ILLUSTRATIVE EXAMPLES

In this section, we give an example to illustrate that
the proposed method is effective. The quarter-car model
parameters are considered as follows: ms = 320kg, mµ =
40kg, ks = 18kN/m, kµ = 200kN/m, kt = 200kN/m,
cs = 1kN/m, ct = 10Ns/m, zmax = 100mm. Based on
the parameters, the system matrices is easily obtained. It is
widely accepted that ride comfort is closely related to the
body acceleration in frequency band 4− 8Hz. The weighted
matrix of the fault is supposed to be Wf (s) = 5

s+5 with
the minimal realizations Aw = −5, Bw = 5, Cw = 1,
Dw = 0. Consider F1 =

[
0 0 −2 −2

]T , F3 = −2
when γ = 0.5, we can have

Af =


−2.5347 −0.2571 0.9986 −0.9994
0.8009 −1.1232 −0.5686 0.7492
−0.6409 0.2030 −1.2378 −0.7255
0.6115 0.4901 −1.0688 −0.9370



Bf =


−253.3453 −4.4550
51.6753 −63.2421
−69.1644 −1.2997
102.1435 102.4626


Cf =

[
0.8413 0.1199 0.1009 −0.1344

]
Df =

[
103.3864 14.2191

]
To show the effectiveness of the design, the control input is
assumed to be µ(t) = 0.5sin(2πt), the fault signal is given
as follows:

f(t) =

{
1, 5s < t < 20s
0, else

and the disturbance d(t) is shown in Fig. 2. Fig. 3 shows
the residual evaluation function Jr(t). The simulation results
show that Jr(9.7) = 9.4988 < 9.345 when t = 9.7s,
which means that the fault f(t) can be detected 4.7s after its
occurrence.



V. CONCLUSION

This paper dealt the problem of fault detection filter for
vehicle active suspension systems in finite-frequency domain.
Based on the generalized KYP lemma, this paper’s aim is that
the fault detection filter is designed in the middle-frequency
domain such that the residual systems are asymptotically
stable and meet the prescribed H∞ performance index. The
fault detection filter is shown in the form of linear matrix
inequalities. Simulation results are show the effectiveness and
potential of the proposed results.
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